
Hermion - Exploiting the Dynamics of Software

Authors: David Röthlisberger, Orla Greevy, and Oscar Nierstrasz
Affiliation: Software Composition Group, University of Bern, Switzerland
Homepage: http://scg.iam.unibe.ch/Research/Hermion
Smalltalk Dialect: Squeak
License: Open-source (MIT)
Keywords: development environment, dynamic analysis, feature analysis

Abstract. The current Squeak Smalltalk IDE provides a structural per-
spective on a software system in terms of packages, classes and methods.
However, from this perspective it is difficult to gain an understanding of
how source entities participate at system’s run-time. Hermion enriches
the traditional IDE with a view on the dynamics of the system, (i) by
offering a complementary feature-centric perspective of a software sys-
tem to allow developers to reason about how specific run-time features of
their software are implemented, (ii) by integrating dynamic information
into the static perspective on a system, i.e., source code, and (iii) by
providing mechanisms to query run-time information.

1 Enhancing the IDE with Dynamic Information

The problems of understanding object-oriented software are poorly addressed
by current Squeak development tools, as these tools purely focus on a structural
perspective of a software system by displaying static source artifacts such as class
categories, classes or methods. The running of the system, however, i.e., the
execution of specific system features, is not explicitly represented in Squeak.
However, as maintenance requests are typically expressed in terms of features, it
is crucial for a software developer to understand the running of features. Dynamic
information can enhance this understanding.

To tackle the shortcoming of the existing Squeak IDE not having any ex-
plicit representation of a system’s dynamics, we propose to enhance the static
perspective with a feature perspective of a software system. We present a novel
feature-centric environment providing support for visual representation, inter-
active exploration and navigation of a system’s features [1]. Furthermore, we
enrich the source code with information about its execution, i.e., run-time types
of variables or precise information about methods being invoked from within a
given method [2]. A third enhancement enables the developer to query gathered
dynamic information from within the IDE, for instance to reveal what methods
get invoked most frequently during the execution of a software feature [3].

In the following, we give a short overview of how these three means to inte-
grate dynamic information are implemented in our Hermion IDE, an enhanced
development environment for Squeak based on the OmniBrowser framework [4].

2 Feature-centric Environment

We embed the feature-centric environment tightly in the traditional Smalltalk
IDE to augment this IDE with a feature perspective of a software. This feature
environment complements the traditional structural and purely textual represen-
tation of source code in a browser by presenting the developer with interactive,
navigable visualizations of features in three distinct but complementary views.
These views are enriched with metrics to provide the software engineer with
additional information about the relevancy of source artifacts (i.e., classes and
methods) to specific features.

A schema of the feature-centric environment is shown in Figure 1. (1) is the
test runner which is not directly part of the feature-centric environment but a
separated tool. Tests are recorded scripts to execute features, but developers can
also directly run the system like end-users to trigger the execution of features.
The feature-centric environment contributes three different visualizations for one
and the same feature: (2) the compact feature overview, (3) the feature tree view,
and (4) the feature artifact browser.

testCopy
testCopyIntoChild
testInitialized

CopyCommandTest
...

Test Browser
tests

<<context menu>>

- generate trace
- open in feature view
- run

(1)

(4)

<<context menu>>

- view source in browser
- ...

(3)
(4)

(2)

Fig. 1. The Elements of our Feature Browser Environment

Compact Feature Overview. The Compact Feature Overview presents a vi-
sualization of two or more features represented in a compacted form. This view
represents a feature as a collection of all methods used in the feature as a result
of capturing its execution trace. Each method is displayed as a small colored
box; the color represents the Feature Affinity value. Cyan hereby represents
a method only used in this particular feature in the list of features, while red
on the other hand means that this method is used by all features in the list.
The methods are sorted according to their Feature Affinity value. The software
engineer decides how many features she wants to visualize at the same time (see
Figure 1 (2)). Clicking on a method box in the Compact Feature View opens

the Feature Tree View, which depicts a call tree of the execution trace. This
visualization reveals the method names and order of execution.
Feature Tree. This view presents the method call tree, captured as a result of
exercising one feature (see Figure 1 (3)). The first method executed for a feature
(e.g., the “main” method) forms the root of this tree. Methods invoked in this
root node form the first level of the tree, hence the nodes represent methods and
the edges are message sends from a sender to a receiver. The nodes of the tree
are again colored according to their Feature Affinity value.
Feature Artifact Browser. The source artifacts of an individual feature are
presented as text in the feature artifact browser (see Figure 1 (4)). It exclusively
displays the classes and methods actually used in the feature. This makes it
much easier for the user to focus on a single feature of the software. Thefeature
artifact browser is an adapted version of the standard class browser available
in Squeak. However, this version of the class browser not only presents static
source artifacts, but also the feature affinity metric values by coloring the names
of classes and methods accordingly.

The three distinct visualizations provided by the feature browser are tightly
interconnected so that developers do not lose the overview when performing a
maintenance task. For instance, the user selects a method in the compact feature
overview, the tree opens with all occurrences of the selected method. In the tree
the developer chooses to view a method in the feature artifact browser.

3 Enriching Source Code with Dynamic Information

Besides integrating a feature representation in the IDE, we also enrich directly
the view on static source artifacts, in particular the source code view, with
dynamic information. In Squeak it is difficult to get a complete understanding
for the running of a method by just reading the source code as there is no explicit
type information available. Without this information, we often do not know what
types variables get at run-time and what methods get invoked, especially when
polymorphism is applied. We mitigate this problem by analyzing the running of
methods to give developers insights into the dynamics directly when they are
working with the source code.

We enrich the static source code perspective with three novel enhancements:
(i) run-time types for variables, (ii) precise message send navigation, and (iii)
dynamic references occurring in selected classes or methods. These enhancements
are available for entities (e.g., packages or classes) the developer has chosen
to observe dynamically. As soon as the application using these entities gets
executed, Hermion takes care of collecting run-time information to immediately
enhance the source code view. Figure 2 summarizes these enhancements.
Run-time Types of Variables. All variables that have been accessed at run-
time get an icon next to them in the source code view. Clicking on this icon
shows the run-time types this variable got and how often it has been accessed
for each type during the system’s execution. The developer can browse to the
class corresponding to each type in the list by choosing the appropriate list item.

Message Send Navigation. For message send we also add an icon next to
them in the source code view. If it is a polymorphic message send, clicking on
the icon brings up a list with all methods being invoked, including their respective
receiver types. If there is only one receiver, the developer directly navigates to
the method that has been invoked at runtime at that place in source code.
Reference View. The reference view shows all classes that have been referenced
at run-time in the selected class or method. The developer can navigate these
referenced classes or see where in source code the reference was done.

Reference ViewType ViewMessage Send Navigation

Sender NavigationBack Button

Fig. 2. Enriching source code with dynamic information

4 Querying Dynamic Information

Finally, we add a search bar on the top of the class browser of Squeak to enable
the developer to enter textual search queries to retrieve dynamic information.
Such a query is for instance SHOW collaborators OF OBColumn to get all classes
collaborating with OBColumn at run-time. The result is then permanently stored
in a so-called smart group accessible from within the IDE, as illustrated in
Figure 3. Query results can be analyzed further, for instance to study how a
class is dynamically collaborating with OBColumn.

5 Conclusion

In this paper we presented an integration of dynamic information into the Squeak
IDE by (i) explicitly representing features, (ii) embedding run-time information

Query Actions for collaboratorsSearch bar to submit queries

Smart groups Collaborators Method protocols of OBClassNode
Methods of OBClassNodeSelected collaborator,

OBClassNode

Fig. 3. Querying dynamic information, results are accessible in smart groups

into the source code, and (iii) providing query facilities covering dynamic infor-
mation. An IDE augmented with dynamic information is superior to an environ-
ment purely focusing on static source artifacts, as these enhancements eventually
enhance software understanding for the developer and ease maintenances activi-
ties as shown in [1] or [2]. In particular for dynamic languages such as Smalltalk
it is crucial to have insights into the running of a system (e.g., revealing run-time
type information) while working with static source entities.

References

1. D. Röthlisberger, O. Greevy, O. Nierstrasz, Feature driven browsing, in: Proceedings
of the 2007 International Conference on Dynamic Languages (ICDL 2007), ACM
Digital Library, 2007, pp. 79–100.

2. D. Röthlisberger, O. Greevy, O. Nierstrasz, Exploiting runtime information in the
ide, in: Proceedings of the 2008 International Conference on Program Comprehen-
sion (ICPC 2008), 2008.

3. D. Röthlisberger, Querying runtime information in the ide, in: Proceedings of the
2008 workshop on Query Technologies and Applications for Program Comprehension
(QTAPC 2008), 2008.

4. A. Bergel, S. Ducasse, C. Putney, R. Wuyts, Creating sophisticated development
tools with OmniBrowser, Journal of Computer Languages, Systems and Structures
34 (2-3) (2008) 109–129.

	Hermion - Exploiting the Dynamics of Software
	

