
ESUG 2008 - Innovation Technology Awards

SeasideXUL
Project mame SeasideXUL

Authors & Affiliations Pavel Krivanek - Nidea s.r.o., The Czech Republic

Homepage http://code.google.com/p/seasidexul/

Smalltalk dialects Squeak

License Open-source (MIT)

Keywords XUL, Seaside, GUI, Ajax, OmniBrowser

Abstract

SeasideXUL is a web framework that enables to create thin-client desktop
applications with standard look & feel based on remote XUL in Smalltalk. It is
an additional layer on top of Seaside.

Why is SeasideXUL unique

- it brings native look & feel to Smalltalk web applications

- it allows to use remote XUL in the way that is not possible in any other current
framework regardless of programming language

- it is the first Seaside application that uses fully Ajax-based communication
with components calls and forms submitting

- whole fully capable Smalltalk development environment can be used on
remote or local headless images with OmniBrowser

- rich set of example codes

1

ESUG 2008 - Innovation Technology Awards

XUL

XUL is an XML user interface markup language developed by the Mozilla
project. It operates in Mozilla cross-platform applications such as Firefox and
Flock. As its main benefit, XUL provides a simple and portable definition of
common widgets. The set of this widgets is wider than in case of HTML and it is
closer to the world of common desktop applications so it includes trees,
toolbars, group boxes, color pickers, spacers and other widgets that cannot be
easily created in HTML. Moreover XUL relies on multiple existing web standards
and technologies, including CSS, JavaScript or DOM and it can be combined
with next technologies like HTML and SVG. The Gecko layout engine provides
the only complete implementation of XUL today.

XUL offers only the GUI rendering. The main application logic must be handled
by different layer. It is often the native code connected via special interface
(XPCOM). That is suitable mainly for the local standalone applications. Very
popular way exerted in Firefox extensions is to write whole application logic in
JavaScript.

The project SeasideXUL uses the third way - remotely generated XUL
transported via HTTP similarly to HTML pages. This alternative is suitable for
the intranet applications but may have several unpleasant limitations.

Goals

The main goal of the SeasideXUL project is to allow to generate the XUL code
from Seaside and bring the useful solution for the everlasting question of
native Smalltalk user interface with standardlook & feel. Seaside is a web
framework based on components and continuations that allows to create web
applications in the way that is very similar to creation of common applications
with native GUI. So it is natural to use Seaside directly for this purpose and
SeasideXUL tries to help with that.

Seaside doesn't use any template system. It assembles simple universal
components. The HTML code is generated directly from Smalltalk using a
canvas and block closures. So the first task was to create a special canvas class
that will generate XUL instead of HTML code. The code that generates user
interface then looks like this:

 xul groupBox flex: 1; with: [
 xul caption label: 'orientation'.
 xul vBox with: [
 xul description value: 'some text'.
 xul checkbox label: 'Left'.
 xul separator flex: 1.
 xml button flex: 1; label: 'Submit'.]].

Seaside is designed for the HTML generation where every new request
regenerates whole page and the main part of its know-how attends to hiding
this fact to a programmer. This approach is very unfitting for XUL and to
regenerate whole user interface every time the user makes some fundamental
change is a nonsense. That's why SeasideXUL must use communication via
XMLHttpRequests. They are commonly used in Seaside too (using
Scriptaculous) but it cannot be used for some basic operations like components
calls.

2

ESUG 2008 - Innovation Technology Awards

So SeasideXUL had to bring the next layer above Seaside that mediates all
communication via Ajax (except the initial request) including components calls,
forms submitting and so on. That was not done in any Seaside application
before.

 xul button
 label: 'login';
 onCommand: (xul ajax callback: [
 | user |
 user := self call: LoginComponent new.
 self call: (UserInfoComponent new user: user)]).

For components calls SeasideXUL uses special marks in the code that limit the
component - it's done using simple decorations. Much harder task is to handle
control flow because components must stop the computation and wait for the
call result. But when the called component returns the control back, the calling
component must respond to different client request. This problem is solved
using several collaborating continuations, exceptions and special canvas
properties.

Forms have similar usage like in case of standard Seaside HTML forms including
bindings to accessors but their physical representation and processing is very
different and it is all done via special Ajax requests.

 formId := WAExternalID new.
 xul form: formId with: [
 xul textBox on: #surname of: self.
 xul colorPicker type: 'button'; on: #color of: self.
 xul button
 label: 'Submit';
 onCommand: (xul formSubmiter
 formId: formId;
 callback: [self refresh.])].

All main properties and rendering possibilities are demonstrated in the
application named SeasideXUL Periodic Table that is based on standard XUL
demonstration application (XUL Periodic Table).

3

ESUG 2008 - Innovation Technology Awards

Remote XUL limitations
There are three ways how to run remote XUL applications:
1) open the URL in Firefox. It is the easiest way but it has several security

restrictions that limit practical usage including lack of rich text editors.

2) to create the application settings (set of several files and directories) and
run it using Mozilla program named XULRunner

3) to create the application settings and run it in Firefox 3 with the -app
argument.

The second and third way were not designed for remote XUL applications and
they have similar security restrictions like the first one. Mozilla recommends to
create a Firefox extension callaborating with remote server for remote XUL
applications. However SeasideXUL uses unique workarounds that enables to
use unrestricted remote XUL applications even without Firefox extensions. The
need of application settings files and specific software on the client side limits
the usage for general web applications so the intranet applications and
infromation systems are the main deployment areas.

OmniBrowser and SeasideXUL

SeasideXUL includes subproject named OBSeasideXUL. It is the next
OmniBrowser platform that uses XUL for OmniBrowser rendering. OmniBrowser
is the general framework for generation of Smalltalk development tools. So we
can use various Browsers, Monticello, debugger and other tools for remote or
local images including headless images and images that have no other user
interface like the Squeak KernelImage.

Smalltalk dialects

SeasideXUL is developed on Squeak but it uses
well portable code (like Seaside) so the set of
supported Smalltalk dialects will include all
platforms capable to run Seaside like
VisualWorks, Gemstone/S or GNU Smalltalk soon.
Especially Gemstone and the Squeak
KernelImage may profit from OmniBrowser
support and offer whole IDE although they have
no own GUI.

4

	Abstract
	Why is SeasideXUL unique
	XUL
	Goals
	Remote XUL limitations
	OmniBrowser and SeasideXUL
	Smalltalk dialects

