
SqueakSave
An Automatic Object-Relational Mapping Framework

Thomas Kowark
Robert Hirschfeld

Michael Haupt

Software Architecture Group
Hasso-Plattner-Institut Potsdam

www.hpi.uni-potsdam.de/swa

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Outline

• motivation
• basic usage
• framework architecture
• performance
• summary & outlook

2
lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Available Persistence Approaches

• image storing
• object databases
• (object-)relational persistence

3
lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

SqueakSave – Project Goals

• automatic mapping deduction
• simplistic API
• seamless integration into existing applications

4
lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Guiding Example

5

-email : string

-username : string

-password : string

User

Admin

Author

-tit le : string

-lastUpdate : dateTime

Blog

-tit le : string

-text : string

BlogPost

-author : string

-tit le : string

-text : string

Comment

1

1

+b log

0..*

1..*

+administeredBlogs

0..*

1

+comments

0..*

1

+blogPosts

1

0..* +followers

Visual Paradigm for UML Community Edition [not for commercial use]

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 6

SqsConfig subclass: #BlogExampleSqsConfig
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'BlogExample'

BlogExampleSqsConfig
class>>#connectionSpecification
 ^ SqsMySQLConnectionSpecification
 user: 'admin'
 password: 'password'
 database: 'blog_example_db'

• configuration based on naming conventions

API – Configuration

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 7

author := Author new
 password: 'password';
 username: 'testuser';
 email: 'user@example.org'.

author blog: (Blog new title: 'My Blog').

author save.

...

author destroy.

API – Basic Operations

lundi 31 août 2009

mailto:user@example.org
mailto:user@example.org

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

API – Queries

8

(SqsSearch for: User) detect: [:aUser |
 aUser username = 'testuser']

(SqsSearch for: Author) select: [:anAuthor |
 anAuthor blog blogPosts size > 10]

(SqsSearch for: Blog) anySatisfy: [:aBlog |
 aBlog blogPosts noneSatisfy: [:aBlogPost |
 aBlogPost comments isEmpty]]

(SqsSearch for: Blog) findByTitle: 'testblog'

(SqsSearch for: Comment)
 findByAuthor: 'author' andTitle: 'comment'.

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 9

SqsBase

Object

SqsConnection

Class

SqsStorage

SqsClassInfo

SqsDescriptionHandler

SqsTableStructureHandler

SqsSession

SqsDatabaseAdapter

SqsDatabaseConnection

SqsProxy

SqsConnectionManager

0..1

0..*

1

1

1

1

1

1

1

1

1

0..*

0..*

1

1

0..*

tableStructureHandler

1

0..* +classInfo

connection

1

1

storedObject

class

descriptionHandler

+session

currentClass

instVarValue

dbAdapter

< < u s e > >

< < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Overview of SqueakSave System Classes.

the original variable name into the separate sub words and connects them with an underscore. A
variable named ‘userName’, for example, is thereby converted to the column name ‘user name’.
This is required to provide simple compatibility with most other O/R mappers for dynamic
programming language environments, such as ActiveRecord for Ruby on Rails (see chapter 5).

The mapping of the data types is implemented within class side methods that are named
sqsType. For all classes that are trivially mappable, this method has been implemented and
returns a SqueakSave internal string representation of the according SQL type. If the columns
have to be created, those internal representations are translated by the SqsDatabaseAdapter
classes into the specific values that are required by the current database servers’ SQL implemen-
tation. Types with variable lengths, like strings, are additionally enriched with the information
about the current length of the respective object. Hence, a string of length 50 will not only be
mapped to TEXT or VARCHAR, but VARCHAR(50).

Non-trivial attribute types are mapped by a foreign key reference to the corresponding entry in
the table that represents the class of the respective object. The reference will always point to the
table of the base class, i.e., the first class in the inheritance chain below Object or a class that
is marked like depicted in section 3.3.3, which is especially important in class table inheritance
structures. They are created in such a way, that a separate table for each subclass is created and
only contains the attributes that are defined within this class. Therefore, a foreign key constraint
pointing to only such a sub table would prevent the possibility to reference objects of super or
subclasses.

28

SqueakSave – Architecture

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 9

SqsBase

Object

SqsConnection

Class

SqsStorage

SqsClassInfo

SqsDescriptionHandler

SqsTableStructureHandler

SqsSession

SqsDatabaseAdapter

SqsDatabaseConnection

SqsProxy

SqsConnectionManager

0..1

0..*

1

1

1

1

1

1

1

1

1

0..*

0..*

1

1

0..*

tableStructureHandler

1

0..* +classInfo

connection

1

1

storedObject

class

descriptionHandler

+session

currentClass

instVarValue

dbAdapter

< < u s e > >

< < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Overview of SqueakSave System Classes.

the original variable name into the separate sub words and connects them with an underscore. A
variable named ‘userName’, for example, is thereby converted to the column name ‘user name’.
This is required to provide simple compatibility with most other O/R mappers for dynamic
programming language environments, such as ActiveRecord for Ruby on Rails (see chapter 5).

The mapping of the data types is implemented within class side methods that are named
sqsType. For all classes that are trivially mappable, this method has been implemented and
returns a SqueakSave internal string representation of the according SQL type. If the columns
have to be created, those internal representations are translated by the SqsDatabaseAdapter
classes into the specific values that are required by the current database servers’ SQL implemen-
tation. Types with variable lengths, like strings, are additionally enriched with the information
about the current length of the respective object. Hence, a string of length 50 will not only be
mapped to TEXT or VARCHAR, but VARCHAR(50).

Non-trivial attribute types are mapped by a foreign key reference to the corresponding entry in
the table that represents the class of the respective object. The reference will always point to the
table of the base class, i.e., the first class in the inheritance chain below Object or a class that
is marked like depicted in section 3.3.3, which is especially important in class table inheritance
structures. They are created in such a way, that a separate table for each subclass is created and
only contains the attributes that are defined within this class. Therefore, a foreign key constraint
pointing to only such a sub table would prevent the possibility to reference objects of super or
subclasses.

28

anObject save

SqueakSave – Architecture

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 9

SqsBase

Object

SqsConnection

Class

SqsStorage

SqsClassInfo

SqsDescriptionHandler

SqsTableStructureHandler

SqsSession

SqsDatabaseAdapter

SqsDatabaseConnection

SqsProxy

SqsConnectionManager

0..1

0..*

1

1

1

1

1

1

1

1

1

0..*

0..*

1

1

0..*

tableStructureHandler

1

0..* +classInfo

connection

1

1

storedObject

class

descriptionHandler

+session

currentClass

instVarValue

dbAdapter

< < u s e > >

< < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Overview of SqueakSave System Classes.

the original variable name into the separate sub words and connects them with an underscore. A
variable named ‘userName’, for example, is thereby converted to the column name ‘user name’.
This is required to provide simple compatibility with most other O/R mappers for dynamic
programming language environments, such as ActiveRecord for Ruby on Rails (see chapter 5).

The mapping of the data types is implemented within class side methods that are named
sqsType. For all classes that are trivially mappable, this method has been implemented and
returns a SqueakSave internal string representation of the according SQL type. If the columns
have to be created, those internal representations are translated by the SqsDatabaseAdapter
classes into the specific values that are required by the current database servers’ SQL implemen-
tation. Types with variable lengths, like strings, are additionally enriched with the information
about the current length of the respective object. Hence, a string of length 50 will not only be
mapped to TEXT or VARCHAR, but VARCHAR(50).

Non-trivial attribute types are mapped by a foreign key reference to the corresponding entry in
the table that represents the class of the respective object. The reference will always point to the
table of the base class, i.e., the first class in the inheritance chain below Object or a class that
is marked like depicted in section 3.3.3, which is especially important in class table inheritance
structures. They are created in such a way, that a separate table for each subclass is created and
only contains the attributes that are defined within this class. Therefore, a foreign key constraint
pointing to only such a sub table would prevent the possibility to reference objects of super or
subclasses.

28

Creation or fetching of
unique SqsStorage
wrapper instance

SqueakSave – Architecture

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 9

SqsBase

Object

SqsConnection

Class

SqsStorage

SqsClassInfo

SqsDescriptionHandler

SqsTableStructureHandler

SqsSession

SqsDatabaseAdapter

SqsDatabaseConnection

SqsProxy

SqsConnectionManager

0..1

0..*

1

1

1

1

1

1

1

1

1

0..*

0..*

1

1

0..*

tableStructureHandler

1

0..* +classInfo

connection

1

1

storedObject

class

descriptionHandler

+session

currentClass

instVarValue

dbAdapter

< < u s e > >

< < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Overview of SqueakSave System Classes.

the original variable name into the separate sub words and connects them with an underscore. A
variable named ‘userName’, for example, is thereby converted to the column name ‘user name’.
This is required to provide simple compatibility with most other O/R mappers for dynamic
programming language environments, such as ActiveRecord for Ruby on Rails (see chapter 5).

The mapping of the data types is implemented within class side methods that are named
sqsType. For all classes that are trivially mappable, this method has been implemented and
returns a SqueakSave internal string representation of the according SQL type. If the columns
have to be created, those internal representations are translated by the SqsDatabaseAdapter
classes into the specific values that are required by the current database servers’ SQL implemen-
tation. Types with variable lengths, like strings, are additionally enriched with the information
about the current length of the respective object. Hence, a string of length 50 will not only be
mapped to TEXT or VARCHAR, but VARCHAR(50).

Non-trivial attribute types are mapped by a foreign key reference to the corresponding entry in
the table that represents the class of the respective object. The reference will always point to the
table of the base class, i.e., the first class in the inheritance chain below Object or a class that
is marked like depicted in section 3.3.3, which is especially important in class table inheritance
structures. They are created in such a way, that a separate table for each subclass is created and
only contains the attributes that are defined within this class. Therefore, a foreign key constraint
pointing to only such a sub table would prevent the possibility to reference objects of super or
subclasses.

28

Creation or update of
mapping descriptions

SqueakSave – Architecture

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 9

SqsBase

Object

SqsConnection

Class

SqsStorage

SqsClassInfo

SqsDescriptionHandler

SqsTableStructureHandler

SqsSession

SqsDatabaseAdapter

SqsDatabaseConnection

SqsProxy

SqsConnectionManager

0..1

0..*

1

1

1

1

1

1

1

1

1

0..*

0..*

1

1

0..*

tableStructureHandler

1

0..* +classInfo

connection

1

1

storedObject

class

descriptionHandler

+session

currentClass

instVarValue

dbAdapter

< < u s e > >

< < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Overview of SqueakSave System Classes.

the original variable name into the separate sub words and connects them with an underscore. A
variable named ‘userName’, for example, is thereby converted to the column name ‘user name’.
This is required to provide simple compatibility with most other O/R mappers for dynamic
programming language environments, such as ActiveRecord for Ruby on Rails (see chapter 5).

The mapping of the data types is implemented within class side methods that are named
sqsType. For all classes that are trivially mappable, this method has been implemented and
returns a SqueakSave internal string representation of the according SQL type. If the columns
have to be created, those internal representations are translated by the SqsDatabaseAdapter
classes into the specific values that are required by the current database servers’ SQL implemen-
tation. Types with variable lengths, like strings, are additionally enriched with the information
about the current length of the respective object. Hence, a string of length 50 will not only be
mapped to TEXT or VARCHAR, but VARCHAR(50).

Non-trivial attribute types are mapped by a foreign key reference to the corresponding entry in
the table that represents the class of the respective object. The reference will always point to the
table of the base class, i.e., the first class in the inheritance chain below Object or a class that
is marked like depicted in section 3.3.3, which is especially important in class table inheritance
structures. They are created in such a way, that a separate table for each subclass is created and
only contains the attributes that are defined within this class. Therefore, a foreign key constraint
pointing to only such a sub table would prevent the possibility to reference objects of super or
subclasses.

28

Calculation of changes to
the relational database
schema

SqueakSave – Architecture

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 9

SqsBase

Object

SqsConnection

Class

SqsStorage

SqsClassInfo

SqsDescriptionHandler

SqsTableStructureHandler

SqsSession

SqsDatabaseAdapter

SqsDatabaseConnection

SqsProxy

SqsConnectionManager

0..1

0..*

1

1

1

1

1

1

1

1

1

0..*

0..*

1

1

0..*

tableStructureHandler

1

0..* +classInfo

connection

1

1

storedObject

class

descriptionHandler

+session

currentClass

instVarValue

dbAdapter

< < u s e > >

< < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Overview of SqueakSave System Classes.

the original variable name into the separate sub words and connects them with an underscore. A
variable named ‘userName’, for example, is thereby converted to the column name ‘user name’.
This is required to provide simple compatibility with most other O/R mappers for dynamic
programming language environments, such as ActiveRecord for Ruby on Rails (see chapter 5).

The mapping of the data types is implemented within class side methods that are named
sqsType. For all classes that are trivially mappable, this method has been implemented and
returns a SqueakSave internal string representation of the according SQL type. If the columns
have to be created, those internal representations are translated by the SqsDatabaseAdapter
classes into the specific values that are required by the current database servers’ SQL implemen-
tation. Types with variable lengths, like strings, are additionally enriched with the information
about the current length of the respective object. Hence, a string of length 50 will not only be
mapped to TEXT or VARCHAR, but VARCHAR(50).

Non-trivial attribute types are mapped by a foreign key reference to the corresponding entry in
the table that represents the class of the respective object. The reference will always point to the
table of the base class, i.e., the first class in the inheritance chain below Object or a class that
is marked like depicted in section 3.3.3, which is especially important in class table inheritance
structures. They are created in such a way, that a separate table for each subclass is created and
only contains the attributes that are defined within this class. Therefore, a foreign key constraint
pointing to only such a sub table would prevent the possibility to reference objects of super or
subclasses.

28

Connection pooling

SqueakSave – Architecture

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 9

SqsBase

Object

SqsConnection

Class

SqsStorage

SqsClassInfo

SqsDescriptionHandler

SqsTableStructureHandler

SqsSession

SqsDatabaseAdapter

SqsDatabaseConnection

SqsProxy

SqsConnectionManager

0..1

0..*

1

1

1

1

1

1

1

1

1

0..*

0..*

1

1

0..*

tableStructureHandler

1

0..* +classInfo

connection

1

1

storedObject

class

descriptionHandler

+session

currentClass

instVarValue

dbAdapter

< < u s e > >

< < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Overview of SqueakSave System Classes.

the original variable name into the separate sub words and connects them with an underscore. A
variable named ‘userName’, for example, is thereby converted to the column name ‘user name’.
This is required to provide simple compatibility with most other O/R mappers for dynamic
programming language environments, such as ActiveRecord for Ruby on Rails (see chapter 5).

The mapping of the data types is implemented within class side methods that are named
sqsType. For all classes that are trivially mappable, this method has been implemented and
returns a SqueakSave internal string representation of the according SQL type. If the columns
have to be created, those internal representations are translated by the SqsDatabaseAdapter
classes into the specific values that are required by the current database servers’ SQL implemen-
tation. Types with variable lengths, like strings, are additionally enriched with the information
about the current length of the respective object. Hence, a string of length 50 will not only be
mapped to TEXT or VARCHAR, but VARCHAR(50).

Non-trivial attribute types are mapped by a foreign key reference to the corresponding entry in
the table that represents the class of the respective object. The reference will always point to the
table of the base class, i.e., the first class in the inheritance chain below Object or a class that
is marked like depicted in section 3.3.3, which is especially important in class table inheritance
structures. They are created in such a way, that a separate table for each subclass is created and
only contains the attributes that are defined within this class. Therefore, a foreign key constraint
pointing to only such a sub table would prevent the possibility to reference objects of super or
subclasses.

28

Schema update and
object insertion or update

SqueakSave – Architecture

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Query Analysis

• SQL statement generation through block execution
with placeholder objects

• one placeholder class per ‘simple type’,
SqsQueryObject and SqsQueryCollection for
complex cases

10

(SqsSearch for: User) detect: [:aUser |
 aUser username = 'testuser']

lundi 31 août 2009

queryObject := SqsQueryObject new
depictedClass: User.

result := aBlock value: queryObject.

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Query Analysis

• SQL statement generation through block execution
with placeholder objects

• one placeholder class per ‘simple type’,
SqsQueryObject and SqsQueryCollection for
complex cases

10

(SqsSearch for: User) detect: [:aUser |
 aUser username = 'testuser']

lundi 31 août 2009

The query object does not know what #username
does, but generates the SQL to scope to the
respective column.

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Query Analysis

• SQL statement generation through block execution
with placeholder objects

• one placeholder class per ‘simple type’,
SqsQueryObject and SqsQueryCollection for
complex cases

10

(SqsSearch for: User) detect: [:aUser |
 aUser username = 'testuser']

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

WHERE users.username

Query Analysis

• SQL statement generation through block execution
with placeholder objects

• one placeholder class per ‘simple type’,
SqsQueryObject and SqsQueryCollection for
complex cases

10

(SqsSearch for: User) detect: [:aUser |
 aUser username = 'testuser']

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Query Analysis

• SQL statement generation through block execution
with placeholder objects

• one placeholder class per ‘simple type’,
SqsQueryObject and SqsQueryCollection for
complex cases

10

(SqsSearch for: User) detect: [:aUser |
 aUser username = 'testuser']

The result of the first call is an SqsQueryString.
It knows how to map the #= to SQL properly.

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

WHERE users.username =

Query Analysis

• SQL statement generation through block execution
with placeholder objects

• one placeholder class per ‘simple type’,
SqsQueryObject and SqsQueryCollection for
complex cases

10

(SqsSearch for: User) detect: [:aUser |
 aUser username = 'testuser']

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

WHERE users.username = WHERE users.username = ‘testuser’

Query Analysis

• SQL statement generation through block execution
with placeholder objects

• one placeholder class per ‘simple type’,
SqsQueryObject and SqsQueryCollection for
complex cases

10

(SqsSearch for: User) detect: [:aUser |
 aUser username = 'testuser']

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Evaluation

11

• evaluation based on OO7 benchmark
– CAD application data structure
– complex object model with many cyclic dependencies

• set of queries with increasing complexity
• number of traversals of an object graph
• comparison with GLORP

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 12

• approx. 20% slower than GLORP
• two exceptions

– caching mechanism (10x slower)

– query creation with joins (1/3x faster)

(SqsSearch for: SqsBaseAssembly) select: [:ba |
 ba unsharedParts anySatisfy: [:part |
 part document = id]].

(SqsSearch for: SqsAtomicPart) detect:
 [:ap | ap oid = id].

Evaluation – Query Performance

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009 13

– missing eager loading
(n+1 queries problem)

0s

33s

65s

98s

130s

SqueakSave GLORP

Traversal 1

0s

2s

3s

5s

6s

SqueakSave GLORP

Traversal 2a

0s

7s

14s

20s

27s

SqueakSave GLORP

Traversal 2b

0s

6s

12s

18s

24s

SqueakSave GLORP

Traversal 2c

Evaluation – Traversal Performance

– minimal intrusion into object
models (only collection proxies)

lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Summary and Outlook

• simple usage & setup
– integration into existing applications almost seamless

• automatic deduction of database structures

14
lundi 31 août 2009

SqueakSave: An Automatic Object-Relational Mapping Framework

Thomas Kowark, Robert Hirschfeld, Michael Haupt (www.hpi.uni-potsdam.de/swa) 2009

Summary and Outlook

• simple usage & setup
– integration into existing applications almost seamless

• automatic deduction of database structures

• possible extensions
– SqueakDBX usage
– eager loading
– performance optimizations

14
lundi 31 août 2009

