
§ Why Mock Objects?  
§  “Mockist” vs. “Classic” TDD 
§  “Mockist” and “Classic” TDD 

§ Mocks and Smalltalk:  
§  The Mocketry framework introduction 

§ Examples 

Overview 

1 Mock Objects and Smalltalk 



Do we need Mocks at all 
(in Smalltalk)? 

 

Why Mock Objects? 

2 Mock Objects and Smalltalk 



§ Smalltalk vs. Mock Objects? 
§  Few/rare special cases 
§  With mock you don’t test real thing 
§  Use mocks for external objects only 
§  Use other means to involve complex 
external objects 

§  Speed up by other means 
 

Public Opinion 

3 Do we need Mock Objects at all? 



 
 
…seems to be about testing 

Public Opinion 

4 



§  “Mock Objects” is a TDD technique 
§ … about developing systems 
§ … not just testing 
§ … useful in all languages 

§ Smalltalk makes mocks 
§  much easier to use 

Smalltalk and Mock Objects 

5 Why Mock Objects? 



§ Cut off dependencies in tests 
§  Test-Driven Decomposition 

§  Discover Responsibility (for collaborators) 
§  Thinking vs. Speculating/Fantasizing 

 
Seamless TDD 

 

Why Mock Objects? 

6 Why Mock Objects? 



§ Dependencies 
§  How to cut them off? 

§ Novel Collaborators 
§  Where to cut? 

What Is The Problem? 

7 Seamless TDD 



§ Dependencies 
§  How to cut them off? 

§ Novel Collaborators 
§  Where to cut? 

What Is The problem? 

8 Seamless TDD 



We have: 
§ System Under Development (SUD) 
§ Collaborators 
§ Collaborators’ collaborators … 

 
Complex Test 

Dependencies 

9 Seamless TDD — What’s the Problem? 



 

We have to implement collaborators 
§ … without tests 
§ … loosing focus on SUD 

Digression 

So What? 

10 Seamless TDD — Dependencies 



§  Mocks Aren’t Stubs by Martin Fowler 

§ Filling orders from warehouse 

Dependencies: Example 

11 Seamless TDD — Dependencies 



OrderTests >>    !
  testIsFilledIfEnoughInWarehouse!
!

| order |!
order:= Order on: 50 of: #product.!
order fillFrom: warehouse.!
self assert: order isFilled!

Filling Order 

12 Seamless TDD — Dependencies 



OrderTests >> !
testIsFilledIfEnoughInWarehouse!
| order warehouse |!

!
warehouse := Warehouse new.!
“Put #product there” !
“…but how?!” !
!

order := Order on: 50 of: #product.!
order fillFrom: warehouse.!
    …!

Filling Order 

13 Seamless TDD — Dependencies 



§  I develop Order 
§  I don’t want to think about 
Warehouse 

Digression Detected! 

14 Seamless TDD — Dependencies 



OrderTests >> !
testIsFilledIfEnoughInWarehouse!
| order warehouse |!

warehouse := Warehouse new.!
warehouse add: 50 of: #product.!
!

order := Order on: 50 of: #prod.!
order fillFrom: warehouse.!
…!

Filling Order 

15 Seamless TDD — Dependencies 



Reduce amount of #product at the 
warehouse 
 

test…!
…!

self assert: !
  (warehouse !
    amountOf: #product)!
                     isZero!

…And Even More Digression 

16 Seamless TDD — Dependencies 



Another test case: 
 

If there isn’t enough #product in the 
warehouse,  
 

§ do not fill order 

§ do not remove #product from 
warehouse 

… And Even More Digression 

17 Seamless TDD — Dependencies 



More complex test cases 

Collaborators’ logic becomes more 
and more complex… 

 

This can engulf 

… Much More Digression 

18 Seamless TDD — Dependencies 



§ SUD is Order 
§ Warehouse blures SUD 

§  #add:of: 
§  #amountOf: 

§ No explicit tests for Warehouse 

Not-So-Seamless TDD 

19 Seamless TDD — Dependencies 



OrderTests >> !
  testIsFilledIfEnoughInWarehouse!

  | order |!
    order := Order on: 50 of: #product.!
  [!
    :warehouse| !
    [order fillFrom: warehouse]!
      should satisfy:!
                [“expectations”]!
  ] runScenario.!
   self assert: order isFilled !

Mocking Warehouse 

20 Seamless TDD — Dependencies 



…!
[:warehouse| !
[order fillFrom: warehouse]!
  should satisfy:!

   [(warehouse !
       has: 50 of: #product)!
           willReturn: true. !
    warehouse !
       remove: 50 of: #product]!
] runScenario.!

…!

Mocking Warehouse 

21 Seamless TDD — Dependencies 



Mock Objects in  
Smalltalk World 

 

The Mocketry 
Framework 

22 Mock Objects and Smalltalk 



 
When you do this with SUD, 

 expect that to happen 
  with collaborators 
   

Collaborators are mocked 

Behavior Expectations 

23 Mocketry 



 

Do this   
 
 

Expect that  

Behavior Expectations 

24 Mocketry 

 

Exercise 
  
Verify 

Scenario 



SomeTestCases >> testCase 
[  
 

 testScenario 
 
] runScenario 

Mocketry Scenario Pattern 

25 Mocketry – Behavior Expectations 



SomeTestCases >> testCase 
[  

 [exercise]  
  should strictly satisfy: 
   [behaviorExpectations]  

] runScenario 

Mocketry Scenario Pattern 

26 Mocketry – Behavior Expectations 



§  Just send mock objects the messages 
they should receive 

!

warehouse !
  has: 50 of: #product!

§  Specify their reaction 
 

(warehouse !
  has: 50 of: #product)  
                                   willReturn: true 

Behavior Expectations 

27 Mocketry — Behavior Expectations 



SomeTestCases >> testCase 
[  

 [exercise] should strictly satisfy: [behaviorExpectations] 

 [exercise] should strictly satisfy: [behaviorExpectations]   

 … do anything 
] runScenario 

Mocketry Scenario Pattern 

28 Mocketry – Behavior Expectations 



SomeTestCases >> testCase 

[ :mock | 
 [exercise] should strictly satisfy: [behaviorExpectations] 

 [exercise] should strictly satisfy: [behaviorExpectations]   

 … do anything 

] runScenario 

Mocketry Scenario Pattern 

29 Mocketry – Behavior Expectations 



SomeTestCases >> testCase 

[ :mock | 
 [exercise] should strictly satisfy: [behaviorExpectations] 

 [exercise] should strictly satisfy: [behaviorExpectations]   

 … do anything 
] runScenario 

Mocketry Scenario Pattern 

30 Mocketry – Behavior Expectations 



SomeTestCases >> testCase 
[ :mock1 :mock2 :mock3 | 

 [exercise] should strictly satisfy: [behaviorExpectations] 

 [exercise] should strictly satisfy: [behaviorExpectations]   

 … do anything 
] runScenario 

Mocketry Scenario Pattern 

31 Mocketry – Behavior Expectations 



TrueTests >> 
 testDoesNotExecuteIfFalseBlock 

[ :block | 
 [true ifFalse: block ]  
  should satisfiy: 
   [“nothing expected”]  

] runScenario 

Trivial Example 1 

32 Mocketry – Behavior Expectations 



TrueTests >> 
 testExecutesIfTrueBlock 

[ :block | 
 [true ifTrue: block]  
  should satisfiy:  
   [block value]  

] runScenario 

Trivial Example 2 

33 Mocketry – Behavior Expectations 



§  resultObject should <expectation> 
§  result should be: anotherObject 
§  result should equal: anotherObject 
§ … 

State Specification DSL 

34 Mocketry 



§ There is much more… 
§ Ask me  
§ …or Dennis Kudryashov (the 
Author) 

Mocketry 

35 



OrderTests >> !
testIsFilledIfEnoughInWarehouse!
| order |!
order := Order on: 50 of: #product.!
!

[:warehouse| !
  [order fillFrom: warehouse]!
    should satisfy:!
   [(warehouse has: 50 of: #product)!
           willReturn: true. !
    warehouse remove: 50 of: #product]!
] runScenario.!
!

self assert: order isFilled !

Mocking Warehouse 

36 Seamless TDD — Dependencies — Example 



OrderTests >> !
testIsNotFilledIfNotEnoughInWarehouse!
| order |!
order := Order on: #amount of: #product.!
[:warehouse| !
  [order fillFrom: warehouse]!
    should satisfy:!
   [(warehouse has: 50 of: #product)!
           willReturn: false. !
    “Nothing else is expected” ]!
] runScenario.!
self assert: order isFilled !

Mocking Warehouse 

37 Seamless TDD — Dependencies 



§ No need to implement Warehouse 
§ Just specify expectations 
§ … right in the test 

§ Focus on the SUD 

What We Get 

38 Why Mock Objects 



§ Dependencies 
§ Novel Сollaborators 

What’s the problem? 

39 Seamless TDD 



Where to Start? 

40 Seamless TDD — Novel Collaborators 

A novel system to implement 

Object 1 

Object 2 

Object 3 

Object N 
… 



Where to Cut? 

41 Seamless TDD — Novel Collaborators 

A novel system to implement 

Feature 
Feature Feature 

Feature 
Feature 

Feature 
Feature 

Feature 

Feature 
Feature 

Feature 



§ Try to guess 
§ … and be ready to abandon test(s) 
§ … or get a mess 

Or 
§ Analyze thoroughly 

§ … up-front decomposition 
§ … without tests — just a fantasy 

Where to Start? 

42 Seamless TDD — Novel Collaborators 



 
Bulls and Cows Game 
§ Computer generates a secret key 

§  e.g., a 4-digit number 
§ Human player tries to disclose it 
 
 

Novel Collaborators: Example 

43 Seamless TDD — Novel Collaborators 



Scenario: 
§ User creates a game object 
§ User starts the game 

§  Game should generate a key 
§ … 

Bulls and Cows Game 

44 Seamless TDD — Novel Collaborators 



!
!

 self assert: key …?!
 “How to represent key?!”!

testGeneratesKeyOnStart 

45 Seamless TDD — Novel Collaborators 



§ Spontaneous representation 
§  Do you feel lucky? 

§ Analyze thoroughly 
§  Give up TDD 

§ Postpone the test 
§  Not a solution 

What Can I Do? 

46 Seamless TDD — Novel Collaborators 



§ … 
§ Create a new class for key 

§  Unnecessary complexity? 

What Can I Do? 

47 Seamless TDD — Novel Collaborators 



 
 

That was a Digression! 

What Can I Do? 

48 Seamless TDD — Novel Collaborators 



|key|!
game start.!
key := game key.!
self assert: !
!key isKindOf: Code!

testGeneratesKeyOnStart 

49 Seamless TDD — Novel Collaborators 



[ :keyGen |!
 game keyGenerator: keyGen.!
 [ game start ]!
   should satisfy:!
     [keyGen createKey!
        willReturn: #key]!
 game key should be: #key!
] runScenario.!

testGeneratesKeyOnStart 

50 Seamless TDD — Novel Collaborators 



§ Key generation functionality 
§  is revealed 
§  moved to another object 

§ Dependency Injection 
§  fake key can be created for tests 
§  KeyGenerator refactored to Turn 

§ No risk of incorrect decision 
 

What We Get 

51 Seamless TDD — Novel Collaborators 



Seamless TDD: 
§ No digression 
§ No up-front decomposition 
§ No up-front design 
§ No speculating / fantasizing 

What We Get 

52 Seamless TDD — Novel Collaborators 



Mock Objects For Top-Down Design 
by Bulls-and-Cows Example 
 

Just ask! 

Complete Example 

53 



 
State vs. Behavior? 
Result vs. Intention? 

No contradiction! 
 

Mockist approach  
complements “classic” TDD 

Classic vs. Mockist TDD 

54 Seamless TDD 



 

 

§ Top-Down with Mockist TDD 
§  Analysis and Decomposition 

§ Bottom-Up with Classic TDD 
§  Synthesis and “real-object” testing 

Classic and Mockist TDD 

55 


