
Native or External?

Lessons learned implementing
cryptography for VisualWorks

Martin Kobetic
Cincom Smalltalk Engineering
ESUG 2011

Let's implement SSL!

DES, MD5, SHA, RSA, DSA, RC4, X.509, ASN.1, DER, ...

* SSL 3.0, RSA, DES, RC4, basic X.509 (RSA only)
* DH, DSA, + SSL integration, AES
* X.509 on ASN.1, faster RSA (CRT),...
* new ASN.1 (read/write), more X.509
* protocols/S (HTTPS, SMTPS,....)

What is Cryptography

hashes
MD5, SHA1, SHA256, ...

secret key (symmetric) ciphers
AES, DES, RC4,...

public key algorithms
* signing (RSA, DSA, ECDSA)
* encryption (RSA)
* key agreement (DH, ECDH)

Hashes - Native

(MD5 hash: 'Hello') asHexString.

buffer := ByteArray new: 16384.
hash := SHA new.
file := (ObjectMemory imageFilename

withEncoding: #binary) readStream.
[[file atEnd] whileFalse: [| read |

read :=
file nextAvailable: buffer size

into: buffer
startingAt: 1.

hash updateWith: buffer from: 1 to: read].
] ensure: [file close].
hash digest asHexString.

Hashes - External

buffer := ByteArray new: 16384.
hash := Hash new algorithm: 'SHA1'; yourself.
file := (ObjectMemory imageFilename

withEncoding: #binary) readStream.
[[file atEnd] whileFalse: [| read |

read :=
file nextAvailable: buffer size

into: buffer
startingAt: 1.

hash update: read from: buffer].
hash finish asHexString

] ensure: [file close. hash release].

Hashes - Xtreams

((ObjectMemory imageFilename reading
hashing: 'SHA1'

) -= 0;
close;
digest

) asHexString

Ciphers - Native

message := 'Hello World!' asByteArrayEncoding: #ascii.
key := 'Open Sesame!!!!!' asByteArrayEncoding: #ascii.

((ARC4 key: key) encrypt: message) asHexString.

cipher := AES key: key.

cipher := CipherBlockChaining on: cipher.
iv := ByteArray new: 16 withAll: 1.
cipher setIV: iv.

cipher := BlockPadding on: cipher.
(cipher encrypt: message) asHexString

Ciphers - Speed

megs := 100.
buffer := ByteArray new: 1000.
time := [

megs * 1000 timesRepeat: [
1 to: buffer size do: [:i |

buffer at: i put: (buffer at: i)]]
] timeToRun.

megs asFloat / time asSeconds.

time := [self readWriteMegs: megs] timeToRun.
megs asFloat / time asSeconds

Ciphers - External

buffer := ByteArray new: message size + iv size.
cipher := Cipher new.
padding := iv size - (message size \\ iv size).
padding := ByteArray new: padding withAll: padding.
[| count |

cipher algorithm: 'AES' mode: 'CBC'
key: key iv: iv encrypt: true.

count := cipher update: message size
from: message into: buffer.

result := buffer copyFrom: 1 to: count.
count := cipher update: padding size

from: padding into: buffer.
result := result, (buffer copyFrom: 1 to: count).
count := cipher finishInto: buffer.
result, (buffer copyFrom: 1 to: count)

] ensure: [cipher release]

Ciphers - Xtreams

(((ByteArray new writing
encrypting: 'AES' mode: 'CBC' key: key iv: iv

) hashing: 'SHA1'
) write: message;

write: padding;
close;
terminal

) asHexString

Public Key - Native

keys := RSAKeyGenerator keySize: 1024.
keys publicKey.

rsa := RSA new privateKey: keys privateKey.
rsa useMD5.
sig := rsa sign: message.

Public Key - External

key := PrivateKey RSALength: 1024.
[| digest |

digest := (message reading hashing: 'SHA1')
-= 0; close; digest.

key sign: digest
hash: 'SHA1'
padding: 'PKCS1'

] ensure: [key release]

Native - Pros

* understanding and know-how
* ease of use and deployment
* automatically cross platform
* easy integration
* debugging

Native - Cons

* maintenance/evolution
* security issues
* speed
* certification
* hardware integration
* export restrictions

External - Pros

* development cost (maybe)
* evolves for free (hopefully)
* speed
* certification (possibly)
* hardware integration (possibly)

External - Cons

* platform coverage
* integration issues
* support
* FFI issues
* brittleness

Summary

* seamless use
* seamless deployment
* platform coverage
* capability coverage
* extensibility
* other constraints

* certification/approved implementations
* hardware support
* performance

