Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Towards a Smalitalk VM
for the 215" Century

Boris Shingarov
www.shingarov.com

Challenges of Shifting Reality
Computing is changing

e What we run on Smalltalk
e What we run Smalltalk on

What we run on Smallitalk

Complex workload on Smalltalk runtime

e Complexity of today's average VM bug

o parallelism, race conditions, complex optimiations
¢ "High-level debuggers" do not work

o this is not a C application
¢ In-band solutions (e.g. DTrace-like) partially help

What is "Performance"?

e Traditional: "Let's make Smalltalk fast"
o very fast PICs, JIT using ILP hardware features

e We no longer fit the traditional model

e Example: Big Data applications challenge the object graph model
o Packed objects required for less FFI marshalling overhead and

improving cache performance
e New generation of hardware dictating radically new performance
metrics

o What we run Smalltalk on

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Old vs New "Conventional Wisdom"

(after Dave Patterson, ACM President)

e Design Cost Wall

e Software Legacy Wall
e Power Wall

e Memory Wall

e ILP Wall

End of Uniprocessor Era

Old vs New "Conventional Wisdom"

e Demonstrate new H/W ideas by e No researchers can build
building chips believable prototypes

e H/W flexible, S/W hard to

e H/W hard to change, S/W flexible change

e Can put more transistors on
chip than can afford to turn
on

e Power is free, transistors
expensive

e Multiply slow, memory access

fast e 1 RAM access = 200 clocks

e Increasing ILP: RISC, compilers,
out-of-order, VLIW, speculation
etc

e Diminishing returns on more
ILP H/W

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

VM Observation: In-band vs
out-of-band

e VM "communicates" with the processor via the Processor
Architecture
o VM -> Processor: instruction stream
o Processor -> VM: flags/branching, interrupts
¢ In-band observation agents are inherently limited in scope and
access, and destructive to machine state
o stopping at breakpoint destroys the state of memory
hierarchy
o (no access to cache details anyway)

VM Observation: In-band vs
out-of-band

e Qut-of-band: VM introspection channels outside of Processor
Architecture
o Invisible to both VM and Processor
o Varying levels of fidelity
e Out-of-band examples:
o Processor functional simulation
o Hardware-level processor modeling/simulation
m Instrumented FPGA models
m Hardware simulation in software

Full-system simulation

e Simics
e GEMS
e M5

e GEM5
e OVPsim

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Characteristics of FSS

e Timing Abstractions, levels of accuracy (Software Timed (e.qg.,
QEMU, IBM CECsim), Loosely Timed, Approximately Timed as in
TLM-2.0); Temporal Decoupling

e Observability — full recording of simulation makes possible
arbitrarily complex analysis of interaction between any parts of
the systems (e.qg. signals not hidden on an internal bus of a SoC);
stopped time, time warping

e Checkpointing (persisting full state of simulation), useful for
optimizing workflow, communication between teams (e.g. to
reproduce a bug), switch between levels of simulation detail

e Dynamic Reconfiguration

e Repeatability

e Reverse execution

e Intelligent OS awareness

Modules

Simulators are modular and expose an open set of APIs.

e devices, memory, systems, processors
e even the foundation of simulation — the time model
e modules allow full awareness of software running on the
simulated system
o OS awareness (example: Linux process tracker)
o full symbolic debugging (C)
o enables full awareness of Smalltalk

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Demo: Emitting a magic instruction in
JIT

e A "Magic Instruction" causes simulation breakpoint
e Example of Program-Simulator signalization
e Simics Magic Instructions on different architectures:

Target Magic instruction

x86 xchg %bx, %bx encoding: 66 87 DB
ARM orregrn,rm,m 0<=n<15
PowerPC 32-bit mrn, n 0<=n<32
PowerPC 64-bit fmrn, n 0<=n<32

SPARC sethi n, %90 1 <=n < 0x400000

Modify the JIT translator

e CoglA32Compiler>concretizeMagic
e CoglA32Compiler>dispatchConcretize
e CogRTLOpcodes>=>initialize

Add "Magic" to the end and send #initialize. Now our abstract RTL
has the magic instruction.

e Cogit>>Magic
<inline:true>
<returnTypeC:#'Abstractinstruction*'>
~self gen: Magic

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Use the instruction somewhere...

Why not in, say, #genGetClassFormatOfNonInt:into:scratchReg:?

NB: What we are doing is adding to the code emission code, but the
actual magic instruction will be part of the emitted N-code, so the
break will NOT happen in
#genGetClassFormatOfNonlnt:into:scratchReg:.

Try simulating it...

e Regenerate VM sources
e Compile the VM
e Run under simulation

o ./NBCog --nodisplay simple.image eval '2+3'

e Now with magic-break-enable

Let's look around
simics> pregs

32-bit legacy protected mode

eax = 0x00000001, ax = 0x0001, ah = 0x00, al = 0x01
ecx = 0x00000006, cx = 0x0006, ch = 0x00, cl = 0x06
edx = 0x944f9540, dx = 0x9540, dh = 0x95, dl = 0x40
ebx = 0x00000004, bx = 0x0004, bh = 0x00, bl = 0x04
esp = 0xbf869670, sp = 0x9670

ebp = 0xbf869680, bp = 0x9680

esi = 0x00000003, si = 0x0003

edi = 0x00000003, di = 0x0003

eip = 0x93cff260, linear = 0x93cff260

eflags=0000000000001000000010=0x00000202

receiver in %EDX

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Let's look around (cont.)

simics> x 1:0x944f9540 4

|:0x9441f9540 1d04 9al2 <- receiver's object header
class oop in header word 2, offset -4:

simics> x 1:0x944f953C 4

|:0x944f9530 813e 1194 <- class oop

A rudimentary Smalltalk module

Look at the object memory using Simics Python API

def print_class_of oop(oop):
if ((oop & 1)==1):
print "Smalllnteger"
else:
headerType = smalltalk_headerType(oop)
if (headerType==3):
print "...looks like compact class..."
else:
word2 = read_virt_value(oop-4, 4)
classOop = word2&0xFFFFFFFC
print "class oop: ", hex(classOop)
classNameOop = read_virt value(classOop+32, 4)
print "class name oop: ", hex(classNameOop)
str=""
for offset in range(smalltalk_objByteSize(classNameQOop)):
str += "%c" % read_virt_value(classNameOop + 4 + offset, 1)
print str

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Make it into a command...

new_command("print-class-of-oop", print_class_of oop,
[arg(int_t, "oop")],
type = "Debugging”,
see also =[],
short = "describe an oop",
doc = """
Print the class of oop.""")

Try printing classes of some OOPs...
simics> print-class-of-oop %edx

class oop: 0x94113E80L
class name oop: 0x93F401CCL
WeakAnnouncementSubscription

simics> print-class-of-oop 0x93F401CC

class oop: 0x940FB4B4L
class name oop: 0x93E94140L
ByteSymbol

Closer to practice

e Debugging a SIGSEGV

e Put simulation breakpoint in SEGV handler

e Because everything is recorded, we can step back to the source of
the bug

e Can solve bugs that are hopelessly complex for in-band approach

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Digging deeper — MAI mode

¢ Vanilla Simics operates at instruction level

e Micro Architectural Interface allows detailed modeling of
processor pipelines, out-of-order-execution and timing of cache
hierarchies

e Simulation speed / fidelity tradeoff

e Save checkpoint state and simulate detail of only the interesting
pieces

Digging even deeper

e GEM5
o www.mb5sim.org
e detailed full-system and microarchitectural models
e Ruby memory hierarchy system
e Cache coherence modeling
e Opal (aka TFSim) — SPARCv9 out-of-order processor
e AtomicSimple / TimingSimple / InOrder / O3CPU processor models

Can we go even further?

¢ looking at what's happening inside the processor in even more
detail

e Hardware to exeriment with processors is within reach

e Open-source hardware IP has matured: Practically important
processors and SoCs in production

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Some interesting processors

e OpenSPARC
o implements SPARCV9 (64-bit) ISA
o T1l: 8 cores x 4 threads UltraSPARC released as open-source
Verilog
e LEON3
o SPARCVS8 (32-bit) ISA
o Used by major aerospace projects (ISS...)
e Storm ARM processor and SoC
e ATLAS
e Amber (ARM ISA compatible)

Smalltalk instrumentation

e Out-of-band introspection of OpenSPARC on Xilinx Virtex-5

e Debug interface based on the MicroBlaze service processor (same
core running the CCX)

e Physical communication over JTAG

Basic T1

OpenSPARC T1

SPARC Core

DRAM Control -
— Chanﬁelnﬂ DDR2
156,64 144@333

L2 B0

SPARC Core

DRAM Control

SPARC Core | DDR2
T 156.64 Channel 1 144@333
SPARC Core
SPARC Core { DRAM Contro| DDR2
Cliaure(2 144@333
L2 B2 D32
SPARC Core
SPARC Core | DFE:/:lhaAnﬁoln;rcl DDR2
283 15684 L 144@333
3232
SPARC Core
~32.32
3232
3 - 1 Copy for:
16.8,0r 4 - dram (x2) | 3232
> =Jbi
”AG<-> 0B [T -ssi
Port o8
=ctu (x2) J-BUS

System Intf |« 200 MHz
y (jbi) J-BUS

50 MHz
ssl|

SS| ROM Intf jse——»

ESUG-2013 — Annecy, September 9, 2013

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

Implementation on Virtex-5

Xilinx
Embedded

Developer's
FPGA Bound
|

Fast Simplex
Links interface
(FSL)

Even more challenges

Speed vs Power

e Power-Optimized JIT

o Instruction selection, intruction scheduling etc.
e explicit power mamagement

o voltage scaling

eW=U2/R
e You don't want to run as fast as you can
o missing integration mechanism to tell

References

e G.Wright et al.: Introspection of a Java Virtual Machine under
Simulation. SMLI TR-2006-159, Sun Microsystems, 2006.

e R.Leupers, O.Temam (eds.): Processor and System-on-Chip
Simulation. Springer, 2010.

ESUG-2013 — Annecy, September 9, 2013

