
Towards a Smalltalk VM

for the 21st Century
Boris Shingarov
www.shingarov.com

Challenges of Shifting Reality

Computing is changing

What we run on Smalltalk
What we run Smalltalk on

What we run on Smalltalk

Complex workload on Smalltalk runtime

Complexity of today's average VM bug
parallelism, race conditions, complex optimiations

"High-level debuggers" do not work
this is not a C application

In-band solutions (e.g. DTrace-like) partially help

What is "Performance"?

Traditional: "Let's make Smalltalk fast"
very fast PICs, JIT using ILP hardware features

We no longer fit the traditional model
Example: Big Data applications challenge the object graph model

Packed objects required for less FFI marshalling overhead and
improving cache performance

New generation of hardware dictating radically new performance
metrics

What we run Smalltalk on

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Old vs New "Conventional Wisdom"

(after Dave Patterson, ACM President)

Design Cost Wall
Software Legacy Wall
Power Wall
Memory Wall
ILP Wall

End of Uniprocessor Era

Old vs New "Conventional Wisdom"

Demonstrate new H/W ideas by
building chips

No researchers can build
believable prototypes

H/W hard to change, S/W flexible
H/W flexible, S/W hard to
change

Power is free, transistors
expensive

Can put more transistors on
chip than can afford to turn
on

Multiply slow, memory access
fast

1 RAM access ≈ 200 clocks

Increasing ILP: RISC, compilers,
out-of-order, VLIW, speculation
etc

Diminishing returns on more
ILP H/W

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

VM Observation: In-band vs
out-of-band

VM "communicates" with the processor via the Processor
Architecture

VM -> Processor: instruction stream
Processor -> VM: flags/branching, interrupts

In-band observation agents are inherently limited in scope and
access, and destructive to machine state

stopping at breakpoint destroys the state of memory
hierarchy
(no access to cache details anyway)

VM Observation: In-band vs
out-of-band

Out-of-band: VM introspection channels outside of Processor
Architecture

Invisible to both VM and Processor
Varying levels of fidelity

Out-of-band examples:
Processor functional simulation
Hardware-level processor modeling/simulation

Instrumented FPGA models
Hardware simulation in software

Full-system simulation

Simics
GEMS
M5
GEM5
OVPsim

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Characteristics of FSS

Timing Abstractions, levels of accuracy (Software Timed (e.g.,
QEMU, IBM CECsim), Loosely Timed, Approximately Timed as in
TLM-2.0); Temporal Decoupling
Observability — full recording of simulation makes possible
arbitrarily complex analysis of interaction between any parts of
the systems (e.g. signals not hidden on an internal bus of a SoC);
stopped time, time warping
Checkpointing (persisting full state of simulation), useful for
optimizing workflow, communication between teams (e.g. to
reproduce a bug), switch between levels of simulation detail
Dynamic Reconfiguration
Repeatability
Reverse execution
Intelligent OS awareness

Modules

Simulators are modular and expose an open set of APIs.

devices, memory, systems, processors
even the foundation of simulation — the time model
modules allow full awareness of software running on the
simulated system

OS awareness (example: Linux process tracker)
full symbolic debugging (C)
enables full awareness of Smalltalk

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Demo: Emitting a magic instruction in
JIT

A "Magic Instruction" causes simulation breakpoint
Example of Program-Simulator signalization
Simics Magic Instructions on different architectures:

Target Magic instruction
x86 xchg %bx, %bx encoding: 66 87 DB
ARM orreq rn, rn, rn 0 <= n < 15
PowerPC 32-bit mr n, n 0 <= n < 32
PowerPC 64-bit fmr n, n 0 <= n < 32
SPARC sethi n, %g0 1 <= n < 0x400000

Modify the JIT translator

CogIA32Compiler>concretizeMagic

CogIA32Compiler>dispatchConcretize

CogRTLOpcodes>>initialize

Add "Magic" to the end and send #initialize. Now our abstract RTL
has the magic instruction.

Cogit>>Magic
 <inline:true>
 <returnTypeC:#'AbstractInstruction*'>
 ^self gen: Magic

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Use the instruction somewhere...

Why not in, say, #genGetClassFormatOfNonInt:into:scratchReg:?

NB: What we are doing is adding to the code emission code, but the
actual magic instruction will be part of the emitted N-code, so the
break will NOT happen in
#genGetClassFormatOfNonInt:into:scratchReg:.

Try simulating it...

Regenerate VM sources
Compile the VM
Run under simulation

./NBCog --nodisplay simple.image eval '2+3'

Now with magic-break-enable

Let's look around

simics> pregs

32-bit legacy protected mode
eax = 0x00000001, ax = 0x0001, ah = 0x00, al = 0x01
ecx = 0x00000006, cx = 0x0006, ch = 0x00, cl = 0x06
edx = 0x944f9540, dx = 0x9540, dh = 0x95, dl = 0x40
ebx = 0x00000004, bx = 0x0004, bh = 0x00, bl = 0x04
esp = 0xbf869670, sp = 0x9670
ebp = 0xbf869680, bp = 0x9680
esi = 0x00000003, si = 0x0003
edi = 0x00000003, di = 0x0003

eip = 0x93cff260, linear = 0x93cff260

eflags = 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 = 0x00000202

receiver in %EDX

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Let's look around (cont.)

simics> x l:0x944f9540 4

l:0x944f9540 1d04 9a12 <- receiver's object header

class oop in header word 2, offset -4:

simics> x l:0x944f953C 4

l:0x944f9530 813e 1194 <- class oop

A rudimentary Smalltalk module

Look at the object memory using Simics Python API

def print_class_of_oop(oop):
 if ((oop & 1)==1):
 print "SmallInteger"
 else:
 headerType = smalltalk_headerType(oop)
 if (headerType==3):
 print "...looks like compact class..."
 else:
 word2 = read_virt_value(oop-4, 4)
 classOop = word2&0xFFFFFFFC
 print "class oop: ", hex(classOop)
 classNameOop = read_virt_value(classOop+32, 4)
 print "class name oop: ", hex(classNameOop)
 str=""
 for offset in range(smalltalk_objByteSize(classNameOop)):
 str += "%c" % read_virt_value(classNameOop + 4 + offset, 1)
 print str

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Make it into a command...

new_command("print-class-of-oop", print_class_of_oop,
 [arg(int_t, "oop")],
 type = "Debugging",
 see_also = [],
 short = "describe an oop",
 doc = """
Print the class of oop.""")

Try printing classes of some OOPs...

simics> print-class-of-oop %edx

class oop: 0x94113E80L
class name oop: 0x93F401CCL
WeakAnnouncementSubscription

simics> print-class-of-oop 0x93F401CC

class oop: 0x940FB4B4L
class name oop: 0x93E94140L
ByteSymbol

Closer to practice

Debugging a SIGSEGV
Put simulation breakpoint in SEGV handler
Because everything is recorded, we can step back to the source of
the bug
Can solve bugs that are hopelessly complex for in-band approach

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Digging deeper — MAI mode

Vanilla Simics operates at instruction level
Micro Architectural Interface allows detailed modeling of
processor pipelines, out-of-order-execution and timing of cache
hierarchies
Simulation speed / fidelity tradeoff
Save checkpoint state and simulate detail of only the interesting
pieces

Digging even deeper

GEM5
www.m5sim.org

detailed full-system and microarchitectural models
Ruby memory hierarchy system
Cache coherence modeling
Opal (aka TFSim) — SPARCv9 out-of-order processor
AtomicSimple / TimingSimple / InOrder / O3CPU processor models

Can we go even further?

looking at what's happening inside the processor in even more
detail
Hardware to exeriment with processors is within reach
Open-source hardware IP has matured: Practically important
processors and SoCs in production

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Some interesting processors

OpenSPARC
implements SPARCv9 (64-bit) ISA
T1: 8 cores x 4 threads UltraSPARC released as open-source
Verilog

LEON3
SPARCv8 (32-bit) ISA
Used by major aerospace projects (ISS...)

Storm ARM processor and SoC
ATLAS
Amber (ARM ISA compatible)

Smalltalk instrumentation

Out-of-band introspection of OpenSPARC on Xilinx Virtex-5
Debug interface based on the MicroBlaze service processor (same
core running the CCX)
Physical communication over JTAG

Basic T1

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

Implementation on Virtex-5

Even more challenges

Speed vs Power

Power-Optimized JIT
Instruction selection, intruction scheduling etc.

explicit power mamagement
voltage scaling

W = U2 / R
You don't want to run as fast as you can

missing integration mechanism to tell

References

G.Wright et al.: Introspection of a Java Virtual Machine under
Simulation. SMLI TR-2006-159, Sun Microsystems, 2006.
R.Leupers, O.Temam (eds.): Processor and System-on-Chip
Simulation. Springer, 2010.

Towards a Smalltalk VM for the 21st Century http://www.shingarov.com/21st

ESUG-2013 — Annecy, September 9, 2013

