
 1

Welcome
September 11, 2013

World Headquarters

Cincinnati, Ohio

®

Pursuing Performance
in Store

Algorithms, Queries and Schemas

By Tom Robinson

What is Store ?

• Store is a Version Control System for Cincom Smalltalk™

• Uses a Relational Database as the repository

• Versions

 Bundles and Packages (components)

 Namespaces

 Class Definitions

 Class Extensions (methods only)

 Shared Variables

 Methods

Store Capabilities

• Provides Tools for:

 Publishing Bundles/Packages

 Merging Bundle/Package versions into the image

 Loading all version-able entities

 Listing, Browsing, Comparing all version-able entities

 Administration

• Supports object queries using Glorp

Isn’t A Relational SCCS Crazy?

• It might be….for languages that save source code in

text files. Would you like to compare whole files or

class and method versions?

• Relational is actually a good fit

• 25 tables + their indexes – this is not like mortgages,

insurance policies or shipping containers

• Most enterprises

• already use an RDB

• already employ DBAs

• already have other database management tools

Store Structure

Why Isn’t Store Fast Already?

It Is….

• Cincom engineers don’t find Store to be an

impediment to their work

• Most customers find Store “fast enough”

…but…

Store Needs To Be (And Can Be) Faster

• Everyone likes faster

• Original schema issues need fixing

• Move to Glorp (to allow addressing schema issues)

focused on correctness

• Customers use Store differently than Cincom does

• Large codebases, much larger packages and bundles

• Extensive use of Store to version files

• Cincom needs larger codebases to benchmark against

Algorithms, Queries and Schemas

• Algorithms – making Store run faster in the image

• More intelligent use of sessions and caching

• Minimizing the effects of larger codebases

• Queries – making smarter database requests

• Asking for the right amount of data

• At the right time

• Schema

• Needs to match the data and usage patterns

• Shouldn’t impose unintentional constraints on usage

ALGORITHMS
Making Store Run Faster in the Image

Improving #reconcileMethods

StorePackage>>#reconcileMethods

 (self methods isEmpty and: [self previous methods isEmpty])

 ifTrue: [^self].

 methods size = self previous methods size

 ifFalse: [self markModified].

 methods do: [:each |

 each definition: (self reconcileMethod: each definition)].

Inside #reconcileMethods

#reconcileMethods

 #reconcileMethod: aStoreMethod

 #basicReconcileMethod: aStoreMethod

 | exactMatch |

 self previous isNil ifTrue: [^nil].

 exactMatch := self previous methods

 detect: [:each | aStoreMethod reconcilesWith: each definition]

 ifNone: [nil].

 ^exactMatch notNil

 ifTrue: [exactMatch definition]

 ifFalse: [nil].

Time To Prepare To Write Rows

Package Methods Total Time

(sec)

Percent

reconcile

Methods

Time for

reconcile

Methods

Internationalization 4,208 6.4 59.3 3.8

Jun 33,794 168.7 66.5 111.7

PerfTestPkg1 50,000 780.9 77.6 605.3

PerfTestPkg2 100,000 3811.2 81.4 3102.1

Changes In Time To Prepare To Write Rows

Revised #reconcileMethods (VW7.10.1)

• Iterates once over the collection of methods from the previous

version, building a dictionary with selector and className as the

key and the method as the value.

• Iterates once over the collection of methods in the current

version, does a dictionary lookup to find the previous version if it

exists and does a single comparison.

• Even with 100,000 methods and 500 classes, this change

doesn’t save time when comparing class definitions,

namespaces or shared variables.

QUERIES
Making Smarter Database Requests

Query 1: Method Versions

• Old version retrieved one StoreMethodInPackage per

package version (and frequently many per method

version) and discarded duplicates

• New version retrieves the StoreMethodInPackage with

the earliest timestamp for each method version, so no

duplicates

Old Method Versions Query

allVersionsWithName: aString inClass: aClassName in: aSession

 | query session objects |

 session := aSession ifNil: [StoreLoginFactory currentStoreSession].

 query := Query

 read: self

 where: [:eachMethod | eachMethod definition name = aString

 AND: [eachMethod definition className = aClassName]].

 query alsoFetch: #definition.

 …(additional alsoFetch: statements removed)…

 query alsoFetch: [:each | each package].

 query orderBy: [:each | each definition timestamp descending].

 query orderBy: [:each | each package timestamp].

 objects := session execute: query.

 ^self removeDuplicatesFrom: objects

New Method Versions Query (VW7.10)

allVersionsWithName: aString inClass: aClassName in: aSession

 | query session |

 session := aSession ifNil: [StoreLoginFactory currentStoreSession].

 query := Query read: self

 where: [:eachLink | (eachLink definition name = aString)

 AND: [(eachLink definition className = aClassName)

 AND: [eachLink package timestamp = (

 (Query readOneOf: self

 where: [:eachLink2 |

 eachLink2 definition id = eachLink definition id])

 retrieve: [:eachLink2 | eachLink2 package timestamp min];

 yourself)]]].

 query alsoFetch: #definition.

 query alsoFetch: [:each | each definition source].

 query alsoFetch: [:each | each package].

 query orderBy: [:each | each definition timestamp descending].

 query orderBy: [:each | each package timestamp].

 ^(session execute: query) asOrderedCollection

Query 2: Improving Package Comparison (VW 7.9)

• Original method:

• Load version A

• Load version B

• Match up equivalent objects

• Compare and show differences

• New method

• Load different database records only

• Match up equivalent objects

• Compare and show differences

In-Memory Method Comparison

Version A
33,000 Methods Loaded

Version B
33,003 Methods Loaded

66K methods compared in image

Differential Retrieval

Unchanged

32,987 methods
(not retrieved)

New Records not in Previous

 5 added methods

 11 changed methods

Old Records not in Next

 2 deleted methods

 11 changed methods

13 methods retrieved

16 methods retrieved

29 methods compared in image

Differential Retrieval Code

allMethodDifferencesWith: anotherStorePackage

 | keys query1 query2 union |

 keys := Array with: self primaryKey with: anotherStorePackage primaryKey.

 query1 := Query read: StoreMethodInPackage

 where: [:each | |subQuery |

 subQuery := Query read: StoreMethodInPackage where: [:foo |

 foo packageRef = keys last].

 subQuery retrieve: [:x | x methodRef].

 (each packageRef = keys first)

 & ((each methodRef) notIn: subQuery)].

 query1 alsoFetch: [:each| each definition].

 query1 alsoFetch: [:each| each definition source].

 query1 alsoFetch: [:each| each package].

 query2 := Query read: StoreMethodInPackage...

 …

 union := query1 unionAll: query2.

 union requiresDistinct: false.

 ^session execute: union.

SCHEMA

Possible Schema Changes

• Bundle/Package version globally unique identifiers

• Modifying method source storage

• Currently using chained blobs

• Modify to use a character format, possibly with special

provision for very large methods

• Modifying file storage

• Also use chained blobs

• Modify to use blocked blobs on Oracle

• These are ideas which may not survive testing

Method Source Storage (Currently 32k)

Percentile Method size

90.0 569

99.0 1957

99.5 3067

99.9 6835

Needed To Support Schema Changes

• Changes have to work across databases

• Taking advantage of database specific features

• Dealing with database shortcomings

• Occaisionally may require Glorp enhancements

• Solutions for customers

• With multiple Cincom® ObjectStudio® or

Cincom® VisualWorks® versions

• With large existing repositories

Questions? Comments?

Ask now

--- or ---

Tom Robinson

trobinson1@cincom.com

Contact Information

Star Team (Smalltalk Strategic Resources)

– Suzanne Fortman (sfortman@cincom.com)

Cincom Smalltalk Program Director

– Arden Thomas (athomas@cincom.com)

Cincom Smalltalk Product Manager

– Jeremy Jordan (jjordan@cincom.com)

Cincom Smalltalk Marketing Manager

http://www.cincomsmalltalk.com

 2013 Cincom Systems, Inc.

All Rights Reserved

Developed in the U.S.A.

CINCOM, the Quadrant Logo, and Simplification Through Innovation are registered trademarks of Cincom Systems, Inc.

 All other trademarks belong to their respective companies.

