Martin is getting
the projector
to work
with his laptop.

Classes in the Mist

3 zork

Mi ©

|:_/|ISt

A Non-
Traditional
Smalltalk Gets
Classy

Martin McClure

o Cuyd
There is no |

in “Team”

There is no “C”
in “Smalltalk”

Mist
*Open-source (MIT)
*mist-project.org
(see previous videos)
*Github

Status

(overview)

Status

(overview)

Why Now?

Values

Self-sufficiency
Simplicity
*Consistency
*Speed

eCraziness

Self-Sufficiency

Minimize Dependencies

Minimize Dependencies

Maximize Interoperability

Simplicity

Consistency

Speed

Craziness

“If you aren't doing some
things that are crazy, you're
doing the wrong things”

Larry Page, Google CEO

Values

Self-sufficiency
Simplicity
*Consistency
*Speed

eCraziness

Strategies

*Spend memory freely
Start simple
*Broad solutions

eUnconventional first

Go for the 80/20

Implementation

Initial Target
X86 64 Linux

Mist

compiles to

Fog

compiles to

machine code

Primitives are written directly
in

Fog

Executable image

Fully Dynamic

Object Headers

O

I'S

Instance Variables

Memory
Management

1

4006
L]
class: Free5

l

2048
L]

-

Ar
12
®

<k
'5

zsI’s

ot

ctManager
’ 64
ObjectManager T

class:

TheObje

e
S

S
L5
S
S

S

S
S

=
=

=
=

e
e
e

A
o

o
o

lass: FreeS

next

lass: FreeS

Fciass: FreeSpm

lass: FreeS,

ez

w
[
[
=

'S
w
il

L

Garbage Collection

gcMark
isGcMarked
ifFalse: [isGcMarked := true.
self allReferencesDo:
[:each | each gcMark]]
gcSweep
isGcMarked
ifTrue: [isGcMarked := false]
ifFalse: [|size]
size := self physicalSize.
class := FreeSpace.
self physicalSize: size.
TheObjectManager

add: self toFreeListForSize: size]

Tail Call Elimination

Loop using recursion

SmallInteger
to: limit byPositive: increment do: aBlock
| nextIndex |
aBlock value: self.
nextIndex := self + increment.

A

nextIndex > limit
ifFalse: [nextIndex
to: limit
byPositive: increment
do: aBlock].

Loop with Tail Call

([J [] []
Elimination
SmallInteger
to: limit byPositive: increment do: aBlock
| nextIndex |

aBlock value: self.
nextIndex := self + increment.
~ nextIndex > limit
ifFalse: [nextIndex
to: limit
byPositive: increment
do: aBlock].

Loop with Tail Call
Elimination

False
ifFalse: aBlock
~ aBlock value.

<this block's closure class>
value
~ nextIndex
to: limit
byPositive: increment
do: aBlock.

Language
Features

Traits

Stateful Traits

IdentityHash

Instance Variables:
identityHash

Methods:
identityHash
identityhash == nil
ifTrue: [identityHash :
“identityHash

Random integer].

Indexed instvars as a
trait

Do you
need both concepts?

Classes Compose...

...but Do Not Inherit

Methods

Compose as in traits
Rename or omit on conflict
Can declare private

No super send

Special behavior of self send

Instvars

e Private to defining class
e Name conflicts impossible

e Indexed instvars — some fussing needed

Abstract Class

e #basicNew not understood

e “class” instvar not present

Concrete Class

« Compose one concrete class

...and only one

Class
Composition
VS
Object Composition

Modules

Variables

Args and temps
Instance variables

Module variables

— Class names

Class variables?

— Compile-time constants

Safety

* Privacy

e Teams

Massively Single-
threaded

No String Literals

Stream Literals

'Name: [name] Address: [address]'

Status

(detailed)

Classes in the Mist

3 zork

Mi ©

|:_/|ISt

A Non-
Traditional
Smalltalk Gets
Classy

Martin McClure

