
Voyage-Tugrik:
A new persistence option for
Pharo using GemStone/S 64

Dale Henrichs
GemTalk Systems

ESUG 2016

Tugrik???

WAT???

1 Tugrik = 100 Mongo

Voyage

• Object-Document Mapper for NOSQL databases

• MongoDB and UnQLite databases

• Simplest API possible

• 6 methods for save remove, and query

• No Voyage Query language

GemStone/S 64
• Multi-terabyte Smalltalk image

• 1000’s of concurrent Smalltalk vms (gems) making updates to shared
image

• 1000’s of ACID transactions (concurrent image saves) per second

• Generous “Free for commercial use”

• Cost for the following is an email

• 50Gb data base

• 20 gems - 20 concurrent transactions

• https://gemtalksystems.com/licensing/#CWELicensing

GsDevKit/GLASS

• A compatibility layer for GemStone/S that provides a
class library that more closely resembles a classical
Smalltalk environment

• Smalltalk global is present

• Implements a large number of classes and methods
that are present in Squeak and Pharo images

GsDevKit_home

• Bash scripts for creating/starting/stopping GemStone
database instances (stones)

• Bash scripts for creating/starting/stopping Pharo
clients

• Ubuntu 12.04/14.04 and MacOs

• Ubuntu 16.04 soon

Tugrik
Proof of Concept

• Tugrik was created to make it possible to move a Voyage
application written against MongoDB to GemStone/S

• Tugrik implements the public MongoTalk Smalltalk API

• Tugrik models the MongoDB collection organization

• named database instance consisting of a number of
named document store collections

• Tugrik supports the MongoDB query filters

• Tugrik passes all of the MongoTalk unit tests

Tugrik

Tugrik

Tugrik
MongoDB query filters

{ <field>: { $all: [<value1> , <value2> ...] } }

{ field: { $size: 2 } }

{ $nor: [{ price: 1.99 }, { sale: true }] }

Voyage-Tugrik

• Voyage-Tugrik specializes Voyage-Mongo.

• VOTugrikRepository is a subclass of
VOMongoRepository

Voyage-Tugrik
Class Mapping

• With Voyage-Tugrik Class Mapping, instances of root
object classes are created on server instead of
anonymous TugrikObject instances

• Expect to share common packages between client and
server

Voyage Server Blocks:
Unlocking Server-Side Execution

• Class instances WITHOUT behavior on the server is
interesting and even useful in some cases

• More interesting would be to enable server-side
execution

https://twitter.com/joeerl/status/765793779949395968

Voyage Server Blocks:
Send Small Programs to Data

• The expression is embedded in your client code

• The block source is extracted, shipped to the server
and evaluated.

• The return value is serialized and returned to client.

Voyage Server Blocks:
non-local variables

• The values of non-local variable references in block
are serialized and shipped to server where the values
are bound to the variables before execution

Voyage Server Blocks:
Voyage Root Objects

• A root object can be passed as the value of a non-
local variable and a returned root object is mapped to
client-side instance

Voyage Server Blocks:
Root Object behavior

• Voyage query blocks can use full range of root object
behavior on server (i.e., real select blocks)

Voyage Server Blocks:
Voyage API

• Full Voyage API (save, remove, select*) is implemented
on server

Tugrik Tools:
Debugger

Tugrik Tools:
Interactions

Future Work
• Tugrik session pool and object cache refactoring

• Improve/add client-side tools

• Harden Tugrik client implementation

• GemStone indexing support(???)

• GemStone Transaction models(???)

• Replication and synchronization improvements(???)

• Automatically compile shared code on Server(???)

• Optimizations

Looking for Partners
• Set agenda and priorities for Future Work

• Contributions!!!!

• My Preferences:

• incremental development with active participation from users

• features added based on demand

• simple over complicated

• thin clients over fat clients

Path of Least Resistance

• Concurrent document update issues

• Large number of documents

• Interest in Thin Client/Fat Server application

Voyage-Tugrik
Installation

Install GsDevKit_home
git clone https://github.com/GsDevKit/GsDevKit_home.git

Setup $GS_HOME env var and put $GS_HOME/bin in path
cd GsDevKit_home
. bin/defHOME_PATH.env

Setup system for client/server operations (install OS prerequisites using `sudo`)
installServerClient

Create tODE client
createClient tode

Create Voyage stone
createStone -u http://gsdevkit.github.io/GsDevKit_home/Voyage.ston -i Voyage -l Voyage Voyage 3.3.1

Create Pharo5.0 Voyage client
createClient -t pharo voyage -l -v Pharo5.0 -z $GS_HOME/shared/repos/voyage/.smalltalk-tugrik.ston

Start Voyage client and register Voyage stone as default server
startClient voyage -s Voyage

Questions

Resources
• GemTalk Systems

• http://gemtalksystems.com

• https://gemtalksystems.com/products/gs64/versions33x/#33

• Voyage-Tugrik project

• https://github.com/dalehenrich/voyage#voyage-tugrik

• GsDevKit_home Installation and Documentation

• http://github.com/GsDevKit/GsDevKit_home

• GLASS (GemStone Open Source Community) mailing list

• http://forum.world.st/GLASS-f1460844.html

