

Mission Pharo Kernel
ESUG 2016, Prague

Pavel Krivanek and Christophe Demarey

New libraries
New tools
New tests
More documentation

Pharo is growing

Pharo evolution

Squeak 3.9 Pharo 1.0 Pharo 1.1 Pharo 1.2 Pharo 1.3 Pharo 1.4 Pharo 2.0 Pharo 3.0 Pharo 4.0 Pharo 5.0

Classes

Packages

LOC

Code for future use
Duplicities
Obsolete code
DO-NOT-TOUCH code

Pharo ZEN
● Easy to understand, easy to learn from, easy to change.
● Objects all the way down.
● Examples to learn from.

● Fully dynamic and malleable.
● Beauty in the code, beauty in the comments.

● Simplicity is the ultimate elegance.
● Better a set of small polymorphic classes than a large ugly one.
● Classes structure our vocabulary.

● Messages are our vocabulary.
● Polymorphism is our esperanto.

● Abstraction and composition are our friends.
● Tests are important but can be changed.

● Explicit is better than implicit.
● Magic only at the right place.
● One step at a time.
● There is no unimportant fix.
● Learning from mistakes.
● Perfection can kill movement.
● Quality is a emerging property.

● Simple processes to support progress.
● Communication is key.

● A system with robust abstractions
that a single person can understand.

Modularity

Pharo Kernel

From top

- cleaning
- shrinking
- reloading

From bottom

bootstrapping from zero -
 reloading -

From top shrinking and modularization

- started before Pharo
- removing of code is easy
- clean removing is not easy
- reloading is even harder

Morphic reloaded [22.07.2006]

Kernel image evolution in shortcut

BROKEN!
works again

BROKEN!
works again

BROKEN!
works again

BROKEN!
works again

BROKEN!
works again

BROKEN!
works again

BROKEN!
works again

Broken again... [18.8.2016]

Why so hard and long?

Everyone needs to

take of care of
modularity

integrated inintegrated in
development processdevelopment process
(tests, rules, CI jobs) (tests, rules, CI jobs)

CI jobs for Pharo modularization

- since Pharo 2.0

- shrink image
- increase granularity of reloaded modules
- tests
- coverage testing
- experiments (Tanker)

https://ci.inria.fr/pharo/view/6.0-SysConf/

CI jobs for Pharo modularization

Kernel image (shrinked / bootstrapped)
+ Monticello
+ Network support
+ Remote repositories support
+ Metacello
= minimal Pharo
+ SUnit, Display support, UFFI
+ Morphic core, Morphic
+ UI, Basic tools, IDE
= Pharo

https://ci.inria.fr/pharo/view/6.0-SysConf/

Bootstrapped & reloaded from GIT

Let's talk about
BOOTSTRAP

« The process that builds the minimal
infrastructure of a langage  reusable to define the

langage itself »

Bootstrap

Why do we need a bootstrap ?

● Have a known initial state

● Be able to reproduce the state of a system

● Ensure we can reinitialize the system at any time

● Ease Kernel evolution

● Identify a small subset of the language allowing
the definition of the language itself

Why bootstraping is difficult?

Archaelogy

Dead code!

Strange things

cleanups

Missing code

The dependency hell

Cut dependencies

Code refactoring

How to fix bad dependencies?

Create a new package to isolate functionnalities

Move some methods as extensions to another
package

Re-design completely a functionality
e.g. startup list

...

Tools support

Dependency Analyser

Dependency dashboard

X 2

Dependency visualization

https://ci.inria.fr/pharo/job/Pharo-6.0-Dependenc
yAnalysis/ws/bootstrap-dependency-report-graph.ht
ml

The bootstrap process

https://ci.inria.fr/pharo/job/Pharo-6.0-DependencyAnalysis/ws/bootstrap-dependency-report-graph.html
https://ci.inria.fr/pharo/job/Pharo-6.0-DependencyAnalysis/ws/bootstrap-dependency-report-graph.html
https://ci.inria.fr/pharo/job/Pharo-6.0-DependencyAnalysis/ws/bootstrap-dependency-report-graph.html

1
Day

2
Day

3
Day

4
Day

5
Day

process

6
Day

7
Day

More details

cf phd Guillermo Polito:
https://hal.inria.fr/tel-01251173

Story #2

Road to a working bootstrap

Bootstrap challenge
> language side bootstrap

Language initialization generally done VM side

We want to do it language side (image side):
need to run code on top of a language under

construction

https://hal.inria.fr/tel-01251173

Bootstrap challenge
> language side bootstrap

Road to a working bootstrap

First bootstrapped image!

Road to a working bootstrap

Road to a working bootstrap

We run the image …

… VM crash

Road to a working bootstrap
> some debugging examples

Missing class in the boostrap
e.g. Float

Super class not set

Super class set to a wrong value

Road to a working bootstrap

Compile VM in debug mode

Run bootstrapped
image through
Xcode / LLDB

Road to a working bootstrap
> verifying the bootstrap

Rely on Pharo tests (>8 000 tests)
● Load SUnit
● Load test packages
● Run tests

Wants to know more?

Bootstrap process hosted on Pharo CI server

https://ci.inria.fr/pharo/view/Pharo%20bootstrap/

GitHub repository

https://github.com/guillep/PharoBootstrap

Conclusion

Having a modular system requires a lot of energy
• Easy to break
• Concern of everyone

We now have a working Pharo bootstrapped
image.
We are able to load packages on top to build a full
Pharo-image (UI, IDE, etc.)

Roadmap

Make the boostrap process more robust

Up-to-date package dependencies for the Pharo
image + use of Cargo package manager

Build the official Pharo image on top of the
bootstrap

Make the kernel smaller (e.g. kick out Unicode)

« Always leave the campground
cleaner than you found it. »

-Boy Scout rule, Uncle Bob

https://ci.inria.fr/pharo/view/Pharo%20bootstrap/
https://github.com/guillep/PharoBootstrap

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

