1he road to the remote
depbugger

Remote debugger behind the scenes



The road to the remote debugger

@SerialimD <Basys >
SeamIeSD

@ectTraD ObjectStatistics

GT ExtensiD
GTInspector
GTDebugger




x - 0O debug it Bytecode

Stack to 4 Over »*Through ~=
Point distanceTo:

UndefinedObject Dolt .

CompiledMethod valueWithReceiver:arguments: St a c kVI ew
RubSmalltalkEditor debug:receiver:in: [ aCompiledMethod valueWithReceiv

M newProcess [ self value. Proces eActive | v

@), Whereis? |- Browse

Source

istanceTo: aPoint

"Answer the distance between aPoint and the receiver.”

| dx dy | n

dx := aPoint x - x. SourceCodeView
dy := aPoint y - vy.

A (dx * dx + (dy * dy)) sqrt

\

Variables
Type ariable Value
implicit I (0@0)

aPoint (2@3)

dx 2 - -
D o il VariablesView
attribute JY 0
G v 0

thisContext Point>>distanceTo:
s 2 o2 ] . P

— e




" Process suspendedContext |
| | — [ A
Exception signalerContext Stack
8 Sender context 1
Each context Sender context 2
<\rece|ver />\ @der COﬂtGg
( ) "t
selector class Root context
arguments instvarNames - -
temps
- T ~ )
| methoo D—— methodClass | [ R
— — Each object
temp names ~ printString
arg names

\_ ) _source code )




Demo for slow remote
depbugger



Seamless

 New Remote Smalltalk implementation
o Started at 2012 by Nikolaos Papoulias
* Redesigned this year

* http://smalltalkhub.com/#!/~Pharo/Seamless



http://smalltalkhub.com/#!/~Pharo/Seamless

Asynchronous network

e Simultaneous sending and receiving data
* Data sending not depends on data receiving
* Asynchronous processing of received data
* Data processing not blocks new incoming data

* Every received data is processed in separate
thread



Basys

* Bidirectional asynchronous network
» Client can send data to server
e Server can send data to client
e Both directions are equivalent

e But usually server can't establish new
connections

* Asynchronous data transter



Basys models network as
connected peers

o

Peer B Peer C



Network peer structure

Basysl.ocalPeer

localPeer

BasysNetwork

remotePeers
BasysRemotePeer B

BasysRemotePeer C




Peers interact by connection pool

Connectior

|G

Peer B
p

RemotePeer A

~

Peer A

RemotePeer B

\

—

18

ection pool




Peers interact by connection pool

* Users not work directly with connections
* Users ask peer to send data to remote side

peer := network remotePeerAt: tcpAddress.
peer sendDataPacket: dataObject

* Connections are established by demand

e Established connections are reused



Seamless implements Basys network

What is data?
aSeamlessReqguest (MessageSendRequest, DeliveryResultRequest)
What to do with data?

aSeamlessRequest executeFor: senderPeer



Seamless implements Basys network

« What is data”?
 aSeamlessReqguest (MessageSendRequest, DeliveryResultRequest)
 What to do with data?
 aSeamlessRequest executeFor: senderPeer
How to send data?
* Objects are serialized on connection stream by serialization library.

* transfer strategies are applied to each node of given object graph to decide how to transfer
them:

* by value
* by reference
* others
* strategies are object specific and could be redefined for application
How to receive data?
* Objects are materialized from connection stream by serialization library.

* on receiver side they could be represented by specific objects (proxies, local globals)



Seamless

» First class strategies to transfer objects
e by value
* by reference
* by reference with cached properties
e properties can be transferred by reference too
e by referenced copy
* by deep copy
* by global name (to transfer well known globals)

e other specific strategies



Remote debugger tuning

network transferByReference: (Kind of: CompiledMethod) withCacheFor: #(selector
methodClass isTestMethod argumentNames).

network transferByReference: (Kind of: Context) withCacheFor: #(receiver method
methodClass methodSelector isBlockContext home tempNames isDead selector sender
debuggerMap outerContext outerMostContext closure).

network transferByValue: (Kind of: Slot).

network transferByReference: (Kind of: ClassDescription) withCacheFor: #(name
alllnstVarNames allSlots).

network transferByValue: (Kind of: OrderedCollection).
network transferByValue: (Kind of: Set).
network transferByValue: (Kind of: Interval).

network transferByValue: (Kind of: Array).



Real debugger demo

* On server side;
 RemoteUlIManager registerOnPort: 40423
* On client side:

* RemoteDebugger connectlo: anAddress



GT extensions

e GTInspetor on proxies:
e Raw tab for remote state
e Proxy tab for internal proxy state
e Dolt by SeamlessRemoteClassCompiler
e all variables and globals are bound to proxies
» self is bound to proxy
e #dolt method is compiled locally but executed on remote side

e remote side could not have compiler



TostSerializer

» Transient objects transport
* not for persistence
 serialize on sender and materialize on receiver
* No meta information for objects
* NO versioning

* No migration support

Objects are stream of references
* which directly written on output stream in same order

« which directly read from input stream in same order

Support objects with cyclic references

» duplicated objects are encoded by stream position of original object

Support for object substitutions

» substitutions are just injected into object stream

Compact encoding for well known objects and classes

e one byte for encoding



TostSerializer in Seamless

 One pass object traversal
e With Fuel it was two:
« Fuel itself analyses object graph
e Seamless traverse object graph to build substitution map
« Very compact for small objects
e Smallest communication unit (integer return):
o 21 bytes for Tost versus 400 bytes for Fuel
 Many possibilities for new features and optimizations:
e references should not send cache back to server
e Objects state synchronization between client and server

e cache should be updated when reference is received again from server



ObjectIravel

 Main part of TostSerializer



ObjectIravel

e Jool to stream objects
e traversal stream of inst vars and indexed fields

traveler := ObjectTravel on: (1@2 corner: 3@4).

traveler nextReference. “ => 1@2”

traveler nextReferece; nextReference. “=> 1”
“or”

traveler referencesDo: [:each | ].

e Support cyclic object graphs

e Allow inject external objects

traveler referencesDo: [:each |
each = 2 ifTrue: [traveler atNextStepVisit: 5@6]].

* Allow replace references

traveler referencesDo: [:each |
each = 2 ifTrue: [traveler replaceCurrentReferenceWith: 5]].



ObjectIravel

e Useful methods:

traveler := ObjectTravel on: (1@2 corner: 3@4).
» traveler countReferences “=> 6"

o traveler collectReferences “=> {1@2. 3@4. 1. 2. 3. 4}"
o traveler copyObject “=> deep copy of rectangle”

e traveler findAllPathTo: 2 “=> { {1@2} V"



ObjectStatistics

* Jool to analyze set of objects

e computes different kKind of metrics from
different perspective (dimensions)

e simplistic OLAP Cube in objects space.
* Implements suitable GT extension

 Metrics and dimensions shown in tree way
inside GTInspector



SeamlessStatistics

stat := ObjectStatistics new.
stat
countAllAs: requests’;
countDifferent: [ :r | r receiver ] as: 'instances' for: (Kind of: SeamlessMessageSendRequest);
countAllSuch: #isOutgoing as: 'outgoing’;
countAllSuch: #isIncoming as: 'incoming’.
stat
dimension: [ :r | r class | named: 'requests’;
for: (Kind of: SeamlessMessageSendRequest) with: |
stat
dimension: [ :r | r receiver nameForSeamlessStatistics | named: ‘classes’;
with: [
stat dimension: [ :r | r selector ] named: 'msgs'].
stat
dimension: [ :r | r selector | named: 'msgs’;
with: [
stat dimension: [ :r | r receiver nameForSeamlessStatistics ] named: ‘classes']].

stat accumulateAll: requests.



Future work

Remote browser
More optimizations
Better presentation of remote contexts
Support for steplnto for remote call

e distributed stack in debugger
Distributed garbage collection

* now it Is absent

e “debugger disconnect” cleans everything



The end

» follow me on https://dionisiydk.blogspot.com

e questions?



