The Smalitalk Report

The International Newsletter for Smalltalk Programmers

July-August 1993

Volume 2 Number 9

SMALLTALK
DEBUGGING
~ TECHNIQUES

By Roxie Rochat
& Juanita Ewing

Contents:

Feature

1 Smalltalk debugging
techniques
by Roxie Rochat & Juanita
Ewing

Articles

4 Debugging objects
by Bob Hinkle, Vicki Jones, &
Ralph E. Johnson

8 Applications of Smalltalk in
scientific and engineering
computation
by Richard L. Peskin

Columns

15 Smalltalk Idioms: Inheritance:
the rest of the story
by Kent Beck

26 Product News and Highlights

xpert Smalltalk users are characterized not only by their program-
ming skills, but by how quickly they locate and correct errors. Not
only do they use debugging skills to find bugs, but also to under-
stand existing code. To reuse code effectively, you have to under-
stand it, so debugging skills are important tools for maximizing
reuse and minimizing work.

This article describes debugging techniques for both Objectworks\Smalltalk
and Smalltalk/V. Although written for novice Smalltalk users, it assumes a basic
familiarity with Smalltalk terminology and the environment, including browsers
and debuggers.

Many expressions in this paper are common to Objectworks and Digitalk
Smalltalk systems. Expressions that are not annotated apply to both Smalltalk sys-
tems. Unless otherwise noted, the Objectworks expressions given in this article are
applicable for:

* Objectworks\Smalltalk 4.1

* VisualWorks 1.0

» ENVY/Developer rl.41a for Objectworks\Smalltalk and VisualWorks.
The Smalltalk/V expressions have been tested under:

* Version 2.0 of Smalltalk/V for OS/2

* Version 2.0 of Smalltalk/V for Windows

* ENVY/Developer rl.41a for Smalltalk/V for Windows

If you are using other versions of Smalltalk, use the expressions presented in this
article as a starting point.

WHO AM I?

A major component of the debugging process is the collection of information
about the objects and their current state. Transcript messages allow you to gather
information about objects over time. Inspectors allow you to see objects and their
internals in a static state. Careful planning with respect to naming and object
identity can help you focus on easily collecting relevant information. This section
reviews debugging techniques involving the Transcript, inspectors, and factors re-
lating to object identity.

hello world, or printf, in Smalitalk
The Smalltalk equivalent of the C printf function is to write to the Transcript win-
dow. (You do leave your Transcript open, don’t you? The system writes error
messages to the Transcript so if you collapse or close it, sooner or later, you'll be
sorry.)

Information you print in the Transcript can be used to determine when a par-
ticular method is called, to examine arguments, or to examine data calculated by

continued on page 18...

EDITORS’
CORNER

John Pugh

Paul White

evelopers who use Smalltalk have always had a real love/hate relationship with their devel-
opment environment. We've always been fascinated listening to Smalltalkers describe the
toolset in their environment. When describing Smalltalk to “outsiders,” they defend it
with an emotional fervor, noting how flexible it is and how rich a toolset it actually pro-
vides. But if you have a chance to speak with these same people alone, you'll hear a very
different story. The fact is that the base Smalltalk development environment is in desperate
need of a major overhaul. It has become Smalltalk’s “legacy system.” One of the first things
that appealed to us about Smalltalk back in the early days was its rich development envi-
ronment—it was definitely the best on the block. Since then, no significant changes have
been made to the way in which people interact with the system. Sure, minor improvements
have been made at times, but there have been no qualitative improvements to the browser,
the inspector, or the debugger. Even the tools that do exist need to be more polished. (Ever
listen to someone use the “Find Class” option in Digitalk’s browser—the groans over a lack
of wild card are universal). Even team development tools such as Team/V and ENVY don’t
improve to any significant extent the way in which we interact with Smalltalk.

So why don’t we see better toolsets coming to market? We suspect the answer is simple: a
lack of motivation on the part of the vendors. There is a greater return to be made by provid-
ing add-on facilities such as interface builders and database interfaces than there is by aug-
menting the tools that already exist in the base image. Will third-party developers take up the
challenge? We hope so, but we are not terribly optimistic. Perhaps the forthcoming Object
Explorer tool form First Class Software, which attempts to visualize the relationships between
objects, will set a trend. Of course, many Smalltalk programming shops have built “in-house”
extensions to the environment that they use on their projects and those of their clients. But
most organizations don’t want to be tool builders, they’re application developers.

On a more positive note, four of the articles in this issue do illustrate just how rich an en-
vironment Smalltalk has. Each takes a different perspective, with two focusing directly on
the debugging process and the techniques that can be used to understand what is taking
place inside your systems. Roxie Rochat and Juanita Ewing are featured this month with
their hints on debugging. They have included a number of debugging techniques, including
ones for debugging code that does not allow for the normal “self halt” approach to work.

Also on the topic of debugging, Bob Hinkle, Vicki Jones, and Ralph Johnson return
this month with a description of how Smalltalk can be extended in ways that will allow for
non-intrusive debugging to be carried out.

Alan Knight and Kent Beck also touch on the issue of debugging with Smalltalk. Kent re-
turns to his discussion of the conflicting roles played by inheritance in Smalltalk and intro-
duces two new patterns that describe rules that can be applied when making inheritance deci-
sions. Alan tackles the issue of recognizing “good code” by characterizing the elements of
good coding techniques.

Finally, Richard Peskin provides us with a glimpse into work that is being done to
make Smalltalk more applicable to scientific and engineering computing. As he points
out, this area has not received much attention from the Smalltalk community lately, even
though much of Smalltalk’s early history involved serving this community.

Tolm R {-—: Q S\\,Qj\gw

THE SMALLTALK REPORT (ISSNF 1056-7976) is published 9 fimes a year, every month except for the Mar/Apr, 0g, an

combined issues. Published by SIGS Publications Group, 588 Broadway, New York, NY 10012 212.274.0640. © Copyright 1993 by 5IGS
Publications, Inc. All rights reserved. Reproduction of this material by electronic transmission, Xerox or any other method will be
treated as a willful violation of the US Copyright Law and is flatly prohibited. Material may be reproduced with express permission from
the publishers. Mailed First Class. Suhscription rates 1 year, (9 issues) domestic, $65, Foreign and Canada, $90, Single copy price, $8.00.
POSTMASTER: Send address changes and subscription orders to: THE SMALLTALK REPORT, Subscriber Services, Dept. SML, P.O. Box
3000, Denville, NJ 07834. Submit articles to the Editors at 91 Second Avenue, Ottawa, Ontario K15 2H4, Canada. For service on cur-
rent subscriptions call 800.783.4903. Printed in the United States.

'The Smalitalk Report
Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Pusucanons

Advisory Board

Tom Atwood, Objeci Technology International
Grady Booch, Rational

George Boswaorth, Digitalk

Brad Cox, Information Age Consulting
Chuck Duff, Symantec

Adele Goldberg, ParcPlace Systems

Tom Love, Consulianl

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems

Sesha Pratap, Centerline Software

Bjarne Stroustrup, AT&T Bell Lahs

Dave Thomas, Object Technology International

THE SMALLTALK REPORT

Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems
Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digitalk

Dave Thomas, Object Technology Internationa!

Columnists

Kent Beck, First Class Software

Juanita Ewing, Digitalk

Greg Hendlsy, Knawledge Systams Carp.
Ed Klimas, Linea Engineering Inc.

Alan Knight, The Object People

Eric Smith, Knowledge Systems Carp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.

Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managing Editor

Susan Culigan, Piigrim Road, Ltd., Creative Diraction
Karen Tongish, Production Editor

Gwen Sanchirico, Production Coordinator

Robert Stewart, Computer Systems Coordinator
Circulation

Stephen W.Soule, Circulation Manager

Ken Mercado, Fuifilment Manager
Marketing/Advertising

James O. Spencar, Director of Busineas Development
Jason Weiskopf, Advertising Mgr—Est Coast/Canada
Holly Meintzer, Advertising Mgr—West Coast/Europe
Helen Newling, Recruitment Sdes Managsr

Sarah Hamitton, Promoti r—f

L)

Jan Fuimer, Promations M Conf
Caren Polner, Promoations Gmﬂlu: Artist
Administration

David Chatterpaul, Accounting Manager
James Amenuvor, Bookkeeper

Dylan Smith, Special Assiatan ta the Publist
Claire Johnston, Conferance Manager

Cindy Baird, Conference Technical Manager

Margherita R. Monck
General Manager

WSIGS

PUBLICATIONS

Publishers of JOURNAL OF OBJECT-ORIENTED PRO-
GRAMMING, OBJECT MAGAZINE, THE C++ REPORT, THE
SMALLTALK REPORT, THE INTERNATIONAL OOP DIREC-
TORY, and THE X JOURNAL.

2

THE SMALLTALK REPORT

SWALSAS

INC.

Smalltalk/V developers have come to rely on
WindowBuilder as an
essential tool for develop-
ing sophisticated user inter-
faces. Tedious hand coding
of interfaces is replaced by
interactive visual composi-
tion. Since its initial release,
WindowBuilder has
become the industry stan-
dard GUI development tool
for the Smalltalk/V environ-
ment. Now Objectshare
brings you a whole new
level of capability with

!
WINDOWBUILDER PKO

The New Power in Smalltalk/V Interface Development

Wmdow Builder Pro/V is available on Windows for $§295

3 and OS/2 for $495. Our stan-
% dard WindowBuilder/V is
still available on Windows
for $149.95 and OS/2 for
$295. We offer full value
trade-in for our
WindowBuilder customers
wanting to move up to Pro.
These products are also
available in

ENVY®/ Developer and
Team/V™ compatible for-
mats. As with all of our
products, WindowBuilder

WindowBuilder Pro! New

defsultStyle

functionality and power
abound in this next genera-
tion of WindowBuilder.

ProgrammerName

K] Pro comes with a 30 day
money back guarantee, full
| source code and no Run-
Time fees.

Some of the exciting new features...

. ("()mp()slld’nnu Create custom controls as composites
r of other controls, treated as
a single object, allowing the
developer higher leverage
of reusahle widgets.

used repeatedly and
because they are Class based, they can be easily sub-
classed; changes in a CompositePane are reflected any-
where they are used.

* Morphing: Allows the developer to quickly change
from one type of control %suns

malhitalk
oyprdowBulder to another, allowing for | © smeihai
powerful “what-if” style | O WindowBuilder
| visual development. The | © Other

flexibility allowed by
morphing will greatly enhance productivity.

= ScrapBook: Another new feature to leverage visual
component reuse, ScrapBooks provide a mechanism for
developers to quickly
store and retrieve pre-
defined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interface com-
ponents, organized

into chaptera and pages.

¢ Rapid Prototyping capa-
bilities: With the new link-
ing capabilities, a develop-
er can rapidly prototype a
functional interface without
writing a single line of
code. LinkButtons and
LinkMenus provide a pow-

Select » ViewManger Clnsa;
[DlskBrowser
FleFinder
FreeDruwing
GraphicsDemo
IconEditor
income Tax

Link Ty,
[Independem]
Sibling

Opens the selected

window as 3 child of
Vhe anvem window.

and Wi ilder Pro ara of Obj

Inc. All other brand and product names are

erful mechanism for linking
windows together and speci-
fying flow of control.
ActionButtons and
ActionMenues provide a
mechanism for developers to
attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

s ToolBar: Developers can Create sophisticated toolbars

just like the ones in the WindowBuilder Pro tool itself.

e Other new features include: enhanced duplication and
cut/paste functions, size and position indicators,
enhanced framing specification, Parent-Child window
relationship specification, enhanced EntryField with char-
acter and field level validation, and much more...

e Add-in Manager: Allows developers to easily integrate
extensions into WindowBuilder Pro's open architecture.

Catch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742
Objectshare Systems, Inc 5 Town & Country Village
Fax: (408) 727-6324 Suite 735

CompuServe 76436,1063 San Jose, CA 95128-2026

af their

Debugging
objects

Bob Hinkle, Vicki Jones, and
Ralph E. Johnson

s the premier object-oriented programming lan-
guage, Smalltalk should give programmers easy
access to objects. However, during debugging it
can be very difficult to get your hands on a par-
ticular object. For example, suppose you're devel-
oping a program that stores some objects in an OrderedCollec-
tion, but when it tries to retrieve them later, some are missing.
You might like to add debugging code to OrderedCollection
methods such as add: and remove: to detect when objects are
taken out of the OrderedCollection, but any changes would affect
every OrderedCollection in the system, bringing your image to a
crashing halt. This article will show how to solve this and simi-
lar problems by letting you modify code and add breakpoints
that affect only one particular object, rather than all objects in
a given class.This approach of defining only object-specific
methods is similar to what Kent Beck has described.1.2 Our so-
lution relies on the use of a new kind of class and on some
small but powerful variations on CompiledMethods and Compil-
ers. Besides being useful in their own right, we feel these exten-
sions again illustrate (as in our previous articles®4) how power-
ful Smalltalk’s reflective features are, as they allow
programmers to adapt and extend the environment to suit
their needs. The solution described here is specific to
Smalltalk-80, since it relies on Smalltalk-80’s architecture for
classes, metaclasses, the compiler, and compiled methods and
on the complete availability of source code for these system el-
men! * As a result, our extensions may not apply to Smalltalk
V er... onments, although something similar may be possible.

LIGHTWEIGHT CLASSES
The first step to debugging objects is to be able to modify
methods on a per-object basis. In Smalltalk, methods for an

* Source code for the object debugging package is available by anonymaous ftp from
st.cs.uiuc.edu. Look for the file ObjectDebugging.st in pub/st80_r41.

object are defined in that object’s class and are stored in the
class’s method dictionary. To change a method for a particular
object requires that the object have its own private class. We
will give an object that we want to debug its own class by in-
serting a new class between the object and its real class. We
could create a (perhaps temporary or anonymous) instance of
class Class for this purpose, but that’s a little heavy-handed: In-
stances of Class have many instance variables and a lot of be-
havior aren’t needed for our purposes. For example, Class adds
variables and functionality to define new class and pool vari-
ables. In addition, Class inherits from ClassDescription variables
and code to support adding new instance variables and class
organizations. All of this is unnecessary for a lightweight class,
50 we defined LightweightClass to be a subclass of Behavior. Be-
havior is the superclass of ClassDescription, and it defines the
code needed for the interpreter to do method lookup. (For
more information on the roles of Behavior, Class, and ClassDe-
scription, refer to the chapter titled “Protocol for Classes” in
Reference 5.) Since Behavior is a simpler starting point, in-
stances of LightweightClass will be smaller than instances of
(lass and will require less memory and time to allocate, initial-
ize, and finalize. That makes it easier and less expensive to cre-
ate lightweight classes on the fly to modify, even if only tem-
porarily, some object’s behavior.

Before explaining LightweightClass in detail, it’s helpful to
review the way things work normally in Smalltalk. When an
object is sent a message, the system tries to find a method cor-
responding to the message’s selector in the method dictionary
of the object’s class. If no such method exists, the system will
look in that class’s superclass, and so on up the chain of super-
classes until a method is found or the end of the chain is
reached. Furthermore, when a method is added to a class or
changed, the new code is compiled by an instance of the class’s
compilerClass (which by default in the system is SmalltalkCom-
piler). The result of compiling is an instance of CompiledMethod,
which will be stored in the class’s method dictionary with its
selector as its key. The source code for the method is not stored
directly in the CompiledMethod, but, instead, is written into the
change log, and the CompiledMethod is given a pointer to its file
and offset.

Our implementation of lightweight classes changes this
normal scenario in three ways. The first and most important
change inserts a LightweightClass in between an object and its
real class (or what we will call original class, since it was the
class by which the object was originally created), with the ob-
ject’s class being changed to the LightweightClass, and the
LightweightClass' superclass set to the object’s original class. In
this way, any message sent to the object will first be looked up
in the LightweightClass's method dictionary. If a method is
found there, it will be used to respond to the message, and it
will be unique to that particular object. Otherwise, message
lookup will continue to the LightweightClass' superclass—the
object’s original class—and, hence, will proceed as usual for
objects of that class. Figure 1 illustrates this relationship be-
tween an object, its original class, and its lightweight class.

THE SMALLTALK REPORT

A MethodDictionary
et []
A Date n Date []
class . [y
day: 97 =b mathodDictionary T day
year: 1983 ~day
1)
[]
[]
; A MethodDictionary
B °
A Date & A LightweighlClass p
class e °
day: 98 =g melhodDiclionary P
year: 1993 aymz
[}
[J
®

Figure 1. The relationship between an object, its original class, and its
lightweight class.

In Figure 1, when the day message is sent to the object
marked 4, a corresponding method is searched for starting in
Date, the object’s class. This method returns the value of the
day instance variable, which (for A) is 97. However, when the
day message is sent to object B, message lookup begins in its
class, which is an instance of LightweightClass. The method in
the lightweight class’s method dictionary is defined to return
42. Thus, object B behaves differently from A and all other in-
stances of Date.

The two other changes pertain to source code management.
The code for methods in lightweight classes can’t be stored in
the change log, since the lightweight class isn’t named in the
system dictionary, and it has no category or protocols like nor-
mal classes. (And in any case, the lightweight class may be an
entirely dynamic object that is created while running a pro-
gram, but which does not persist from one programming ses-
sion to the next, so that storing code for it in the change log
would make no sense.) Instead, we store the code directly with
the method it produces, which required us to create a new kind
of compiled method, CompiledMethodWithSource. Finally, to
produce these kinds of compiled methods, we exploited the
“pluggability” of the compiler and created a new subclass of
SmalltalkCompiler. We’ll describe these two changes after first
looking at LightweightClass in detail.

As a subclass of Behavior, LightweightClass adds only one in-
stance variable, name, which is convenient for telling
lightweight classes apart. In addition to accessor methods for
this variable, LightweightClass defines three other methods of
interest: initializeWithSuper:, which initializes a new lightweight
class; compile:notifying:ifFail:, which adds a new method to a
lightweight class; and compilerClass, which defines the kind of
compiler to use for methods in a lightweight class.

A new lightweight class is normally created by sending
becomeLightweight to an object. This method is defined in Ob-
ject as follows:

becomeLightweight

| lightweightClass |

self lightweightClass isNil

EC-Charts CEE

| Add charts to your VisualWoris palette

Dynamic Add or change data points, with minimal screen repainting.
Add or remove data series toffrom the chart.

Interadilve Select data points with the mouse—EC-Charts informs
your application.
¥ mitans

Uses screen space effectively o 1w o am ko
Scroll the chart view in one or both : ' '
directions. Mark values of summary fead

functions in the 1985

vemewsresnl] axis areas. Show |

NEERE thresholds using |7

TR grid lines. 19

L e 1983

[l T o AR N 1990
New Yoax Srof 1oor 1L T

F T T — T
3 o

hh &ftions of dollars 0% ol1% 02% 033 04

| oo 1 ' - I 2
'-I‘l{f’ﬂ‘-_rm 1’11“ frl L
R

b= Nat Income B Ravenue *hmm:‘.’

S

N oa @

o

a
L)
L1

L
“'"$350
No runtime license fee

Call for a technical paper
on EC-Charts

VisualWorls s a tradermark
of ParcPtace Syslers, Inc.

‘B8 B9 70 71 72

T3 74 7t

A Total budgel 4 Tolal aid tc

(408) 462-0641

21137 East Cliff Dr - Santa Cruz - CA 95062

ifTrue: [
lightweightClass :=
LightweightClass newWithSuper: self class.
self changeClassToThatOf: lightweightClass basicNew]

If the receiver of this message already has a lightweight class,
nothing more is done. Otherwise, newWithSuper: is sent to cre-
ate a new lightweight class whose superclass will be the receiver
object’s original class. The message changeClassToThatOf: is then
sent to the receiver to insert the lightweight class before the ob-
ject’s original class. Because some objects (notably immutable
objects like SmallIntegers, Characters, true, and false) can’t have
their class changed, becomeLightweight can’t be sent to them,
but it can be sent to all others.

The newWithSuper: method creates a new lightweight class
and then sends it the initializeWithSuper: message, where the
parameter is the object’s original class. This initialization
method gives a default name to the lightweight class, creates a
new method dictionary for it, and sets its superclass to be the
class passed in, so that any messages not found in the
lightweight classquote method dictionary will be looked up in
the object’s original class.

The solution described in the preceding paragraphs makes
sure that messages sent to a lightweight object are first looked
up in the object’s lightweight class as desired. However, class
messages will not work correctly as the solution has been pre-
sented so far. For example, if aDay is a lightweight instance of
Date, sending “aDay class name0fDay: 1” should be the same as
sending “Date nameOfDay: 1,” but aDay’s class is an instance of
LightweightClass, so “aDay class nameOfDay: 1" will try (and fail)
to find a method for the message nameOfDay: defined for

JULY-AUGUST 1993

m DEBUGGING OBJECTS

LightweightClass. This problem exists because classes have sev-
eral roles, including roles as method repositories and as reposi-
tories for shared information (in this case, the names of the
days of the week). We want the lightweight class to play the
first role and the object’s original class to play the second, but
Smalltalk expects one entity to play both roles. (Alan Borning
summarizes the various roles of class and suggests an alterna-
tive approach in Reference 6.) Our solution to this problem is
to separate out the role of method repository, which we did by
creating a new method for all objects called dispatchingClass.
The definition of dispatchingClass in Object is the same as that
of class—it uses a primitive to directly access the object’s class
from the object’s memory structure. When an object is made
lightweight, its lightweight class is stored in the memory struc-
ture and thus returned as the value of dispatchingClass. In addi-
tion, LightweightClass overrides the class method to be:

class
~self dispatchingClass superClass

This will return the object’s original class, as desired, since
newWithSuper: installed the original class as the lightweight
class’s superclass.

The LightweightClass method compile:notifying:ifFail: is
needed when a method is defined in a lightweight class and is
implemented as:

compile: code notifying: requestor ifFail: failBlock
“Compile the argument, code, as source code in the context of the
receiver and install the result in the receiver’s method dictionary.
The arqument requestor is to be notified if an error occurs. The
argument code is either a string or an object that converts to a string
or a PositionableStream on an object that converts to a string. This
method *does* save the source code. Evaluate the failBlock if the
compilation does not succeed.”
| methodNode selector save method oldMethod |
save := code asString copy.
methodNode := self compilerClass new
compile: code
in: self
notifying: requestor
ifFail: failBlock.
selector := methodNode selector.
method := methodNode generate.
method sourceCode: save.
oldMethod := self compiledMethodAt: selector ifAbsent: [nil].
(oldMethod notNil and: [oldMethod isBreakpoint])
ifTrue: [oldMethod client: method]
ifFalse: [self addSelector: selector withMethod: method].
~selector

There are two major differences between this method and the
compile:notifying:ifFail: method as defined in Behavior. First,
this method saves the source code that was passed in and
passes it along (using the sourceCode: message) to the Compiled-
MethodWithSource that’s generated from the message send
“methodNode generate.” Also, the code checks to see whether
the method being compiled used to have a breakpoint and, if
so, preserves the breakpoint in the method dictionary. (This
logic will be explained in detail in the next section.)

The final LightweightClass method is compilerClass, which

simply returns a new class, LightweightCompiler, to be used when
compiling lightweight class methods. Creating a new compiler
class sounds overly ambitious, but it’s actually quite simple,
since the new class has only one method, newCodeStream; the
rest are inherited straight frorm SmalltalkCormpiler. This method
is used to create a new CodeStream for use by the compiler. Since
CodeStream generates CompiledMethods by default, we changed it
to be parameterized by the kind of method generated, and so
LightweightCompiler implements newCodeStream simply by re-
turning a CodeStream that will generate instances of Compiled-
MethodWithSource. The implementation of CompiledMethodWith-
Source is just as simple. We changed three methods so that the
sourceCode instance variable is interpreted as a source string
(rather than a pointer to a file and offset), and the rest of its
functionality is inherited from CompiledMethod.

With these few changes we now have an easy way to change
the behavior of individual objects. We still need a good inter-
face for doing that, though, and we’ll describe our approach
for that after first looking at breakpoints.

BREAKPOINTS

One of the typical things a programmer wants to do while de-
bugging objects (and often in other debugging, as well) is to
add “self halt” to a method—effectively adding a breakpoint. As
it turns out, there’s a simple way to add an initial breakpoint
using the same technique that we used above with Lightweight-
Compiler and CompiledMethodWithSource; we’ll simply create a
new class of compiled method, BreakpointMethod, and a com-
piler for generating instances of it. This variety of breakpoint
has three advantages over the “self halt” version: They are easier
to add and remove, since it's done by menu rather than by typ-
ing; they don’t affect the various change mechanisms, so the
change set and change log don't include trivial changes for
adding (and presurnably later removing) a halt in a method;
and they are invisible in source code, so a programmer who is
browsing or debugging a breakpointed method will see only the
normally defined code—the breakpoint is invisible. The one
disadvantage of our technique is that you can halt only at the
start of a method, though our design may be adaptable to cover
breakpoints throughout a method’s body.

BreakpointMethod is a subclass of CompiledMethod with one
instance variable, clientMethod. In addition, we added a new in-
stance variable, agent, to CompiledMethod. When a breakpoint
is set on an existing CompiledMethod, a new BreakpointMethod is
created, and these two instance variables are changed so that
the BreakpointMethod’s clientMethed is the CompiledMethod, and
the CompiledMethod’s agent is the BreakpointMethod. The body
of a BreakpointMethod is always the same: It’s the expression
“Notifier handleBreakpoint.” Thus, when a BreakpointMethod is
executed, this expression is evaluated, and Notifier responds by
updating its stack, replacing the BreakpointMethod with its
client—the original CompiledMethod—and opening a debugger
with that method in the top context. In this way, the Break-

continued on page 24...

THE SMALLTALK REPORT

ADVANCED TRAINING

ANALYSIS & DESIGN

TEAM REQUIREMENTS

—

MENTORING

CUSTOM CONTRAGTS
I

TEAM TOOLS

Object Technology Potential
Object Technology can provide a
company with significant benefits:
¢ Quality Software

e Rapid Development

» Reusable Code

e Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southern
California Edison and Texas Instru-
ments to successfully transition to
Object Technology.

KSC Transition Services

KSC offers a complete training

curriculum and expert consulting

services. Our multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

* Introductory to Advanced

Programming in Smalltalk

» STAP™ (Smalltalk Apprentice
Program) Project Focus at KSC

* OO Analysis and Design

* Mentoring: Process Support

Object Transition
by Design

APPRENTICE PROGRAM

SOLUTIONS

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of “Best of Breed” third
party tools and KSC value-added
software. Together KSC tools and
services empower development
teams to build object-oriented
applications for a client-server
environment.

Deslgn your Transition

Begin your successful “Object
Transition by Design” For more
information on KSC's products and
services, call us at 919-481-4000
today . Ask for a FREE copy of KSC's
informative management report:
Software Assets by Design.

IS

Knowiedge Systems Corporation

OBJECT TRANSITION BY DESIGN

© 1992 Knowledge Systems Corporation.

114 MacKenan Dr.
Cary, NC 27511
(919) 481-4000

Applications of
Smalltalk in
scientific and
engineering
computation

Richard L. Peskin

1992 marked Smalltalk’s 20th anniversary. While using
Smalltalk for simulation was an important goal for the environ-
ment, applications to “real” scientific and engineering simula-
tion and modeling have been few. In earlier Smalltalk systems,
slow (and expensive) hardware together with slow interpreters
were adequate reasons for the scientific community to ignore
Smalltalk. Addiction to FORTRAN and conservatism com-
pounded the problem.

Today’s modern Smalltalk systems running on high perfor-
mance workstations have removed some of the traditional barri-
ers to the use of the language for scientific computing. While in-
terpretive environments are generally an order of magnitude
slower than optimized compiled code for numerically intensive
tasks, techniques to integrate compiled code segments into
Smalltalk applications can overcome this deficit. The advantages
of Smalltalk’s graphical interface and its ability to promote pro-
totyping offer much for scientific computing.

To address the issues and problems presented by scientific
applications of Smalltalk, Kent Beck of First Class Software and
I organized a workshop at OOPSLA 92 in Vancouver. Atten-
dance was by invitation only. Ten position papers were pre-
sented during the morning session, the afternoon session was
devoted to informal workgroups that delved into design and
implementation specifics. The position papers covered a wide
range of domain-specific topics concerned with applying
Smalltalk to scientific and engineering computation. However,
all the papers were characterized by certain commonalities, one
of these being that Smalltalk’s flexibility does admit strategies to
overcome weaknesses such as computational performance. I
opened the meeting with some overview comments and noted
the rising interest in object-oriented computing within the sci-
entific and engineering community. Furthermore, with the
rapid increase in hardware performance, we can expect more
applications of interpretive environments to scientific and en-
gineering problems. This is already evident in journal articles

where languages like Lisp, Prolog, Smalltalk, etc. are taking
place alongside FORTRAN and C. However, this domain com-
munity is very demanding; if existing O-O environments are
not suitable, users will create ones that are. Sather is an exam-
ple.

I also emphasized the need for robustness, completeness,
and correctness in Smalltalk implementations if they are to
meet the needs of the scientific community. Support for exter-
nal programs, inter-application communication, distributed
and parallel computation, and numerical and symbolic com-
putation classes are just some of the features needed, but are
currently either absent or minimally present in Smalltalk sys-
tems. This level of support may be a tall order for a language
with only one or two vendors and no “standard”; one reason
for the popularity of Lisp among the scientific community is its
standards and its multi-vendor support.

The bottom line is that the scientific and engineering com-
putation community will adopt O-O systems and do want the
prototyping flexibility offered by an interpretive environment
with dynamic binding. If Smalltalk is to be chosen by more
than just a token few, its user community and vendors will
have to work together to meet the needs of scientists and engi-
neers. The OOPSLA workshop was set up to be one forum to
assist in this process. To this end, vendor representatives were
invited to attend, and ParcPlace Systems had a representative
at the workshop. The morning presentations were further di-
vided into general topics (mathematics, engineering computa-
tion, scientific computation, and scientific data management)
and application papers. However, these boundaries were not
sharp. Professor David Rector of the University of California,
Irvine opened the morning session with a discussion of his
work in the development of a Smalltalk-based system to teach
numerical analysis to students. He presented several examples
of how current Smalltalk standard implementations fail to pro-
vide needed support. One example is the absence of precise in-
terval subdivision (which he has corrected). He suggested im-
plementing a new iterator, map: [aBlock], so that collection
operations return correctly (e.g., so that collect: over a dictio-
nary returns a dictionary, etc.), and he showed how this applies
to a differential equation solver method. Rector suggested a
separate class, Quantity, under Object, because Number is not ap-
propriate to hold integral domains and fields such as complex
numbers, polynomials, quaternions, etc. He also pointed out
that class Array is not the proper container for Vectors and Ma-
trices. In particular, the many varieties of matrices implies the
need for a more general class to deal with these objects. This
subject became the topic of one of the afternoon working
groups.

Alan Knight, formerly of the Department of Mechanical
and Aerospace Engineering at Carleton University, presented
an overview (co-authored with N. Dai) of Smalltalk in the con-
texts of applications to finite element method solvers. Drawing
on five years of experience in attempting to use Smalltalk for
this type of problem, he listed the major problem areas of per-
formance, portability, graphics, and user-interface facilities.

8

THE SMALLTALK REPORT

Approaches to performance improvement include use of prim-
itives and high-performance libraries, and improved imple-
mentations. Knight pointed out that Smalltalk’s claimed high
portability falls short of the mark in practice, both in portabil-
ity between versions and limited number of supported plat-
forms. Smalltalk’s integration with other languages needs to be
improved, as do graphics (particularly 3-D graphics) for sci-
entific and engineering applications. The integration and
graphics issues were also discussed in other papers at the work-
shop. Weaknesses in the user interface, particularly the need
for good widget toolkits was mentioned, and he emphasized
the need for significant improvements in the debugger.

Dr. Rob Gayvert of RIT Research Corp. discussed the use of
Smalltalk in scientific computations, with emphasis on appli-
cations in speech and signal processing. He also emphasized
the need for improvement in the numeric array and matrix
classes, listing specific new protocols for both numeric array
and matrix classes. His group has implemented these in
Smalltallk/V Mac. His suggested strategy for domain-specific
classes (such as may arise in nonlinear equation solvers) is to
implement first without regard to performance and then to
optimize. The RIT group has implemented inter-application
communication (specifically AppleEvents) as well as exten-
sions to the ToolBox access in Smalltalk/V Mac. This greatly
increases the potential for access to external data sources, ap-
plication servers, etc. This should be a standard feature in fu-
ture Smalltalk releases. Gayvert showed examples of his system
improvements, namely the speech processing application. Bet-
ter numeric and matrix classes, IAC, etc. allowed the construc-
tion of tools to do speech processing, which have both alge-
rithmic power and good graphical presentation for the user.
His conclusion is that, with proper additions and improve-
ments, Smalltalk has strong potential for scientific and engi-
neering applications.

Dr. Sandra Walther of Rutgers, in a paper I co-authored,
reviewed some features of the Smalltalk-based SCENE system,
a software environment to support numerical experimentation
in science and engineering. Some features of importance in
this environment include user extensibility and configurability,
automatic programming, computational steering, distributed
storage, and parallel/distributed processing. The talk focussed
on the strategies used to handle very large data sets—sets so
large that their representation in Smalltalk as data objects is
impractical. The large data sets were implemented as active
processes running on a (server) platform. In this way, one can
handle these sets efficiently, but to users of the Smalltalk inter-
face the sets appear as manipulatable objects. Practical use of
this scheme requires some good interprocess communications,
and a means for users to tailor particular data sets to meet their
needs. The latter facility is provided by an object editor tool that
is used to create and compile new C code for the active data set
and tailor menus and other interface iterns in response to user
directives.

In conclusion, Smalltalk can be appended to handle large
data sets and other scientific computational requirements.

Digitalk’s PARTS
>ParcPlace’s Smalltalk-80

ODBMS
The Objectoriented Database

O Persistent Object Storage for Smalltalk
O Handles Complex Data Types
O Object Ownership, Versioning, Security,
and Object Distribution
O Programmer and Enduser Versions
O Stand Alone or Network Configuration
O Database Classes licensed for
OEM Distribution
O Support for ParcPlace Smalltalk-80

Add-on Applications
O DSSDe SourceCode Management
O Interface to SQL-Classes
O Support for Digitalk’s PARTS

ODBMS
Objectoriented Technology by
VC Software

USA: VC Softwarc Inc., Three Christina Centre, 201 N.Walnut Street, Suite
1000, Wilmington, DE 19801 <> Other Countrics: VG Software Consouction
GmbH, Pewitorwall 28, 38118 Braunschweig, Germany, Tel: +49-531-24 24 00,
Fax: +449-531-24 24 0-24

JULY-AUGUST 1993

m SCIENTIFIC AND ENGINEERING COMPUTATION

These facilities provide Smalltalk-like incremental compilation
and dynamic binding features outside of the actual Smalltalk
environment.

The portion of the workshop devoted to applications be-
gan with a talk by Jan Steinman of Bytesmiths. He described
his work in using Smalltalk to develop laboratory instrumen-
tation interfaces. He introduced the concept of the “abstract”
instrument object (instances of an InstrumentObject class),
which allow standard abstractions of physical instruments and
effects a basis for common data acquisition protocols, Other
features, such as appropriate abstract protocols, were also dis-
cussed. As an example he described the Tektronix instrument
ensemble control system, a stack-based machine architecture
for controlling instruments and returning results via a graphi-
cal interface. This was developed under the object paradigm in
Smalltalk. The position paper by P. Johnson and D. Herkimer
of Martin Marietta was not presented, but copies were avail-
able. The paper describes a space vehicle launch simulator
written in Smalltalk/V Mac. Among the issues discussed were
the need for support for parallel computation abstractions in
Smalltalk that would provide a framework for implementa-
tion of parallel computation of numerically intensive portions
of these complex simulations. This paper also pointed out the
need for better numerical classes in Smalltalk. Brian Remdeios
of BC Research presented a Smalltalk application designed to
simulate control functions for an IC engine. The hierarchical
nature of class structure allows encapsulation of various en-
gine component parts into a single functional representation
or the ability to study individual components. In this applica-
tion, Smalltalk was able to facilitate inter-object communica-
tion, but it was suggested that a class to handle more general
transfer functions between objects would be helpful. The pa-
per discussed how Smalltalk models of this type could be used
to implement non-brittle (e.g., fuzzy logic) decision process
simulations.

David Jones of Prior Data Science presented a paper on al-
gorithm objects. While the specific application discussed was
taken from the domain of geometric models, this paper pre-
sented a controversial proposal, namely, to collect algorithms
(methods) under a single class (Class Algorithm). This is a radi-
cal departure from current Smalltalk practice where algorith-
mic methods are associated with specific class behaviors. Un-
der the Class Algorithm proposal, algorithms together with the
their documentation etc. would be found in a single class, sup-
ported by its own browser and other interface features. Users
would have a single point of reference for all algorithms, and
class behaviors would be implemented via dispatch from Class
Algorithm. This proposal was the subject of one of the after-
noon working groups.

Judith Cushing of the Oregon Graduate Institute dis-
cussed the subject of computational proxies. The difficult is-
sue here is how to render results computed by different sci-
entific programs comparable. The emphasis in this paper was
on the computational chemistry domain, but the central is-
sue of how to design object-oriented databases that can cap-

66

Modern Smalltalk systems running on
high performance workstations have
removed some of the traditional barriers
to the use of the language for scientific

computing. o

ture both syntactic and architectural complexity associated
with the output of various scientific computational systems
all of which produce data relevant for a given domain exper-
iment or simulation. Implementation approaches in C++
were discussed, and these were related to possible Smalltalk
implementations.

The final paper in the first session of the workshop was pre-
sented by Annick Fron of DEC European Technical Center in
France. She described an interesting application of Smalltalk to
the simulation of an MIMD embedded computer system. The
simulation relied on processes and monitors. The result is a
tool that has been used for embedded signal processing appli-
cations. This type of tool is very useful in design and debug
stages and can ease problems associated with integration on
final target architectures.

The afternoon sessions were devoted to in-depth considera-
tions of topics that arose during the presentations. Informal
groups examined issues such as the need for better mathemati-
cal algorithms and better organizations for algorithms, inter-
facing Smalltalk to parallel and distributed computing, and
mechanisms for handling scientific data in Smalltalk environ-
ments. Suggestions from these sessions included the need to
re-examine algorithms and algorithm classes, the need for bet-
ter integration of Smalltalk into scientific computing environ-
ments, the need for better class support for parallel and dis-
tributed computing interfaces, etc. One important conclusion
of the workshop was that this event should be repeated, per-
haps on a regular basis. There was a general feeling that the sci-
entific and engineering community was ready for Smalltalk.
The critical question is whether Smalltalk is ready for that
community.

Richard L. Peskin is Professor of Mechanical and Aerospace Engi-
neering at Rutgers University where he is director of the CAIP Center
Computational Engineering Systems Lab. He has been involved with
engineering and scientific aspects of Smalltalk since 1984. He is one of
the designers of the SCENE (Scientific Computation Environment for
Numerical Experimentation) system, a Smalltalk-based distributed
computing environment that implements computational steering
tools such as interactive scientific graphics and data management,
automatic equation solvers, and mathematical expert systems, He

can be reached via email at peskin@caip.rutgers.edu.

10

THE SMALLTALK REPORT

HE BEST OF comp.lang.smalltalk

Alan Knight

Good code, bad hacks

of Smalltalk style. Some of them even agree with each

other. Almost all of them share a common point of
view, that of a programmer striving to write good code. Honna
Segel (honna@bnr.ca), on the other hand, approaches the
problem as someone evaluating a Smalltalk program, trying to
recognize bad code:

T here have been many attempts to define the elements

I’m in the curious position of evaluating a prototype writ-
ten in Smalltalk without prior knowledge of Smalltalk. I
could distinguish a terrible hack from good work in C—
what do I look for in Smalltalk? What’s a prime symptom
of work that will be scary to modify and extend?

THE BASICS
Dan Benson (benson@siemens.siemens.com) writes:

As a first pass, I'd look at the class hierarchy. See if the
names of the classes match the concepts intended for the
prototype. For instance, if the prototype is supposed to be
an airline reservation system you might expect to find
classes representing Tickets, Airlines, Reservations, Airports,
and so on. If the class names are way off the mark, I would
be a bit skeptical. Next, see if there are any class comments
to see whether the programmer was conscientious or at
least considered that someone else might read the code.

Some of the other things you can look for without getting
into actual code are the organization of the class hierarchy
(to see if it makes sense intuitively), the method categories
(to see how well the various tasks were separated), and, per-
haps, the number of instance variables and the names used
(there shouldn’t be too many instance variables per class,
and the names should be intuitive or at least informative).

The most obvious thing to check, of course, is the opera-
tion of the prototype itself. How well does it do what it’s
supposed to do? Are there any bugs? If so, how serious are
they? Is it a matter of changing the interface or would it in-
volve modifying the underlying model, or perhaps starting
all over?

There’s good advice here, and most of it can be applied by
someone who doesn’t know Smalltalk well. Coincidentally, I've
actually seen an airline reservation system written in Smalltalk

that did not have classes representing Tickets, Airlines, Reserva-
tions, or any of the other obvious domain objects. Sure enough,
it was bad code.

One of these remarks, however, does seem questionable to
me. We are to check to see if the class hierarchy “makes sense
intuitively.” That’s pretty vague, especially for someone who’s
unfamiliar with Smalltalk. While the hierarchy should make
sense intuitively, this suggestion needs to be defined more
clearly.

For myself, I would say that classes in an inheritance hierar-
chy should have a clear logical relation. This relation should
probably be expressible as either “is-a” or “is-implemented-
like.” This is not a two-way relationship. Not all classes that
have these relationships should be in the same inheritance tree.

This still leaves much room for judgment, as it should, but I
hope it helps weed out some of the worst offenders (such as
those using the “sounds-like” or “was-implemented-the-same-
day-as” relations to determine their class hierarchies).

DOCUMENTATION
Jack Woehr (jax@well.sf.ca.us) has a simple recipe:

Good Smalltalk comes accompanied by good documenta-
tion, a separate document explaining the author’s intent,
and probably by a glossary of objects and their methods.

Bad Smalltalk comes without such documentation.

Strictly speaking, the quality of the documentation and the
quality of the code should be independent. If you take away the
documentation, the quality of the code remains the same. All
of us have written good code that we never quite got around to
documenting properly.

Practically speaking, however, good code and good docu-
mentation are inseparable. This is especially true for code that
tries to be reusable (and these days, we’re all writing reusable
code). When I intend to use a class, the first thing I do is look
for the class comment. All too often, the second thing I do is
curse the author for not providing one.

ParcPlace, to its credit, provides comments for all of its sys-
tem classes. Digitalk doesn’t support class comments directly,
but it’s easy to establish a convention for class methods con-
taining comments.

JuLY-AUGUST 1993

11

m THE BEST OF COMP.LANG.SMALLTALK

OTHER CRITERIA

Frerk Meyer (frerk@tk.telematik.informatik.uni-karlsruhe.de)
provides a whole list of criteria. His suggestions are somewhat
more difficult for novices to apply and subject to some excep-

tions. I'll discuss them one at a time.

Use Global Variables Sparingly
Bad—the use of global variables

This is pretty standard, even for non—O-O programming.
Globals have their uses, but they definitely should not be used
to excess because they introduce extra dependencies between
classes and generally pollute the namespace.

Separate Domain and Interface

Bad—instance variables in the model holding view, con-
troller, or window information

This is ParcPlace-specific, but the underlying idea is universal.
The domain model should not concern itself with the way in
which the interface presents information. While this is very
important, it is something that may be difficult for Smalltalk
novices to judge and difficult for Smalltalk programmers to do
well.

The simplest method of checking for this separation is to
examine the instance variables and methods of the domain
model for obvious interface information. This will find some
violations, but assumptions about the interface can leak into
the domain model in many subtle ways. There’s always a
temptation to introduce just a few lines of code that are
ever-so-slightly dependent on the interface. Maybe it doesn’t
really belong in the interface, either. Besides, it would take so
much longer to do it properly, and we’re not likely to change
that part of the interface. . . . These temptations should be
resisted.

Greg Hendley and Eric Smith discussed these issues in some
detail in a two-part article titled “Separating the GUI from the
application” (THE SMALLTALK REPORT, May 1992 and October
1992). They advocate introducing a “control” layer into the in-
terface that acts as a buffer between the interface visuals and
the domain model.

Avoid Long Methods
Bad—methods that are larger than one screen (usually)

It’s pretty much a consensus that Smalltalk methods should be
short. Long methods are probably trying to do more than one
thing and should be broken up into their components. Long
methods aren’t always bad, but the presence of large numbers
is a definite danger sign.

A notable exception is for automatically generated meth-
ods, such as WindowBuilder’s horrendously long open meth-
ods. But since these methods are not intended to be modified
by humans, this is not so much of a problem.

I notice that Digitalk’s compiler is much slower for long

methods. This can, however, be considered a feature (though I
doubt it was intended as one) since it motivates programmers
to break up their code into smaller components.

Avoid System Changes

Bad—making changes to system classes instead of sub-
classing

After some discussion, the consensus on this point was that
adding methods to system classes is fine, but modifying exist-
ing methods is to be avoided. System changes are a problem
because your changes are likely to be incompatible with others,
including those in the next Smalltalk version. They're also
more likely to make your system crash during development. If
you have to modify a system method, it’s usually best to make
the modification as small as possible. Ideally, you should just
insert a hook that calls your own code.

Keep Instance Creation Simple

Bad—using class method new more than “super new
initialize

It’s common practice in Smalltalk to override the method new
to automatically initialize instances of the class, changing the
code to:

new
~super new initialize

Other common changes are to override new to be an error or
to return an already existing instance. Adding much more
functionality than this to the method is considered bad form.
Again, it’s better to provide a hook to more extensive code in a
method like initialize.

Use Systemn Classes
Good—using system classes wherever possible

If code that serves a purpose is already available, it should be
reused. As an extreme example, code that uses fixed-size ar-
rays, but goes through complex manipulations to mimic the
behavior of OrderedCollection would be bad. Similarly, code
that avoids the normal user interface mechanisms and gets
mouse or keyboard input directly is probably bad. It may be
trying to do something that is not normally possible through
those mechanisms, but even then it is preferable to extend the
UI mechanisms rather than go around them.

Work within the System
Good—using MVC, dependency mechanisms, and processes

Again, if the mechanisms are there, it’s best to work with them
rather than against them. They can, however, be overused.
Kent Beck writes, in “Abstract Control Idioms” (THE
SMALLTALK REPORT, July/August 1992}, about the advantages
and disadvantages of the dependency mechanism.

12

THE SMALLTALK REPORT

He summarizes the disadvantages as “debugging and per-
formance.” Dependency-based code can be much more
difficult to follow and debug than normal code. When it’s put
together properly, it will often work immediately. When it
doesn’t, tracking down the problem can be painful.

I wouldn’t consider processes to be a necessary feature of
good code. Multi-threaded code introduces many complica-
tions, and I avoid it unless I really need it.

Choose Names Carefully

Good—using expressive naming of classes, methods and
variables, and using the class document feature

Definitely. Naming things properly is very important. One of
my biggest complaints about both Digitalk and ENVY/Devel-
oper is how difficult they make it to change class names.

PUT CODE IN THE RIGHT PLACE
Charles Lloyd (clloyd@gleap.jpunix.com) adds several points.

Place Code Well

A series of messages sent to some object other than self is
probably badly placed code. That series should be moved
to the class of the receiver.

Note: This is the hardest thing to do well in O-O program-
ming, but it pays very high dividends when done well.

Breaking up methods in this way has several advantages. As
we’ve already mentioned, it’s good practice to break up long
methods into logically connected units. A series of messages to
some other object makes a good candidate for such a division.
Since they have an object in common, they should probably be
moved to a method in its class. This also provides an opportu-
nity to use polymorphism (i.e., providing different implemen-
tations of the same function in other classes).

Avoid Checking Types Explicitly
Encoding type information

You should never see any checks for “type” information.
All type information should be implicit in the class of the
receiver. Exceptions to this rule are few and far between.

It’s usually bad style to ask the type of an object. Frequent use
of class tests or isKindOf: is a characteristic of poor code.

Ideally, rather than testing the type, code should request
that an object carry out some action. The object is then re-
sponsible for doing the appropriate thing based on its type, but
this is done through the method dispatch mechanism, rather
than explicitly in code.

If it's necessary to determine some characteristic of the ob-
ject, it’s better to do so by sending a message asking about the
characteristic. Thus, it’s better to say:

PostScript Objects
from Magus!

Magus View™ — The revolutionary PostScript-language rendering
library from Magus. Now available as "parts” for Digitalk’s PARTS
Workbench. as a class library for Smalltalk/V. or in C-DLL form,
Work in the environment of your choice to rapidly assemble PostScript
imaging applications. Enjoy the power of object-oriented PostScripl
rendering—and only from Magus.

* Create front ends for document imaging systems — display
PostScript files, or use PostScript as the image definition language

* Enhance collaborative applications such as electronic mail or
other “groupware" — support documents with complex graphics
and fonts

* Create host-based PostScript drivers for non-PostScript printers

* Bring a new level of fidelity to print-previewing in your applications

Magus View is available in DLL form for OS/2 2.0 and Microsoll
Windows 3.1, Programming interfaces are provided for Smalltalk. C
and Digitalk’s PARTS Workbench. Prices start at $495 for a single
Magus View Developer's Kit.

MAGUS

PO Box 390965 = Mountain View CA 94039-0965 = USA
(800)848-8037 = (415)940-1109 « sales@magus.com

anObject isCollection ifTrue: [...]
than

(anObject isKindOf: Collection) ifTrue: [...]

The second form confuses an attribute of the object (whether it
responds to basic collection protocol) with the class hierarchy
(whether it inherits from the class Collection).

As a concrete example of how this can be dangerous, con-
sider a system that works with vectors. We may wish to treat
instances of Point as two-dimensional vectors. Code that sends
the message isVector will work fine for points. Code that relies
on isKindOf: Vector will fail.

Put Conditional Behavior in Subclasses
Introduction of instance variables

Instance variables should be added sparingly. If you think
you need N instance variables to model your subclass,
consider introducing M subclasses (M very close to N)
where each new subclass introduces a minimum of new
variables.

Introducing subclasses where other languages might use enu-
merated “type” variables is often good style. It is a problem if
instances may change their type, but, otherwise, it can be very
useful. In many ways, it’s similar to the previous point. Instead
of having conditional statements on the enumeration, we sim-

JULY-AUGUST 1993

13

14

ArtBASE.:

Distributed
Smalltalk and
ODBMS

for VisualWorks™ and Objectworks®

SR e

- any object and class extended by
the ability to become persistent
and to be shared by multiple
users

- full transaction management

- all advantages of Smalitalk kept
alive

- almost no changes to existing
applications to convert them
10 a database

- delivered in source code

ArtinAppleS Ltd.
Kremelska 13
845 03 Bratislava
Slovakia

fax: +42-7-777 779
t::: I42-7$389
Hf"llﬂl]lllﬂs arntbase@artinapples.cs

free evaluation licenses available

m THE BEST OF COMP.LANG.SMALLTALK

ply ask instances to perform some function. They will auto-
matically do it in the appropriate way, and the language mech-
anisms will do the testing for free.

FAILURE MODES

We can also look at bad code by considering how it might have
gotten to be bad. Maybe the author didn’t understand
Smalltalk or OOP fully. Maybe it was a quick hack by someone
capable of doing better work. Maybe it was written by some-
one who didn’t understand the domain and/or requirements.
Maybe it really was written by an idiot. Maybe it was once
good code that’s had too many patches and has never been
consolidated.

Most of these problems can be recognized the same way
they would be in any programming language, and only a few
have OOP- or Smalltalk-specific aspects.

Quick hacks, for example, can usually be identified by their
shoddy documentation and comments. The comments that do
exist are often incomprehensible notes from authors to them-
selves, often of the form “fix this later.”

It’s usually easy to tell when the author didn’t understand
the paradigm and wrote FORTRAN, C, or COBOL with
Smalltalk syntax. There is often excessive use of type informa-
tion (as described above), internal representations are almost
always exported, and collections with encoded meanings are
often used as data structures.

The most common symptom of exporting too much repre-
sentation is the presence of direct get/set methods for every
variable in a class. Some schools of thought hold that all vari-
able references should be made through get/set methods. In
this case, the code will have such methods, but many of them
should be clearly marked as private.

Programmers who aren’t used to opaque data types will
often use collections as data structures. For example, they
might represent a circle by an array whose first element is the
centre point and whose second is the radius, instead of intro-
ducing a new class Circle. Juanita Ewing discusses this common
error in “Don’t use Arrays?” (THE SMALLTALK REPORT, May
1993). B

CONCLUSION

Although it’s far from complete, I hope this brief overview
provides some help to those of you trying to distinguish good
Smalltalk from bad Smalltalk. If you’re writing code, this col-
umn should provide some things to strive for or avoid.

Alan Knight works for The Object People, 509-885 Meadowlands
Dr., Ottawa, Ontario, K2C 3N2. He can be reached at 613.225.8812
or as knight@mrco.carleton.ca.

THE SMALLTALK REPORT

MALLTALK IDIOMS

Kent Beck

Inheritance: the rest

of the story

f the three tenets of objects—encapsulation, polymor-

phism, and inheritance—inheritance generates by far

the most controversy. Is it for categorizing analysis
abjects? Is it for defining common protocols (sets of mes-
sages)? Is it for sharing implementation? Is it really the com-
puted goto of the nineties?

The answer is Yes. Inheritance can (and does) do all of the
above at different times. The problem comes when you have a
single-inheritance system like Smalltalk. You get one opportu-
nity to use inheritance. If you use it in a way that doesn’t help
you, you have wasted one of the most powerful facilities of the
language. On the other hand, if you use it poorly, you can mix
up the most ridiculous, unmaintainable program gumbo
you've ever seen. How can you walk between the rocks of un-
der-using inheritance and the chasm of using it wrongly?

What's the big deal? Inheritance is the least important of
the three facilities that make up objects. You can do valuable,
interesting object-oriented programming without using inheri-
tance at all. Programmers still quest after the Holy Grail of in-
heritance because of the potential it shows when it works well.
When you need an object and find one that is factored well
and does almost what you want, there are few experiences in
programming better than making a subclass and having a
working system after writing two or three methods.

In this and my next several columns, 1 will focus on various
aspects of inheritance. I will present a variety of strategies for
taking advantage of inheritance, in the form of patterns. While
I don’t necessarily use all the patterns in my own program-
ming, casting the strategies in terms of patterns makes it easier
to compare and contrast them.

PATTERN: COMPOSE METHODS

This pattern is the cornerstone of writing objects that can be
reused through inheritance. It is also critical for writing objects
that you can successfully performance tune. Finally, by forcing
you to reveal your intentions through method names, it makes
your programs more readable and maintainable.

Context

You have some code that behaves correctly (it does no good to
beautify code that doesn’t work, unless you have to make it
work). You go to subclass it, and realize that to override a
method you have to textually copy it into the subclass and

change a few lines, forcing you forever after to change both
methods.

Another good context for this pattern is when you are look-
ing at a profile that looks flat; that is, no single method stands
out as taking more time than others. You need further im-
provement in performance and believe that the object can de-
liver it.

Problem
How can you write methods that are easy to override, easy to
profile, and easy to understand?

Constraints

Fewer, larger methods make control flow easy to follow. Lots
of little methods make it hard to understand where any work is
getting done. Lots of little methods named by what they are in-
tended to do, not how they do it, make understanding the
high-level structure of a computation easy. Your programming
time is limited. You only want to perform manipulations of the
code that will have some payoff down the road. Each message
sent costs time, and execution time is limited. You only want
to cost yourself execution time if the result will provide some
advantage at some point. You don’t want to introduce defects
in working code. The manipulations must be simple and me-
chanical to avoid errors as much as possible.

Solution

Make each method do one nameable thing. If a method does
several things, separate out one of them, create a method for it,
and invoke it in the original method. When you do this, make
sure that if the same few lines occur in other methods, those
methods are modified to invoke the new one as well.

This solution ignores the cost of message sending. You will
get faster programs by using messages to structure your code
so that you can more easily tune them than by reducing the
number of messages. It also assumes that the eventual reader of
the code is comfortable piecing together control as it flows
through lots of small methods.

Example
A method for parsing a stream to eliminate lines that begin
with a pound sign might look like this at first:

JULY-AUGUST 1993

15

= SMALLTALK IDIOMS

parse: aStream
| writer |
writer ;= String new writeStream.
[aStream atEnd] whileFalse:
[(aStream peekFor: §#)
ifTrue: [aStream restOfLine]
ifFalse: [writer nextPutAll: aStream restOfLine]]

Applying "Compose Methods" to parse: to separate line parsing
from the overall parsing control structure we get:

parse: aStream
| writer |
writer := String new writeStream.
[aStream atEnd] whileFalse:
[self parseLine: aStream onto: writer]

parseLine: inStream onto: outStream
(aStream peekFor: $#)
ifTrue; ["aStream restOfline].
outStream nextPutAll: aStream restOfLine

Notice that by creating parseLine:onto: we are now able to use the
return control structure to make the submethod easier to extend.
Applying it again to factor out the outputStream creation, we get:

parse: aStream
| writer |
writer := self outputStream.
[aStream atEnd] whileFalse:
[self parseLine; aStream onto: writer]

outputStream
AString new writeStream

Applying it to parseLine:onto: to separate the choice of what is a
comment from the behavior when a comment is found we get:

parseLine: inStream onto: outStream

(self peekForComment: inStream)

ifTrue: [inStream restOfLine].
outStream nextPutAll: inStream restOfLine

peekForComment: aStream
~aStream peekFor: $#

Apply it to peekForComment: to separate the character you are
looking for from the way in which you look for it:

peekForComment: aStream
~aStream peekFor: self commentCharacter

commentCharacter
3
The final code is much easier to modify in a subclass if you
want to change the comment character, write onto something
other than a string, or extend the parsing to deal with special
cases other than comments.

PATTERN: SEPARATE ABSTRACT FROM CONCRETE
This is a pattern I learned from Ken Auer of Knowledge Sys-
tems Corporation. He told me about using it to great advantage

in a financial services application in which there were many
kinds of financial instruments, all implemented similarly.

66 By understanding the options and
trade-offs involved, you can use it to
your advantage. 9

Context

You have implemented one object. It has some methods that
rely on the values of variables, and others that do not. You can
see that you will have to implement many other similar objects
in the future.

Problem

How can you create an abstract class that will correctly capture
the invariant part of the implementation of a family of objects
with only one concrete example?

Constraints

You want to begin using inheritance as early as possible to speed
subsequent development, and you want you inheritance choices
to be correct so you don’t have to spend time refactoring later.

Solution
Create a state-less superclass. Make it the superclass of the class
you want to generalize. Put all of the methods in the subclass
which don'’t use variables (directly or through accessors) into
the superclass. Leave methods that rely on instance state in the
subclass.

This solution strikes a balance between inheriting too early
and too late. By making sure you have one working class you
know you aren’t using inheritance entirely on speculation.

Example
Let’s say that we have an RGBColor represented as red, green, and
blue values between 0 and 1. We can then write methods like:

hue
"Complicated code involving the instance variables red, green, and
blue..."
saturation
"Complicated code involving the instance variables red, green, and
blue..."
value
"Complicated code involving the instance variables red, green, and
blue..."
complement
~self species
hue: (self hue + 0.5) fractionalPart
saturation: self saturation
value: self value

16

THE SMALLTALK REPORT

Applying “Separate Abstract from Concrete” to RGBColor, we
create Color as RGBColor’s superclass. We move complement to
Color, because it doesn’t rely on any instance variables directly.
We leave hue, saturation, and value in RGBColor because they
do rely on variables.

Now, if we want to create Color subclasses that store color
values in other ways, they can inherit complement as long as
they implement hue, saturation, and value.

When you apply this pattern, you will often find that meth-
ods which were implemented initially as requiring variable val-
ues can be recast by applying “Compose Methods” so they can
be moved into the superclass.

CONCLUSION

Now that I have written down Separate Abstract from Concrete,
I'm not sure [entirely agree with it. I like to have more than
one concrete example before I try to generalize. I use two
different patterns, “Factor Several Classes” and “Concrete Su-
perclass” in my own programming. I will present these pat-
terns in the next issue.

Inheritance is strong medicine. Only by understanding the
options and trade-offs involved can you avoid the pitfalls and
use it to your advantage. If you use different patterns for apply-
ing inheritance, please send them to me. H

Kent Beck is founder of First Class Software. He can be reached at
408.338.4649 (v), 408.338.3666 (f), or via CompuServe at
70761,1216.

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management
for all Smalltalk|V applications

® Transparent access to all kinds of Smalltalk objects on disk.

® Transaction commit/rollback of changes to virtual objects.

® Accesstoindividual elements of virtual collections for ODBMS up
to 4 billion abjects per virtual space; objects cached for speed.

® Multi-key and multi-value virtual dictionaries for query-building
by key range selection and setintersection. Partial and concatenated
keys supported.

® Warks directly with third party user interface & SQL classes etc.

® Class Restructure Editor for renaming classes and adding or
removing instance variables allows applications to evolve.

® Shared access to named virtual object spaces on disk; object
portability between images. Virtual objects are fully functional.

® Source code supplied.

VOS5/0652 $1950, VOSS/Windows 51950, VOSS/286 $950.
VOS5/052 DLL (excluding source code) $395.

“The VOSS Collection’ - source code for non-virtual collechions only,
(Windows and O5/2 versions), with VOSS/0S2 Demonstration - $150.
Quantity discounts from 30% for two or more copies. (Ask for details)
Visa, MasterCard and EuroCard accepted. Please add $15 for shipping.

logic

Logic Arts Ltd 75 Hemingford Road, Cambridge, CB1 3BY England
TEL: +44 223212392 FAX: +44 223 245171 CIS: 100040,364

July 16-19, 1993

August 10-12,1993

OBJECT EXPO EUROPE
london, England
44.0.306.631.331
44.0.306.631.696 (fax)

July 19-23, 1993

IBM CONFERENCE ON
OBJECT-ORIENTED SD TOOLS
Toronto, Canada

512.838.8019

August 2-10, 1993
DESTINATION C++
New York, NY
Washington, D.C.

Toronio, Canada

Chicago, Il

Houston, TX

los Angeles, CA
2122749135

SUN OPEN SYSTEMS WEST
Anaheim, CA
512.250.9756

Sept. 26-0¢t. 1,1993
OOPSLA

Washington, D.C.
212.86%9.7440

September 21-23,1993
UNIX EXPO

New York, New York
800-829-3976

201-346-1602 [fax)

October 13-15,1993
INT’L SYMPOSIUM &
EXHIBITION ON 00P

Frankfurt, Germany
49.61732852

nCAL.EINNTIDAER-

Ociober 18-22, 1993
C++ WORLD

Dallas, X

212.274.9135

November 15-16,1993
COMPUTER WORLD EXPO

Frankfurt, Germany
8002254698

December 9-10,1993
DATABASE WORLD
CLIENT/SERVER

Chicago, Il
508-470-3880/0526

April 25-28,1994
XWORLD’'94

New York, NY
212.274.9135

|

JULY-AUGUST 1993

17

...continued from page 1

® SMALLTALK DEBUGGING TECHNIQUES

the method. Data you write to the Transcript should be
identified, and should include some formatting such as tabs
and carriage returns. Here is an example of an expression that
would be inserted in the method of a class that understood the
total message:

Transcript cr; show: ‘Total =’ ,self total printString.

This expression prints the string Total =" concatenated with the
string result of sending the total message to the receiver. The
comma in the above expression is a message that returns the
receiver concatenated with the argument, another string. Use it
when you want to append a string. In this example, the result
of the total message is an integer, so printString is used to ob-
tain the string equivalent.

Use a global variable to control printing information to the
Transcript, setting it to true or false from a workspace when
you want to turn printing on or off. In this expression we use a
global named Debug:

Debug ifTrue: [Transcript cr; show:'starting calculations...’]

Instead of setting the global to a boolean, you can set the global
to an integer that controls how much detail you print:

Debug > 4 ifTrue: [Transcript show:“detailed information”]

In Objectworks, you're not restricted to a single Transcript. If
you would like to create customized transcripts to separate
different types of messages, refer to the Creating a transcript win-
dow section on creating transcript windows in Chapter 21, “Text
and text views,” in the OBJECTWORKS SMALLTALK USER’S GUIDE.

Menu Hooks for Inspectors

Printing a lot of information out to the Transcript can get
rather tiresome. An attractive alternative is to open an inspec-
tor on key objects at strategic points in the code or, better yet,
to provide an easy way for the developer to access an inspector.
When you are creating new window applications, it’s handy to
include an inspect item in the window’s menu during the ini-
tial development phase. This is a quick and easy way access the
objects behind the window.

Inspect is implemented by Object, so you don’t have to pro-
vide a new method if you’re happy bringing up an inspector on
the object that accepts responsibility for menu messages. If you
do need to customize the inspect action from a window, pro-
vide a new message rather than overriding the inspect message.
If you override inspect, your customized method, instead of the
inherited method, will be executed by the system whenever the
inspect message is sent to the object. Opening an inspector
from an inspector, for example, uses the inspect message. If
you want to inspect the selected item in a list directly from a
menu, implement a new message called inspectSelectedItem
and avoid overriding inspect.

Object identity
Situations arise in which you need to compare two variables to
see if they reference the same object. For example, you might

be stepping through two similar sets of actions that involve a
particular object. One works and the other doesn’t, so you
need to determine whether the two variables reference exactly
the same object.

Object identity is determined with the = = message, which
answers whether the receiver and the argument are exactly the
same object. In contrast, the = message is used to determine
object equality: It answers whether the receiver and the argu-
ment are equivalent:

#asdf = #asdf
‘asdf == ‘asdf

“true: Symbols are unique.”
“false: Strings are not unique.”

If the two objects are not in the same context (i.e., you have
captured them in separate inspectors), you can assign one to a
global variable and use the object identity message to deter-
mine equality.
GlobalOne := self name.
self name = = GlobalOne.

“in one inspector”
“in a different inspector”

Don’t forget to remove global variables when you’re through
with them:

Smalltalk removeKey: #GlobalOne

Use standardized names, such as an unusual prefix, to identify
temporary globals.

Older Smalltalk systems supported as hash as a means of
uniquely identifying objects. In current Smalltalk systems, nei-
ther of these messages uniquely identify an object.

Names
It is often a good idea to add a name or id field to an object
strictly for debugging purposes, particularly when instances
cannot be uniquely identified by their instance variables or
when they are distinguished in obscure ways. If you’re going to
be dealing with multiple instances of a class, it may otherwise
be hard to keep track of which object is which.

You also can specialize the method printOn: for your new
classes. The printable representation can incorporate a name to

help identify the object.

printOn: aStream
“Add a printable representation of thereceiver to <aStream>,
Use the fullName field to identify thereceiver.”
super printOn: aStream.
aStream nextPutAll: ‘ on “.
aStream nextPutAll; self fullName

A good printable representation can speed debugging, because
it lets you quickly ascertain when two objects are equal or how
they were created. However, be aware that assumptions in a
specialized printOn: method might not be correct. For example,
some instance variables might not have been initialized. If so,
the previous method should be checked to see if the name were
nil before printing it.

WHERE AM | AND HOW DID | GET HERE?
An object encapsulates both behavior and data. In addition to

18

THE SMALLTALK REPORT

gathering information about the data in your application, you
may need to collect information about the dynamic state of
your application. Two keys to understanding the dynamic state
of your application are identifying where you are in the dy-
namic sequence of message sends and identifying how you got
there.

We also present two alternate ways to access dynamic state:
locating code of interest via user input and using key entry
points.

Identifying the Current Context

When you need to identify the method you are executing,
print an identification expression to the Transcript. The fol-
lowing prints the class and message name as it appears in the
debugger’s stack (e.g., Class(Superclass)>>methodName).For Ob-
jectworks: '

"if it's not in a block"
Transcript show: thisContext printString; cr.

Debug ifTrue: ["use this expression in a block"
Transcript show: thisContext sender home printString; cr].

For Smalltalk/V:

CumrentProcess walkbackOn: Transcript maxLevels: 1.

Audible Feedback

Another alternative to writing to the Transcript is to use sound
to give audible feedback that a method has been executed. This
is particularly useful in situations where the display system is
not available. For example, in Smalltalk/V the GO file is pro-
cessed before the display system is available. Insert these ex-
pressions to ring the bell. For Objectworks:

Screen default ringBell.
For Smalltalk/V:

Terminal bell.

Catching It in the Act
If you would like to examine code behind a specific action, but
don’t know where to find the method, you can interrupt it by
typing the program interrupt while executing the code of inter-
est. In Objectworks, the default program interrupt is <CTRL-C>.
In Smalltalk/V, it is the platform interrupt key (<CTRL-BRK>
under OS/2 and Windows, <command-.> on the Mac).

For example, if you want to know how the rubberbanding
code works when drawing a line in a graphics editor:

1. Perform the appropriate action, such as holding down the
left mouse button and dragging the cursor.

2. While you move the mouse, press the program interrupt.

3. A notifier appears that allows you to open a debugger and
examine code in the stack. You can see flow of control in

the debugger, and can examine method arguments and

temporaries.

Timing can sometimes be a problem —for some operations
you may need to try this several times until you catch it at the
right place.

Sometimes a program interrupt can save you from a bad
situation. If you make a simple change to your code and see a
garbage collection cursor instead of what you expect, you may
have created an infinite loop. The following is a typical exam-
ple of a class method that inadvertently causes an infinite loop:

new
~self new initialize“this should be a call to super instead of to self”

In this method, the user intended to invoke the inherited
method called new, but instead called the same method, result-
ing in an infinite loop.

If your application is in an infinite loop, you can interrupt
it with a program interrupt. After interrupting the application,
use the debugger to look at the stack and locate the error, fix
the error and then either close the debugger and start again, or
resume the execution from the debugger.

Be careful when you interrupt a method with a program in-
terrupt. Instead of closing the notifier or debugger, you may
need to resume or proceed from the debugger if you are in a
loop that needs to finish execution to restore the state of the
cursor, signal a semaphore, or complete some other clean-up
activity.

Alternative to Walkbacks and Notifiers

You may not want to open a debugger and, instead, prefer
some other way to view the context information. If you are de-
bugging low-level code and are concerned that an interruption
might leave the image in an unstable state, you can print out
information about the current context as described below. It
can also be useful if you are sending a beta release to customers
or if you are working on an embedded application in which
there is no access to a user interface. The following expression
prints the execution stack on the Transcript. For Objectworks:

Transcript cr; show: (NotifierView shortStackFor: thisContext).
For Smalltalk/V:
CumrentProcess walkbackOn: Transcript maxLevels: 10.

You can also print this information to a file. For Objectworks:

| file |

file ;= ‘errors’ asFilename appendStream.

file cr; nextPutAll: (NotifierView shortStackFor: thisContext).
file close

For Smalltalk/V:

| file |

file := File pathName: ‘errors’.

file setToEnd.

CurrentProcess walkbackOn: file maxLevels: 50.
file close

JULY-AUGUST 1993

19

m SMALLTALK DEBUGGING TECHNIQUES

Source Code for Blocks

Although the source code is not always available, the following
expressions are sometimes helpful for examining the source
code for blocks (Smalltalk/V) or BlockClosures or MethodCon-
texts (Objectworks). For Objectworks:

aBlockClosure method getSource
aMethodContext sourceCode

For Smalltalk/V for OS/2:

aBlock homeContext method sourceString

Decompiling a Method in Objectworks

If the source code for a method is unavailable, the Objectworks
browser allows you to view a decompiled version of the
method: The comments are gone, certain expressions are opti-
mized, and the temporary variable names t1, t2, and so on are
used in place of the original argument and temporary variable
names.

Even when the source code is available, you can view the
decompiled version of the method if you hold down the shift
key when you select the method name in the Objectworks
browser. This technique is useful for finding obscure bugs such
as when literals have been unknowingly altered. Many pro-
grammers think that Smalltalk literals are immutable, and do
not realize that they can be altered. The following example il-
lustrates detection of an altered literal array.

A method initializes an instance variable to reference a lit-
eral array:

initialize

arrayConstant := #(1 2 3 4)

The programmer intends this to be a constant, but later uses
an expression such as the following to alter the array:

arrayConstant at: 1 put: 100

This alters the contents of the literal array in memory, so the
original contents of the array are not restored even if the origi-
nal initialize method is re-executed. You can check the con-
tents of the literal array by decompiling any method that refers
to it. After altering the array, the decompiled contents of the
initialize method are:

arrayConstant := #(100 2 3 4)

If you recompile the method from the source, the original con-
tents of the literal array are restored. This is a particularly nasty
bug to locate, so be forewarned. To prevent this type of bug,
some programmers provide accessing methods for important
literals, and return a copy of the literal instead of the original.
Because the original literal is never returned, inadvertent alter-
ations are made only to the copy .

Entry Points
Sometimes you just want to know how a window is opened or
what happens when a menu item is invoked. Instead of inter-

rupting it, sometimes it’s easier to trace the action down from
a few well-known entry points.

For example, the Objectworks Launcher lets you open
browsers, workspaces, and other windows. The code behind
this master menu is found in LauncherView and VisualWorks
UlVisuallauncher class methods. Browse all implementors of
“*enu*’ to see menu initializations for other windows: select im-
plementors from the VisualWorks Launcher Browse submenu
or the ENVY Launcher ENVY>browseimplementors... alternative.
The string ““enu*’ matches selectors such as menu and fileList-
Menu regardless of the capitalization.

The file menu in Smalltalk/V contains items to open
browsers, workspaces and other windows. The class Applica-
HonWindow supports the file menu, and contains entry points
to tools. Browse the class to examine the methods that open
windows.

WHERE AM | GOING?

This section highlights techniques that allow you to temporar-
ily halt or gain more control over the execution. Some tech-
niques, such as slowing down the action in your application,
are oriented towards graphical operations.

Breakpoints

Although Smalltalk has a well-earned reputation for its debug-
ging environment, current implementations place some re-
strictions on breakpoints. In Smalltalk/V, you can set break-
points from a debugger. In Objectworks, you have to
recompile a method and insert code to stop execution. Remov-
ing the code to stop execution also requires recompilation.

In both Smalltalk systems, one of the first debugging tech-
niques you learn is to send the message halt to any object.
When executed, it prompts you to open a debugger. In a de-
bugger, you can execute expressions and inspect the current
object, its instance variables, and any method temporaries. The
message error: also prompts you open a debugger, and uses its
argument in the title of the walkback or notifier. These expres-
sions can be inserted in a method or executed in a workspace.

self halt.

self error: ‘Invalid data during retrieval’

However, you quickly learn that this needs to be used with
caution. If you place the expression inside a loop, a notifier ap-
pears each time the loop is executed. You can guard the ex-
pression if you know exactly when you want to break:

i> 10 ifTrue: [self halt]

Or you may choose to control the execution dynamically. For
example, the following expression halts only if the shift key is
pressed. For Objectworks:

InputState default shiftDown ifTrue: [self halt]
For Smalltalk/V:

(Notifier isKeyDown: VkShift) ifTrue: [self halt]

20

THE SMALLTALK REPORT

If the code is being executed from a controller method in Ob-
jectworks, you can use the simpler:

self sensor shiftDown ifTrue: [self halt]
If this interferes with other tests for the shift key, you can also
test for the Meta, Option, Alt (if it isn’t commandeered by
your windowing system), or Ctrl keys. For more information,
see the section on sensing input near the end of Chapter 18,
“Application framework,” of the User’s GuIDE For OBJECT-
WORKS\SMALLTALK.

For Smalltalk/V, you can use platform-dependent keys with
expressions such as the following, For Smalltalk/V for Win-
dows, use:

(Notifier isKeyDown: VkControl) iffrue: [self halt]

You can also gain control over the execution of non-primitive
expressions executed in the context of a workspace, debugger,
or inspector. For example, execute do it on the expression be-
low, which sends the halt message to 3:

3 halt raisedTo: 2

In the debugger, step or skip through the messages until you get
to the raisedTo: message and then send or hop. You can’t step
into a primitive, such as integer addition, from the debugger.

Slowing Down the Action

Sometimes you don’t actually want to stop the action; you just
need to slow it down a little. For example, you're looking at
code that draws a complicated figure with a loop and you want
to see each line segment drawn, one at a time. You might use a
delay in the loop For Objectworks:

Cursor wait showWhile: [(Delay forMilliseconds: 800) wait]
For Smalltalk/V for OS/2:
CursorManager wait changeFor: [DosLibrary sleep: 800]

In Objectworks, don’t forget to send the wait message to the
delay. You can create an instance of a Delay anytime you like,
but it doesn’t actually stop the action until the wait message is
sent.

Or, you might choose to wait until a mouse button is
clicked For Objectworks:

Cursor crossHair showWhile:
[ScheduledControllers activeController sensor waitNoButton;
waitClickButton]
This expression waits until all mouse buttons are up and then
waits again until one is pressed. For Smalltalk/V:

CursorManager execute changeFor:
[Notifier consumeInputUntil: [:event |
event selector =#button1Down:].
Notifier consumeInputUntil:[:event |
event selector = #button1Up:]]

This expression waits until the left mouse button is pressed
and then released.
The first expression makes sure you aren’t in danger of run-

ning on through the whole expression just because the mouse
button was still down from a previous operation such as a
menu invocation.

Changing the cursor while the system is sleeping or waiting
for a button press is a good visual reminder of your program’s
action. There are a number of other cursors available, and if
you have multiple delays in a method, you can use different
ones to give you feedback about the state of the execution.

A delay can also give you time to interrupt a method with a
program interrupt if you so choose.

HOW DO | GET OUT?

One of the best things about the Smalltalk environment is that
you can change almost anything you like. One of the worst
things about the Smalltalk environment is that you can change
almost anything you like. If you happen to alter your environ-
ment in an undesirable way, you can also find yourself in big
trouble.

Although you might be able get yourself out of a tight spot
if you have enough time, skill, and patience, you may find that
it’s best to quit out of an image and recover desirable changes
in a fresh image rather than to undo the damage.

Quitting while You're Ahead

If your normal means of exiting is blocked, you can often exit
by evaluating an expression. In Objectworks, the magic expres-
sion to gracefully shut down the image when all else has failed
is:

ObjectMemory quit
or
ObjectMemory quitPrimitive

In pre-4.1 Objectworks, this message was sent to Smalltalk in-
stead.
In Smalltalk/V, the expression is:

Smalltalk exit

If your image seems dead and you don’t get any response from
typing, first try the program interrupt and attempt the exit
procedure again. If that doesn’t work, then, for Objectworks,
use the Emergency Evaluator to evaluate the exit expression:

1. Type <CTRL-SHIFT-C> to bring up the Emergency Evaluator.
2. Type the exit expression ObjectMemory quit.
3. Type <ESC> to evaluate the expression.

In Smalltalk/V for OS/2, use the WindowList provided by O5/2
to remove an unwanted process:

1. Type <CTRL-ESC> to bring up the WindowList.
2. Select the top-level Smalltalk/V Window or the Transcript.
3. Bring up the menu and select Close.

0S/2 also notices if a process is not responding to events and
prompts you to exit the process.
In Smalltalk/V for Windows, you can use the WindowList

JULY-AUGUST 1993

21

m SMALLTALK DEBUGGING TECHNIQUES

provided by Windows to remove an unwanted task with the
End Task button. A more reliable method is to type <CTRL-ALT-
DEL>. The first <CTRL-ALT-DEL> allows you to exit the current
process. Another <CTRL-ALT-DEL> allows you to reboot the
machine.

After exiting, use the appropriate utilities to recover the
changes you want to keep, being careful not to restore the
method or methods that caused the crash.

An Advanced Emergency Procedure for Objectworks

If you're feeling more adventuresome and know exactly what
you did wrong, Objectworks allows you to recompile the
offending method instead of quitting. For example, you insert
a self halt in a critical method such as the otherwise empty con-
trolInitialize1 method and quickly realize that you should have
done this in a subclass when you see all the notifiers pop up.
Since <CTRL-C>, the program interrupt key, doesn’t help, you
type <CTRL-SHIFT-C> to bring up the Emergency Evaluator and
then evaluate the following expression to restore the original
method:

Controller compile: ‘controlInitialize “self classified:
‘basic control sequence’

Don’t be concerned about making the method pretty or get-
ting the protocol exactly correct; you can and should fix those
details once your environment is back to normal again.

OTHER DEBUGGING AIDS

Ways to debug problems are as varied as the bugs themselves,
but the following tips include advice about general approaches
to object-oriented debugging, techniques for graphical debug-
ging and ways to add shortcuts to access frequently used de-
bugging expressions.

Isolate Debugging Code in a Subclass

Whenever possible, isolate your debugging code in a new sub-
class. You can copy methods from the superclass or override
them to add debugging information. This is most useful when
you are primarily interested in finding out how the current sys-
tem works and your debugging activities are confined to halts
and monitoring activities such as printing to the Transcript. If
you are trying to find a genuine bug and functionally changing
code, you have to remember to copy the changes back to the
real class.

Graphical Feedback
When you’re debugging graphical applications, you need a lot
of visual feedback. If your application is interactive, you might
need to understand where the cursor is located and how to
manipulate it,

In Objectworks, you can find out where the cursor is rela-
tive to the window with the expression:

ScheduledControllers activeController sensor cursorPoint

You can position the cursor explicitly with:

ScheduledControllers activeController sensor cursorPoint: aPoint
You can ask the user to interactively designate an area on the
screen:

Rectangle fromUser
Indicate an area with a filled rectangle:

ScheduledControllers activeController view graphicsContext
display Rectangle: (0@0 extent: 10@100)

In Smalltalk/V, there are a similar set of expressions. To find
the location of the cursor in screen coordinates use:

Cursor sense

To translate to coordinates for a pane use:
Cursor sense mapScreenToClient: aPane

To set the location of the cursor relative to the screen origin:
Cursor offset: aPoint

You can ask the user to interactively designate an area on the
screen:

Display rectangleFromUser

You can also indicate a screen area, in this case by filling the
rectangle with a solid red color:

Display pen fill: Display rectangleFromUser color: ClrRed

Magic Debugging Keys

If you find that you use certain debugging expressions fre-
quently, you can modify your programming environment to
add these expressions with function keys or keyboard
equivalents.

For Objectworks, we use function keys to insert some of the
debugging expressions mentioned previously.

The ParagraphEditor’s initializeDispatchTable class method
controls the binding of keys to actions. Rather than adding to
this method, the following code creates a new method for the
debugging bindings:

ParagraphEditorclass
InitializeAdditionsToDispatchTable

“Initialize additional keyboard dispatch keys.”

“ParagraphEditor initializeDispatchTable.

ParagraphEditor initializeAdditionsToDispatchTable.”

Keyboard bindValue:#displayHaltKey: to: #F5.

Keyboard bindValue:#displayGuardedHaltKey: to: #F6.
ParagraphEditor
displayHaltKey: aCharEvent

“Replace the current text selection with a debugging statement—
initiated by #F5."

self appendToSelection: ‘self halt.\" withCRs.
displayGuardedHaltKey: aCharEvent

“Replace the current textselection with a debugging statement—
initiated by #F6.”

self appendToSelection: ‘InputState default shiftDown

ifTrue:[self halt].\' withCRs.

After compiling those methods, be sure to execute

22

THE SMALLTALK REPORT

ParagraphEditorinitializeDispatchTable.
ParagraphEditorinitializeAdditionsToDispatchTable.

These bindings are valid only for windows created after initializ-

ing, so open a new Browser or Workspace to test the additions.
For Smalltalk/V, we use keyboard abbreviations. After typing

an abbreviation, type Shift-Space to expand the abbreviation.
Execute the following code, customizing as appropriate:

Smalltalk at: #Abbreviations put:Dictionary new.
Abbreviations
at: ‘gh’ put:’(Notifier isKeyDown: VkShift) ifTrue: [self halt].’;
at: ‘tr’ put:’CurrentProcess walkbackOn: Transcript maxLevels: 1.’

In Smalltalk/V for OS/2, add the following methad:

TextPane
characterInput: aChar
“Process a character typed by the user.”
| abbrevDict left right c scontinue newlLine |
abbrevDict ;= Smalltalk
at:#Abbreviations
ifAbsent: [*self basicCharacterInput:aChar].
(aChar = Space and: [Notifier isShiftDown])
ifTrue: [selfgetPMSelection.
left := right := selEnd - 1.
s = String new.
[c := self charAt: left.
(continue ;= (c notNil and: [c isAlphaNumeric]))
ifTrue: [s := (String with: c), s].
continue]
whileTrue: [left = left - 1].
new := abbrevDict at: s ifAbsent: [nil].
new notNilifTrue: [self selectindexFrom: left to:right].
~selfinsert: new].
~super characterInput: aChar

In Smalltalk/V for Windows, copy the text from the TextPane
method characterInput: to a new method called basicCharacter-
Input:.
TextPane
basicCharacterInput: aChar
“Private - the user typed aChar.”
self isGapSelection
ifFalse: [selfhideSelection].
newSelection := self replaceWithChar: aChar.
modified :=true.
self
selectAfter: newSelection comer;
makeSelectionVisible;
displayChangesForCharInput;
showSelection

Then, replace the original characterInput: method with the
following:
TextPane

characterInput: aChar
“Process a character typed by theuser.”

| abbrevDict left right c scontinue line new
abbrevDict := Smalltalk
at: #Abbreviations
ifAbsent: [~selfbasicCharacterInput: aChar].
(aChar = Space and: [Notifier isKeyDown: VkShift])
ifTrue: [left ;= right := selection corner x.

line := textHolderlineAt: selection corner y
s := String new.
[c :=line at: left.
(continue := (c notNil and: [cisAlphaNumeric]))
ifTrue: [s := (String with: c),s]
ifFalse: [left :=left + 1].
(continue and: [left > 1])]
whileTrue: [left := left - 1].
new :=abbrevDict at: s ifAbsent: [nil].
new notNilifTrue:
[selection
selectBefore: left @ selection corner y;
selectTo: right @ selection corner y.
self replaceWithText: new.
selection selectAfter: left + new size (@ selection comner y.
self forceSelectionOntoDisplay.
~nil]].
~self basicCharacterInput: aChar

Be careful when entering this method in the browser, as mis-
takes will prevent subsequent character input from text panes,
such as in the bottom pane of the browser.

CAVEATS

Please note that the debugging techniques advocated in this ar-
ticle may violate normal programming guidelines. Some of the
expressions use globals or “private” methods; others, like mov-
ing or warping the cursor, are expressly prohibited by user in-
terface style guides. Use them judiciously.

CONCLUSION

While this article has presented a collection of Smalltalk de-
bugging techniques, it is impossible to describe the most
efficient debugging strategy for any particular situation with-
out knowing where the problem lies. Of course, if you knew
where the bug was in the first place, you wouldn’t need to de-
bug it.

These debugging hints won’t make you an expert overnight.
Effective debugging requires creativity and experience and
there are few shortcuts, but assembling an arsenal of debugging
techniques can shorten development time and improve code
quality.

Acknowledgments

We'd like to thank the following people, who provided prob-
lems, solutions, or otherwise helped debug the debugging pa-
per: Ken Auer, Duane Campbell, Andrew Cornwall, Tom
Hendley, Tom Heruska, Larry Jundt, Cary Laird, Mike Lucas,
Pat Martin, Angie Multer, Kim Rochat, Brian Wilkerson.

Roxie Rochat is Senior Technical Specialist in Advanced System De-
velopment and Process Instrumentation Technology at Fisher-Rose-
nount Systems Inc., 1712 Centre Creek Drive, Austin, TX 78754,
512.832.3583. She can be reached via email at rochat@fisher.com.
Juanita Ewing is a senior staff member of Digtalk Professional Ser-
vices, 921 SW Washington, Suite 312, Portland, OR 97205,
503.242.0725. She is a columnist for THE SMALLTALK REPORT.

JULY-AUGUST 1993

23

....continued from page 6 u DEBUGGING OBJECTS
We added breakpoints to the system by creating three
Date new methods in Behavior, thus making breakpoints in all
' kinds of classes, including instances of both Class and
LightweightClass. The first method, isBreakpointAt:, tells
whether the specified method in the Behavior has a break-
. A Sompilsdhetnod point set or not. The second, breakpointCompilerClass, returns
A MethodDictionary L N S— BreakpointCompiler, which is the compiler used for all classes
. | agen to create new breakpointed methods. The third method, set-
vasSods BreakpointAt:, is the main one and is used to set or remove a
pday . HW breakpoint. It’s implemented as:
M ‘ prae: X setBreakpointAt: aSelector
d sourcaCode: 52822 lem|(
agent ¢ := self whichClassIncludesSelector: aSelector.
¢ isNil ifTrue: [*self].
- m := ¢ compiledMethodAt: aSelector.
A CompliedMethed — | self ==
bytes: #(...) ifTrue: [
mclass -
sourcaCade: 347782 m isBreakpoint
agent ifTrue; [m client mclass == self
ifTrue: [self addSelector: aSelector
Figure 2. The relationship between CompiledMethods and the BreakpointMethods withMethod: m client]
that represent them. ifFalse: [self removeSelector: aSelector]]
ifFalse: [self addSelector: aSelector withMethod:
pointMethod itself is invisible in the debugging process, since it (BreakpointMethod on: m
is removed from the execution stack before the debugger selector: aSelector
opens. In addition, BreakpointMethods implement the getSource rase: | inClass: self)]]
lratse: '

message by returning their client’s source, and so breakpointed
methods can be browsed directly.

The new variable agent is needed to make CompiledMethods
with breakpoints print out well. Every CompiledMethod has an
instance variable called mclass, which refers to the class in
whose method dictionary the CompiledMethod should be
found. When CompiledMethods print themselves out, they look
in their melass to make sure they really are defined there ; if
they aren’t, they will print out as an unboundMethod. Since
BreakpointMethods replace their client in the method dictio-
nary, all breakpointed methods would print out as unbound-
Methods, which is confusing and aesthetically unpleasing. We
solved this problem by adding agent:. Now, when a Compiled-
Method prints out, it checks to make sure that its agent is
defined by its melass, and if so it prints out normally. Most
CompiledMethods are their own agents, but breakpointed
methods will have their agent set to the BreakpointMethod
that’s representing them, and so they’ll print out correctly.
Figure 2 illustrates this relationship between CompiledMethods
and the BreakpointMethods that represent them.

In Figure 2, the asSeconds method for Date—the Compiled-
Method marked A—is a normal method. Its mclass is Date, it is
its own agent, and it is referred to directly by Date's method
dictionary. However, a breakpoint has been placed on the day
method for Date. The #day entry in Date’s method dictionary
refers to the BreakpointMethod B, whose clientMethod is the
CompiledMethod C. CompiledMethod C, in turn, refers to Break-
pointMethod B as its agent. This way, even though Compiled-
Method C is not referenced by Date’s method dictionary, its
agent—BreakpointMethod B—is, so CompiledMethod C will print
as a well-defined method rather than as an unbound one.

m isBreakpoint ifTrue: [m := m client].
self addSelector: aSelector withMethod:
(BreakpointMethod on: m selector: aSelector inClass: self)]

If the receiver Behavior is the class that defines the method cor-
responding to the parameter selector and if the method is al-
ready breakpointed, the code removes the breakpoint by test-
ing whether the BreakpointMethod’s client is defined in the
receiver or not. If it is, the BreakpointMethod is replaced by its
client in the receiver’s method dictionary; but if it isn’t, the
BreakpointMethod is simply removed from the receiver's
method dictionary (thus leaving the client in whatever other
method dictionary it resides). If the method isn’t break-
pointed, the code creates a new BreakpointMethod for it and
adds it to the receiver’s method dictionary. Finally, if the

F_ Lightweight Ciass Browser _Ei

ackiDays:

£56C0
between:and:

clase a
[vl
psDays o
"This method has been spechlized for this ane object”
~42
L] v -
---------- Date today asDays 2
selt 33697
day selfasDays
mr hd - :‘

Figure 3. The lightweight class browser.

24

THE SMALLTALK REPORT

method corresponding to aSelector isn’t defined in the receiver,
a new BreakpointMethod is created and installed in the re-
ceiver’s method dictionary.

As with lightweight classes, we need a new compiler class,
BreakpointCompiler, to implement breakpoints. Once again,
though, this class is almost trivial, since it only needs to define
newCodeStream to return a CodeStream that creates Breakpoint-
Methods.

PUTTING THINGS TOGETHER

To exploit the functionality provided by LightweightClass and
BreakpointMethod, we adapted the interface to make object de-
bugging as simple as possible. This required changing the exist-
ing Browsers, adding a menu option to Inspectors, and creating
a new Browser specifically for lightweight classes.

The existing Browsers were changed by adding a breakpoint
option to the menu in the selector view. Choosing this option
will either set a breakpoint on the selected method or, if the
method is already breakpointed, remaove the breakpoint, so
that the option acts like a toggle switch. Furthermore, the se-
lector view allows method selectors to be formatted, and we
use a preceding asterisk to quickly distinguish methods with
breakpoints.

In addition, all Inspectors now have a new menu option
called browseLightweight. Choosing this option will create a
new lightweight class for the selected object and open a
LightweightClassBrowser to examine and modify methods for
that particular object.

LightweightClassBrowser is a subclass of Browser for looking
at lightweight classes. As shown in Figure 3, the Lightweight-
ClassBrowser has six subviews, The first two views allow you to
decide what methods you’ll see: You can either see only meth-
ods defined in the lightweight class, or all methods up to some
specified superclass. The upper right view shows which class
you're listing methods up to, while the upper left view shows
which class the selected method is actually defined in. This
option makes it easy to view a superclass method and then
make changes to save in the lightweight class. The third view
lists all selectors from the lightweight class up to the class cho-
sen in the upper right view. These selectors are formatted so
that all breakpointed methods are marked with an asterisk,
and so that all methods actually defined in the lightweight
class (as opposed to one of its superclasses) are printed in
bold. The fourth view is a TextView on the code of the cur-
rently selected method. Finally, the last two views belong to an
Inspector on the object whose lightweight class is being
browsed.

This interface makes it easy to imagine how the debugging
session mentioned in the introduction would proceed. Once
you’ve decided there is a problem with one of your OrderedCol-
lections, you can use a Browser to put a breakpoint on the
method where the OrderedCollection is created. When that
method is executed, a Debugger will pop up. The Debugger lets
you inspect the OrderedCollection and choose the browse-
Lightweight option to create a lightweight class for it. The

LightweightClassBrowser lets you put breakpoints on the add:
and remove: methods. After you “proceed” from the Debugger,
you’ll be able to watch as that one OrderedCollection is
modified, and you can find out when objects are added to it
and when they’re removed. With that information, you’ll be
well on your way to solving the problem.

These changes significantly improve debugging in the
Smalltalk environment. Though breakpoints are convenient,
i’s the functionality of lightweight classes that makes the key
difference, as they allow you to monitor or alter the behavior
of particular objects without affecting the rest of your system.
The changes described here, while not complex, are remark-
able in one sense, because they rely on our ability to modify
parts of the Smalltalk system that in some languages would be
internal and unavailable to programmers. The fact that
classes are first-class objects—which is to say, classes are ac-
cessible to and modifiable by the programmer—allowed us to
introduce a new kind of class and to replace an object’s class
on the fly during execution. Similarly, we were able to create
two subclasses of CompiledMethod, and make an important
change to that class itself, only because compiled methods are
first class. Finally, Smalltall’s representation of the Compiler
itself, and its good design for pluggability, allowed us to cre-
ate two simple subclasses by defining only one method each.
The combination of the ease of making these changes with
the significant benefits they provide is a good argument for
the desirability of this level of reflection in a programming
system. In our next article, we plan to explore one level
deeper into Smalltalk’s reflectiveness by changing the com-
piler and the interpreter to introduce active variables and
watchpoints.

References

1. Beck, K. Instance-specific behavior, part I, THE SMALLTALK RE-
PORT 2(6), 1992.

2. Beck, K. Instance-specific behavior, part IT, THE SMALLTALK RE-
pont 2(7), 1992,

3. Hinkle, B. and R. E. Johnson. Taking exception to Smalltalk,
part 1, THE SMALLTALK REPORT 2(3), 1992,

4. Hinkle, B,, and R. E. Johnson. Taking exception to Smalltalk,
part 2, THE SMALLTALK REPORT, (2)4, 1993.

5. Goldberg, A., and D. Robson. SMALLTALK-80: THE LANGUAGE
AND ITS IMPLEMENTATION, Addison-Wesley, Reading, MA,
1983.

6. A. H. Borning. Classes versus prototypes in object-oriented lan-
guages, PRoceepInNGs oF THE ACM/IEEE FalL JoinT Com-
PUTER CONFERENCE, Dallas, TX, November 1986, pp. 36-40.

Bob Hinkle, Vicki Jones, and Ralph E. Johnson are affiliated with the
Department of Computer Science at University of lllinois at Urbana-
Champaign. Bob Hinkle is supported by a fellowship from the Fannie
and John Hertz Foundation. He can be reached via email at
r-hinkle@uiuc.edu. Vicki Jones and Ralph Johnson can be reached
vig email at {vjones, johnson}@cs.uiuc.edu.

JULY-AUGUST 1993

25

Highlights

Excerpts from industry publications

COBOL TO OOP
What would you say if your boss ordered you to transform 60
mainframe programmers into object-oriented programmers in
one year? Most likely, “You're joking, right?” Believe it or not,
in the past year American Management Systems (AMS) of Ar-
lington, Va., has transformed over 60 COBOL programmers
into Smalltalk GUI programmers. They didn’t raid the staff of
an OOP tools firm, and they didn’t rely heavily on external
consultants. But they did perform a major paradigm shift on
the minority of their staff. . . The secrets of their success in-
cluded: Boot camp: All programmers went through develop-
ment tool training and object-oriented design training. The
majority participated in a one- to eight-week apprenticeship
program, where they worked side by side with object-oriented
pros. The process was supportive and orderly—at no point did
programmers feel they were floundering. Teamwork: AMS
brought in OOP design dn programming experts to “mind-
meld” with their COBOL programmers. The experts designed
the application architectures and classes; the novices handled
the specialized processing and application logic. The OOP
novices with GUI design expertise did the screen layout. The
managers performed function-point analysis to glean new pro-
ject-estimation metrics. AMS effectively used consultants to
jump-start their efforts, without paying a fortune. Today they
have a core team of strong OOP technicians in-house. . .
Bringing object-oriented technology to the masses,
Christine Comaford, PC Weex, 2/27/93

THEY SAY WE HAVE A REVOLUTION

We are currently in the middle of a revolution in the Smalltalk
world. Back in the old days the only objects that came with any
language were simple data structures, enough metaobjects to
write the system itself, and support for rudimentary graphics and
user interfaces. Everyone who used an object language was in the
business, by necessity, of creating fundamentally new kinds of
objects all the time. This limited users to those who were capable
of such invention,a nd limited the productivity of those users be-
cause writing new kinds of things is so much harder than reusing
existing frameworks. A consensus has grown recently that the
time has come to stop focusing exclusively on creating objects
and start supporting people who only want to use or elaborate on
things that already exist. Several factors contributed to this shift:
The market of wizards creating new frameworks from scratch
was getting saturated. The economics of growth dictates a search
for new kinds of customers. The pace of innovation in user inter-
faces slowed, with the major windowing systems settling on
roughly the same set of components. This allowed the Smalltalk

vendors to stop spending so much energy doing the entire user
interface without help from the operating system. Enough ob-
jects had been created that is was possible to imagine someone
writing an application and not having to create new kinds of ob-
jects. The factors that used to single out Smalltalk—a bundled
class library and an interactive programming environment—
were no longer unique. Smalltalk had to move on or get tram-
pled by the Borland C++'s of the world. . .

Whole lotta Smalltalk, Kent Beck,

OgrJecT MAGAZINE, 3-4/93

CORBA
About 60 companies are creating CORBA implementations, ac-
cording to the Object Management Group. But only DEC and
HyperDesk, Westborough, Mass., with its Distributed Object
Management System, are shipping CORBA 1.1 products. . .HP’s
implementation, to be called HP Distributed Smalltalk, is a set of
Smalltalk classes for use with VisualWorks, a Smalltalk develop-
ment environment from ParcPlace Systems. . .

HP Tool Showcases Key Object Spec, Dan Richman,

Oren SysTems Topay, 2/15/93

OBJECT SQL
DBMS: Are you planning an object-oriented language? Or do
you recommend one?

[R&D section manager for HP’s Database Lab, and second
chairman of the SQL Access Group: John R. Robertson):The
real issue is moving into that paradigm. Yes, we should have
standards, we should have a common language. I don’t think
C++ is necessarily the right language. By the time you get into
object systems you probably want to be having 4 GLs that are
going to take care of it for your. We should've learned that les-
son by now. We are not making an object-oriented language.
We have an object-interactive language, which really operates
at the command level. We're working with third parties who
are in the 4GL business. The Object Management Group work-
ing group seems to be migrating toward having a common
command set, which is OSQL [Object SQL). I don’t think it
matters much whether you express that through C++ or
Smalltalk. The real issue is that you want your object model to
let you move your methods out of your application and put
them into the database where you can reuse them. This is how
database technology will mature.

Hewlett-Fackard's Relational/Object Paradigm,
Peggy Watt and Joe Celko, DBMS, 2/93

26

THE SMALLTALK REPORT

PRODUCT
ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied-
Vendors interested in being included in this feature should send press releases to our editorial offfices,
Product Announcements Dept., 91 Second Ave., Ottawa, Ontario K1S 2H4, Canada.

SERVIO TO SUPPORT GEMSTONE ODBMS, GEODE
DEVELOPMENT ENVIRONMENT ON WINDOWS NT.

Servio Corporation has announced that it will provide support
for its full range of products on Microsoft Corporation’s Win-
dows NT operating system.

GemStone and GeODE for Windows NT are scheduled for
production shipment beginning in early 1994. They are cur-
rently available for most leading UNIX-based platforms in-
cluding Sequent Symmetry 2000, SUN SPARC, RS6000, and
HP9000, GemStone release 3.2 and GeODE release 2.0. Gem-
Stone is also available for DEC VAX/VMS. GemStone data can

be accessed from most client environments including UNIX,
Windows, 0S/2, and Macintosh.

Servio Corporation develops and markets the GemStone
object database management system, which incorporates the
GeODE code-free visual development environment for rapidly
building and deploying end-user database applications. Servio
supports its products with consulting on-site technical support
and educational services that enable customers to implement
mission-critical object-based solutions.

Servio Coirp., 2085 Hamilton Ave., Ste. 200, San Jose, CA 95125,
408.879.6200 (v), 408.869.0422 (f)

~WANTED=

BOOK AUTHORS
S 1 G S

BOOKS

Is currently seeking Authors for its
“Advances in Object Technology”
series.

Opportunity to join rapidly growing list of

prestigious authors and experts and
earn international recognition.

To discuss your ideas for a book contact:
Dr. Richard Wiener, Book Series Editor
135 Rugely Court
Colorado Springs, CO. 80906

© Phone & Fax: 719.579.9616

The first multi-dialect .

Smalltalk

developers
conference

DeyTdl

August 20-21, Glendale, California.

Presentations - Panels - Tutorials - Technical
sessions - Exhibits - Books & Magazines.

Digitalk (Smalltalk/V) - Servio (GemStone) -
Easel (ENFIN) + Quasar (SmalltalkAgents) *
ObjectShare (WindowBuilder) - ParcPlace
(ObjectWorks) + many others.

Only $250 if you register before July 30! $300 after.
For more information and a registration form, contact
Monica at (tel) 213-257-5670, (fax) 213-259-0430, or
(Compuserve) 72330,1236.

THE TOP NAME
INTRAINING IS ON

THE BOTTOM

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching b

a pilot project, modernizing
legacy code, or developing a

large scale application, nobody }

else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custormn engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

DIGITALLKN

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
strategies that immediately
boost your productivity. You'll

reduce your learning curve,
and you'll meet or exceed
your project expeclations. All
in a time frame you may now
think impossible.

e IMMEDIATE RESULTS,

Digitalk’s training gives

You practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,
Progressive Insurance,

¥ Puget Power & Light, U.S.
Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM's
International Alfiance for
AD/Cycle—IBM'’s software
development strategy for the
1990’s. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put

the power in Smalltalk/V, help
you get the most power out of it,

DIGITALK

	By Article Title
	Applications of Smalltalk in scientific and engineering computation
	Debugging objects
	Good code, bad hacks
	Inheritance: the rest of the story
	Smalltalk debugging techniques

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Hinkle, Bob
	Johnson, Ralph E.
	Jones, Vicki
	Knight, Alan
	Peskin, Richard L.
	Rochat, Roxie

	By Topic
	comp.lang.smalltalk
	Smalltalk Idioms

