Table of Contents

Simalltalk

R E & A =R T January 1995 Vol4 Nod
Editors
John Pugh and Paul White
Carleton University & The Object Paopla F t
ecatures
SIGS Publications Advisory Board
Tom Atwood, Object Design L.
Franal B, 0y Totwcogie ENVY software baselining process 4
Grady Booch, Rational Barry Oglesby
George Bosworth, Digtalk L Baselines act to control versions of software released to external entities and to synchro-
Jesse Michael Chonoles, ACC of Martin Marietta . - -
Adele Goldberg, ParcPlace Systems nize Classes, Applications, and Configurations between developers so that the most up-to-date
Tom Love versions of these are readily available to all.
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM 3 -
e AT67 l Lo A technical overview of 9
Dave Thomas, Object Technology International Visu alworks 2 O
TuE_ Smauraux Report Editorial Board Jim Haungs
:'Lﬁ";;m";mn;ﬂ::gm Systems VisualWorks continues to improve as a GUI-building tool, and most of the serious draw-
Reed Phillips, Knowledge Systems Corp. backs have been addressed.
Mike Taylor, Digitalk

Dave Thomas, Ohject Technology Intemational

Columnists Making MVC code more reusable 15
Kent Beck, First Class Software Bobby Woolf
-[’i“'“i:" E:I'i"ﬂk Di!li‘f': A Two of the most popular advantages of Smalltalk are the ability to implement code that is

reg Hendley, Knowledge Systems Corp.

Tim Howard, RathWel International hlghly reusable and the at.nI!ty to easily produce GUls. Ironically, Smalltalk code for produc-
Ed Klimas, Linea Engineering Inc. ing GUIs has been very difficult to reuse.
Alan Knight, The Object Paople
William Kohl, RothWell Intematianal

Mark Lorenz, Hatteras Software, Inc. Columns

Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS PUBLICATIONS GROUP, INC.
Richard P. Friedman, Founder & Group Publisher

Smalltalk Idioms Demand loading for VisualWorks 19
Kent Beck

A complimentary approach to reducing memory footprint is
described-demand loading. Rather than discarding objects that may
not be used, demand loading waits until a value is wanted, then loads
it from disk.

Editorial/Production
Kristina Joukhadar, Editorial Director
Elisa Varian, Production Manager
Brian Sieber, Art Director
Seth J. Bookey, Production Editor
Margaret Conti, Advertising Production Coordinator

Dan Olawski, Editorial Production Assistant The best of 24
Circulation comp.lang.smalitalk Safety and inheritance
Bruca Shriver, Jr., Circulation Director Alan Knight

John R. Wengler, Circulation Manager
Kim Maureen Penney, Circulation Analyst

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Eurape

In theory computer systems can be reliable, but all software has bugs.
In pursuit of the unattainable goal of perfect reliability, we too often fail
to consider the consequences when systems do fail.

Jeff Smith, Advertising Manager, Central U.S. H .
Michael W, Pack, Advertising Representative Gﬂttlng Heal Multl'user Smalltalk 27
212.242.7847 (v), 212.242.7574 (f) Jay Almarode

Kristine Viksnins, Advertising & Exhibit Sales
212.242.71447 (v), 212.242.7574 {f)
Sales Representative: Diane Fuller & Associatas, West Coast
408.255.2991 (v), 408.255.2992 (f)
Sarah Hamilton, Manager of Promotions and Research
Caren Paolner, Senior Graphic Designer

A new model of application development is emerging where the
domain of objects is persistent and accessible to multiple users.

Departments

Administration h .
Margherita R. Manck, Gensral Manager Editors’ Corner 2
David Chatterpaul, Senior Accaunting Manager
James Amenuvor, Business Manager P""Iuct Announeements 3]-
Michele Watkins, Assistant to ths Publisher - Smalltalk Solutions Special Conference Preview Section 33
A Recruitment 45
. S I G S The Smalltalk Raport (ISSN# 1058-7978) is publizhed 9 imsa a year, monthly encept in Mar—Apr, July—Aug, and Nov—Dec. Published by SIGS Publications Inc., 71 West
PUBLICATIONS 23rd St., 3rd Aoor, New York, NY 10010. @ g 1995 by SIGS F ions. All rights reserved. Reproduction of this material by electronic fransmission, Xerox or
. any ather method will be 1reated as a willful violation of the US Copyright Law and i Flatly prohibited. Material may be d with axpress ission from the putdisher
Publishers of JouanaL oF OsjecT-ORIENTED Mailed First Class, Canada Post Intemnational Publications Ml Product Sales Agrasmant No. 280386,
Procramming, OnjecT Macazing, C++ Rerorr, Individual Subscription rates 1 year (9 izsuss): damestic $79; Masico end Canada $104, Foreign 5118; Institutional/Library rates: domeslic $206, Canada & Mexico $250,
SmacLtaLk RerorT, THE X JournaL, REPORT ON Foreign $288. To sulmit articles, pleass and alectronic files on disk to the Editors at B85 Meadowlands Driva #509, Ottawa, Ortario K2C N2, Canada, or via Internat I
OspjecT ANALYsIs & DEsieN, Onjects IN EURoPE, strepart@objectpeople.on.ca. Preferrad formats for figures are Mac ar DOS EPS, TIF, or GIF formats. Always send a paper copy of your manuscript, including camerateady
Direcrory of Osject TECHNOLOGY, and OBjecT copies of your figuras (laser output is fing).

POSTMASTER: Sand addreas changes and subscriplian orders 1o: The Smalltalk Report, P.0. Box 2027, Langhome, PA 19047. For service on cumrent subscriptions call
215.7B5.8386, 215.785.6071 (fax), PDO976@psilink.com (email). PRINTED IN THE UNITED STATES.

January 1995 1

SpexTRUM (GERMANY)

Editors’ Corner

y the time you read this issue, we hope you will be

making your travel plans to attend Smalltalk

Solutions *95 from February 21-24, 1994, in New

York City. Over the past few months, we have been
working hard to put together a program befitting the inaugural
major vendor-independent Smalltalk conference. In addition
to keynote presentations from Dave Thomas, Tom Atwood,
and Ray Wells, the technical tracks feature sessions presented
by such recognized Smalltalk experts as Kent Beck, Rebecca
Wirfs-Brock, Sam Adams, Wilf Lal.onde, and Amarjeet
Garewal. With topics such as design patterns, performance,
metrics, metalevel programming, client-server and distributed
systems, there will be plenty to interest even the most experi-
enced of Smalltalk programmers. There is always much to be
learned from the experiences of others and with this in mind,
Smalltalk Solutions will feature corporate case studies from
organizations representing a variety of application domains;
e.g., Texas Instruments, Caterpillar, CIGNA, and the Canadian
Imperial Bank of Commerce. A dedicated track for managers
will address the issues of managing and delivering large-scale
Smalltalk projects.

‘We hope you to see you all in New York.

A common thread on the Smalltalk bulletin boards in
recent months has been discussion over the changing focus of
Smalltalk and its increased use by the MIS community. A
refrain that has been repeated numerous times and which
comes mainly from hard-core Smalltalkers (or so-called “grey-
beards”) with many years of experience is that the Smalltalk
vendors are positioning themselves as competitors to
PowerBuilder and Visual Basic. Well, at least this makes a
change from C++! Many of these Smalltalkers cut their
Smalltalk teeth developing scientific and engineering applica-
tions in areas such as simulation, and increasingly feel desert-
ed by the vendors and disturbed by the high salaries being
offered to Smalltalk consultants by the corporate world.

WEe recently attended a briefing session held by one of the
major vendors; the word Smalltalk was not mentioned until a
full 20 minutes into the presentation. We have to admit this
was a very strange experience.

But what does this all mean and to what degree, if at all,
should we get worked up about it?

Much of the discussion has centered around the notion

that if all that is needed to develop
applications is a good GUT builder and
relational database interface then
Smalltalk is a sledgehammer of a tool.
This is true! Our own experience how-
ever is that while Smalltalk must com-
pete at some level with the
PowerBuilder and Visual Basics of this
world, what ultimately distinguishes it
from these tools is that Smalltalk scales
and the other tools blatantly do not.
Smalltalk can and has been used to
develop large-scale industrial strength applications. Smalltalk

PAUL WHITE

will score heavily when modeling objects from the business
domain, where component reuse is expected, and where the
scale of the project demands good (object-based) tools for
configuration management and version control. Moreover, it
is wrong to characterize the projects to which Smalltalk is
being applied in the corporate world as “client-server systems
with RDBMSs in the middle and Smalltalk GUI front-ends.”
‘We have become familiar with numerous Smalltalk projects
in large banks, insurance companies, and telecommunications
companies. The complexity of their applications matches
anything we have seen in the scientific and engineering com-
munities.

The vendors will continue to emphasize what they feel is
important to increase their market share and penetrate new
markets. And they are doing a pretty good job of it. Smalltalk
is the fastest growing OOPL. The Smalltalk marketplace dou-
bled in 1993 relative to 1992. We'll take bets it doubled again
in 1994. So while the “greybeards” will continue to be nostal-
gic for the good old days of Smalltalk—and to be honest in
many ways so will we—these really are exciting times for
Smalltalk and Smalltalkers.

To end on a cautionary note.... another fear that has been
expressed is that in the rush to give the corporate world the
components and features they crave for, some key problems
closer to home may be too easily overlooked. We agree. The
global namespace problemn and the need for better browsers are
two of our favorites. I am sure you have your own wish-list.

Enjoy this month’s issue and have a happy and prosperous
1995.

The Smalltalk Report

Introducing Argos

The only end-to-end object development and deployment solution

All object models are managed in a shared repository,

ixzfegraridf;binetf i "wfiz?;gid? Zégrﬁ(zzie;umodebdﬁvm supporting team development and traceability
a LJ .__-_‘T v e -_‘ J..
] ﬂ —l-:i:"_“".--"-ll.-l—"-.l..g;l.- T]

— #ed Name Description Number [

Sk 4 Of Persons |

mo _.1] Financa Where the money ls... | 0 j

g : o | .
Aulhorizatio m ChangeFool ,
nTool

Egs;ls . sl Person Browser I ‘E i
s | T = PN F—
mage - MaritniGtatus | single :I

s Ban 202-92-9229 I

% st [T

G

>
|

salaryHlstory |msgarDataSerieSw

Wl

y

EHER

AJ
Departmey

iption: lexl
name: alphaNumer|
numberO/Persons:|

2
=

1234567891011

k|

Powerful drag and drop “enzymes” make application
development intuitive

Comprehensive set of widgets, including business 3 LE" i iy
graphics, multimedia, and others make application E P—
development easy and powerful T

VERSANT Argos™ is the only application development control transparently. And only Argos is packaged as a
environment (ADE) that makes it easy to build and deploy ~ completely visual ADE built on ParcPlace VisualWorks®.
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modcling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a
shared repository.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT

The Database For Objects ™ 1380 Willow Road * Menlo Park, CA 94025 » (415) 329-7500

©1994 by Versant Object Technology. VERSANT, VERSANT Argos and The Database For Objects are trademarks of Versant Object Technology Corporation. All other company names and lugos are registered trademarks of the individual companics.

ENVY software

baselining process

Barry Oglesby

cally for Smalltalk code. Among other functions, it

serves to simplify the code baseline process. Building
baselines in ENVY is an important part of the software life
cycle. ENVY baselines act to control versions of software
released to external entities and to synchronize Classes,
Applications, and Configurations between developers so that the
most up-to-date versions of these are readily available to the
entire development team.

Baselines help to ensure that the system being developed
works as an integrated whole, not just a series of unrelated
pieces. They also help developers as they are developing their
piece of the system to see the latest state of the other pieces of
the system. In addition, they allow previous versions of the sys-
tem to be easily retrieved. Two types of ENVY baselines exist,
which I call partial and full baselining.

Outlined below are the general steps to be followed when
performing both partial and full ENVY baselines. Readers should
have a working knowledge of ENVY when reading this article.

E NVY is a Configuration Management tool built specifi-

PARTIAL BASELINING

Partial baselining synchronizes the Applications or Classes of
two developers to ensure that code that each has written is
functioning properly. Partial baselining is not a formal process.
It is an ad hoc practice performed by individual members of the
development team between full baselines (see below). Often,
developers in this situation will have been developing two parts
of the same system behavior. Typically, one developer builds the
system domain objects in one Application, while the other
develops the user-interface objects in another. For the behavior
to be fully tested, the developers must synchronize their
Applications. Depending upon the behavior, this synchroniza-
tion can happen as often as daily. It should happen at least
weekly, but it should not be dependent upon the calendar. It
should happen at logical points in the development phase, such
as when behavior is fully defined.

PROCESS

To accomplish this type of baselining, each developer versions
his own Classes and releases them into the appropriate
Application’s current edition. The other developer can then
access those new Class versions by loading (or reloading cur-
rent) the Application edition.

TESTING
At this point, testing between these developers can occur.

4

During this testing time, each developer may find errors in the
other’s code. Often, the developer who finds the error will also
make the fix to the code, even if the developer is not the Class
owner. This is perfectly permissible. This will involve creating a
new edition of the other developer’s Class, making the method
fix, versioning the Class edition and, finally, notifying the other
developer of the fix. The other developer may then incorporate
that fix into his Class edition. Alternately, if an edition of the
Class does not exist, the developer may release the version con-
taining the fix into the Application edition. It is always the
responsibility of Class owners to release versions of their Class
into their appropriate Applications, even if they are not the ver-
sion developers. Developers should never “change user” and
release a version of a Class not owned by them without the
knowledge and consent of the owner.

FULL BASELINING

Full baselining synchronizes the Applications of the entire
development team to ensure that the system as a whole is func-
tioning properly. Full baselining is a formal process that is
accomplished using ConfigurationMaps. ConfigurationMaps are
named groupings of Applications. Usually, a ConfigurationMap
contains all Applications necessary to create a fully functional
system. Building full configurations is the responsibility of the
Team Librarian. The Team Librarian usually is, but does not
have to be, Library Supervisor.

The frequency of full baselines can be based upon either the
calendar or system behavior. Calendar-based baselines should
be performed, at most, every two weeks. System-behavior-
based baselines should be performed on defined system itera-
tions. Shorter, calendar-based baselines have the advantage of
synchronizing the development team more often. The longer
the interval between baselines, the more system behavior exists
that must be synchronized. The partial baselining practice
described above will reduce this problem. The disadvantage of
calendar-based baselining is that ENVY history management
should be determined by system behavior rather than the calen-
dar, but the reality is that there are calendar-based schedules
that must be met.

PROCESS

Before the first time a full baseline is performed, the Team
Librarian will have created the ConfigurationMap, thus becom-
ing its manager. Once the ConfigurationMap is created, an edi-
tion is opened on it automatically. The Team Librarian will
then add each of the appropriate Applications to the

The Smalltalk Report

* The Difference Between Success and Failure in IBM Smalltalk *

WindowBuilder' Pro is an interactive tool

that lets you build polished user interfaces fast

in Smalltalk from Digitalk and IBM. Window-
Builder Pro (WBPro) saves you from the job of building Uls in
code. It helps simplify maintenance and increase consistency.

Like VB, with Real Objects

Select controls from a palette. Place and edit them interactively.
Integrate the controls with your app easily. Build composites of
controls to create your own reusable Ul components. Place and
edit them in WBPro just like the native controls. Get portability of
your Uls across all the supported platforms of a Smalltalk family.
Includes autosizing, automatic alignment, control of fonts,
menus, colors, and more.

Building user interfaces is easy

‘ High-Level Controls for WBPro

When you use the high-level add-on controls like spreadsheets,
business graphics, and others, your apps will be more powerful
and polished. And you’ll save even more time and effort. Inquire
about specific offerings and platform availability.

% For most Smalltalk/V programmers, WindowBuilder Pro/V
is a survival tool—the difference between success and failure.”®
— Milan Sremac, President, Medical Software Systems

WINDOWBUILDER PRO/V (VER. 2)
For Digitalk

Windows
Visual Smalltalk 0S8/2

For Smalltalk/V Win16 (WBPro/V ver 1)

% Unless you're totally comfortable with the Motif API, a tool like
WindowBuilder Pro is the difference between success
and failure in IBM Smailtalk ®

— Gordon Sheppard, Senior Technologist,
American Management Systems

WINDOWBUILDER PRO (FoR iBM SMALLTALK)

[0 127] 1 I —— $495 Team
Windows std. $495 Team

No runtime fees are required for applications developed with WBPro. Free support for
the first 90 days. All products include complete decumentation. Support subscription
available. WindowBuilder Pro/V is compatible with Team/V. Code generation in IBM
Smalltalk is totally Motif compliant. © Objectshare Systems, Inc. 1994

Visnal Smalltalk

WindowBuilder™ Pro/V lets you build Uls interactively, save
time, simplify maintenance. Version 2 is fully compatible with
Visual Smalltalk and Visual Smalltalk Enterprise. Generate
ViewManager subclasses, ApplicationCoordinator subclasses, or
PARTS windows.

WINDOWBUILDER PRO/V
$495 OS2

Upgrade WindowBuilder Pro/V to version 2. We have special upgrade
pricing to registered users. Please inquire.

Windows

Subpanes/V provides columnar list box, hierarchial list box,
table pane, bitmap pane, bitmap button, 3-D frames, and more.
Requires WindowBuilder Pro/V ver 2 and Visual Smalltalk or
Visual Smalltalk Enterprise.

SUBPANES/V
$235 0872

Windows

SHARE
B~ 2 Objectshare Systems, Inc.
Q Q w5 Town & Country Village
B o Suite 735
-] 2 San Jose, CA 95128-2026
=] & Fax 408-970-7282

VisnalAge

Spreadsheets, business graphics, and other high-level components
are easy to add to your VisualAge™ based applications.

WidgetKit™/Professional has powerful spreadsheets and
more. You get virtual spreadsheets, multi-column list boxes, table
editor, graphic viewers for BMP, PCX, and GIF, input validation,
file system widgets, and more.

WIDGETKIT/PROFESSIONAL

Windows std. $495 Team

WidgetKit/Business Graphics has versatile graphs and
charts. You get bar, pie, area, line, gantt, high-low-close, scatter,
and more basic types. Options include 2-D and 3-D, fonts, colors,
control of printing, and more.

WIDGETKIT/BUSINESS GRAPHICS

[0 17 2T F—— $495 Team..................
Windows std. $495 Team.................

Call to order (408) 970-7280

Or call for free info. 3 AM to 5 PM PST, M-f. 30-day money-back guarantee

INC. CompuServe 76436,1063

| IVAYA ¢

ConfigurationMap edition. Not only will this add Applications to
the ConfigurationMap, but it will also release appropriate edi-
tions of these Applications. Now, a member of the development
team need only load the edition of the ConfigurationMap to get
the latest system configuration.

The process described below assumes an ENVY configura-
tion using SubApplications. If no SubApplications are used, the
steps involving them may be omitted.

Prebaseline Steps

Just before the full baseline, the development team will version
their current Class editions and release them into their current
SubApplication or Application editions. Then, the
SubApplication managers will version their current
SubApplication editions, immediately create new editions of
their SubApplications and notify the Application manager.
Frequently versioning and releasing Classes is a lightweight
operation and a normal part of daily ENVY life. Frequently ver-
sioning Applications and SubApplications is not and should only
be petformed at the time of a full baseline configuration. Only
Application and SubApplication managers may create editions of
Applications and SubApplications. Developers should never
“change user” and create an edition of an Application or
SubApplication not managed by them without the knowledge
and consent of the manager.

After being notified of the SubApplication versioning,
Application managers must perform several tasks. First, they
version their Application editions. Next, they create new edi-
tions of their Applications and release the new editions of the
SubApplications into them. Finally, they notify the Team
Librarian. Changing the state of an Application from edition to
version will automatically be reflected in the ConfigurationMap
edition, if the Application edition has been released into that
ConfigurationMap edition.

While the baseline process is occurring, the development team
can continue developing system behavior in the new Application
and SubApplication editions. Creating or editing methods will
cause new Class editions to be created. These Class editions can be
versioned and released within the new Application and
SubApplication editions without affecting the baseline.

Baseline Steps
To get a fully baselined image, the Team Librarian need only
load the current ConfigurationMap edition into a virgin image.
The full baseline image is now ready for testing. The Team
Librarian should now execute a script or scenario to test the
configuration. This scenario is usually developed over the life of
the project and can range anywhere from a handwritten list of
steps to be performed to a series of Smalltalk “doits” or test
methods to be executed. Initially, the individual Application
developers may execute their own example methods after a
baseline. As the system becomes more robust, a richer scenario
will be necessary.

Since the Team Librarian will be testing the new configuration
in this image, no individual developer’s environment will affect
the tests. Also, testing in an image containing only the Application

6

editions in the ConfigurationMap will help uncover any developer’s
special environment dependencies, such as Global settings.
Assuming for the moment that the ConfigurationMap loaded
without any problems, and the behavior of the system before
and after the baseline is the same, the Team Librarian must
now version the ConfigurationMap to complete the baseline.

Posthaseline Steps
Once the baseline is completed, the Team Librarian will create
a new edition of the ConfigurationMap for the next baseline
iteration and release the new Application editions into it.

Once this has been accomplished, the Team Librarian will
reload the new ConfigurationMap edition into a virgin image.
This image will now contain all the new editions of the

Full baselining synchronizes
an entire development feam’s
Applications to ensure the system as a
whole functions properly...

Applications and SubApplications released into the
ConfigurationMap edition. The Team Librarian will then save a
copy of this image.

Next, the Team Librarian will notify the development teamn
that a new configuration is available. Two ways exist for a
developer to obtain the new configuration. One is to load the
new ConfigurationMap edition into his current image. Loading
the new ConfigurationMap edition will cause the new
Application and SubApplication editions to load. The developer
can then continue development within the latest configuration.
Another is to copy the image that the Team Librarian previ-
ously saved. Copying the Team Librarian’s image will assure a
fresh configuration, but if individual developers have their own
environments that they do not want to recreate, loading the
new ConfigurationMap edition may be a better choice.

POTENTIAL PROBLEMS

This process will take a half day if no serious problems occur
and longer if they do. Unfortunately, several problems can occur
during a full baseline. These come in several categories, includ-
ing problems encountered creating the baseline, critical system
code problems that must be fixed in the current baseline, and
noncritical system code problems that can be fixed in the next
baseline. These categories of problems and how they should be
fixed are described in greater detail below.

Baseline Problems

Baseline problems occur during the loading of the
ConfigurationMap edition and cause the baseline to fail. Their
causes include but are not limited to:

1. Application class>>loaded method is not defined correctly.
A NotifierView will be displayed after loading the
Application version. The fix is usually apparent after some
investigation by the Application manager.

The Smalltalk Report

Automatic Documentanon - Easter T han Fyer

Synopsis produces high quality class documentation
automatically, With the combination of Synopsis and
Smalltalk/V, you cut development time and eliminate the
lag between the production of code and the availability
of documentation.

Y

- Documents Classes Automatically

» Provides Class Summaries and Source Code Listings
- Builds Class or Subsystem Encyclopedias

» Publishes Documentation on Word Processors

- Packages Documentation as Encyclopedia Files or
as Help Files for Distribution

- Supports Personalized Documentation and
Coding Conventions

Working with Synopsis is easy. Install Synopsis and see
immediate results --- without changing a thing about the
way you write Smalltalk code!

With Synopsis Jor Songllndov Dovefosmens Teaney

Development Time Savings

Coding Documentation

Without T T
Synopsis A A

Start Finish

Documentation
With
Synopsis
A A

Starl Finish

Products: Synopsis for Smalltalk/V and Team/V

Synopsis for ENVY/Developer
Environments: Windows, Win32, 0S/2

Pricing; Smalltalk/V $295, ENVY $395
Site licenses available.

=yiopses Sefbwarg
8912 Oxbridge Court, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

2. Application class>>toBeLoadedCode variable is not defined
correctly. A NotifierView will be displayed before loading
the Application version. The fix is usually apparent after
some investigation by the Application manager.

3. Identical methods in the same class warning will be written
to the Transcript, and one Application version will be
scratched. One of the Applications must delete the method.

4, Prerequisite Applications are not loaded. A Dialog will be
displayed that asks whether to load the prerequisite
Applications. Either load the prerequisite Application
before loading the ConfigurationMap or include it in the
ConfigurationMap to fix the problem.

5. Prerequisite Application versions are not ENVY-compatible
with Application versions in the ConfiguraionMap. An
error will be written to the Transcript, and the load will not
complete. One way to fix this is to set the ImageBuilder
enforceCompatibility flag to “false” to turn off ENVY pre-
requisite checking. If this is the case, 2 warning instead of
an error will be written to the Transcript, and the load will
continue. Another way is to release the necessary prerequi-
site Application version into the Application edition in
question using the ApplicationConfigBrowser.

Critical System Problems

Critical system problems occur during the testing of the
scenario and cause the system to behave unacceptably.
Either behavior that the system was thought to exhibit
before the baseline is different from the behavior it does

exhibit after the baseline, or the system fails so that the sce-

January 1995

nario cannot be completed properly. Causes include but are
not limited to:

1. An incorrect Class version is released into its Application
edition. The proper version of the Class must be released
into the Application edition. The Class owner is responsible
for ensuring that the released version of the Class is correct.
Only the owner of a Class can release a version of that Class
into the Application edition.

2. A developer has a special environment set up in his own
image that does not get baselined. Usually, this environ-
ment consists of a Global or Class variable that either exists

As with any process, custom-
tailoring for each Smalltalk application
may be necessary—it helps fo ensure
the success of any ENVY project

in one image but not in the other or is set to one value in
one image and to another value in the other. It may also
consist of a change to a Method not in the developer’s
Application that 15 being relied upon but does not get into
the baseline. In the Global or Class variable case, the envi-
ronment may be easily recreated in the baseline image by

7

Explore the
Leading Methodologies...

Object Development Methods
edited by Andy Carmichael

Object Development
Methods addresses
how object technology
can be applied to sys-
tems analysis and
design. It includes a
comprehensive survey
and comparison of the
leading methodologies
including Booch,
Texel and Rumbaugh.
The common con-
cepts and underlying structure of each method-
ology is an important theme explored within this
book. Object Development Methods proves an
invaluable reference guide for those still explor-
ing various methodologies and their
benefits/drawbacks, and for those who have
already made a methodology selection.

e T

ISBN 0-9627477-9-3

Who Should Read This Book?
Systems Analysts/Designers IT Managers
Chief Scientists Programmers
Project Managers Software Engineers
347
Available at selected booksll?:tif S I G S

Distributed by Prentice Hall. BOOKS

O Please rush me ___ copies of Object Development
Methods at the low rate of $39. 1SN 0-927477-9-3

METHOD OF PAYMENT
0 Check Enclaosed (payable to SIGS Books)
3 Charge My: O Visa 0 Mastercard L Amex

Card No. Exp. Date

Signature

Name

Company
Address

City State
Zip Country

US orders add 85 for shipping & handling; Canada add $10, all athers add
$15. New York Stata rasidents add applicable sales tax.

TO ORDER, MAIL THIS COUPON TO:

SIGS Books, P.0. Box 99425, Collingswood, NJ 08108-9970

FAX TO: 609.858.2007 OR PHONE: 212.242.7447

using the Application class>>loaded method. In the
Method change case, the Class in question must be ver-
sioned and released into its containing Application.

3. Systemn behavior spans multiple Applications managed by
different developers. One developer is depending on a
method from the other that is not built into the baseline.
Either the method signature or the return value does not
match what was expected. Often, one developer will make a
change to his method without notifying the other develop-
er before the baseline. Frequent partial baselining will large-
ly prevent this from occurring.

Noncritical System Problems

Noncritical systemn problems also occur during the testing of
the scenario. Their causes are identical to those of the critical
system problems described previously, but their fixes can be
deferred until the next development period. The difference is
that these problems can be bypassed or are minor enough to
allow the scenario to complete acceptably.

Fixing Problems

To fix most of the problems described above, an edition of the
appropriate Application and/or SubApplication is necessary. The
development edition created in the prebaseline steps should be
used to incorporate the fix. Using the development edition of
the Application and/or SubApplication may entail backing out
any new development that has occurred.

First, any newly released Classes should be backed out by
releasing the previous versions of the Classes in question. These
newly released Class versions can easily be found by checking
the differences between the previous version and the new edi-
tion of the SubApplication or Application. The fix can then be
made and verified in the developers local environment.

While the fix is being made, the Team Librarian should
release the new edition of the Application into the edition of
the ConfigurationMap. Once the fix is made, the new edition
of the ConfigurationMap can then be loaded to test it. Once
the fix is verified by the Team Librarian, the prebaseline steps
described previously should be followed for the Application
and/or SubApplication to allow the baseline to continue.

When an error occurs during the build process, it is advis-
able, once the problem has been corrected, to reload the entire
ConfigurationMap to ensure that the correction is proper. Also,
a ConfigurationMap edition must be successfully loaded with
no modifications of the contained Applications before it can be
versioned.

CONCLUSION

The preceding partial and full ENVY Baseline steps provide an
effective way to baseline Smalltalk code. As with any process,
custom-tailoring for each Smalltalk application may be neces-
sary to account for multiple ConfigurationMaps, external code
incorporation, etc. Following processes such as these will help
ensure the success of any ENVY project. ¢

References
1. ENVY/MANAGER USER MANUAL, Release 1.41, 1993,
Object Technology International, Inc.

The Smalltalk Report

A technical overview of

VisualWorks 2.0

Jim Haungs

HE new release of ParcPlace VisualWorks version 2.0

contains many new features, improved database con-

nectivity, new user interface design tools, and supports
several new platforms. ParcPlace has done significant clean-up
work on the base classes, but the development tools remain
largely unchanged. This release demonstrates ParcPlace's ongo-
ing commitment to binary portability across platforms.

SYSTEM INFORMATION AND SET-UP

The first thing you'll notice about VisualWorks 2.0* is the new
Visual Launcher (see Fig. 1), which combines the system tran-
script, controls for the browsing and editing tools, and the
functions from the old LauncherView. The menus control
most of the tools and browsers; the tool bar provides immedi-
ate mouse access to the more common functions on the menu
bar.

Off the File menu is the Settings notebook (see Fig. 2).
The settings notebook replaces much of the manual text
manipulation that used to be found in the Installation and
System Workspaces. The configuration text and dialogs have
been replaced with a single visually appealing and space-effi-
cient paged notebook. The notebook control is patterned after
IBM’s CUA’91 Notebook Controls in OS/2. It has also been
added as a widget to the VisualWorks toolbox, so it can be
used in user applications.

The settings notebook contains pages for the locations of
the source and changes files, the VisualWorks configuration
settings, the Ul look preferences, window replacement prefer-
ences, help file locations, font preferences, and the printer and
time-zone settings. Pressing the Accept button on a settings
page puts that setting into effect immediately.

Figure 1. The VisualWorks Control Panel.

Note: Most of the information herein comes from the user manuals and from using VW 1.0
and 2.0. Additional information was obtained at the August 1994 ParcPlace Users’
Conference, in particular, information regarding future directions for some of the product line.

January 1995

One of the major improvements is the new on-line help
browser (see Fig. 3). When you press the help button on the
toolbar, the help browser presents a list of “books” that come
with VisualWorks. Selecting a book gives you a list of chapters;
selecting a chapter gives you to a list of topics; selecting a topic
gives you a page with a “Strategy” section describing the topic,
then a list of “Basic Steps” and commeon “Variants.” The brows-
er is complemented by a Search dialog that allows case- insen-

i

Figure 3. The Online Help Browser.

sitive and regular expression searching. The on-line information
augments rather than duplicates the information in the printed
manuals; it is more action-oriented than the printed materials;
in particular, it has an example browser with a Dolt button.

In addition to the on-line help, VisualWorks 2.0 comes
with more than 2000 pages of documentation, THE USER’S
GUIDE (400 pages) covers the Smalltalk language and the base
classes, the browsing and development tools, and the MVC
paradigm. THE OBJECT REFERENCE (1300 pages) organizes
the public classes in alphabetical order, describes their roles in
the system, the application in which they are organized, their
instance variables, and their public method interfaces. THE
VISUALWORKS COOKBOOK (700 pages) covers the creation
and manipulation of VisualWorks canvases (see Fig. 4).
Additional manuals ship with various add-on tools: Database
Tools, Advanced Programming Tools (formerly APOK), and
the DLL and C Connect (formerly CPOK).

THE VISUALWORKS CANVAS

The user interface design tools have been significantly
improved in this release. In particular, all widget properties are
accessible via notebook pages in the Property Tool. As each
widget is selected, the Property Tool displays settings pages
relevant to the class of the selected widget. The biggest
improvement is when multiple widgets are selected: the set-
tings pages reflect all properties common to the selected wid-
gets. This means you can now set the font or color for all
selected widgets on the canvas, e.g., all labels, in a single oper-
ation.

The Tool Palette supports several new and important wid-
gets. I have already mentioned the Notebook widget. There is
also a Combo Box widget that combines the capabilities of an
entry field and a drop-down list; read-only Combo Boxes
restrict the user to a prespecified list of choices; read-write
Combo Boxes let the user enter a new value that is not found
in the initial list. The Menu Button combines a read-only
entry field and a drop-down or pop-up list. Dividers provide
straight horizontal and vertical lines for separation of visual
regions. Sliders permit a choice from a range of numbers;
write-only sliders can be used to provide visual feedback on
the progress of an operation.

Besides the Notebook widget, the biggest improvement to
the widget set is the new table widgets. There are now several
flavors of tables: the original TableInterface is still available,
but the new DataSet widget is much better. In particular,
DataSets support direct in-cell editing, and column widths
that can be changed at runtime by either the program or by
the user. DataSets can be completely specified via the Property
Tool; once defined, the order of the columns can be changed
simply by dragging the columns around. Certain columns can
be designated as Fixed, i.e., they do not move when the table
is scrolled. This can be used to place row and column titles in
fixed positions and let the variable data scroll. Although the
implementation is somewhat convoluted, you can also make
formatted, multi-line column headings by designating a col-
umn head as type Image, and giving it an aspect method that
returns a ComposedText. ComposedText labels can have their
own alignment, fonts, and character attributes, such as bold

10

Figure 4. The VisualWorks Canvas.

and italic text.

VisualWorks 2.0 supports a number of new validation pro-
tocols for user data entry. The application model can be noti-
fied when the focus enters or leaves a field, and a validation
method can be specified for each widget. The validation
method can determine whether the focus should be allowed to
leave the field or not. It can also change the color and other
attributes of the field to bring validation errors to the user’s
attention. VisualWorks now provides built-in methods for val-
idating common data values, such as Strings, Numbers, Dates,
Times, Passwords, TimeStamps, and Booleans. In addition, a
field can have a validation format, such as phone numbers or
social security numbers. The validation language is a simple
pattern match with wild cards; you can define your own pat-
terns, or use one of several built-in patterns. Since
VisualWorks is an extensible framework, any patterns you
develop can easily be added to the Property Tool and reused.

BUSINESS GRAPHICS

The Business Graphics package is also nicely integrated
into the VisualWorks canvas. When you drag and drop a
chart onto the canvas, a sample chart is shown with dummy
data. The sample chart resizes and scales with the canvas.
There are 11 different chart types to choose from: Bar,
Pareto, Picture, StackedBar, Band, Layer, Line, Stacked
Line, Step, XY, and Pie charts. Except for the Pie chart,
any chart can be oriented either horizontally or vertically.
You can also specify tick marks and legends and select their
placement on the chart. Each chart type has myriad
options; as you choose the options and press the Apply but-
ton, the sample chart on the canvas is updated to show you
how the real chart will look.

POSTSCRIPT PRINTING

VW 2.0 augments the existing graphics framework with a
new PostScript printing framework, creating a consistent
imaging model for both screen and printed graphics.
Unfortunately, the framework only extends to PostScript

The Smalltalk Report

printing; it does not allow any platform-specific or printer-
specific rendering, such as Windows GDI or PCL. Most of the
framework seems quite robust and well thought out, and if
you have a PostScript printer, is ideal for creating printed out-
put that matches your graphical output. The fact that most
operating systems do not support the querying of device capa-
bilities, some rather unobvious things, such as the printer res-
olution, are inelegantly hard-coded into the framework.

RELATIONAL DATABASE SUPPORT

VW 2.0 supports access to relational databases via a set of
classes called the ObjectLens. This technology was initially
implemented by a third party vendor, but with this release has
been integrated into the base system. You need to buy a
Database Connect kit for each brand of database you intend to
access. Data can come from different sources simultaneously.
The system currently supports Oracle and Sybase, with plans
for DB2 and ODBC in the future.

Before I discuss the ObjectLens implementation, I must
review some significant differences between the relational
model and the object model. Although object databases are
not yet as widespread as relational databases, the differences
between the two models merits inspection. Nothing in the
object model is impossible to translate to the relational model,
but in several common cases, the performance is so atracious
that it is not worth it. There are several places where the rela-
tional model is weaker than the object model: when an
instance variable is a collection, when a collection must be het-
erogenerous, when a model uses subclasses, inheritance, and
polymorphism, or when the data must be encapsulated and
manipulated only through its methods. The first is simply
cumbersome; the second is difficult to achieve and still get
good performance, and the third can only be handled with
stored procedures, which is not true encapsulation.

The primary purpose of the ObjectLens is to transform
relational data between the database representation and the
object representation. However, there is a big difference
between accessing your relational data as objects, and storing
your object model persistently in an object database. While the
Lens supports both reading and writing the data, it does not
support the use of inheritance or polymorphism, and thus does
not fully support the object model. Thus, if you are designing
an object system with real subclasses, any use of inheritance,
and therefore polymorphism, cannot be supported by the
underlying database. For example, you could support both
Employee and Manager tables in the database, but if you tried
to model a Manager as a subclass of an Employee, the model-
ing tools do not support it. This is an understandable limita-
tion, since the modeling of inheritance through joins results in
unacceptably slow queries, and even slower updates. But the
primary use of the ObjectLens must be viewed as accessing
existing databases, typically legacy systems. (The ObjectLens
Database Modeler is shown in Fig. 5)

However, once a system is designed in a relational model,
necessarily without inheritance, encapsulation, or polymor-

phism, it is quite easy to map the tables onto Smalltalk objects.

And there are certainly enough relational databases out there,
and enough such data models, that the Lens technology is still

January 1995

Precise metrics
for advanced 00
development.

« Metrics collection facility for Smalltalk applications development
« Supports VisualWorks, Smalltalk/V for Windows, Win32s, Windows NT
« Complete graphical user interface = Fully supports Envy (opfional)

@bjcciSpace”

me SPECIALISTS IN OBJECT TECHNOLOGY

ProbDuCTs *TRAINING " CONSULTING “MENTORING “AUDIT:NG
For more information call 1-800-OBJECT-1, Email: info@objectspace.com

Copyrigh' Ob;ecrSpace, Inc. €194 All namas and Moderrarks are the proparly o° their respeclive owners,

Te

. Data Model:.

Flgure 5. The ObjectLens Database Modeler.

an important breakthrough, primarily because of its tight inte-
gration into the base classes and into VisualWorks. The Lens
Data Manager automatically transforms data between the
database internal form and the Smalltalk instance representa-
tion. The data manager also generates DataSet widget specs
from the table data models, making it simple to display and
edit tabular data. There is even support for the non-SQL pro-
grammer in the form of the Query Assistant: a canvas of push-
buttons that insert SQL syntax into the Query Editor window.
The Lens tools are the Ad Hoc Query tool, the Modeling
tool, the Mapping tool, the Key Editor and the Query Editor.
You use the Modeling tool to describe your tables as classes,
and then use the Mapping tool to map the table columns to
instance variables. If there are joins involved, the common keys
are designated via the Key Editor. You can then store queries
with the class, which are executed when the data is fetched.

11

There is considerable control and flexibility afforded via the
use of sessions, answer streams and transactions. You can con-
trol the granularity of the queries as well as the quantity of the
data returned with each fetch; you can also execute stored pro-
cedures in the database.

DLL AND C CONNECT

The DLL and C Connect ®LLCO product provides an interface
to external libraries written in C. There are two modes of link-
ing to C object code. Dynamic-link or shared libraries (DLLS)
are linked into the process address space at run-time. Static
linking is provided for those platforms that do not support
DLLS; object code is statically linked into the Object Engine
(the new name for the VM). Although this is structurally simi-
lar to creating user primitives, calling an entry point in a DLL is
considerably faster than calling a primitive; in some future
release, DLL access is likely to replace user primitives altogether.

To create an interface to a C API, you must first create an
interface class. The External Interface Builder parses the
#tinclude header files of the API and generates methods for the
API entry points. Because most calls to an API pass data of
particular types to the entry points, DLLCC also defines the
data interface, including #defines, typedefs, and structs. It is
even possible to represent extern data variables.

The external interface can be built in either debug mode or
optimized mode. Debug mode checks the types of all argu-
ments to the external functions; optimized mode does not.
Debug mode is used during development; the interfaces can be
optimized once they have been debugged.

It is also possible to define callbacks from C to Smalltalk.
When you want your C function to call a Smalltalk function,
you create a callback object for the Smalltalk method and pass
it to the C program. The callback object contains the address
of a thunk (a chunk of machine code) that performs the transi-
tion between the C caller and the target Smalltalk code. There
are some limitations on the usage and ordering of callbacks,
but these are well-documented, and don't seem too onerous.

I have only one criticism of this implementation. It is far and
away the best interface I've seen between Smalltalk and C, but
it’s incredibly difficult to debug on platforms that use segmented
memory architectures, such as DOS. DLLCC is designed for flat
32-bit data and code addresses. If you attempt to use include
files that do not explicitly include _far designations on both the
function and the parameters, the object engine calls the function
incorrectly, and the image summarily crashes. The engines on
certain platforms have an exception handler to trap faults during
DLL calls and return them gracefully to the image. This support
is not available on every platform, but because exceptions in an
API call are almost always due to an incorrect interface defini-
tion, it is much better to fail the API call and produce a walk-
back than to allow the image to crash.

THE ADVANCED PROGRAMMING TOOLS

The Advanced Programming Tools (formerly APOK) contain a
number of extraordinarily useful tools, some marginally useful
ones, and some downright lame ones. Most of the tools really are
for advanced developers: people whose livelihood depends on
delivering good Smalltalk apps quickly. As a developer, I would

2

like to see the some of the good stuff bundled with the base sys-
tem, but I can understand the appeal of the extra revenue stream.

The extremely useful tools include the Time and Space
profiles; these let you find performance and memory hot spots
in your code. No one should even consider deploying a
Smalltalk application until they have run their applications
under these tools. They will tell you things you probably
couldn’t have imagined, much less known. They are also
among the easiest profilers I have used, and will pay for them-
selves many times over.

The other excellent tool is the Full Browser. I use this
instead of the normal System Browser. It has an extra list pane
that shows the inheritance hierarchy of the class you are
browsing. Pressing the super/subs buttons includes the supers’
protocols in the protocol pane, and the supers’ methods in the
method pane. The current class contents are bolded, and the
supers’ contents are normal text. This permits instant identifi-
cation of inherited methods, and is of particular value in deep
hierarchies like ValueModel or ComponentSpec, where the
behavior is truly distributed. This is a tool that should be
included in the base system, if only for its pedagogical value.

The Static Analysis tools are very good implementations of
some not very interesting ideas. Their purpose is to detect
inconsistencies in your irnage, such as messages sent but not
implemented, methods that are never called, instance variables
that are never referenced, etc. However, due to the dynamic
nature of Smalltalk, you can never really tell that a method is
never called, nor can you tell if a reference to a nonexistent
method will ever get executed. Unreferenced variables waste
space, but they won't cause your application to fail. The intent
behind these tools is good, and they probably will help you
find inconsistencies, but I have found them to be of limited
utility in practice. The same goes for the class documentation
tool. It generates a very pretty listing of the class comment, the
superclasses, the instance variables, the method headers, and
optionally, the method bodies. But given the dynamism of the
typical Smalltalk image and the typical Smalltalk project, such
a listing would be out of date before it hit the printer.

Some of the tools are pretty worthless; they probably found
a niche somewhere, and so continue to be supported. Among
these are the Project Browser, which lets you switch immedi-
ately among the projects in the current image. I don’t know of
anyone who actually uses projects, so being able to browse
them is not very useful. The other tool of dubious value is the
VT100 Terminal emulator. I can’t imagine that someone
would need such an emulator and couldn’t find a shareware
version with more features. This one lacks essential features
like download protocols. The Window Browser is somewhat
useful, but it could be much more so. It displays a list of the
currently scheduled windows. When you select one, it expands
to show successively lower levels of widgets and components
under the window. The display consists of a simple textual
hierarchy; such a graphical function would be much better
served by a graphical display of the subcomponents.

The Parser Compiler lets you define the grammar for little
languages and automatically generates the parser for them. It has
found considerable use in some decidedly non-little languages.
This tool was used to generate the C scanner and parser for the

The Smalltalk Report

e

g Ne Strutegie

Object Expo returns to New York
in 1995 bringing together the
industry’s most respected Object
technology experts and leading
companies. Whether you’re just
exploring the possibilities, imple-
menting new Object-based ideas,
or a seasoned professional, Object
Expo has more to offer in 1995
than ever before.

Object Expo '95 Offers an
Extensive Technical Program
This year’s program offers the
stongest technical training available
through real-life case studies presented
by a prestigious faculty of OT pio-
neers and innovators. Tracks include:
® C++

» Fundamentals

* Business Stategies

e Databases

¢ Analysis and Design

¢ Smalltalk

NEW tracks focusing on;

¢ Client/Server Development

* Project Management Strategies

® User Experience

Concentrate on the issues concerning
you most!

Sponsored by:

Special Educational

Events Include:

A Keynote Speeches

A Walk-in Clinics with the Experts
A Product Education Sessions

A NEW!Product Briefings

Added Attractions

Open to all-

A User Group Meetings

A Birds-of-a-Feather Sessions

A Panel Discussions

Exchange ideas and brainstorm with
peers at these unique seminars feuled
by group participation.

Executive Briefing

Back by popular demand!

An intense session focusing on
the concerns of busy, upper-level
executives. Register seperately and
learn first-hand how others have
successfully implemented OT to
solve business problems. Searing
is limated, vegister early!

Don’t miss the most high-powered
gathering of OT professionals on
the East Coast! Be a part of this
week long event dedicated to set-
ting new strategies with object
technology that guide you to higher
levels of software productivity.

OB]EQ']: &IMWD Presented by:

Cetizow Smaliale BRLGO

THE NATIONAL CONFERENCE & EXPOSITION

NY Hilton
New York City

Please send me more information on

Object Expo

QO Attending U Exhibiting
Executive
Bricfing

S

22ADS

U Receiving Free
Exhibits Pass

O Artending
Technical
Conference

Name

Company
Address
City
State Zip
Day Phone
Fax

Mail or Fax coupon to: Object Expo
71 West 23rd Strect, New York, NY 10010
Fax: 212/242-7578

e iy

g, | &, 4] N\ st B 1 Al
Pb.-iﬁ!a ;‘*‘ “a B !‘aﬁ {!& ot ‘:;;

IBM SMALLTALK:
THE LANGUAGE

by David N. Smith, Sr. s
IBMT.J. Watson Research *g
o ¥
enter]
(30908-X) £
e

L/

-4 Announcing the first detailed reference book cover- ?:ﬂp

w ing the Smalltalk language found in IBM’s 4
&

r‘ Smalltalk and Visual Age products! Over 1400 “w
i_, ¥.: examples guide you through the concepts of IBM “:l“
Fa . Smalltalk in this practical tool that answers impor- : L/
F‘:I tant questions about the language. ';;I’
k’ii Engage in Smalltalk with the best—ask about IBM rﬁ";
"gy | Smalitalk: The Language today! 7 -4
~ T
£ " B
L @ THE BENJAMIN/CUMMINGS 7R
F‘l’ ' PUBLISHING COMPANY, INC. v ¥)
4
Available wherever fine technical books are sold b #|

¥
"'1 \ ‘! 1 SIS N 1 N
LR

DLLCC toolkit, as well as the parser for the CORBA Interface
Definition Language in HP’s Distributed Smalltalk.

The advanced toolkit contains some interesting classes for
numeric applications. The FixedPoint class permits calculations
with business-type numbers: currency, rates, etc., which require
fixed precision with minimal rounding errors. The Complex
class represents numbers with real and imaginary parts. The
MetaNumbers classes represent abstract numbers such as
Infinity, Infinitesimal, and NotANumber.

The last tool in the advanced toolkit is useful for measuring
Smalltalk performance on various platforms. It provides a
standard way to set up repeatable benchmarks. You can select
which parts of the system you want to benchmark and how
many iterations of the test you want to run. The output report
lists the minimum, maximurmn and average timings on each of
the tasks, and gives a cumulative result at the end. All else
being equal, this test will give you some of the volumetrics and
the performance requirements you will need to deploy a
Smalltalk application. For example, if there is a significant
speed difference between an 8 MB PC and a 16 MB PC, you

can decide whether to spend the money on the extra memory.

SUPPORTED PLATFORMS

This release of VisualWorks supports several additional plat-
forms. The complete list includes: SunOS 4, Solaris 2, IBM
RS8/6000, Sequent, HP/UX, Silicon Graphics, MS Windows
3.1 and Windows NT, OS/2, and Macintosh. Images are bina-

ry compatible across all of these machines.

14

NEW CLASSES

TimeStamp combines the Date and Time classes into a single
entity. This is useful for the many cases where you needed a
time and date combined, but had to use an Array instead. The
TimeStamp class contains useful behavior such as printOn:,
accessors for fetching date and time values, and methods for
comparing and hashing time stamps.

There are now Variable versions of CharacterAttributes and
TextAttributes. Fonts using these attributes will scale propetly when
moved among systems with differing resolutions and font engines.

The Menu classes have been completely rewritten for
release 2.0. The new implementation has a very clean design
and has simplified the creation of popup and cascaded menus,
but introduces some incompatibilities with release 1.0 code.
There is a file-in that restores some compatibility, but this is
an area to be aware of when upgrading.

SUMMARY

Release 2.0 is a long-awaited upgrade to the ParcPlace product.
The goal of binary compatibility across platforms has been
upheld even as additional platforms are added. VisualWorks
continues to improve as a GUI-building tool, and most of the
serious drawbacks have been addressed. The database connectiv-
ity is now excellent, allowing the rapid development of
client/server applications. The DLL and C support are so out-
standing, it is difficult to see where Smalltalk ends and the C
support begins.

The biggest disappointment in this release is that the
development tools are essentially unchanged. The class and
protocol categories are still flat. They would be much more
useful if they were hierarchical, and permitted sharing of
subcomponents. There should be much more connectivity
between some of the browsers; in particular, the source code
should be modeled and implemented via dependencies, so
when you change a method in the debugger, then return to
a different browser on the same method, you see the updat-
ed source rather than clobber your new change with a stale
copy.

For the future, ParcPlace has stated a desire to support
native widgets in a portable fashion. Exactly how they will
do this is an open question, but they express hope that it
can be done. There is also talk of namespace support,
which would eliminate clashes among source code from
different vendors.

Should you buy it? If you currently have 1.0, or you are
deploying applications on heterogeneous platforms, an
unequivocal yes. If you are serious about Smalltalk, want the
best and can afford it, yes. If you must have true native wid-
gets, rather than simulated ones, or your application depends
on features of specific operating systems or platforms, then
no.§

Jim Haungs is the founder of TeamTools, Inc. He specializes in Smalltalk

consulting, training, project management and software development. He

has a BSCS from RIT, and an MSE degree from Wang Institute. He can be
raached at jhaungs@teamtools.com.

The Smalltalk Report

Making MVC code more reusable

Bobby Woolf

WO of the most popular advantages that Smalltalk

provides programmers are the ability to implement code

that is highly reusable and the ability to easily produce
graphical user interfaces (GUIs). Ironically, Smalltalk code for
producing GUIs has been very difficult to reuse.

ParcPlace VisualWorks 1.0 introduces several new code
frameworks that enhance Smalltalk’s MVC (model-view-con-
troller) architecture and make its code for producing GUIs far
more reusable. Of these new frameworks, three are key:

* The value subview framework: Standard visual widgets that
all follow a simple, generic accessing protocol.

» The value model framework: Model wrappers that can adapt
any model to the generic accessing protocol.

» The domain model and application model framework: Separate
objects that divide a model's domain state from the services
it provides to its view.

These frameworks were added to support the Ul Painter and
UI Builder, VisualWorks tools that allow the user to easily craft
GUI views with very little custom code. You can also employ
these frameworks and the techniques they embody in your own
code to make it better factored, more reusable, and easier to
maintain. This article describes what these frameworks are, why
they are necessary, and how they work.

STANDARD MODELVIEW-CONTROLLER

In classic Blue Book Smalltalk’ (such as Objectworks 2.x),
objects are typically complex and contain a lot of state informa-
tion. Collaborating objects know how to access the various
parts of each other’s state and make use of them. This can
reduce the encapsulation of the individual objects.

A well-known example is the Model-View-Controller
architecture, where the model contains the state information
and the view displays it to the user.! Each view has to interact
intimately with its model, knowing exactly what messages to
send to get and set each state item and what updates to listen
for when the various state items change. Thus each kind of
window requires its own view class, customized for its particu-
lar model class. For a view to display # items, the model has to
contain those 7 items as state, and the view has to know exactly
how to use each of them.

The major disadvantage of this approach is that all of this
custom code is very difficult to generalize for code reuse. There
needs to be a simpler way to tell the view that it is composed of

*The “Blue Book” documents the original definition of Smalltalk.'

t For further information about the early days of MVC, see Krasner and Pope.

January 1995

subviews, where each subview displays a single part of the
model’s state,

PLUGGABLE VIEWS

The first attempt at creating reusable subviews was the plug-
gable view framework. Pluggable views, which were actually
used as subviews, were commonly used in Objectworks 2.5-4.1,
and the framework is still available in VisualWorks 1.0 and 2.0
for backwards compatibility.*

In this framework, each subview object contains state to
store selectors.’ Instance variables in the view contain selectors
for messages that the view sends to its model. These selectors
were used to interact with the model to manipulate that sub-
view’s part of the model’s state and services. In this way, the
subviews could be reused; however, each model class still need-
ed a lot of custom code to lay out the subviews and plug in
their selectors. In Objectworks 2.5, this custon code was stored
in a separate subclass of View; for example, Browser had a corre-
sponding BrowserView class. The redesigned visual hierarchy in
Objectworks 4.0 eliminated the custom view class entirely by
moving the custom code into the model."

An Example

As an example of how pluggable subviews work, consider a
view (typically a full window) that displays three attributes for a
person: name, address, and telephone number. The view’s
model would be Person, a subclass of Model that contains
aspects for these three attributes. The view contains three plug-
gable subviews to display the three attributes. Each pluggable
subview contains selectors for interacting with its aspect in the
model. In this way, each subview sends messages directly to the
model, which in turn is responsible for manipulating the
requested aspect that it contains. Figure 1 shows the relation-
ships between a Person model and its view.

VALUE SUBVIEWS, VALUE MODELS, AND VISUAL SPECS
The second attempt at creating reusable subviews was the
introduction of the value model framework and a library of

¢ In fact, in VisualWorks 1.0 and 2.0, all of the Objectworks development tools such as the
tode browsers, the debugger, the change list, and the file brawser are still implemented
using pluggable views such as ListView, TextView, and Buttan.

¥ A selector is an instance of Symbal that represents the name of a method. This method
name can be sent as a message to an object by perfarming the selector. To perform a selec-
tor on an object, send the object the message perform:... (defined in Object) with the selec-
tor as the argument.

1! For further information on the rearchitecture of the visual hierarchy in Dbjectworks 4.0,
see Leibs and Rubin.?

15

—
— Person —
name address phone
Name r | :::rr[l\::
address Address
address:
Phone l | 51?::::

Bonus Pull-But Section

Figure 1. A Person model and view using pluggable subviews.

Person

VM VM VM
address phone

Name | q' 7\‘1,:111‘:::
Address
Phone I L

- — =
Object Buyer’s &l

Winter ‘98
This concise eight-page

your handy source for shgj
newest OT-related products

For free, detailed vendo
either contact the company
the special OBJecT Buye
Service Card.

Stay current by discovering
products and services.

The next OBJECT BUYER'S
with the March/April Issue

Figure 2. A Person model and view using value subviews and value models.

simplified value subviews. The value model framework was first
introduced in Objectworks 4.1, but was underutilized until
VisualWorks 1.0 introduced the UI Painter with its palette of
standard visual widgets.

In VisualWorks, each value subview (analogous to the old
pluggable views) displays a single value, which is contained in
the view’s model. All of the value subviews manipulate their
values through the same standard interface protocol, treating
the value as though its aspect is value. In this way, any subview
can use any value with no customization necessary.

This simplified interface creates a problem, however. A typi-
cal model contains numerous state items, cach of which is a sep-
arate value. The subviews want these values’ aspects to be value,
but a model cannot contain more than one state item with a
particular aspect. A model has to give its state items domain
aspects that have reasonable, descriptive names (such as name,
address, and phone). So the descriptive aspect names must be
translated into the generic value aspect that subviews use.

This translation from the model’s descriptive aspect to the
subview’s generic aspect is performed by a value model. A value
model links the value subview to the corresponding domain
aspect of its view’s model, presenting a uniform, generic inter-
face on the widget side and employing whatever interface is
necessary on the model side. The value model can also perform
any translation necessary for converting the model’s state object
into a suitable subview value object and back again.

Thus the custom code is now concerned only with setting
up the proper value models on top of the relevant model

16

To Advertise in the
Object Buyer’s Guide,

please contact

Michael Peck at
212.242.14417

Next Issue:
March/April 1995

The Smalltalk Report

[oeme | [t] [ome

Person

SetectionChannel

name address || phone

name; address: [| phone:
name address phone
VM < VM <« > VM

PersonViewer

Name

Address

Phone

Figure 3. A PersonViewer application model and view interfacing with a Person domain
object.

aspects; this moves the customization out of the view and
into the model, encapsulating the customization completely
within the model. The other custom code concerns the
choice of visual widgets and their layout on the view; these
particulars can be described in a specification that is stored in
the model. Objectworks 4.0 was the first release to move the
code for view specification into the model. VisualWorks 1.0
abstracted the specification further, storing it not as code but
as an array of literals in a visual spec method, usually called
windowSpec. Rather than each model containing code for
interpreting the spec, all such code is stored in one model
superclass, ApplicationModel. Thus no custom view classes are
necessary; the models contain all of the custom code and
their views are constructed from general-purpose, highly
reusable visual widgets.

An example

Figure 2 shows the same Person model described earlier, but
this time implemented with ValueModels to hold each aspect.
In the view, the subviews look the same, but they are imple-
mented using the new value subview framework rather than the
old pluggable view framework. Thus each subview always uses
the getter and setter messages value and value:. These messages
are no longer sent to the model; instead, each visual widget
sends its messages directly to the ValueModel that holds the
widget's value.

In this way, the behavior needed to extract a value from the
model and the behavior needed to display the value visually are
factored into two separate objects. These two objects come
from the value model and value subview frameworks respective-
ly. Since any object from one framework will work with any
from the other, how the value is retrieved and how it is dis-
played can be mixed and matched as necessary to produce the
desired behavior.

January 1995

StaticSQL

StaticSQL is a powerful tool for building
high-performance Smalltalk applications
with data access o [BM DB2 databases

Comblnes flexibilty and ease of development of dynamic
g’rQIt-I wgg enhanced performance and security features of
atic SQL

[smalitalk/V and IBM Smalitalk

O os/2 [source Code Included
O tutorial [No Royattles

Neva Object Technology, Inc.

1409 Strattford Street, Sulte E, Brea, California, 92621, USA
Phone: (714) 671-4107 Fax: (714) 256-1916

Emall: 74077.2656@compuserve.com

Copyright Nevx Object Technology. Inc. 1994, Allnames and frademenks ara the property of thelr respectiva awness.

DOMAIN MODELS AND APPLICATION MODELS

Although the value model translation layer leads to greater
visual reuse, there is still a limitation in the reuse of model
behavior. Often a particular model can be displayed in several
different kinds of views; for example, one view might display
the model as a table showing how totals were derived, whereas
another might show the same model as totals graphed with
annotations. Each view displays only certain parts of the model,
allowing the user to picture the model in different ways. But
requiring the model to contain code describing every possible
view can become burdensome and limit reuse.

Furthermore, although some views display the model's state
directly, others require that conversion and translation be per-
formed on the state to generate the display data. For example, the
model might not store the totals; instead, it would calculate them
for the view. In fact, the sources of the data might be factored into
multiple models. Maintenance is complicated when one must try
to determine what conversion code is used for which view.

To address these problems, VisualWorks 1.0 divides the
model into two pieces: the domain model and the application
model.* The structure of a domain model fits the structure and
responsibilities of the real world object it represents. The app/i-
cation model’s structure fits the structure of the data its view will
display.” Thus domain models do not have views; instead, the
view is attached to an application model that in turn is attached

* The motivation for separating the domain model and the application model is discussed
briefly in VisualWorks User's Guide.*

“James Rumbaugh discusses how to derive domain madels and application models from
use cases.’

17

Database Solution for Smalltalk/V
A class library for ODBC Database Access

8 ODBC 2.0 support

B Automatic class generation

B Native data type support

B online help, source included, no numtime fees

Available for Winl6, Win32s, Win-NT, 0S/2 and PARTS
"... Simple but elegant ..." - Australian Gilt Securities

e~
ODBTalk

Client Server Solution for Smalltalk/V
A class library for Windows Sockets Development

] =

Socktalk

8 UDP and TCP Sockets

B Synchronous and asynchronous support
§ sample code for remote disk browser app
H online help, source included, no runtime fees

Auvailable for Winl6, Win32s, Win-NT

Tel: 416-787-5290

i i Fax: 416-797-9214
meufmkgﬁmm CompuServe: 73055,123
k e Internet: lucc@tor hookup.net

to the domain model. The application model is responsible for
converting and translating the domain model’s state as neces-
sary to suit the view, and it contains the ValueModels that the
view requires. Typically, if different styles of views can be
opened on the same domain model, each view style is imple-
mented in its own application model.

By separating the domain model from the application model,
the domain model’s behavior can be used by multiple application
models. Like a client and a server, the application model can del-
egate many of its tasks to common services performed by the
domain model. Often, much of the application model’s state is
virtual; when accessing messages are sent to the application
model, it simply delegates some or all of these tasks back to the
domain model. In this way, the view neither knows nor cares
how much state is stored in the application model and how

much is actually passed straight through from the domnain model.

An Example

To see how useful it is to separate the domain model from the
application model, consider a system containing multiple
Person objects. With the view built directly on the Person, dis-
playing a different Person requires closing the first Person's
view and opening a second identical view. This is inefficient in
many ways! But if this behavior is divided into two objects, a
Person and a PersonViewer, the code needed to support the
view can go in one object and the state to be displayed can go

*This selection channel technique is described in ParcNotices.! It is employed by
RolodexExample in VisualWorks 1.0.

18

in another. With this architecture, to switch from one Person to
another, the PersonViewer and its view simply switch from the
first domain model to the second.

Figure 3 shows the two models in this example. The
PersonViewer, an application model, contains the state needed by
the view; it derives this state from a Person object, a2 domain
model. Although this simple example shows Person only con-
taining the three aspects that the viewer displays, the application
model often displays only a subset of the domain object’s state
and often translates it heavily to display it. The domain probably
consists of several people; the SelectionChannel allows the appli-
cation model to easily switch from one Person to another.™

CONCLUSION

New frameworks in VisualWorks 1.0 enable customized views
to be created with a minimum of custom code. Views are com-
posed of highly reusable value subviews. Each value subview
interfaces directly with its aspect in the model via a generic
protocol. All custom code concerning the view is stored in the
model. Finally, the model’s domain state and its view support
have been separated into distinct objects so that multiple views
can easily share a single domain object. This separation of
responsibilities into distinct, collaborating objects leads to well-
factored, well-encapsulated code that is not only highly reusable
but also far easier to maintain.

While VisualWorks enables nonprogrammers to develop
sophisticated looking views, you can use your programming
skills and the new frameworks in VisualWorks to produce
equally sophisticated behavior in the model. In the process,
you're developing code that is more reusable, better encapsulat-
ed, and simpler to maintain.

References

1. Goldberg, A., and D. Robson, SMALITALK-80: THE
LANGUAGE AND ITs IMPLEMENTATION, Addison-Wesley,
1983.

2. Krasner, G. E., and S. T. Pope, A cookbook for using the
Model-View-Controller user interface in Smalltalk-80,
JOURNAL OF OBJECT-ORIENTED PROGRAMMING,
1(3):26—49.

3. Leibs, D.]., and K. S. Rubin, Reimplementing model-view-
controller, THE SMALLTALK REPORT, Mar./Apr. 1992,
1(6):1-7.

4. VisUALWORKS USER'S GUIDE, Release 1.0, ParcPlace
Systems, Inc., 1992, pp. 111-112, 121-122.

5. Rumbaugh, J., Getting started: Using use cases to capture
requirernents, JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, 7(5): 8-12, 23.

6. The discrete charm of the ValueModel, PARCNOTICES,
Summer 1993, 4(2):1, 8-9.

Bobhby Woolf is a Member of Technical Staff at Knowledge Systems Corp.,
where he is developing techniques for using VisualWarks to develop highly
reusable and easily maintainable software components. He has also been a
Software Engineer at Ascent Logic Corp., where he developed and
maintained reusable software components and views in Objectworks.
Comments are welcome at woolf@acm.org.

The Smalltalk Report

Smalltalk Idioms

Demand
loading for
VisualWorks

B efore I jump into this month’s column, I'd like to tell

KENT BECK

you a little about what I learned at Digitalk’s DevCon
this year.

RANT

One thing I learned is that Digitalk is finally coming around to
the idea that third-party support is important to their success.
The slow growth of the third-party parts market has hurt
them, I think, and they want to fix that. Their Partners
Program, the third party catalog to be shipped with their prod-
uct, and their public and private staterents at DevCon give me
hope that they are coming around. Their past neglect was made
painfully apparent by the number of repeat third party vendors
showing in booths (three, I think).

The wackos are still around. Despite all of their best efforts
to put Smalltalk in a blue suit with wingtip shoes, DevCon is
still £he place to meet interesting folks. I found more odd, inter-
esting, intriguing, stimulating perspectives at DevCon than
OOPSLA, the ParcPlace User’s Conference (which was a great
party for other reasons), and all the commercial object confer-
ences combined. I don’t know what it is about V, but it still
attracts a fun crowd.

The last thing I learned is more disturbing. I talked to Greg
and Bruno from Intelliware in Toronto while I was there. You
may recall that I mentioned how much they learned when I
visited them a couple of years ago. Apparently some readers
(not you, of course) read what I had written very differently
than I had intended. Greg and Bruno are still taking grief from
that one brief comment, as if I had said they were stupid or bad
programmers.

Let me be very clear about this. I have a world of respect for
them. They had the guts to start their own business on what
was then a pretty risky technology, they had the smarts to make
it work, shipping an impressive manufacturing application to
the automotive industry, and I believe they have the technical
talent to go a long way from there. Last but not least, they
knew they needed help, so they asked for it and got it. They

Iient Becle has been discovering Smalltalk idioms for eight years at Tektronix,

Apple Computer, and MasPar Computer. He is the foander of First Class Software,
s and distbutes reengmeering products for Smallialle He can be

I at First Class Soltware, P.O. Box 226, Boulder Creel,, CA 95006-0226, ar
08.328.4649 {phone), 408.338.3660 {fax), 707611216 {Compuserve).

January 1995

really “got” patterns. I expect great things of them in the future.

The lesson for me is that I have to be very careful about
what I write. People out there are taking what I write seriously,
so I have to take what I write seriously, but without taking
myself seriously (the dirty diapers help). The lesson for you is
to read, yes, but make your own conclusions. I'm sitting here in
my living room/office with a deadline, not coming off a moun-
tain with stone tablets.

I feel better having gotten that off my chest.

PROBLEM
No patterns this time. Instead, I'll show you some code I wrote
for a client who was having performance problems. It is inter-
esting for several reasons:
* It shows how you can use inheritance to separate the design
from the implementation
* It shows an appropriate use of a dangerous low-level feature
* It shows how important it can be to understand your under-
lying Smalltalk implementation
I described this code to Jon Hylands at the Object People. He
proceeded to show me an implementation of the same idea for
V. Great minds run in the same gutters, eh Jon?

The client and I discovered that we were thrashing
Windows virtual memory. The only solution was to reduce the
memory requiremnents somehow. The Stripper begins to address
the footprint problem by removing unused classes before
deployment (in addition to removing certain classes to satisfy
the standard runtime license agreement). Unfortunately, it is
not always possible to statically determine which classes will be
used at runtime. Aggressive stripping, removing classes that
may be used but you think won't be used, further reduces foot-
print, but at the cost of correctness. You'll get a smaller image,
but will it run?

This column describes a complimentary approach to reduc-
ing memory footprint- demand loading. Rather than discarding
objects that may not be used, demand loading waits until a
value is wanted, then loads it from disk. The implementation
makes this process transparent to the runtime code. To invoke
demand loading, you need only add a step to the standard
Stripper that sets up the variables to be so loaded.

OVERVIEW

When I have a VisualWorks problem that I can't solve, I talk it
over with David Liebs. I generally only understand half of what
he says, but the half I get is usually enough to get me unstuck. I
had tried a couple of different approaches to demand loading
without success, and there was a lot riding on an answer for me
and the client, so I asked David. He immediately told me the
trick that got me going (thanks, David!).

Global, Pool, and Class variables are stored as Associations,
where the key is the name of the variable and the value is the
value. If you have a method that uses the value of a global vari-
able, the compiled version of that method refers to the same
Association as the Dictionary that owns it. For example, if we
compile:

Object>>foo

~Foo

where Foo is a global variable, we get Figure 1.
19

Smalltalk Idioms

Key = #Foo
vatue

Figure 1. A compiled method refering to a global variable.

In VisualWorks, unbeknownst to you, when you access one
of these variables, the dynamic translator sends “value” to the
Association to get the value. This gives us the leverage we need
to implement demand loading.

The strategy is to replace the standard Associations for
demand loaded variables with a LoadingAssociation that over-
rides “value.” If the value is already in the image, the
LoadingAssociation just returns it. However, if the value has not
yet been loaded, the LoadingAssociation uses a stored file name
to retrieve the value before returning it.

CompiledMethod
bytes

mclass
sourceCode

1

\

\

LoadingAssodation
Key =* #Foo

value

file =* 'foo.bst'

[—

Figure 2. A demand loading global.

Actually implementing this requires a bit more detail, as
classes are handled specially by the Binary Object Streaming
Service ‘BOSS. LoadingAssociation provides the framework
that ClassLoadingAssociation exploits to load classes.

LOADINGASSOCIATION

LoadingAssociation is a subclass of Association. It will demand
load arbitrary objects, so it could be used for lazily initializing
large static data structures. For purposes of demand loading
classes, however, it mostly acts as an abstract superclass. Since
its implementation is simpler than ClassLoadingAssociation, it is
still a good place to begin studying the implementation of
demand loading.

20

Class: LoadingAssociation
superclass: Association
instance variables: file
The instance variable “file” holds a string, which is the name of
the file from which the value will be loaded.

When a LoadingAssociation is asked for its value, it first
checks to see whether it has a value. If not, it reads the value
from the file.

LoadingAssaciation>>value

value isNil ifTrue: [self readValue].

~super value
Reading a value requires that the LoadingAssociation open a
BOSS reader on a ReadStream on the file, read the value, then
make sure the file gets closed.

LoadingAssociation>>readValue

| stream |
stteam := BinaryObjectStorage onOldNoScan:
self filename readStream.
[value := self readValueFrom: stream]
valueNowOrOnUnwindDo: [stream close]
Reading the value is placed in a separate method because read-
ing classes will be different than reading arbitrary objects. The
implementation here simply reads the next object from the
BOSS stream:
LoadingAssociation>>readValueFrom: aStream
~aStream next
The LoadingAssociation comes up with a concrete file name by
concatenating the file instance variable with a default directory.
The implementation here uses the same directory in which the
image file was found. You could use a class variable for the
directory to gain more flexibility, or even add an instance vari-
able to each LoadingAssaciation so different objects could be
found in different directories:

LoadingAssociation>>filename

~self directory construct: file

LoadingAssociation>>directory

~Filename defaultDirectory
Creating a LoadingAssociation is simple. The class message
replace: anAssociation file: aString creates a LoadingAssociation,
writes the value of anAssociation to disk and removes the refer-
ence to the value from the LoadingAssociation. If there are no
other references to the object, it will be deallocated by the
garbage collector:

LoadingAssociation class>>replace: anAssociation file: aString

~self new replace: anAssociation file: aString
There is also a convenience method to unload a global variable
that takes a Symbol as a parameter instead of an Associaon:

LoadingAssociation class>>replaceGlobal: aSymbol file: aString

~self replace: (Smalltalk associationAt: aSymboll) file: aString
The implementation of replace:file: is a bit tricky.
CompiledMethods contain references to the Associations that
were found at compile time. Thus, if we want to demand load a
global variable, it is not enough to simply remove the
Association from the SystemDictionary and replace it with a
LoadingAssociation. We have to change all references to the old
Association into references to the LoadingAssociation that will
replace it. Kids, don't try this at home!

LoadingAssaciation>>replace: anAssociation file: aString

The Smalltalk Report

THE NEW WAY TO LEARN O-O METHODS FAST!

An Object
Methodology Overview

SIGS Books has harnessed the latest in interactive
multimedia and (D-ROM technology to bring you
this desktop training seminar entitled

AN 0BJECT METHODOLOGY QVERVIEW.

‘‘‘‘‘ B e WHAT YOU'LL LEARN

ceeme T e - What are the different kinds of 0-O methodologies?
- Which methods are strong for Analysis? Design?

- How can you mix 0-O methods on a project?

- Is OOD really just “more OOA™?

- Which methods work best for client/server systems?
- What to consider when choosing an 0-O CASE tool.

ACTUAL ON-SCREEN DEMONSTRATIONS OF:

- Rumbaugh Method
- Jacobson Method
- Booch Method
- Coad/Yourdon Method
- How to Combine Different Methods

BENEFITS OF (D-ROM TRAINING

Cost-Effective: Augments or replaces on-site training seminars.

- Time-Efficient, Convenient and Flexible: Complete the seminar at your own pace
and on your own schedule. You can save your place and resume the training
seminar at any time.

- Fully Interactive: Simply drag a slider control to repeat or move to any part of a
demo or narrated slide..Double-click the text of a bullet to repeat that bullet's
narration...Click a button to display an overview of the presentation, from which
you can instantly jump to any topic.

Experience this accelerated training technique. Order today.

SIGS BOOKS CD-ROM TRAINING ORDER FORM

Q YES! Please rush me An Object Methodology Overview for $995.
I have 15 days to decide whether or not I want to keep the CD-ROM: if not, I'll return
it for a full refund. no questions asked.

METHOD OF PAYMENT Name

Q Check Enclosed { Payable to SIGS BOOKS) Tile

Q0 Macintosh Version O PC Version® Company

 Charge My: Q Visa U Mastercard 0 AMEX Address

CardNe Exp City

Signature State Zip

US. orders add $5 for shipping/handling; Canada add $10;: Country/Postal Code
Foreign add $15; NY state residents add applicable sales tax
Allow 4-6 weeks far delivery. *Available January 1995.

SBCDR Fax

Phone

Smalltalk Idioms

file := aString.
key := anAssociation key.
value := anAssociation value.
self unloadValue.
andssociation become: self
Unloading the object just writes it to disk and removes the ref-
erence. It is in its own method because you may want to
dynamically unload objects at some point in the future (this
capability is not currently used). As currently written,
LoadingAssociation is directed at reading, not writing, values.
You could change this by adding a flag that was set when a
LoadingAssociation was written to (by overriding value:):
LoadingAssociation>>unloadValue
self writeValue.
value := nil
Writing a value is analogous to reading one. The inner unwind
block is there in preparation for fail-soft value writing
(although unloadValue still overwrites the value instance vari-
able, duh):
LoadingAssociation>>writeValue
| stream oldValue |
stream := BinaryObjectStorage onNew: self filename writeStream.
oldValue := value.
[[self writeValueOn: stream]
valueOnUnwindDo: [value := oldValue]]
valueNowOrOnUnwindDo: [stream close]
Again, the details of writing the value on a stream are broken
out to facilitate ClassLoadingAssociation:
LoadingAssociation>>writeValueOn: aStream
aStream nextPut: value

CLASSLOADINGASSOCIATION ClassLoadingAssociation takes the
framework provided by LoadingAssociation and adapts it to the
details of reading and writing classes. All of the difficulties
come because global variables are routinely accessed by BOSS
and the ClassBuilder, which will be used to read and write the
values of ClassLoadingAssociation. Thus, we have to worry
about having a ClassLoadingAssociation invoked when it is
already in the middle of being read or written. The first line of
defense is adding an instance variable, isLoading, which will be
true while the ClassLoadingAssociation is loading its class:
Class: ClassLoadingAssociation
superclass: LoadingAssociation
instance variables: isLoading
ClassLoadingAssociation class>>new
~super new initialize
ClassLoadingAssociation>>initialize
isLoading := false
Writing classes uses the BOSS protocol nextClassesPut:
aCollection, which writes a Collection of classes. Classes are in a
special format so that variable references can be correctly
resolved when reading classes in and the classes can be installed
in the SystemDictionary automatically. The current implementa-
tion writes a single class at a time. You could probably get per-
formance improvements by reading clusters of related classes,
but the external protocol for writing the classes, and the analy-

22

sis that would go into creating clusters, would make this solu-
tion more complex:

ClassLoadingAssociation>>writeValueOn: aStream

aStream nextPutClasses: (Array with: value)
There are two pieces of system code that we have to worry
about for re-entrancy. The first is the ClassBuilder. When it
runs, it looks to find the current class to see if it should modify
the existing class or create a new one from scratch. If there is
no class (which is what we are simulating), the ClassBuilder
does the right thing for us. But to convince the ClassBuilder
that there is no class, the ClassLoadingAssociation has to
remove itself entirely from the SystemDictionary. If it just
returns nil (or some other bogus value), the ClassBuilder will
complain that you are replacing a nonclass value with a class:

ClassLoadingAssociation>>readValueFrom: aStream

isLoading := true.
Smalltalk removeKey: key.
~[aStream nextClasses first]
valueNowOrOnUnwindDo:
[isLoading := false.
Smalltalk
removeKey: key;
add: self]
This method embodies yet more trickiness. Recall that all of
the CompiledMethods in the system that refer to a variable have
references to the (in this case ClassLoading) Association. After
we have loaded the class, there is a new Association in the sys-
tem referred to by the SystemDictionary. We have to remove the
new Association entirely and put the ClassLoadingAssociation
back in the SystemDictonary so all those references are consis-
tent.

The second piece of system code that we have to worry
about is DicHonary. In reading in a class and resolving its refer-
ences, and in executing the "removeKey:"s in readValueFrom:
above, the SystemDictionary (a subclass of Dictionary) sends
messages to its Associations. Thus, while a
ClassLoadingAssociation is loading, it must avoid restarting the
loading process:

value

isLoading ifTrue: [*Object new].

~super value
Second (and this is the trickiest part of this implementation),
when BOSS is writing a class that accesses Pool dictionaries, it
uses keyAtValue: to find the name of the Dictionary.
Unfortunately, Dictionary>>keyAtValue: sends value to each
Association. If we have unloaded some
ClassLoadingAssociations already, this causes them to be loaded
again, negating the effects we are looking for. A little judicious
slicing removes the need to send value in executing
keyAtValue:. First, we have Associations test whether their
value is identical to a given Object:

Association>>valuels: anObject

“value == anObject
Second, we invoke this method instead of sending value in
keyAtValue:. Rather than replace the implementation in
Dictionary, I decided to override the implementation in
SystemDictionary, to reduce the possibility of any conflicts:
SystemDicHonary>>keyAtValue: value ifAbsent: exceptionBlock

The Smalltalk Report

self associationsDo:
[zeach | (each valuels: value) ifTrue: [“each key]].
~exceptionBlock value

USING DEMAND LOADING All that remains is to create
ClassLoadingAssociations as part of stripping. Stripper provides
the method postStrip, which you can modify to unload classes
you won't always need right away. Here is an example that
unloads the business graphics classes:
Stripper>>postStrip
| classes |
classes := Smalltalk select:
[:each |
each isBehavior
and: [(each name index0fSubCollection: 'BG_' startingAt: 1)
> 0]].
ClassLoadingAssociations unloadClasses: classes
UnloadClasses writes to a contiguous set of file names. You
should only invoke it once per strip to avoid gegerating the
same file names more than once:
ClassLoadingAssociation class>>unloadClasses: aCollection
| classes |
classes := SystemUtils sortForLoading: aCollection.
classes
with: (1 to: classes size)
do:
[:eachClass :eachIndex |
self
replaceGlobal: eachClass name
file: eachIndex printString , 'c.bst']
You will have to experiment with this facility to find the right

time/space tradeoff for your application.

CONCLUSION
There are several interesting points to make about the code
above:

You have to understand the virtual machine. As much as
wed like this not to be true, when you are writing system code
(I'd certainly call LoadingAssociation system code, not applica-
tion code), the more you know about the implementation the
better.

The design is subtly platform specific. Jon Hyland’s demand
loader for V takes a very different approach to solving the same
problem. Because Digitalk’s implementation of become: is so
much slower than ParcPlace’s, he uses doesNotUnderstand: to
forward all messages to the class.

You can use inheritance to separate design from implemen-
tation. In general, I am against using inheritance to express any
important concept. In this case, though, it came in very handy.
You can read the LoadingAssociation code and understand the
design. All of the nasty details about how loading classes inter-
feres with the system are hidden in the subclass. A similar use
of inheritance is to create a simple, general superclass and an
optimized subclass.

As always, I'm interested in your comments. My column
on the testing framework actually garnered me half a dozen
email messages. If you're using it for anything interesting, let
me know.Q

January 1995

| ‘
SMALLTALK

SOLUTIONS

Don't
miss
Smalltalk
Solutions '95

L

Special Conference

Preview Section
(See page 33)

February 21-24, 1995
Omni Park Central
J New York, NY

by Tom Love

(ISBN: 0-9627477-3-4)

$29.00

To order a copy of
Object Lessons

call (212) 242-7447
Customer Service Dept.

SIGS
BOOKS

AVAILABLE FROM SIGS BOOKS

OBJECT LESSONS

Tom Love reveals the absolute
do’s and don’ts of adapting
and managing object-orient-
ed technology. Love’s “trade
secrets” demonstrate the how-
to’s of putting theory into
practice. You will benefit from
an insider’s view of major
companies’ successes and fail-
ures in O-O projects. Save
countless hours and dollars by
learning from their costly
mistakes.

This book is written for those
making decisions on design
and management of large-scale
commercial object-oriented

software.

Available at selected book stores. Distributed by Prentice Hall,

23

The best of comp.lang.smalltalk

Safety and
inheritance

I’M writing this column just after returning from OOP-

ALAN KNIGHT

SLA. This was a very thought-provoking experience, so

rather than combing the net for postings of interest, I'm
just going to talk about a couple of topics that sparked my
imagination.

SOFTWARE SAFETY

One of the most interesting talks at the conference had nothing
to do with objects. It was Nancy Levenson’s invited talk on
“System Safety and Software Design.” Like many in the
Smalltalk community, my work has been mostly in research and
business applications, so I hadn’t had much exposure to the issues
involved in safety-critical software systems. I found this a very
frightening talk, particularly since many of the points were illus-
trated with anecdotes about things blowing up and people dying.

There were two main points. The first is that people have
far too much faith in computer systemns. More and more safety-
critical systems are being turned over to computer control, and
faith in the computer can lead to insufficient “traditional” safety
precautions. The second point is a basic one in safety and relia-
bility engineering, but new to me. It is the critical difference
between safety and reliability.

A reliable system is one in which failures are rare. Measures like
testing, code inspections, static type systems, formal methods, and
assertions are all attempts to make our programs more reliable.
Reliability is a good thing, but it shouldn't be confused with safety.

A safe system is one in which failures rarely cause bad
things to happen. While it’s true that a system that is 100%
reliable is also safe, we all know that such systems don’t exist.
Although in theory a computer system can be completely reli-
able, in practice all software has bugs. In pursuit of the unat-
tainable goal of perfect reliability, we too often fail to consider
the consequences when our systems do fail.

Safety and Smalltalk

This talk didn't even mention Smalltalk, but it certainly made
me think about it. In particular, it made me think about an
argument often employed by critics of dynamic typing. It’s
often said that dynamic typing is inherently unsafe and that

Alan Knight 1s a consultant with The Object Peaple. He can be reached at
G13.225.8812, or by email as knight-tacm.arg.

only by locking ourselves into the restrictive frameworks of cur-
rent static typing systems can we make our systems safer. This
often takes the form of cheap shots about “message not under-
stood” errors in safety-critical systems.

For example, digging through my archives, I find that no
less a luminary than Bertrand Meyer, inventor of the (statically
typed) Eiffel language, wrote, in response to a comment about
runtime checking:

Isn't run time perhaps a little late?
Men and women of the second battalion! Because of a small
programming error, the Patriot missile meant for the other side
is actually coming back and will blow up all of us in about 22
seconds. You will be glad to know, however, that thanks to the
runtime type checking mechanism my screen just displayed
MESSAGE NOT UNDERSTOOD. So there is nothing
wrong with our software technology, and we can all die happy.
Long live our country! Long live dynamic type checking!
T've been known to respond to this kind of thing with my own
cheap shots about locking yourself in a straightjacket to make it
harder to shoot yourself in the foot. Nancy Levenson talk,
however, pointed out a much deeper fallacy in these arguments.
They talk a lot about safety when what they really mean is reli-
ability. This is easily seen from a couple more examples. Robert
Martin (mrmartin@rcmcon.com) wrote:
The issue is type safety. In C++, to get the undefined behavior
mentioned above, you must explicitly break the type rules
(downcast). In Smalltalk, there are no type rules to break. In
both cases the result is a runtime fault. ...While I agree that
Smalltalk behaves a little better than C++ during this runtime
fault, I also assert that the difference doesn’t amount much to
the customer whose application just crashed.
And in a very concise statement of these ideas, Andrew Koenig
(ark@research.att.com) wrote:

Message not found is Smalltalk's way of spelling “core dumped”

Message not Understood = core dump

The critical assumption here is that there is no significant dif-
ference between a “message not understood” exception and the
type of error that provokes a core dump in C or C++. This is sim-
ply not true. While both of these situations are equally serious in
terms of reliability, the difference is in safety. In C or C++ we have
few options for dealing with such an event and no guarantees that
the machine and operating system state have not already been cor-
rupted to the point where recovery is impossible. In Smalltalk, the
systemn raises an exception as soon as the error occurs, and allows
us to deal with that exception however we like. We can have some
confidence in the system state, and we have a metaframework that
allows us to examine and modify that state in more detail than is
possible in most languages. If the situation is unrecoverable, we
still have the ability to shut down in a disciplined way.

Does that mean I'd write a safety-critical system in Small-
talk? At this point I don't know. The main thing I'm sure of is
that I don't know enough about writing safety-critical systems
and that I'd need to learn a great deal more about the subject
before I'd make any serious decisions. I'd be nervous writing a
safety-critical system in Smalltalk, but I'd be nervous doing it
in any language that I know of. I'm quite sure I wouldn't even
attempt it in C or any of its derivatives.

The Smalltalk Report

Announcing...
a hook whose time has come.

Part of the Advances in Object Technology Series
from SIGS Books...

Objectifying
Real-Time Systems

by John R. Ellis

Objectifying Real-Time Systems presents guidelines for
creating a real-time information processing system
Requirements Model. The methodology presented is an
evolution of popular Real-Time Structured Analysis
(RTSA) techniques into object—-based Real-Time
Object—Oriented Structured Analysis (RTOOSA).
Although predominately concerned with identifying
objects and their behaviors, this book adapts the nota-
tion of RTSA and capitalizes on its key products by
using object technology.

Objectifying Real-Time Systems first introduces the
reader to the basic concepts of O-O programming,
establishing a common understanding of “objects”.
Then, the reader learns how to create each of six
RTOOSA Requirements Model products and learns
how these products interact to allow verification of a
complete and consistent model. The author draws on
twenty—seven years of development experience with
real-time systems for examples.

Who should read this book?

Anyone interested in developing object—based
real-time systems. The reader does not need to possess
a background in OT, but should have a solid grasp of
RTSA.

Please rushme _____copies of
OBJECTIFYING REAL-TIME SYSTEMS
at the low rate of $44 (including diskette)

METHOD OF PAYMENT
[Check Enclosed (Payable to SIGS Books)

[Charge My: [1Visa []Mastercard [] AmEx
Card # Exp

Signature

U.S. orders add $5 for shipping/handling; Canada add $10; Foreign add
$15; NY State residents add applicable sales tax. Please allow 46 weeks
for delivery. ISBN: 0-9627477-8-5

Objectifying
Real-Time

John R.Ellis

ISBN: 0-9627477-8-5
(525 pages with diskette)

About the author...

John R. Ellis is a senior systems engineer at Harris
Corporation’s Government Aerospace Systems Division, where
he has worked on a variety of commercial, military and NASA
embedded real-time software systems for the last 15 years.

Available at selected bookstores. SIGS
Distributed by Prentice Hall. BOOKS
SHIPTO
Name
Title
Company
Address
City State Zip
Country/Postal Code
Phone Fax

TO ORDER- MAIL to: SIGS Books, P.0. Box 99245, Collingswood, NJ 08108-3970
FAX to: 609/858-2007 or PHONE: 212/242-7447

The best of comp.lang.smalltalk

INHERITANCE

The conference also got me thinking about the use of inher-
itance, one of the most oversold and misrepresented aspects of
object-oriented programming. What does inheritance really
represent? s it:

* the “is-a” relation, which is rather vague but has something to
do with mathematical subsets and “real~world” relationships
* subtyping or substitutability—being able to use a subclass
anywhere that a superclass is expected
* re-use of superclass code and/or representation in subclasses
= all of the above
There seems to be a widespread impression that inheritance
represents all of the above simultaneously. It’s not true, and in
fact these uses actually contradict one another. While “is-a” is
commonly used for inheritance as a modeling concept, it simply
doesn't map to implementations. A square most definitely “is-a”
rectangle, but Square as a subclass of Rectangle won’t work well
for either subtyping or code sharing.

If your code isn’t going to get very muddled, you really have
to pick one of these uses as primary. In Smalltalk, it’s code
sharing. This has very significant consequences for the attitudes
towards inheritance. While code sharing is nice, it’s not essen-
tial, and it’s not the foundation of our thought processes.

Alan Kay' wrote:
.. since things can be done with a dynamic language that are
difficult with a statically compiled one, I just decided to leave
inheritance out as a feature in Smalltalk-72, knowing that we
could simulate it back using Smalltalk’s LISPlike flexibility.
And Kent Beck® wrote:
Inheritance is the least important of the three facilities that
make up objects. You can do valuable, interesting object-
oriented programming without using inheritance at all.

Inheritance is certainly very convenient, and I'd hate to have to
do without it, but the exact form of the inheritance hierarchy isn't
all that significant, and we expect to be able to change inheritance
relations over time without causing major disruptions.

The general OO hype, however, puts a great deal of empha-
sis on inheritance. Partly in rejection of this hype, Smalltalkers
often deny any additional significance to inheritance at all.

For example, Kent Beck also wrote:
Inheritance is about code sharing, period.

T've never been completely comfortable with this view either.
While I feel sure that code inheritance is neither subtyping nor
“is-a,” I do think there’s something more to it than just an
implementation convenience. When I look at an inheritance
hierarchy that seems right, there’s usually some sort of relation-
ship beyond just re-using code. When I look at a hierarchy that
intuitively seerns wrong, I don’t think it’s just because the code
sharing is suboptimal. I have a deeper feeling that those things
don't belong together. I muddled along with this feeling for a
while, sure that there was something more to inheritance, but
not knowing what to call it until I came across a very interesting
idea.

Inheritance is not re-use
Richard Gabriel's JOOP (JOURNAL OF OBJECT-ORIENTED

26

PROGRAMMING) column is one of the most consistently inter-
esting commentaries on OO issues. While I often disagree with
his conclusions, his ideas are always provocative. In one discus-
sion on the use of abstraction3 I came across a particularly
interesting idea about the nature of inheritance.

Inheritance is often described as being code reuse, which is
sort of true, but not completely accurate. This column had a
much better description of inheritance as code compression.
Using inheritance allows us to remove redundancy, expressing
the same idea in less code.

The critical point is that compression is not necessarily good.
While it reduces the amount of code, it introduces coupling
between superclasses and subclasses, making the code more brit-
tle. If we make a change to a superclass and it should be propa-
gated to the subclasses, then this coupling was good. If we don't
want the change propagated then the coupling was bad.

This suggests a metric for inheritance. Two things should be
related by inheritance when we expect them to change together.
Why would we expect them to change together? Because there
is some kind of relationship between them. This provides a jus-
tification for the idea that superclasses and subclasses should be
related, even though all we're trying to do is share code. What
it doesn't do is prescribe the nature of that relation. We might
expect that they share some responsibilities, represent similar
abstractions, or just that one is an incremental modification of
the other. Ultimately, though, it’s just a heuristic, and we should
be prepared to abandon the inheritance relation if it’s doing
more harm than good.

This is also interesting for the perspective that it puts on
multiple inheritance. In static languages where polymorphism
depends on inheritance, multiple inheritance is an absolute
necessity. Those who want inheritance to reflect “is-a" relations
want multiple inheritance because “Spoon must clearly inherit
from KitchenUtensil, MusicalInstrument, InventoryItem, and
ElectricalConductor.”

If, on the other hand, the decision on how to organize our
inheritance hierarchies is merely a trade-off between compression
and coupling, then things look different. Use of multiple inheri-
tance becomes an implementation dedision. If it can significantly
compress our code without making it too brittle, that’s good. On
the other hand, MI requires conflict resolution logic, which
increases the complexity, and significant use of multiple inheritance
can make the code more brittle. In cases where the amount inher-
ited is small, this may actually cause more problems than simply
copying a small amount of code. In any case, it is simply a decision
with its own tradeoffs, not an essential part of all things object-
oriented. This also reflects the common Smalltalk view that while
MI might occasionally be convenient, overall it doesn't seem worth
the trouble.Q

References

1. Kay, A. The early history of Smalltalk, HISTORY OF
PROGRAMMING LANGUAGES (HOPL-11) CONFERENCE
PROCEEDINGS, p. 69.

2. Beck, K. Inheritance: The rest of the story, THE
SMALLTALK REPORT, 2(9):15.

3. Gabriel, R. Abstraction descant, part 2, JOURNAL OF
OBJECT PROGRAMMING, 6(2):14.

The Smalltalk Report

Multi-
user
Smalltalk

he original Smalltalk environments, and most

Smalltalks today, are single-user systems. When

developers or users start up Smalltalk, they create
a single process that reads or writes object memory (the
image) stored in a single file. To make objects persist over
time, all of object memory is saved in one monolithic
operation. With this architecture, the only way to imple-
ment client/server applications is to use some other means
to share objects across multiple users in a heterogeneous
network. In most cases, this has meant using Smalltalk as
a front end to a relational database or other persistent data
store, or to use remote object communication to send mes-
sages to objects in other Smalltalk images. In the first
approach, the relational database provides persistent stor-
age and sharing of object state, but not object behavior. In
the second approach, object behavior is distributed and
duplicated across multiple Smalltalk images.

Storing objects in a relational database has many draw-
backs, as described in Loomis.1 One of the main pitfalls
of this approach is the impedance mismatch between the
persistent data model and the object model provided by
Smalltalk. This mismatch requires complex and hard to
maintain mapping code between Smalltalk and the rela-
tional database. For example, to store objects in a relation-
al database, objects must be decomposed, or “flattened,”
for storage into tables, and then reconstituted into objects
when needed by the application. This two-way transfor-
mation impacts performance, and when the schema is
modified, this mapping code must be updated as well.

There is another, more subtle, drawback to this archi-
tecture as well. In this approach, behavior only resides in
the applications. This means that when an object’s behav-
ior is changed or extended, all applications must be updat-
ed. With this architecture, the behavior of objects is not
encapsulated in a single location, but is distributed and
duplicated throughout all applications. This seems exactly
opposite of what object technology is supposed to provide!
For example, imagine an application where financial con-
sultants try out various investment strategies based upon

JAY
ALMARODE

Jay Almarode can be reached at almarades sle.com

January 1995

the impact of taxes. Tax laws in the United States are very
dynamic, changing yearly and sometimes quarterly. When
the behavior of calculating taxes for a particular type of
investment changes, then every installation of the applica-
tion must be updated with the changes. In this architec-
ture, there is no central, shared repository of object behav-
ior.

However, a new model of application development is
emerging. In this model, the domain of objects is persis-
tent and accessible by multiple users. Object memory is a
global resource that is utilized by many users, and behav-
ior is maintained and executed in the database, not just in
applications. This model merges the best of languages,
databases, and CASE tools to create a new way to build,
deliver, and maintain applications. Smalltalk is uniquely
positioned to exploit this new paradigm because of its
total object-orientation, incremental compilation, inter-
preted execution, and automatic storage reclamation. The
increasing acceptance of Smalltalk in financial, manufac-
turing, and engineering organizations illustrates that com-
panies are starting to understand they need these features
to solve their problems. The productivity of Smalltalk,
coupled with a client/server architecture to access a repos-
itory of objects provides the means to easily build distrib-
uted applications, to deliver and install those applications
in a timely fashion, and to maintain and extend those
applications without disruption to the system.

Having a single object identity domain that is shared
by multiple users makes implementing client/server appli-
cations quite different than implementations using rela-
tional databases (or other persistent stores) or remote
object messaging. This is exemplified by the implementa-
tion of a shared set of employee objects using each tech-
nique. Using a relational database, a typical implementa-
tion might associate the set object with a single table in
the database, which contains records for each employee.
With this design, each unique set would need to know the
name of its corresponding relational table. Another alter-
native is for a single relational table to contain records
that map a unique set identifier to a unique employee
identifier. This supports multiple sets where an employee
can be contained in more than one set. In either design,
an application developer must write mapping code that
populates a set by making SQL calls to get back records,
then constructing employee objects from the basic data
types contained in the records. The implementer must
make some provision for the situation where the employee
object already exists in the image so that the set contains
the unique employee object, rather than making a dupli-
cate. Otherwise, multiple employee objects represent the
same actual employee and the advantages of object identi-
ty are lost.

In addition, some provision must be made for updating
the set when another user has added or removed an
employee object (by either adding or removing a row in
the table). This requires the application developer to
devise some means to determine what has changed
between the set of employees in the image and the table of

27

Getting Real

records in the database. There are a number of ways this
might be done, none of them particularly efficient in
keeping the set of employee objects up to date (remem-
ber, each SQL call involves a round trip to the server). I'm
certainly willing to listen to any solutions that readers
might have to do this efficiently.

Finally, the Smalltalk programmer must write code so
that when an employee is added or removed from the set,
the appropriate SQL call is made to add or remove a
record from the table. This probably means that the pro-
grammer creates a subclass of Set that overrides the add:
and remove: methods (and all the appropriate variations)
to generate the SQL statements. This is further compli-
cated if the set can contain different kinds of objects. To
implement a shared set using a relational database, the
programmer cannot just reuse the existing Set class, but
instead must do quite a bit of work.

Another possible way to implement a shared set in
Smalltalk is to allow objects to communicate with one
another remotely, i.e., objects in one Smalltalk image can
send messages to objects in another Smalltalk image.
This idea is not new; Bennett? describes a distributed
Smalltalk, and Hewlett Packard currently sells a distrib-

Reading and writing
patterns gives you a way
to communicate your design
knowledge with others...

uted Smalltalk that is compliant with CORBA.3 With this
architecture, there are two approaches to implementing a
shared set of employees.

One approach is to designate one Smalltalk image to
contain the set, and other images communicate with it to
add, remove, or query the contents. Another approach is
to duplicate the set in all images that need it, and write
code that keeps them in all in synch. With the first
approach, the set may contain both local and remote
instances of employees. This could lead to performance
problems if an application wants to iterate over the con-
tents of the set to generate a list of addresses (an instance
variable of an employee). In this case, iterating over all
employees would cause remote messages to be sent to all
Smallealk images that have an employee in the set. This
makes the time to iterate over the set unpredictable
because it depends upon what is in the set and where it is
located. And what if one of the Smalltalk images has
died? This can be overcome if we require that the set can
only contain local instances of employees. However, this

28

means that all messages to employees must be executed in
the image that contains the set of employee objects. With
a large number of users, this image quickly becomes the
bottleneck. The latter design in which the shared set is
duplicated in many Smalltalk images provides more bal-
anced load sharing and fault tolerance. With this design,
the programmer must make decisions about when and
how to keep the shared sets in sync, i.e., so they all con-
tain employee objects representing the same actual
employees. This requires that the image know about any
other Smalltalk image that contains the duplicated set
and be able to accept new images when they duplicate the
set.

So what does a multi-user Smalltalk look like? The
key characteristic is that object memory is accessible by
multiple users. Rather than starting up a single process
that manages object memory by itself, users start a
process that coordinates with a server to access object
memory. Object memory is always on-line and available;
users just establish a connection to it. A versatile
client/server architecture for Smalltalk allows the image
files (possibly more than one), the server, and multiple
clients to be allocated anywhere in a heterogeneous net-
work of workstations. Smalltalk’s traditional platform
independence is extended to include location indepen-
dence as well. A client does not need to know where the
image is located, it just needs to know how to connect to
the server.

To implement a shared set of employees in a2 multi-
user Smalltalk, all the programmer must do is to use the
existing Set class. The set by its very nature is shared and
is kept in sync between various users by the underlying
transaction mechanism. The Smalltalk programmer is
able to use the existing protocol for sets without
modification. In addition, the behavior of the set is
shared as well. For example, if the programmer builds a
subclass of Set that performs additional constraint check-
ing before elements are added, this behavior is shared by
all users and does not have to be duplicated. The key dif-
ference between a multi-user Smalltalk and the architec-
tures described earlier to build a client/server application
is that a multi-user Smalltalk has a single-object address
space; the other approaches have multiple-object address
spaces that must be mapped into and kept in sync.

With multi-user Smalltalk, various responsibilities are
distributed between the client, server, and possibly other
processes that make up the entire Smalltalk system. The
server acts as a global resource coordinator. It must syn-
chronize critical activities to make sure object memory
remains consistent. It must make sure that when multiple
clients attempt to write their changes to object memory,
it is done in such a way to ensure that changes do not
conflict with one another. In some cases, this means
denying a client the ability to write its changes to object
memory. The server is also responsible for allocating key
resources. For example, object identifiers (oops) must be
unique across the entire domain of objects. A client can-
not create 00PS since it cannot guarantee that other

The Smalltalk Report

SIGS

CONFERENCES

Success Depends on Knowledge

SIGS Conferences produces software educational events designed
to increase your productivity and profitability. All classes are product neutral—you’ll
never receive a product pitch or marketing hype when you register for these events.

Don't miss these opportunities to:

4 Learn directly from recognized industry
experts, language and methods originators,
and well-known book authors.

+ Advance your personal productivity.

Jan 30-Feh 3, 1995

Objek-orlentiertes Programmieren

HMOOP '95

M U NCHEN

¢

Featuring C++ World

The Sheraton Hotel
Munich, Germany

Germany's Premier Event

4+ Demo new products and have your questions
answered by leading vendors.

+ Exchange ideas and new technologies with

February 21-24, 1995

SMALLTALK

Omni Park Central
New York, NY

Where All the Talk is Smalltalk

May 8-12, 1995

Rhein-Main-Hallen
Wiesbaden Germany

The German Development
Conference and Exhibition

June 5-9, 1995

OhJect

= = X - P
THE NATIONAL CONFERENCE & EXPOSITION

New York Hilton & Towers
New York, NY

The Most Important Event
Devoted to OT

September 25-29, 1995

Ohlect

E - X - P
Queen Ehzabeth II Conference Ctr.
London, U.K.

Europe’s Most
Comprehensive OT Event

Oct. 30-Nov. 3, 1995

)

The Users Conference and Exhibition
Fairmont Hotel
Chicago, IL
The Largest C++ Event
in the World

an international network of your peers.

March 20-23, 1995

XWorld

featuring

GROSS PLATFORM
STRATEGIES
NY Marriott Marquis, NY, NY
Software Portability Solutions

Yes!

I'd like more information on...

1 Exhibiting at the following events
1 Attending the following events

2 00P ‘95 Featuring C++ World

O Smalltalk Solutions

0 XWorld featuring
Cross Platform Strategies

(1 Software DevCan
1 Object Expo

1 Object Expo Europe
3 C++ World

Name

Title

Company

Address

Phone

Fax

Please return to: SIGS Conferences
71 West 23rd Street, NY, NY 10010
Phone: (212) 242-7515 Fax: (212) 242-7578

Getting Real

clients are not creating the same oops. The server must
allocate oops for clients to be used for new object creation.
Another example is locking an object. If a client desires to
prevent other clients from reading or writing a particular
object, it must obtain a lock through the server, who can
then deny access to other clients.

The client process is the primary interface to the user
application, It is responsible for providing a consistent
view of objects to the application. It must coordinate
access to object memory, including initiating disk activity
and managing private and shared caches of objects. The
client is where the execution engine, i.c., bytecode inter-
preter, executes Smalltalk methods. Using generational
scavenging techniques, the client is able to perform some
garbage collection during the course of application execu-
tion. However, due to the distributed nature of
client/server Smalltalk, some garbage collection is proba-
bly best performed using mark-sweep algorithms by a ded-
icated client.

So what are the advantages of a client/server Smalltalk
accessible by multiple users? Application developers no
longer need to write complex mapping code to store the
state of objects into some other external data store. Object
memory itself is the persistent store. This offers the
advantage that the behavior of an object is global and
shared, as well as the state of an object. When changes are

made to an object’s behavior, the change is manifested to
all users of the object immediately. You do not have to
filein new code that makes up your application; you just
run your application and experience the new behavior that
the application developer has made available.

In the investment application described earlier, when tax
laws are changed, an application developer writes new
methods that reflect the new laws. After private testing and
validation, these methods are made public and become
immediately available to end-users. Of course, sharing
objects means that Smalltalkers must do things differently
than they have in the past.

My next column will describe the issues that arise when
constructing Smalltalk applications where multiple users
modify the same shared objects and how these conflicts
can be avoided. §

Referances

1. Loomis, M. E. 5. Hitting the relational wall, Jour~aL or
OpjecT-ORIENTED PROGRAMMING, Jan. 1994,

2. Bennetr, J. The Design and implementation of distributed
Smalltalk, OOPSLA 1987.

3. Eastman,]. The HP distributed Smalltalk IDL language binding,
THE SmALLTALK REPorT, 3(3), Nov.—Dec. 1993.

Call for

Simalltalk

is seeking expert reports, tutorials,
and technical papers. Articles should
be instructive, product-neutral,
and technical.

THE SMALLTALK REPORT

855 Meadowlands Dr. #509, Ottawa, ON K2C 3N2
613.225.8812 (v), 613.225.5943 (f)
streport@objectpeople.on.ca

Editorial topics include:

A Applications Tools
o= T o (ommercial, engineering & scientific applica- ® User interface builders
fions © Objed editors

o Applications frameworks

® Project menagement

o Vertical (application) and horizontal {sys-
lem) class libraries

o Portability issues

o Objed library management

Project management

Submit Papers, discus:s st.ory ideas,or request » Rapid prolotyping ® Persistent objects and dutabases
Writers’ Guidelines from: © Yarsion management ® Distributed Smalltalk issues
John Pugh and Paul White, Editors o Application !nm!ugemenl . Perfnrmunte issues
¢ Team organization * Typing

o Organizing for revse
® Iniroducing Smalttalk info an erganization

Writers

o Application development lools
® Project management lools
o (ASE tools

Language issues
o [nheritance

® User inlerfoce puradigms
¢ Concurrency

© Metalevel programming

(Competitive stipend paid)

30

The Smalltalk Report

Product Announcements

Product Announcements are not reviews.
They are abstracted from press releases provided by vendors, and no endorsement is implied.

Vendors interested in being included in this feature should send press releases to
THE SMALLTALK REPORT,
Product Announcements Dept., 885 Meadowlands Dr., #509
Ottawa, ON K2C 3N2, Canada,
613.225.8812 (v), 613.225.5943 (f).

ObjectSpace, Inc. Announces New Object-
Oriented Software Product Line that
Supports Smalltalk

ObjectSpace, Inc., has announced a new product line that
includes ObjectSockets and ObjectMetrics.

ObjectSockets is for Smalltalk developers using TCPAP
communications, and ObjectMetrics gathers object-ariented
metrics for Smalltalk developers.

ObjectSockets is a class library with more than 40 classes
representing all aspects of TCPAP communications, including
TCP sockets, UDP sockets, IP addresses, hosts, networks, pro-
tocols and services. It hides the details of complicated WinSack
API calls, error detection, and cryptic flags behind a layer of
object-oriented simplicity. This makes programs easier to build,
understand, and maintain.

ObjectMetrics is one of the first products that provides a
solution to obtaining valuable metrics that indicate problem
areas such as overly complex code, unnecessary coupling
between modules, and programmer productivity. Additionally,
ObjectMetrics utilizes a clear, intuitive graphical user interface,
making the selection of target classes, metrics, and output
options easy.

ObjectSpace, Inc., provides consulting, training and prod-
ucts to assist in the adoption of object technology. The compa-
ny’s mission is to provide clients with the products and the
foundation of knowledge and experience required to successful-
ly implement object-oriented systems.

ObjectSpace, 14881 Quorum Dr., Ste. 400, Dallas, TX
v. 214.934.2496 (v}, 214. 663.3959 (f).

HP Distributed Smalltalk 4.0 to Support
Object Technology International’s
ENVY/Developer

Hewlett-Packard Company has announced that it plans to
develop the extensions needed to allow HP Distributed
Smalltalk 4.0 to support Object Technology International’s
ENVY/Developer team programming environment. The combi-
nation of ENVY/Developer with HP Distributed Smalltalk will
give customers a solid engineering base for developing CORBA-
standard distributed applications. The integration of
ENVY/Developer’s configuration management control with HP
Distributed Smalltalk’s industry-leading distributed develop-
ment tools, provides such specific technical benefits such as
versioning and configurations of Smalltalk code and 1IDL
repository modules; and convenient implementation sharing
between developers through ENVY/Developer’s repository.

January 1995

HP Distributed Smalltalk 4.0 software is a complete imple-
mentation of the Object Management Group (OMG) CORBA
specification for object communication in a distributed object
system. HP Distributed Smalltalk is built upon and extends
ParcPlace System’s VisualWorks 2.0 software to make a devel-
opment environment for the creation and deployment of dis-
tributed-object client and server applications.

Distributed Smalltalk is available from HP for HP-UX,
SunOS, Solaris and IBM AIX UNIX system-based platforms, as
well as Windows 3.1, Windows NT and O5/2 platforms.
Hewlett-Packard Company, 3404 E. Harmony Rd., Ft.
Collins, CO 80525, 408.447.4722 (v).

UNISQL Announces Development of
Interface to ParcPlaces’s VisualWorks
UniSQL, Inc., reached agreement today with ParcPlace
Systems, Inc. to develop a seamless interface between
ParcPlace’s VisualWorks object-oriented application develop-
ment environment and UniSQL’s next-generation abject-ori-
ented database management systems. The new interface will
improve connectivity between VisualWorks and the UnisQL/Ax
Database Management System (DBMS) and the UnisQL/M
Multidatabase Systern (MDBS), enhancing development of
mission-critical applications with large-scale object-oriented
and relational requirements.

Through this new interface, VisualWorks users will be able
to more easily access the benefits of UniSQL's database man-
agement systems. The UniSQL/X DBMS and the UnisQu/m
MDBS provide persistence to applications, allow users to man-
age multiple heterogeneous databases (including INGRES,
ORACLE, and SYBASE databases), expose users to a full set of
UnisQL’s object-oriented ANSI SQL query capabilities, and
add mission-critical database services. The combination of
UniSQL and ParcPlace’s development tools enable developers
to increase productivity and save time building new applica-
tion. In addition, users are able to leverage the performances
and reliability of UniSQLSs databases for large scale applica-
tions.

For more information contact UniSQL at 512.343.7297.
UniSQL, Inc., 8911 N. Capital of Texas Hwy., Ste. 2300,
Austin, TX 78759, 512.343.7297 (v}, 512.343.7383 (f).

HP Distributed Smalltalk 4.0 to Support
ENVY/Developer
Hewlett-Packard has announced that it plans to develop the

extensions needed to allow HP Distributed Smalltalk 4.0 to
31

Product Announcements

support the Object Technology International’s
ENVY/Developer team programming environment.

The combination of ENVY/Developer with HP Distributed
Smalltalk will give customers a solid engineering base for
developing CORBA-standard distributed applications. The inte-
gration of ENVY/Developer’s configuration management con-
trol with HP Distributed Smalltalk’s industry-leading distrib-
uted development tools provides such specific technical benefits
as follows: versioning and configurations of Smalltalk code and
IDL repository modules; and convenient implementation shar-
ing between developers through ENVY/Developer's repository.

ENVY/Developer is available from Object Technology
International or one of its distributors. A single client or server
license of ENVY/Developer is $3,000. The product is available
on the following platforms: HP-UX, SunOS, Solaris, IBM AIX,
Sequent, Windows 3.1, Windows NT, OS/2, and Macintosh.
Hewlett-Packard Company, Direct Marketing Organization,
P.O. Box 58059, MS511L-SJ, Santa Clara, CA 95051-8059.

HP Distributed Smalltalk Runs On Three
PC, Four UNIX System-Based Platforms
Hewlett-Packard Company today announced Version 4.0 of its
HP Distributed Smalltalk development environment. This version
enables programmers to develop distributed computing applica-
tions that can run, without modification, on any combination of
four UNIX system-based platforms and three PC platforms.

HP believes that the majority of its customers want to
develop new client-server applications that use UNIX system-
based servers and UNIX system-based or PC clients. Previously,
HP Distributed Smalltalk supported the HP-UX, Solaris,
SunOS and 1BM AIX platforms; Version 4.0 now supports
Windows 3.1, Windows NT, and OS/2 as well.

HP Distributed Smalltalk 4.0 software provides classes of
objects that communicate over a network using an Object
Request Broker, which is HP’s implementation of the Object
Management Group’s (OMG) CORBA specification for abject
communications in a distributed object system. Distributed
Smalltalk is built upon and extends ParcPlace System’s
VisualWorks 2.0 to create a development environment for
peer-to-peer distributed-object applications.

Release 4.0 of Distributed Smalltalk includes two major
enhancements: 1) It runs on these PC platforms: Windows 3.1,
Windows NT 3.1, and OS/2 2.1. Users must supply a transport
package for Windows 3.1 (Novell LAN Workplace for DOS 4.2
has been tested), and OS/2 (IBM TCPAP Version 2.0 for
05/2); and 2) It supports ParcPlace VisualWorks 2.0.

Distributed Smalltalk is OMG CORBA-compliant, which
ensures networked interoperability with other CORBA-compli-
ant applications that use the same communications protocol
(TceAp). Distributed Smalltalk supports the evolving
Common Object Services (COS) standard and the proposed
future specification of the Object Data Management Group.

HP Distributed Smalltalk Release 4.0 is expected to be
available Dec. 1. A single-user license on PC platforms is
$2,995 and $6,490 per license when bundled with ParcPlace’s
VisualWorks Smalltalk. A single-user license on UNIX system-

32

based platforms is $4,995 and $10,490 per license when bun-
dled with ParcPlace’s VisualWorks Smalltalk. Distributed
Smalltalk is available from HP on the HP-UX, SunOS, Solaris
and IBM AIX UNIX system-based platforms, and for Windows
3.1, Windows NT and OS/2 platforms.

Users purchasing 2 minimum of five Distributed Smalltalk
licenses will receive a free copy of the VisualWorks Smalltalk
development environment with each copy. This offer is in effect
now and will be continued for a limited time.
Hewlett-Packard Company, Direct Marketing Organization,
P.O. Box 58059, MS511L-SJ, Santa Clara, CA 95051-8059.

ODBTalk for 0S/2

LPC consulting services announced the availability of ODBtalk
for OS/2. This product provides the Smalltalk/V developer
with full 32-bit ODBC support using the O5/2 Q+E ODBC
Driver Manager. The product, together with the appropriate
ODBC database drivers, supports all ODBC conformance levels.

Currently databases supported by the Q+E Driver Manager
include: Clipper, DB2 (MDI1 Gateway), DB2/2, DB2/6000,
DBASE III and IV, Excel, Foxpro, FoxBASE, Informix 5, M$S
SQL Server, Oracle 6 and 7, SQL/400, sQL/DS, Sybase sQL
Server 4, Teradata (through MDI Gateway), and text files.

The Watcom-SQL database is also supported by the ODBC
API support which is included with watcom-sQL.

Smalltalk database access logic can be developed for all of
the major Intel-based PC environments. ODBTalk for OS/2 is
fully source-code compatible with our existing products,
ODBTalk for Windows 16 bit, Win32s and Windows-N'T.

Smalltalk developer has access to both low level classes (ODBC
API level) and higher level classes (connection, statement, query,
table...) providing various levels of encapsulations. This provides
flexibility and allows the development of ODBC-compliant appli-
cations without having to learn the ODBC API itself.

ODBTalk for OS/2 requires OS/2 2.x. Smalltalk/V for
05/2, and the Q+E Driver Manager and the appropriate data-
base drivers, or the Watcom-SQL database.

LPC, 937 Briar Hill Ave., Toronto, ON Canada, M6B 1M1,
Canada, 416,.787.5290. (v)

ParcPlace Adds Team Programming Tools
to Client and Server Product Line
ParcPlace Systems and Object Technology International (OTI)
have signed a distribution agreement allowing ParcPlace to
market, distribute, and support OTI's ENVY/Developer, the
leading group development tool for managing software compo-
nents in the Smalltalk environment. ENVY/Developer’s team
programming environment is fully compatible with
VisualWorks, ParcPlace’s powerful client and server tool for
building portable applications using object-oriented technology.
ENVY/Developer provides an integrated team programming
environment for VisualWorks developers, supporting the proto-
typing, development, release and deployment of software appli-
cations written in ParcPlace Smalltalk. ENVY/Developer is the
only Smalltalk development tool currently available that scales
across platforms, teams and project size.
ParcPlace Systems, 999 E. Arques Ave Sunnyvale, CA
94086, 408.720.7514 (v), snichols@parcplace.com.

The Smalltalk Report

/?//,7%' All the
S Smallts e

E]

Dear Smalltalk Colleague:

As two industry professionals very much involved with the Smalltalk community, we are pleased to
present Smalltalk Solutions ‘95, the first major vendor-independent Smalltalk conference.

These are exciting times for Smalltalk enthusiasts, The Smalltalk marketplace doubled in 1993, and
Smalltalk is currently the fastest growing object-oriented programming language. In our capacity
as the President of SIGS Publications and the Co-Editor of THE SMALLTALK REPORT, we are proud to
have been a part of the launch of THE SMALLTALK REPORT as a newsletter back im 1991. Thirty issues
later, it has grown into a full-fledged and respected magazine, and is still the only independent
publication serving the needs of the Smalltalk community.

We are similarly excited about the launch of Smalltalk Selutions ‘95 in commemoration of
Smalltalk’s 25th anniversary. We anticipate that this event will become the annual gathering for
Smalltalk professionals for many years to come.

Over the past few months, we have been working hard to put together a technical program which
will cater to the needs of all involved in Smalltalk development: programmers, consultants, project
managers, educators. In addition to keynote presentations from Dave Thomas, Tom Atwood and
Ray Wells, the technical tracks feature sessions presented by such recognized Smalltalk experts as
Kent Beck, Rebecca Wirfs-Brock, Sam Adams, Wilf LaLonde, and Kenny Rubin. With topics such
as design patterns, performance, metrics, meta-level programming, visual programming, and
client/server and distributed systems, there is plenty to interest even the most experienced
Smalltalk programmer. We also realize there is much to be learned from the experiences of athers,
and with this in mind, Smalltalk Selutions features corporate case studies from organizations such
as Texas Instruments, Caterpillar, CIGNA, and the Canadian Imperial Bank of Commerce. We've
also created a dedicated class track for managers to address the issues of managing and delivering
large-scale Smalltalk projects.

We hope you will be able to join us at Smalltalk Solutions in New York. It will be a unique oppor-
tunity to learn from the experts and to share experiences with your peers in the Smalltalk commu-
nity. If you'd like more detailed information, please contact our Smalltalk Solutions registrar by
phone: (212)242-7515, fax: (212)242-7578, or email: sigsconf@ix.netcom.com, and we’ll rush you
our complete delegate brochure with full class descriptions. Or simply return the registration form
found at the end of this Special Conference Preview Section.

See you in New York!

Sincerely,
Rhoell S T R
Richard P. Friedman John Pugh
President, SIGS Publications & Conference Technical Chair

SIGS Conferences Co-Editor, The Smalltalk Report

Oddly enough, the

most productive
application development

tool for Windows 1sn't
from Microsoft.

Inlroducing
VisualAge™ for
Windows™ and
IBM Smaliialk.

™
Now you have the power to develop
industrial-strength client/server appli-
cations for the Windows environment
in the blink of an eye.

VisualAge and IBM Smalltalk
Version 2.0 extend IBM’s powerful
new vision of programming. They
provide multiple platform support
including Windows and 0S/2,* con-

nectivity to business-critical data and

applications, scalability to create
applications from the desltop to the
enterprise, a fully object-oriented
development environment, and a
robust team version for greater pro-

gramming productivity.

Break the code barrier
with VisualAge.

With the simplicity of visual con-
struction, you can create complex
applications with amazing speed.
What's more, you get the added flexibil-
ity of a completely integrated Smalltalk

object-oriented base.

See us at Booth #1071 at Smalltalk Solutions ‘95

Special Conference Preview Section

The language of objects™

IBM Smalltalk, included with
VisualAge, is now available separately.
Smalltalk programmers now have the
standards-compliant, integrated devel-
opment environment they need to easily
develop fully portable applications.

To order or for more information,
call 1 800 IBM-CALL, Dept. SA005.
In Canada, call 1 800 565-SWA4U, ext

279, or contact your favorite reseller.

SorFTwARE FoR
OBJECT-ORIENTED TECHNOLOGY

Outside North America, call: (Austria) 0222 21145.2500, (Belgium) 022253333, (Denmark) 80304545, (Finland) 90,439.4176, (Frunce) 05.030303, (Germany) 0130.4567.111, (f1aly) 1670.17001,
(Netherlands) 030.384040, (Norway) 66.999300, (S. Africa) 27.11.2249.111, (Spain) 900.100400, (Sweden) 08.7934004, (Switzerland) 01.4366233, (UK) 0B1.5757700, or contact your local IBM
1

office. IBM and 0S/2 are regit d ks and Vi

IAge and “The languag

Windows is a trademark of Microsoft Corporation. ©1994 IBM Corp.

of objects™ are trademarks of International Business Machines Corporation. Microsoll is a registered trademark amil

‘Smalltalk Solutions '95 — Conference At

TUESDAY — FEBRUARY 21

PRE- CONFERENCE TUTORIALS

9:00-5:00

Tl T2
Discovering Smalltalk Implementing Custom
John Pugh Graphical Views

Bobby Woolf & Kyle Brown
KNOWLEDGE SYSTEMS CORP.

THE OpJecT PEOPLE

T3

Mastering Responsibility-
Driven Design

Rebecca Wirfs-Brock
DiGITaLk

T4

Object-Oriented Project
Management Strategies
Kenny Rubin

PARCPLACE SYSTEMS

WEDNESDAY — FEBRUARY 22
TECHNICAL TECHNICAL CORPORATE CASE STUDIES MANAGEMENT

9:00-9:45 KEYNOTE: Component-Based Software Construction: The Transition from Craft to Engineering — Dave Thomas, OT/
10:00-12:00 w1 w2 w3 W4
Writing High-Performance Designing Responsible Organizational Impacts What Really Happens When
Smalltalk Programs Objects Using Stereotypes of Advanced Technology You Adopt Smalltalk
Kent Beck Rebecca Wirfs-Brock Douglas Kittelsen Ken Auer
FIRST CLASS SOFTWARE DiGrrark AMERICAN MANAGEMENT SYSTEMS INC. KNOWLEDGE SYSTEMS CURP..
12:00-6:00 Exhibit Hall Open
2:00-5:00 w5 Wwé w7 w8
Smalltalk in the Large: Designing with 1. Semiconductor Manufacturing Using Smalltalk and Teams:
Scaling Up Without Losing Patterns Process Re-engineering A Synergistic Solution
the Benefits Kent Beck Using Smalltalk Jeff McKenna
Jan Steinman & Barbara Yates FIRST CLASS SOFTWARE John McGehee THE McKENNA
BYTESMITHS TEXAS INSTRUMENTS CONSULTING GROLP
1. Forging Steel Planning
& Problem Resolution
Mike Baker
CATERPILLAR INC.
111. Smalltalk on the Internet
John Richards
IBM — T] WATSON RESEARCH CENTER
5:00-6:00 Welcome Reception
D A AR
TECHNICAL TECHNICAL CoORPORATE CASE STUDIES MANAGEMENT
9:00-9:45 KEYNOTE: Smalltalk and ODBMS: The New Foundation for Client/Server Applications at Fortune 1000 Firms — Thomas Atwood, OBJECT DESIGN
10:00-12:00 Thl Th2 Th3 Th4
Writing Reusable PANEL PRESENTATION Connecting Object Applications An Insiders’ Guide to the
Smalltalk Classes How Does Smalltalk to Relational Databases Smalltalk Standards Initiative
Juanita Ewing Really Scalet Timo Salo & John Shelton Yen-Ping Shan & Rick DeNatale
DiGITALK Moderator: Ken Auer PARCPLACE SYSTEMS IBM
KNOWLEDGE SYSTEMS CORP.
12:00-6:00 Exhibit Hall Open
2:00-5:00 Th5 Thé Th7 Ths
Applications of Meta-Level Designing and Building 1. Modeling Business Objects Smalltalk Object Persistence
Programming Distributed Solutions for Medical Plans in Heterogeneous Database
Wilf LaLonde Jeff Eastman Jim Dykas & Alan Kirk Environments
THE OBJECT PEOPLE OBJECT ARCHITECTURE CIGNA Glenn Reid
QSYS SysTEMS CONSULTANTS
II. Creating an Auto Parts Lookup
System with Smalltalk
Richard Goulet & Mark Winter
CANADIAN TIRE
I11. Building Banking Systems
with Smalltalk
Al Woolfrey
CIBC
FriDAY — FEBRUARY 24
TECHNICAL TECHNICAL CORPORATE CASE STUDIES MANAGEMENT
9:00-9:45 KEYNOTE: Smalltalk Objects: The Enabling Technology for New Business Process — Ray Wells, IBM CONSULTING GROUP
10:00-12:00 F1 F2 F3 F4
Metrics for Smalltalk Building a Cost Efficient Practical Guidelines PANEL PRESENTATION
Mark Lorenz Client/Server Architecture for Delivering Product Quality Setting Up a Smalltalk Shop
HATTERAS SOFTWARE Using Smalltalk Smalltalk Applications Moderator: Paul White
Amarjeet Garewal S. Sridhar & Eric Clayberg THE ODJECT PEOPLE
OsjkcT EDGE OBJECTSHARE SYSTEMS, INC.
2:00-5:00 F5 Fé F7 F8
Visual Programming Techniques for Implementing Smalltalk Writ Large: Lessons A Distributed Object Architecture
Techniques Smalltalk in Client/Server Learned in Applying Smalltalk for Corporate Information Systems
Martin Nally Systems to Large-Scale Business Systems Jeff Sutherland
IBM Trevor Hopkins Sam Adams EASEL CORPORATION
UNIVERSITY OF MANCHESTER IBM

EXHIBIT HALL HOURS: WEDNESDAY, FEBRUARY 22, 12-6 Pm; THURSDAY, FEBRUARY 23, 12-6 Pm

services.

R STEP INTO THE FUTURE WITH THE GOMPANY
\ THAT DEFINED OBJEGT TECHNOLOGY SERVIGES

When object oriented programming was in its infancy,
Knowledge Systems Corporation was already putting it to work in com-
panies like yours. Today, we're positioned to take you into the future of
object technology in ways that no other company can. With the most
complete range of services in the
industry, KSC can assure your suc-
cessful object transition every step of
the way. Classroom instruction, pro-

ject-focused apprenticeships, and

| q,H-a“l
'

consulting are all part of our exclusive

commitment to object technology

Once you've made the deci-
sion to move to object technology, you
want to get the benefits as quickly as
possible. KSC offers a complete cur- §
riculum of classroom education, at
your site or in our corporate training
facility. These courses help you estab- §
lish a firm foundation in object tech-
nology concepts and Smalltalk programming.

To cut months off your transition time, we've developed an exclu-

sive Smalltalk Apprentice Program (STAP). Already proven in companies

such as American Management Systems, GE Capital Corporation, IBIV,
Northern Telecom, The Prudential, Southern California Edison and Sprint,
the STAP is a total immersion, project-focused program that compresses
six to ten months of learning experience into four to six weeks.

KSC can also tackle your
object technology projects head-on
with the most experienced analysts,
designers and programmers in the
business. You can outsource the
entire job, or use our consultants to
lend expertise to your own develop-
ment group.

In addition to our service
offerings, KSC is a distributor of
third party tools such as ENVY®/
Developer, the premier Smalltalk
team development environment.

If you're ready to step into
the future of object technolagy, call
the one company that will lead you
there—Knowledge Systems Corporation, 919-481-4000. Or email:
salesinfoeksccary.com. 4001 Weston Parkway, Cary, North Carolina
27513.

See us at Booth #2071 at Smalltalk Solutions ‘95 Specia/ Conference Preview Section

~
KNOWLEDGE SYSTEMS CORPORATION

g18-481-40010

ENVY is a registered trademark of Object Tachnology International Inc.

Wednesday, Feb. 22, 12:00 p.m.

How to Transition to

Smalltalk—The KSC Approach
Presented by: Ronald Schultz — Director,
Transition Solutions

Corporation specializes in transitioning
client projects, staff, processes, and soft-
ware products to object technology. Since
1985, KSC has engineered and evolved a
suite of offerings focused on expediting
0-0 adoption and Smalltalk. These offer-
ings include Intro and Advanced Smalltalk
(for IBM, Digitalk, and ParcPlace), O-O
Analysis and Design, Project Kickoff
Workshops, the Smalltalk Apprentice
Program™, consulting, mentoring, and
turnkey projects.

Wednesday, Feb. 22, 1:00 p.m.
IBM’s Visual Age Family

(Including IBM Smalltalk)
Presented by: Bill Allen — IBM Channel
Marketing Manager

Step up to the enhanced productivity
of object-oriented programming with
Visual Age and IBM Smalltalk, both from
IBM. Develop “industrial-strength”
client/server applications in record time.
Both stand-alone and team versions are
backed by IBM service and support. Visual
Age success stories, potential, and demo
are included in this presentation. See why
PC Week called Visual Age “a developer’s
dream come true.”

Wednesday, Feb. 22, 2:00 p.m.
Implementing Fuzzy Logic
Algorithms in Smalitalk

Presented by: Mircea
Mihaescu — Senior
Consultant
7 Fuzzy Logic is a col-
<~ lection of powerful
“ intelligent decision
making algorithms
used in various business

software environments. This lecture pre-
sents a short review of fuzzy set theory
and object oriented programming con-
cepts, followed by a detailed description of
an object oriented framework written in
Smalltalk that provides an extensible
structure of classes for building business
decision support systems. This approach is
different from the few published fuzzy
logic implementations by taking full
advantage of the power of an object ori-
ented language.

Wednesday, Feb. 22, 3:00 p.m.
Improving Smalltalk

Developer Productivity
Presented by: Jeff Sutherland — Vice
President of Object Technology

Smalltalk is renowned as the most pro-
ductive software development environ-
ment. However, significant incremental
productivity improvements are possible by
integrating analysis/design tools and per-
sistent object mapping tools with
Smalltalk. Easel will present and demon-
strate its implementation of such an envi-
ronment through the Object Studio family
of products.

Wednesday, Feb. 22, 4:00 p.m.
Building Applications from
Components: From Myth to

Reality
Presented by: Thomas Murphy — Product
Manager

The software development world is
clamoring for the religion of components.
While components are not a panacea for
all, they are an important part of building
robust systems. For components to be
effective you must have the ability to
describe your components to others and
find, understand, and easily extend and
assemble the components available to you.

Thursday, Feb. 23, 12:00 p.m.
The Object People Corporate

Services
Presented by: Paul White — Vice President
& Ron Charron — Manager, Professional
Development
The Object People have been leaders in
the field of Smalltalk training and devel-
apment for over five years. Since their
inception, they have focused exclusively on
Smalltalk, and have a reputation as world
leaders in the field of Smalltalk training.
Their training covers all major dialects
of Smalltalk, including IBM Smalltalk and
Visual Age, VisualWorks, and Smalltalk/V.
This presentation will outline our cor-
porate training services and will discuss in
detail the benefits for your organization.

MARK WINTER & ASROCIATES

Thursday, Feb. 23, 1:00 p.m.
Object Modeling

Presented by: Mircea Mihaescu
~ Senior Consultant

This seminar will summarize practical
object oriented analysis and design tech-
niques using ENFIN Smalltalk. The pre-
sentation will discuss different approaches
to solve “business sofiware” problems
through mapping between the object
model and a relational database. Details
will be given regarding pessimistic concur-
rency implications in a persistent object
layer implemented in Smalltalk.

Thursday, Feb. 23, 2:00 p.m.
Visual Smalltalk: O-O

Components for Your Enterprise
Presented by: Thomas Murphy ~ Project
Manager

The Visual Smalltalk product line is the
leading Smalltalk solution and the only
Smalltalk solution to pervasively make use
of component technology. Come see how
components and Smalltalk can solve big
problems fast.

Special Conference Preview Section

Presenting

ENFIN SMALLT:
_TEAJMBUILDER

What makes Object Stud
productive development environment?

B BUILD HIGH-LEVEL BUSINESS OBJECTS BEFORE CODING BEGINS

B AUTOMATICALLY GENERATES SMALLTALK CODE TO IMPLEMENT BUSINESS OBJECTS

B BUSINESS MODEL 6 APPLICATION REMAIN SYNCHRONIZED AND EASILY MAINTAINED
B INSULATION FROM CLIENT/SERVER COMPLEXITIES

B POINT & CLICK INTEGRATION WITH RELATIONAL DATABASES

B UNMATCHED CONNECTIVITY

Object Studio is a complete Synchronicity's Persistent
object-oriented toolset for Object Mapping Tool
rapid development of large- quickly maps the models
scale production client/server to relational databases.

applications on Windows,
08/2 6 UNIX. ENFIN Smalltalk is a
powerlul visual development

Corporate IS organizations environment that supports
can quickly achieve the the industry's widest range
productivity gains of object. of connectivity options.
technology with Synchronicity. TeamBuilder enables

the development of
Synchronicity’s Business Object ENFIN applications in a
Modeling Tool allows the workgroup environment.
design of object models that

mirror a business process, then

o " smalltalk Soluti automatically generates =
Visit booth 103 at Smalltalk Solutiona Smalltalk code. EE SEL

to see Object Studio in action. .
Corporation

25 Corporate Dr., Burlington, MA 01803 1-800- OBJECTS

Object Studia, ENFIN, Synchranicity, and TeamBuilder are irademarks of Easel Carporalion. Other trademarks belong (o their respective awners.

Special Conference Preview Section

v
o
2
s
T}
=
(o]
=4

1] i Y @m W | _m=
101 201
Knowledge 301
1BM Systems Corporation Object 304
Design The
Inc. Object
People
=N 303
Mark &
Winter
102 Assoc.
Digltalk
|] B n . | 202 205] n
Qsys Servio
401
vC
Software
203 402
2 ParcPlace Morgan,
B o 103 Showcase Parker &
g 'E E Easel Corporation Arbor Intelliegent | ‘ Johnson
(o) g E Systems
EafF OBJECT/FX
w L m BN m |

Smalltalk Solutions ‘95 Exhibitors Include:

* Arbor Intelligent Systems ¢ Digitalk * Easel Corporation » IBM «
* JOURNAL OF OBJECT-ORIENTED PROGRAMMING ® Knowledge Systems Corporation
* Mark Winter & Associates ® Morgan, Parker & Johnson

* Object Design Inc. ® OBJECT/FX » Osiect MacaziNe * The Object People
* Objectshare Systems, Inc. * ParcPlace « QSYS « ROAD e Servio ®
* SIGS Books * SIGS Conferences ® THE SMALLTALK REPORT ®
» VC Software * THE X JOURNAL ®

i : g Plus, 2nd Floor Mezzanine with more product displays!

Special Conference Preview Section

THE OBJECT PEOPLE

Your Smalltalle Experts

Education & Training

VisualAge
IBM Smalltalk

Smalltalk/V

VisualWorks
ENVY/Developer
Analysis & Design

Project Management
In-House & Open Courses

Project Related Services

Object Immersion Program
Project Mentoring
Custom Software Development
Tools Construction

The Object People Inc. 309-885 Mceadowlands Dr., Ottawa, Ontario, K2C 3N2
Telephone: (613) 225-8812 FAX: (613) 225-5943

sorallaallh /v iy aregistered rademark of Digitalk, Ine. VisualAge and IBM Smallealk are registered trademarks of 13M.
VisualWorks is a trademark of Parellace Systems Inc. ENVY s a registered erademark of OTT Ine.

See us at Booth #304 at Smalltalk Solutions ‘95 Special Conference Preview Section

Digitalk

5 Hutton Centre Drive
Santa Ana, CA 92707
Tel: (714) 513-3000
Fax: (714) 513-3100

DIGITALK

Digitalk is the leading Smalltalk vendor.
Since shipping the first commercial
Smalltalk for the IBM PC in 1985, Digitalk
has pushed Smalltalk forward with a
complete set of development tools and
services.

Visual Smalltalk Enterprise combines the
fastest Smalltalk with visual component
assembly, PVCS backed version control,
and configuration management to build
enterprise applications fast.

Easel Corporation

E%SE L 25 Corporate Drive

Burlington, MA 01803
Corporatlon

Tel: (617) 221-2100
Fax: (617) 221-2198

W’ith 14 years of leadership in visual
programming and object technology
tools and services, Easel Corporation pro-
vides a true partnership solution for cor-
porate IS developers seeking a rapid and
smooth migration to today’s client/server
architectures. Easel Corporation products
have delivered enhanced productivity
gains while simplifying client/server com-
puting in over 5,000 organizations world-
wide.

Object Studio™ is a complete object-ori-
ented toolset for rapid development of
large-scale production client/server appli-
cations. Corporate IS organizations quick-
ly achieve the productivity gains of object
technology with Object Studio, which
includes Synchronicity™ for business
object modeling and persistent
object mapping, ENFIN
Smalltalk™ for visual
design and connec-
tivity options, and
* o TeamBuilder™ for
—w group development.

11000 Regency Parkway
Cary, NC 27513

Tel: (800) IBM-CARY
Fax: (919) 469-7423

IBM provides world-class object-orient-
ed tools for application developers. IBM
Consulting and Professional Services has a
wide array of world-wide education, train-
ing/mentoring, consulting, and services in
support of Visual Age and IBM Smalltalk.

The Visual Age family of products will
revolutionize how you create line-of-busi-
ness applications. With the simplicity of
visual construction, teamed with the pow-
erful, object-oriented IBM Smalltalk envi-
ronment, complex applications can be
developed on Windows or OS/2 in a frac-
tion of the time normally required.

Knowledge
Systems Corporation

4001 Weston Parkway
Cary, NC 27513
Tel: (919) 481-4000

B Fax: (919) 677-0074

KNOWLEDGE SYSTEMS CORPORATION

Knowledge Systems Corporation (KSC)
specializes in object technology. The
company provides integrated services and
tools for improving application time to
market, quality and maintainability. All
major Smalltalk dialects are supported on
multiple platforms. Classroom
instruction, facilitated analysis and design
activities, project-focused apprenticeships
and custom development services are
available for making the transition to
object technology.

The Object People

885 Meadowlands Drive, Suite 509
Ottawa, Ontario
Canada K2C 3N2
Tel: (613) 225-8812
Fax: (613) 225-5943

he Object

People are
leaders in providing training, mentoring,
and software development services in
Smalltalk and object-oriented technology.
Object People Staff have many years expe-
rience assisting clients utilize Smalltalk
technology in a wide variety of application
domains. Courses are offered in all major
dialects of Smalltalk, VisualAge,
Envy/Developer and O-O Analysis &
Design. Courses ate offered in-house or at
the Object People professional develop-
ment center in Ottawa.

The principals, John Pugh, Wilf LaLonde
and Paul White, are well known as authors
of four Smalltalk books, as Smalltalk
columnists in the JOOP and as co-editors
of THE SMALLTALK REPORT.

Don’t Miss the
Educational Opportunities at
~ Smalltalk Solutions ‘95:

A 'I‘BCHNICAL PROGRAM developed and
presented by leading Smialltalk
experts:. . Thought-provoking KEYNOTE
PRESENTATIONS from Dave Thomas,
Tom Atwood, and Ray Wells...In-depth
PRODUCT EDUCATION SESSIONS offer-
ing treining on leading Smalltalk products
from companies including Digitalk, Easel,
IBM, Knuwledge Systems, Mark Winter &
SPECIAL EVENTS including Walk-In
Clinics with the conference speakers and

. “Birds-of-a-Peather” roundtable sessions. .
And the oppartunity to meet “outside the
dassfcom® with other Smalltalk profession-

Xt hufomal setting... You'll come

ith pew contacts, fresh ideas, and

tips and techmques that will prove
40/ you in your job every day.

Special Conference Preview Section

.Smalltalk/V to the rescue. Simply | |

enabling large programs to be !,
Eltrxilt from pretested software

Want to objects, it can provide tenfold § brand-new finan-
know the leaps in programmer productivity cial instruments
fastest Way o Ye_ | and software quality, Perhapy done in days, not
learn objects — more important, Smalltalk pro} months.”
even for C++ 3d | grams deal in terms programm,
developers? The gy canunderstand, m
e ecommend e ke T Heres how Smalltal
Smalltalk/V, the technology more sense once § ores how ky

that's 100% pure objects.

FASTER, EASIER LEARNING.

With C++, you have to
accomplish two huge tasks:
learning object class libraries,
and fearning new C++ language
Syniax. Plus C++ is a hybrid of C
with added object extensions. So
odds are, you'll find yourself con-
stantly falling back on familiar
procedural methods and fosing
the benefit of objects.

Smalltalk/V has 3 simpler,
more approachable language
that lets you focus on
learning objects instead
of a new syntax. That's
why thousands of profes- .
sional programmers have §
found Smalitalk/V to pe ’
the fastest, most efficient
way lo learn the object-
oriented paradigm. In fact

Special Conference Preview Section

RHNERYEN
SMALLTALK/V. 100% PURE OBJECTS,

you learn O0P Fempm,
with Smalltatk/V. R

But we think you'll want to con-

tinue using Smalltalk/V for your
application development.

DEVELOP 10x FASTER,

Greg Voss of Windows Tech
Journal says: “It's not an exag-
geration to say that most applica-
tions of significant size can pe
built ten times faster in
Smalltalk/V than in C or Co+."
Gen Kiyooka of Windows Tech
Journal agrees: “Nothing on
earth can maich the effi-
cliency and productivity
of experienced
1 Smalltalk/V program-

& mers. Nothing.” And
Business Week reminds
us that some Wall Street
firms now get their
‘computer modefs of

cuts development
time by as much as
90%. eLasy-to-use
integrated environ-
ment. sincremental compilation
shows immediate results of code
changes. Over 350 well-tested
reusable classes built-in and
100's more available. oClass
browsers and object inspectors
lo examine code and isolate
errors. eAutomatic memory man-
agement to eliminate memory
related bugs. eFas Y access to
3GL languages. *integrated
graphic debugger. eAvailable on
Windows 3.1, Windows N I 0572
and Macintosh,

So if you want to Jearn objects
fast - and develop 10x faster —
punch this line of code into your
telephone: (800) 531-2344
Department 712 We'll send you
complete information.

DIGITAILK

See us at Booth #102 at Smalltalk Solutions 95

THURSDAY, FEB. 23 FRIDAY, FEB. 24

Component-Based Software Smalltalk and Object DBMS: Smalltalk Objects: The Enabling
Construction: The Transition The New Foundation for Technology for New Business
from Craft to Engineering Client/Server Applications at Processes

Dave Thomas Fortune 1000 Firms Raymond B. Wells, PhD

Object Technology International IBM Consulting Group

Thomas Atwood
Object Design, Inc. Today most large corporations
are preparing for global compe-
tition, slashing costs and reengi-
neering their business processes.
Object technology is being used
more and more as the enabling
technology for information sys-
tems supporting the new business processes.
ponent-bafsed development as ments. This presentation will dis- Sma_]ltalk is the dev'elol?ment environrr.lent of
well as various processes and cuss the ODBMS binding to choice. Dr. Wells will discuss the experiences of
component libraries and management tools Smalltalk-based, 4GL-like products, and will IBM’s Object Technology Practice in working
used in a wide variety of engineering and IT ' ! with some of North America’s largest enter-
projects. prises to solve their business problems with
Smalltalk-based solutions.

Object-oriented programming
facilitates the development of
libraries of pre-built compo-
nents. This talk will describe
experiences with component-
based applications and product
development. We will discuss the
critical success factors for com-

Smalltalk may become the
COBOL of the “90s. As compa-
nies move from the mainframe
to client/server computing, they
are also beginning to do their
new development in modern
object programming environ-

compare an ODBMS implementation with the
Relational DBMS alternative, It will conclude
with a discussion on insulating 04GL develop-
ers from Relational or IMS databases by using
the ODBMS.

Your Free Pass to Exhibits and More!

To pre-register and receive your pass in the mail, complete this form and return on or before February 6, 1995. After February 6,
please bring this completed form to the show. Please copy for each additional attendee.

Name Your pass entitles you to attend:

Title ‘L

* Exhibit Hall
C .
ompany » Keynote Presentations

Address * Product Education Sessions

City * "Birds-of-a-Feather"

State Zip Sessions

Country, Postal Code * Walk-In Clinics

Phone Fax PhOtOCOpy

. and Mail or F/
email Fax Today }/

Special Conference Preview Section

REGISTRATION FORM

(Photocopy this form for additional delegates)
@ Please register me for Smalltalk Solutions 95

Name (please print)

Signature
Title
Company
February 21-24, 1995 | s
Omni Park Central City State
870 7th Avenue Country Postal Code
New York, NY
Day Phone Fax
To Register: € Conference Package Options AMOTUNT
Complete the registration form to the right, and 3-DAY CONFERENCE (February 22,23,24)
indicate the method of payment and the sessions O Early Bird Rate (before January 20, 1995): $995*
you plan to attend. Make sure you choose only one ’
session per time period. O Regular Rate: $1095*
By Mail: O Group Registration (group of 4 or more registering from the

same company): $895 per person*

PRE-CONFERENCE TUTORIAL (February 21)
O With 3-day conference: $325

71 West 23rd Street, 3rd Floor
New York, NY 10010

By Phone: (212) 242-7515

Use credit card/purchase order and call 9:00-5:00

EST, Monday to Friday O Without 3-day conference: $450
By Fax: (212) 242-7578 ANY 1 DAY: $450, ANY 2 DAYS: $850
Send this form with credit card/purchase order

Group Discounts © Method of Payment

Save by training your entire development team at
once — discount of $200 per person on the 3-day
conference fee when a group of four or more (3 Check enclosed (Payable to SIGS Conferences, in US dollars, drawn on a US bank)
register together from the same company. Early
Bird discount does not apply to group rates.

Payment due in full on or before the conference dates.

() Purchase Order #
Hotel Accommodations

Rooms at the Omni Park Central have been
reserved for Smalltalk Solutions attendees at a spe-

Invoice my company, Attn

cial discount: Single or Double: $99. Call the hotel () Charge my: 0O Visa O MasterCard O American Express
at (212)247-8000 and mention Smalltalk

Solutions. Card # Exp. Date
Airline Discounts Signature

American Airlines is offering Smalltalk

Solutions attendees 5% off the lowest fare avail- Cardholder name & address (if different from above)
able, or 10% off discounted unrestricted coach

fare. Rates are valid for travel from February 19
through 26. To take advantage of these special

fares, have your credit card ready for payment, and o Tutorials & Lectures

call Dorothy Fradera at World Travel Specialists at Please circle the sessions you plan to attend. Choose only (1) course per time period.
1-800-431-1112 between 8:30 a.m. and 6:00 p.m.
EST. Mention that you will be attending Smalltalk Tuesday |FullDay | T1 | T2 | T3 | T4
Solutions. Morning | w1 [w2 [wa | we
Wednestay Aft Wo | W6 | wr | we

. ernoon :
Cancellations _ Sponsored by:
Cancellations made by February 3, 1995 will be Thursday Morning TH2 | TH3 | TH4
subject to a $100 cancellation fee. Cancellations Afternoan THG | THT | TH8
made after February 3, as well as “no-shows” are Morning | F1 [F2 [Fa | F4
liable for the full registration fee_ Substitutions may Friday N AIGER
be made at any time. Cancellations must be made ernoon
n W'rltln.g and are only valid when you receive a *$20 of your registration fee applies towards your subscription to Onject MAGAZINE. If you are a current subscriber, your
cancellation number. subscription will be extended ane year (a $39 value). If you do not wish to receive OmiCr MAGAZINE or are a subscriber

and do not wish to renew, please deduct $20 from this registration.

Special Conference Preview Section

Join a
Winning Team

Keane/Research Triangle Park, North Carolina
A Great Place to Work — A Great Place to Live

Keane, Inc. is a project oriented consulting firm that helps Fortune 500
companies by aligning their information systems with changing business
objectives. Keane is the largest and fastest-growing software services
company in its market segment, with more than 4,000 technical and
business professionals and a network of 45 branch offices throughout
North America.

If you're an experienced software professional with vision and solid technical
skills, this is an opportunity to put your talents to work as a member of
Keane's dynamic technical team.

We have multiple needs for people with SMALLTALK and OBJECT
ORIENTED DESIGN/PROGRAMMING skills for our offices in Ra-
leigh/Durham, Charlotte and Greensboro/Winston-Salem.

The Advantage of Experience

If you desire to be part of an industry-leading organization that recognizes
excellence and rewards performance, and you wish to live in one of the

best areas in the country, please send/fax your resume to:

I' Keane, Inc.

2525 Meridian Parkway
Suite 150
Durham, NC 27713
Fax: (919) 544-0895
KEANE An Equal Opportunity Employer

Smalltalk

Programmer/Analyst

The Capital Group, Inc. is one of the nation’s mast

successful mutual fund and investment management
organizations. We currently have an opening for an
experienced Programmer/Analyst in our southern
California office.

You will be 2 member of a team dedicated to application
analysis, design and development for O5/2 Smalltalk V
Client Server projects and systems using HP/UX-Sybase
servers. The ideal candidate will possess 2-3 years experi-
ence in building and maintaining Smalltalk production
client server applications as well as skills in object oriented
analysis and design.

We offer a competitive salary as well as an excellent benefits
package, including medical, dental and vision care coverage,
educational reimbursement, health club subsidy and an out-
standing retirement plan. To apply, please send your resume
to: The Capital Group, Attn: Human Resources, SR/#342,
P.O. Box 2215, Brea, CA 92622-2215. You may also apply
by faxing your resume to (714)255-8504. EOE

o D TR
Authors Wanted

For Two Innovative
Book Series

Managing Object Technology
edited by Charles F. Bowman
For more information please contact:
Charles F. Bowman, Series Editor
(p) 914-357-6285, (f) 914-357-6524
71700,3570@compuserve.com
1 %

and

N
Advances in Object Technology
edited by Dr. Richard S. Wiener
For more information please contact:
Dr. Richard S. Wiener
135 Rugely Court
Colorado Springs, CO 80906
(phone & fax) 719-579-9616

SIGS
BOOKS

-]
45

ENGINEER THE FUTURE OF HEALTHCARE
SOFTWARE ENGINEERS

HBO & Company (HBOC) is a leading international developer
and provider of software solutions for hospitals and the
healthcare enterprise. With over 2500 employees and 1994
revenues anticipated to exceed $300 million, we are continuing
20 years of success and profitable growth. Join the leader and
grow your career with us in our Atlanta, GA, Minneapolis,
MN or Amherst, MA offices.

We seek talented individuals to design and develop our next
generation of software products using the latest technologies.
We cumrently have the following openings for Information
Technology professionals.

Smalltalk
The ideal candidates will have experience with object-oriented
analysis and design, PC software development, and Smalltalk

programming.

Visual C++
Positions require 2+ years of development experience with
Visual C++ in 2 Windows environment.

The professionals we seek must possess excellent communi-
cations skills and the ability to work in a team environment.

HBOC offers excellent benefits, competitive salaries and a
team-oriented professional work environment where promotion
from within is the norm. If you possess energy and vision and
wish to join a company committed to excellence, please

forward/fax your resume to: HBO & Compamy, A
Corporate Recruiting, 00D1/95, 301 Perimeter
Center North, Atlanta, GA 30346, fax to: A
(404) 393-6063. No phone calls or agencies, ‘ ‘

lease.
2 AR
: HBO &Company

An Equal Opporminity Employer M/F/D/V

SUCCESS
@J/éé%

At QSYS we have successfully
provided Object Oriented consulting
services to our customers for over
seven years. This has created opportunities
for Smalltalk Specialists to participate in
leading edge, mission critical assignments with

our Fortune 1000 clients.

If you have demonstrated experience implementing
Iarge 00 systems using IBM Smalltalk or Visual
Age,” ParcPlace VisualWorks,® Digitalk Smalltalk/V,®
we would like to hear from you!

For further information, contact
Elspeth Koor at 1-800-999-9776.

1 Yonge Street, Suite 1801, Toronto, Canada
M5E 1W7 Fax:(416) 369-0515

90 Park Avenue, Suite 1600, New York, NY
10016 Telephone:(212) 984-0715

Email: 72072.2575@compuserve.com

HOW TO CONTACT SIGS PUBLICATIONS

To submit materials for publication

Ariicle proposals, outlines, and manusaripts; industry news; press briefings; let-
ters o the editor; and product announcements—send fo

John Pugh and Paul White, Editors

THE SMALLTALK RePon,

Produd Amouncements Depl.,

885 Meadowlands Dr, #509

Ottawa, ON K2C 3N2, Conada,

613.225.8812 (v), 613.225.5943 (f).

Customer Service

In the US—

Phone: 215.785.5996 Fax: 215.785.6073
email: poo97 6@psilink.com

In Europe—

Theresa Procter

SIGS Conferencos Lid.

Phone: 44.0306.631.331

To order a subscription or change the nome /address of an existing
swbscription

ON, PO Box 2029
Langhorne, PA 19047

Phone: 215.785.5996 Fax: 215.785.6073
In Europe—

Theresa Procter

SIGS Conferences Lid.

Phone: 44.0306.631.331

To order back issves

Back lssue Order Depl.

SIGS Publications

71 West 23rd Street, 3rd floor

New York, NY 10010

Phone: 212.242.7447 Fox: 212.242.7574

For information oa lst rentals, contact:

Rubin Response

Phone: 708.619.9800 Fux: 708.619.0149

For information on reprints of published material, contact:
Duane Dagen

Reprini Managemenl Services

505 Egst Airport Read, Box 5363

Lencastes, PA 17601

Phone: 717.560.2001 Fax: 717.560.2063

To place an advertisement or request a media kit for any SIGS publica-
fons, contact:

Directer of Sales

SIS Publications

Phone: 212.242.7447 Fax: 212.242.7574

For information on SIGS Books and SIGS Conferences
Phone: 212.242.7447 Fax: 212.242.7574

The Smalltalk Report

Now in its 4th Year!

Object technology and C++
join forces at this annual
technical affair dedicated to
providing OOP professionals
with the latest on Germany’s
fastest growing software
technology and computer
language in use today.
Whether your a seasoned
professional or just explor-
ing the possibilities, OOP
’95 featuring C++ World is
the perfect opportunity to
gather with over 1,500
expected attendees and par-
take in technical courses,
attend informative lectures
and visit a impressive floor
of exhibits.

No other conference in
Germany provides such an
educational range of class-
es, in-depth advice and
hands-on demonstrations
in 1995!

New for 1995!

¥ An integrated and newly
developed OT and C++ pro-
gram including 6 topic
tracks with 8 new classes,
and 5 full-day post-confer-
ence tutorials.

W The exhibit floor spans one
large level to readily show-
case over 60 OT and C++
companies, products and
services.

VW The technical program has
been devised to incorporate
more internationally known
German and English speak-
ers. Classes are conducted in
both German and English.

¥ An Executive Briefing.
Register to attend this spe-
cial event geared toward
upper-management levels
addressing the issues con-
cerning them most. Learn
through the experiences of
others and how they imple-
mented OT into their cor-
porate worlds.

Janvary 3 - february 3, 1995
Munich Sheraton, Germany

Featuring (++ World

Moving Forward with Object Technolog

A SIGS Conference

For information on exhibiting or attending 00P'93 featuring (++ World,

please contact;

Exhibit Sales

Nadine Tillack

SIGS Conferences GmbH
Birkenhohenweg 12, D-51465
Bergisch-Citaback

v: 022.029.36810

f: 022.029.368122

Attendee Information

Norbert Amthor
SIGS Conferences Grpiat

Cosimastr. 306) B

Munich, Germany E_b 952 '
v: 089.957.7047 § 7%
- 089.957.9125

Attend (lasses Presented
by Industry Experts!

Don’t miss the opportunity to
learn from a select group of
distinguished industry experts
such as:

Tom Atwood, Ken Auer,
Sandeepan Banerjee,

Walter Bischofberger, Frank
Buschmann, Matthias Biicker,
Michael Cantone, Peter Coad,
James Coplien, Peter Eichhorst,
Don Firesmith, Bogdan
Franczyck, Stuart Frost, Marc
Gille, Marc Goldberg, Neil
Goldstein, Mike Guttman, Georg
Heeg, Peter Hruschka, Tom Jell,
Gerti Kappel, Tim Korson,
Marie Lenzi, Bertrand Meyer,
Paul Micke, Annrai O'Toole,
John Pugh, Dave Reed, Doug
Rosenberg, Martin Résch, Heinz
Schneeweiss, Berndt Schmidt,
Harry Sneed, Michael Stal,

Uwe Steinmiiller, John Vlissides,
Raymund Vorwerk, Tony
‘Wasserman, Uwe Werner and
John Williams among others!

Register for technical classes such as:

0-O Client Server Development,
Patterns Panel, Writing Efficient
Software Programs, Concurrent
O-0O Network Programming
with C++, ODMG, Object
Models: Strategies Patterns &
Applications, Shlaer/Mellor vs.
OMT, Tools and Frameworks,
and Writing Efficient Smalltalk
Programs.

FRANCES PAULISCH, TECHNICAL CHAIR

Sponsored by:

(=--4REPORT

OBJECT
0BJEK Tspelctrum
Presented by:

WSIGS

CONTERENCES

OBJECT
LESSONS

Lessors Leamned n Object-Oriented
Development Projects

Buy 2 or more
books and receive
a FREE gift

Object Lessons

by Tom Love

An indispensable reference guide
for all professionals in the field of
object-oriented software engineering.

iartifin i Love encourages technical leaders and
Objecufylng Heal:nmc Schm‘ managers to avoid disaster by learning
by John R. Ellis from the mistakes of others rather than
repeating them.

Engineers developing real systems can
now apply object-oriented techniques to

their daily projects. Ellis’ methodology rep- - i
resents the evolution of RTSA into Cations programmers, project leaders,

Obje(t Dcvelopment Mcthod* RTOOSA, and the accompanying diskette ~ @nd technical managers. (276 pages.)

allows readers to experiment on their own
edited by Andy Carmichael without having to key in code.

A must-read for becoming familiar with For anyone interested in developing
and choosing from the leading methodolo- object-based real-time systems. The reader FR[E ﬁlﬂl
gies. Provides valuable insight into the should have a solid grasp of RTSA. (525 ‘
object-oriented methods of Shlaer/Mellor, pages with diskette.)
Jacobson, Rumbaugh, Booch, Texel and
Coad/Yourdon among others.

For systems analysis/designers, programmers, Buy 2 or more books and receive a FREE copy of FOCUS ON ODBNS,

g ;Zjiﬁ;?;i::ﬂ" ”};Z’;"gi ’;:')’ IT man- 3 140-page reference guide that provides invaluable advice and insight
needed to manage, build, and implement object databases.

For software managers, systems ana-
lysts/designers, implementors, appli-

Available at selected bookstores. Distributed by Prentice Hall.

LN — 5165 BOOKS ORDER FORM -------------------- A

YES! Please send me the following book(s).

If I buy two or more I will receive a FREE copy of Focus on ODBMS. Name
If I am not totally satisfied, I may return the book(s) within 14 days Title
and receive a complete refund.

Address
[:I Object Lessons, by Tom Love (ISBN: 0-9627477-3-4).....$29.00
Company
D Objectifying Real-Time Systems (diskette included)) .
by John R. Ellis (ISBN: 0-9627477-8-5).....$44.00 City/State/Zip
D Object Development Methods Country/Postal Code
edited by Andy Carmichael (ISBN:0-9627477-9-3).....$39.00 Phone, Fax
I am buying 2 or more books. Please send me Focus on SEND TO: 195TA
ODBMS absolutely FREE! .
SIGS Books, P.0. Box 99425
O Check payable to SIGS Books Collingswood, NJ 08108-970 SIGS
Q visa [American Express (] MasterCard Phone: 212.242.7447 Fax: 609.858.2007 BOOKS
Card# Exp. SHIPPING AND HANDLING: For US orders, please add $5 for shipping and handling; Canada add $10;
Signature Foreign add $15. IMPORTANT: NY State residents add applicable sales tax.

COMPLETE MONEY-BACK GUARANTEE

	By Article Title
	A technical overview of VisualWorks 2.0
	Demand loading for VisualWorks
	ENVY software baselining process
	Making MVC code more reusable
	Multi-user Smalltalk
	Safety and inheritance
	Smalltalk Solutions Special Conference Preview Section

	By Author Name
	Almarode, Jay
	Beck, Kent
	Haungs, Jim
	Knight, Alan
	Oglesby, Barry
	Woolf, Bobby

	By Topic
	comp.lang.smalltalk
	Getting Real
	Smalltalk idioms

