A performance challenge

HEN MY COMPANY began looking into Smalltalk we
Whad quite a few skeptics. One challenged me to

match the performance of the most time-consum-
ing portion of an existing C-based application. At first, |
resisted—I knew that Smalltalk was not as fast as C but felt
that its’ many other strengths greatly outweighed this
weakness. | did my best to steer this effort toward a more
complex problem that would better demonstrate the
strong modeling capabilities of Smalltalk.

It became clear, however, that performance concerns
would torpedo Smalltalk adoption unless these fears were
met head on. | accepted the performance challenge and
this article describes my experience in trying to meet it.

The problem was reading data from binary files (pro-
prietary structure) and aggregating it into a multi-dimen-
sional symmetrical matrix.* | used VisualWorks 2.0 running
under Microsoft Windows 3.11.

DICTIONARY

| decided to use a Dictionary to represent my matrix. The
keys are the cell coordinates and the values are the cells.
| defined the matrix as follows:

Object subclass: #SymmetricalMatrix
instance variables: ‘dimensionSizes initialCellValue
cellDictionary’

dimensionSizes is a collection with the number of elements
in each dimension. initialCellvalue contains the value to
initialize each cell to. cellDictionary is the actual Dictionary
of cells. | added a class method to answer a new instance
and an instance method to create the actual matrix:

SymmetricalMatrix class>>withSizes: aCollection
initializeCellsTo: aValue
A(self new)
dimensionSizes: aCollection copy;
initialCellvalue: avalue;
build; yourself

SymmetricalMatrix>>build
self cellDictionary: Dictionary new

For example, “SymmetricalMatrix withSizes: #(2 3 4) initialize

*The current C application can handle up to 6 dimensions. Symmet-
rical meaning that the number of elements in a dimension is con-
stant across all combinations of the other dimensions. If, for exam-
ple, Region and Brand were two of the dimensions in a matrix, the
number of brands can’t change between regions.

Keith Piraino

CellsTo: 0” would answer a 2x3x4 matrix where the default
value of all 24 cells is zero.

To access the cells we implement #at:, #at:put;, and
#at:incrementBy. The first two selectors should look famil-
iar. The last is a convenience method to increment the
value of a cell. In all three cases the at: parameter is a col-
lection representing the coordinates of the cell. In our
2x3x4 example “at: #(1 1 1)” will answer the first cell and
“at: #(2 3 4)” will answer the last cell. Here is the imple-
mentation of the #at: method:

at: aCollection
~self cellDictionary at: aCollection
ifAbsent: (self initialCellValue)

Dictionary’s #at:ifAbsent: method is used to answer the cell
at the coordinates or return our initialCellValue if the cell
doesn't exist yet. From this the #at:put: and #at:incre-
mentBy methods are trivial. The only catch is to make sure
we copy aCollection in #at:put: because if the caller modi-
fies it our dictionary key will change. Here is the code:

at: aCollection put: avalue
self cellDictionary at: (aCollection copy) put: aValue

at: aCollection incrementBy: avValue
self at: aCollection put: (self at: aCollection) + aValue

That’s it. Other than accessor methods the code shown is
a complete implementation of the matrix. It works, but
how fast is it?

The test consisted of creating a three-dimensional ma-
trix and calling #at:incrementBy: over a million times. The
coordinates to use were retrieved from binary files in a
proprietary format."

The cells were initialized to zero and always increment-
ed by one. If the C program took X amount of time my first
cut in Smalltalk took over 4X (i.e., 4 times slower). A profile
of the code showed that most of the time was spent in
Dictionary code—+#at: and #at:put:. Leveraging the Diction-
ary class gave me a solution very quickly but there was no
room for improvement so | turned to another approach.

LINEAR
The C application uses a linear array to implement the
matrix. A 2x3x4 matrix, for example, is represented by

TBecause I'm not presenting the code to “feed” the matrix, all times
given are after that section of code was already optimized. In reality,
both the matrix and supporting code were optimized simultaneously.

4 http://www.sigs.com

The Smalltalk Report



| A PERFORMANCE CHALLENGE

an Array with a size of 24. Given the coordinates of the cell
we need to calculate the index in the linear array. One key
optimization here is to pre-compute dimension ranges.
The range is the number of cells we pass when the dimen-
sion index changes. It’s calculated by taking the product
of the inner dimensions. In a 2x3x4 matrix the range of the
first dimension is 12 (3 * 4), the range of the second is
4 and the range of the last is 1. For example, the index of
#(111)is1and the index of #(2 1 1) is 13. The difference
between them is the range for the first dimension: 12.
The code following assumes that cellArray and dimension
Ranges are instance variables containing the Array of
cells and the Array of dimension ranges, respectively.
Initializing these variables is left as an exercise for the
reader.

at: aCollection incrementBy: aValue
| index |
index := self cellindexFor: aCollection.
self cellArray at: index
put: (self cellArray at: index) + avalue

cellindexFor: aCollection
| index |
index := 1.
aCollection with: self dimensionRanges do:
[:eachCoordinate :eachRange |
index := index + ((eachCoordinate - 1) * eachRange)].
ANindex
At 2.5X, the linear matrix was an improvement over the
dictionary approach but it was still pretty far off. As I
would expect, the profiler showed almost all the time
being spent in #celllndexFor:. Apparently, this calculation
was a lot slower in Smalltalk than in C. Other than caching
dimension ranges, | don't know of any other optimiza-
tions to this algorithm. I still wanted to meet the challenge
so I moved on yet again.

TREE

To avoid the cost of calculating an index, | decided to
implement a matrix as a tree structure where intermedi-
ate nodes are a kind of index but the actual cells are all in
leaf nodes. Figure 1 shows an Object Explorer picture of a
matrix created via the following code fragment:

matrix := TreeMatrix withSizes: #(2 3 4) initializeCellsTo: 0.
matrix at: #(1 1 2) put: 5.
matrix at: #(2 3 4) incrementBy: 1.

The code to create the initialized tree structure is left as an
exercise for the reader. To access a particular cell, we must
traverse the tree to get to the correct leaf node. The
#leafNodeContaining: method answers the leaf node con-
taining the cell defined by the given coordinates. From
there it’s a simple #at:put: to the Array. Here’s the code:

at: aCollection incrementBy: aValue
| leaf |
leaf := self leafNodeContaining: aCollection.
leaf at: aCollection last

put: (leaf at: aCollection last) + aValue.

leafNodeContaining: aCollection
"(aCollection copyFrom: 1 to: (self numDimensions - 1))
inject: (self rootNode) into: [:node :each | node at: each]

numDimensions
~self dimensionSizes size

The TreeMatrix reduced the time to about 2.1X: only slight-
ly better than the linear approach. Having run out of
ideas, | did what | should have done earlier—looked
closely at the profile results. Most of the time was spent in
#leafNodeContaining:, but not performing the #at: that tra-
verses the tree. There was some overhead in #copyFrom:to:
but most of the time was spent in the #do: loop*called by
#inject:into:. The overhead of looping was far greater than
what | was actually doing in the loop!

I went back to LinearMatrix and, sure enough, most of
the time was spent in #with:do:. The #with:do: method
creates a Stream to traverse the second collection. That oc-
cupied some time, but again, most of the time was spent
in the #do: loop. | was dead wrong when | assumed that
calculating the cell index, the addition and multiplication
necessary was the problem. With this revelation | could

have returned to optimizing LinearMatrix but | decided to
stick with TreeMatrix because it was slightly faster even
discounting the #do: impact.

LOOP UNROLLING

If the problem is looping, | figured why not eliminate the
loop? The #leafNodeContaining: method can easily be opti-
mized for a particular number of dimensions. One way to
do this would be to create a different subclass for each
number of dimensions and override #leafNodeContaining:
in each. A more manageable approach is to use blocks.
When the matrix is instantiated, a block optimized for
that number of dimensions is assigned to the instance
variable leafAccessorBlock. Given the cell coordinates and
the root node this block goes directly to the leaf node via
a series of #at: messages. Listed next are the one-, two-,
and three-dimensional blocks:

[:coord :root | root]
[:coord :root | root at: (coord at: 1)]
[:coord :root | (root at: (coord at: 1)) at: (coord at: 2)]

Modifying #at:incrementBy: to use the leafAccessorBlock
dramatically reduced the time to about 1.1X. A fresh pro-
file showed that doing “aCollection last” twice to access the
index of the cell in the leaf node was now taking a notice-
able amount of time. | was able to take advantage of the
fact that the position of this last coordinate is known at
the time the matrix is instantiated. After adding an in-
stance variable to cache the number of dimensions in
numDimensions, at:incrementBy: was changed to:

at: aCollection incrementBy: avalue

* | use the term “loop” somewhat loosely to also include enumerating
the elements of a collection.

The Smalltalk Report



| A PERFORMANCE CHALLENGE

| leaf lastCoordinate |
leaf := leafAccessorBlock value: aCollection
value: self rootNode.
lastCoordinate := aCollection at: self numDimensions.
leaf at: lastCoordinate
put: (leaf at: lastCoordinate) + aValue

This brought the time down to 0.9X. Actually, a little faster
than the C code! Success!!

I'm not suggesting that Smalltalk is faster than C in a-
head-to-head comparison. There are mitigating factors®
that prevent me from making that claim even in this case.
The real point is that the performance gap can be narrowed
to the point where it will only rarely be the deciding factor
in technology selection.

To generalize, this idea of “unrolling loops via blocks” is
useful in the following circumstances:

 Looping code takes more time than contents of loop

* Number of iterations varies but the maximum is rela-

tively low

» Contents of loop relatively simple
It's fine for the problem at hand but the last two con-
straints limit the usefulness of this technique. If the prob-
lem involved 100 iterations with even 5 lines of code in the
loop, this approach becomes completely unwieldy. At this
point | released my findings and declared success.
Although | wasn’'t completely satisfied with my solution, |
didn’t have any more time to spend on it.

ABETTER LOOP?
Several months later | returned to this problem. I reviewed
back issues of the Smalltalk Report looking for any perfor-
mance information regarding looping. | found the answer
I was seeking in an article on performance by Alan Knight.!
It turns out that certain kinds of blocks are inlined
and others aren’t. These optimizations are vendor specif-
ic but can have a major impact. In LinearMatrix | used
#with:do: for looping and in TreeMatrix | used #inject:into:.
Neither is inlined and both call #do: which is also not in-
lined. In VisualWorks both #whileTrue: and #to:do: are in-
lined. To take advantage of this, | rewrote #leafNode
Containing: as shown:

leafNodeContaining: aCollection
| node |
[node:= self rootNode

1 to: self numDimensions - 1 do:
[:i | node := node at: (aCollection at: i)].
“node

| tested this and received results similar to unrolling the
loop: 0.8X. The only cautionary note here is to avoid add-

§ My Smalltalk version has only a subset of the C functionality. This means
that the C program must pass through a lot more conditionals and code
even for my simple test. Compounding this is the fact that Smalltalk
is running in 32 bits (via win32s) and the C code is a 16 hit app.

ing parentheses to improve readability. If you change this
code to read “(1 to: self numDimensions -1) do:” it will run
much slower. Why? Because instead of the compiler rec-
ognizing #to:do: and inlining, it instantiates an Interval via
#t0: and then sends the Interval the #do: message. | was
actually doing this in some of the code that feeds data to
the matrix. When | removed the parentheses the time was
further reduced to 0.5X (i.e., twice as fast as the C code!!)

Optimizing the loop via #to:do: is better than unrolling it
for two reasons: (a) it is more generally applicable; (b) per-
haps more important, the code is closer to the original
intent and, hence, much more readable. In fact, although
slightly less concise, the #to:do: version may be more easi-
ly understandable than my original version that used
#copyFrom:to: and #inject:into:.

Letting go of code and ideas you've invested in isn’t al-
ways easy. More than once I've seen developers refuse to
do it. Sometimes they think they’ve gone too far to back
off. This is understandable but usually misguided in light
of long-term maintenance costs and the malleability pos-
sible with newer tools. A less defensible cause of this re-
fusal is emotional attachment. People get excited about
their first idea (which is good) but sometimes become
blind to newer and better ones (which is bad). If you write
something you think is really cool but you've since found
a simpler more maintainable approach—file out the cool
code and play with it in your spare time. Don’t leave itin a
production application.

Good systems come, in part, from a willingness to
throw away some of your code. Vendors can provide the
tools to rework code and enlightened management can
provide the time but it simply doesn’t work without peo-
ple with the right attitudes.

MISCELLANEOUS

In the course of optimizing your code be careful not to
break it. An approach that works for me is to try out opti-
mizations in subclasses. Once you finish optimizing you
can decide whether or not to consolidate. Next is the hier-
archy of Matrix classes | ended up creating:

AbstractSymmetricalMatrix
DictionaryMatrix
LinearMatrix

LinearMatrixFastLoop
TreeMatrix

TreeMatrixUnrollLoop

TreeMatrixFastLoop

For the particular test | used, TreeMatrix gave the best per-
formance. When | tried a test with more dimensions, how-
ever, LinearMatrix performed better than TreeMatrix. The
best approach might be to instantiate the optimum Matrix
using the Bridge pattern? in the same way that the Visu-
alAge Collection classes are implemented.3

In the code that feeds data to the matrix | found blocks
useful as a way to avoid reevaluating conditionals in tight

8 http://www.sigs.com

The Smalltalk Report



Array
1—» #(0500)

1 2 — #(0000)
TreeMatrix ) 3—» #0000)
dimensionSizes

Array

initialCellValue
rootNode

Array
1—® #(0000)

2— 3 #0000)
3— #0001)

Figure 1. A 2x3x4 TreeMatrix.

loops. If there are more than two possibilities, this can
help eliminate case-like statements.

One area where | didn't need to worry about perfor-
mance was reading from the binary files. ExternalRead
Stream seems to be plenty fast. My only problem was that
methods like #nextLong assume a Little-Endian byte order
and my data is Big-Endian. Correcting this wasn't a big deal
but it’s ironic since VisualWorks itself seems to store
Integers in the image in Big-Endian order.

CONCLUSION

Smalltalk’s expressive nature, extensive class library, and
interactive environment greatly improve the most impor-
tant performance measure—developer productivity. You
can quickly create a solution to the problem. The combi-
nation of hardware advances (faster, more memory) and
Smalltalk vendor advances (dynamic compilation, faster
library code) mean that you may never have to worry
about performance. Don’t assume Smalltalk isn’t fast
enough for your whole application.

If performance is an issue, use a profiler to locate the
small percentage of code that needs work. It’s easy to do
and works a lot better than intuition. Always keep in mind
the maintenance cost of tweaking code for performance.
You might want to consider trying another algorithm/de-
sign approach instead. This will often give you greater
performance leverage and more understandable code. It’s
also a lot easier to do in Smalltalk than in other environ-
ments. Again, don’t resist throwing code away—it’s an
important part of the process. §

References

1. Knight, A. More performance tips, THE SMALLTALK REPORT 4(2):
19-20,1994.

2. Gamma, E. et al. DESIGN PATTERNS: ELEMENTS OF REUSABLE
OBJECT-ORIENTED SOFTWARE, Addison-Wesley, Reading, MA, 1995.

3. Lalonde, W. and Pugh, J. Communicating reusable designs via
patterns, JOOP 7(8): 69-71, 1995.

Keith Piraino can be reached at keith_piraino@npd.com.

The Smalltalk Report



