
A framework for
multiple language support

William Hollings
F   applications, communicating
with the user in a single language (usually English) is
sufficient. However, some applications, such as

those supporting customers in an urban banking envi-
ronment, must communicate with users from diverse
language backgrounds. These applications must be
designed to support dynamically changing languages at
the user interface. For example, Figure 1 illustrates a sin-
gle test window that has been opened in both English
and French as determined by the user’s language prefer-
ence selection.

I refer to this concept of dynamic language selection as
multiple language support (MLS), to differentiate it from
the more common national language support (NLS)
which assumes the use of only a single language. This
article describes parts of the multiple language frame-
work that our team at the Toronto-Dominion Bank is
developing using Digitalk’s Visual Smalltalk.

THE LANGUAGEMANAGER CLASS
Central to the MLS framework is a subclass of NationalLang-
uageSupport called LanguageManager. A singleton instance
of LanguageManager is plugged into the existing global vari-
able NationalLanguage at application start up time.

In addition to the responsibilities it inherits, Language-
Manager adds the capability to manage language files.
Each language file contains the information required to
translate and format all on-screen text within the appli-
cation into a particular language. We can incrementally
add new languages simply by distributing new language
files without redeveloping the application.

The LanguageManager singleton manages these language
files (with help from ObjectFiler) via two public methods:

• LanguageManager>>getSupportedLanguages. Answers a
collection of language names that are currently sup-
ported by the application. During application startup,
the LanguageManager singleton scans the directory for
all language files (e.g., *.lng) to build this collection of
language names.

• LanguageManager>>setLanguage: aLanguageName. Sets
the current language to the one identified by aLanguage
Name. This method loads the contents of the appropri-
ate language file from disk. This message is typically
received from a user preferences selection tool.

Each language file contains a dictionary to translate wid-
http://www12
get labels, menu labels, and other strings. It also contains
various data formatting information such as the decimal
separator character and date formats. Once loaded from
file, this information is maintained in instance variables
within the LanguageManager singleton. In particular, the
instance variable stringDictionary is populated with the
dictionary of translated strings.

The keys for stringDictionary are language-neutral
string abbreviations. In the case of widgets and menu
items, the label text that was assigned to the widget or
menu item at GUI, design time is used as the key (e.g.,
‘CloseButn’). In the case of other displayable strings, such
as those displayed in message boxes, the key is a lan-
guage-neutral abbreviation such as ‘ErrMsgComm073’.

Typically, the language dictionary for each language is
created and maintained in a spreadsheet. It is read into
the development image and saved into the language
object file using additional LanguageManager methods.

Some points regarding performance are in order here.
If the stringDictionary gets too big, the dictionary lookup
times may become unacceptably slow. Also, the use of
Strings as dictionary keys is less efficient than using
Symbols as keys to an IdentityDictionary.

One solution to the first problem is to factor the dictio-
nary into smaller dictionaries. Our production applica-
tion uses three dictionaries within the LanguageManager
singleton, one each for widget labels, menu labels, and
general strings. Other methods of factoring are possible,
however for simplicity, the framework described here has
only one language dictionary.

With respect to the second issue, the choice of Strings
as keys in stringDictionary was motivated by the fact that
the GUI environment and tools assume the use of Strings
for the names and labels of widgets and menus. A design
using Symbols would require hacking the GUI environ-
ment and tools. Such a design would also have to avoid
using the String>>asSymbol method, which performs its
own (larger and longer) string-keyed dictionary look up.
The String keys have proved to be fast enough in our ap-
plication, though this remains an area for potential per-
formance improvement.

TRANSLATING STRINGS
The primary collaborator with LanguageManager is the
String class itself. Strings respond to the asMLSString mes-
.sigs.com The Smalltalk Report

sage and simply delegate the translation work to the
LanguageManager singleton as follows:

String>>asMLSString
“Answers my translation in the current language.”

^NationalLanguage translateString: self

which is handled by LanguageManager as:

LanguageManager>>translateString: keyString
“Answer the translation of the string keyString.”

^self stringDictionary at: keyString ifAbsent: [
keyString]

Notice that the original key string is returned if a transla-
tion string could not be found. This allows the application
to work even if some or all translations are missing from
the language file. This comes in handy during develop-
ment when the GUI and language files are in a state of flux.

TRANSLATING WIDGETS
The translation of widgets and menu labels takes place
during the opening of a window. We added the following
method to the TopPane class:

TopPane>>translateWindow
“Tell myself, all my widgets, and my menu bar to
translate themselves.”

self translate.

Figure 1. Illustration of a single test window opened in both English and
French. Notice that even the menu accelerator keys can sometimes be
different.
March-April 1996 http://www.
self allChildrenDo: [:each | each translate].
self menuWindow translate.

which sends the translate message first to itself, then to all
of the widgets contained on the window, and then to the
window’s menu bar.

The TopPane>>translateWindow message is sent after the
widgets and menus have been created as objects but be-
fore they have been made visible. The question of which
object sends this message depends on which GUI builder
is being used. Under WindowBuilder, a good place to send
this message is in the preInitWindow method of the View-
Manager subclasses. Under PARTS, a subclass of PARTS-
WindowPart can be created to override the open method so
that the window translates itself before opening:

MLSPARTSWindowPart>>open
“Translate myself before opening.”

self translateWindow.
^super open

In our MLS framework, all objects respond to the translate
message. The default method (defined in Object) does
nothing. All widgets and menus with a displayable label
override this default method to specifically translate their
label text. For widgets and windows this is done in the
ControlPane and TopPane classes, respectively, and is the
same for both classes:

TopPane>>translate
ControlPane>>translate

“Translate my label according to the current language.”

self label: (self label asMLSString).

In this method, the widget retrieves its existing language-
neutral label string and tells it to translate itself. The
resulting translated string is then assigned back to the
label. To stop nil labels from breaking the system we also
added an UndefinedObject>>asMLSString method which
simply answers nil.

TRANSLATING MENUS
Translating menu labels is a little more complex because
of the need to register menu selection accelerator keys
(e.g.,- Ctrl+S), which may be different for each language.

Recall that the TopPane>>translateWindow method sends
the translate message to the menu bar. In a non-PARTS
application, the menu bar is an instance of MenuWindow
and it simply passes the message on to its component
menus:

MenuWindow>>translate
“Tell each of my menus to translate itself.”

self menus do: [:each | each translate].

The Menu>>translate method first translates its own title
(e.g., File, Edit, etc.) and then cycles through each of its
13sigs.com

14 http://www

SIGS Publications, Inc., 71 West 23rd Street, 3rd Floor, New
York, NY 10010; 212.242.7447; Fax: 212.242.7574

ARTICLE SUBMISSION

To submit articles for publication, please contact:
John Pugh & Paul White, Editors, 885 Meadowlands Dr.#509,
Ottawa,Ontario,K2C 3N2 Canada;
email: streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS

To submit product reviews or product announcements,
please contact the Editors at the address above.

CUSTOMER SERVICE

For customer service in the US, please contact PO Box
5050, Brentwood, TN 37024-5050; 800.361.1279;
Fax: 615.370.4845; in the UK, please contact Subscriptions
Department, Tower Publishing Services, Tower House,
Sovereign Park, Market Harborough, Leicestershire, LE16
9EF, UK; +44.(0)1858.435302; Fax: +44.(0)1858.434958

SIGS BOOKS

For information on any SIGS book, contact: Don Jackson,
Director of Books, SIGS Books, Inc., 71 West 23rd Street,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574;
email: donald_jackson@sigs.com

SIGS CONFERENCES

For information on all SIGS Conferences, please contact:
SIGS Conferences,71 West 23rd Street, 3rd Floor, New York,
NY 10010; 212.242.7515; Fax: 212.242.7578;
email: info@sigs.com

BACK ISSUES

To order back issues, please contact: Back Issue Order
Department, SIGS Publications, 71 West 23rd Street, 3rd
Floor, New York, NY 10010; 212.242.7447; Fax: 212.242.7574

REPRINTS

For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road, Box
5363, Lancaster, PA 17601; 717.560.2001; Fax: 717.560.2063

ADVERTISING

For ad information for any SIGS publication, please contact:
East Coast/Europe: Gary Portie
Central US: Elisa Marcus
Recruitment: Michael Peck
Exhibit Sales, West Coast: Kristin Viksnins
Exhibit Sales, East Coast: Sarah Olszewski
212.242.7447; Fax: 212.242.7574
email: sales@sigs.com
West Coast: Diane Fuller
408.255.2991; Fax: 408.255.2992
email: dhfsigs@hooked.net

SIGS HOME PAGE

Access the SIGS Home Page at: http://www.sigs.com.

INFO@SIGS

menu items telling each menu item to translate itself
before setting the accelerator key for the menu item:

Menu>>translate
“Translate my title, then translate my menu items.”

self title: (self title asMLSString).
self translateItems.

Menu>>translateItems
“Tell each menuItem to translate itself and then set its
accelerator key.”

self items do: [:each |
each translate.
self setAccelKeyOf

From here, the MenuItem>>translate method translates its
own label and then tells any submenu (which would be an
instance of Menu) to translate itself.

MenuItem>>translate
“Translate my label text and if I have a submenu,
translate it.”

self label: (self label asMLSString).
self submenu translate.

Note that because the default implementation of the
translate method in Object does nothing, this method will
work correctly even if the submenu is nil (i.e., there is no
submenu).

Finally, the Menu>>setAccelKeyOf: method is where
things get a little complicated and algorithmic. This meth-
od extracts the accelerator substring from the menu item
label (e.g., ‘Ctrl+S’) and then parses the components of this
substring to convert them into a key code and bit flags.
These are in turn inserted into an array of accelerators that
is maintained by the Menu instance. This code is as follows:

Menu>>setAccelKeyOf: mItem

| lbl tabIndx accelString itemIndx bits bitsString key
keyString |

(lbl := mItem label) isNil ifTrue: [^self].
(tabIndx := lbl indexOf: Tab) > 0 ifFalse: [^self].
accelString := ReadStream on: (lbl copyFrom: (tabIndx

+ 1) to: lbl size).
accelString isEmpty ifTrue: [^self].
itemIndx := self items indexOf: mItem ifAbsent: [^self].
bitsString := accelString upTo: $+.
keyString := accelString upTo: $+.
keyString first isDigit

ifTrue: [
key := 0.
1 to: keyString size do: [:i |

key := key * 10 + (keyString at: i) digitValue].
bits := AfVirtualkey]

ifFalse: [
key := keyString first.
bits := AfChar].
The Smalltalk Report.sigs.com

(bitsString includes: $C) ifTrue: [bits := bits |
AfControl].

(bitsString includes: $A) ifTrue: [bits := bits | AfAlt].
(bitsString includes: $S) ifTrue: [bits := bits | AfShift].
accel at: itemIndx put: (self accelArray: key accelBits: bits).

Although all of the Menu and MenuItem methods described
apply to both PARTS and non-PARTS development, the
structure of the menu bar is slightly different under PARTS.
PARTS keeps the menu titles separate from the actual
menus, and the Menu instances are not attached to the
PARTSMenuBar (a subclass of MenuWindow) instance until
immediately before the window is opened. As a result,
PARTSMenuBar requires a different translate method:

PARTSMenuBar>>translate
“Tell each menu title and Menu to translate itself.”

self children do: [:each | each translate].
self partApplication componentDictionary

do: [:each |
each isPARTSMenuPart

ifTrue: [each menuObject translateItems]].

This method first translates the menu titles (accessed via
self children). It then locates each instance of Menu in the
PARTS application controlling the window and tells each
of them to translate their menu items.

Incidentally, don’t use PARTSMenuBar>>translate as an
example of good programming practice. In a production
application, we should add methods to both PARTS-
Application and PARTSMenuPart to reduce the coupling in
the PARTSMenuBar>>translate method. Currently, this
method must know that the PARTSApplication has a compo-
nentDictionary that contains instances of PARTSMenuPart,
which in turn holds on to instances of Menu. I cheated a bit
here to reduce the amount of code required for this article.

TRANSLATING MESSAGE BOX STRINGS
Because any string can be translated, we created a new
message box that accepts language-neutral abbreviation
strings instead of raw text. These are then translated into
the current user language. Therefore, instead of coding
the following:
March-April 1996 http://www
MessageBox warning: ‘This action will destroy the
known universe.’.

we would code:

MLSMsgBox warning: ‘WarnUniverseByeBye’

which would be translated via String>>asMLSString before
the message box was displayed.

Unfortunately, it is not sufficient to simply create
MLSMsgBox as a subclass of MessageBox because that class
relies on native OS message boxes, which use their
own text for the ‘Yes’, ‘No’, ‘OK’ and ‘Cancel’ buttons. We
built MLSMsgBox (and other utility windows such as
MLSPrompter) from scratch.

OTHER ISSUES
The format of numbers displayed as on-screen text or
in entry fields varies from language to language (e.g.,
$1,000.00 is displayed in some languages as 1.000,00$).
To handle this, we have added methods such as
Number>>asMLSString which formats the number with the
appropriate “thousands” and decimal separators.

For Help files, we maintain a separate Help file for each
supported language. When a new language is selected the
LanguageManager singleton renames the Help files so that
the one associated with the newly selected language will
be used by the Help system.

Finally, I have certainly not exhausted the issues
surrounding full MLS support in this brief article. The
framework described does not translate the text on any
window that is already open. This would involve tagging
all menu components with a name and rebuilding the
menu accelerator key tables on the fly. I also did not ad-
dress the formidable challenge of supporting text input
in multiple languages, which touches on issues as
diverse as physical keyboards and database storage.
These framework extensions are left as an exercise for
the reader.

William Hollings is a Smalltalk architect and consultant in Toronto.
He is currently helping the Toronto-Dominion Bank devel-
op brokerage and banking applications. He can be reached at
hollings@inforamp.net.

`

`

15.sigs.com

