Getting Real

Tuning multi-user Smalltalk

tion is tuning the code to meet performance re-

quirements. In single-user Smalltalks on the client
machine, this activity typically involves using profiling
tools to identify the methods where most time is spent.
Once these methods are identified, several options are
available, such as implementing the methods as primi-
tives in C code, caching calculated values that are used
repeatedly, or perhaps most important, producing a bet-
ter design. This tuning activity might also involve analyz-
ing the memory usage of the application, reducing the
memory footprint of the application while it is running,
minimizing the number of temporary objects that are cre-
ated and then quickly garbage collected, and exercising
more explicit control over garbage collection (especially
in real-time systems).

These same tuning activities are applicable to multi-
user, server Smalltalk as well. In addition, because server
Smalltalk must accommodate concurrent transactions by
many hundreds of users, and must handle many millions
of objects being created and retrieved, there are addition-
al ways in which applications can be tuned. In this col-
umn | discuss some of the techniques to tune multi-user,
server Smalltalk applications.

A key component in tuning a large-scale, multi-user
Smalltalk application is understanding and controlling
the placement of objects on disk. Because the number
and size of objects may prevent all that are being used in
an application from being present in RAM at once, the
proximity of objects may impact application perfor-
mance. Obviously, the fewer disk pages to be accessed
during the normal course of application execution the
better performance. To tune the placement of objects
on disk, server Smalltalk must allow developers to cluster
objects that are frequently accessed together. In
GemsStone Smalltalk, objects are placed on disk based on
their access patterns by default. More specifically, objects
that are created or modified within the same transaction
tend to be placed close together. In many cases, this de-
fault placement is sufficient.

However, GemStone Smalltalk does provide additional
protocol to allow developers to discover where objects are

n N IMPORTANT ACTIVITY before delivering any applica-

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a Senior Software Engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.

Jay Almarode

placed and to move them closer together for more effi-
cient access.

The first step in tuning an application’s performance
for accessing objects is to understand the reading and
writing characteristics of the application while it is run-
ning. In GemStone Smalltalk, you can send the messages
“pageReads” or “pageWrites” to class System to get the cu-
mulative number of pages that were read or written since
the session began (i.e., since you logged into the server).
Typically, it is useful to measure the number of pages read
immediately before and immediately after an extensive
calculation or query to determine if clustering objects
together might be of benefit. For example, the following
code returns the number of pages that were read to exe-
cute the given query.

| initialNumberOfReads |
initialNumberOfReads := System pageReads.
SetOfPersons select: [:person |
“find each person younger than their spouse “
person isMarried and: [person spouse age > person age].
~ System pageReads - initialNumberOfReads

Pages are written to disk for two reasons: first, when inter-
nal buffers become full and must make room for new
objects to be created; second, when the transaction is
committed. Measuring the number of pages written at
various times during the life of a transaction can help
determine if buffer sizes need to be increased, whereas
measuring the number of pages written just before and
after a transaction is committed may help determine if
more explicit control over clustering may help.

Clustering related objects together solves a specific
problem: poor performance because of too much disk ac-
tivity. One way to check how objects are clustered is to
determine which pages the objects are stored on. You can
send the message “page” to any object to get an integer
identifying the disk page on which the receiver resides.
This integer is a logical identifier of the page, not a point-
er to a storage location.

Obijects are stored persistently in structures called ex-
tents. An extent is a disk file or raw partition on disk. The
repository of all objects can be maintained in multiple
extents, possibly distributed among several disk drives on
several machines. In GemStone Smalltalk, there is a single
object, named SystemRepository, that is an instance of

18 http://www.sigs.com

The Smalltalk Report

class Repository. In addition to defining protocol to per-
form online backups and restores, to dynamically add
new extents, and to create replicates of extents for pur-
poses of fault tolerance, class Repository also has methods
to provide information about the extent in which a page is
located and the file name for a given extent. The next
example shows how one can determine the file name
where an object is actually stored on disk.

| extendld |

“MyObject is the object whose location we are interested in.“
extendld := SystemRepository extentForPage: MyObject
page.

N SystemRepository fileNames at: extendld.

By analyzing the reading and writing behavior of your
application for excessive disk activity and determining
the number and location of pages where objects reside,
performance may be improved by explicitly controlling
how objects are clustered together. Conceptually, you
can think of objects as being written to disk on a stream
of disk pages. When a page is filled, another page is cho-
sen and objects are written to the new page. The stream
of pages used for writing is called a bucket’. GemStone
Smalltalk provides the class ClusterBucket to give pro-
grammers control over which stream of pages objects are
written. Every object is associated with an instance of
ClusterBucket and all objects assigned to the same
ClusterBucket will be clustered together. When objects
with the same ClusterBucket are written to disk, they are
written to contiguous locations on the same page, if they
will fit, or contiguous locations on several pages if not.

A ClusterBucket can be associated with a specific extent.
Each ClusterBucket has an instance variable extentld that
specifies which file the stream of pages will be written.
You can find out what extents are available by executing
the expression SystemRepository fileSizeReport. This returns
a string that describes the extent identifier, file name, file
size, and space available for each available extent. An
example of how to set the extent for an existing
ClusterBucket is the expression aClusterBucket extendld: 3.

You can create a new ClusterBucket by executing the
expression ClusterBucket newForExtent: 4. Initially, there
are seven existing instances of ClusterBucket maintained
in a global array named AllClusterBuckets.

Some of these are available for application developers,
whereas others are used to cluster system objects, such
as kernel methods or source code strings. When new
instances of Cluster

Name Bucket are created,
Employee first: String th ey are ad d ed
middle: String to this global array

name P last: String
ssn: String
address

and a ClusterBucket’s
position in this ar-
ray is known as its
cluster Id.

This provides a
way to reference any
ClusterBucket that ex-

Address

Y

street: String
city: String
state: String
zip: String

Figure 1. Employee schema.

ists through its clusterld, for example, by performing the
expression ClusterBucket bucketWithld: 7.

To specify the ClusterBucket for a particular object, you
can send the message “clusterinBucket: aClusterBucket™.
This will not immediately write the object to disk but in-
dicates that when it is next written, the stream of pages
in which it is written will be determined by the given
ClusterBucket.

If you want to write the object to disk immediately,
you can send the message “moveToDiskinBucket: aCluster
Bucket”. Sending the “clusterBucket” message to an object
will return the ClusterBucket to which the receiver is cur-
rently assigned. GemsStone Smalltalk provides some con-
venience methods to help cluster objects. You can send
the message “cluster” to any object to assign it to the cur-
rent default ClusterBucket. You can use this message to
build specialized clustering behaviors for your applica-
tion classes. One such method already provided is
clusterDepthFirst, which traverses through the named and
indexable instance variables of the receiver, sending the
“cluster” message to each object. The cluster method re-
turns a boolean indicating if the receiver has already been
clustered during the current transaction. This is used to
prevent infinite recursion. There are also convenience
methods defined in class Behavior to cluster classes and
related objects. The clusterBehavior method clusters a
class and its method dictionary. The clusterDescription
method clusters the objects that describe the structure of
a class, such as its instvarNames array, class variables, in-
stance variable constraints, and class history.

To illustrate how to control object clustering, imagine
a set of Employee objects based on the simplified schema
illustrated in Figure 1.

Suppose most applications that access an instance of
Employee also access the name and ssn as well; so we
would like to cluster instances of Employee with their cor-
responding Name and ‘ssn’ String objects.

The addresses of employees are accessed less frequent-
ly and are typically accessed for all employees at once, so
we would like to cluster all Address objects together. The
following code shows how we can cluster these objects so
that employees and their frequently accessed subcompo-
nents are stored contiguously and employee addresses
are grouped together separately.

| empCluster addressCluster |

“ get the bucket previously created for Employees “
empCluster := ClusterBucket bucketWithld: 8.

“ get the bucket previously created for Addresses “
addressCluster := ClusterBucket bucketWithid: 9.

TheSetOfEmployees do: [:anEmp | | name address |
anEmp clusterinBucket: empCluster.
ankEmp ssn clusterinBucket: empCluster.

“ cluster the name and its components “
name := anEmp name.
name clusterinBucket: empCluster.
continued on page 32

March-April 1996

http://www.sigs.com 19

GETTING REAL continued from page 19

name first clusterinBucket: empCluster.
name middle clusterinBucket: empCluster.
name last clusterinBucket: empCluster.

“ cluster the address and its components “
address := anEmp address.

address clusterInBucket: addressCluster.
address street clusterinBucket: addressCluster.
address city clusterInBucket: addressCluster.
address state clusterinBucket: addressCluster.
address zip clusterInBucket: addressCluster.].

This column has described how to determine if clustering
objects might help application performance and how to
cluster objects using ClusterBuckets. My next column will
discuss how to measure overall system performance and
steps for tuning multi-user Smalltalk for higher transac-
tion throughput. §

THE BEST OF COMP.LANG.SMALLTALK

continued from page 23

» Avoid commitment—This is another way of
expressing the principle of postponing decisions but
one that might strike a chord with younger or
unmarried programmers.

* It's not a good example if it doesn't work—This one
comes from David Buck (dbuck@magmacom.com),
who's fed up with looking at example and test
methods that haven't been properly maintained as the
code evolved. | can't think of a way to apply this to life
but it's good advice anyway.

« Steal everything you can from your parents—A
principle for those trying to make effective use of
inheritance or moving into their first apartment.

» Cover your a**—Like in a bureaucracy, the most
important thing is to make sure that it isn’t your fault.
Make sure your code won't have a problem even if
things are going very wrong elsewhere. I§

SEQUENTIAL KEY ALLOCATION

continued from page 26

ifTrue: [keyCache := self nextKeys: self
keyCacheSize].

key := keyCache first.
keyCache removeFirst.
"key.

If you choose to make the array optimization in the
nextKeys: method, this method must be changed to insert
nil values into the array as each key gets returned rather
than using the removeFirst selector.

Dayle Woolston and Chris Kesler have been working with
Smalltalk for 4 years building client/server database applications.
They can be reached at dayle_woolston@novell.com and
chris_kesler@novell.com.

32 http://www.sigs.com

The Smalltalk Report

