The Best of comp.lang.smalltalk

Principles of OO design, Part 2

OO0 design, many of which apply equally well to life.
The fundamental principle of OO is: Never do any
work that you can get someone else to do for you. And there
are secondary principles:
« Avoid responsibility
 Postpone decisions
This month we examine a few more principles.

|_AST MONTH, WE reviewed some important principles of

MANAGERS DON'T DO ANY REAL WORK

The subject of “manager” or “control” objects can provoke
a lot of debate in OO circles, much as the subject of “man-
agers” does in other work environments. Some argue that
the role of manager is inherently bad for software design
and that one should avoid employing them. Others argue
that, although many of them represent a throwback to
outdated ways of thinking, they can be very useful under
the right circumstances.

I definitely believe that managers can be useful, but it’s
important to distinguish between good ones and bad
ones. For example, consider a program in which most of
my classes are “record objects” (objects whose only be-
haviours are getand set methods). The real work is done by
a control class that manipulates these objects with full
access to all their data. At this point | have a procedural
program dressed up in an OO disguise. The control object
is in the most complete possible violation of the funda-
mental principle because it’s trying to do all the work itself.

On the other hand, consider a window class like the
VisualWorks ApplicationModel or the Visual Smalltalk Appli-
cationCoordinator. These are manager objects that coor-
dinate the interactions between user interface widgets
and the domain model. They’re very important to good
GUI design and it would be much harder to get a clean
design without them.

People who are vehemently opposed to any kind of
manager object are often stuck in the trap of trying to pre-
cisely model the world, taking the OO paradigm much too
literally. One of my favourite quotes on this subject (from
several years back) is from Jeff Alger, who wrote:

“The real world is the problem; why would you want to
just simulate it?”

Alan Knight is cynic-in-residence at The Object People, 885
Meadowlands Dr. E., Ottawa, Ontario, K2C 3N2. He can be reached
at 613.225.8812 or by email at knight@acm.org.

How can we tell a good manager object from a bad
one? We apply the principle that managers don’'t do real
work. A manager object should manage interactions be-
tween other objects and should be trying to do work itself,
unless it’s legitimate management work.

An example of legitimate management work is an Ap-
plicationModel figuring out which menu items need to be dis-
abled. An example of nonlegitimate work would be doing
(nontrivial) calculations of values to be displayed in its fields.
Those values should be calculated by the domain objects.

This rule can be tricky to apply in practice. It is always
obvious whether something is legitimate management
work or not. Always remember that this is just a specific
example of the fundamental principle. If the manager can
plausibly get someone else to do the work, it should do so.

Another difficulty is that the word “Manager” is some-
times tacked on to the end of a class name even though
what it describes is not a manager at all. In a recent
comp.object discussion, Robert Cowham (cowhamr@logi-
ca.com) described a DiscountPolicyManager object and
worried about the desirability of introducing a manager
object even though it seemed to make the design cleaner.
The description was as follows:

A Discount Policy Manager is going to be passed, say, an
Invoice object and will calculate the appropriate dis-
count to be applied to that Invoice (using methods on
the Invoice to find out about it) and then use a method
on Invoice to add the discount to it.

Reading this description, it’s clear that the Discount
PolicyManager is really just a policy object as described in
the previous section. It isn't a manager at all and should
be called DiscountPolicy instead.

PREMATURE OPTIMIZATION LEAVES EVERYONE
UNSATISFIED

The most fun you can have as a programmer is optimizing
code. There’s nothing quite so satisfying as taking some lit-
tle piece of functionality and making it run 50 times faster
than it used to. When you're deep in the middle of mean-
ingless chores like commenting, testing, and document-
ing, the temptation to let go and optimize is almost irre-
sistible. You know it’s got to be done sometime and you feel
like you just can’t put it off any longer. Sometimes you're
right and the time has come to make this piece of code
really scream. More often than not, continued on page 23

20 http://www.sigs.com

The Smalltalk Report

the object. Actuator is also a candidate for use whenever
special initialization actions must be taken once the iden-
tities of an object’s attributes or collaborators are known.

Solution: Create a setting accessor method for the attri-
bute. Move dependent initialization code into the acces-
sor immediately after the value is set. Ensure that the
object itself, when created, uses this accessor for initializ-
ing the attribute and that clients use it for changing the
attribute’s value during the lifetime of the object.

Implementation: Move code from initialization and other
methods into a new accessor method. (If the object was
initially designed for the given attribute to be constant,
some research may be required to find all the initializa-
tion code that is dependent on the attribute.) Note that in
some cases (e.g., when event handlers have been estab-
lished on a collaborator), it may also be necessary to write
code in the accessor to perform finalization actions
before the collaborator can be replaced.

Conseqguences: Application of this pattern may be benefi-
cial even when attributes aren’t expected to change at
runtime because it associates dependent initialization
logic more closely with the attribute it applies to. Actuator
can reduce the size of complex initialize methods by mov-
ing their logic into separate accessors.

Related Patterns: Application of this pattern is similar to
Template Method in that it turns an initialize method with
much attribute-specific logic into a skeleton that delegates
to a series of lower-level accessor methods. However,
unlike Template Method, those lower-level methods are
concrete and not usually intended for overriding.

Actuator is also related to Observer in that dependent
code runs in response to some change in state. However,
Observer is intended for loose coupling between two or
more objects at runtime, whereas Actuator is for setting up
at development time, quick responses to changes within a
single object.

COMING UP

The next article of my three-part series considers two fam-
ilies of patterns: validation patterns for checking and pro-
tecting domain objects and informational patterns for
managing status and validation messages. The third and fi-
nal article will review a family of optimization patterns. 5

Reference
1. Gamma, E. et al. DEsIGN PATTERNS, Addison-Wesley, Reading,
MA, 1994.

Darrow Kirkpatrick is VP of Research and Development at Haestad
Methods, Inc., which specializes in numerical modeling for hydrol-
ogy/hydraulics, and has pioneered using Smalltalk for shrink-
wrapped Windows applications. Darrow enjoys hunting for pat-
terns while leading a team of talented software engineers who
have become experts at coaxing Smalltalk to perform in the real
world. He can be contacted at 203.755.1666 (voice) or by
email at 75166.525@compuserve.com.

THE BEST OF COMP.LANG.SMALLTALK

continued from page 20

you’ll be happier in the long run if you can just hold off a
little longer.

There are several reasons for this. First, time spent on
optimization isn't being spent on those “meaningless”
chores that are often more important to the success of the
project. If testing and documentation are inadequate,
most people won't notice or care how fast a particular list
box updates. They’ll have given up on the program before
they ever got to that window.

That’s not the worst of it. Premature optimization is
usually in direct violation of the principle of postponing
decisions. Optimization often involves thoughts like “if
we restrict those to be integers in the range from 3 to 87,
then we can make this a ByteArray and replace these dic-
tionaries lookups with array accesses”. The problem is
that we’ve probably made our code less clear and we've
greatly reduced its flexibility. It may have felt really good
at the time but the other people involved in the project
may not be entirely satisfied.

Of course this rule doesn't apply to all optimizations.
Most programs will need some optimization sometime
and this is particularly true in Smalltalk. As a very high-
level language, Smalltalk makes it very easy to write very
inefficient programs very quickly. A little bit of well-
placed optimization can make the code enormously
faster without harming the program.

There’s also a large class of optimizations that | call
“stupidity removal” that can be profitably done at just
about any time. These include things like using the right
kind of collection for the job and avoiding duplicated
work. Their most important characteristic is that they
should also result in improvements to the clarity and ele-
gance of the code. Using better algorithms (as long as
their details don’t show through the layers of abstraction)
can also fall into this category.

OTHER RULES TO LIVE BY
There are many other rules of life that can be extended to
the OO design and programming domains. Here are a few
more examples. Feel free to make up more and send them
to me. Make posters out of them and put them up on your
office wall. It'll make a nice counterpoint to those insipid
posters about “Teamwork” and “Quality” that seem to be
everywhere these days.
 Try not to care—Beginning Smalltalk programmers
often have trouble because they think they need to
understand all the details of how something works
before they can use it. This means it takes quite a while
before they can master Transcript show: ‘Hello World'.
One of the great leaps in OO is to be able to answer the
question “How does this work?” with “I don’t care”.
 Just do it'—An excellent slogan for projects that are
suffering from analysis paralysis, the inability to do
anything but generate reports and diagrams for what
they’re eventually going to do. continued on page 32

March-April 1996

http://www.sigs.com 23

GETTING REAL continued from page 19

name first clusterinBucket: empCluster.
name middle clusterinBucket: empCluster.
name last clusterinBucket: empCluster.

“ cluster the address and its components “
address := anEmp address.

address clusterInBucket: addressCluster.
address street clusterinBucket: addressCluster.
address city clusterInBucket: addressCluster.
address state clusterinBucket: addressCluster.
address zip clusterInBucket: addressCluster.].

This column has described how to determine if clustering
objects might help application performance and how to
cluster objects using ClusterBuckets. My next column will
discuss how to measure overall system performance and
steps for tuning multi-user Smalltalk for higher transac-
tion throughput. §

THE BEST OF COMP.LANG.SMALLTALK

continued from page 23

» Avoid commitment—This is another way of
expressing the principle of postponing decisions but
one that might strike a chord with younger or
unmarried programmers.

* It's not a good example if it doesn't work—This one
comes from David Buck (dbuck@magmacom.com),
who's fed up with looking at example and test
methods that haven't been properly maintained as the
code evolved. | can't think of a way to apply this to life
but it's good advice anyway.

« Steal everything you can from your parents—A
principle for those trying to make effective use of
inheritance or moving into their first apartment.

» Cover your a**—Like in a bureaucracy, the most
important thing is to make sure that it isn’t your fault.
Make sure your code won't have a problem even if
things are going very wrong elsewhere. I§

SEQUENTIAL KEY ALLOCATION

continued from page 26

ifTrue: [keyCache := self nextKeys: self
keyCacheSize].

key := keyCache first.
keyCache removeFirst.
"key.

If you choose to make the array optimization in the
nextKeys: method, this method must be changed to insert
nil values into the array as each key gets returned rather
than using the removeFirst selector.

Dayle Woolston and Chris Kesler have been working with
Smalltalk for 4 years building client/server database applications.
They can be reached at dayle_woolston@novell.com and
chris_kesler@novell.com.

32 http://www.sigs.com

The Smalltalk Report

