Tactical patterns for the real
world: Instantiation patterns

that must be mastered to ship a product out into the

real world of paying endusers. This article is the first
in a three-part series that deals with efficiently imple-
menting and managing domain models using patterns
discovered in the course of creating engineering products
for numerical modeling.

Domain models are the fundamental objects that rep-
resent the business logic of an application and store the
state underlying the user interface. The patterns present-
ed in this series of articles form a family of generic
approaches for working with these domain models: set-
ting their attributes, validating them, presenting informa-
tion about them, and optimizing them for size and speed.
Each of these patterns represents a generic solution that
we have applied over and over during the creation of our
engineering products.

Many of these patterns arose out of the need to create
shrink-wrapped software that would be competitive in
the resource-constrained Windows environment. | call
these patterns tactical because they operate at the class or
method level to solve implementation, not strategic or
architectural, problems.

Here, we consider a family of instantiation patterns—
patterns that aid in creating or initializing domain objects.

BETWEEN DESIGNAND code lies a set of important issues

INTERIOR DECORATOR (MIX-IN STATE)

Problem: How do you share a set of useful behaviors that
may be selectively needed throughout a family of classes
in a broad hierarchy without using multiple inheritance?

Motivation: You are developing an application where
many of the objects need common behavior for main-
taining a label. However, not every kind of object needs
this label behavior. You implement the methods for main-
taining labels in the top-level class, referencing the label
attribute via an accessor method.

Object subclass: #AbstractDomainModel
instanceVariableNames:”
classVariableNames:”
poolDictionaries:”

label
“Subclasses must provide access to label state to
enable label behavior.”
~self implementedBySubclass

Darrow Kirkpatrick

reportOn: aStream
“Implement a simple reporting mechanism. Requires
that label behavior be enabled by subclasses.”
aStream
nextPutAll: self label;
nextPutAll: self results

You then add label instance variables to only those class-
es that need labels.

AbstractDomainModel subclass: #ConcreteDomainModel
instanceVariableNames: ‘label’
classVariableNames:”
poolDictionaries:”

label
“Answer a string, the object’s label. This method
provides the state needed to enable inherited label
behavior.”
Mabel

Applicability: This pattern is for use in single-inheritance
environments where the only other implementation
choice would be a proliferation of redundant subclasses
or methods. It requires that the classes needing to share
behavior have a common parent class or that you intro-
duce one. Use this pattern when many classes don’t need
all the possible behaviors and some need none. Each
behavior requires some state to support its implementa-
tion. Interior Decorator lets you avoid the size penalty of
adding unused state throughout the entire hierarchy.

Solution: Create a fat interface with optional state: Place
all the methods to support the required behavior high in
the hierarchy in abstract classes. Allocate the state that
supports the behavior as needed low in the hierarchy in
concrete classes.

Implementation: This pattern requires the use of accessor
methods to encapsulate the references to instance vari-
ables that are only allocated in concrete classes. Typically,
you enable a desired behavior by adding instance variables
to the class definition and implementing these accessors.

Consequences: This pattern trades off small amounts of
state or instance variable redundancy in the leaves of an
inheritance hierarchy to share behavior and avoid code
redundancy. Note that this pattern works against type

March-April 1996

http://www.sigs.com 21



| INSTANTIATION PATTERNS

safety: Itis possible to send a message to an object requir-
ing a behavior that is present in the class but has not been
enabled with the requisite state, resulting in a walkback in
a low-level abstract accessor.

Related Patterns: This pattern is like Decorator® in that it
appears to add selective, small behaviors to a class.
However, the behaviors are already present in the parent
class and it is the addition of storage for related state that
enables them. Interior Decorator does not require repli-
cating the decorated object’s public interface in a separate
decorator class and does not pay the cost of an extra level
of delegation through the decorator.

EPITOME (ATTRIBUTE FACTORY)
Problem: How do you consolidate and share the default
values for an object’s attributes?

Motivation: You are designing a domain model whose
behavior requires certain critical initial values that the
user may edit or optionally return to factory defaults. You
do not wish to duplicate these initial values throughout
the code so you embed them in a single method.

Applicability: Use this pattern when the default values for
a domain object’s attributes may be referenced in several
places: for example, in accessors for lazy initialization, in
an initialize method, or in a method that resets to factory
defaults. We have found this pattern is most useful for
high-level global or project options. In certain low-level
objects that must be instantiated and accessed quickly,
this pattern may be a performance bottleneck.

Solution: Create a class method that answers a dictionary
with one association per attribute, where the key is the
symbol for the attribute’s accessor and the value is the
object that should be the default value of the attribute.
Have all references to the attribute’s default retrieve the
value from this default attribute map.

Implementation: This should be a private method.

attributeDefaultMap
“Answer a dictionary, the default attribute values for
instances of this class.”

~ldentityDictionary new

at: #errorMessage put: String new;
at: #flags put: 0;
at: #label put: ‘Element’;
yourself

Note: If subclasses add many attributes, allocating a larg-
er initial dictionary can offer a substantial performance
optimization.

Consequences: Building the Epitome map dynamically
and accessing it attribute by attribute can be very expen-
sive. The map could be built when code is loaded and
cached in a class variable, otherwise it should be cached

in a temporary variable when used by clients. A benefit of
using this pattern, instead of embedding constant default
values inside lazy-initializing accessors, is that the initial
state of the object is available for review in one method
rather than being spread out over many methods. Note
that this pattern does not prevent the use of lazy-initial-
ization, it simply moves the values elsewhere.

Related Patterns: An alternative to this pattern is to keep
a constant-valued Prototype object available to the class at
runtime and use it to seed the initial values of instances.
Epitome is essentially a way to build and answer the
Memento for that Prototype in code. The benefit of using
Epitome is that you do not need to implement mecha-
nisms to manage a Prototype object; the drawback of the
pattern is slower performance.

ACTUATOR (INITIALIZING SETTER)
Problem: How do you convert a constant attribute of an
object to one that can vary during the lifetime of the object?

Motivation: You have defined a domain model class that
is initialized with a diameter. During initialization, the
model must size other parameters based on the initialized
diameter, like this:

initialize
“Initialize instances to default values.”
diameter := 10.

self sizeFittings.

Later, you decide to modify the domain model so that
clients can change its diameter at runtime. To accomplish
this you provide a setting accessor method and move the
dependent sizing code from the domain model’s initial-
ization method to the new accessor:

diameter: aFloat
“Set the diameter of this object to the passed floating
point value and execute dependent actions.”
diameter := aFloat.
self sizeFittings.

You designate the new accessor for public use by clients
when they wish to change the diameter at runtime as well
as modifying the domain model’s own initialization
method to use it:
initialize
“Initialize instances to default values.”
self diameter: 10.

Applicability: This pattern is applicable when an object
has been designed with some attribute or collaborator
that is set at initialization and originally does not change
during the life of the object. Special initialization code
must run when the identity of that attribute or collabo-
rator is known. Use the pattern when you wish to change
the original design to allow clients to dynamically con-
figure the attribute or collaborator during the lifetime of

22 http://www.sigs.com

The Smalltalk Report



the object. Actuator is also a candidate for use whenever
special initialization actions must be taken once the iden-
tities of an object’s attributes or collaborators are known.

Solution: Create a setting accessor method for the attri-
bute. Move dependent initialization code into the acces-
sor immediately after the value is set. Ensure that the
object itself, when created, uses this accessor for initializ-
ing the attribute and that clients use it for changing the
attribute’s value during the lifetime of the object.

Implementation: Move code from initialization and other
methods into a new accessor method. (If the object was
initially designed for the given attribute to be constant,
some research may be required to find all the initializa-
tion code that is dependent on the attribute.) Note that in
some cases (e.g., when event handlers have been estab-
lished on a collaborator), it may also be necessary to write
code in the accessor to perform finalization actions
before the collaborator can be replaced.

Conseqguences: Application of this pattern may be benefi-
cial even when attributes aren’t expected to change at
runtime because it associates dependent initialization
logic more closely with the attribute it applies to. Actuator
can reduce the size of complex initialize methods by mov-
ing their logic into separate accessors.

Related Patterns: Application of this pattern is similar to
Template Method in that it turns an initialize method with
much attribute-specific logic into a skeleton that delegates
to a series of lower-level accessor methods. However,
unlike Template Method, those lower-level methods are
concrete and not usually intended for overriding.

Actuator is also related to Observer in that dependent
code runs in response to some change in state. However,
Observer is intended for loose coupling between two or
more objects at runtime, whereas Actuator is for setting up
at development time, quick responses to changes within a
single object.

COMING UP

The next article of my three-part series considers two fam-
ilies of patterns: validation patterns for checking and pro-
tecting domain objects and informational patterns for
managing status and validation messages. The third and fi-
nal article will review a family of optimization patterns. 5

Reference
1. Gamma, E. et al. DEsIGN PATTERNS, Addison-Wesley, Reading,
MA, 1994.

Darrow Kirkpatrick is VP of Research and Development at Haestad
Methods, Inc., which specializes in numerical modeling for hydrol-
ogy/hydraulics, and has pioneered using Smalltalk for shrink-
wrapped Windows applications. Darrow enjoys hunting for pat-
terns while leading a team of talented software engineers who
have become experts at coaxing Smalltalk to perform in the real
world. He can be contacted at 203.755.1666 (voice) or by
email at 75166.525@compuserve.com.

THE BEST OF COMP.LANG.SMALLTALK

continued from page 20

you’ll be happier in the long run if you can just hold off a
little longer.

There are several reasons for this. First, time spent on
optimization isn't being spent on those “meaningless”
chores that are often more important to the success of the
project. If testing and documentation are inadequate,
most people won't notice or care how fast a particular list
box updates. They’ll have given up on the program before
they ever got to that window.

That’s not the worst of it. Premature optimization is
usually in direct violation of the principle of postponing
decisions. Optimization often involves thoughts like “if
we restrict those to be integers in the range from 3 to 87,
then we can make this a ByteArray and replace these dic-
tionaries lookups with array accesses”. The problem is
that we’ve probably made our code less clear and we've
greatly reduced its flexibility. It may have felt really good
at the time but the other people involved in the project
may not be entirely satisfied.

Of course this rule doesn't apply to all optimizations.
Most programs will need some optimization sometime
and this is particularly true in Smalltalk. As a very high-
level language, Smalltalk makes it very easy to write very
inefficient programs very quickly. A little bit of well-
placed optimization can make the code enormously
faster without harming the program.

There’s also a large class of optimizations that | call
“stupidity removal” that can be profitably done at just
about any time. These include things like using the right
kind of collection for the job and avoiding duplicated
work. Their most important characteristic is that they
should also result in improvements to the clarity and ele-
gance of the code. Using better algorithms (as long as
their details don’t show through the layers of abstraction)
can also fall into this category.

OTHER RULES TO LIVE BY
There are many other rules of life that can be extended to
the OO design and programming domains. Here are a few
more examples. Feel free to make up more and send them
to me. Make posters out of them and put them up on your
office wall. It'll make a nice counterpoint to those insipid
posters about “Teamwork” and “Quality” that seem to be
everywhere these days.
 Try not to care—Beginning Smalltalk programmers
often have trouble because they think they need to
understand all the details of how something works
before they can use it. This means it takes quite a while
before they can master Transcript show: ‘Hello World'.
One of the great leaps in OO is to be able to answer the
question “How does this work?” with “I don’t care”.
 Just do it'—An excellent slogan for projects that are
suffering from analysis paralysis, the inability to do
anything but generate reports and diagrams for what
they’re eventually going to do. continued on page 32

March-April 1996

http://www.sigs.com 23



