Sequential key allocation
strategies in Smalltalk

quential keys for inserting new records into tables.

For example, a call tracking system may allocate a
case number or a billing system may allocate a customer
id. In some applications, the sequential key may be the
preferred method of retrieval (as in locating cases in a call
tracking system).

We present several client strategies for key allocation.
One size does not fit all. Systemn administrative policy,
application features, and overall performance expecta-
tions must be considered carefully in selecting an algo-
rithm for generating sequential keys. Accordingly, we
examine the following factors:

1. Direct access versus stored procedure access

2. Single versus multiple key allocation

3. Error handling

4. Explicit locking versus browse mode concurrency man-
agement strategies

The code samples discussed use VisualWorks 2.0 Small-

talk from ParcPlace Systems and Sybase System 10 from

Sybase. The client/server dialog is implemented using

the basic mechanisms of the VisualWorks 2.0 Database

Connect driver for Sybase.

DATABASEAPPLICATIONS COMMONLY require unique, se-

DIRECT VERSUS STORED PROCEDURE ACCESS

By direct access we mean the application issues SQL to
generate the next key. In this case, the application must be
intimately knowledgeable of various schema manage-
ment issues: Are the next key seed values all contained in
the same table within different records, or does each data
table have a corresponding key table? Also, how does the
client arbitrate multi-application access of the key table?
Should the table be locked during sequential key alloca-
tion or should the application select for browse?

Dayle Woolston & Chris Kesler

ordinal number. This ensures that selects ordered on the
key parallel selects ordered on the insertion timestamp
for each record. This may or may not be an application
requirement, and assumes the key is allocated only after
the record has been validated. If the client should aban-
don the insertion and terminate, the key would be lost.
Conversely, this strategy may be affected by when it is
necessary in the end-user dialog to make the key avail-
able. If the user must know the key prior to server-based
validation, it is not possible to guarantee that the key will
parallel the insertion timestamp.

There are many performance factors affecting key allo-
cation implementation. Requesting keys is relatively
expensive because the client must communicate with the
server over the network. Also, because hundreds of clients
may compete for the next key, there is a potential system
bottleneck. A solution is to have the server provide a range
of keys each time the client makes a request. How many
keys is enough? The answer depends on the application.
In fact, objects managed by an application most likely
require different ranges. For example, in a call tracking
system, case numbers may be required to be sequential in
time, whereas new customer numbers may have no such
requirement. Models should provide single and multiple
key allocation strategies. We now examine three imple-
mentations of key allocation.

SIMPLE UPDATE AND SELECT KEY ALLOCATION

In this first example, the database contains a table named
KEYS. There is a record in KEYS for each data table requir-
ing a sequential key. The method is called with the table
name as its parameter and returns an integer value.

nextKeyFor: aTableName

Sequential key allocation is a good candidate for stored |ans|

procedure implementation. The function is simple, high- self session

ly dependent on the schema, and a focal point of client begin;

activity. Should one application implement key allocation prepare: ‘UPDATE KEYS SET serial = serial + 1,

improperly, it could wreak havoc on the database. * WHERE tableName = *", aTableName,™ *;
execute;

SINGLE VERSUS MULTIPLE KEY ALLOCATION prepare: ‘SELECT serial FROM KEYS where

Conceptually, single key allocation is the simplest strategy. tableName = ", aTableName, " *;

Each time a client requests a new key, it receives the next execute.

24 http://www.sigs.com The Smalltalk Report

ans := self session answer atEnd; next.
self session commit.
Aans first first.

The method works because the first statement invokes a
transaction that must place a write lock on the KEYS table.
This first statement updates the serial value of the record
whose tableName value contains the string aTableName. The
next statement selects the serial value and returns the inte-
ger to the caller. The commit releases any locks; other clients
may proceed to complete the same dialog with the server.

This code makes several assumptions. First, it does not
explicitly check for any rollback condition. It may be that
the client does not have rights to update the KEYS table.
This method should encapsulate the execute statement
with a handler that enforces a rollback on such condi-
tions. The following code creates an example signal han-
dler. In production code you will want to preallocate the
signal handler.

nextKeyFor: aTableName
|ans noUpdateSignal |
noUpdateSignal := Signal new notifierString:
‘Unable to get the next key from *,
aTableName.
noUpdateSignal
handle:
[:ex |
self adminConnection rollback.
Dialog warn: ex errorString. ex return]
do:
[self session
begin;
prepare: ‘UPDATE KEYS SET serial = serial + 1,
‘WHERE tableName =", aTableName," *;

execute;

prepare: ‘SELECT serial FROM KEYS where
tableName =", aTableName, " *;

execute.

ans := self session answer atEnd; next.
self session commit].
Aans first first.

Second, there may be no record in the KEYS table contain-
ing aTableName as the value of its tableName column.
(Perhaps some coding error misspelled the table name
string.) In this case, the code would execute without error
but always return the most recent key in use. The end
result would be an insertion error if there were a unique
index on the key column of the data table for which the
key is intended. This condition can be detected by check-
ing the rowcount attribute for the session after each state-
ment gets executed. It should be 1 in each case.

The final assumption is that the key must be pre-
incremented. This is the type of schema assumption that
is often documented too casually, causing problems
down the road. If this method services all applications
accessing the database, then this assumption is probably
adequately handled; however, this is very unlikely. The

more likely case is that the table will be accessed by het-
erogeneous clients: 4GLs, Smalltalks, C, C++, etc. This
preincrement policy makes this function a good candi-
date for stored procedure encapsulation rather than
direct implementation.

STORED PROCEDURE KEY ALLOCATION
The next example suggests how the nextKey method may
contract with a stored procedure called nextKey.

nextKeyFor: aTableName
AuseStoredProcedures
ifTrue:
[self session
prepare: ‘nextKey ‘, aTableName, *, *,
aNumber asString;
execute.
(self session answer atEnd; next) first first]
ifFalse:
[self embbededSQLNextKeyFor: aTableName].

In this example, the database framework has some control
over whether it uses stored procedures. If so, the first clause
gets executed, otherwise execution gets redirected to
another method (a new name for the previous example).

CONCURRENCY ISSUES

One of the vital issues we’ve avoided so far is that of con-
currency control. Two separate clients cannot execute the
preceding examples at the same time. The two options
are locking and browse mode. Executing locks in this type
of method is a pessimistic form of concurrency control.
It requires signal handlers to detect the lock condition
and possibly repeat attempts until the competing client
clears the lock.

In our remaining example, we prefer an optimistic
concurrency control strategy using what is known as
browse mode. In browse mode, the client issues no lock
requests. Instead, the row contains a column of type time-
stamp. The database service updates the timestamp value
each time it performs a select against the row. In request-
ing the serial value, the client also requests the timestamp
value. It then uses the timestamp value as a where clause
restriction when updating the row to the incremented ser-
ial value. Only the client with the most recent timestamp
succeeds in updating the serial value. This success indi-
cates to the method that it may return a valid key to its
caller. All other clients executing the same method exe-
cute their signal handler and make another attempt at
fetching a new key.

Browse mode requires that the select statement end
with the words “FOR BROWSE.” The target table must
have a unique index and, as noted, a timestamp column.

MULTIPLE KEY ALLOCATION IN BROWSE MODE

Our final example demonstrates a rich set of services. The
method returns a collection of one or more sequential
integer keys for the table aTableName, enabling the client
to (possibly) cache multiple key values. We also use

March-April 1996

http://www.sigs.com 25

| SEQUENTIAL KEY ALLOCATION

browse mode to implement an optimistic concurrency
management strategy.

The method is composed in four sections. The first sec-
tion sets up the method by assigning a “1” to the attempts
counter, allocating a stream to compose queries, and cre-
ating a signal instance to manage any exception condi-
tions. The second section defines the exception handling
clause. When an exception occurs, the connection must
rollback the transaction and increment the attempts
counter. If more than 10 attempts occur, notify the user
with a dialogue box and error out. Otherwise, just try
again. The third section composes and executes two SQL
statements. The first statement retrieves the key and time-
stamp values; the second statement attempts to update the
key value. This section checks the session rowcount value to
verify that the update occurred. This value should be 1.
The fourth and final section creates an ordered collection
and assigns to it a sequence of aninteger integers, begin-
ning with the first available key value.

nextKeyFor: aTableName incrementBy: aninteger
| currentData timestamp noUpdateSignal attempts oc
aStream |
attempts := 1.
aStream := (String new: 75) writeStream.
noUpdateSignal := Signal new notifierString:
‘Unable to get the next key from *,
aTableName.
noUpdateSignal
handle:
[:ex |
self adminConnection rollback.
attempts := attempts + 1.
attempts > 10 ifTrue: [Dialog warn: ex
errorString. ex return].
ex restart]
do:
[self adminConnection begin.
self adminSession
prepare:
‘select key, timestamp from °,
aTableName , ‘' FOR BROWSE';
execute.
currentData := self adminSession answer atEnd;
next.
timestamp := currentData last.
aStream
nextPutAll: ‘update *;
nextPutAll: aTableName;
nextPutAll: ‘set key = Key+';
print: aninteger;
nextPutAll: * where timestamp =,
sqlPrint: timestamp.
self adminSession
prepare: aStream contents;
execute.
answer.
self adminSession rowCount < 1 ifTrue:

[noUpdateSignal raise].
self adminConnection commit].
oc := OrderedCollection new: aninteger.
lastUsedld + 1 to: lastUsedld + aninteger do: [:i | oc
add: i].
~oc.

Each of these examples is acceptable depending on as-
sumptions that must be supported by the client. This last
example, however, illustrates several important op-
timizations. First, the algorithm for fetching the next key
and updating its row on the server is enapsulated by a sig-
nal handler. Second, the method checks the session row-
count value to ensure the update actually occurred. If it did
not, the signal is raised and the operation attempted up to
10 times. Third, the SQL is constructed using a write
stream; a faster strategy than successive string concatena-
tion with commas.

Despite the optimizations, the code is written for clarity
over performance. A production version would create the
signal at initialization time and keep it in a class-side dic-
tionary. It doesn’t make sense to create a new signal during
each request for a new key. Also, it is important to allocate
a string for the write stream that is very nearly the size of
the largest SQL statement. Performance profiling demon-
strates that write stream creation time is dominated by the
size of the string allocated for the stream. Don't allocate a
500-byte string and think the stream operations are saving
you any time over string operations with the comma oper-
ator. The best solution is to create the string only once, cre-
ating the write stream on that same string over and over
with each call to the method. Finally, the ordered collec-
tions provide convenient collection services. However, they
are considerably slower than arrays. The final section
should probably be implemented with an array.

It is not immediately obvious, but this strategy also al-
locates a separate connection/session for servicing next
key requests. It may be that this method executes in the
context of saving many objects to the database bounded
by a single begin/commit pair. As each object gets saved, it
must request the next available key, which (as illustrated)
requires its own transaction control. This alternate ad-
ministrative connection executes key retrievals within a
separate transaction. (It is customary for browse mode
strategies to employ two connections.)

CACHING KEYS

The remaining code illustrates how a client may cache
multiple (sequential) keys. This strategy is appropriate in
many cases; it can greatly reduce the number of database
requests, thus enhancing overall client performance and
reducing network traffic. Without such a strategy, each
insert operation generates two database transactions, first
to fetch a key and second to perform the insert.

nextKey
| key |
(keyCache isNil or:

[keyCache isEmpty]) continued on page 32

26 http://www.sigs.com

The Smalltalk Report

GETTING REAL continued from page 19

name first clusterinBucket: empCluster.
name middle clusterinBucket: empCluster.
name last clusterinBucket: empCluster.

“ cluster the address and its components “
address := anEmp address.

address clusterInBucket: addressCluster.
address street clusterinBucket: addressCluster.
address city clusterInBucket: addressCluster.
address state clusterinBucket: addressCluster.
address zip clusterInBucket: addressCluster.].

This column has described how to determine if clustering
objects might help application performance and how to
cluster objects using ClusterBuckets. My next column will
discuss how to measure overall system performance and
steps for tuning multi-user Smalltalk for higher transac-
tion throughput. §

THE BEST OF COMP.LANG.SMALLTALK

continued from page 23

» Avoid commitment—This is another way of
expressing the principle of postponing decisions but
one that might strike a chord with younger or
unmarried programmers.

* It's not a good example if it doesn't work—This one
comes from David Buck (dbuck@magmacom.com),
who's fed up with looking at example and test
methods that haven't been properly maintained as the
code evolved. | can't think of a way to apply this to life
but it's good advice anyway.

« Steal everything you can from your parents—A
principle for those trying to make effective use of
inheritance or moving into their first apartment.

» Cover your a**—Like in a bureaucracy, the most
important thing is to make sure that it isn’t your fault.
Make sure your code won't have a problem even if
things are going very wrong elsewhere. I§

SEQUENTIAL KEY ALLOCATION

continued from page 26

ifTrue: [keyCache := self nextKeys: self
keyCacheSize].

key := keyCache first.
keyCache removeFirst.
"key.

If you choose to make the array optimization in the
nextKeys: method, this method must be changed to insert
nil values into the array as each key gets returned rather
than using the removeFirst selector.

Dayle Woolston and Chris Kesler have been working with
Smalltalk for 4 years building client/server database applications.
They can be reached at dayle_woolston@novell.com and
chris_kesler@novell.com.

32 http://www.sigs.com

The Smalltalk Report

