
Editors’ Corner
Paul WhiteJohn Pugh
2

It is our job to design
systems that are easy

to maintain.
P
.   word causes more grief
and costs more time in terms of system devel-
opment with objects than any other single is-
sue. In theory, the problem is a very simple one.

Is there a way for an application to store and retrieve
the data contained within its objects?

Will the persistence mechanism also maintain the
relationships between the objects in addition to the
raw data? Will it support object identity properly?
And how fast (slow) will it execute?

Providing a suitable answer for all of these questions
is extremely difficult. Persistence has always been an
issue with object-oriented languages, Smalltalk being
no exception. The first persistence mechanism de-
signed for Smalltalk used the
storeOn: method to ask an object
to generate a string that, when
evaluated, would return the ob-
ject itself. Clever idea, but not very
practical. The next idea was to use
a Loader/Dumper style implementation, where an
entire object (and all its parts) can be stored in a file,
and later retrieved. This worked well as far as it went.
The shortcoming was that an object being retrieved
had no notion of the relationships it used to have
with other objects, and vice versa. And it certainly
did not scale in terms of size or maintenance.

The correct solution, of course, is to use a true data-
base of some flavor. Be it IMS, Oracle, Sybase, Gem-
stone, Versant, etc., the idea is to store and retrieve
objects using a facility designed to do just that.

So, what’s so hard about this? As most of you know,
the difficult part is not the“data” stored with the object.
It is simple to store and retrieve data such as a name,
phone number and date of birth of a customer object.
The difficulty comes in maintaining the relationships
between the objects as designed in our systems. For
example, our customer object may have a reference to
an account object (or many) as well as relationships
with other customers (a bank would keep track of our
relationship with our spouses). The challenge is how
keep track of these types of relationships? And how can
we support the dynamic nature of these relationships?

The quick answer, of course, is to use an object per-
sistence storage mechanism. Tools such as GemStone,
Versant, and others handle these complex and dynam-
ic relationships with next to no effort. There are other
issues to consider when deciding whether or not to
employ these new persistence mechanisms, but ease
of managing these relationships isn’t one of them.
However, most of us aren’t in the position to entertain
such a choice (and maybe we shouldn’t anyway). Our
organizations have invested significantly in other tech-
nologies that serve the overall organization quite well.
Furthermore, since the data used by our Smalltalk
applications is often shared with others, a more tradi-
tional route may be the only practical choice.

Using a relational mechanism poses some signifi-
cant challenges. For example, determining how to map
the relationships found in our object model to tables is
nontrivial. The greater the difference between the ob-
ject model to the data model, the more difficult the
mappings can become. For example, many-to-many

relationships (customers to ac-
counts) require an intermediate
table in the relational world, but
in the object world, they’re really
a nonissue. Storing and retriev-
ing objects from non-relational

mechanisms is proving to be even more difficult. Many
relationships that exist in objects are virtually impos-
sible to duplicate in, for example, a CICS transaction.

Having stated the difficulties, many have been able
to successfully bridge the worlds. Most of these solu-
tions are “home-grown.” Our concern with home-
grown solutions is that even once we describe how to
overcome the hurdles and discover the mappings re-
quired, we’re still faced with two significant challenges.
First, the execution speed can often be painful (espe-
cially with writes) if not very careful about the database
commands generated (e.g., SQL statements or stored
procedures). Second, and more important, is the effort
that is required to maintain the mappings.

This point concerning maintenance is being over-
looked by far too many shops who are building their
own interfaces. Many are saying “I can build it myself”
and they can. But the impact on the elegance of the
implementation is going to lead to systems that are
tougher to extend and difficult to understand. What
many seem to fail to grasp is, even if they can under-
stand it while they’re writing the code, will the person
coming behind them to maintain it be able to under-
stand? And what about the person behind them? The
real costs of our solutions will be seen down the road.
We strongly believe it is our job as software engineers
to design systems that are easy to maintain—if we fail,
we haven’t done our organizations any favors.

Enjoy the issue.
The Smalltalk Report


