
How to display an object
as a string: printString and
displayString

Bobby Woolf
W   about how to use different sorts of
objects, people often ask me what these objects
look like. I draw a bunch of bubbles and arrows,

underline things while I’m talking, and (hopefully) peo-
ple nod knowingly. The bubbles are the objects I’m talk-
ing about, and the arrows are the pertinent relationships
between them. But of course the diagram is not just cir-
cles and lines; everything has labels to identify them. The
labels for the arrows are easy: The name of the method in
the source that returns the target. But the labels for the
bubbles are not so obvious. It’s a label that somehow
describes the object and tells you which one it is. We all
know how to label objects in this way, but what is it that
we’re doing?

This is a Smalltalk programmer’s first brush with a big-
ger issue: How do you display an object as a string? Turns
out this is not a very simple issue. VisualWorks gives you
four different ways to display an object as a string:
printString, displayString, TypeConverter, and PrintConverter.
Why does there need to be more than one way? Which
option do you use when?

This article is in two parts. This month, I’ll talk about
printString and displayString. In September, I’ll talk about
TypeConverter and PrintConverter.

printString AND displayString
There are two messages you can send to an object to dis-
play it as a string:

• printString—Displays the object the way the
developer wants to see it.

• displayString—Displays the object the way the user
wants to see it.

printString is as old as Smalltalk itself. It was part of the
original Smalltalk-80 standard and was probably in
Smalltalk long before that. It is an essential part of how
Inspector is implemented, an inspector being a develop-
ment tool that can open a window to display any object.
An inspector shows all of an object’s slots (its named and
indexed instance variables); when you select one, it
shows that slot’s value as a string by sending the slot’s
http://www4
value the message printString. The inspector also shows
another slot, the pseudovariable self. When you select
that slot, the inspector displays the object it’s inspecting
by sending it printString.

displayString was introduced in VisualWorks 1.0, more
than 10 years after printString. displayString is an essential
part of how SequenceView (VisualWorks’ List widget) is
implemented. The list widget displays its items by dis-
playing a string for each item. The purpose of this dis-
play-string is very similar to that of the print-string, but
the results are often different.

printString describes an object to a Smalltalk program-
mer. To a programmer, one of an object’s most important
properties is its class. Thus a print-string either names
the object’s class explicitly (a VisualLauncher, Ordered-
Collection (#a #b), etc.) or the class is implied (#printString
is a Symbol, 1/2 is a Fraction, etc.). The user, on the other
hand, couldn’t care less what an object’s class is. Because
most users don’t know OO, telling them that this is an
object and what its class is would just confuse them. The
user wants to know the name of the object. displayString
describes the object to the user by printing the object’s
name (although what constitutes an object’s “name” is
open to interpretation).

STANDARD IMPLEMENTATION
The first thing to understand about printString is that it
doesn’t do much; its companion method, printOn:, does
all of the work. This makes printString more efficient
because it uses a stream for concatenation.1 Here are the
basic implementors in VisualWorks:

Object>>printString
| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
^aStream contents

Object>>printOn: aStream
| title |
title := self class name.
.sigs.com The Smalltalk Report

aStream nextPutAll: ((title at: 1) isVowel
ifTrue: [‘an ‘] ifFalse: [‘a ‘]).

aStream print: self class

displayString is not implemented
as gracefully as printString. Rather than using a two-step
process and
a stream, displayString is a single method that returns a
string. By default, that string is the object’s print-string:

Object>>displayString
^self printString

Ideally, displayString should be implemented using
displayOn:, but that message already has a different
meaning in the VisualComponent hierarchy. However,
those methods in the VisualComponent hierarchy would
be better named “displayWith:,” which more accurately
describes what the method does. This would then free
up displayOn: to be implemented to add an object’s
name onto a stream. Until displayString is imple-
mented this way, subimplement displayString in your
own classes.

displayString is a VisualWorks convention that the
other Smalltalk dialects do not have. However, as you
can see, its implementation is very simple, so you can
easily add it to your VisualSmalltalk or IBM Smalltalk
image if you’d like to.

YOUR IMPLEMENTORS
You should never implement printString in your own class
(even though ParcPlace did in HelpPage and HelpSeeAlso).
However, you will often want to enhance the string it pro-
duces; do so by subimplementing printOn:.

Your implementors of printString should always speci-
fy the object’s class. Furthermore, it should tell the devel-
oper which instance of that class it is. To do this, print-
String (implemented in printOn:) should print out one or
more of the object’s identity variables. Identity variables
are one of the types of instance variables I described in
my previous article.2 The values in an object’s identity
variables identify which instance it is and rarely change.
They are the keys used to find that object in a dictionary
or a database. By printing the identity variables, you’re
telling the developer which instance this is. If he wants to
see its status and cache variables, he can use an inspec-
tor. If printOn: needs to print out a variable that’s not
a string, it should send that variable printString or
displayString.

Cursor has a good example of printOn:. A Cursor has a
name aspect to identify which cur-
T

sor it is. Thus its printOn: method
looks like this:

Cursor>>printOn: aStream
self name == nil

ifTrue: [...]
ifFalse: [aStream

print: self class;
July–August 1996 http://www.
nextPutAll: ‘ ‘,self name]

Basically, the cursor prints its class and its name (sepa-
rated by a space). That tells the developer this is a Cursor
and which one it is.

Your implementors of displayString should never speci-
fy what the object’s class is, but they should specify which
instance it is. displayString does this by printing one or
more of the object’s identity variables. Many objects don’t
have any identity variables. In these cases, there probably
is no good way to display this object to the user. In such a
case, just inherit Object>>displayString and avoid using it.

Remember that printString is how you want this object
to appear in an inspector to a developer; displayString is
how you want it to appear in a list widget to a user.

AN EXAMPLE
Let’s say you’re implementing the class Person. It has an
aspect, name, which is an instance of PersonName. The
classes will be subclassed from Object. This means that
their print- and display-strings will be “a Person” and “a
PersonName.” This is of limited use in an inspector; worse,
a selection-in-list for a collection of Persons will list “a
Person” in every slot.

Here’s how we could implement printString (via
printOn:) and displayString to make them more useful:

Person>>printOn: aWriteStream
super printOn: aWriteStream.
aWriteStream

nextPutAll: ‘: ‘;
nextPutAll: self displayString

Person>>displayString
^self name displayString

PersonName>>printOn: aWriteStream
super printOn: aWriteStream.
aWriteStream

nextPutAll: ‘: ‘;
nextPutAll: self displayString

PersonName>>displayString
^self lastName, ‘, ‘, self firstName

The results for a person named “John Smith” are shown
in Table 1.

Note that implementing printString to send the message
displayString is somewhat unusual. However, I find it to be
a simple andconvenient example ofreuseformanyobjects.
Method Default Output String Custom Output String

Person>>printString a Person a Person: Smith, John
Person>>displayString a Person Smith, John
PersonName>>printString a PersonName a PersonName: Smith, John
PersonName>>displayString a PersonName Smith, John

able 1. The strings produced by printString and displayString.
5sigs.com

DISPLAY AN OBJECT AS A STRING
This can have adverse consequences in ENVY since
Object>>printString and Object>>displayString are defined
in separate applications, Kernel and WindowSystem, re-
spectively. Thus in ENVY, your applications that con-
tain implementors of printString that use displayString
may need to have WindowSystem—and thus Kernel as
well—as prerequisites. Specifically, the implementors of
displayString that printString uses must be in the prerequi-
sites; luckily, Object>>displayString is usually not one of
them. Setting up the prerequisites is usually not a prob-
lem for Application Model applications, but can be a
problem for Domain Model applications, because they
should not have WindowSystem as a prerequisite. If this is
a problem for your code, the solution is to modify the OTI
applications to move the necessary implementors of
displayString from WindowSystem to Kernel. (Or you can
ignore the problem because you probably won’t use the
image without a windowing system anyway!)

printString SHOULD NOT FAIL
Sometimes printString fails and issues an error notifier.
This is really annoying. Often during development, you
have an object that is not working correctly. As you inspect
it to figure out why, you keep getting message-not-under-
stood errors saying that UndefinedObject does not under-
stand some message. This really limits the usefulness of
the inspector!

One way to get around this problem is to have your
implementors of printOn: check each variable before
using it. Only print out a variable if it’s not nil. However,
checking for nil all of the time is tedious. Even if the vari-
able is not nil, it may still be of the wrong type (which
would explain why the object is not working correctly).
But since the variable’s value is the wrong type, it proba-
bly won’t understand the messages printOn: sends to it, so
printOn: will still fail.

Another tactic is to only send the variables messages
that all objects understand. If you only send messages
like printString to a variable, the message is guaranteed to
work no matter what the variable’s value is. However, if
your implementor of printOn: contains a bug, it will fail
and fixing the bug will be frustrating.

The universal way to prevent printString from failing is
to have it trap errors and handle them. You can trap all
errors by implementing printString like this:

Object>>printString
| aStream |
aStream := WriteStream on: (String new: 16).
Object errorSignal

handle:
[:ex |
aStream

reset;
nextPutAll: ‘an invalid ‘;
print: self class.

ex return]
do: [self printOn: aStream].
6 http://www.
^aStream contents

This way, if printOn: fails, the error handler will print out
the name of the class and say that the instance is invalid. At
thispoint, you can inspect the object to see why it is invalid.
I think that is a lot better than getting an error notifier.

You may want to make this modification in your image.
This will require modifying ParcPlace’s Object>>printString
method. You should usually avoid modifying vendor
code, but in this case I think doing so is the best solution.

displayString AND asString
A common problem with using strings is that string
concatenation (implemented in VisualWorks by
SequenceableCollection>>,) is not very polymorphic (nor
should it be). If the concatenation argument is nil, a
Character, an Exception, or some other nonstring-like
object, Smalltalk will issue an error. To avoid this prob-
lem, developers routinely send an object printString
before concatenating it. But printString does a lousy job of
printing the object for concatenation: strings have
quotes around them, symbols have pound-signs in front
of them, most objects are called “an Object,” etc.

To do a better job of printing an object out so that it
can be concatenated onto a string, many developers use
asString. They implement Object>>asString to define the
standard protocol, then implement asString in all kinds of
classes as they find objects that don’t convert “correctly.”
I contend that this is a haphazard way to program and
overloads ParcPlace’s original asString protocol. asString is
a message VisualWorks uses for converting a string-like
object (such as a symbol, text, or filename) into a String.
If an object is not at all string-like, it really has no clear
implementation for asString.

Instead, I think that displayString is the solution devel-
opers are looking for. Both asString and displayString return
strings. Neither message puts any junk in the string to
specify the object’s class. The main difference is that
asString is an“as . . .” message. This implies that the receiver
can be (and will be) converted to a String equivalent.
displayString makes no such promises of equivalency; it
simply says it will display the object as a string that
describes the object.

Thus I recommend implementing displayString for any
object you need to concatenate onto a string. Implemen-
tors you might need are:

• UndefinedObject>>displayString should return an empty
string;

• Character>>displayString should return a one-character
string;

• CharacterArray>>displayString should be reimplemented
as “^self asString displayString.”

I think this policy will be more consistent and easier to
reuse than random implementors of asString.

CONCLUSIONS
Here are the main points in this article:

• printString displays an object the way a developer would
The Smalltalk Reportsigs.com

describe it. It specifies the object’s class and specifies
which instance the object is by displaying one or more
of its identity variables.

• displayString displays an object the way a user would
describe it. It does not specify the object’s class because
users never do. It specifies the object’s name, that being
one or more of its identity variables.

• In VisualWorks, don’t subimplement printString; sub-
implement printOn: instead. Do subimplement
displayString.

• Consider reimplementing Object>>printString with an
error handler so that it cannot fail.

• Do not implement Object>>asString or most other im-
plementors of asString. Use displayString instead.

In the next article, I’ll talk about TypeConverter and
PrintConverter.

References
1. Woolf, B. “A Sample Pattern Language: Using Streams for

Concatenation,” Smalltalk Report, Feb. 1995.
2. Woolf, B. “A Strategy for Using Instance Variables,” Smalltalk

Report, June 1996.

Bobby Woolf is a Senior Member of Technical Staff at Knowledge
Systems Corp. in Cary, NC. He mentors Smalltalk developers in the
use of VisualWorks, ENVY, and Design Patterns. Comments are
welcome at woolf@acm.org or at http://www.ksccary.com.

`

July–August 1996 7http://www.sigs.com

`

