
Smalltalk SQA:
The Public/Private Problem #2

Jeff McKenna
I   article of this series, we opened up a
discussion of testing issues when using Smalltalk. We
discussed aspects of GUI and Model testing, and we

provided a definition of a software component as code,
documentation, and tests. In this article, we discuss the
testing of these components in detail, including the role
of regression testing.

In discussing components, it is very important that we
include the ability to construct complex components as
aggregations of simpler components, because this is very
common and allows us to define components in a recur-
sive manner. Our prior discussion of a software compo-
nent emphasized the role of the interface in the defini-
tion of the component. The interface must be supplied
for an aggregate or complex component, as well as a sim-
ple component. This brings us to a problem that I refer to
as the Public/Private Problem.

In Figure 1, we show a simple diagram of three classes,
A, B, and C, some numbered methods, 1 to 8, and two
message sends from outside. Note that the method num-
bers are arbitrary.

Smalltalk currently defines the interface through the
public/private “attribute” of the methods. In Figure 1, meth-
ods 7, 1, 4, 3 and 6 would be considered public if the two
message sends were the only way the classes are used.

Now consider Figure 2. In this figure, we have construct-
ed two components, I and II, from the supplied classes.

Note that from the point of view of component I, the
interface is 1 and 6. From the point of view of component
II, the interface is 6 and 7.

Let’s look at Class A methods.

Method 2
Class A Private
Component I Private
Component II Private

A B
1

2

3 4

5

C

6

7

8

Figure 1.
July–August 1996 http://www.
Method 4
Class A Public >>A(4)
Component I Private
Component II Private
Method 1
Class A Public >>A(1)
Component I Public >>I.A(1)
Component II Private
Method 6
Class A Public >>A(6)
Component I Public >>I.A(6)
Component II Public >>II.A(6)

We are using a simple dot notation to indicate the inter-
section of the method and the component:

<component>.<class>(<selector>)

From this diagram it is easy to see that the public/private
attribute of a method is not a useful construct in deter-
mining the interface of a component. Each component
must define its own public methods (i.e., its interface). We
have found that the identification of this interface is crit-
ical to the building of reusable components.

None of the currently available code control systems
for Smalltalk support this view of the interface definition
of a component. At most they support the public/private
attribute of a method. This situation makes it difficult to
adequately specify and test a component. I would like to
encourage the vendors to add such support to their tools.
Such support would move us a long way in the direction
of being able to clearly define components.

Note that if the packaging changes, then the interfaces
may change fairly dramatically. For example, if compo-

A B
1

2

3 4

5

C

I

II

6

7

8

Figure 2.
9sigs.com

SMALLTALK SQA
nent I is changed to be classes A and C rather than class-
es A and B. As we would expect, the interfaces of II
remain II.C(7) and II.A(6). The interface of I, however,
changes noticeably. I.C(7) and I.A(4) are added to the
interfaces, I.A(6) does not change its status, and I.A(1) is
no longer part of the interface.

We can make one further observation regarding ag-
gregate components. If a method defined in a compo-
nent, C, is private, then it must remain private in any ag-
gregate component that contains the component C. This
restriction is often violated, as “interesting” methods are
discovered deep within a component structure. One
might consider such usage as behavior “leakage,” which
is analogous to memory leakage. The tool support
requested above would make it possible to detect such
leakage.

This view of the public/private problem also solves the
difficult problem of considering methods in a class hier-
archy. If a component, CA, holds an abstract class, A, and
another component, CS, holds a concrete subclass, S,
then how do we handle methods that are defined in the
class A but only used within the class S? Our view is that
all such methods must be considered public to the com-
ponent CA, just as any methods in S that are required in A
to “complete” the abstract class should be considered
public to the component CS.

All of this is a bit easier to think about if we just con-
sider a class as a component consisting of a bunch of
methods. Thinking of classes in this way also makes it
easier to consider loose methods (class extensions).

TESTING COMPONENTS
With this enhanced definition of a component and its
interface, it is now possible to discuss how we might test a
component.

Testing only the interface, with no knowledge of the
internals, is called black box testing. Most practitioners
consider black box testing insufficient because it is typi-
cally impossible to test all possible states. Testing with
knowl-edge of the internals is called white box testing. A
suggestion has been made that testing the interface with a
“little” knowledge of the internals should be called gray
box testing!

The decision as to the type of testing (i.e., black, gray, or
black box) dependson the testingjob being performed. Let
us consider these three major tasks performed with tests:

• Unit Testing
• Interface Testing
• Aggregation Testing

Unit testing is typically performed by the developer and
should verify that the component functions as designed.
This usually means white box testing or, at least, gray box
testing.

Interface testing is a term I use to mean testing only
the interface. It is important that interface tests are pro-
vided to support consolidation and redesign activities.
SQA should ensure that interface testing completely ex-
ercise the interface of the component.
Aggregation testing is the term that I use when testing
aggregations or complex components. In aggregation test-
ing, interface testing of the subcomponents is followed by
theunittestingofthecomponentitself.In otherwords, first
test if the pieces still work and then determine if they are
working together correctly; bottom-up testing as it were.

In our example, here is the testing sequence for com-
ponent II:

Unit Class A
Unit Class B
Interface Class A*
Interface Class B*
Unit Component I*
Unit Class C
Interface Component I**
Interface Class C**
Unit Component II**
Interface Component II

The asterisk indicates the aggregation test of component
I and double asterisks indicate the aggregation test of
component II.

Of course, in practice, distinctions are never this clear.
However, they should be considered when considering
the efficacy of testing.

The above sequence works fine when fixing bugs and
when adding functions. For each version, existing tests
are used as is or are expanded to test for bugs and the
new functions.

This is classic regression testing, which can be auto-
mated. Automation helps keep systems “no worse” than
they were in the prior build. Regression testing in Small-
talk systems appears to have more value than regres-
sion testing in classical software development. While I
am not exactly sure why, I suspect that it is because
inheritance and the distributed nature of Smalltalk sys-
tems make the impact of change more difficult to pre-
dict. The developer doesn’t know the whole system.

Regression testing does not work as well during con-
solidation or refactoring. Say component I is significantly
changed so that it no longer use classes A and B, but rather
uses classes X and Y. Call this new component I’. Also as-
sume that the interface to component I’ remains un-
changed from I.The test sequence for component I’ is now

Unit Class X
Unit Class Y
Interface Class X
Interface Class Y
Unit Component I’
Interface Component I’

The key to note is that the last test is the same as in the
original testing. In other words, Interface(I) is the same
test as Interface(I’), because the interface has not
changed. If unit and interface testing are combined, as
many folks do, then this is not true; Unit(I’) is clearly not
the same as Unit(I).

In practice, this means that if the tests are not sep-
arated into the unit and interface components, tests
have no utility in verifying if the new version can replace
The Smalltalk Report

the old. In practice this happens all the time. The devel-
oper changes class A, changes the class A tests to reflect
the change, and then is puzzled when someone else’s
use of class A breaks. This is because the developer
changed the interface and then just changed the tests to
match.

Good design and the enforcement of interface con-
tracts reduces the exposure to this type of trouble. Good
interface tests can be used to ensure that interface con-
tracts are kept up.

As more software is developed by top–down construc-
tion, combining existing components in new ways, the
importance of interface testing becomes greater. No
longer can the developer of a component use SENDERS to
find all the clients of that component. In the extreme
view, if the interface changes in any way it is really a new
component. New and improved perhaps, but still a new
component.

This article has explored the public/private, proposed a
solution, and then used that solution to define unit,
interface, and aggregate testing. In our next article, we
will discuss roles in the testing process with a particular
focus on changes in time.

Jeff McKenna is the founder and President of MCG Software, Inc.,
Wilsonville, OR. MCG Software offers testing frameworks for
Smalltalk. Jeff has been involved with software for more than 33
years and been involved with Smalltalk since 1982. He was chair-
man of OOPSLA ‘94. He may be reached at mckenna@acm.org.

`

July–August 1996

`

