Proper use of class methods

make is improper use of class methods. Many a new
Smalltalk convert has implemented major portions of
a system design using class methods. Well, why not? They
are easy to access—callable from anywhere by any object.

Tempting, but not a good idea. First, consider your
system design documents. There is no place on an object
model for class methods. When you build an object
model of your system design, the services in a class sym-
bol map to instance methods, not class methods. For
example, consider the simple class symbol for a product
vendor as shown in Fig. 1:

Every product vendor has its own name, address, and
list of products offered. These attributes that every prod-
uct vendor possesses translate into Smalltalk instance
variables defined in the ProductVendor class. Every prod-
uct vendor can be asked to provide a quote for a given
quantity of product. This is a behavior every product ven-
dor provides, so it translates into an instance method
defined in the ProductVendor class.

Now at some time during system execution all the
product vendor objects must be loaded into memory.
One approach is to write a class method, loadAll, in the
ProductVendor class. This class method goes out to the
database and reads all the product vendor objects. A
class method is used so it can be called by a human inter-
face screen or some other process. Great, but where does
it go on the object model? To show it on the class symbol
would imply it is an action every product vendor per-
forms—an instance method (see Fig. 2).

Faced with this problem, most developers invent an
extension to the notation or discover within the notation
some obscure demarcation for distinguishing class

THE BIGGEST BLUNDER Most new Smalltalk developers

(™\
ProductvVendor
name
address
productsOffered
quotePriceForQuantityOfProduct
loadAll

Figure 1. Simple class symbol.

Jill Nicola

methods from instance methods. Oh boy. If you follow
this approach, you have an object model with notation
only you understand that is implemented using global
functions. That’s right, global functions.

Your design is much less object oriented with class
methods. Ideally, you want all the functionality in your
system to be implemented by objects that represent
things in the real world, or correspond to system compo-
nents. Class methods are a fluke, a side effect of the fact
that most object-oriented languages need a data struc-
ture to serve as the definition for producing objects, and
this data structure, typically called a class, needs to have
behavior so it can produce objects. Making use of this
fluke is just an acknowledgment that you have system
functionality you cannot associate with any object in
your design . . . global functionality.

Another problem arises when requirements change.
Suppose you want to use the ProductVendor class in two
different applications—one with an ORACLE database,
one with a OODBMS. The loadAll method would have to
be written differently for each application. In fact, every
time the data representation requirements changed you
would need a new version of the loadAll method. Ouch.

So to recap, the problems with class methods are: 1)
Class methods require new or obscure notation on the
object model. 2) Class methods make your design less
object oriented. 3) Class methods decrease the flexibility
of your system to changes in requirements.

What to do? What to do? First, learn to recognize that
wherever class methods abound . . . objects are missing.
In the example, a loadAll class method was used because
there was no object in the system design responsible for
loading product vendors. So add one (see Fig. 3).

Heck, add a bunch... ProductVendorOracleDBA, Product-
VendorOODMBSDBA. However many you might need, just
get that loading behavior out of the class method on your
business domain object and get it into an instance
method on a separate object. Now in all your future
applications whenever product vendors need to be
loaded, create a product vendor DBA of the proper class,
hook it to the server, and tell it to loadAll. Gee, you could
even document the loading procedure with an object
interaction or a scenario diagram, something that would
be really hard if you were using class methods.

12 http://www.sigs.com

The Smalltalk Report

ProductVendor

name
address
productsOffered

guotePriceForQuantityOfProduct
loadAll

AN

Figure 2. An Instance method.

ProductVendorDBA

server

loadAll
loadAllSuchThat

Figure 3. Object for loading product vendors.

So, system functionality in class methods, particularly
in a business domain class, indicates objects are missing.
Here’s when you should use class methods:

1. Creating new objects.
Product new
Date today
Time now
perot
Array new: 10

Messages new, today, now, perot, new:, correspond to class
methods that create new objects. The new class methods
typically create objects with nil or default initial values in
the instance variables. The other methods, such as today,
and now, create special objects in the class that have
instance variables preset to meaningful values.

2. Managing class variables. Use class methods to:
« Initialize, reset, flush class variables.
« Provide read and write access into class variables.

Wow. That’s a short list. Well, there is one other time you
might consider class methods, but it is for development
purposes not system design.

3. Creating example or test objects.

A test object has in its instance variables typical data val-
ues that would exist during a normal system execution.
Test objects are a great help during development because
they allow developers to run portions of the system with-
out having to load data, guess at representative data val-
ues, or keep workspaces open with scripts for building
objects. Here’s how a typical test object method looks.
Note, how the executable comment within the method
makes it easy to run.

ProductVendor class methodsFor: ‘examples’

testObject
“ProductVendor testObject”

| vendor |

vendor := self new.

vendor name: ‘Vendor X'.

vendor address: Address testObject.

vendor addProductOffered: Product testObject.
vendor addProductOffered: Product testObject2.
vendor addProductOffered: Product testObject3.
~vendor

Now do not go off and implement elaborate test scenar-
ios with a slew of class methods; you will be making the
missing object mistake all over again. Test scenarios will
vary from application to application, so build separate
objects to implement your testing procedures. Test ob-
jects are essentially the unit tests from which all test pro-
cedures are built.

To conclude, guard against class methods creeping in-
to your design. Designs using class methods are not eas-
ily represented within an object model, are less object
oriented and more functional, and are brittle to changes
in requirements. Where class methods abound, objects
are missing. Use class methods for creating new objects,
managing class variables, and building test objects. &

Jill Nicola is President of JEN Consulting, which offers Smalltalk
training, consulting, and mentoring services. She specializes in
architecture design and customized GUIs. She can be reached by
email at nicola@jencon.com.

July—August 1996

http://www.sigs.com 13

