
Managing Objects

Smalltalk as an Internet server

Barbara YatesJan Steinman
I   , we demonstrated how to turn arbi-
trary Text objects into HTML, and in September 1995,
we demonstrated how to modify VisualWorks under

ENVY so you could store all your commentary in styled
text. The only thing missing to have live web access to
your Smalltalk project documentation is a server!

We’ve never been fond of specific solutions to general
problems. It would be easy to hard-code a server that is
dedicated to serving HTML versions of Smalltalk docu-
mentation, but there is so much code that is common to
any server that we couldn’t ignore the potential reuse.

For example, a server of any kind has these needs:
• Manage a socket name space — you can’t simply

pick any number for your socket.
• Initialize a socket and prepare it for use.
• Loop forever, waiting for connection requests.
• Record service requests in a log.
• Screen service requests for security reasons.
• Fork off individual service requests, so the main

loop isn’t unduly delayed from its primary task of
waiting for connections.

• Manage unexpected problems that might occur in
a service request.

• Perform the requested service, and return a result.
The following TCP server framework for VisualWorks
hides all but the last step, allowing the server author to
concentrate on the actual service being provided, with-
out being distracted by the mechanics of managing sock-
ets, processes, logs, and exceptions.

SETTING UP A SERVER INSTANCE
Our server is defined as:

Object subclass: #TcpServer
instanceVariableNames: ‘port socket server service

handler requests logger logProtect’
classVariableNames: ‘CanTalkToBlock

Jan Steinman and Barbara Yates are co-founders of Bytesmiths,
a technical services company that has been helping compan-
ies adopt Smalltalk since 1987. Between them, they have more
than 22 years of Smalltalk experience. They can be reached
at Barbara@Bytesmiths.com or Jan@Bytesmiths.com, or via
http://www.bytesmiths.com.
16 http://www.
DefaultHandlers DefaultServices Portmap
PortmapControl ‘

poolDictionaries: ‘’

Instances of TcpServer provide stateless services on
Transmission Control Protocol (TCP) Internet domain
sockets. Each instance is uniquely associated with a port
number on a given machine, which must be supplied
when creating an instance. Because port must be unique,
we use a class Portmap registry to maintain this unique-
ness. Because this registry will be accessed from multiple
threads of control, it must be protected by a mutual ex-
clusion mechanism in PortmapControl. We set all this up
when initializing the class, which also sets up the default
security and the DefaultHandlers and DefaultServices.

TcpServer class:
initialize

“Set up long-term state that is used for instance
management.”

self beSecure.
“If this is a re-initialize, be thread-safe.”
PortmapControl == nil ifFalse: [self shutDown].
PortmapControl := Semaphore forMutualExclusion.
Portmap size > 0 ifTrue:

[Portmap copy do: [:server | server terminate]].
Portmap := IdentityDictionary new.
(DefaultHandlers := IdentityDictionary new) at: 0
put: self nullHandler.

(DefaultServices := IdentityDictionary new) at: 0
put: self discardService

onPort: portNumber
“Answer an active instance that provides default
services for port <portNumber>.”

^Portmap
at: portNumber asInteger
ifAbsent: [(self new port: portNumber asInteger)

resume]

The connection security mechanism employs a block
that answers a Boolean when passed an incoming sock-
The Smalltalk Reportsigs.com

et. If the block answers false, the connection is dropped
immediately. This class method sets the default connec-
tion security, but once the connection security is passed,
an individual server can take extra precautions or imple-
ment finer graduations of security. We also have utility
methods beFriendly, which allows all connections, and
beLonely, which only allows connections from the same
machine, which can be useful for testing.

TcpServer class:
beSecure

“Set the default security to only accept connections
from the same network.”

CanTalkToBlock := [:socket |
socket getPeer networkAddress = socket
getName networkAddress]

The final part of class initialization declares what to do
when an instance is created for a port number that does
not have a default service block or exception handler.
Normally, an instance has its own service and handler. If
not, a default service and/or handler is fetched from the
class for a given port number. If even that fails, then the
“default default” service and/or handler is used. Because
zero is an illegal port number, we use it to hold the
“default default” service and handler.

TcpServer class:
nullHandler

“Answer a handler for when nothing is to be done
with errors. (This is generally not a wise choice!!)”

^[:exception :stream |]

discardService
“Answer a ‘discard’ service, which is to be used
when no service can be found for a given port.”

^[:stream |]

Finally, accessing methods for the unique identifying in-
formation for an instance must take some special actions.

TcpServer:
port

“Answer the port that is listened to by this server for
requests. If none is given, answer 7, for an echo
server.”

^port ? [7]

port: portNumber
“Initialize me with state needed for default
communication on the given <portNumber>.
Answer myself.”

self port: portNumber service: nil handler: nil
logger: System errorLog

The definition of the ? method was published in our
July–August 1996 http://www
January 1996 column. It simply answers the receiver,
unless it is nil, in which case the argument is evaluated and
answered. Note that we also use a few ENVY utility meth-
ods in this code, which you will need to change if you are
not going to use this as an ENVY documentation server.

With one more method, we will have all the essential
base state needed to implement our server. This is the
primary instance initialization method.

TcpServer:
port: portNumber service: serviceBlock

handler: exceptionBlock logger: logStream
“Initialize me with state needed for a particular
task. Any argument can be nil, and will be
defaulted suitable for an ‘echo’ server that logs to
the Transcript.

<portNumber> is an Integer port number to listen
to.

<serviceBlock> is a one-argument block that is
passed a stream on a transient socket on
<portNumber> when a connection arrives.

<exceptionBlock> is a two-argument block that is
passed the exception and the socket stream when
<serviceBlock> has an unhandled exception.

<logStream> is place to write log messages.”

requests := WeakArray with: 0.
service := serviceBlock.
handler := exceptionBlock.
port := portNumber asInteger.
logger := logStream ? [Transcript].
(self class register: self) ifFalse:

[self error: ‘You already have a service on this
port! You can only have one service
per port per machine.’]

Remember the need to keep track of port numbers? This
is handled by the class, which also needs a way to “forget”
about port numbers as their server instances are released.
The class also manages associations between port num-
bers and the services (and their exception handlers) that
each port provides.

TcpServer class:
register: instance

“Register the given <instance> of myself, unless one
is already registered at that port.

Answer success or failure.”

^(Portmap at: instance port ifAbsentPut:
[PortmapControl critical: [instance]]) == instance

unregister: instance

“Unregister the given <instance> of myself. Don’t
complain if I can’t find it.”

PortmapControl critical:
[Portmap removeKey: (Portmap keyAtValue:
instance ifAbsent: []) ifAbsent: []]
17.sigs.com

MANAGING OBJECTS
defaultHandlerFor: portNumber
“Answer an appropriate handler for <portNumber>,
or a default default if none.”

^DefaultHandlers at: portNumber ifAbsent:
[DefaultHandlers at: 0]

defaultServiceFor: portNumber
“Answer an appropriate service for <portNumber>,
or a default default if none.”

^DefaultServices at: portNumber ifAbsent:
[DefaultServices at: 0]

Recall that class initialization set up a nullHandler and a
discardService to be used when nothing else was specified
for a given instanceon a given port number.Thatmeanswe
need a way to associate other handlers and services with
ports, so that instances can be tightly cohesive with a port
number, but loosely coupled with a service and handler.

The “default default” of a discardService with a
nullHandler doesn’t make for a very useful server!

TcpServer class:
defaultHandlerFor: portNumber is: twoArgBlock

“Set the exception handler for <portNumber> to
<twoArgBlock>. When evaluated, the two
arguments will be:

the <exception> that was the argument to the
handle: block,
a read-append <stream> on the transient socket
that is being serviced.
This is not thread safe, and should not be changed
by some server action.”

2 = twoArgBlock numArgs
ifFalse: [self error: ‘Sorry, I need a two-argument

clean block here!!’]
ifTrue: [DefaultHandlers at: portNumber put:

twoArgBlock]

defaultServiceFor: portNumber is: oneArgBlock
“Set the service for <portNumber> to a clean
<oneArgBlock>. When evaluated, the argument will
be a read-append <stream> on the transient socket
that is being serviced.”

1 = oneArgBlock numArgs
ifFalse: [self error: ‘Sorry, I need a one-argument

clean block here!!’]
ifTrue: [DefaultServices at: portNumber put:

oneArgBlock]

MAKING A SERVER INSTANCE USEFUL
Although you need more code for a functional server, we
now have the base state needed to create and initialize a
server instance. Let’s put it to work by deriving the in-
stance state needed, such as the socket connection and
input process.
18 http://www
The basic service and handler are usually initialized
from the class registry of default services and default
handlers:

TcpServer:
handler

“Answer a two-argument block that is evaluated
upon service exception. It is passed the exception
and a stream. Non-local returns should not be
attempted. The block answer is discarded.

If no handler exists, get one suitable for my port.”

^handler ? [handler := self class defaultHandlerFor:
self port]

service
“Answer a one-argument clean block that is forked
upon service request. It is passed a stream on the
transient socket connection. Stream closing will be
handled by the evaluator. The block answer is
discarded.

If no service has been set, initialize it to one
appropriate for my port.”

^service ? [service := self class defaultServiceFor:
self port]

This class–instance collaboration might not seem neces-
sary; in fact it isn’t. However, the temporality of server
instances is very different from that of port–service asso-
ciations, so it’s useful to bind server instances tightly to a
port number, but loosely to a service.

For example, an instance that is providing World Wide
Web service using Hyper Text Transfer Protocol (HTTP) is
created and discarded more frequently than the binding
of this service to port number 80, the default HTTP port
number. This reduces coupling in the time domain,
which is often overlooked by designers who concentrate
on reducing behavioral or implementation coupling.

Now that we have a service and a handler, the impor-
tant stuff can happen. An independent thread runs the
primary server loop that waits on socket connections,
checks to see if the connection is legal, then services the
connection’s request.

TcpServer:
server

“Answer an unscheduled Process that listens for and
dispatches service requests.

This service loop should spend most of its time
waiting on a socket connection, and so has a high
priority. The service it implements is typically time-
consuming, and so should be forked at a low
priority, which immediately allows the server to
resume listening for connections.”

^server ? [server := [[| connection |
(CanTalkToBlock value: (connection := self

socket accept))
The Smalltalk Report.sigs.com

SIGS Publications, Inc., 71 West 23rd Street, 3rd Floor, New York, NY
10010; 212.242.7447; Fax: 212.242.7574

ARTICLE SUBMISSION
To submit articles for publication,please contact:
John Pugh & Paul White, Editors, 885 Meadowlands Dr.#509,Ottawa,
Ontario,K2C 3N2 Canada; email: streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS
To submit product reviews or product announcements, please
contact the Editors at the address above.

CUSTOMER SERVICE
For customer service in the US, please contact PO Box 5050,
Brentwood, TN 37024-5050; 800.361.1279; Fax: 615.370.4845;
in the UK, please contact Subscriptions Department, Tower
Publishing Services, Tower House, Sovereign Park, Market
Harborough, Leicestershire, LE16 9EF, UK; +44.(0)1858.435302;
Fax: +44.(0)1858.434958

SIGS BOOKS
For information on any SIGS book, contact: Don Jackson, Director of
Books, SIGS Books, Inc., 71 West 23rd Street, New York, NY 10010;
212.242.7447; Fax: 212.242.7574; email: donald_jackson@sigs.com

SIGS CONFERENCES
For information on all SIGS Conferences, please contact: SIGS
Conferences,71 West 23rd Street, 3rd Floor, New York, NY 10010;
212.242.7515; Fax: 212.242.7578; email: info@sigs.com

BACK ISSUES
To order back issues, please contact: Back Issue Order Department,
SIGS Publications, 71 West 23rd Street, 3rd Floor, New York, NY
10010; Phone: 212.242.7447; Fax: 212.242.7574

REPRINTS
For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road, Box 5363,
Lancaster, PA 17601; Phone: 717.560.2001; Fax: 717.560.2063

ADVERTISING
For ad information for any SIGS publication, please contact:
East Coast/Europe: Gary Portie
Central US: Elisa Marcus
Recruitment: Michael Peck
Exhibit Sales, West Coast: Kristin Viksnins
Exhibit Sales, East Coast: Sarah Olszewski
Phone:212.242.7447; Fax: 212.242.7574; email: sales@sigs.com
West Coast: Diane Fuller
Phone:408.255.2991; Fax: 408.255.2992; email: dhfsigs@hooked.net

INTERNATIONAL OFFICES
SIGS Conferences Ltd., Brocus House, Parkgate Road, Newdigate,
Surrey RH5 5AH, United Kingdom. Phone: 011.44.1.306.631.331;
Fax: 011.44.1.306.631.696; email: 100131,3500@compuserve.com.

SIGS France, 105 rue Jules Guesde, 92532 Levallois Perret Cedex,
Paris, France. Phone: +33 (1) 41 06 18 00; Fax: +33 (1) 41 06 18 19;
email: 100631,1050@compuserve.com.

SIGS Conferences GmbH, Odenthaler Strasses 47, D-51465 Bergisch
Gladbach, Germany. Phone: 011.49(0).2202.936.810;
Fax: 011.49(0).2202.936.812; email: 100634,2070@compuserve.com.

SIGS HOME PAGE AND ONLINE MAGAZINES
Access the SIGS Home Page at http://www.sigs.com;
Object Currents at http://www.sigs.com/objectcurrents; and
The X Spot at http://www.sigs.com/xspot.

INFO@SIGS

ifTrue: [self serviceRequest: connection

readAppendStream]
ifFalse: [[connection close] fork]] repeat]

newProcess.
server priority: Processor userInterruptPriority - 1.
server]

socket
“Answer an IOSocketAccessor that listens to my port
for service requests.”

^socket ?
[socket := OSErrorHolder existingReferentSignal

handle: [:ex |
logger == nil ifFalse:

[logger cr; show: ‘You appear to have
another server running on port ‘, self
port printString, ‘ on this machine.’]].

ex returnWith: nil]
do: [IOAccessor defaultForIPC

newTCPserverAtPort: self port]]

serviceRequest: stream
“A connection has been accepted on a transient copy
of my socket. <stream> is a read-write stream on that
socket. Log the activity and provide the requested
service in a separate thread at low priority.”

self registerRequest: ([self serviceRequestFork:
stream]

forkAt: Processor userBackgroundPriority + 1)

serviceRequestFork: stream
“Provide a requested service, based on the socket
<stream>, which at this point has not been read at
all. If there is a problem, invoke an instance-specific
handler. This method is forked at a low priority.”

Signal noHandlerSignal
handle: [:ex | self handler value: ex value: stream]
do: [self log: ‘Open connection at ‘,

EmTimeStamp now printString from: stream.
self service value: stream.
self log: ‘Close connection at ‘ EmTimeStamp now

printString from: stream].
OSErrorHolder errorSignal handle: [:ex |] do:

[stream close]

Because individual requests are forked off, it is essential
to track them down and kill them if needed, so request
threads are registered in requests, a WeakArray. As these
requests terminate, they are collected as garbage and
removed from requests.

TcpServer:
registerRequest: serviceRequestProcess

“A connection has been accepted and
<serviceRequestProcess> has been forked to deal
with it. Hang onto it weakly, so it can be killed when
I’m killed. When it terminates, the scavenger will
remove it from the registry.”
July–August 1996 19http://www.sigs.com

MANAGING OBJECTS
(requests includes: 0) ifFalse: [requests grow
replaceAll: nil with: 0].

requests
indexOf: 0
replaceWith: serviceRequestProcess
startingAt: 1
stoppingAt: requests size

Finally, instances need to be started, stopped, and killed.
If you are using ENVY, you’ll want to have an application
startUp method that relays to TcpServer startUp to restart
your servers, and a shutDown method that relays to
TcpServer shutDown to suspend them. Also remember to
have a removing method that gets rid of all instances by
sending TcpServer initialize.

TcpServer:
resume

“Begin my server.”

logger == nil ifFalse:
[logger cr;

nextPutAll: ‘Resuming service on port ‘; print:
self port;

nextPutAll: ‘ at ‘; print: EmTimeStamp now; flush].
self server resume

suspend
“Suspend my server in such a way that when it
resumes, it opens a new socket. Terminate any
active requests in process.”

| count |
logger == nil ifFalse:

[logger cr;
nextPutAll: ‘Suspending service on port ‘;

print: self port;
nextPutAll: ‘ at ‘; print: EmTimeStamp now.

count := (requests reject: [:request | request =
0]) size.

count > 0 ifTrue: [logger space; print: count;
nextPutAll: ‘ active requests
cancelled.’].

logger flush].
requests do: [:request | request = 0 ifFalse: [request

terminate]].
server == nil ifFalse: [server terminate. server := nil].
socket == nil ifFalse: [socket close. socket := nil]

terminate
“Terminate my server and release my state.”

self suspend.
self class unregister: self.
logger == nil ifFalse: [logProtect wait. logger close].
socket := server := service := handler := logger :=

logProtect := nil

TcpServer class:
shutDown
20 http://www
“Suspend all my services so that the image can be
quit and re-started.”

PortmapControl critical: [Portmap do: [:server |
server suspend]]

startUp
“Re-start all my services.”

PortmapControl critical: [Portmap do: [:server |
server resume]]!

WHAT’S LEFT?
We’ve run out of space, but this implementation sketch
should give you enough “thoughtware” to improvise. We
left out the thread–safe log interface (there are problems
if multiple processes write to the global Transcript), and
our implementation has more extensive logging and se-
curity features and a home page facility.

We’ll leave you with a handler and a service that im-
plement a complete telnet interface to VisualWorks
using this framework, hoping it might inspire your own
services.

TcpServer class:
textualHandler

“Answer a handler that dumps a textual stack.”
“self defaultHandlerFor: 23 is: self textualHandler”

^[:exception :stream | stream
nextPutAll: ‘Unhandled exception: ‘; nextPutAll:

exception errorString; cr;
nextPutAll: exception initialContext printStack]

evaluationServiceLoop
“Answer a service block that loops over lines of input,
evaluating each and sending back the result.”

“self defaultServiceFor: 23 is: self
evaluationServiceLoop”

^[:stream | stream
next: 6; “Discard garbage characters.”
nextPutAll: ‘Smalltalk evaluation service’; cr;
nextPutAll: ‘Type “self close” to end session’; cr;

nextPutAll: ‘Smalltalk> ‘.
[stream

print: (Compiler evaluate: stream nextLine for:
stream); cr;

nextPutAll: ‘Smalltalk> ‘] repeat]

CONCLUSION
It is easier to write client–server code in VisualWorks
than in C, but it is still not easy enough! With some work,
you can build a framework that reduces TCP servers to
one or two methods.

Next issue, we’ll conclude this series by tying together
this month’s server framework with last month’s HTML
interface, and you’ll have your Smalltalk project docu-
mentation on your company’s Intranet! `
`

The Smalltalk Report.sigs.com

