
Getting Real

Jay AlmarodeCommunicating between
sessions
21w.sigs.com
July–August 1996 http://ww

I  , users often want to com-
municate with each other. In some cases, they want to
broadcast their message to all interested parties; in

other cases, they only want to carry on a dialog with one
other user. In a system that supports transactions, an
application sometimes wants to be notified when changes
to particular objects have been committed. A client/server
system already has the infrastructure to provide these ser-
vices. The client and server already have predefined com-
munication protocols, and the server has knowledge of all
the clients currently logged in. This column discusses two
kinds of client-to-client communications that can be sup-
ported by multiuser Smalltalk and shows how to use them
to implement concurrent processing algorithms.

In a system that supports transactions, application
sessions are committing changes to objects all the time.
Many times an application needs to know when another
concurrent session has committed a change to specific
objects of interest. For example, a stock broker applica-
tion may want to trigger some activity when the price of
a particular stock has changed. Or, an inventory manage-
ment application may need to initiate item purchases
when the inventory dips below a specified threshold. A
reservation system may want to be notified when a new
reservable unit becomes available. In these cases, the
application does not care who made the change; it just
wants to be notified that a change occurred and which
objects were modified.

In GemStone Smalltalk, class System provides protocol
to receive notification when particular objects are mod-
ified. Each session that is logged in maintains its own ‘noti-
fy set’. A session can register objects of interest by placing
them in its notify set. This set only exists for the life of the
session; that is, it is not a persistent object, but it is main-
tained across transaction boundaries. An application can
add a single object to its notify set by executing System
addToNotifySet: anObject or can add a collection of objects
by sending addAllToNotifySet:. There is also protocol to
access and remove objects from the notify set.

Once objects have been added to its notify set, there

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a Senior Software Engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.
are two ways in which the session can receive notifica-
tion. One way is to poll for the objects that have changed;
the other is to install an exception handler. If the applica-
tion installs an exception handler, it must first enable the
ability to receive this error (it is not really an error, but the
underlying implementation uses the error mechanism to
interrupt execution). This error is enabled by sending
System enableSignaledObjectsError. Whether polling or
handling an exception, to find out which objects have
been modified, the application sends System signaled-
Objects. This message returns a set of objects that have
had changes committed to them and clears the signaled
objects set for the next use.

The following section of code illustrates how to install
an exception handler and get the changed objects:

“first enable the ability to be notified when
changed objects are committed “

System enableSignaledObjectsError.

“ now install an exception handler to catch the notification “
Exception

category: GemStoneError
number: (ErrorSymbols at: #rtErrSignalCommit)
do: [:ex :cat :num :args | | changedObjects |

“ get the objects that have had changes to them
committed “

changedObjects := System signaledObjects.
].

When adding objects to the notify set, an application
must consider what part of an object will actually be writ-
ten, so that the session will be notified when a change to
that object is committed. For example, an RcCounter
object (described in an earlier column) is actually imple-
mented as a composite object, composed of multiple
subobjects that each encapsulates a numerical value. It
is the sum of all values in the subcomponents that ac-
tually make up the RcCounter’s value. When an RcCounter
is incremented or decremented, it is one of the subcom-
ponents that is actually written. Consequently, to receive
notification when a change to an RcCounter is committed,
a session must place the root object and all of its sub-
components in the notify set.

Another kind of useful client-to-client communication

GETTING REAL
is when two sessions want to talk to one another directly
and immediately. In GemStone Smalltalk, this is possible
by sending a signal to another session currently logged in.
A signalconsistsof a SmallInteger, whosemeaningis agreed
on by the participants in the dialog, and a sequence of
bytes (a maximum of 1,023). As with the changed object
notification mechanism just described, signaling is im-
plemented using the underlying error mechanism. Con-
sequently, a sessionmust enable the receptionof these sig-
nals by sending System enableSignaledGemStoneSession-
Error. A session can receive signals from multiple senders,
and the signals are queued in the order received.

For a session to send a signal to another session, it must
identify the other session by its unique session identifier, a
SmallInteger. There are a couple of ways that a user can find
out about other sessions currently logged into the system.
To get the session IDs of all users currently logged in, you
can send the message System currentSessions, which
returns an array of SmallIntegers. For each session ID, you
can send System descriptionOfSession: sessionId to get back
an array of more detailedinformation.Amongthe piecesof
information returned by this message is the name of the
host machine on which that user is logged in, and the
UserProfile object for that user. Getting information about
other users is a privileged operation, so you must have ‘ses-
sion access’ privilege to send these messages.

Once you have the identifier of the session to which
you would like to send a signal, you can send System send-
Signal: aSignalNumber to: aSessionId withMessage: aString.
The receiver of the signal executes System signalFromGem-
StoneSession to receive an array of signal information. The
array is empty if no signal has been sent. If a signal has
been sent, the array consists of three elements: the ses-
sion id of the sender, the signal number, and the bytes.

Because signaling uses the underlying error mecha-
nism, a receiver can install an exception handler to be
triggered when a signal is sent to it, or the receiver can
poll for signals.

Signals are a simple mechanism that can be used to
build complex behaviors that involve more than one con-
current session. One use of signals is to coordinate sessions
for implementing concurrent algorithms. Implementing
concurrent algorithms with individual sessions means that
you are allocating tasks among multiple processes, each
with its own dedicatedSmalltalkinterpreter and view of the
object repository. Some care must be taken to make sure
that each session’s transaction point of view is reasonably
up to date with the others. Usually this means that a session
begins a new transaction as the first step in performing its
part of the concurrent algorithm.

The remainder of this column describes a simple pair
of classes that can be used for implementing concurrent
processing. The implementation consists of one class,
called WorkerBee, whose responsibility is to receive com-
mands to do work, and another class, called QueenBee,
which sends commands to multiple WorkerBee objects
and accumulates the results of their work. A QueenBee
uses signals to send commands to each WorkerBee and
22 http://www
uses changed object notification to learn when each
WorkerBee has committed its work.

The implementation of WorkerBee is fairly simple. Its
main task is to execute a service loop, waiting for instruc-
tions from any QueenBee. Class WorkerBee defines a single
instance variable, called amountToSleep that holds the
number of seconds to delay each time through its service
loop. This allows the responsiveness of each WorkerBee to
be tuned. Note that the WorkerBee’s OS process and
resources used can be further controlled using configura-
tion parameters as described in an earlier column on tun-
ing. Each time, through its service loop, a WorkerBee checks
if a signal was received. If so, it initiates some work based
on the signal number. Because the meaning of signal
numbers must be agreed upon by the sender and receiver,
I use a pool dictionary shared by WorkerBee and QueenBee
to provide symbolic names for different signal numbers.

The pool dictionary has entries with the following
meanings:

#handshake initiate an agreement to work for a
QueenBee

#freeWorker end the agreement to work for a
QueenBee

#executeString execute the given string for a QueenBee
#commit commit the current transaction
#abort abort the current transaction
#terminate terminate the service loop of the

WorkerBee

A WorkerBee must synchronize with a QueenBee before it
does any work. In this simple example, a WorkerBee and a
QueenBee perform a handshake in the following way: A
QueenBee sends a signal initiating the handshake. In-
cluded in this initial signal is the QueenBee’s name. This
must be a name that the WorkerBee can resolve to get the
QueenBee instance that sent the signal. If the WorkerBee is
not already servicing another QueenBee, it returns a signal
indicating its availability; otherwise it indicates it is busy.
At this point, the WorkerBee is dedicated to a single
QueenBee, waiting for commands. The implementation of
the WorkerBee’s serviceLoop is as follows (simple portions
of this method have been omitted for brevity):

method: WorkerBee
serviceLoop

“Start up a loop, waiting for instructions.”

| continue queen queenSessId
| continue := true.
“ worker bee loop “
[continue] whileTrue: [| signalArray |

signalArray := System signalFromGemStoneSession.
“ if no signal was sent, sleep for awhile “
signalArray isEmpty

ifTrue: [System sleep: self amountToSleep]
ifFalse: [

| signalNumber signalSender signalBytes |
The Smalltalk Report.sigs.com

C
a
b

n

e

T

signalSender := signalArray at: 1.
signalNumber := signalArray at: 2.
signalBytes := signalArray at: 3.

“ command to execute the given string “
signalNumber = executeString

ifTrue: [
“ only accept commands from one queen “
(queen notNil and: [signalSender =
queenSessId])

ifTrue: [queen addToHive: signalBytes
_execute]

].
“ receive a request to work for a queen “
signalNumber = handshake

ifTrue: [
queenSessId isNil

ifTrue: [
queenSessId := signalSender.
“ resolve the QueenBee’s name to an

instance “
queen := System myUserProfile

objectNamed: signalBytes.
System sendSignal: handshake

to: signalSender
withMessage: ‘Available’

]
ifFalse: [“ signal that the WorkerBee is

unavailable “
System sendSignal: handshake

to: signalSender
withMessage: ‘Unavailable’

]
].

continue := signalNumber ~= terminate.
]

].

The implementation of the QueenBee is also fairly simple.
lass QueenBee defines three instance variables: its name,
n array containing the session ID of each of its worker
ees, and a bag in which each WorkerBee can place the

result of its work. This last instance variable, cutely
amed hive, will be concurrently updated by multiple

WorkerBees. To avoid concurrency conflicts, this variable
contains an instance of RcBag. You may recall from an

arlier column, an RcBag has concurrency semantics such
that concurrent adders to the bag will not conflict.

In addition, theQueenBee wants to be notified wheneach
WorkerBee has committed the result of its work to the RcBag.

o accommodate this, theQueenBee places theRcBag andits
subcomponents into its notify set. Once a QueenBee has
issued the command for each of its workers to do some
work, it can wait for notification of changes to the RcBag
to gather results. The following code listing shows the
methods to add the RcBag to the notify set, and to find
all WorkerBees and perform the handshake with them:
July–August 1996 http://www.s
method: QueenBee
addHiveToNotifySet

“ put the RcBag and all of its subcomponents in the notify
set “

System addToNotifySet: hive.
hive _doSessionBags: [
:addBag :removeBag |

System addToNotifySet: addBag.
System addToNotifySet: removeBag.

]

method: QueenBee
getWorkerBees

“Find possible worker bees, then perform a handshake to
see if they are available for work. Set the array of worker
bee’s session id’s with those that are available.”

| possibleWorkers |
“ find all users logged in as WorkerBee “
possibleWorkers
:= System currentSessions

select: [:sessId |
((System descriptionOfSession: sessId) at: 1)
userId = ‘WorkerBee’

].

“ initiate the handshake “
possibleWorkers do: [:sessId |

System sendSignal: handshake
to: sessId
withMessage: name.

].

workers := Array new.
possibleWorkers size timesRepeat:
[| signalArray |

signalArray := System signalFromGemStoneSession.
signalArray isEmpty

ifFalse: [
| signalSender signalNumber signalBytes |
signalSender := signalArray at: 1.
signalNumber := signalArray at: 2.
signalBytes := signalArray at: 3.

“ check if WorkerBee was available “
(signalNumber = handshake and:
[signalBytes = ‘Available’])

ifTrue: [workers add: signalSender]
]

]

The mechanisms described in this column let one session
find out about and communicate with other sessions.
These mechanisms provide the infrastructure to build
complex applications in a multiuser environment. `
`

23igs.com

