
Externalizing
Business-Object Behavior:
A Point-and Click Rule Editor

Paul Davidowitz
4

Figure 1. Starts with a generic seed-block of [:s
The tool guarantees
that the source code it produces

will always compile and,
at run time, will never generate
the doesNotUnderstand: message.
E is an intergrated set of tools, architectures,
processes, patterns, and reusable components that
Andersen Consulting brings to its clients to enable

the design and development of mission critical business
systems. One of the frameworks explored in the area of
tailorability was the externalization of business-object
behavior, which makes conven-
tional black-box business-object
behavior available for tailoring by
an end user. This externalized
behavior is represented as rule-
bases, which are specified in
Smalltalk. This paper describes a
tool that can be used to create and
edit the rules of the rule-bases. The
tool guarantees that the source
code it produces will always com-
pile and, at run time, will never generate the
doesNotUnderstand: message. The tool is a context-sensitive
editor that makes use of typing information and handles
a wide range of expressions.

The basic technique is to transform a source string via
manipulation of its abstract syntax tree. The abstract syn-
tax parse tree, or more accurately ProgramNode tree in Visual
Works, is produced as an intermediate step during code
http://www

ubject | nil].
compilation, but is useful in its own right as an intermedi-
ate representation between source code and compiled
code. The tree representation is convenient for dealing
with syntactic issues. This representation can be trans-
formed via decompilation into a string representation,
with which most users prefer to interact. One representa-

tion can be transformed into the
other as is convenient. Valid syntax
and valid message-selectors are
achieved by constraining the user to
choose from valid manipulations of
the ProgramNode tree. Valid message
arguments are achieved by having
the user choose from manipula-
tions that satisfy type require-
ments.Here is an example of a rule-
base consisting of two rules. The

rule-base derives the attribute isReceiving for a
Warehouse business object.

Rule1 premise: [:aWarehouse | aWarehouse
isTakingInventory]
Rule1 action: [:aWarehouse | aWarehouse
isReceiving: false]
Rule2 premise: [:aWarehouse | aWarehouse
isTakingInventory not]
Rule2 action: [:aWarehouse | aWarehouse
isReceiving: (aWarehouse isOpen and:[aWarehouse
isAvailableStorage])]

As the example shows, a rule contains a single-argument
block; the argument being the instance of the business
object. The nature of Eagle rules is that they tend to be
short and simple. The tool in turn was designed to per-
form well for shallow-nested blocks and a small number
of assignments and temps.

PPD VisualWorks was the development environment;
concepts may or may not be applicable to other Smalltalk
environments.

The standard input to the tool is a string specifying a
single argument block and the class name of the business
The Smalltalk Report.sigs.com

object. The output is a similar string. Let’s create the
action block of Rule2, starting with a generic seed-block
of [:subject | nil] as shown in Figure 1.

The view in the upper right is the ProgramNode tree. The
user has the ability to select a node either by clicking on it
in the tree view, or by clicking appropriately on code in
the NodeSelection text view (shown). For example, to select
a MessageNode in the text view, the user clicks on its selec-
tor. We click on nil, which is a LiteralNode.

We proceed to replace the nil statement with the argu-
ment of the block. We have replacement options available
from four lists: Morph, MorphConstruct, MetaMorph, and
MetaMorphConstruct. These options (collectively referred to
as morphs) produce valid replacement nodes for the cur-
rent-selection. Morph proper and MorphConstruct produce
replacement nodes of the same class as that of the current
selection; MetaMorph and MetaMorphConstruct produce
those of a different class. The construct suffix means that
the replacement node, instead of being a fixed prototype,
is rather constructed from the current selection. For
example, construct sel -> sel isNil (sel denoting current
selection) means: replace the current selection with a
MessageNode of selector isNil, and use the current selection
as the receiver.

Let’s metamorph. We select subject in the MetaMorph list.
This replaces the LiteralNode with a VariableNode and, we get
Figure 2.

The Morph list presents the option of using global
Transcript; it is possible to have other globals as well. We
select MetaMorphConstruct sel -> sel isNil. This replaces the
VariableNode with a MessageNode, whose receiver is the
VariableNode, and then we get Figure 3.

We have expanded the MorphConstruct list and see
choices for different selectors. Each of these choices
shows the return type (depicted by the up-arrow), as well
as the required types for the arguments (if any). (The ver-
tical bar appearing in a type specification is read as or.)
We pick sel -> sel rcvr isReceiving:. This replaces the current
MessageNode with another MessageNode of the same receiv-
er, but different selector, that of isReceiving:.

Let’s proceed by showing remaining steps with descrip-
tive text, where bold emphasis indicates current selection.

Figure 2. DEMO 2.
September 1996 http://www
4) [:subject | subject isReceiving: nil]
5) [:subject | subject isReceiving: nil]
6) [:subject | subject isReceiving: subject]

At this point, as shown in Figure 4, the label at the top of
the tree view has turned red and now reads: Type Mismatch
instead of Type Match. The current selection appears
(inverted) red in the tree view, and the Accept button at the
lower right is disabled. The red color for the node indi-
cates that for that particular node, there is a type mis-
match. The type status in the lower left shows that the
required-type is <UndefinedObject | (kindOf: Boolean)>, but
the actual type is <Warehouse>. Warehouse is neither an
UndefinedObject nor a kindOf: Boolean, so the required type
is therefore not satisfied. Unless all nodes have their
required type satisfied, the tool will not permit the code to
be accepted.

Whereas each allowed manipulation of the ProgramNode
tree will result in correct syntax, it will not necessarily sat-
isfy required type for all ProgramNodes. As far as the tool is
concerned, an unsatisfied required type is the sole cause
for the generation of the doesNotUnderstand: message. The
tool guarantees prevention of the doesNotUnderstand: mes-
sage, by requiring that all required types are satisfied. The
user is alerted to type mismatches, and it is the user’s
responsibility to satisfy them. Type mismatch usually
occurs with message arguments.

We continue to morph, aware that the type mismatch
was due to an intermediate morph step.

7) [:subject | subject isReceiving: subject isNil]
8) [:subject | subject isReceiving: subject isOpen]
9) [:subject | subject isReceiving: subject isOpen isNil]
10) [:subject | subject isReceiving: (subject isOpen
and: [nil])]
11) [:subject | subject isReceiving: (subject isOpen and:
[nil])]
12) [:subject | subject isReceiving: (subject isOpen and:
[subject])] (At step 12 there is another type mismatch,
again with the argument of isReceiving:.)
13) [:subject | subject isReceiving: (subject isOpen and:
[subject isNil])]
14) [:subject | subject isReceiving: (subject isOpen and:

Figure 3. DEMO 3.
5.sigs.com

EXTERNALIZING BEHAVIOR
[subject isAvailableStorage])]
We’re almost done creating the action block. We now
select the VariableNode block argument subject and rename
it to aWarehouse by editing its name in the edit box; this
renames all references in the scope of the variable.

15) [:subject | subject isReceiving: (subject isOpen
and: [subject isAvailableStorage])]
16) [:aWarehouse | aWarehouse isReceiving:
(aWarehouse isOpen and: [aWarehouse isAvailableStorage])]

That’s it, and it took a total of 15 mouse clicks (not includ-
ing list expansions) and one name edit.

Now let’s say we wanted to add another statement to
the action block. We start by selecting the Sequence
Statements collection. A collection editor is installed in the
lower right, as shown in Figure 5. We select the single state-
ment, and then click on the Add Before button, and get:

[:aWarehouse |
nil.
aWarehouse isReceiving: (aWarehouse isOpen and:
[aWarehouse isAvailableStorage])]

The added nil statement can then be built out via morph-
ing. The collection editor can also modify a collection of
temporary-variables.

The tool has unlimited undo/redo capability, as well
as the ability to alternate between NodeSelection and
FreeStyle (i.e., regular) text views. Text is automatically

Figure 5. DEMO 5.

Figure 4. DEMO 4.
6 http://www
parenthesized and formatted in the NodeSelection view (as
we have seen). Also in this view, the user is able to walk
up the tree by shift clicking.

Assignment to a block is not supported, nor is sending
it #value. Cascaded expressions are currently not support-
ed.

NODE WRAPPERS
The ProgramNode class hierarchy (somewhat simplified) is
shown in Figure 6. Instance variables are shown with soft
type (gleaned from class comments). Note that a
BlockNode contains a SequenceNode, which in turn contains
temporaries and statements.

ProgramNode (sourcePosition <Interval>)

ParameterNode (variable <VariableNode>)
StatementNode

ReturnNode
ValueNode

AssignmentNode (variable <VariableNode>,
value <kindOf: ValueNode>)

CascadeNode
LeafNode

BlockNode (arguments <Collection of:
ParameterNode>, body <SequenceNode>)

LiteralNode (value <kindOf: Object>)
VariableNode (name <String>)

SequenceNode (temporaries <Collection of:
ParameterNode>, statements <Collection of: (kindOf:
StatementNode)>)

SimpleMessageNode (receiver <kindOf:
ValueNode>, selector <Symbol>, arguments <Collection of:
(kindOf: ValueNode)>)

MessageNode
The ProgramNode class-hierarchy (somewhat simplified).

A wrapper class hierarchy that parallels that of the
ProgramNodes was created. The wrapper classes refer
to the ProgramNode classes and extend them, but the
ProgramNode classes themselves are not modified, thus
keeping the compiler framework intact (Adapter pat-
tern1). The wrapper hierarchy (somewhat simplified)
is shown in Figure 7. (AbstractParserTraverser and
MessageWrapperBlockArgument Evaluator are technically not
wrappers, but are referred to as such.)

AbstractParserTraverser (parent, children)
MessageWrapperBlockArgumentEvaluator
AbstractParserWrapper (value)

AbstractProgramNodeWrapper (type,
requiredType)

ParameterNodeWrapper
AbstractStatementNodeWrapper

ReturnNodeWrapper
AbstractValueNodeWrapper

AssignmentNodeWrapper
AbstractLeafNodeWrapper

LiteralNodeWrapper
The Smalltalk Report.sigs.com

BlockNodeWrapper
VariableNodeWrapper

SequenceNodeWrapper
MessageNodeWrapper

MessageNodeWithArgumentsWrapper
OrderedCollectionWrapper

ParentOfUserRoot
The wrapper hierarchy (somewhat simplified).

Added state allows a ProgramNode to know its parent, as
well as keep track of its required and current type.
OrderedCollectionWrapper wraps collections pointed to by
ProgramNodes; this includes SequenceNode statements and
MessageNode arguments. Manipulation is defined as
either wrapper replacement or addition/dele-
tion of an OrderedCollectionWrapper child.

Not having the option of modifying the ProgramNode
classes can be tricky. It was necessary for example, to
deep-copy a ProgramNode, an ability which it lacks. The
technique is to regenerate it by compiling its decompiled
string.

THE USER-ROOT
The user-root parent hierarchy is designated as follows:

nil
BlockNodeWrapper

SequenceNodeWrapper
ParentOfUserRoot

The ParentOfUserRoot is an OrderedCollectionWrapper on
sequence statements and is constrained to always have
one statement– the user root. Wrapper replacement is
forbidden for any wrappers above the user root. Indeed,
the user is aware of the user-root tree only. The user-root
must have a parent because the user root needs to be
replaceable, and this requires a parent wrapper. As a
kind of AbstractStatementNodeWrapper, the user root has
flexibility in being replaceable with wrappers of other
classes.

CONSTRUCTS
Constructs are obtained from the soft-typing information
of ProgramNode instance variables (as shown in Figure 6.).
For example, take a MessageNode, which is a statement.
This node can be replaced with any of the subclasses of
StatementNode such as ValueNode. Since the receiver of a
MessageNode is itself a ValueNode, it follows that it is permis-
sible to replace this MessageNode with its receiver, as shown
in Figure 8.

Replacing a statement MessageNode with its receiver.

Construct Return message receiver (123 isNil → 123).

The following constructs are supported:

• Return message receiver (123 isNil → 123)
• Be message receiver (123 → 123 isNil)
• Change message selector and arguments only (123 + 456 →123 * nil)
• Change message selector only (123 + 456 → 123 * 456)
September 1996 http://www
• Return block’s first and only statement ([123] → 123)
• Enclose statement in block (123 → [123])
• Return assignment value (t1 := 123 → 123)
• Be assignment value (123 → t1 := 123)

Figure 6. Branch.

Figure 7. Loop.
7.sigs.com

EXTERNALIZING BEHAVIOR
• Remove up-arrowT> (^123 → 123)
• Add up-arrow (123 → ^123)

MANIPULATION VALIDATION
Each potential manipulation must be validated to be
made available to the user. A manipulation is invalid if it
hasn’t been implemented for example, like the replace-
ment of a message receiver. A manipulation is invalid if it
is syntactically incorrect. For example, the definition of a
temporary variable may not be deleted if the variable is
currently referenced.

We also check the ramifications for message receivers
if the type of a temporary variable were to change. For a
message-receiver whose type is determined by a tempo-
rary, we ensure that the receiver’s required type is satis-
fied. For example, t1 isEmpty, where the receiver’s
required-type is <kindOf: Collection>. If the type of t1 were
to change from <ByteString> to <SmallInteger>, for example,
the check would fail, because <kindOf: Collection> would
not be satisfied with <SmallInteger>. This check is accom-
plished by simulating the manipulation on a parallel test
tree to preview the results.

Figure 8. Construction.
CORRECT SOURCE POSITION
Wrapper source-position information enables the user to
select the wrapper by clicking on it in a text view. A pris-
tine ProgramNode tree will have correct source-position
information stored in its nodes. Once the tree is manipu-
lated, however, this information is no longer guaranteed
to be in synch with the decompiled string. The technique
is to create a parallel ProgramNode tree after every manipu-
lation, by compiling the decompiled string of the modi-
fied wrapper tree. A wrapper seeks its correct source posi-
tion from its parallel node counterpart.

Instead of directly replacing a node in the tree, why not
do so indirectly by replacing the corresponding string
component in the overall string? For a BlockNode, for
example, replace the string ‘[nil]’ in the correct spot in the
overall string. Then, from this overall string create a fresh
wrapper tree that would then have the correct source
position. This approach, however, also has a drawback;
The state information in the pre-manipulation wrapper
tree must always be transferred to the post-manipulation
wrapper tree.

In the next article, we plan to conclude by looking at
typing, traversal of the wrapper tree, treatment of blocks,
and creation of the wrapper-tree.

Reference

1. Gamma, E. et al. Design Patterns: ELEMENTS of REUSABLE OBJECT-
ORIENTED SOFTWARE, Addison-Wesley, Reading, MA, 1995.

Paul Davidowitz is a senior developer at Andersen Consulting.
He can be reached at paul.davidowitz@ac.com.

S

