
Using Events
for constraint solving

Annick Fron
S
malltalk has evolved and the good old MVC scheme
has now grown up into events. Events are imple-
mented in Visual Smalltalk and Visual Age, but the

code will be presented here in the Visual Smalltalk envi-
ronment.

The MVC implementation in Smalltalk relies on a cou-
ple of changed/update messages sent back and forth
between dependents.

Figure 1 shows how the dependency mechanism is trig-
gered: Each time object A is modified and calls method
“changed”, or one of its variants, all of its dependents are
informed and execute an “update” method.

A more sophisticated scheme allows an aspect to be
passed as an argument to an update, in order to refine the
monolithic link between dependent variables. The prob-
lem is that the update method has to decode the argu-
ment to decide on its behavior. For example,

anObject changed: #color
anotherObject >>update: anArgument

anArgument = #color ifTrue: [...]
anArgument = #size ifTrue: ...

Event programming can be seen as a refinement of the
changed/update pairs. Namely, instead of maintaining a
list of dependents, the system maintains a dictionary with
events as entries. This allows for a much more efficient
and finely tuned scheme for maintaining dependencies.

Event-based programming has been very successful for
building graphical interfaces and for visual programming.
In Visual Age and Visual Smalltalk, events are the back-
bone of links between objects in order to build a visual
application.

Events are also popular at the operating and window-
ing system levels, but this is not the topic here.

CONSTRAINT-SOLVING TECHNIQUES
Constraint-solving techniques allow the user to tackle

such combinatorial problems as scheduling a meeting or
dispatching resources according to some criteria.

One popular technique, called “Finite domain tech-
September 1996 http://www
niques,” is used when variables can only take a finite num-
ber of values. For instance, scheduling a project when the
time unit is a day can be modeled using this technique.

The idea is to represent the variable not as bounded to
a value, but with a range of potential values called its
domain. The solver will then ensure consistency between
these domains through the constraints.

For instance, if two variables are constrained to be
equal, their domains should be the same. Hence, each time
one domain is modified the other one should be as well.

The easiest way to represent domains is through inter-
vals. One easy way to detect interval modification is
through its bounds. On intervals, it is thus possible to
define two modification events, on each bound. We will
call them: #min and #max.

In Figure 2. two constrained variables and one con-
straint are shown. When the domain of x is modified by
some other constraints or external event, it informs all
connected constraints, in this case here the equality con-
straint. This constraint has only one connected variable, y.
Because it is equal, it must tell y to modify its lower bound
as well, thus triggering a #min event for y. y in turn will
inform its own constraints.

Consistency on finite domain has been proven to be
efficient for solving constraints on integers, which is usu-
ally exponentially complex. The only restriction to get a
fixed-point solution is to always shrink the domain; never

Object A

Obj ect B

Obj ect C

Obj ect D

update

changed

update

update

Figure 1. A changed message in object A triggers update messages on
all its dependents.
11.sigs.com

CONSTRAINT SOLVING
increase it. The triggering order of events on domains has
been proven not to affect the result. Yet, this algorithm is
not complete and needs an enumeration phase in order
to find all of the solutions. This will be omitted here.

A SMALLTALK IMPLEMENTATION OF CONSTRAINTS
The Smalltalk implementation of a constrained vari-

able is very simple, and events will help a lot in the job.
The first question to ask is: “Do the constraints represent
objects, or are they included into other objects?” Having
constraints as true objects is very helpful. Because it
allows the implementation of a constraint hierarchy to
refine new constraints, it provides a handle to dynamical-
ly inhibit or activate a constraint.

Here, we take a simple assumption that constrained vari-
ables need not be any Smalltalk object; they can derive from
a specific root under object. Therefore, we get two object
hierarchy roots, one for constraints, one for variables.

THE VARIABLES
Variables are defined by their domain and by the

events they are able to respond to. Here we get only finite
domain variables (the model can be extended to other
kinds of variables, but for reasons of simplicity, it will be
omitted here).

In Visual Smalltalk, it is possible to define any seman-
tic event at the class level, through the method
contructEventsTriggered. The second step is to couple every
domain modification (instance variable accessor) with
an event using the triggerEvent: message. This should be
compared to adding changed to instance variable acces-
sors displayed on a view.

The operator * and =@ are only syntactic sugar for the
final example. =@ means equals in the constraint sense,
which should not be confused with variable assignation
(variables that have no value yet).

For esthetic reasons, variables get a name to be printed.

Object

subclass: #ConstrainedVariable
instanceVariableNames: ‘name domain’
classVariableNames: ‘’
poolDictionaries: ‘’

!ConstrainedVariable class methods!

constructEventsTriggered

“Private - answer the set of events that instances of the
receiver can trigger.”
^#(#min #max) asSet

from: aMin to: aMax

^super new from: aMin to: aMax

!ConstrainedVariable methods!

* y
12 http://www.
| c |
c := ActTimes x: self y: y.
^c result “a constrained variable”

+ y
|c|
c := ActAdd x: self y: y.
^c result “a constrained variable”

@= y

|c|
c := ActEquals x: self y: y.
^c result “ a constrained variable

domain
^domain!

domain: anObject
domain := anObject!

max
^domain last!

max: aValue
domain newMax: aValue.
self triggerEvent: #max!

min
^domain first!

min: aValue
domain newMin: aValue.
self triggerEvent: #min!

printOn: aStream
aStream nextPutAll: name, ‘ ‘,domain printString! !

from: aMin to: aMax
domain := Interval from: aMin to: aMax.

THE CONSTRAINTS
Here we need two types of constraints: constraints on
comparators, which will have two arguments, x and y, as
pointers to the variables they involve; and constraints on
operators when we need to introduce a new constrained

x

y

x = y
constraint

#min

#min

Figure 2. An event on a variable will propagate to all related constraints.
The constraints in turn will trigger new events on the connected variables.
The Smalltalk Reportsigs.com

variable, the result, which is also stored as an instance
variable and called r.

When a constraint is created in the program, the
method post will define the event dispatch mechanism
according to the constraint semantic. It uses the
when:send:to: message that links events to actions on sever-
al objects.

The following table shows the links between events
and domain updating for the equality constraint x @= y.

Symmetrically, we can define the same for y. Methods
have to be defined in the constraint class to compute the
updates, such as xmin or xmax. The constraint is called
ActEquals. ActEquals also needs an init method in order to
ensure domain consistency prior to any computation.

In the example, the two operators introduced are
ActAdd (addition) and ActTimes (multiplication by a con-
stant factor). These classes inherit from ActConstraint, an
abstract class which does not have any behavior here.

ActConstraint subclass: #ActEquals
instanceVariableNames: ‘x y’
classVariableNames: ‘’
poolDictionaries: ‘’!

!ActEquals class methods !

x: var1 y: var2
^super new x: var1 y: var2.

!ActEquals methods !

x: var1 y: var2
x := var1 . y := var2.
self post; init.

init
| m s |
m := x min max: y min.
s := x max min: y max.
x min: m; max: s.
y min: m; max: s

post
x when: #min send: #xmin to: self.
x when: #max send: #xmax to: self.
y when: #min send: #ymin to: self.
y when: #max send: #ymax to: self

xmax
y max: x max

xmin

Description Event Update

x minimum #min on x y domain takes min(x)
increased as new lower bound

x maximum #max on x y domain takes max(x)
decreased as new upper bound
September 1996 http://www.
y min: x min

ymax
x max: y max

ymin
x min: y min

========

ActConstraint subclass: #ActAdd
instanceVariableNames: ‘x y r’
classVariableNames: ‘’
poolDictionaries: ‘’ !

!ActAdd class methods !

x: var1 y: var2
^super new x: var1 y: var2

!ActAdd methods !

x: aVar1 y: aVar2
x := aVar1
y := aVar2.
r := ConstrainedVariable from: (x min + y min) to: (x max + y max).
self post

post
x when: #min send: #xmin to: self.
x when: #max send: #xmax to: self.
y when: #min send: #ymin to: self.
y when: #max send: #ymax to: self.
r when: #min send: #rmin to: self.
r when: #max send: #rmax to: self.

rmax
x max: (r max - y min).
y max: (r max - x min).!

rmin
x min: r min - y max.
y min: r min - x max!

xmax
r max: x max + y max.
y min: r min - x max

xmin
y max: r max - x min.
r min: y min + x min

ymax
r max: x max + y max.
x min: r min - y max

ymin
x max: r max - y min.
13sigs.com

CONSTRAINT SOLVING
r min: x min + y min

========

ActConstraint subclass: #ActTimes
instanceVariableNames: ‘x y r’
classVariableNames: ‘’
poolDictionaries: ‘’ !

!ActTimes class methods ! !

x: var1 y: anInteger
^super new x: var1 y: anInteger

!ActTimes methods !

x: aVar1 y: anInteger
x := var1. y := anInteger.
anInteger >= 0

ifTrue: [r := ConstrainedVariable from: anInteger * x
min to: anInteger * x max]

ifFalse: [r := ConstrainedVariable from: anInteger *
x max to: anInteger * x min].

self post.

post
x when: #min send: #xmin to: self.
x when: #max send: #xmax to: self.
r when: #min send: #rmin to: self.
r when: #max send: #rmax to: self.

rmax
y >= 0

ifTrue: [x max: (r max / y) floor]ifFalse
: [x min: (r max / y) ceiling]

rmin
y >= 0

ifTrue: [x min: (r min / y) ceiling]
ifFalse: [x max: (r min / y) floor]

xmax
y >= 0
ifTrue: [r max: y * x max]
ifFalse: [r min: y * x min]

xmin
y >= 0

ifTrue: [r min: y * x min]
ifFalse: [r max: y * x min]

========

EXAMPLE
The simple example is used to test the code and show how
some partial solving can be achieved. It defines the
domains of the variables, and sets the only constraint: x +
3y + 4z = 2t + c.

ConstrainedVariable class>>example

“ConstrainedVariable example”

| x y z t c |
x := ConstrainedVariable from: 0 to: 3. x name: ‘x’.
y := ConstrainedVariable from: 0 to: 1. y name: ‘y’.
z := ConstrainedVariable from: 2 to: 5. z name: ‘z’.
t := ConstrainedVariable from: 0 to: 3. t name: ‘t’.
c := ConstrainedVariable on: #(5). c name: ‘c’.
((x + (y * 3))+ (z * 4))@=((t * 2)+ c).

x printOn: Transcript.
y printOn: Transcript.
z printOn: Transcript.
t printOn: Transcript.
Transcript cr.

COMMERCIAL IMPLEMENTATIONS
This article has given a brief insight into constraint solving
techniques. These techniques have been commercially
implemented in C++, and used on such industrial applica-
tions as train and plane scheduling. Smalltalk events allow
a very elegant presentation of the consistency scheme.

Annick Fron can be reached at 100342.3301@compuserve.com.

S

The Smalltalk Report

