
Visual Programming

Managing Connection
Complexity

Wayne BeatonDwight Deugo
Y
ou’re given your first visual programming assign-
ment. You spend the day working on it and are proud
that you completed it without writing one line of

Smalltalk. A week later, after being asked to add a new fea-
ture, you return to your picture (the visual equivalent of
code) and realize that you can’t remember the semantics
of all of those connections. It takes the rest of the day to
understand what you developed last week and add the
new connections to support the additional feature. Does
this sound familiar?

Often we are asked “Even though visual programming
enables developers to create windows quickly, what
approach should one use in order to minimize the con-
nection complexity of visual parts? ” The approach should
enable developers to quickly and easily understand what
they’re building now and what they’ve built in the past.

One source of the problem developers are experienc-
ing is a result of working in a new paradigm (the con-
struction from parts paradigm) with little or no training.
When the jump was made from assembler to structured
programming, many developers wrote spaghetti code
until they were educated in structured programming
techniques. Now, for the same reason, many developers
are painting spaghetti visual parts. The one difference
today is that you can see the mess you’ve created for your-
self. However, with a little care, this need not be so. Visual
programming environments, such as IBM’s VisualAge,
provide an assortment of parts and facilities for decreas-
ing the complexity of visually programmed systems.

In this column, we examine one technique for manag-
ing the connection complexity of visual parts. This tech-
nique is called factoring. Too often we see a window, a
Client Profile Editor for example, containing every con-
nection to support editing of a client’s name, address,
phone numbers, credit history, and more, only to see
other windows provide the same support for viewing or
editing the identical information. One problem is that the
Client Profile Editor has too many connections to be

Dwight Deugo and Wayne Beaton are senior members of the
development and educational staff at The Object People, in
Ottawa, Ontario, Canada. Dwight (dwight@objectpeople.on.ca) has
immersed himself in objects for more than 10 years and has helped
clients with their object immersions as a project mentor and as a
course instructor. Wayne (wayne@objectpeople.on.ca) is the coor-
dinator of course construction and a software developer.
September 1996 http://www
understandable, especially when you add those to sup-
port menu interction. Another problem is that the same
connections are used in every window that supports the
editing of the clients address.

The simple and easy solution to these problems is to
encapsulate the connections and parts that support the
editing and viewing of a business object into one
reusable part. The composite part can be placed in any
visual part, and connect to its required business and
supporting objects. One can significantly decrease the
number connections in any visual part that uses
reusable parts, because the reusable part manages its
own connections, and they are not visible to surround-
ing visual parts. Also, changes to the reusable part’s
behavior or visual appearance are immediately reflect-
ed in any part that uses it, avoiding any potential main-
tenance problems that might occur when having the
same functionality implemented in two or more places.

Here, we make use of two reusable forms to minimize
the connection complexity of a client profile editor. The
window supports editing of a client profile, including a
client’s name, age, and address. The reusable forms are
views of two business objects: a ClientProfile and a
CanadianAddress. Like the editor, they support the cancella-
tion of edit changes.

THE CLIENT PROFILE EDITOR APPLICATION
The Client Profile Editor lets one edit and, if desired, can-
cel any changes to an existing ClientProfile. For this exam-
ple, we do not show how the ClientProfile is loaded or
saved. Our goals are to minimize the number of visual
connections needed to meet the editor’s requirements,
and to permit Smalltalk code only when the operation
can’t be done visually. The rule-of-thumb, “less is better,”
is true when it comes to visual connections. Fewer con-
nections make a window’s implementation easier to
understand, and easier to maintain.

A ClientProfile contains a CanadianAddress, and it is from
this object that we begin our exercise. Although our
requirements have the address displayed from only a
Client Profile Editor, we decided to create a reusable
CanadianAddressForm to display it. We realize that addresses
are often modified, or simply displayed in many different
windows, and we want all future windows to display them
in the same format. Encapsulating the logic for viewing
19.sigs.com

VISUAL PROGRAMMING
and modifying an address in the CanadianAddressForm,
where it belongs, will also help later to decrease the con-
nections in the Client Profile Editor.

A CanadianAddress is a business object with the five
parts: a street number, a street name, a city name, a
province name, and a postal code. A CanadianAddressForm,
shown in Figure 1, is an editable view for the address.
Since a CanadianAddressForm requires an address to edit,
one variable part, called ‘canadianAddress’, is required to
reference the address. Also, since the form can be used for
both viewing and editing, another variable part, called
isReadWrite, is required to store a Boolean, which indicates
whether the form is for editing or strictly for viewing. To
enable or disable editing in the form’s Text parts, the ‘self’
attribute of the isReadWrite variable part is connected to
the ‘enabled’ attribute of every Text part. To support the
undoing of address changes, a Deferred Update part—a
VisualAge supplied part— is created from the
canadianAddress variable part. A connection between its
‘target’ attribute and the valueHolder attribute of the vari-
able links the two.

One can view a Deferred Update part as a copy of an
original that maintains a stack of changes, which can be
applied backwards and forwards to the original part. The
Deferred part’s interface is similar to the original, having
the same attributes, and connects to other parts in an
identical manner. In our CanadianAddressForm, we con-
nected the CanadianAddress’s attributes to the ‘object’
attribute on the corresponding Text parts. To permit
parts using the CanadianAddressForm to role back or apply
the changes from the Deferred Update part to the
canadianAddress, its apply and cancel actions are promot-
ed as applyChanges and cancelChanges actions of the
CanadianAddressForm.

The isReadWrite and canadianAddress variables are assigned
objects by other parts using the CanadianAddressForm.
However, to those using the CanadianAddressForm, the
isReadWrite and canadianAddress variables appear only as
attributes of the form and not as variables, and the connec-
tions between these variables and other parts in the form
are invisible. To achieve this effect in VisualAge, the vari-

Figure 1. Canadian Address Form.
20 http://www
ables’ self attributes are promoted as isReadWrite and
canadianAddress, respectively.

The part is now complete. It has two public attributes:
isReadWrite and canadianAddress, and supports two actions:
applyChanges and cancelChanges. Anyone using the part
must provide a Boolean value for the isReadWrite attribute
and a CanadianAddress object for the canadianAddress
attribute. To commit the edit changes to the
CanadianAddress object one can invoke the applyChanges
actions, and to undo any edit changes one can invoke the
cancelChanges action.

The exercise is repeated again, but this time for a
ClientProfileForm, and for the same reasons: to provide a
single format for the display of a ClientProfile, to encapsu-
late the logic for viewing and modifying it, and to
decrease the number of connections in the Client Profile
Editor.

A ClientProfile is a business object with three parts:
name, age, and address. A ClientProfileForm, shown in
Figure 2, is an editable view of the profile. Like the
CanadianAddressForm, the ClientProfileForm requires two vari-
able parts: isReadWrite and clientProfile. The purpose of the
isReadWrite variable is identical to the one in the
CanadianAddressForm, and it has similar connections. The
purpose of the clientProfile variable is to provide a refer-
ence to the form’s business object. To support the undo-
ing of client profile changes, a Deferred Update part is
again used, this time created from the clientProfile variable
part.

The Client profile form includes a CanadianAddressForm.
To use the CanadianAddressForm, the isReadWrite variable
part’s self attribute is connected to the CanadianAddressForm’s
isReadWrite attribute, and the clientProfile part’s address
attribute is connected to its canadianAddress attribute. These
connections provide the CanadianAddressForm with the
objects it requires to function—in only two connections!

Finally, we want the ClientProfileForm to support the
acceptance or cancellation of edit changes. Unlike the
CanadianAddressForm, the files have not been touched at all.
Where we promoted its deferred part’s corresponding
actions, this time we have to write two methods:
applyChanges and cancelChanges, and add them to the form’s
public interface. This means that to accept or cancel the
changes on this form is to have both its deferred part and
the CanadianAddressForm accept or cancel the changes,
which can’t be done visually. The code for the scripts are
as follows:

applyChanges
(self subpartNamed: ‘deferred ClientProfile’) apply.
(self subpartNamed: ‘Canadian Address Form’)
performActionNamed: #applyChanges.

cancelChanges
(self subpartNamed: ‘deferred ClientProfile’) cancel.
(self subpartNamed: ‘Canadian Address Form’)
performActionNamed: #cancelChanges

The part is now complete. It has two public attributes:
The Smalltalk Report.sigs.com

isReadWrite and clientProfile, and supports two actions:
applyChanges and cancelChanges. Anyone using the part
must provide a Boolean value for the isReadWrite attribute
and a ClientProfile object for the clientProfile attribute. To
commit the edit changes to the ClientProfile object, one can
invoke the applyChanges actions. To undo any edit changes
one can invoke the cancelChanges action.

We now have the parts required to build a Client Profile
Editor, shown in Figure 3: a ClientProfile, a ClientProfileForm,
and two buttons to invoke the ClientProfileForm’s apply and
cancel changes actions. In a finished application, these
buttons would be replaced with menu items. However, in
this article, we wanted to keep it simple and did not get
into a discussion on menus. The Editor’s connections are
as follows:

ClientProfileForm.clientProfile → clientProfile.self
Read/WriteToggleButton.selection →
ClientProfileForm.isReadWrite
AcceptButton.clicked → ClientProfileForm.acceptChanges
CancelButton.clicked → ClientprofileForm.cancelChanges

How many connections are required to edit a ClientProfile?
There are four: one to instruct the ClientProfileForm which
ClientProfile to work with; one to identify whether one is
viewing or editing the profile; and two to apply or cancel
the end-user’s changes to the existing ClientProfile. One
could argue that we would have the same number of con-
nections if we implemented all viewing and modification
operations in the ClientProfileEditor itself. We would accept
that argument.

However, a more important question to ask here is:
“Have we gained anything by layering those connections
in our ClientProfileForm and a CanadianAddressForm?” The
answer is an overwhelming YES! Our two forms and one
editor are easy to understand and maintain. We can reuse
our forms in any other windows that need to display or
modify CanadianAddresses or ClientProfiles. We have a frame-
work for canceling user changes to business objects.

Figure 2. Client Profile Form.
September 1996 http://www
Finally, we have achieved our original goal of minimizing
the connection complexity of our windows.

DO THE RIGHT THING
Minimizing connections and planning for reuse takes
some thought. Often, one is required to build a window
that manipulates a number of business objects. The
temptation is to have the display and modification logic
in one window, rather than factor the window into a num-
ber of reusable components and use them to construct
the window. As seen, factoring your windows into a num-
ber of components decreases the number of connections
and the complexity of each component, as well as the
final window. This makes your components easier to
understand and maintain. Even though you may not need
the components for any other window yet, you or some-
one else will! So why not do it the right way to begin with?

Remember, many objects that do little, is better than
few objects that do too much. Therefore, a window that is
composed of many simple, reusable components, is bet-
ter than a window that does everything itself. We strongly
suggest that every business object have a form built for its
display and editing.

Factoring is of course not a new idea. Good GUI
developers have been doing it for years with tools that all
GUI builders provide. For example, in Visual Works
reusable forms are called “subcanvases.” In ObjectShare’s
WindowBuilder they are called “composite panes,” and
in Digitalk’s Parts they are called “nested parts.” Whether
visually programming or using one of the layout-type
GUI builders, building and using reusable forms is not
just a good idea, it’s great object-oriented program-
ming.

THE CODE
The code presented in this column and in future columns
is available on the World Wide Web. Our URL is
http://www.objectpeople.on.ca.

Figure 3. Client Profile Editor.

S

21.sigs.com

