Unblocking the

Debugger

diagnose errors into an integral part of the develop-

ment environment. Their most useful task is
arguably the ability to step through code, line by line,
allowing the programmer to follow message flow. The
debugger supplied with IBM’s Smalltalk/Visual Age falls
short of this purpose where the code is embedded within
blocks. To locate this code often requires traversing the
internals of seemingly irrelevant methods. In this article
we describe an enhancement to the IBM Smalltalk/Visual
Age debugger that allows code within blocks to be
debugged more easily.

Our approach to solving the problem first involved
understanding the mechanics of the existing debugger,
and then observing and automating how a programmer
manually debugs his or her way through methods that
contain code as blocks.

Debuggers are evolving from tools that trap and help

THE WAY THINGS ARE

The supplied debugger comes with four buttons: into,
over, return, and resume. Pressing into allows the next
message about to be sent to be debugged, and pressing
over allows the message to be skipped past. When the
message contains a block as an argument or receiver,
pressing over skips past the message and past the code
contained within the block. There are some exceptions to
this, for example: Integer>>to: aninteger do: [], and
Boolean>>ifTrue: []. Pressing over on these messages takes
the programmer to the code within the block. This hap-
pens because the compiler inlines the code to implement
messages directly in the sender for optimization purpos-
es, and no actual message sent occurs at runtime. With all
other messages that contain blocks as receivers or argu-
ments, debugging the code within the block requires
pressing into and then traversing the method internals to
find the relevant value or value: message that will evaluate
the block. To do this with Dictionary>>at: aKey ifAbsent: []
requires pressing into once, over seven times, and a final
into to reach the block. If the message being debugged is a
loop, e.g. Collection>>detect: [] ifNone: [], repeated debug-

Joe Winchester and Mark Jones

ging of the method internals is required to visit the code
within the block for each iteration of the loop. The prob-
lem here is that you should be concentrating on your
code, instead of worrying about reading and understand-
ing the internals of methods that are basically language
constructs.

THE WAY THINGS SHOULD BE

We found ourselves wishing for behavior that would act
the way over does for the inlined messages, i.e. it would
always take the programmer straight to the code within
the block. This functionality we decided to name through
and implement with a new button on the debugger.
Figure 1 shows how over takes the programmer past the
code within the Dictionary>>at: aKey ifAbsent: [] block.
Pressing through would go into the code within the block
and back to the method body without having to traverse
irrelevant method internals.

MIMIC REAL LIFE

As with any good OO solution, the answer lies in observ-
ing the real world and mimicking it in code. Therefore, let
us examine the scenario “How does a programmer debug
the method Dictionary>>at: aKey ifAbsent: [].” If the pro-

myMethod

self myDictionary Over
at: 1 ifAbsent: [self methodToDebug |8 —_—

self anotherMethod

J/ Through

self myDictionary Through

at: 1 ifAbsent: | SVCTSUYTIREENT 1. s

self anotherMethod

myMethod

self myDictionary
at: 1 ifAbsent: [self methodToDebug].

self anotherMethod
T Through

myMethod
self myDictionary
ELHR I LET self methodToDebug |

self anotherMethod

myMethod

Figure 1. Depicting how over takes the programmer past the code within
the Dictionary>>at: aKey if Absent: [] block.

October 1996

http://www.sigs.com 3

| UNBLOCKING THE DEBUGGER

grammer wishes to reach the code within the block, they
step into the method. An inexperienced programmer
might then continue to step into each successive mes-
sage until the block’s embedded code is reached. A more
experienced programmer knows to only examine mes-
sages that are likely candidates to evaluate the block. In
both cases, the programmer succeeds once the original
method that contains their source becomes active again.

We shall attempt to automate the behavior of the rook-
ie Smalltalker. The key to our solution will come from an
understanding of the mechanics behind the debugger
and attempting to leverage this to implement the request
“Step into a message with a block and continue to step into each
successive message send until the code within the block is about
to be executed.”

DEBUGGER BASICS
Source code written in Smalltalk is compiled into
instances of CompiledMethod, each of which contains a
stream of bytecodes. Each bytecode is an intermediate
representation of an instruction that is interpreted by the
virtual machine. Instances of class Process execute code,
and the distinguished instance of ProcessorScheduler is
responsible for controlling process execution.1:23

The supplied debugger runs in its own process separate
from the method being debugged. It uses the method,

ProcessorScheduler>>debugResume: aProcess when:
aConditionBlock do: aContinueBlock,

to cause the process being debugged to execute until
aConditionBlock evaluates true. Once this has occurred
aContinueBlock is evaluated. While aConditionBlock is being test-
ed the debugger must wait until aContinueBlock is evaluated.
This is achieved with a semaphore, which the process that
the debugger executes waits on, and is signaled by the
ContinueBlock. To ensure that aConditionBlock is tested between
each message send, the messages breakEveryByteCode: true
and useByteCodeMask: true to the process being debugged.
Each process has a number of frames that can be thought of
as a stack of CompiledMethod instances.

THE ENHANCED DEBUGGER
To begin adding our new behavior we will subclass the
supplied debugger and provide a new button “Through.”

EtDebugger subclass: EnhancedDebugger
instanceVariableNames: ‘throughButtonWidget’
classVariableNames:
poolDictionaries:

To automate our rookie’s behavior we will use
ProcessorScheduler>>debugResume: aProcess when: aConditionBlock
do: aContinueBlock and construct aConditionBlock that evaluates true
when the method being debugged is active once more. A
process can derive its active method using its start frame:

Process>>#activeMethod

~self methodAtFrame: self startFrame

It is equally important to check that it is still possible to
return to the method in which through is being processed.
This is because, during execution, a return may have been
processed, causing the method to be exited.

The test can be accomplished by determining if the
method is still in the frame stack.

Process>>#cannotReturnTo: aMethod

“Loop around the frames and get the method at
each. Return false
if any of these are the method argument”

self startFrame to: self numberOfframes - 1 do: [:index |
(self methodAtFrame: index) == aMethod
ifTrue: [*alse]1].
rue
We are ready to implement a method on the enhanced
debugger to process through.

EnhancedDebugger>>#processStepThrough
| sem currentProcess currentMethod |

“don’t continue if selected process is not resumable”
self isSelectedProcessResumable ifFalse: ["self].

“don’t continue if a source change has been specified”
self changeRequest ifFalse: [self].

“ensure there is a selected method”

self selectTopFramelfNone.
currentProcess := self selectedProcess.
currentMethod := self selectedMethod.

“Break every byte code of the process and resume execution
until the method is active once more or is not in the method
stack”

currentProcess

breakEveryBytecode: true ;
useBytecodeMask: true.
sem := Semaphore new.
Processor
debugResume: currentProcess
when: [
currentProcess activeMethod == currentMethod or: [
currentProcess cannotReturnTo: currentMethod]]
do: [:hasStackOverflowOccured |
hasStackOverflowOccured
ifTrue: [self removeProcess: currentProcess J.
sem signal].
sem wait.

“refresh debugger”
self isOneProcessSelected ifTrue: [self refreshAfterStep].

THROUGH VERSUS OVER
This implementation automates how the rookie program-

4 http://www.sigs.com

The Smalltalk Report

mer debugs methods with source as block arguments. If
through is used instead of over to debug a method contain-
ing a block with inlined source, the debugger takes the pro-
grammer straight into the code within the block. Once
inside the block over can be used to step past each mes-
sage send. However, it becomes easy to break out and into
the method internals we are attempting to bypass, by
pressing over after the last message inside the block where
through should have been pressed. With methods that
loop such as Collection>>detect: [] ifNone: [], switching
between through and over to debug each iteration became
an unnecessary distraction, the very thing we are trying to
remove. The through button is needed to perform only our
new processing when it is required, and to process over
otherwise. This way the programmer can repeatedly press
through to visit every message send within their source,
with the over button being the exception required to gen-
uinely skip past the source within a block.

ABETTER SOLUTION

We shall improve our solution by repeating the earlier
principle of observing real life and mimicking it in code.
Understanding as to whether through or over is required
(when using the debugger) comes from looking at the
highlighted portion of the source.

The three situations when through, rather than over, is
required are:

» Sending a message in which the receiver is a block
containing inline source;

» Sending a message in which any one of the arguments
is a block containing inline source; and

« Leaving a block on completion of the inline source.

A segment of highlighted source is equivalent to a
parse node. Different classes of parse node represent dif-
ferent code constructs. Thus, we will ask each parse node
#isThroughRequired and specialize to recognize the three
situations.

The superclass of all parse nodes is EsParseNode. By
default through is not required.

EsParseNode>>#isThroughRequired

"alse

The node representing the first two of our code constructs
is EsMessageExpression. The decision is deferred to the
receiver node to determine if it is a block and to the mes-
sage pattern node to determine if any argument is a block.

EsMessageExpression>>#isThroughRequired
Nself receiver isThroughRequired
or: [self messagePattern isThroughRequired]
The block node is EsBlock.
EsBlock>>#isThroughRequired

Mrue

The message pattern node for a keyword message is
EsKeywordPattern. The decision is deferred to each argu-
ment node to determine if any are blocks.

EsKeywordPattern>>#isThroughRequired

self arguments
detect: [:anArgument |
anArgument isThroughRequired]
ifNone: [~alse].
rue

The third of our situations is already covered by the block
node EsBlock.

BACK TO THE ENHANCED DEBUGGER

The next step is for the debugger to determine the parse
node for the next message to be sent within the currently
selected method.

EnhancedDebugger>>#currentParseNode

"self parseTree == nil ifFalse: [
self parseTree
nodeWhichContainsPC: (self currentPC: self
selectedFramelndex)
hasDropped: self selectedProcess hasDropped]

Finally, we are ready to implement a method on the
debugger that will perform through processing when
required and over at all other times. This is the method
that will be called by the through button, allowing the user
to have a single button that permits them to visit every
message sent within their source.

EnhancedDebugger>>#processThrough
| aNode |
aNode := self currentParseNode.

“process as through if selected method is the active method”
(self selectedFramelndex ==
self selectedProcess startFrame

“and, if node requires through”

and: [aNode notNil and: [aNode isThroughRequired 1])
ifTrue: [self processStepThrough]
ifFalse: [self processStepOver]

CHANGING THE USER INTERFACE

The new ‘through’ button is placed between the existing
‘into’ and ‘over’ buttons. To achieve this the method
#createWorkRegion is specialized as follows:

EnhancedDebugger>>#createWorkRegion
super createWorkRegion.

throughButtonWidget := self

| UNBLOCKING THE DEBUGGER

Wiz Age Delrgies]
Fite Edil Precesses Stack bedgecier Inio |
ExHaT A hd] ey ocpunod. LFTD o uﬁﬂq PeyiTlanas

EsCompiker dasaaliaunhinkiorwamngLaval ona
EsCampiler dasas»fouakinieion iFal
[i ENT reres o priE T d oree o Farvl usta el o i in
EmniSysibarmn Coamh g uration a8 how B sy Cursce i ke
ETT rara o gVE A d orw'n o ava o5 hoat Doaral on

|

r
o ||Th-'.mgh || Dhwiar | Fw....-l Flasiinis |
nighimere kistoo

I=b|
[Syetem showBusCursoihie: |
= = Chctionany new,
b = CrdenecColechon with 1 with 2
= mt 1 ahesniPut: [Dste todey |
= kb radvabeeli [key amhe |
{ k== 1 mnd: [wahie = Ciate lodey] 5 fTre: |
Swstem mesaage: Here lam'
£ bingect Do [hoied sbem | boisd + slem]) pniSinng | 1]
Jwher ExEror do: [-eSigred | sSignel mafih: ril]

I |
{04 796 121427 &by bom Evhanced e hugerEdidep

Figure 2. Represents a method that shows the effectiveness of the
through button.

newButtonWidget: ‘Through’
selected: #processThrough.

self stepIntoButtonWidget setValuesBlock: [:w |
w rightWidget: throughButtonWidget].

throughButtonWidget setValuesBlock: [:w |
w

topAttachment: XmATTACHOPPOSITEWIDGET;
topWidget: self stepToReturnButtonWidget;
leftAttachment: XmATTACHPOSITION;
leftPosition: 11;
rightAttachment: XmATTACHWIDGET;
rightWidget: self stepOverButtonWidget;
bottomAttachment: XmATTACHWIDGET;
bottomWidget: self textWidget parent].

self stepOverButtonWidget setValuesBlock: [:w |
w leftPosition: 22].

self stepToReturnButtonWidget setValuesBlock:
[:w |w leftPosition: 33].

self resumeButtonWidget setValuesBlock: [:w |
w leftPosition: 44].

To switch over to the enhanced debugger, the following
method must be evaluated on the Transcript.

System startUpClass debuggerClass: EnhancedDebugger

Evaluating with EtDebugger will reset to the original sup-
plied debugger.

LIMITATIONS

The implementation now combines the way the rookie
programmer debugs methods containing source inlined
as blocks, with the decision process made by the more
experienced programmer who knows when such debug-
ging is required.

However, there are two situations to be aware of:

» Exceptions raised while through processing in the
receiving block of methods such as Block>>#when:do:
do not lead to stepping through the exception
handling block code. This situation occurs because
through processing is not required to debug all code
constructs within a block. In these cases the exception
is raised during the supplied over processing.
Therefore, the exception handling block is not stepped
through. Due to a feature of the supplied
implementation of over if an exception is raised, the
debugger reactivates prematurely resulting in a
mismatch between the method being displayed in the
debugger and the active method.

» A performance problem exists if many messages are
sent between the point when through processing
starts and the block that caused through processing to
be required is evaluated. This occurs because through
processing involves executing the intervening code
one bytecode at a time, and this has a performance
overhead. Methods where this is noticeable are rare,
and are generally outside the standard block messages
included with the core IBM Smalltalk. A hypothetical
method of the type that would be affected is
DataBaseFile>>readAt: aKey ifNoRecordFound: []. Here,
many messages will potentially be sent before the
block is evaluated.

CONCLUSIONS

The enhanced debugger fulfills all the initial goals, namely
to enable the developer to focus on tracing the execution of
the code in which they are interested. To see how effective it
can be try to debug the method shown in Figure 2, with
and without the use of the through button. All of the
code required to implement the debugger is included in
this article, and can also be downloaded from the Visual
Age CompuServe member-supplied forum, and from
ftp://ftp.smalltalk.com/pub/ibm.smalltalk/win_debug.zip.
Having used the through button for some time we now
find it to be an invaluable aid to debugging. We hope you
will find it as useful, and we welcome all feedback.

The authors would like to thank Tim Morrison of Unity
Software and David Cotton for their imput in preparing
this article, as well as Doug Shaker of The Smalltalk Store
for putting the source code on his ftp server.

References
1. Goldberg, Adele, and Robson, David, Smalltalk-80: The
Language, Addison Wesley ISBN 0-201-13688-0.
2. IBM Smalltalk Programmer’s Reference, SC34-4493-02.
3. Budd, Timothy, A LITTLE SMALLTALK, Addison-
Wesley ISBN 0-201-10698-1, 1987.

Joe Winchester and Mark Jones are consultants working for
Computec International, Costa Mesa, CA. They are currently working
on building application frameworks using Visual Age for a healthcare
company.They can be contacted at 103276, 233@Compuserve.com.

6 http://www.sigs.com

The Smalltalk Report

