Externalizing

Business-Object Behavior:
More on a Point-and Click Rule Editor

we introduced a point-and-click rule editor that manip-
ulates the ProgramNode tree. We continue to investigate
how it works.

I n the previous article (Smalltalk Report, September, p. 4),

TYPING

The tool’s type system is based on the types as sets of
classes approach used by Graver and Johnson.l2 A
ProgramNodeType is defined as a set of zero or more
ProgramNodeTypeOptions. A ProgramNodeTypeOption has a class
name and a taxonomy. Taxonomy indicates whether an
exact match with the class is required (isMember) or whether
a subclass can also be used (isKind). For example, a type
option for Boolean or Number has the isKind taxonomy
because these are abstract classes. The ProgramNodeType is
depicted with angle brackets, with a vertical bar between
options, as in <ByteSymbol | (kindOf: Number)>; the vertical
bar is read as or. If kindOf> is notated, the taxonomy is isKind:
otherwise, it is isMember.

A type can be said to satisfy another type. For example,
<kindOf: Number> is satisfied by <Integer>; and <ByteSymbol |
ByteString> is satisfied by <ByteSymbol>. Two types can be
merged by adding their unique type options.

There are two special types, <'’Anything’>and <'Nothing’>.
<'Anything’> is shorthand for <kindOf: Object>. <'Nothing’> has
zero options and is used exclusively for either an out-of-
scope condition, or for an unknown type inside a
nonevaluated block. To illustrate:

[: aBoolean | | t1]
t1 :=‘abc'.
t1 “<'Nothing’> out-of-scope” := aBoolean
ifTrue: [123]
ifFalse: ["#xyz]].
[1t1]
t1 :=‘abc'.
[t1 “<'Nothing'> non-evaluated-block™]]

Selector Information. One of the MorphConstructs a
MessageNodeWrapper knows how to perform is Change mes-

Paul Davidowitz

sage selector and arguments only (123 +456 - 123 * nil). The
user is usually presented with a set of this construct, with
each element of the set having selector information that
includes the selector, argument types (if any), and the
return type. Where does this set of selector information
come from?

For a given type option of the receiver, if the type-option’s
class is not a business object, the information comes from
hardcoded information on the base classes; otherwise it is
generated from the business-object’s logical-schema
attribute/type specification. The set of selector information
presented to the user is the intersection of sets from all the
type options; therefore, for distant options this may mean
selector information from Object only.

Let’s say the selection is a MessageNodeWrapper of receiv-
er Smallinteger, for example, 123 isNil. The receiver knows
its type (<Smalllnteger>), so we ask the class, whose name
we get from the single type option, for selector informa-
tion. This information will come from Smallinteger class
and its superclasses.

This is an example of selector information from the
class side of Number:

TypedSelector
singleArgumentSelector: #<
receiverRequiredType: ProgramNodeType number
argumentType: ProgramNodeType number
returnType: ProgramNodeType boolean

The selector, required type for receiver, required type for
argument, and return type are all specified (via an instance
of class TypedSelector). Selector information is inherited
and can be overridden. It is specified for operators of those
base classes which are used as business-object attribute
types (e.g. Boolean, ByteString, Number).

OTHER TYPE OPTIONS

ProgramNodeTypeOption lives in a hierarchy:

AbstractProgramNodeTypeOption
ReifiedBlockValueTypeOption (argumentindex)
ProgramNodeTypeOption (className, taxonomy)

8 http://www.sigs.com

The Smalltalk Report

BlockClosureTypeOption (valueType,
argumentTypes)
HomogeneousCollectionTypeOption
(elementType)
HomogeneousCollectionTypeOption describes a homoge-
neous collection, meaning all elements have the same
elementType. Homogeneous can be very flexible, as the
type can be <'Anything>, for example. This type option
takes selector information from the instance side, as well
as the class side. An instance of the collection is created
and given one element: a copy of elementType.
Here’s an example of selector information from the
instance side of Collection:

TypedSelector
singleArgumentSelector: #select:
receiverRequiredType: (ProgramNodeType
homogeneousCollectionOfName: self class name
elementType: self first copy)
argumentType: (ProgramNodeType
blockClosureSingleArgument: self first copy
valueType: ProgramNodeType boolean)
isArgumentPrototyping: true
blockArgumentEvaluator:
MessageWrapperBlockArgumentEvaluator nothingOrLoop
returnType: (ProgramNodeType
homogeneousCollectionOfName: self class name
elementType: self first copy)

The argument of the #select: message is specified as a
block whose single argument is a copy of elementType. The
return type is specified as a collection of this type. Note
that this selector information specifies using a prototype
argument; that is, the argument instead of being nil will be
a block with an argument of the correct type.

ReifiedBlockValueTypeOption is used to determine the
return type of a message. Here’s the selector information
for #ifTrue: from the class side of Boolean:

TypedSelector
singleArgumentSelector: #ifTrue:
receiverRequiredType: ProgramNodeType boolean
argumentType: (ProgramNodeType
blockClosureNoArgumentsAndValue:
ProgramNodeType anything)
isArgumentPrototyping: true
blockArgumentEvaluator:
MessageWrapperBlockArgumentEvaluator onOrOff
returnType: (ProgramNodeType options:
(OrderedCollection
with: (ReifiedBlockValueTypeQption onArgumentindex: 1)
with: ProgramNodeTypeOption nil))

This states that the return type for #ifTrue: consists of type
options for nil, and for the value of the block expected as
the message’s first argument. For example, the type of mes-
sage aBoolean ifTrue: [123] is <UndefinedObject | Smallinteger>;
for aBoolean ifTrue: ['abc], it is <UndefinedObject | ByteString>.

TRAVERSAL OF THE WRAPPER TREE
Traversal of the wrapper tree yields valuable information
such as node-wrapper type. Traversal is done in postorder
fashion.

A wrapper knows the order in which to traverse its chil-
dren. For example, A MessageNodeWithArgumentsWrapper has
the child traversal order: {receiver, argument-collection}.

The Block Evaluator. If at least one of the arguments of a
MessageNodeWithArgumentsWrapper is a block defined (via
selector information) as potentially evaluating, we
append pseudo-child MessageWrapperBlockArgument
Evaluator to the child traversal order (pseudo in the sense
that the MessageNode itself has no such child). The evalu-
ator serves to simulate evaluation of a block by travers-
ing it. Without the evaluator, the BlockNodeWrapper is
treated as a leaf wrapper and is not traversed. The evalu-
ator poses as having the block-argument grandchildren
of its parent, as its own children.

The evaluator is defined with a collection of
EvaluationMetaSpecs. An EvaluationMetaSpec is a descrip-
tion for one step through of the method specified in the
message. This spec is used to produce a collection of
child traversal orders. An EvaluationMetaSpec, in turn, is
defined with a collection of ArgumentMetaSpecs. The
ArgumentMetaSpec states whether the block argument is
optional, and whether it is possibly a looping block;
this spec is identified by the message-argument index.

For example, here is Boolean>>ifTrue:
ifFalse: with its two EvaluationMetaSpecs:

= {required, noLoop, index 1}
= {required, noLoop, index 2}

The ifTrue: argument is the first argument of the message,
and thus is designated by index 1; the ifFalse: being the
second is designated by index 2. These EvaluationMetaSpecs
produce the two traversal orders: {{1},{2}}; in other words,
we must either evaluate the first message argument, the
ifTrue: block; or else we must evaluate the second mes-
sage-argument, the ifFalse> block.

Here is Collection>>detect:ifNone:
EvaluationMetaSpecs:

with its two

= {required, loop, index 1}
« {optional, loop, index 1}, {required,
nolLoop, index 2}

We either loop one or more times evaluating the detect:
block or we possibly loop one or more times evaluating
the detect: block, followed by definitely evaluating the
ifNone: block once.

BRANCHING AT THE EVALUATOR
The evaluator always terminates the current traversal.
The result for the evaluator is obtained by branching new
traversals and combining the results; each child traversal
order of the evaluator produces another branch.

Let’s find a block’s value type.

[2 even

October 1996

http://www.sigs.com 9

| EXTERNALIZING BEHAVIOR

t1:=123.

= [2wiein WTriees [*123] WFalse: [abe']l SeyE] S¥ociNode FFramode

el O ol isa 1 FBEel Arg T |

= e ndalesasdiriopar

=1 OrdfersaCalscfiosiivipeer [Segacacd Tampivaviaal 2

=1 P ewen Messapeiode ragees 4

1= 2 Lhwriiccsdiacoer 3

=[] SlociNodeWrapow D
= OeferedCoNsctaniragnsr Aok argumerds) 8,11

= Segudace e oo ier

[*123) DwrspalCaler o TRnger 15 egaeacs Sialeme s
- 813} Swaratseiiapeer 514
— A7) LesratvodeWrapper B.13
[abe'] Sockiassrrasesr B
= CrdersdCoectanirasodr (Risck Ampumdnts) 5,27

T Segueaceticsirgaper 8,25

=1 {3 e WTrimes [~132F] WFalsie: [ok (Mo} Croearalaecbonivnaner [Sagmbics Shitemenis)

Fewen HTnes [*123] HFalse: [aba'] feosapeiods Wit pussatsimpesr 5,25

([2abe} CvderadCobnatioriiraesr (Hessage Anpmants) T

[T CrdsraoCates i Wrapees fequence Temooares 912

e ales Do MWrapper (5 equante Tomporariesl o204

t2 :=‘abc’.

al myCollection
detect: [: a2 |
13 :=tl.
tl = $%a.
12 :=13]
ifNone: [nil].
t2 “what is my type?”]

If we don't loop at all, t2 type =
<ByteString>; if we make one pass, t2 type
= <SmallInteger>; if we make two passes,
12 type = <Character>. Thus, results differ
depending on the number of times the
detect: block is traversed.

The EvaluationMetaSpecs generate the
appropriate child traversal orders,
based on the number of descendent
assignment statements (excluding
those found in child block descen-
dents). Each assignment generates
another child traversal order. In the
example, we find three assignments
in the detect: block. The first
EvaluationMetaSpec for #detect:ifNone:

T L} e per (Sequooce Statements) 8.24 therefore generates {{1}, {1,1}, {1,1,1}},
= et Leseaodiirapner 823 and the second generates {{2}, {1,2},
MssapsEnperBioe kA pare iEaousior 8 {1,1,2},{1,1,1,2}}. (We play it safe to loop
= Mo Liwraticisiviapper 8,27 the maximum amount, even though in
this case only two passes are needed.) If
Figure 9. Branching. we had no assignments, the resulting
child traversal orders would simply be
. {{1}} from the first spec, and {{2}, {1,2}}
ifTrue: [*123] from the second.

ifFalse: [‘abc’].
#xyz] “what is value-type for the block?”

We start at the first terminal node wrapper of the block
and perform a forward traversal on the lookout for either
a ReturnNodeWrapper or the very last statement of the
block. We eventually arrive at the evaluator and pro-
ceed to find its result, which in this case will be our
answer. Because the evaluator has two child traversal
orders, it branches two traversals. We take the first tra-
versal and find a ReturnNodeWrapper of type
<Smalllnteger>. The second takes us past the confines of
the ifFalse: block. We visit a MessageNodeWithArgu-
mentsWrapper, the final outer block statement and stop
with a type of <ByteSymbol>. We combine the results to
get our answer of <Smalllnteger | ByteSymbol>. This traver-
sal is depicted in Figure 9. The first branch occurs in vis-
itations 8.1x shown in dark grey; the second, in 8.2x
shown in light grey. Note that although 2 even is always
true, the tool is unaware of this.

Looping. Lets look at type inferencing for a temporary
variable. Let’s find the type of t2 in the final statement of:

[[al] |tlt2t3]

This brute-force technique is of exponential order, but
this is not a concern for minimal branching. The standard
technique for type inferencing uses polynomial-order
symbolic-execute via solution of equations.3

Type inferencing for a temporary variable involves travers-
ing the wrapper tree backwards from the VariableNodeWrapper.
Let’s find the result for a double pass by walking the child tra-
versal order {1,1} branch of the #detect:ifNone: evaluator. As
shown in Figure 10, we proceed backwards on the lookout for
AssignmentNodeWrappers with VariableNodeWrapper t2, and eventu-
ally reach the detect: block’s third statement and stop at the
AssignmentNodeWrapper. The result of the AssignmentNodeWrapper
is the type of its righthand side, VariableNodeWrapper on t3. So we
trigger a new traversal for inferencing the type of t3 (shown in
dark grey), but the technique is to continue using the current
child traversal order of the evaluator. This new traversal in turn
triggers another for inferencing the type of t1 (shown in light
grey), again keeping the child traversal order. We know to tra-
verse the detect: block once more, and find type t1 to be
<Character>.

TREATMENT OF BLOCKS
The contents of a block are treated as live, whether the
block is evaluated or not. This is not an oversight, but a

10 http://www.sigs.com

The Smalltalk Report

i mplalecton deinct: [11=#l H>fa =11 oo jnl] Seoespek

P selves into blocks in order to traverse
) B

= &t rilolotios B sapeMode v ramrey

=l Ve

T e |60 =, 1 B o] A e s
— [ad} CanealaNsekssiTaens (AN Srpuereantsy 3 A0R0T
W7 FaeRss Peapesr J,80504
1= & Vadmbishoderramaer & 0E05
- Sammancanias wygeee 3,1 3 ADE0E

= DegnmdTakeciach way J 40E0C

Eaqeence T

=1 D11 A e PR Ao 3.405
= 11 Vasresodenmrer 406
1= H VanrttNodsidreoeer 4050
= 0l 1= disgheeattiodriitaaass 3407 340811
= M asaeiarraresr SA03 340817
fa | eannae buasear 3,804
iR desimesarriodebiapesr 9.8 3 A050E
= §) acakeMaasdtigmeey 340 3, 406R09
— €1 Vasabesodedreeeer A0 34064
[Pl B s B o
— CyrerreaCaiecian Rraoeer (dedd A rpuemants
T Taoenceliiase Wisooer

= DvossaCakeckiznbl

7 [Ergaance T { =]
= il vt Bt (e (Tl
— mil Liecdoce raprer
ks n e W meenlr ddr L PVl peT 3

= ¥ Vprgtdpilpaiitasasr 1

P a2 | B =il = BHIni]} CecrmaCalectoolitanee [Hrinage Aspumseaia)

R0 7= 11) o) 17 0 £ CecassaTabscbionkiappesr (Daguance Siamewty .2 320607

them.

The MessageNodeWrapper does the main
job. It finds the appropriate selector infor-
mation based on the type of its receiver.
From this information, the required types
of its arguments are instated, as well as
the type of the message itself.

Validation is performed, ensuring that
a wrapper conforms to syntax and the
limitations of the tool. For example, a
ReturnNodeWrapper ensures that it is last in
a sequence of statements, and an
AssignmentNodeWrapper ensures that its
value child is not a BlockNodeWrapper. A
faulty wrapper is highlighted in the
FreeStyle text view along with the appro-
priate error.

CONCLUSION

Eagle needed a rule language, and
Smalltalk itself was chosen. A point-and-
click rule editor was developed that con-
strains the user to produce valid syntax
with valid message selectors, via selec-
tion of valid ProgramNode tree manipula-
tions. The user is responsible for valid
message arguments by selecting from
manipulations that satisfy type require-
ments. State and behavior wrapped

Figure 10. Looping.

necessity. Remember that the rule block itself is dead if it is
not being evaluated; surely we want this type checked, as
this is the whole point. Likewise for any descendent block.

Also, remember that due to the morphing process,
what is currently not a block can perhaps be morphed to
a block’s first statement, and vice versa (construct Enclose
statement in block (123 -[123]) and construct Return
block’s first and only statement ([123] -123)).

Traversal beyond the confines of a block depends on
the situation. If the block is a statement, then there is no
traversal beyond it. If the block is a message argument,
then it depends on the block evaluator EvaluationMetaSpec
acknowledging the block. Even if the block evaluator
knows that a given block is never evaluated, the contents
of the block are treated as fully viable (e.g., if the user
selects inside the block); if it is not evaluated we simply
don't traverse past the confines of the block. (An unknown
type in this situation is defined as <Nothing’> as dis-
cussed). Currently, all block-evaluator EvaluationMetaSpecs
have live blocks.

CREATION OF THE WRAPPER TREE

Creation of the wrapper tree occurs on string input to
the tool, as well as acceptance of text from the FreeStyle
text view. The creation is achieved in iterative fashion,
using forward traversal, during which we force our-

around the ProgramNode tree make it type
aware and traversable.

Can such a tool be generalized for editing Smalltalk in
general? Probably not. Several issues would quickly get
out of hand, such as specifying and maintaining selector
information for all selectors. But for a rule language sub-
set, the tool has a niche.

References

1. Graver,J. O.andJohnson, R. E., “A Type System for Smalltalk,” In
Proceedings of the ACM Symposium on Principles of
Programming Languages, pp. 136-150, Jan. 1990.

2. Graver, J. O. Type-CHECKING AND TYPE-INFERENCE FOR OBJECT-
ORIENTED PROGRAMMING LANGUAGES, PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign,
Aug. 1989. UIUCD-R-89-1539.

3. Palsberg, J. and Schwartzbach, M. |., OBJECT-ORIENTED TYPE
SysTems, John Wiley and Sons, New York, 1994.

Figures 9 and 10 inadvertently ran as Figures 6 and 7 in part 1
of this article in September. We apologize for any confusion.

Paul Davidowitz is a senior developer at Andersen Consulting. He
can be reached at paul.davidowitz@ac.com.

October 1996

http://www.sigs.com 11

