
JustCloningAround subclass:
#CloningExtensions

Keith Piraino
October 1996
We need a class method
that will traverse the

superclass chain and collect
the names of all instance

variables to not copy.
A
ll applications wrestle with the problem of copying
objects at some point. In the course of some recent
work, I used a variation of the cloning approach pub-

lished in the Journal of Object-Oriented Programming
(JOOP) two years ago.1 This article will describe two
extensions I added:

• Allow for customized behavior after the deep copy
(#postDeepCopy:); and

• Provide ability to NOT copy certain instance
variables.

JUSTCLONINGAROUND
The JOOP article described an
implementation of a deep copy that
can handle arbitrarily deep object
structures in all three major
Smalltalk dialects. Circularities are
handled by keeping track of the
objects copied in an
IdentityDictionary. The keys are the original object and
the values are the copies.

As the title suggests, I look at this article as a “subclass”
of the JOOP article. Just as you wouldn’t expect to under-
stand a class without browsing its superclass, you should-
n’t expect to understand this article without having read
the JOOP article. I’ll present a complete implementation
in code,* but I won’t cover the concepts from the original
article.†

EXAMPLE
Consider the OMT2 style diagram in Figure 1. Each cus-
tomer contains a collection of invoices. Each invoice con-
tains a collection of ordered items. These are aggregation
or ownership3 relationships.

Each invoice holds a reference to the customer as well
as to the salesperson that created the invoice. Each
ordered item holds a reference to the product it is order-

* I used VisualWorks, but this should work in other dialects if
you keep in mind the issues raised in the JOOP article.
† The JOOP article also describes how to implement a deep
equal, which I don’t cover at all.
http://www
ing. These are not aggregation relationships. For example,
an invoice does not own the salesperson.4

Consider the instance diagram in the top half of Figure
2.‡ Jane Profit might use this existing invoice as the basis
for creating a new one. The bottom half of Figure 2 shows
the resulting instance diagram, if the JOOP approach had
been used to copy the invoice. There are two problems
with this result. The first is that everything is copied when
what we want is to copy only the objects referenced by

aggregation relationships. For
example, what we don’t, want is a
new instance of Jane Profit.
The second problem is that when
we copy an invoice we want to reset
the quote to the customer. The
quote is what the customer actually
pays, and it might be higher or
lower than the actual cost.
Determining the quote is up to the

salesperson. In this particular case the customer has been
given a $25 discount on an order for three “blue widgets;”
however, that doesn’t mean he or she will always get that
discount. In this application we’ve established the rule
that all quotes should be set to zero when copies are made.

After copying, what we actually want is shown in
Figure 3.
‡ I’m not showing the Customer to Invoice relationship for now.

Figure 1. Example Object Model.

Customer Invoice Orderedltem

SalesPerson Product

u ● u ●
13.sigs.com

CLONING EXTENSIONS
original

275

3

anOrderedItem

quote ●

qty ●

product ●

anInvoice

customer ●

orderedItems ●

salesPerson ●

'blue widget'

100

aProduct

name ●

unitPrice ●

anOrderedCollection

1 ●

'Jane Profit'

aSalesPerson

name ●

aCustomer

invoices

name ●

'Mega Corp'

clone

anOrderedItem

quote ●

qty ●

product ●

anInvoice

customer ●

orderedItems ●

salesPerson ●

'blue widget'

100

aProduct

name ●

unitPrice ●

anOrderedCollection

1 ●

aSalesPerson

name ●

aCustomer

invoices

name ●

'Mega Corp'

275

3

'Jane Profit'

Figure 2. Cloning an invoice using the JOOP approach.
#POSTDEEPCOPY:
Of our two problems, resetting the quote is the easier
one so let’s tackle that first. Our generic problem is being
able to have customized behavior after an instance is
copied. Using the normal VisualWorks mechanisms, this
would be done via #postCopy. The equivalent to this in
our generic mechanism is a method called
#postDeepCopy: that is sent to the new instance after the
deep copy is done. Listing 1 shows the implementation
of the generic copy mechanism. It’s been factored a little
differently, but other than #postDeepCopy: this is the same
code as published in the JOOP article.

Below would be the implementation of this method
for OrderedItem:
14 http://www
postDeepCopy: anObject
super postDeepCopy: anObject.
self quote: 0.

The anObject parameter is the original object. I’ve had no
cause to use it yet, but I thought this parameter might
come in handy in certain cases. For instance, we could use
#postDeepCopy: as a way to solve the problem with copying
objects that aren’t owned. After the copy is made, we sim-
ply set the appropriate instance variable to refer back to
the original object. Below is an example for Invoice:

postDeepCopy: anObject
super postDeepCopy: anObject.
The Smalltalk Report.sigs.com

self salesPerson: anObject salesPerson
One problem with this approach is that there could be
side effects to copying a salesperson object, which we
want to avoid. Let’s see if we can come up with a better
approach.

#DONTCOPYVARS
For any given object we want only to copy some of its
instance variables. We have a choice, though. We can cre-
ate a mechanism that forces us to specify what should be
copied, or that requires us to specify what should NOT be

copied. I’ve taken the latter approach because, in prob-
lem domains I’ve been exposed to, it appears that more
things get copied than not.

This mechanism will also assume that we can specify
this information on a class basis. In other words, no
instance of Invoice will ever need to create a new instance
of SalesPerson when it is copied.

Every class can optionally define a class method called
#dontCopyVars that answers a collection of the named
instance variables that should not be copied. Below are
examples from our object model in Figure 1:

Invoice class>>dontCopyVars
^#(#customer #salesPerson)

OrderedItem class>>dontCopyVars
^#(#product)

Customer, SalesPerson, and Product would not have to define
a #dontCopyVars method.

#ALLDONTCOPYVARS
In our example we don’t have to worry about inheritance, but
most structures aren’t this simple. We need a class method
that will traverse the superclass chain and collect the names
of all instance variables to not copy. The code below is pat-
terned after #allInstVarNames§ and #accumulateInstVarNames but,
takes into account that not every class will implement
#dontCopyVars:

Object class>>allDontCopyVars
| vars |
vars := OrderedCollection new.
self accumulateDontCopyVars: vars.
^vars

Object class>>accumulateDontCopyVars: aCollection

Ideally, the vendors should
standardize on some way of

specifying “ownership” and make use
of it in their copy mechanisms.

§ You can find a lot of good solutions if you try to think of how
your problems are similar to something already in the image.
October 1996 http://www
self superclass notNil
ifTrue: [self superclass accumulateDontCopyVars:

aCollection].
(self class includesSelector: #dontCopyVars)
ifTrue: [aCollection addAll: self dontCopyVars].

These two methods ensure that every class can answer a
collection of the instance variables that should not be
copied. All that’s left is a little bit of code to utilize this
information during copying. See Listing 2.

MISCELLANEOUS
Every object should answer a copy of itself when sent the
message #copy. Users of the object should not have to
worry about whether it uses the deep copy mechanism.
To account for this, I usually redefine #copy for all my
domain objects as follows:

copy
^self deepCopy

When we copy an invoice we need to know whether we
are making a copy for use with the customer that owns the
original invoice, or for a different customer. To handle this
I defined a #copyFor: method in Invoice that takes the
Customer as a parameter:

copyFor: aCustomer
| aCopy |
aCopy := self copy.
aCustomer invoices add: aCopy.
aCopy customer: aCustomer.
^aCopy.

Avoid the temptation to specify #dontCopyVars based on the
current functionality of your application. As an example,
assume that OrderedItem instances have a reference to their
containing Invoice. Also assume that the application cur-
rently allows Invoices to be copied, but not OrderedItems.
You might be tempted to not include #invoice in
#dontCopyVars for OrderedItem. Because of the support for
circularities in the copy mechanism, if Invoice is copied
before OrderedItem the OrderedItem will end up pointing to
the correct Invoice anyway.

However, at some point these kinds of assumptions
will come back to haunt you. Every object should be able
to answer a reasonable copy of itself.

CONCLUSION
Unfortunately, Smalltalk does not provide a way to distin-
guish between aggregation relationships and simple ref-
erences. What I’ve provided is one way of doing this.
Ideally, the vendors should standardize on some way of
specifying “ownership” and make use of it in their copy
mechanisms. This kind of standard would, for example,
allow CASE vendors to output this information during
code generation.

LISTING 1
instance methods in Object

deepCopy
15.sigs.com

CLONING EXTENSIONS

clone

anOrderedItem

quote ●

qty ●

product ●

anInvoice

customer ●

orderedItems ●

salesPerson ●

'blue widget'

100

aProduct

name ●

unitPrice ●

anOrderedCollection

1●

'Jane Profit'

aSalesPerson

name ●

aCustomer

invoices

name ●

'Mega Corp'

original

anOrderedItem

quote ●

qty ●

product ●

anInvoice

customer ●

orderedItems ●

salesPerson ●

0

3

anOrderedCollection

1 ●

275

3

Figure 3. Cloning an invoice using both extensions.
^self deepCopyWithoutRecopying: IdentityDictionary new.

deepCopyWithoutRecopying: anIdentityDictionary
^anIdentityDictionary

at: self
ifAbsent: [self doDeepCopyWithoutRecopying:

anIdentityDictionary]

doDeepCopyWithoutRecopying: anIdentityDictionary
| aCopy |
aCopy := self shallowCopy.
aCopy == self ifTrue: [^self].
anIdentityDictionary at: self put: aCopy.
self class isPointers ifFalse: [^aCopy].
aCopy releaseCopyDependents.
aCopy copyNamedVarsWithoutRecopying:

anIdentityDictionary.
aCopy copyUnnamedVarsWithoutRecopying:

anIdentityDictionary.
aCopy postDeepCopy: self.
16 http://www.si
^aCopy.

releaseCopyDependents
^self breakDependents

copyNamedVarsWithoutRecopying: anIdentityDictionary
| newPart |
1 to: self class instSize do:

[:idx |
newPart := (self instVarAt: idx)
deepCopyWithoutRecopying: anIdentityDictionary.

self instVarAt: idx put: newPart].

copyUnnamedVarsWithoutRecopying:
anIdentityDictionary

| newPart |
1 to: self basicSize do:

[:idx |
newPart := (self basicAt: idx)

deepCopyWithoutRecopying:
The Smalltalk Reportgs.com

anIdentityDictionary.
self basicAt: idx put: newPart].

postDeepCopy: anObject
“The receiver is a deeply copied instance of anObject.
Subclasses may override this method to provide

behavior after copy is done”

LISTING 2
instance methods in Object

copyNamedVarsWithoutRecopying: anIdentityDictionary
| newPart |
self class allVarIndicesToCopy do:

[:idx |
newPart := (self instVarAt: idx)

deepCopyWithoutRecopying:
anIdentityDictionary.

self instVarAt: idx put: newPart].

class methods in Object

allVarIndicesToCopy
“Answer a collection of the indices of all named

variables to copy for the receiver”
^self allVarNamesToCopy collect:
[:each | self allInstVarNames indexOf: each]

allVarNamesToCopy
“Answer a collection of all variable names to copy for

the receiver”
^self allInstVarNames reject:
[:each | self allDontCopyVars includes: (each asSymbol)]

dontCopyVars
“Answer a collection of instance variables defined in

this class that should not be copied when a deep copy is
made of an instance of the receiver or one of its
subclasses. The collections should contain symbols, not
strings.

Only classes that define instance variables that shouldn’t
be copied need to define this method”

^#()

REFERENCES

1. Lalonde, W. and Pugh, J., “Just Cloning Around,” JOOP, 7(5);
1994.

2. Rumbaugh, J. et al., OBJECT-ORIENTED MODELING AND DESIGN,
Prentice Hall, Englewood Cliffs, NJ, 1991.

3. Weir, C., “Improve Your Sense of Ownership: Exploring a Design
Principle,” ROAD, 2(6); 1996.

4. Check out www.sigs.com/publications/docs/oc/9608/oc9608.d.dia-
log.html for an interesting discussion of aggregation vs. association.

S

Keith Piraino is a consultant who can be reached at
keith.piraino@bug.com.
October 1996 17http://www.sigs.com

