
Visual Programming

Visual Programming and Reusable Parts:
The Marquee Part

Dwight DeugoWayne Beaton
C
onstructing reusable parts is a difficult task. You have
to know what tools are available to use, and you must
be familiar with existing reusable parts. Most impor-

tantly, you have to know the process to construct them.
The task is not impossible, and with experience it
becomes easier.

In this column, we will help you gain experience creat-
ing reusable parts by discussing the creation of a marquee
part. A marquee is a relatively simple part designed to
reflect the operation of a light board appearing in the
front of many sport facilities. The marquee scrolls text
that is too large to display statically. Our implementation
scrolls right-to-left by repeatedly removing the first char-
acter of its message, and tacking it on to the end.

CONSTRUCTING A MARQUEE
It is simple to construct a window containing a Scrolling label.
We constructed one called a MarqueeDemonstrationWindow,
using both a label part and a timer part. Two connections
between the window and the timer ensured that the timer
started when the window opened and stopped when the
window closed. Another connection updated the con-
tents of the label when the timer ticked. Figure 1 shows
the appearance of the MarqueeDemonstrationWindow in
the Composition Editor.

IBM’s VisualAge for Smalltalk Version 3.0 provides a
timer part in the Multimedia Package. Version 2.0 includes
the same part with an exercise. The timer has several fea-
tures that can be set using the Settings Editor, shown in
Figure 2. These features include the timer’s period in mil-
liseconds, and whether or not the timer should fire repeat-
edly. In our example, the timer is set to repeatedly fire
every 100 milliseconds.

To support the scrolling mechanism in the Marquee
DemonstrationWindow, we made the following connec-
tions in the Composition Editor. First, we connected the

Dwight Deugo and Wayne Beaton are senior members of the devel-
opment and educational staff at The Object People, in Ottawa,
Ontario. Dwight (dwight@objectpeople.on.ca) has immersed him-
self in objects for more than 10 years and has helped clients with
their object immersions as a project mentor and as a course instruc-
tor.Wayne (wayne@objectpeople.on.ca) is the coordinator of course
construction and a software developer.
18 http://www
window part’s openedWidget event to the timer’s start action,
and then connected the window’s closedWidget event to the
timer’s stop action. With these connections, the timer fires
one hundred milliseconds after the window opens, and
continues to fire every one hundred milliseconds until the
window closes. Finally, we connected the timer’s timerFired
event to the following script titled scroll:

scroll
| oldText newText |
oldText := (self subpartNamed: ‘Label1’) labelString.
newText := (oldText copyFrom: 2 to: oldText size),
(String with: oldText first).

(self subpartNamed: ‘Label1’) labelString: newText

The script retrieves the label’s current string, con-
structs a new one containing the current string’s first
character removed and appended to the end of it, and
then updates the label with the new string. As this script
executes ten times a second, the label’s string cycles con-
tinuously.

We made further embellishments to permit the user
to dynamically change the label’s string. We added a
push button and an entry field to our window so that the
user could click the push button to set the label’s string
to the entry field’s current string. To support this func-
tionality, we connected the push button’s clicked event to
the label’s labelString attribute and connected the
clicked/labelString connection’s value attribute to the
entry field’s object attribute.

WIDGET LAYOUT
Part of constructing a complete application includes
specifying how parts react when a window is resized.
Figure 3 shows the MarqueeDemonstrationWindow in
action. When the window is resized, the entry field clings
to the top of the window and the scrolling label clings to
the bottom. The left and right sides of each part remain
constant distances from the sides of the window.

Specifying a part’s layout attachments in VisualAge is
simple. In the a part’s Settings Editor there is a page
labeled Layout. On this page, you can specify layout
information for the part’s top, bottom, left, and right
sides. For the input field part, we specified that its top
The Smalltalk Report.sigs.com

October 1996
Our implementation scrolls
right-to-left by repeatedly

removing the first character
of its message, and tacking

it on to the end.
edge is attached to the “Parent top edge,” and that there
is a four-pixel separation between them (the top edge of
the input field part is a constant four
pixels away from the top edge of its
parent). The parent of any part is the
canvas (typically a window) where
the part is situated. If the part is
positioned on a form, then the form
is its parent. Similar attachments
were specified for the input field’s
left and right edges (connecting
them to the parent left and right
edges, respectively).

The input field part’s bottom edge used a different
attachment. Specifying “No” attachment for any part indi-
cates to VisualAge that the part should use whatever
amount of space is appropriate. In the case of an input
field part, the appropriate amount of space depends on
its current font—the bottom edge will be far enough away
from the top edge to accommodate the font, plus an
appropriate amount of gutter space. Be aware that the
“No attachment” attachment type makes sense only if the
opposite edge is attached. For example, it is not possible
to have both the top and the bottom unattached.

Figure 1. The MarqueeDemonstrationWindow as it appears in the
Composition Editor.
The “Target attachment” type is also
very powerful. It permits you to constrain
one part’s edge to another part’s edge. In
Figure 3, the push button’s top edge is
attached to the input field’s bottom edge.
By using all of these arrangements, it is
possible to design a window in which the
parts always resize correctly, because they
are dependent on the positioning of other
parts, the current font, and the monitor
resolution—fonts sometimes have differ-
ent metrics in different monitor resolu-
tions.

MAKING A REUSABLE PART
TheMarqueeDemonstrationWindow demon-
http://www
strates one possibility in VisualAge: a scrolling mar-
quee. However, anyone wanting the same marquee fea-
ture must drop the appropriated parts and make the
correct connections. Since the marquee feature has
potential for reuse, we built a reusable Marquee part
for others to use, in which its construction was trans-
parent to them.

The construction of the Marquee part began by cre-
ating a new visual part named Marquee. In the
Composition Editor, we removed the default window
and copied to it the label and timer parts from the
MarqueeDemonstrationWindow, as shown in Figure 4.
The script was also copied to the new part.

Next, we restored the timer’s timerFired: event connec-
tion to the script named scroll. However, we had to
change the way the timer started and stopped—there
was no longer a window to trigger openedWidget and
closedWidget events. These events still exist because all
visual parts give notice, via the triggering of events, that
they have opened. The Marquee part is no different. The

context menu on the free-form sur-
face area (the white space in the
Composition Editor) contains the
connect menu for the Marquee part.
We connected the openedWidget
event from the Marquee part to the
timer’s start action, and connected
the closedWidget event to the timer’s
stop action.
This new Marquee part was
now ready to use in the

MarqueeDemonstrationWindow. First, we removed the
old label and the timer parts from the window. Since the
new Marquee part was not accessible in the palette, we
added it using the Composition Editor’s Options menu
entry “Add” part. We placed the Marquee part in the win-
dow, opened the window, and it worked!

PRIMARY PARTS
Visual parts do not necessarily contain a window.
However, all parts created with the Composition Editor
have a Primary Part. The primary part is the first thing the
Figure 2. The Settings Editor for a Timer part.
19.sigs.com

20
The notion of a primary part
permits one to have more

than one window in a single
Composition Editor.
VISUAL PROGRAMMING

user sees, which is usually a window. Sometimes the pri-
mary part can be another visual part. In our Marquee part,
the primary part is the label. There is no special reason to
have a window part as default primary part, short of win-
dows being useful.

In the Composition Editor all visual parts that are not
the primary part have an entry “Become” primary part in
their context menu. We used this menu item to change
the label to the new primary part.

In the original MarqueeDemonstrationWindow, the
user could change the contents of
the marquee. That ability is still
available in our new Marquee part.
Every part created using the
Composition Editor has the same
public features as those of its prima-
ry part. Therefore, the Marquee part
has the same features as the label,
including the labelString attribute. In
fact, if you open the settings for the
Marquee part, you will see entries for most of the label’s
attributes, including labelString.

As with the previous version of the
MarqueeDemonstrationWindow, we connected the push
button’s clicked event to the Marquee part’s labelString
attribute and connected the value attribute of the result-
ing connection to the object attribute of the text field.

PROMOTE PART FEATURE
The connection between the push button and the
Marquee part’s labelString attribute identifies several prob-
lems with the Marquee part. First, should a Marquee part
actually have a labelString attribute? We tend to think of a
marquee as having a message that is displayed. Second,
the name labelString implies something about the inter-
nals of the Marquee part that should be irrelevant, espe-
cially if those internals may change at some point in the
future.

Two improvements are required. We need a new name
for the labelString attribute (perhaps message). Also, the
labelString attribute, along with the other inappropriate
features, should be removed from the Marquee’s public
interface. The first problem is easy to correct, the second
is not. We will now address the first problem and defer the
second problem for a future discussion.

VisualAge can promote a part’s features to features of
its parent part. In our case, we wanted the label’s
labelString attribute promoted as a message attribute of the

Figure 3. The MarqueeDemonstrationWindow in action.
http://www
Marquee part. The benefit is that users of the Marquee
part no longer know about the Marquee’s internal repre-
sentation, and, if at a later time we decide to change the
implementation, we only have to ensure that the message
feature persists.

In the current version of VisualAge, features of the pri-
mary part cannot be promoted. We assume that the
designers built this into the product because all those
features are made available anyway. Apparently, the
designers did not have our reasoning. One workaround
was to make another part become the primary part, pro-
mote the required feature of the label, and then change
the primary part back to the label.

COMPOSITION EDITOR VARIABLES
Another workaround requires the use of variables. First,
create a variable and connect its self attribute to the
label’s labelString attribute with an attribute-to-attribute
connection. With this connection in place, the contents
of the labelString attribute will always be reflected in the

variable, and vice-versa. Rather
than “fudging” the feature promo-
tion as before, you can now directly
promote the variable’s self as the
feature message. The self attribute of
a variable actually refers to the con-
tents of the variable, in this case a
string. With the connection between
the variable and the label, promot-
ing the variable’s self attribute has

the same effect as promoting the label’s labelString
attribute.

VisualAge makes these tasks easy. The pop-up menu
for the label part contains an entry “Tear-Off Attribute.”
When this entry is selected for a part such as a label,
VisualAge prompts you to select an attribute from the
label’s attribute list. Based on your selection, VisualAge
creates an appropriate variable and an attribute-to-

Figure 4. The Marquee part in the Composition Editor.
The Smalltalk Report.sigs.com

attribute connection between the label’s selected
attribute and the variable’s self attribute.

To promote the variable’s self attribute as the Marquee’s
message attribute, position the mouse over the newly created
variable in the Marquee part, pop up the menu and then
select “Promote Part Features….” In the promote window,
shown in Figure 5, select the self attribute and provide mes-
sage as the feature name. Finally, click the Promote button to
add the feature to the public interface of the Marquee part.

After saving the Marquee part, its feature list will include
the promoted feature message. Further, the Marquee part’s

Figure 5. The Promote Part Features window.
http://wwwOctober 1996
Settings Editor automatically includes the promoted mes-
sage feature for you to initialize.

SUMMARY
We’ve discussed the construction of one reusable part: the
Marquee part. Although its use is limited, what is interest-
ing about it is the process and the VisualAge’s features
used for its construction. The notion of a primary part
permits one to have more than one window in a single
Composition Editor. It also makes it possible to have a pri-
mary part that is not a window (perhaps a push button
that opens a window might find some application as a
reusable part). Promoting part features is a wonderful
mechanism for selectively granting access to the internals
of objects. The Composition Editor’s variables are useful
for passing values from one part to another. They also
permit access to parts of parts.

In future columns we intend to discuss more about
each of these mechanisms, and many others, in the con-
texts of other interesting reusable parts we have created.

THE CODE
The code presented in this column and in future columns
is available at http://www.objectpeople.com. The code is
presented as an IBM Smalltalk library file, containing two
versions of the software. Version one provides the single-
class implementation of the Marquee; version two pre-
sents the reusable form with an example. S
21.sigs.com

