
The Best of comp.lang.smalltalk

Alan Knight

Two New Smalltalks
S
malltalk is a very loose term. While there are some
clear, defining characteristics, there are also many
variations as well. This is important because software

development is a large field, with different solutions
appropriate to different problems. This article will discuss
some of these possible variations, with reference to two
promising new implementations.

The first of these new implementations is Object
Connect’s “Smalltalk MT,” a high-performance imple-
mentation for Windows NT 4.0, with full compilation and
true multithreading. The second is Intuitive Systems’
“Dolphin Smalltalk,” which boasts a low cost and a very
low memory footprint.

Neither one has been officially released yet, but free
prerelease copies are available for download from their
Web sites (see contact information at the end). Even if
you’ve missed the free periods, both companies are aiming
at product prices in the low hundreds (of U.S.) dollars.

Note that I looked at prerelease versions, and that I’ve
only played with them, so all I can do is relay first impres-
sions and generalities about their implementation choic-
es. I hope you’ll see a full review in these pages once they
are officially released.

COMPILATION
Most current Smalltalks use dynamic compilation, now
commonly referred to as Just-In-Time (JIT) compilation.
This is an example of a process I call “cross-domain buzz-
word hybridization.” In this process, a recognized buzz-
word from one domain crosses over to another, where it
attaches to a concept almost, but not quite, entirely
unlike the original. If you don’t like it, think of it as pay-
back for the term “object-oriented.”

In dynamic compilation, the methods are stored in
bytecode form. At runtime, some (or all) of these byte-
codes are translated into machine code. This can provide
most of the speed of machine code with a much smaller
executable size, comparable to that of bytecodes.

Although this is a good approach, it’s not a perfect solu-
tion for every circumstance. It takes more space than byte-
codes (you now have to store both compiled forms) and

Alan Knight is a Smalltalk guru with The Object People. He can be
reached by email as knight@acm.org, or at 613. 225. 8812.
22 http://www
still won’t run as quickly as compiled code (you have to
spend CPU cycles to translate, and you can’t afford to think
too hard about optimization). Finally, it requires a VM to
do the translating, which makes it more difficult to create
standalone executables, DLLs, and callback functions.

Smalltalk MT is fully compiled, and has “an optimizing
compiler that generates fast, compact code.” Full compi-
lation should give significantly better performance than
existing implementations, and the absence of a VM allows
simple programs to be very small indeed. MT claims to be
able to make DLLs (which, to my knowledge, no existing
Smalltalk can do), and to fit a trivial windows application
into a 100K executable (their runtime-support DLL adds
only 52K).

Dolphin Smalltalk is bytecode interpreted. I would
expect this to offer significantly slower performance than
current implementations, but with much lower space
consumption, even for significant-sized applications. The
company states that it “will be producing an optional JIT
in future.” When space is more important than speed, this
is a very reasonable option, and this is often true in
applets. The firm also says it will shortly have its VM
encapsulated as an ActiveX downloadable.

SIZE
Both companies advertise their ability to make very small
executables. Traditionally this has been a weak area for
Smalltalk. In many of the application areas for which
Smalltalk is used, one can argue that size doesn’t matter as
long as it does the job. But with the growing importance of
small applets over monolithic applications, size is becom-
ing more significant.

Dolphin’s approach to minimizing size uses bytecod-
ing and a very small interpreter (I counted 155K including
all the DLLs) with a relatively standard (but small) image.
Their prerelease packaging support wasn’t very sophisti-
cated, but when a development image starts at only 1.4
MB a good stripper is more of a luxury.

Smalltalk MT can provide extremely small sizes for
simple programs, but for larger programs the space cost
of full compilation becomes significant. The firm tries to
combat this through modular class libraries and a mini-
malist framework.

The typical Smalltalk programmer doesn’t think too
The Smalltalk Report.sigs.com

October 1996
y
l
o
T
w
r
s
O
p

Smalltalk is a very loose term.
While there are some clear,

defining characteristics, there
are also many variations as

well.
much before using something that’s in the development
image. This is nice for development but bad for packag-
ing. Everything depends on everything else, and all you
can do is remove the compiler and development tools.
MT claims to have kept the base classes small and mod-
ular, so if you don’t use a particular class or subsystem it
can easily be removed. They also claim to have a sophis-
ticated packager, though I’m skeptical. Packaging is a dif-
ficult problem. I figure their base image, including the
compiler and development DLLs, is 1.3 MB. “Image gen-
eration is largely automatic. An Image Builder com-
putes the set of referenced classes and methods, start-
ing with the image-entry point.”

MT has also minimized the size of the runtime by stick-
ing very close to the OS functionality.

“All GUI and operating system-related classes present
a Win32-like protocol. This ensures that applications
run with minimum overhead on the Windows family of
operating systems, and leverage
on existing know-how.”

FRAMEWORKS
A Win32-like protocol for window-
ing is definitely a two-edged feature.
It makes Windows programmers
who have programmed in other
languages feel right at home, and it
minimizes the amount of code you need to map a
Smalltalk framework onto the operating system. I think
there’s no question that this reduces the amount of code in
the image.

On the other hand, frameworks that are written with
C or C++ in mind look really ugly compared to those
designed for Smalltalk. Look at Visual Smalltalk vs. IBM.
Visual Smalltalk has tight integration with Windows, to
the point where you can implement your own wm:what-
ever: messages, but provides a very clean, simple,
Smalltalk-like framework above that. IBM has its
X/Motif layer, which translates into calls to the real OS. It
works very well, and it’s extremely portable, but it’s way
too close to C programming for my taste. IBM’s saving
grace is that with VisualAge or WindowBuilder you rarely
have to descend to that level. Smalltalk MT doesn’t
appear to have a GUI builder. On the other hand, I’m
sure there are lots of people using C/C++ for whom a
Win32-like framework in Smalltalk (especially a
Smalltalk that can produce fast, compact executables)
would be a big step up.

Dolphin Smalltalk, in contrast, uses MVC. This is the
oldest and best known of the Smalltalk frameworks, and
has been passed down from PARC into VisualWorks.
Dolphin has adapted it to a native-widget, event-driven
form, but it still has Views, Controllers, and even
ValueModels. They’ve also included a mediator class
(called Tool) analogous to the Application Model of
VisualWorks. I haven’t tried building a window with either
dialect but I’d expect to feel more comfortable with
Dolphin.
http://www
THREADS
One of the most innovative features of Smalltalk MT is its
full support for operating system threads (“true” multi-
threading). Making a decent compiler isn’t that hard, but
there are many issues involved in making Smalltalk use
OS threads. The only other implementation I know of is
OTI’s embedded systems implementation, and it only
supports threads for real-time operating systems.

I believe OS threads are often given too much impor-
tance. For 90% of applications, the standard Smalltalk
process model will suffice, along with the ability to make
system calls without blocking. The critical issue is that
when one Smalltalk process waits on a system service, the
entire Smalltalk system should not wait. Given this capa-
bility, which most implementations provide, it’s not diffi-
cult to render demanding applications like Web or termi-
nal servers, and you don’t have to deal with the addition-
al complexities of OS threads. With the Smalltalk model

ou can even have thread-manipu-
ating code that’s portable between
perating systems.
hat’s a very good solution when it
orks, but there are times when you

eally need OS threads. One example is
ymmetric multiprocessing (SMP).
perating systems that support multi-
le CPUs in one machine can map OS

threads to different processors, but not Smalltalk processes.
Presently, this affects only very high-end machines, but it will
become more and more important in the future.

Given that there are lots of implementations out there
with the standard threading model, the choice of using OS
threads in Smalltalk MT is a very welcome one indeed.

PLATFORMS AND PRICE
By now I ‘ll bet you are impatient to get your own copy of
either or both of these implementations for your favorite
platform. Unless you’re a Microsoft fan you’re out of luck.
Both of these implementations have opted away from
portability in favor of close integration with Win32. In fact,
the first version of Smalltalk MT runs only on Windows NT
4.0 due to problems with Win95’s threads, but they expect
to have a Windows 95 version soon .

Dolphin Smalltalk has gotten more attention on the
Net, because it can also run on older versions of NT and
Windows 95. Don’t expect them to expand their list of
platforms too much. In response to a number of calls for
an OS/2 version, Andy Bower of Dolphin’s support group
(Dolphin.support@intuitive.co.uk) wrote:

“The initial design aims for Dolphin were firmly
directed to producing a great Win32 development system
and this assumption is built into the product at a low
level….we’d be reluctant to compromise this for compat-
ibility with other environments.”

As for pricing, both are very low compared to the current
standards. Neither has fixed a firm price yet, but from what
I’ve heard MT is approximately U.S. $300, and Dolphin at
under U.S. $200. continued on page 26
23.sigs.com

never really “get OO.” After a reasonable time period (per-
haps as long as nine months), the people who still haven’t
gotten it need to be given alternatives. Neither the mentor
nor the developer is to blame. Not all people are able to
think abstractly, and they need to be given the chance to
contribute to the organization in a job for which they are
suited.

CONCLUSION
“Smalltalk guru” is not the equivalent to Smalltalk men-
tor. Not all team members will accept mentoring, and
not all team members will get OO. Do the best you can as
a mentor and as a developer, and try to keep egos out of
the equation. If personality clashes are a problem,
maybe the mentor has to go. This is a tough call that the
manager will have to make. Good luck and happy men-
toring!

References
1. THE WORDSWORTH CONCISE ENGLISH DICTIONARY,

Hertfordshire. Wordsworth Editions Ltd., 1994.
2. Steinman, Jan, and Yates, Barabara, “Secrets to Building

Successful Smalltalk Teams,” tutorial at Smalltalk Solutions,
March 1996, New York, N.Y.

3. Steinman, Jan, and Yates, Barbara, “Special” Team Members,”
The Smalltalk Report, V5N6, February 1996, pp. 15-17, 28.

26 http://www

THE BEST OF COMP.LANG.SMALLTALK

S

MANAGING OBJECTS
OVERALL
Overall I’m quite impressed with both of these implementa-
tions. As prerelease products, they’re obviously immature in
some areas. For example, I had difficulty with the debugger
in both of them. The GUI builder in Dolphin didn’t work yet,
and MT doesn’t appear to have one. On the other hand, in a
lot of areas, they’re surprisingly mature. They already have
advanced features like finalization and exception handling
in place. Inevitably, it will be a while before they’re fully
loaded with those features that have nothing to do with a
language, and everything to do with a successful project:
industrial-strength source code control, native database
connections, extra widgetry, report writers, business graph-
ics, and so forth. Nevertheless, they show enormous poten-
tial, and are well worth your while to investigate.

Of the two, I expect MT to be the first choice for those
looking for cool new features, and for those doing things
that are traditionally difficult in Smalltalk (e.g. server-
based Smalltalk, very tiny apps). Restriction to the newest
version of NT will lessen their impact in the short term.
Dolphin Smalltalk, with a very low price, Win95 support,
MVC, and ActiveX applet support, has real potential to
become the Smalltalk for the masses.

Both are filling niches that are under-represented by
current implementations, and I hope they will enjoy great
success. S

continued from page 23
The Smalltalk Report.sigs.com

