Object Oriented Programming with

Smalltalk
by Bryce Hendrix

Disclaimer: This document is provided for educational purposes, and contains some non-
original content. If you are the author of any material included in this document and
would like it removed, please send mail to Bryce Hendrix at hendrix@engr.arizona.edu
and it will be removed immediately. Contents of this document cannot be used for
commercia usage without explicit permission from the author.

mailto:bryce.hendrix@amd.com

Lecture 1 : What is an Object?

e 2 Rules of Smalitalk

 What’s special about an Object?

0O versus Procedural Approach to programming

Lecture 2: Classes and Instances

N9 2N

e Class

 Instance

» Class Hierarchy

Lecture 3: Messages, Methods, and Programming in Smalltalk

* Messages

e Methods

* Programming in Smalltalk

Lecture 4: OO0 Classification Techniques

» Specialization

e Abstraction

e« Composition

 Factorization

Lecture 5: Encapsulation & Polymorphism

 Encapsulation

* Polymorphism

Lecture 6: OO 4-Pass Process — an Investment Manager

« Pass 1: Abstraction

e Pass 2: Abstraction

* Pass 3: Composition

 Pass 4: Factorization

Lecture 7: The Object Class

* Functionality of an object

11
11
11
11
13
13
13
14
15
15
16
17
18
20
20
21
22
22
22
22
22
27
27

» Comparison of objects

27

 Copying objects

27

* Accessing indexed variables
Lecture 8: Messages & Methods

28

* Message Expressions

30
30

 Method Lookup

30

Lecture 9: Variables and Return values 32
* Method arguments 32
 Temp variables 32
* Instance variables 32
+ Class instance variables 32
* Class Variables 33
* Global Variables 33
* Return Values 33

Lecture 10: Blocks and Branching 34
* Blocks 34
+ Class Boolean 34
* Branching (Control Structures) 34

Lecture 11: Reporting Errors and Debugging techniques 36
* Error Handling 36
* Message Handling 39
» Class UndefinedObject 40
* Debugging 41
* halt 41

Lecture 12: Designing and implementing classes 43
» Steps to develop a specification 43
« The message protocol 43
» Steps to implementing a class 43
» Describing a class 43

Lecture 13: VisualWorks 44
Starting VisualWorks 44
VisualWorks Launcher 44
Workspace 45
Using the Mouse and the Pop-Up Menus 45
Setting up VisualWorks 45
Online Documentation 47
System Browser 47
Filing In and Filing Out Components 48

Filing In 48
Filing Out 49

Starting an Application
Saving Your Work
Lecture 14: More on the Basic VisualWorks Environment
Workspaces
The Transcript
Editing in VisualWorks Windows
Using a Browser
Adding a New Method
Adding New Classes or Methods From External Files
Changing Existing Methods
Adding a New Class
Saving Code into a File

Lecture 15: System & Magnitude Classes

Overview

Shared Object Protocols

4 basic subclasses of the Magnitude class

Methods provided for comparison

Example: More methods for complex nhumbers

Partial Hierarchy

Type Conversion

Truncation, floor, ceiling and remainders

Mathematical Operations

Date and Time

Lecture 16: The Collection Classes

Lecture 17: An example using the Collection Classes

Smalltalk’s optimized Collection classes

Partial Hierarchy

Iteration (what you can do with collections)

Lecture 18: The Stream Classes

Streams

Important methods for all Streams

Important methods for Positionable Streams

Important methods for ReadStreams

49
50
51
51
52
52
52
55
56
58
58
61
62
62
62
63
63
64
64
65
67
67
68
69
69
70
70
73
82
82
82
83
84

e Important methods for WriteStreams

84

* Important methods for External and File Streams

e Common Mistakes

84

85

* Hierarchy

86

Lecture 19: Matrix Example using Streams

87

Lecture 20: Dependency Mechanisms

91

* Dependency

91

Lecture 21: The Model-View-Controller Paradigm

97

¢ Definitions

97

Model

Lecture 22: The View

View

Lecture 23: The Controller

Appendix1: VisualWorks 2.5 versus Smalltalk-80

Differences found throughout the lecture note’s examples

e Classes removed from VisualWorks 2.5

Appendix2: VisualWorks rules and Smalltalk Syntax

e Capitalization rules

e Reserved words

 Operators

e Literals

« Comments

101
105
105
110
113
113
113
114
114
114
114
114
114

Appendix 3: A List of Methods for the System Classes

Magnitude:

115
115

Collection

119

Stream

124

Index

127

Lecture 1 : What is an Object?
2 Rules of Smalltalk

Everything is an object

Objects respond only to messages

Ex: Automobile object

» Variables: velocity, weight, and color
* Methods: accelerate and decelerate

What’s special about an Object?

Objects contain both state and behavior and communicate with one another via
messages.

Automobile’s velocity variable is changed by accelerate method

An application is a group of objects interacting in a coordinate fashion

Stop light application manages many Automobile objects

OO0 versus Procedural Approach to programming

Aspects of Procedural Approach
e Behavior is vested in the procedures
e Procedures must know data structures
e Procedures communicate only via data
Procedural approach places too much emphasis on data, rather than the behavior of the
application.
Ex: Baker Procedural approach to baking cookies
* Has 2 structures: Baker structure and cookie structure
e Steps:
« Make pointer to a cookie struct
« Call bakeCookies(Baker, cookie), returns pointer to cookies
* Review aspects of Procedural Approach
e Aspects of OO Approach
« An application is a set of objects communicating via messages
* An Object’s functionality is described by its methods
» Data required to support an object’s functionality is stored in private variables
« Examples:
« Baker Object

e State
« Weight
¢ Height
¢ Name
 Method

 bakeCake()
* bakeCooki es()
« Kitchen Application

e Objects
* Baker
e Chef
» Dishwasher
¢ Oven

* Procedural Approach
* Treat each object as a data structure. Each object must have its own
data structure & variables.
» Write a function wash() . Note that 4 different functions must be written
e« OO Approach

Treat each object as object. Objects can inherit variables form each

other.

Write a method wash() that operates for all objects. (show in Smalltalk &

C)

e Good Exercise for students: Use polymorphism for one object to do
wash methods for Plates object and Cup object

* Good Exercise for students: write KitchenObject class.

Ki t chenObj ect subcl ass: #Baker
i nst anceVari abl eNanmes: ' nanme wei ght hei ght’
cl assVari abl eNanes: '’
Pool Dictionaries:’’
category:’’

nane
“nanme

nane: aNewNane
name : = aNewNane

bakeCake: ingredients
| cake |
cake := Cake new from ingredients.
Acake

wash: dirtyDi shes

dirtyDi shes := dirtyDi shes soak.
dirtyDi shes := dirtyDi shes scrub.
dirtyDi shes := dirtyDi shes dry.

AdirtyDi shes

Ki t chenObj ect subcl ass: #Di shwasher
i nst anceVari abl eNanmes: ' nane wei ght hei ght’
cl assVari abl eNanes: '’
Pool Di ctionaries:’’
category:’’

nane
“nanme

nane: aNewNane
name : = aNewNane

wash: dirtyDi shes
N self runCycleOn: dirtyDishes

runCycl eOn: sonebDi shes
soneDi shes : = soneDi shes rinse.
someDi shes : = dry.

class CKitchenOoject : public CBaker {

public:
char* nane;
i nt weight;
i nt weight;
public:

CCake bakeCake(Cl ngredi ents ingredients);
CDi shes wash(CDi shes dirtyDi shes);

CCake CBaker: : bakeCake(Cl ngredi ents ingredients)
{
CCake cake = new CCake(i ngredients);
return cake;

}

CDi shes CBaker:: wash(CDi shes dirtyDi shes)
{

di rtyDi shes. soak();

dirtyDi shes. scrub();

dirtyDi shes.dry();

return dirtyDi shes;

}
class CKitchenOoject : public CD shwasher ({
public:
char* nane;
i nt weight;
i nt height;
public:
CDi shes wash(CDi shes dirtyDi shes);
}

CDi shes CDi shwasher: : wash(CDi shes dirtyDi shes)

this.runCycl eOn(dirtybDi shes);
}

CDi shes CDi shwasher: : runCycl eOn(CDi shes dirtyDi shes)

{
dirtyDi shes.rinse();

di rtyDi shes. dry();
}

typedef struct {
char* nane;
i nt height;
i nt weight;
} Worker;

Wor ker baker;
Wor ker di shwasher;

char* get Nane (Worker aWrker)
{

}

voi d nameWr ker (Wor ker aWorker, char* newNane)
{

}

voi d bakeCake(| ngredi ent_struct* ingredients,
Cake* newCake)
{

}

voi d baker WashDi shes(Di shes* dirtyDi shes)
{

return awrker. nane;

strcpy(awrker. name, newNane) ;

newCake = doSonet hi ngW t h(i ngredients);

}

soak(di rtyDi shes);
scrub(dirtyDi shes);
dry(dirtyDi shes);

voi d di shwasher WashDi shes(Di shes* dirtyDi shes)

{
}

di rtyDi shes = runCycl eOn(dirtyDi shes);

voi d runCycl eOn(Di shes* dirtyDi shes)

{

dirtyDi shes
di rtyDi shes

rinse(dirtyDi shes);
dry(dirtyDi shes);

10

Lecture 2: Classes and Instances

« Class
* Atemplate for objects that share common characteristics.
« Includes an object’s state variable and methods
» EXx: Vehicle class
Vehicle
Velocity
Location
Color
Weight
Start()
Stop()
Accelerate()

« Instance
e A particular occurrence of an object is defined by a class
» Classes are sometimes thought of as factories. If we had an automobile factory, the
class would be the factory and the automobiles would be the instances of that
factory.
» Each instance has its own values for instance variables
e Each automobile has its own engine, hood, doors, etc.
« Allinstances of a class share the same method
« Methods are the functions that are applicable to all instances of a class.
e The method accel er at e is applicable to all automobiles
« Ex: Aroad contains many instances of vehicles, all different colors, going different
speeds, starting, stopping, accelerating, etc
* Ex:carsonaroad. Itis important to note that carl and car 3 are not the same object,
but are the both instances of the class Car. carl and car3 are equivalent, but not
equal. Equality implies they are the same object.

aRoad = Road new.

carl = Car new withColor: red wi thSpeed 30.
car2 = Car new withCol or: blue w thSpeed 45.
car3 = Car new withColor: red wi thSpeed 30.

e Class Hierarchy
* Allows sharing of state and behavior
e Subclasses are able to use the methods and variables of the parent classes.
« Each class refines / specializes its ancestors
e Child can add new state information
e A Land Vehicle adds the state information regarding the number of axles
e Child can add, extend or override parent behavior
* All Vehicles can be driven, but all types of vehicles require different sets of methods
to drive
e Superclass is the parent and subclass is a child
» Abstract class holds common behavior & characteristics, concrete classes contain
complete characterization of actual objects
« Inthe Vehicle example, Vehicle is the Superclass, and Sailboat, Speed boar, Jet,
Helicopter, Car and Truck are the concrete classes.

11

Vehicle
velocity
location
[f \
Water Vehicle Air Vehicle Land Vehicle
axles
[1 [1
Sailboat Speed boat Jet Helicopter Car Truck
color

Ex: Vehicle hierarchy (leaves are concrete, al other are abstract)

weight

12

Lecture 3: Messages, Methods, and Programming in Smalltalk
Messages

A message specifies what behavior an object is to perform

Only way to communicate with an object

Implementation is left up to the receiver object

« Ex: Ask the baker to bake a cake. We don't care how he does it.

e Ex: baker bakeCake.

State Information can only be accessed via messages

« Ex: I wantto know how old you are (one of your state variables), so | ask you. | don’t
care how you compute your age, all | care about is the answer.

e Ex:baker age

The receiver object always returns a result (object).

« Alot of the time a receiver is modified and it doesn’t make sense to return something,
so the argument is returned

e Ex:#(a b c) at: 3 put: #d returns #d

Methods

A method specifies how a receiver object performs a behavior.

Executed in response to a message

Must have access to data (must be passed, or contained in object)

» If there is no access passed or contained in the object, what can be done?

Needs detailed knowledge of data

Can manipulate data directly

« Can modify instance variables of the object receiving the message

e Ex:#(a b c) at: 3 put #d.modifies the collection which is the instance variable

Returns an object as a result of its execution

« Since a method is executed in response to a message, and we have already said all
messages return an object, it should only make sense that the method returns an
object as the result of its execution

Has same name as the message name

e Ex:#(a b c) size.size isthe message called by the receiver, and the si ze
method is the method in class Ar r ay to be executed

Visual Works does no type checking on arguments, although the types should be type-

compatible.

Method returns the receiver object by default, unless explicitly returned

« Ex: Bob is asked to bake a cake. Bob’s ‘bake’ method explicitly says to return a cake,
rather than returning himself to the requester.

 Ex:the at: method of class Interval
» Explicitly returns a temp variable

at: anlnteger
"Answer the nunber at index position
anlnteger in the receiver interval."
| answer |
anlnteger > 0
ifTrue: [
answer := beginning + (increnent *(anlnteger
- 1)).
(increnment <0
and: [answer between: end and:
begi nni ng])
i fTrue: [~answer].
(increment > 0
and: [answer between: begi nning and: end])
i fTrue: ["answer]].

13

Asel f errorlnBounds: anlnteger

e Ex:the asStri ng method of class String
* Returns the receiver (sel f)

asString
"Answer the string representing the
receiver (the receiver itself)."
~sel f

Programming in Smalltalk
e Code is written and tested in small pieces
e Usually each method is tested after completion
« Smalltalk is interpreted
e Code is compiled into bytecode incrementally during development
e Once the code has been written, it is “accepted” and compiled into bytecode,
then tested.
* Bytecode is interpreted by the Virtual Machine.
* The advantage to a Virtual Machine is that different machines can have their own VM
to interpret the bytecode. Thus, compiled code should be platform independent.
« Rather than compile all classes for each program, Smalltalk compiles all of the
classes and methods into an “image”

14

Lecture 4: OO Classification Techniques

e The Vehicle Class Description
hj ect subcl ass: #Vehicle
i nst anceVari abl eNanes: ’'speed wheel s’
cl assVari abl eNanes:
Pool Dictionaries: '’
cat egory:

wi t hWeel s: nunber Of Wheel s goi ngSpeed: aSpeed
"Creates a new Vehicle oject”
| aNewvehicle |
aNewehicle : = self new.
aNewvehi cl e wheel s : = nunber O Wheel s.
aNewVehi cl e speed : = aSpeed.
~aNewVehi cl e.

driveOn: aRoad
"Returns the reciever, does the driving"
sel f speed < aRoad speedLinit

i fTrue:
[self speed := (self speed) + 1.
"sel]
i fFal se:
[self speed := (self speed) - 1.
~sel f].

e Specialization

* The act of creating a subclass of class. The new class inherits, overrides, and extends
the behavior of the superclass.

e How?
* Add instance variables as needed
« Add, extend, or override methods as needed

e ‘“is-a” relationship. An automobile “is-a” vehicle.

» Benefit- code reuse

« Ex: Class Vehicle exists before Class Automobile is invented. Class Automobile is
i nvented, but based on the nethods and vari ables of O ass Vehicle.

Vehicle
speed
wheels

driveOn

A
Bicycle
Carriage Automobile
horses engine

Vehi cl e subcl ass: #Aut onpbil e
i nst anceVari abl eNanmes: ’'speed wheel s engi ne’

cl assVari abl eNanes: '’
Pool Di ctionaries: '’
category: '’

wi t hWheel s: nunber O Wheel s goi ngSpeed: aSpeed wit hEngi ne: anEngi ne
"Create a new Autonobile Cbject”

| aNewAuto |

aNewAut o : = self new.

aNewAut o : = Vehicle wi thWeel s: nunber O Weel s
goi ngSpeed: aSpeed.

aNewAut o engi ne : = anEngi ne.

~aNewAut o.

dri veOn: aRoad
"Returns the receiver, does the driving"
self speed < aRoad speedLimt
i fTrue: [self engine accelerate. "self]
i fFal se: [self engine decelerate. “self].

* Abstraction
e The act of creating a superclass for several classes.
e How?
« ldentify the shared state and /or behavior across the classes
* Move shared properties to the new abstract superclass
* Interpose the new abstract superclass in the class hierarchy
« Benefit: code reuse, simplify maintenance, better understanding

« Example
Vehicle
speed
wheels
drive
4
4-Wheeled
Bicycle
Carriage Automobile
horses engine
* Example:

16

Cheetah
speed)
family < 1
speak()

Dog \ [Animal
speed /1 . speed
family < X family
speak() “ speak()

Gorilla
speed
family

speak()

Composition

The act of creating a class that is composed of instances of other classes (via instance
variables). The new class does not inherit form the other classes, but can access their
state and behavior via messages.
How?
« Create a new class that is composed of other classes
« Attributes of the new class are instances of other classes
e The new class obtains the behavior of composition classes by sending messages
to the referenced instances (“delegation”).
Benefit: provides protection from changes in referenced classes.
Behavior is not inherited
“has-a” relationship (also known as “is-part-of”).
Ex: An instance of class Airplane might be composed of instances of the class variables
Engine, Position, and Velocity.
« Engine points to an instance of class Engine (user defined)
« Position points to an instance of class Position (user defined)
« Velocity points to an instance of Visual Works system class, Float.
* An Airplane “has-a” Engine, Position, and Velocity.

17

Airplane
engine
position
velocity

takeOff()

land()

X

Formal
arguments

AnAirplane
engine
position
velocity

| Formal eV
" arguments Engine
{ thrust
anEngine |) fuel)
thrust S x 1 increaseThrust()
fuel decreaseThrust()
Formal o~ N
arguments ~ Coordinate
aCoordinate | Iat't.ltjdg y
latitude O'I‘tgt' ‘é €
longitude X ?t'tl lij €
. altitude altitude()
. {constraints} ,
Formal)
arguments P -/
aFloat Float

00 \x 1{

Factorization
* The act of breaking a class into smaller classes.

e How?

+ Factor the class into smaller classes

Create a new class for each distinct type of state / behavior
Recombine the new classes via inheritance and /or composition to achieve

original functionality.

« Example: break the class Animal into different Species Classes

* Benefit:

hj ect

Potential reusable, smaller classes

subcl ass: #Vehicle

i nst anceVari abl eNanes:
cl assVari abl eNanes: '’
Pool Di ctionaries: '’

" speed wheel s’

cat egory:
wi t hWeel s: nunber Of Wheel s goi ngSpeed: aSpeed
"Creates a new Vehicle Object”
| aNewVvehicle |
aNewehicle : = self new.
aNewVehi cl e wheel s : = nunber O Weel s.

aNewVehi cl e speed : = aSpeed.

~aNewvehi cl e.

driveOn: aRoad
"Returns the reciever, does the driving"
sel f speed > aRoad speedLimt
i fTrue:
[sel f speed :
i fFal se:

= (self speed) + 1.

~sel f]

18

[sel f speed :

#Vehi cl e subcl ass: #TwoWeel
i nst anceVari abl eNanes:
cl assVari abl eNanes: '’
Pool Di cti onari es:
category: '’

w t hWel s:

nunber O Wheel s goi ngSpeed:

(self speed) - 1.

' speed wheel s bal ance’

aSpeed

"Creates a new Vehicle Object”

| aNewVvehicle |

aNewehicle : = self new.
aNewvehi cl e wheels : = 2.
aSpeed.

aNewVehi cl e speed : =
~aNewVehi cl e.

driveOn: aRoad

"Returns the reciever,

sel f balnce = nil
i fTrue:

does the driving"

[sel f speed := 0.

rsel f].

sel f speed < aRoad speedLimt

i fTrue:

[sel f speed :

i fFal se:

[sel f speed :

#Vehi cl e subcl ass: #Four Wheel
i nst anceVari abl eNanes:
cl assVari abl eNanmes: '’
Pool Di cti onari es:
category: '’

w t hWeel s:

nunber O Wheel s goi ngSpeed:
i sFour Wheel Dri ve:

(self speed) + 1.

(self speed) - 1.

aSpeed
anAnswer

"Creates a new Vehicle oject”

| aNewvehicle |

aNewehicle : = self new.
aNewVehi cl e wheel s : = 4.
aNewVehi cl e speed : = aSpeed.

aNewVehi cl e fourWieedDrive : = anAnswer.

~aNewvehi cl e.

driveOn: aRoad

"Returns the reciever,
sel f speed < aRoad speedLinit

i fTrue:

[sel f speed :

i f Fal se:

[sel f speed :

does the driving"

(sel f speed) + 1.

(self speed) - 1.

Nsel f].

sel f]

Nsel f].

" speed wheel s fourWeel Drive’

Nsel f]

Nsel f].

19

Lecture 5: Encapsulation & Polymorphism

Encapsulation
« Objects encapsulates State as a collection of variables
« Common practice is to provide a set of private methods for manipulating variables.
« Example: Baker has work state (ie rolling dough, baking, resting)
e baker state. Returns the baker's state
* baker state: ‘baking’. Sets the baker’s state
« Example: The class Engine
* Inthe previous lecture we looked the the Automobile class. When we created an
instance of the class Automobile, we assumed the instance creation was called
with an instance of Engine as an argument
e An engine must have many private methods. When you turn the ignition, you
don't have to start each component of the engine individually. Lets look at a
simple engine class

hj ect subcl ass: #Engi ne
i nstanceVari abl eNanes: ’'state pistons battery’
cl assVari abl eNanes:
Pool Dictionaries: '’
cat egory:

start
"Starts up the engine"
sel f start EachConponent.
st at us.

private
st art EachConponent
"Checks to see if the battery is charged, and
tries to start the pistons”

status := true.
pi stons : = Pistons new.
battery := Battery new.

battery status

i fFal se: [status := false].
pi stons start
i fFal se: [status := false].

» Objects encapsulates Behavior as methods invoked by messages
« Set of methods encompasses everything the object knows how to do
« Ex: Baker has set St at e method to set st at evari abl e, and quer ySt at e to get
st at evari abl e’s value:

set State: aVal ue
st at eVari abl e=aVal ue.

queryState
AStateVari abl e.

Baker Bob do: ‘resting’.
Bob queryState

e Encapsulation protects the state information of an object
« Legal Example: Baker object can access thoughts (read and write)
» lllegal Example: Someone else cannot read the baker’s thoughts.
e Encapsulation hides implementation details

20

» Don't care how baker bakes cake.
« Encapsulation provides a uniform interface for communicating with an object.
* We can ask the baker to bake a cake, or we can ask the chef to bake a cake. They
will do it differently, but we can ask them the same way.
« Facilitates modularity, code reuse and maintenance.
e Side note: C++ faqg claims encapsulation does not facilitate code-reuse, this is an
important difference in the language C++ programmers should consider.
¢ Polymorphism
« Variety of objects in an application that exhibit the same generic behavior, but implement
it differently
« Ex: Ask a dog to speak, it barks. Ask a cat to speak, it meows. Each animal can be
asked to speak, and each will do it differently.
* Ex: The + operator for class Float and class Integer

* Float:
+ aNunber
"Answer sum of the receiver and aNumber."
| result |
<primtive: 41>
aNunber i sFl oat

ifTrue: [
result := self class basicNew 8.
Fl oatLi brary add: self to: aNunmber result:

result.
Aresul t]
i fFal se: [~self + aNunber asFl oat]
* Integer:
+ aNunber

"Answer the sum of the receiver and aNunber."
<primtive: 21>
NaNunber + sel f

21

Lecture 6: OO 4-Pass Process — an Investment Manager

Pass 1: Abstraction
« Abstrction to share state/ behavior common to all investemnts
Pass 2: Abstraction
« Abstraction to share state / behavior for securities objects vr. Real estate investment
objects
Pass 3: Composition
* Composition to create a portfolio of investments with a primary investment plan
Pass 4: Factorization
« Factorization to make explicit an anaysis of economic conditions related to investments
Problem Statement: Design an Investment manager to handle stocks, bonds, mutual funds,
houses and rental property
Initial Design
e What functionality do all investments share?
* They all have currentValue, purchasePrice and datePurchased instance variables
and calculateGainOrLoss, calculateTax and calculateAnnuallncome methods.
e These variables and methods can be considered as the basis of creating a new,
abstract superclass for the investments.

22

object

Stock
name
priceEarningsRatio
sharesOutstanding
currentValue
purchasePrice
datePurchased
calculateVolatility
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnuallncome

Bond
issuerName
maturityDate
priceEarningsRatio
currentValue
purchasePrice
datePurchased
updateRating
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnuallncome

MutualFund
name
sharePrice
priceEarningsRatio
sharesOutstanding
currentValue
purchasePrice
datePurchased
currentNetAssetValue
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnuallncome

location

RentalProperty

Home
location

currentValue

purchasePrice

datePurchased
calculateValue

calculateGainOrLoss
calulateTax

calculateDepreciation

calculateAnnuallncome

currentValue

purchasePrice

datePurchased
calculateValue

calulateTax

calculateGainOrLoss

calculateAnnuallncome

Design Pass 1 (abstraction)
We can use abstraction to produce a new class, Investment. This is an abstact class that
serves as the superclass for the concrete investment classes. It holds state variables and
methods common to all investments

23

Investment
currentValue
purchasePrice
datePurchased

calculateGainOrLoss

calulateTax
calculateAnnuallncome

4

Securitieslnvestment
priceEarningsRatio
calculatePriceEarningRatio

A

RealEstatelnvestment
location
calculateValue

RentalProperty
calculateValue
calculateDepreciation
calulateTax

Home

calculateValue
calulateTax

A A
Stock Bond
name _ . Name
sharesOutstanding LSwZLtIErrit Dat
calculateVolatility yLale
calulateTax updateRating
calulateTax
A

MutualFund

name

sharePrice

sharesOutstanding

currentNetAssetValue

calulateTax

« Design Pass 2 (abstraction)

We now produce two new abstract classes:

* Securitiesinvestment to hold commonalties between Stock, Bond, and MutualFund.
* RealEstatelnvestemnt to hold commonalties between Home and RentalProperty.

24

Portfolio

primaryAim

secuties

realEstate
calculatePortfolioWworth
calculatePortfolioRiskTaking

Instance

i

primaryAim
securities
realEstate

« Design Pass 3 (composition)

Instances of
Securituieslnvestment

30 shares Microsoftw

50 shares Intel w

10 shares Citrix

Instances of
RealEstatelnvestment

Boardwalk W
ParkPlace

* Now we create a Portfolio class to hold all of the primary investment aim (risk level) and

the collection of investments.

« We'll create two state variables which hold the two collections of objects made up from
the two classed defined in Pass 2.

25

Portfolio

primaryAim

secuties

realEstate
calculatePortfolioWorth
calculatePortfolioRiskTaking

EconomicModel
primeRate
considerlnvestmentAims

considerDivsersification
Instance

primeRate

considerTakingProfit

Instance

primaryAim
economicAnalysis
securities
realEstate

e Design Pass 4 (factorizarion)

Instances of
SecurituiesInvestment

30 share

s Microsoft

(50 shares Intel w

10 shares Citrix

Instances of
RealEstatelnvestment

Boardwalk w

ParkPlace

« Inthe final pass, we factor out “economic model” state and behavior as apotentially
reusable part of Portfolio, and create the new class EconomicModel. This class lives
outside the hierachy, and becomes part of the Portfolio via composition.

« Remember factorization has two components
e Break up large, complex classes into separate, more reusable components
* Recover the original functionality through composition or inheritance.

¢ How did we know to use composition instead of inheritance?

* Which makes more sense:

* ‘“is-a” EconomicModel a Portfolio? (Inheritance)
* Is an EconomicModel “part-of” a portfolio? (Composition)

26

Lecture 7: The Object Class

e The Object class is the main class from which all other classes are derived.
« Any and every kind of object in Smalltalk can respond to the messages defined by the Object

class

« All methods of the Object class are inherited to overridden
* Functionality of an object
« Determined by its class
* Two ways to test functionality
e Comparing object to a class or superclass to test membership or composition

recei ver isKindOf: ad ass

« tests if the receiver is a member of the hierarchy of aClass
e aninteger isKindO: |nteger returns true

recei ver isMenberOf: ad ass

» tests if the receiver is of the same class

e anlnteger isMenberOf: Magnitude returns false

recei ver respondsTo: aSynbol

« tests if the receiver knows how to answer aSymbol

* anlnteger respondsTo: #sin returns true

* anlnteger respondsTo: #at: returns false

e Querying the object for its class

recei ver class
#(1 2 3) class returns Array

e Comparison of objects
« Comparison and equivalence are very similar, but should not be confused

e ==is used to test if the receiver and argument are the same object
e #(a b c) class == Array returns true
e #(a b c) == #(a b c) copy returns false
e =is used to test if the receiver and argument represent the same component

#(a b c) class = Array returns true
#(a b ¢c) = #(a b c) copy returns true

e Other comparison operations

recei ver ~= an(bj ect
+ Not equal
recei ver ~~ an(bj ect

« Not Equivalent
recei ver hash
e hash provides a nice way of telling objects apart, too much trust should not
be placed in comparing objects of the same class, as hash is often trivialized
(as in the example below, Ar r ay uses size has the hash function).
- Ex
3. 147 hash. <« 132
3. 14 hash. <« 287
#(1 2 3) « 3
d: = #(3 45) « 3
recei ver hashMappedBy: nap

a
b :
c

e Copying objects
* deepCopy has been removed since VisualWorks 1.0
e Two methods for copying:
* copy returns another instance just like the receiver. Usually copy is simply a shallow
copy, but some classes override it.

Does not copy the objects that the instance variables contain, but ciopies the
“pointer” to the objects.

27

e shal | owCopy returns a copy of the receiver which shares the receiver’s instance
variables. This allows two objects to share one set of instance variables.

Shallow Copy

receiver .
of receiver

» deepCopy must be implemented in the rare cases in which it is needed

« How should this be done? Create new instances of the member objects, then
assign them to the new object.

« Example, shallow copies of arrays.:

| arrayl array2 objectl object2 object3]|

objectl := #("A).

object2 := #('B').

object3 := #('C).

arrayl := Array with: objectl with: object2 with: object3.
array2 := arrayl copy.

(arrayl at: 1) at: 1 put: 'D.
arrayl inspect.
array2 inspect.

4% an Array =]

TR = o) e) =

#HAD) #HB) #HCY) =

2
3

 Accessing indexed variables
« at: index returns the object at index
« #(a b c) at: 2 returns‘b’

28

at: index put: anCbject putsanObiject atindex of the receiver

« returns anObject

« #(a bc) at: 4 put: #d returns‘d

basi cAt: index isthe same as at: index but cannot be overridden

basicAt: index put: anObject — Same as above

size returns the number of index in the receiver

e #(abcd)size returns 4

basicSize same as size, but cannot be overriden

readFromString: aString creates an object based on the contents of aString
Yourself returns the receiver

29

Lecture 8: Messages & Methods

« Messages are what is passed between objects
« Methods are what is defined in a class to act on an instance of the class
* Message Expressions
« Receiver-object message-selector arguments
* Unary
* Receiver message-selector
e Parsed left to right
e EX: Time now
e Ex: 8 squared.
e Binary
* Receiver message argument
* Parsed left to right
e Ex:1 + 2 * 3. (Note: returns 9)
» Parenthesis do the expected
e Ex:1+ (2* 3). (returns 7)

 Keyword
* Receiver message arguments
« Ex:
aString = ‘ABC'.
astring at: 3 put: $D. (Note: returns ‘D’, aString equals #(ABD))
e Important to note that ‘ABC’ at: 3 put: $D returns $D

e aString is the object
e at is the keyword message-selector
e 3isthe argument
e« ‘'C’ isthe object
e put is the keyword message-selector
« $Dis the argument ($D is a literal)
« Parentheses change order
* Precedence always left to right
e Separated by periods, unless temp variable declaration or comment
¢« Method Lookup
* A method and a message-selector must be exactly the same, or no method will be found
by the method lookup
» The methods defined for the receiver’s class first
« If no match, the superclass is searched
e Path continues through Object unless a method is found.
« sel f refers to receiver, lookup starts within the class of the reciever
« super refers to receiver, lookup starts in superclass of receiver

30

Example

What is the order of initialization? (v1, v2, v3, v4, v5, v6)
Why? (initialize()'s look to superclass, then return to call their own initialize
because they are implemented as super initialize)

ClassA
vl
v2
initialize()

X
ClassB
v3 /
v4
_ super initialize()
1
X

ClassC
v5
v6 \
_ super initialize() |

/

| Formal
arguments

clnstance

31

Lecture 9: Variables and Return values

e Avariable is a reference to any kind of object
¢ Method arguments
e Accessibility: private
e Scope: statements within the method
« Extent: life of the method
» Declaration: define with method name on first line of method (name: aStri ng)
» Assignment: Assigned by sender of the message (aNode name: ‘Node2’)
* Accessing : Directly by name
e EX! aninteger raisedTolnteger: 4.

e To understand this, it is easiest to look at literals and constants used as method
arguments. The argument 4 is only visible to the object and the method- it cannot be
accessed outside of the method. This coincides with the life of the variable, as it dies
after the method call.

« Temp variables
e Accessibility: private
e Scope: statements within the method
« Extent: life of the method
» Declaration: use vertical bars
* Assignment: use ‘gets’ operator
e Accessing : Directly by name
« Example:

cubeWt hl nt eger
| x|
x = self raisedTol nteger: 3.

* X is created in the method using the vertical bars, and is released once the method is
finished.
* Instance variables
« Accessibility: private
e Scope: Instance methods of the defining class & subclasses
« Extent: life of the instance
« Declaration: define on the instance side of the class template

hj ect subcl ass #Node
InstanceVariableNames: ‘name nextNode’
ClassVariableName: “
PoolDictionaries:”
Category: "

* Assignment: write a method that sets the value
* Accessing : write a method that gets the value
e Can be either named or keyed
« If keyed, then they can be accessed through ordinary at:put: messages
* Class instance variables
* Accessibility: private
e Scope: Class methods of the defining class & subclasses
« Extent: life of the defining class
« Declaration: define on the class side of the class template

Account class
InstanceVaraibleNames: ‘interestRate’

32

» Assignment: write a class initialize method in the defining class and all of its subclasses
e Accessing : Write a class method that returns the value

Class Variables

» Accessibility: shared

e Scope: Instance and class methods of the defining class & subclasses
e Extent: life of the defining class

« Declaration: define on the instance side of the class template

e Assignment: write a class initialize method

e Accessing : Write a class method that returns the value

* Always begin with uppercase

Global Variables

e Accessibility: shared

e Scope: all objects, all methods

e Extent: while in Smalltalk dictionary

» Declaration: with assignment

e Assignment: with declaration
Smal [tal k at: #MyTranscript put: TextCol |l ector new.

e Accessing : Directly by name
« Don't use, unless absolutely necessary. Bloated images, anti-OO code, incorrect code
are the consequences.
Return Values
* Method always returns an object
e Default return value is self.
« Use " to explicitly return a different object
e Can use both implicit and explicit returns in a method (i.e. in a conditional)

33

Lecture 10: Blocks and Branching

Blocks
» Contains a deferred sequence of expressions
e Used in many of the control structures
* Instance of Bl ockd osure
e Returns the result of the last expression (similar to lisp)

e Ex:[3+4. 5*5. 20-10] returns a Home Context with value of 10.

e [3+4. 5*5, 20-10] val ue returns 10.
e Ex: ['Visual',’Works’] value returns ‘VisualWorks’ (comma is binary method)

e Syntax
[:argl :arg2 ... :arg255 | |temp vars| executable expressions]

e Ablock can contain:
¢ 0to 255 arguments
e temp variables
e executable expressions
« Block with no arguments: sequence of actions takes place every time value message is
received by the block
« Block with arguments: action takes place every time block receives messages value,
value: value, etc.
* block variables scope is only within defining block
* NOTE: temp variables inside declared blocks have not been successfully tested with
Smalltalk Express or GNU Smalltalk.
« Examples
e [x:y|x+y/2]value: 10 value: 20 (returns 15)
e [|x| x := Date today. x day] value (returns the day to today’s Date)
e [Date today day] val ue returns same value & is more succinct
e [:y] IX] x:=y *2. x * x] value: 5 (returns 100)
e #(5 10 15) collect: [:x | x squared] (returns#(25 100 255)
* sends 1 argument 3 times and collects the results into an array
Class Boolean
» Classes True and Fal se are subclasses of Boolean
» Logical operators can be used for testing
e The ‘and’ operator: &
e The ‘or’ operator: |
e The negation operator: not
e not is a unary operator
* The equivalence operator: eqv
e The exclusive or operator: xor
e The Bool ean classes are used in branching
« and: and or : methods used with alternative blocks returns values of alternative blocks
e ifTrue: andifFal se are used with blocks to provide if-then support
e can be used together in either order, or separately
Branching (Control Structures)
* Boolean classes Tr ue and Fal se understand keyword messages:
e ifTrue:
e Ex: (result: anArray = #(‘a’ ‘b’ ‘c"))

| anArray |

anArray = #('a’ ‘b’ 'd").

(anArray at: 3) asString > ‘c’
ifTrue: [anArray at: 3 put ‘c’].

« ifFalse:
e ifTrue: ifFalse:
e Ex: (result: upperArray = #('A’ ‘B’ ‘D")

| anArray upperArray |
anArray = #(‘a’ ‘B’ 'd").
upperArray = Array new.
upperArray := anArray collect:
[:aString | aString asUpperCase = aString
ifTrue: [aString]
ifFalse: [aString asUpperCase]].

ifFalse: ifTrue:
These messages demand zero argument blocks as their arguments
« Ex:
abs
~self <0
ifTrue: [0 — self]
ifFalse: [self]

* What happens here?

e self iscomparedtoO

« corresponding block is executed

« (-selff orself isreturned depending on which block was executed
Repetition
* timesRepeat :message

* EXx: 5timesRepeat [Transcript show: ‘This is a test’; cr]
* to: message (similar to for loop)

e EX:! 1to: 15 by: 3 do: [:item | Transcript show: item printString;

cr]

Conditional Iteration
« Blocks can be used as arguments in messages and can be receiver objects
e whileTrue : and whileFalse : messages

e get sent to blocks. ifTrue: and ifFalse: get sent to Boolean

e Ex (receiver):

Initialize: myArray

| index |

index := 1.

[index <= myArray size]
whileTrue:
[myArray at: index put: 0.
index := index + 1]

e Ex (argument):

Initialize: myArray
| index |
index := 1.
[myArray at: index put: 0.
index :=index + 1.
index <= myArray size] whileTrue;

35

Lecture 11: Reporting Errors and Debugging techniques

e Error Handling

Smalltalk’s interpreter handles all errors

An error is reported by an object sending the interpreter the message

doesNot Under st and: aMessage

There are some common error messages supported in the Object class, but

implementation is dependant on the system
« doesNot Under st and: aMessage

- Lets look at an example of trying to use a method that an object of the class

Smallinteger cannot understand.

| anlnteger |
anl nteger := 0.

sel f doesNot Understand: (anlnteger do:[]).

47 Exception

=10] x|

Unhandled exception: Message not

understood: #do:

Froceed

Terminate

Copy stack

Carrectit...

Srmalllnteger(Object)>>doeshotlUnderstand:

UndefinedObject=>unboundhethod
LIndefinedObject{Object)=>performMethod: arguments:

LndefinedObject{Object)=>performMethod:

CompilerfSmalltalkCompil. . ever: notifying:ifF ail:

36

error: aString uses aString in the report the user sees

self error: "an Error occurred’ .
4% Exception

Unhandled exception: an Error
occurred

Froceed Terminate

Copy stack

LndefinedObject{Object)==error:
IndefinedObject>>unboundhethaod
LindefinedObject(Object)==performhethod: arguments:
UndefinedObject{Object)==perdormiethod:
Compiler{SmalltalkCompil. . eiver notitying:ifF ail:

primtiveFail ed reports that a method implementing a system primitive failed
shoul dNot | npl ement reports that the superclass says a method should be
implemented in the subclasses, the subclasses do not handle it correctly.
e This method is utilized throughout the collection classes. If we look at the Array
class, we'll see this method is used inside the add: method.
e Arrays are statically sized collections, and the add: method is used to grow
the size of collections.

37

4% System Browser =]
Magnitude-Generzﬂ .ﬂ.rr:a'-,-'Ed[::u:ulIEu::tiu:uru accessin =l
Magnitude.Nurmbe | Collection e ——

[T | KeyedCollection printing
Collections-Unord private

Collections-Seque -|& instance € class|testing |

ol

I L«

add: newObhject
“ArrayedCollections cannot implement add:.”

self shouldMotimplement

|«

« subcl assResponsi bi | ity reports that a subclass should have implemented the
method
« This method is used extensively in abstract classes. This method allows all
objects in the hierarchy to implement a method differently, while reporting an
error if the method was not defined.
+ Example: Class Auto defines a method dri ve, but only calls the
subcl assResponsi bi | i ty method. We define a subclass Truck, but do not
define the method dri ve. If we then define a Truck object and call the drive
method, then Smalltalk will try to pass the drive message up the tree until a
parent class knows how to implement it- in this case displaying a
subcl assResponsi bi | i ty error message.

hj ect subcl ass: #Auto
i nst anceVari abl eNanmes: ’ speed
cl assVari abl eNanes:
pool Di ctionaries: ’
category: ' Exanpl es-General’
' Aut o et hodsFor: ’'creation’
wi t hSpeed: aSpeed
sel f subcl assResponsibility! !
I Aut o met hodsFor: ' driving’
accel erate

speed : = speed + 1.!

decel erate

38

speed : = speed + 1.!
drive

sel f subcl assResponsibility! !
Aut o subcl ass: #Truck

i nst anceVari abl eNanes:

cl assVari abl eNanes:

pool Di cti onari es:

category: ' Exanpl es-General ’!
I Truck nmethodsFor: ’'creation’!
wi t hSpeed: aSpeed

speed : = aSpeed.! !
| aTruck |

aTruck := (Truck new) w thSpeed: 5.
aTruck drive.

4% Exception =] g

Unhandled exception: My subclass
should have overridden one of my
messafes.

Froceed Terminate

Copy stack

Truck(Object)>>subclassResponsibility
Trucki{Auto)==drive
IndefinedObject>>=unboundhethad
LindefinedObject{Object)=>performhethod: arguments:
UndefinedObject{Object)=>perdormbethod:

« Message Handling
« Used to send messages to objects, usually only created when an error occurs

« perform isthe method called to pass messages, takes many different arguments, or
just aSymbol.

e A good example of this can be seen in the Goldberg book (page 245).

e Suppose we wish to write a simple calculator that checks to make sure each
operator is a valid operator.

hj ect subcl ass: Cal cul ator
i nst anceVari abl eNanmes: ’'result operand’
cl assVari abl eNanes: '’
pool Di ctionaries: '’
category: ' Exanpl es- General ’!

I Cal cul ator nethodsFor: ’creation’!

new
Asuper new initialize

I Cal cul ator nethodsFor: ’accessing'!

resul t
Aresul t

I Cal cul ator methodsFor: ’cal culating'!

appl y: operator
(result respondsTo: operator)
ifFalse: [self error: ‘operation not understood’].
operand isNil
ifTrue: [result := result perform: operator]
ifFalse:
[result := result perform: operator with: operand]

clear
operand isNil
ifTrue: [result := 0]
ifFalse: [operand := nil]

operand: aNumber
operand := aNumber

ICalculator methodsFor: 'private’!

initialize
result:=0

* The following code shows an example of how to use the class Calculator

| aCalculator |
aCalculator := Calculator new. “result = 0”
aCalculator operand: 3.

aCalculator apply: #+. “result = result + 3 <3
aCalculator apply: #squared. “result =3~ 2 <9
aCalculator operand: 4.

aCalculator apply: #-. “result = result — 4 <5

e System Primitive Messages
e Messages in class Object used to support system implementation
* InstVarAt: aninteger and instVarAt: aninteger put: anObject are examples
which are used to retrieve and store instance variables.
« In general, these will not be used, but are important to how Smalltalk works.
e Class UndefinedObject
» the object nil represents a value for uninitialized variables
e nil also represents meaningless results
* Testing an object’s initialization is done through i sNi | and not Ni | messages

40

* Debugging
- Smalltalk has a small set of methods for error handling and are useful to debugging.
These messages are implemented by passing Signals.

Whats a signal? A signal is an Exception passed to the VM. A signal will stop the
execution and show a window with a message and has several qualities, such as
whether or not the exception is proceedable. An example of this is the hal t :

astri ng message, which raises a hal t Si gnal with the context of the receiver and
the error message of aStri ng.

e errorSignal

« nessageNot Under st 0odSi gnal

e haltSignal

e subcl assResponsi bi litySi gnal

« confirm similar to noti fy: method, brings up a window asking for confirmation, not in
all implementations . In VW 3.0 and above, the conf i r m method belongs to class Dialog.

Ex: (Dialog confirm: ‘Quit ?’) ifTrue:[aBlock].

3 halt

« halt shows the debug window, with ‘halt encountered’ or similar message as
the primary error. Useful for setting a breakpoint to check value of variables
« Ex:self halt.

« Ex: Itis possible to stop other objects
Transcript halt.

+ halt: aStringimplements halt, bringing up a window with the label from
astring

« hal t: appears very similar to notify:, but with one difference. hal t ; allows
invariants related to multiple processes to be restored.
« How could I do this? When execution halts, use the workspace to restore the
values.
« hardHal t halts the execution without passing a signal.

¥ Biepln

I Pracead Temnss Il Duhii | Fmresd Temnais |I

Copry siack Copey smck
Liridlefirva b g0 b gt = hait e o 00 b 1 2 ik iy R e
Urndfefire 0L ect= und s divka hid Ured e o 000 b 4100 b 1} == pafmmobvbaribiad aipuments
iridffirva b et b gt = peefoimbdaibod sigaments: | UnderadDibpa cii0 bja clle = peifermiviatbod
Ui v 000 by g0 by gck e = poisefoamaflad Foed Cowripd eriSma b all Comigl . e noifping IF ail
Cocu palery = Bl ol oo il . ™ redil g 0l pptirei2iad [18 P grop® Edil o= = eea higl 055 kel b

notify: aString: shows a message dialog window with aString as the label. This
method is not available in Smalltalk Express.
« EXx: self notify: ‘custom error message’.
inspect displays a window showing the object and all of its variables
Ex:

| anArray upperArray |

anArray = #(‘a’ ‘B’ 'd").

upperArray = Array new.

upperArray := anArray collect:

[:aString | aString asUpperCase = aString
ifTrue: [aString]

41

i fFal se: [aString asUpperCase]].
upper Array inspect.

- Smalltalk Express Inspecting: Array
File Edit 3Smalltalk Inspect

TR = 5 D)

1
2
3

42

Lecture 12: Designing and implementing classes

« Steps to develop a specification
1. Decide what we want the program to do
2. Decide on the data structures
3. Decide on the operations we want to apply to these data structures
« The message protocol
e Class Protocol: A description of the protocol understood by a class
* Typically contains protocols for creating and initializing new instances of the class
« Instance Protocol: A description of the protocol understood by instances of a class
« Messages that may be sent to any instance of the class
« Steps to implementing a class
1. Deciding on a suitable representation for instances of the class.
2. Selecting and implementing efficient algorithms for the methods or operations
3. Deciding on class variable and instance variables
« Describing a class
e Class name: A name that can be used to reference the class
e Superclass name: name of the superclass
« Class variables: variables shared by all instances
» Instance variables: variables found in all instances
« Pool dictionaries: Names of lists of shared variables that are to be accessible to the class
and its instances. Can also be referenced by other unrelated classes
« Class methods: operations understood by the class
* Instance methods: operations that are understood by instances
« Example: A class for complex numbers
* Step 1: What do we want to be able to do?
* Specify real and complex parts
e Do simple operations of complex and real parts
e Step 2: What do we want to use?
* Specify real and complex parts
« Step 3: How are we going to use the data structures?
e Creating a complex number
e Accessing complex and real parts
* Adding and Multiplying Complex numbers
e The Class Description (for more detail refer to LaLonde pages 44-45)

Class Complex

Cl ass nane Conpl ex
Super cl ass nane oj ect
I nstance vari abl e nanes real Part i nmagi naryPart

Cl ass net hods
Instance creation

newW t hReal : real Val ue andl magi nary: i magi naryVal ue
“Returns an initialized instance”
| aComplex |
aComplex := Complex new.
aComplex realPart: realValue;
imaginaryPart: imaginaryValue.
~aComplex

accessing

43

real Part
“Returns the real component of the reciever”
~realPart

imaginaryPart
“Returns Imaginary part”
AimaginaryPart

operations

+ aComplex
“Returns the receiver + aComplex”
| realPartSum imaginaryPartSum |
realPartSum := realPart + aComplex realPart.
imaginaryPartSum := imaginaryPart + aComplex imaginaryPart.
A Complex newWithReal: realPartSum andimaginary:
imaginaryPartSum.

* aComplex

“Returns the receiver * aComplex”

| realPartProduct imaginaryPartProduct |

realPartProduct := (realPart * aComplex realPart) —
(imaginaryPart * aComplex imaginaryPart).

ComplexPartProduct := (realPart * aComplex imaginaryPart) +
(imaginaryPart * aComplex realPart).

A Complex newWithReal: realPartProduct andimaginary:

imaginaryPartProduct.

* The following code shows how to use this new class. The code computes the
magnitude of the complex number. After multiplying the number by its conjugate,
there is only a real part, so we just take the square root.

| aNumber |
aNumber := (Complex new) newWithReal: 1 andimaginary: 1.
aNumber := aNumber * (Complex new)

newWithReal: (aNumber realPart)

andimaginary: (0 — aNumber imaginaryPart).
(aNumber realPart) sqrt.

Lecture 13: VisualWorks

Note: The lectures on VisualWorks were taken from
http.//www.cs.clemson.edu/~lab428/VW/VWCover.html. Only minor modifications have been made.

Starting VisualWorks

To start VisuaWorks from the command line of a Unix system, use the command

lusr/local/visual/vw image.im

To start VisualWorks with an image other than the default, use the command

VW image-file

Enter the appropriate command to start VisualWorks on your system. Y ou should see two windows, the
VisualWorks Launcher and the Workspace.

VisualWorks Launcher
The VisuaWorks Launcher isthe main window in VisuaWorks. It is used primarily to access the various
tools and resources available. A Launcher window is shown below.

http://www.cs.clemson.edu/~lab428/VW/VWCover.html

J_'L| VisualWorks

File Browse Tools cChanges Database Window Help

EQE WEE @

Yisualim created at 3 June 1335 12:53:29 pm A
Copying visual.cha to visualim.cha... done

visualim.im created at 25 September 1995 12:08:49 pm J

Workspace
A Workspace is used primarily to test pieces of Smalltalk code. A Workspace window is shown below.

Jelcome to
VisualWorks® Release 2.0 of 4 August 1994
Copyrght @ 1994 ParcPlace Systems, Inc. All Rights Reserved.

Using the Mouse and the Pop-Up Menus

General familiarity with windowing systemsis assumed in this tutorial. Mouse button operations refer to
the left ([Select]) mouse button unless otherwise specified.

There are two types of pop-up menus associated with each window in VisualWorks. There is the [Window]
menu which is accessed by clicking the right mouse button in the window. The [Window] menu is used for
closing, moving, and resizing the current window. The second pop-up menu is the [Operate] menu which is
accessed by clicking the middle mouse button in the window. There may be more than one [Operate] menu
per window, in which case an area will be specified in which to click the middle mouse button. To select an
item from either the [Operate] or [Window] menus the mouse button used to obtain access the menu must
be used.

Note: The following conventions are used for one-button and two-button mice:

Two-button mouse

The l€eft button is the [Select] button. The right button is the [Operate] button. The [Window] menu is
obtained by using the Control key and right ([Operate]) button together.

One-button mouse

The button alone is the [Select] button. The [Operate] menu is accessed using the Option key and the button
together. The [Window] menu is accessed using the Command key and the button together.

In windows that have a menu bar, pulldown menus are accessed by clicking on the word associated with
the menu. For example, click on File located on the Launcher’s menu bar to obtain the File pulldown menu.
Pulldown menu selections will be specified by the menu name followed by an arrow(-) and the menu item.
For example, the File-Settings option from the VisualWorks Launcher refers to the Settings option from
the File pulldown menu. Many pulldown menu options also have a shortcut button on the tool bar, which
will be refer to with its associated icon. For example, the Canvas Tool may be obtained by using either the

Tools-New Canvas menu option or by the shortcut button EI

Setting up VisualWorks

Toinsure access to Smalltalk source code and VisualWorks On-line Documentation, the proper paths must
be set using the Settings window. Open the Settings window by selecting the File-Settings options from the
VisualWorks launcher. Y ou should see the window depicted below. Make sure that the correct the path for
the VisualWorks source code is displayed (visual_pathlimage/visual .sou). If you need to correct the path,
correct as necessary and click Accept. (Note: No changes should be needed at Clemson.)

45

System Source File Locations mm@
1 - Sources: T —— |
fopt/lacal/visualimage/visual. sou Palstte |
2 - Changes: Canvas |
Yisual.cha Ii:l'lage atyle |
Iérnwsing |
Iinstall |
Ul Look |
I'-f'-.-'indnw |
IHeIp |
| ﬂcceptl Reset Help | Teon |
Tert |
[Z]

|

|

Select the help settings by clicking on the Help tab of the Settings notebook pages (not on the Help button
for the Settings window). Y ou should see the following window. Make sure that the path for the online
documentation is correct. Click Accept after making any necessary changes.

Help Options

Documentation Directory:

Reset

| Accept |

Help |

_____E

SOurces

Palette

Canyas

Page Style

Browsing

Install

I Lok,

Wincow

Hellp

[can

Text
|

B

|
Now close the Settings window by selecting close from the Settings [Operate] menu.

|

46

Online Documentation
Another useful tool in VisualWorks is the online documentation. The online documentation can be
accessed from the VisualWorks Launcher viathe Help-Open Online Documentation option or the

shortcut button EI . Shown below is the Online Documentation window that lists three manuals that may
be used as further references. These three manual s include the following:
Database Cookbook - Gives information on how to connect to a database.
Database Quick Start Guides - Gives information on how to create models for database applications.
VisualWorks Cookbook - Givesin-depth information on Smalltalk and various windows and widgets.

File Bookmark Help

Search | History Examples 3ee also

Fage: I] % Back To:

Wisuahforks Library

Book: Database Cookhook |
Book: Database Guick Start Guides
Book: YisualWarks Cookhook

=

e |
For example, suppose you needed information on how to construct a Smalltalk message. Select the
VisualWorks CookBook by clicking on the book title with the mouse button. Now, select Chapter 1:
Smalltalk Basics, and then select Constructing a Message. | nformation on your topic is now displayed in
the Online Documentation window. Close the Online Documentation window.

System Browser

A System Browser is a useful tool for viewing Smalltalk classes, protocols, and methods. Not only does a
Browser provide useful waysto view system and user classes, it also has many features that help the user to
quickly and easily develop classes, protocols, and methods.

To open a System Browser, select Browse-All Classes from the VisualWorks Launcher or use the shortcut

button @ Notice that a System Browser is divided into four columns across the top half of the window,
and the bottom half contains atext area. These are important areas to learn. The columns (left-to-right) are
the Category View, the Class View, the Protocol View, and the Method View. The text area that comprises

47

the bottom half of the window is the Code View. These five different views will be referred to frequently in
the development portion of this tutorial.

For example, select the category "Magnitude-General" and the classes associated with that category appear
in the Class View. Select the Date class, and the protocols associated with that class are displayed in the
Protocol View. Finally, select the accessing protocol and the methods associated with that protocol are
displayed in the Method View. The System Browser should now look like the window shown below.

B System Browser
rMagnitude-Gene s [Date 4| accessing X [T — 5
Magnitude—Muml ||| Magnitude arithmetic day
Collections- abs Time incuiries leap
Collections-Unol TimeZaone convering manthlnde:x
Collections-Seq) | --—--—-----—--- printing manthMarme
Collections - Strir private weekday -
Collections-Text s <> instanc - class | ———————————— Year /
Jnessage selector and argument names A
"comment stating purpose of message"
| tempaorary variahle names |
statements
- f

Notice that the Code View currently contains only atemplate for the code of a method. Select any method
and you will seeits code in the Code View. Close the System Browser by selecting close from the System
Browser [Window] menu.

Filing In and Filing Out Components
To save categories, classes, or even methods you can write ("file out") these componentsto afile and then
remove them from your image. Later you can read ("file in") these componentsinto your image.

Filing In

We will illustrate how to "file in" components by adding an application, Calculator Example, to our image.
The CalculatorExample classisin the category UlExamples-General, and it is stored in the file
visual_pathitutorial/basic/calc.st. First note that the category Ul Examples-General is not currently in the
image by scrolling through the categoriesin the Category View of a System Browser. Open aFile List from

K]
the Tools-File List option or the shortcut button |; of the VisualWorks Launcher. Enter
/opt/local/visual/tutorial/basic/* in the first input field, which is called the Pattern View, and Return. (Note:
Thisisfor the visual_path a Clemson.) Select /opt/local/visual/tutorial/basic/calc.st from thefile list,
which is called the Names View. The File List should look like the following window.

48

foptdocalfvisualtutarial/basics N auto read

foptflocalivisualtutorial/basicichkbk. st

‘Copyright (23 1334 by ParcPlace Systems,

Ll

Inc. &l rights reserved.’

[

Changeset current addPatch: ‘calc-WWa. 0%

Ohject subclass: #Calculator
instanceariableMames: "accumulator
transient operator trailingDigits startMewigit ©

classVariableMames: ™

poolDictionaries: ™

category: ‘UIE<amples- General’l
Calculator comment:
‘Calculator is a sifmple calculator model,
utilized by CalculatorExample /

e |
Select file in from the Names View [Operate] menu. Verify that the category UlExamples-General is now
in the image by using the System Browser. Close the File List.

Filing Out

Y ou can file out a category, class, or even single methods. For example to file out a category, select (with a
mouse click) a category from the System Browser (so that the category is highlighted). Select file out as...
from the Category View [Operate] menu, enter the file name to which you wish to file the category out, and
click OK. A category, class, or method that isfiled out can later (for example, in another VisualWorks
session) befiled in asillustrated in the previous section.

Starting an Application

Once you have developed an application you will want to execute it. To start a completed application, open
a Resource Finder using Browse-Resources from the VisualWorks Launcher or the shortcut button .
Select View-User Classes from the Resource Finder menu. Select the class you would like to start. To start
the Calculator Example that we previously filed in, select the CalculatorExample class and the
windowSpec resource as depicted below. (Note that the windowSpec resource is automatically selected
because it isthe only resource for the CalculatorExample class.) Select Start from the Resource Finder and
the Calculator Example will start. When you have finished using the Calculator, close the application by
selecting close from the Calculator [Window] menu. Close the Resource Finder.

49

View C(Class Resources

Browse | atart | Add... | Hemuve...l Edit

User Classes Resources

[CalculeforEranple | [% windowSpec

-

=
=

e |
A class may have one or more "resources’, which are user interfaces. To start an application, we select its
class and the appropriate resource for the initial window of the application.

Saving Your Work

Doing a"Save" in VisuadWorks is a complete save. It actually saves an image of all of the current classes
(system and user), active windows, etc. Thisis anice feature if it becomes necessary to stop in the middle
of your work. Unfortunately, saving your image has drawbacks. An image on a Solaris platform will take
up approximately 4 megabytes of disk space. To save an image, select File-Save As from the VisualWorks
Launcher. A dialog box will appear. Enter the name for your image file and click OK. VisualWorks will
save thefile in the current directory unless a different path is specified. The file will be have the extension
aim.

VisualWorks automatically creates a .chafile in the directory from which VisualWorksis started, and
VisualWorks periodically records the changes made to theinitial image in the .chafile. The .chafiles can
be useful for change management, and they can sometimes be used for error recovery (e.g., if you
mistakenly delete some work that you need or fail to file out some work that you wished to save), but you
may wish to delete the .chafiles until you use VisuaWorksin alarge project.

50

Lecture 14: More on the Basic VisualWorks Environment

The purpose of this Lecture is to provide a further introduction to the basic VisualWorks
environment for the support of Smalltalk.

Workspaces

The Transcript

Editing in VisualWorks Windows

Using a Browser

Adding a New Method

Adding New Classes or Methods from External Files

Changing Existing M ethods

Adding a New Class

Saving Code into aFile
VisualWorks includes many tools that facilitate the development of Smalltalk programs. These tools were
introduced in Chapter 2, and this chapter provides further illustrations of the uses of the tools for
implementing Smalltalk programs. The use of VisualWorks for developing GUI applications will be
illustrated in Chapters 4-6.

Workspaces

If you do not currently have Visua Works started, you should start it now. VisuaWorks initially displays a
Launcher and a Workspace. The Launcher contains control widgets for various VisuaWorks facilities, as
discussed in Chapter 2, and it also includes a Transcript window in the lower part of the window. We will
illustrate some of the facilities of VisualWorks using the Workspace for Smalltalk and the Transcript for
displaying results. Y ou should resize these windows if needed so that they are large enough for severa
lines of text.

Y ou can type segments of Smalltalk code into a workspace (or most any other VisualWorks window, for
that matter) and execute it. For example, type

5+ 9

in the workspace. (Y ou should move the cursor down to a new line with the mouse select button and/or the
arrow and return keys first.) Now highlight 5 + 9 by dragging the mouse [Select] across the text. From the
[Operate] (middle button) menu, note that you can do it or print it. Selecting do it will cause the code to be
executed, and selecting print it will cause the code to be executed and the result printed immediately
following the code. Select print it and your workspace should look something like

r‘ | Workspace
“Welcome to A

VisualWorks® Release 2.0 of 4 August 1994
Copyright @ 1994 ParcPlace Systems, Inc. All Rights Reserved.

5+914

¥,
I,
(Selecting do it here will have no visible effect, because evaluating 5 + 9 does not have any external effect
(side effect).) Note that the result printed is highlighted, so it can easily be deleted by pressing the
Backspace key.

51

Testing code in this way is useful for code development in Smalltalk and also for debugging. Remember
that you can highlight Smalltalk code in most any window and execute it or print its result in this manner.
Multiple statements, separated by periodsin the usual way, can be executed with asingle do it (or print it).

The Transcript

The transcript window in the lower part of the Launcher is associated with the Smalltalk global variable
"Transcript". Transcript is an instance of the class TextCollector that allows text to be displayed in the
transcript window. Strings can be displayed in the transcript window by sending a show: message with a
string argument to Transcript. For example,

Transcript show 'Hello . Transcript cr

will, when executed, display "Hello" in the transcript beginning at the current Transcript cursor position.
The message cr will then instruct the Transcript to begin anew line. (Before executing thisto try it,
position the Transcript cursor at the beginning of a new line below the initial messages that are already
there.) Notethat it is easier to use cascading here:

Transcript show 'Hello' ; cr
Displaying values of classes other than String can usually be done fairly easily by using the printString
message to generate a string representation of avalue. For example, try executing the code

Transcript show. (5 + 9) printString; cr

Editing in VisualWorks Windows

Editing in a VisualWorks window is done by using procedures that are fairly standard for screen-based
editors. Text that istyped isinserted at the cursor position. Replacement of text can be done by selecting
the text (by dragging the mouse acrossit, or double-clicking to select aword, etc.), and then using the
Backspace key to deleteit or just typing its replacement to replace it. Cursor movement can be done using
the arrow keys or by selecting the new cursor position with the mouse.

The scroll bars at the right side of a window can be used to scroll up and down, and a scroll bar at the
bottom can be used to scroll left and right. Windows can be moved or resized in standard ways with the
mouse at any time.

Using a Browser

A browser can be used to inspect the definition, comments, and code for all catagories, classes, and
methods in the current image, both those that are provided in the initial image (i.e., the "built-in" classes
and methods) and those that are added by the VisualWorks user. We will illustrate some of the uses of a
browser in this section.

Open a browser from the Launcher with a Browse-All Classes selection or by using the shortcut button

@ . The classes are listed by category in the top left sub-window (the Category View). Select
"Collections-Unordered" and the classes in this category will be listed in the next sub-window (the Class
View). Select "Dictionary" and the protocols for the methods in class Dictionary will be shown in the next
sub-window (the Protocol View). Select "accessing” from the Protocol View and the methods for this
protocol will be listed in the rightmost sub-window at the top (the Method View). Finaly, select "at:put:" in
the Method View, and the code for the at:put: method is displayed in the bottom window (the Code View).
Y our browser window should now look like this:

52

fﬂ System Browser

------------ Y e —— Y ey——————] p— Y
Magnitude-Gene d Bag accessing associationat:
hagnitude-MNumk Dictionary testing associationst:ifa
Collections- &hst Identity Dictionary adding associations
Collections- Unot IdentitySet removing at:
Collections-Seqt Set enumerating at:ifahsent:
Collections - Strin WeakDictionary printing at:put:
Collections - Text 4 dictionary testing bindingF ar:
Collections- &rra | 4 <> instanc - class | dictionary removi| 7 | keyatvalue: Fi
At: key put: anObject A

"Set the value at key to be anObject. If key is not found, create a new

entry for key and set is value to anObject. Answer anOhject.”

| index element |

key == nil ifTrue: [~self subscriptBoundsErrar: key).

index = self findkeyOriil: key.

element := self basicAt: index.

element == nil

ifTrue: [self atMewlndex: index put: (Association key: key value: anOhject)]
ifFalze: [element value: anOhbject].
~anOhject

It is sometimes difficult to locate a specific class using the approach that was just discussed. Any existing
class can be found quickly by using the find class... selection from the [Operate] menu in the Category
View (top left window of the browser). Select the find class... option and a dialog box will appear. Type
the name of the class in this box (you can just type the name -- it will replace the highlighted text in the
class name box), and then either press Return or select OK. Try this by typing String as the class name.

Y our browser should then look something like

53

fﬂ System Erowser o
------------ A [A[———--- Y
Magnitude- Gene d Characterarray accessing
hagnitude-MNumk String conyverting
Collections- Abst Symbal Ccomparing
Collections- Unot Text testing
Collections-Seqt| | --------—---- printing
Collections - Strin user interface
Collections - Text private
Collections- Arra, | # 4> instanc - - class || external copying / F
LharacteraArray subclass: #3tring A

instancevariableMames: ™
classiariableMames: ‘DefaultClassForPlatform °
poolDictionaries:
category: "Collections-Text’
- #

We can'obtaj n abrowser organized by class hierarchy for a given class by using the spawn hierarchy
menu selection in the Class View. Try this with class String selected, and you should get a new Hierarchy
Browser that looks something like

FLI Hierarchy Erowser on: 5tring L
| “Hierarchy™ [------------ Y Y
Strini |~ accessing
= conyerting
) -
g || comparing
testing
/ printing
N— - user interface
4 instan - class || private / -
Y

Lharacterarray subclass: #5tring
instanceariableMames:
classWariableMames: ‘Default ClassFarPlatform *
poolDictionaries:
category: *Collections- Text’

f
L
Theindented listing in the Class View of a Hierarchy Browser (there is no Category View in a Hierarchy
Browser) indicates the superclass-subclass hierarchy for the class on which a hierarchy browser was
spawned (String in this case). For example, we can see here that String is a subclass of CharacterArray,
which is asubclass of ArrayedCollection, etc. Also, String has subclasses ByteEncodedString, GapString,
and Symbol.

A Hierarchy Browser can help usto find a given method for a class more easily than is generally possible
with a standard System Browser. For example, suppose that we wanted to find the method size for class
String. (This method returns the size of a string.) We begin with a Hierarchy Browser on String and note
that there is no size method in the accessing protocol (nor any other protocol). Selecting the superclass,
CharacterArray, we see that there is also no size method in this class. Continuing up the inheritance
hierarchy to ArrayedCollection, we find a size method here. So String instances inherit the size method
from ArrayedCollection.

Y ou can close the Hierarchy Browser using the [Window] close selection.

Adding a New Method

In this section we illustrate how a new method can be added to those in the current image. We will add a
method "mod10" to the Integer class that will return the value of an Integer modulo 10. That is, for an
Integer n,

n nodl1l0
will have the value n rem: 10.
Select the Magnitude-Numbers category, the Integer class, and the arithmetic protocol in the System
Browser. The arithmetic methods will be listed in the Method View, and atemplate for a method will be
shown in the Code View. We will modify the template to produce the code for our new method.
First, select the first line of text ("message selector and argument names') in the Code View and replace it
by the name of our new method (mod10). Then modify the documentation comment to indicate the
function performed by the method. Finally, replace the temporary variable declaration and statements part
by the code for our mod10 method:

N self rem 10
Y our System Browser should now look something like

Fﬂ System Browser E
------------ Y [m———] pe——————— Y [————— Y
hagnitude- Gene | arithmeticvalue arithmetic :
kagnitude-Mumt Double accessing +
Collections- &bst FixedFoint testing =
Collections-Unor Float comparing)

Collections- Seqt Fraction truncation and ro i
Collections- Strin Integer enumerating abs
Collections-Text 4 factarization and hegated =
Collections- &rra | » > instanc - class | bit manipulation | # | quo: /
mod10 3
“Return the value of the number modulo 10"
= self rem: 10,
-)

Select alccept from the [Operate] menu in the Code View and the method will be compiled and added to the
system. It will appear in the methods list of the Method View.
Test the mod10 method by executing (do it) some statements such as

55

Transcript show (27 nod10) printString; cr
(This should cause 7 to be displayed in the Transcript.)

Adding New Classes or Methods From External Files

Classes, methods, or other code can be entered into the VisualWorks system by using the file in selection
from various [Operate] menus. A filethat isfiled in must be in an external file format, which uses
exclamation points to delimit class definitions, protocols, and methods. (Thisis the same format asis used
for top-level input to GNU Smalltalk.)

We will illustrate the use of file in by implementing methods print and printNI (which are similar to
methods of the same namesin GNU Smalltalk) to make it easier for us to display resultsin the Transcript.
The method "print" will cause its receiver to display its printString in the Transcript without a newline (cr)
and "printNI" will cause its receiver to display its printString followed by a newline.

Create afile named "print.st" in the directory from which you started VisuaWorks, and put the following
textin thefile:

I Obj ect nethodsFor: 'printing !

print
"Display the object in the transcript w ndow,
| eave the cursor at the end of the object’s print string."
(self isMenberOF: ByteString)
i fTrue: [Transcript show self]
i fFal se: [Transcript show self printString]!
printN
"Display the object in the transcript wi ndow, and start a new
l'ine"

self print.

Transcript cr ! |
This code implements print and printNI as methods for class Object. Thus all classes will inherit them. (The
test for a string in method print is done because the printString for a String inserts apostrophes around the
String value. Y ou can see this by executing code such as

Transcript show. 'Hello ; cr; show. 'Hello printString; cr
in aworkspace, which will display

Hel | o

"Hel |l o’

in the Transcript.)

The easiest way to file in an externa fileisto use aFile List, aswasillustrated in Chapter 2. Open aFile

T
List from the Tools-File List option in the Launcher or by using the shortcut button . In the first input
field (the Pattern View) enter * and then Return, so that all the filesin the local directory will be listed.
Select the file print.st from the Names View, and the contents of the file that you created will appear in the
bottom (File Edit) window. (Note: Y ou can also use the File Edit window to create and edit files. Editing
options are included in the File Edit [Operate] menu.)
Load the methods that are defined in the file print.st into VisualWorks by selecting file in from the Names
View [Operate] menu. Asthefileis compiled, messages will be displayed in the Transcript indicating what
is happening. If an error (syntactic or semantic) occurs, then the file in terminates. Y ou can correct the error
by editing the file in the File Edit window, saving it using the save option in the File Edit [Operate] menu,
and filing it in again.
After successfully filing in print.st, you can test it by executing code such as

56

"Hell o’ printN
and

(5 +6) printN
Y our Launcher and Workspace should now |ook something like

r] VisualWorks -
File Browse Tools Changes Database Window Help
Yisualim.im created at 25 September 1995 12:05:49 pm 3
Hello
Hello
14
i
Hello
‘Hello®
Filing in from:
print.st
Ohject=printing
Hello
11
. /
Fﬂ Workspace i
&

Transcrpt show: ‘Hello’. Transcript cr

Transcript show: 'Hello’; cr

Transcrpt show: (3 + 9) print3iring; cr

Transcrpt show: (27 mod10) printStHng; cr

Transcrpt show: "Hello’; cr; show: “Hello® print3tring; cr
*Hello” printHl

{5 + 6) printHI v
Close the Fliie List using the close selection in the [Window] menu. '

Important Note: It isimportant to explicitly close each File List, rather than just exiting VisuaWorks. On

some systems, exiting VisualWorks without closing a File List will leave the File List runningin a
compute-bound mode, so that it will use every available cycle of cpu time even after the user has logged
off.

57

Changing Existing Methods

Any method (or class) that is in the system can be changed (or removed) in much the same way as new
code can be added. We will illustrate by changing the rem: method for Number to return aresult that is 1
larger than the correct result.

Select the category Magnitude-Numbers, class Number, protocol arithmetic, and method rem: in the
System Browser. The code for method rem: should be in the Code View. Change the line of code by
appending "+ 1" to the end of the line:

nself - ((self quo: aNumber) * aNunber) + 1
Now before changing anything, set up atest in a workspace:

(27 rem 5) printN
and if you still have the mod10 method in your image a more interesting test is

(27 rem 5) printN. (27 nod10) printN
Execute (do it) this code, and the correct answer(s) should be displayed in the Transcript:

2

7

Now replace the rem: method by choosing accept from the [Operate] menu in the Code View of the
System Browser. If there is no error indication, the new code for rem: has been compiled and entered into
the system. To see this, execute the above code again, which will now give:

3

8

Remove the "+ 1" that was previously inserted into the code for rem:, accept the revised code, and test
again to make sure that rem: now works properly.

Adding a New Class

In this section we illustrate how to add a new class using a System Browser. (Thisisthe intended way in
which classes and methods are to be added.)

We will add a new class "Random?2" as a subclass of existing class Random. An instance of class Random
returns random numbers in response to the message "next". To see how this works, instantiate a random
number by executing code such as

Smal ltal k at: #R put: (Random new)
Now generate and display in the Transcript several random numbers by executing

(R next) printN

several times. The result of R next is arandom number (Float) between 0.0 and 1.0, so your Launcher and
Workspace should now look something like

58

s 7| VisualWorks

File Browse Tools cChanges Database Window Help

EQE REE @

-

| R o Bt B N

7
0.635446
021112
0110471
0.505346
0.386139
0.578754
0.780753
0.543082
0.273315

[~ = | Workspace

b

Transcrpt show: (27 mod10) printStHng; cr

Transchpt show: "Hello®; cr; show: "Hello® printStHng; cr
‘Hello® printHl

{3 + B) printHl

(27 rem: 3) printHl. (27 mod10) printHl

Smalltalk at: #R put: {Random news)

(R next) printHl =
",

(The random numbersin your Transcript will probably be different from those shown here.)

We will implement a new class, Random2 as a subclass of Random, where Random2 will also include a
method between:and: to return a random integer between two given integer values. (Note that we could just
as well have just added the between:and: method to class Random.)

In the system browser, select category Magnitude-Number with no class selection. There will then bea

class template in the Code View:

59

System Browser

kMagnitude-Gene
hagnitude-MNumk
Callections- Ahbst
Collections-Unaor
Collections-Seqt
Collections- Strin
Callections-Text
Collections- arra

4

arithmeticialue
Douhble
FixedPaint
Float

Fraction

Integer

Y

|

!

¢ “instanc . class |

B

|

-

HMameOfsuperclass subclass: #MameOfClass
instanceYariableMames: ‘instVartlamel instVartames’
classariableMames: ‘ClassWartamel ClassWarkblames”

poolDictionaries:
category: “Magnitude- Mumbers’

=

f

Edit thé class definition template to define Random2 as a subclass of Random, with no instance vari ables

nor class variables:

]

System Browser

kMagnitude-Gene
hagnitude-MNumk
Callections- Ahbst
Collections-Unaor
Collections-Seqt
Collections- Strin
Callections-Text
Collections- arra

4

arithmeticialue
Douhble
FixedPaint
Float

Fraction

Integer

¢ “instanc . class |

Y

|

!

[

|

Random subclass: #Random
instancevariableMames: ™
classiariableMames: 7
poolDictionaries:
category: “Magnitude- Mumbers’

&

=

mal

60

Compile the new class definition by using accept from the [Operate] menu of the Code View.

Next we add the method between:and: in protocol accessing of class Random2. First, add the protocol
("accessing") by choosing add from the [Operate] menu of the Protocol View. (Class Random?2 should be
selected in the Class View.) Type the new protocol name (accessing) into the dialog window and Return to
record the new protocol.

Now edit the Code View window to contain the code for between:and:,

nl and: n2
"Return a random i nteger between nl and n2 (inclusive)."

bet ween:

Anl + (self next * (n2 - n1 + 1)) truncated
and accept. The method name should appear in the Method View, and your System Browser should now
look something like

Fﬂ System Erowser o
———————————— & LargePositivelnte Y e Y e
kMagnitude-Gene | LimitedPrecisionF accessing between:and:
kdagnitude-MHumt Mumber | | ———————————-| || -
Collections - &hst Random
Collections-Unaot Randomz
Collections-Seqt Smalllnteger
Collections-5Strin| | ———=-----——--

Collections - Text
Collections- &rra | 4 <> instanc - class | o F
between: nl and: n2 Y
"Return a random integer between nl and nZ (inclusive).”
Nl + (self next * (2 - nl + 13 truncated,
I f |

We havé now added the new class and method. Test it by executing code such as

Smal ltal k at: #R2 put: (Randon2 new)
and then execute the following several times:

(R2 between: 4 and: 11) printN
This should display severa random integers between 4 and 11 in the Transcript.

Saving Code into a File

Aswas briefly discussed in the previous lecture, the entire current image can be saved at any time, and later
it can be used to restart VisualWorks from that saved state. However, an image isfairly large, and it is more
efficient to save small modifications as external code filesthat can later be filed in to retrieve previous
work.

To see how this works, we will save the Random?2 class that was just added. From the System Browser with
the Random2 class selected, choose file out as... from the [Operate] menu in the Class View. A dialog
window should appear with the file name Random?2.st highlighted. Change the file name if desired, then

61

select OK to file out the class. Thisfile can later be filed in to reinstall the Random?2 class, and thisis left
as an exercise for the reader.

Lecture 15: System & Magnitude Classes

e Overview
e Shared Object Protocols
e Messages implemented for all objects
e 3 Classes
* Magnitude Classes
e Numbers & characters
e Collection Classes
» Lists, Arrays, and Dictionaries
e Streams
e Text, Files, and Sockets
« Shared Object Protocols
* 3 messages that can be applied to an object relating to its class
e cl ass finds out what class an object belongs to
e #(this is an array) class < Array
e Similar to class are:
« isKindO: ad ass returns true if aClass is a parent class of the reciever
e #(this is an array) isKindO: Collection & true
e isnmenberOf: ad ass returns true if the receiver is an instance of aClass.
e #(this is an array) isMenberOf: Collection € false
e isSequenceabl e returns Boolean value depending on whether the receiver is
created from a subclass of Sequenceabl eCol | eceti on
e #(this is an array) isSequenceable < true.
e (Bag with: "this’ with: "is’ with: 'a wth: 'bag) isSequenceable
< false
* NOTE: class SequenceableCollection is called class IndexedCollection in
smalltalk express, and isSequenceable is not available
e respondsToArithmetic: returns Boolean
e respondsToArthithmetic is implemented using the more general message,
respondsTo: aSynbol , testing the symbols #+, #-, #+, and #/
e« Conparing objects
e ==, ~~ CANNOT be overridden
e =, ~= CAN be overridden
. isNil, notNi I
« Example: how to test and compare objects.
« Suppose we want to write a method that takes a set, and creates a dictionary. The
dictionary stores the sorted list of members, the median, and the mean.

conpil eStats: aSet
| abi cti onary sum set Si ze|
abDictionary := Dictionary new.
(aSet isKindO: Set)
i fFalse: [self notify: 'warning, argunent is not a kind of
class Set’. "nil].

aSet class == SortedCol | ection
ifTrue: [aDictionary at: 'Set’ put: aSet]
i fFal se:
[| aNewSet |

aNewSet : = SortedCol | ection new.
aNewSet addAl |: aSet.
abDictionary at: 'Set’ put: aNewSet].

62

(aDictionary at: 'Set’) do:
[:x | x respondsToArithnetic

i fFalse: [
self notify: 'Not nuneric set’.
Anill].
setSize := (abDictionary at: 'Set’) size.

aDictionary at: 'median’ put: ((aDictionary at: 'Set’) at:
((setSizel/2) rounded)).

sum:= 0.

(abDictionary at: "Set’) do: [:x | sum:= sum+ Xx].

abDictionary at: 'mean’ put: ((sum setSize) asFloat).

~aDi ctionary.

Set(7, 12, 3, 9, 55) would result in the following dictionary

4% a Dictionary =]
e =l 17 - =l

rredian
et

hd =
47 a Dictionary =]
i -

mMean
median

Set

hd hd
4% a Dictionary _ O] %]

mean =l sortedCollection (379 12 =
median 55)

i i

4 basic subclasses of the Magnitude class

Char

e Similar to char in C, basic class can be treated similarly to number
ArithmeticVal ue

e Superclass for all numerical classes

Dat e

* Very different from C style of date & time, comparable and human readable
Ti me

« Very different from C style of date & time, comparable and human readable

Methods provided for comparison

aMagni t ude between: oneMagnitude and: anot her Magni t ude (range comparison)
aMagni t ude max: anot her Magni t ude (max of the two magnitudes)

aMagni tude mi n: anot her Magni t ude (min of two magnitudes)

aMagni t ude hash

<, <=, >, >=

63

» Example: More methods for complex numbers

abs

“Returns the absolute value of a complex number”

\(self realPart squared + self imaginaryPart squared)sqrt
< aComplex

“Returns True if the reciever is less than aComplex”
aComplex isKindOf: Complex

ifTrue: [*self abs < aComplex abs]

ifFalse: [*self error: ‘Not a complex number’].

max: aComplex
“Returns the greater value of aComplex and the receiver”
self < aComplex
ifTrue: [*aComplex]
ifFalse: ["self].

= aComplex
“Returns True if the receiver is equal to aComplex”
aComplex isKindOf: Complex
ifTrue: [
~self realPart=aComplex realPart and: [
self imaginaryPart = aComplex imaginary
part]|
ifFalse: [*self error: ‘Not a complex number’]

hash
“hashes the absolute value of the reciver”
"self abs hash.
Magnitude
Char ArithmeticValue Date Time
Number Point
Limited FixedPoint Integer Fraction
PrecisionRed
Float Double Small LargeNegative LargePositive
Integer Integer Integer

Partial Hierarchy

Type Conversion
e Converting to strings
* To produce a string representation of an object use:
e objectNane printString

| aTruck |

aTruck := (Truck new) w thSpeed: 5.
(aTruck printString) inspect.

4% a ByteString =]
elf =l ‘a Truck' =l

e objectNane storeString
| aTruck |

aTruck := (Truck new) w thSpeed: 5.
(aTruck storeString) inspect.

4% a ByteString =]

> - Truck basichew =l
instWvarat: 1 put: 5,
yourself)’

oo -0 m e)R =

« To produce the string representation of a number, the above can be used, or more
specialized methods may be used

e anlnteger printStringRadi x: aRadi x (used for base aRadix representation)

| anlnteger |
anl nt eger := 255.

65

(anl nteger printStringRadi x: 16) inspect.

47 a ByteString _|O
Sel -

e anlnteger storeStringRadi x: aRadi x

| anlnteger |
anl nt eger := 255.
(anl nteger storeStringRadi x: 16) inspect.

4% a ByteString _ |O] =]
self e s =
1
2
3
4
> -l -l

e Converting strings to numbers

Requires streams to get strings from
* This topic will be discussed in a later lecture.
Ex: Number r eadFr om (ReadStream on: aStream)

e Type Conversion

Conversion is automatic and transparent
Conversion in direction integer -> fraction -> float to maintain accuracy
To explicitly do conversion use following methods
 aslnteger
e asFraction
e asRational in VisualWorks
* asFl oat
e asCharacter (integers only)

66

| anlnteger aFl oat aList|

anl nteger := 85.
aFl oat := 3.25.
aList := List new

aLi st add: anlnteger aslnteger.
aLi st add: anlnteger asRational.
aLi st add: anlnteger asFl oat.

aLi st add: anlnteger asCharacter.
aLi st add: aFl oat aslnteger.

aLi st add: aFl oat asRational .

aLi st add: aFl oat asFl oat.

aLi st inspect.

#%1a List O] x|
| EET = |t (55 55 m5.0 5U =

dependents "IGM0A5" 3 (13/4) 3.248)
collection

lirnit
collection=ize

i |

* Truncation, floor, ceiling and remainders
e Truncation done through quo: method
e 11 quo: 5=>2
e 11 quo: -5=>-2
« floor ceiling done though // operator
e 11 // 5=>2
e 11 // -5=>-3
« ceiling done through \\ operator
e 11 \\ 5=>3
e 11 \\ -5=>-2
« remainder is done through rem method
e 1l rem 5=>1
e 11 rem -5=>-1
« Mathematical Operations
« Smalltalk provides basic subset of functions including
» Trigonometry functions: si n, cos, arcSin, arcCos
* Natural exponents and logarithms (exp and | n)
e Exponents and logarithms
e gcdandlcd
 Ex
55 gcd: 30 €« 5
6 lcm 10 <« 30
0.523599 sin « 0.5
6 exp < 403.429
2.718284 In « 1
6 raisedTo: 3 <« 216
25 10g: 5 ¢« 2

+ Date and Time
« Simple protocol for referencing and converting times & dates
» Creating an time or date object
* Use nowmethod for creating the current time
e currentTine := Tine now.
* Use t oday method for creating the current date
e currentDate : = Date today.
e You can create an object with both current date and time
e rightNow := Date dateAndTi meNow.
* rightNow := Ti ne dat eAndTi neNow
e Can create any time or date easily
e aDate := Date newDay: aDayOf TheYear| nteger year: aYearlnteger
e Time and Date Conversions
* Timing execution and delays
* Smalltalk provides a simple way to time the execution of a loop

| bl ockl block2 nsl nms2 |
bl ockl := [100 tinesRepeat: [Tine now. Date today]].
nsl := Time mllisecondsToRun: bl ockl.

bl ock2 := [100 tinesRepeat: [Tine dateAndTi meNowj].
nme2 := Tinme mllisecondsToRun: bl ock2.

e Smalltalk includes a similar class Delay. The Delay class is useful for creating timers.
Timers can be used to update clocks or send messages regularly.
» Delay should be used with the wait method
e The following shows a simple clock, which writes to the Transcript.

[[true] whileTrue:
[Transcript show (Tine now printString).
(Del ay forSeconds: 1) wait]] fork.

Lecture 16: The Collection Classes

« Smalltalk’s optimized Collection classes

Unlike C, Smalltalk provides optimized classes for most types of collections
There are three types of Collections

e Not keyed

Example: Bag

* Keyed by integer

Example: Array, List, OrderedCollection

« Keyed by value

Example: Set, Dictionary

For most situations, one of 5 types will suffice
e SortedCollection

Sorts elements when inserted

Example returns SortedCollection (‘a’ ‘b’ ‘c’)

| aSortedCollection |

aSortedCol | ection := SortedCol | ecti on new.
aSortedCol | ection add: 'c’.

aSortedCol | ection add: 'a'.

aSortedCol | ection add: 'b'.

aSortedCol | ection inspect.

Most flexible, keeps elements in the order in which they were added.

Lists can be sorted.

Elements can be inserted anywhere
Example returns List ('a' 'b’ 'c')

| aList aSortedList|

aLi st := List new.

alList add: ‘c’.

alList add: ‘b’.

alList add: ‘a’.

aSortedList ;= aList sort.

 Array

e Set

Does not require adding, removing, or sorting elements
Example returns #(‘d’ ‘b’ ‘c’)

| anArray |

anArray := Array new.

anArray at: 1 put: ‘a’.

anArray at: 2 put: ‘b’

anArray at: 3 put: ‘c’.

anArray at: 1 put: ‘d’.

Discards duplicate elements

Does not support replacing elements
Example

e aSet < Set(‘a’ ‘b))

e alist € List (‘a’ ‘b’ ‘a)

| aList aSet |
aList := List new
aLi st add: 'a’'.
aList add: 'b’.

aLi st add: 'a’'.
aSet := Set new.
aSet addAll: alList.

69

Dictionary

New Concept to C programmers: Dictionary

Otherwise known as Associated Hashtable

Add keys and values, and reference values through keys
Useful for global variables

Possible to associate keys with any kind of object

Ex:

| aThesaurus aCol |l ection |
aCol | ection := Bag new.

aCol | ection add: 'big’ .

aCol | ection add: ’enornous’.
aCol | ection add: ’huge’.

aThesaurus := Dictionary new.
aThesaurus at: ’'large’ put: aCollection.
aThesaurus at: 'small’ put: 'little’.

Partial Hierarchy

Collection
Bag Sequencable Set

Collection

Arrayed Interval LinkedList Ordered Dictionary

Collection Collection

List Array Character Integer Sorted Indentify

Array Array Collection Dictionary
String Text ByteArray

Iteration (what you can do with collections)
» lterate over a collection

do:

[]

Ex: (sum < 15)

| sum aCol |l ection |

aCol | ection := Bag new.

aCol | ection add: 3.

aCol | ection add: 5.

aCol | ection add: 7.

sum:= 0.

aCol l ection do: [:x | sum:= sum+ Xx].

reverseDo: []

70

e Ex: (OrderedCollection(c b a))
| aReverseCol | ection aOrderedCollection |

aOrderedCol | ection

= OrderedCol | ecti on new.

aOrderedCol | ection add: #a.

aOrderedCol | ection add: #b.

aOrderedCol | ection add: #c.

aReverseCol | ection := OrderedCol | ecti on new.
aOrderedCol | ection reversebDo:

[ox |

e collect: []

aReverseCol | ecti on add:

x] .

« Useful to Create new collections from existing ones
e Ex:(Bag(252525...000))

| sonel ntegers someNunbers|

someNunbers : = Bag new.
1to: 25 by: 0.2 do: [:x | soneNunbers add: x].
sonel ntegers := Bag new.
sonel ntegers : = soneNunbers collect:

[:x | x aslnteger].

« lterate over a collection and return a subset
e select: []
e Ex: (retuns only integers between 1 & 25 as floats)

| sonel ntegers someNunbers|
someNunbers : = Bag new.
1to: 25 by: 0.5 do: [:x | soneNunbers add: x].
sonel ntegers := Bag new.
sonel ntegers : = soneNunbers sel ect:

[:x | (x// 1) asFloat = x].

e reject: []
* Ex: (returns only integers between 1 & 25 as floats)

| sonel ntegers someNunbers|
soneNunbers : = Bag new.
1 to: 25 by: 0.5 do: [:x | someNunbers add: x].
sonel ntegers := Bag new.

sonel ntegers : =

[x|

someNunbers reject:

(x /1 1) asFloat ~= Xx].

« Find occurrences of an object within the collection

e detect: []
« Ex: #(a 'abc’
« Ex: #(a 'abc’
i fNone[nil]
e findFirst: []
« Ex: #(a 'abc’
« findLast:
« Ex: #(a 'abc’
* Perform special operations
e inject: into: []

3 4 5) detect:

[:x | <3

X islnteger].

345) findFirst: [:x | x isFloat]

< nil
345) findFirst: [:x | x islnteger]. €3
3 45) findLast: [:x | x islnteger]. €5

« For using temp variables and initializing them outside the block
+ Ex: set the temp variable to 100

#(1 2 3)
[

e wth: do:

inject:100 into:

[:x :y] x :=x +y]. €106

» takes one object from the receiver and one from the argument
e Ex: (result aBag=#(‘aA’ ‘cC"))

71

| aBag |
aBag : =

Bag new.

#('a ‘b 'c’) with: #(A

[:x

:y | x asUpper Case
i fTrue: [aBag add:

vz
=y

'C) do:

(x,y)11.

72

Lecture 17: An example using the Collection Classes

e Matrices are not provided by the collection classes, but can be added very easily. We will
demonstrate the Collection classes by creating a Matrix class.

e The class should provide methods to add, multiply, and transpose matrices and scalars
together.

e The matrix will be represented in row-major order, through a collection of rows, where each
row is an ordered collection. To accomplish this, the matrix needs only two variables to keep
count on the number of rows and columns

* The Class definition is straight forward

OrderedCol | ection variabl eSubcl ass: #Matri x2D
i nstanceVari abl eNanes: ’'nunrows nuntols '’

cl assVari abl eNanes: '’

pool Dictionaries: '’

category: 'Exanpl es-Matri x2D

Matri x2D
class instanceVari abl eNanes: ''!

e The instance creation method creates a 2 dimensional matrix sized according to the
arguments, and initializes all elements to 0.0. Note that the matrix is represented by
aNumberl OrderedCollections.

I Matri x2D cl ass net hodsFor: 'instance creation’!
rows: aNunmberl cols: aNunber?2

"Creates a 2D matrix of size aNunberl X aNunber2 and
initializes all elenments to 0."

| matrix |
matrix := self new
1 to: aNumberl do: [:i | | tenp |

tenmp := OrderedCol | ecti on new.
1 to: aNumber2 do: [:j | tenp addLast: 0.0].
matri x addLast: tenp].
matri x setrows: aNunmberl col s: aNumber 2.
Amatriox! !

* The methods for accessing the matrix are straight forward as well, and are used only for
getting elements and setting elements.

I Matri x2D et hodsFor: 'accessing’!

at: anArray put: aNunber
"Place an el enent (aNumber) in the row and col um
specified by anArray in the receiver."

(self at: (anArray at: 1)) at:(anArray at:2) put:aNunber.!

at Row. aNunber 1
"Return an ordered collection fromrow aNunber 1of the receiver."

N(self at: aNumberl).!

at Row. aNumber1 put: anOrderedCollection
"Puts an OrderedCollection into the matrix as a row.”

73

super at: aNunberl put: anOrderedCollection.!
at Row. aNunber1 at Col : aNunber?2

"Return an el ement fromrow aNunber1l, columm aNunber?2
in the receiver."
N(sel f at: aNunmberl) at: aNunber?2.!

at Row. aNunmber1 at Col: aNunber2 put: aNunber3
"Place an el enent (aNumber3) in row aNunmber1, colum aNunber2
in the receiver."
(self at: aNunberl) at: aNunmber2 put: aNumber3.!

cols
"Returns the nunber of cols in the matrix."

Anuncol s. !

readAt: anArray
"Returns an elenent fromthe row and col umm
specified by anArray in the receiver."

N(self at: (anArray at: 1)) at:(anArray at:2).!

r ows
"Returns the nunber of rows in the matrix."

Anunt ows. !

setrows: aNunberl cols: aNunber?2
"Sets the size of the matrix."

aNunber 1.
aNunber2.! !

nunT ows :
nuncol s :

* Tolllustrate the access methods, we will create a 2x2 identity matrix with the code
below. Recall an identity matrix is one which the top left to bottom right diagonal has
1 as the values of its elements, and all other values are 0.

| matrixl |

matrix1l := Matrix2D rows: 2 cols: 2.
matrix1l at: #(1 1) put: 1.

matrix1l at: #(1 2) put: O.

matrix1l at: #(2 1) put: O.

matrix1l at: #(2 2) put: 1.

matri x1 witeToTranscript.

74

Eile Browse Toolz Change: Databaze ‘window Help
BlEl&@@ wEE
[
]
0
||

e The method writeToTranscript, as used above prints each row, an element at a time.

writeToTranscript
"Wites the matrix to the Transcript."

Transcript show ' ’;cr.
1to: (self rows) do: [:i |
Transcript show ' '; tab.

1to: (self cols) do: [:j |
Transcri pt show
(self atRow. i atCol: j) printString; tab.
1.

Transcript show

;cr.

].

« Although mathematical operations may appear to be complicated, the operations to be
applied to the matrices are simple Collection manipulations.

« For the operation examples, the following matrices will be used. The code to create them

is also shown below.

| matrixl matrix2|

matrix1l := Matrix2D rows: 2 cols: 2.
matrix1l at: #(1 1) put: 1.

matrix1l at: #(1 2) put: 2.

matrix1l at: #(2 1) put: 3.

matri x1 at: #(2 2) put: 4.
Transcript show 'Matrix1l'.

matri x1 witeToTranscript.

matrix2 := Matrix2D rows: 2 cols: 2.
matri x2 at: #(1 1) put: 5.

matrix2 at: #(1 2) put: 6.

matri x2 at: #(2 1) put: 7.

matrix2 at: #(2 2) put: 8.
Transcript show 'Matrix2'.

matri x2 writeToTranscript.

75

47 YisualWorks Non-Commercial custom =]

File Browse Toolz Changes Databaze ‘'Window Help

Blilele) g

Fdatrix
1 2
3 4
hlatrixld
5 b
P |

* matrixAdd: aMatrix adds aMatrix to the receiver and returns the sum of the two. A check is
done to make sure both matrices are the same size

mat ri xAdd: aMatri x
"Adds the receiver and aMatrix, that is, Receiver + aMatrix."

| matrix |
((numrows == (aMatrix rows)) & (nunctols == (aMatrix cols)))
i fFal se:
[Transcript nextPutAll:
"matri xAdd - bad matrix size' ;endEntry.
Apil.],
matrix := Matrix2D rows: nunrows cols: nuntols.

1 to: nunrows do: [:row |
1 to: nuncols do: [:col |
matri x at Row. row atCol: col put:
((self atRow. row atCol: col) +
(aMatrix atRow. row atCol: col)).

].
] .
"Returns a new nmatrix"
Amatri x

* Below is an example of adding two matrices.

Transcript show. 'matrixl + matrix2’ .
(matrix1l matrixAdd: matrix2) witeToTranscript.

matrizl + matrix?
E B
0 12

77

mat ri xMul t:

amat ri x multiplies the receiver and aMatrix and returns the product. A check

is done to make sure the number of rows in the receiver is equal to the number of columns in
aMatrix (rule of matrix multiplication).

Recall the product of two matrices is as follows:

|1411 A12 Alm D Ij11 BlZ Blm D
Uy Ay ... A, E B,.. B, -
A:|j421 22t 2m [] B= 21 22 2m []
B O B H
l l H
B4nl An2 te Anm |:| %nl Bn2 te Bnm |:|

AxB =

%411311 +A4,B, +..+A4,B, ...
5421311 tApBy tot Ay, B, ... AyBy, +A4yB,, +..+ 4, B
Cl

[

B4nlBll + AnZB21 Tt Antnl

The following code implements the equation above:

A,B, +A4,8, +.+4, B

AllBlm + AlZB2m Tt Alm Bnm

nm

nm

matri xMult: aMatrix
"Miultiplies the receiver and aMatrix, that is, Receiver *
aMatrix."
| nrows ncols matrix sum |
nrows := self rows.
ncols : = self cols.
(ncols == (aMatrix rows))
i fFalse: [Transcript nextPutAll:
"matrixMult - bad matrix size ;endEntry.
Anil.],
matrix := Matrix2D rows: nrows cols:(aMatrix cols).
1 to: (aMatrix cols) do: [:k |
1to: nrows do: [:i |
sum:= 0.
1 to: ncols do: [:j |
sum:= sum+ ((self atRow i atCol:
(aMatrix atRow. j atCol: k)).
1.
matrix atRow. i atCol:k put: sum
]
1.
Amatri x

nm

OoOoodood

i) -

78

e Below is an example of multiplying two matrices.

Transcript show 'matrixl * matrix2' .
(matrix1l matrixMult: natrix2) witeToTranscript.

#* ¥isualWorks Non-Commercial custom O] x|

Eile Browse Toolz Change: Databaze ‘window Help

e s

ratriz1 * matriz?
19 22
43 &0

|*

The methods to add and multiply scalars are very similar to the matrixAdd: method, but

even simpler.

scal ar Add: aNunber
"Adds aNunmber to each el enent of the receiver.'

| nrows ncols matrix |

nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.

1to: nrows do: [:row |
1 to: ncols do: [:col |
matri x atRow. row atCol: col put:

(self atRow. row atCol: col) + aNunber.

].
1.

Amatri x

scal arMul t: aNumber
"Multiplies each el enent of the receiver by aNunber."

| nrows ncols matrix |

nrows := self rows.
ncols := self cols.
matrix := Matri x2D rows: nrows cols: ncols.

1 to: nrows do: [:row |
1 to: ncols do: [:col |
matri x at Row. row atCol: col put:

(self atRow. row atCol: col) * aNunber.

].

Amatri x

79

« Below is an example of multiplying a scalar and a matrix.

Transcript show '3 * matrix1’.
(matrixl scalarMult: 3) witeToTranscript.

47 ¥isualWorks Non-Commercial custom =]

File Browse Toolz Changes Database ‘Window Help

Bl e,

|

3 * matrix
3 B
5 12

* The Transpose exchanges rows and columns.

transpose
"Returns the transpose of the receiver."

| nrows ncols matrix |

nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.

1to: nrows do: [:row |
1 to: ncols do: [:col |
matri x at Row. row atCol: col put:
(self atRow. col atCol: row).

].
l.)
Amat ri x
« Below is an example of transposing matrix.

Transcript show ’'matrixl Transposed’.
(matrix1l transpose) witeToTranscript.

#* ¥isualWorks Non-Commercial custom O] x|

Eile Browse Toolz Change: Databaze ‘window Help

==

matrix1 Transposed
1 3
2 4

|*

Vectors are easily represented through the implementation of the Matrix class we have

demonstrated, since a vector is nothing more than a single row of a matrix.
Recall the product of a vector and a matrix is a vector as follows:

lj\/lll M12 cee Mlm
oy M22.. M,

m

v=l, v,... v M=g
S‘/lnl Mn2"' Mnm |:|

n

|

VXM :[I/].Mll +V2M21 +"'+VnMnl I/ZI.M].m +V2M2m +"'+VnMnm

The following code will create a vector and multiply it by matrix1

vectorl := Matrix2D rows:1 col s: 2.

vectorl at: #(1 1) put: 1.

vectorl at: #(1 2) put: 10.

Transcript show 'vectorl'.

vectorl witeToTranscript.

Transcript show ’'vectorl * matrix1l.

(vectorl matrixMult: nmatrix1l) witeToTranscript.

42 ¥isualWorks Mon-Commercial custom _ 3]

File Browse Toolz Change: Databaze ‘window Help

Eldelel w|E

wactor]
1 10

|

vector! * matrix
31 42

81

Lecture 18: The Stream Classes
Streams

Streams provide basic communication between the Virtual machine and the system
Types of streams

e Semaphores

* Sockets

e Files

* stdin&stdout

IMPORTANT: The programmer must close all open streams. Smalltalk will not close
them for you, as in most compiled languages. The operating system has a limit on the
number of open streams, and will quickly run out if the streams are not closed

Important methods for all Streams

Accessing

e next returns the next object in the stream

* next: anlnteger returns the next anl nt eger number of objects
« contents returns all of the objects in the collection

* cl ose closes the stream

« Ex:

| aStream anObj ect |

aStream : = ReadStreamon: #('A 'B 'C 'D).
anObj ect := Bag new.

anObj ect add: aStream next.

anObj ect add: (aStream next: 2).

anObj ect add: aStream contents.

aStream cl ose.

anObj ect inspect.

Writing
 nextPut: anQObject places anQbj ect in the stream so that it is the next accessible
* Ex: Generate & write the alphabet to a stream

| aStreani

aStream:= WiteStreamon: (String new).

65 to: 90 do: [:aNunber | aStream nextPut: aNunber
asCharacter].

asSt ream cl ose.

aStream i nspect.

I = | 6. (& #n B0 D)

n::ntents _—
#'B T

82

4% a WriteStream _|O

self _ =l ABCDEFGHUJKLMMOPG =
Loler iy RETUVy ZERRER
position

readLimit

witeLimit

palicy

e nextPutAll: aCollection puts the contents of aCol | ecti on into the stream.
* Example: Putting the number 1->10 into a Stream

| aStream aCol |l ection |

aCol l ection := Array new 10.
1 to: 10 do: [:aNumber | aCollection at: aNumber put:
aNunber] .

aStream : = ReadWiteStreamon: (Array new 10).
aStream next Put Al : aCol | ecti on.

aStream cl ose.

aStream i nspect.

47 a PositionableStream =

self A 2345676010 2 =
collection
position
readLirmit
werlteLirmit
policy

« Example: Different way to get the same results. Which is the safer way? Which is
the more “elegant” way?

| aStream aCol |l ection |

aCol l ection := Array new 10.

aStream : = Positionabl eStreamon: (aCollection).

1 to: 10 do: [:aNumber | aCollection at: aNumber put: aNunber].
aStream cl ose.

aStream i nspect.

« Important methods for Positionable Streams
e Accessing
e posi tion returns the position in the stream
e peek returns the next object without advancing the position
e reset resets the position in the stream

83

e skip: anlnteger skips aninteger positions in the stream
 Ex

| aStream anObj ect |

anObject := 'This is a single String'.
aStream : = ReadWiteStreamon: (String new).
aStream next Put Al l : anQoj ect.

aStream reset.

asStream skip: 2.

(aStream peek) inspect.

4% a Character =]

self A5 160089

Important methods for ReadStreams
* Instance Creation
* ReadStream on: aCollection
* All other positionable stream methods and general methods will work except for ones
which write (such as at:put: methods)
Important methods for WriteStreams
* Instance Creation
e WiteStreamon: aColl ection
e Accessing
e flush write all unwritten information to the stream
* Good “book-keeping” habit to do before closing streams or saving images.
e Similar to ReadStream, can access all methods of more general streams, but cannot
read from streams
Important methods for External and File Streams
* Instance creation
* 2 step process- make the filename, then apply the method to the filename. For the
entire list of possible methods, refer to LalLonde, or the system browser under
Filename->stream creation.

| aStream aFil enane |
aFilename := Filename named: ‘yourfile.txt'.
aStream := aFilename writeStream.

» Accessing
e nextNumber: n returns the next n bytes in the stream
e nextString returns the next String from the stream.

e skipwords: nWords advances the position nWords number of words (2 bytes, not to

be confused with strings)
* wordPosition returns the position in words
¢ wordPosition: wp advances the position to wp in words
e Writing
e nextPut: anObject places anObject in the stream so that it is the next accessible

next Put Al | : aCol | ecti on puts the contents of aCol | ect i on into the stream.
Example, writing to a file.

| aStream aFil enane |

aFil enane : = Filenane naned: ’'tenp.txt’

aFi | ename del ete.

aStream : = aFil enane readWiteStream

1 to: 20 by: 5 do: [:aPosition |
aStream wor dPosi tion: aPosition.
aStream next Put: $D].

aStream cl ose.

« Common Mistakes

* Writing a collection to a stream is not the same as writing the contents of the collection.

Example: What is wrong with this? Shouldn’t we see the number 2 instead of ‘nil'?
No, the first object is the collection, the second object is the end of the stream.

| aStream aCol |l ection |

aCol l ection := Array new 10.

aStream : =ReadWiteStream on: (aCollection).

1 to: 10 do: [:aNumber | aCollection at: aNumber put: aNunber].
aStream reset.

(aStream peek) inspect.

4% an UndefinedObject _ O

85

* Hierarchy

Stream
Peckable
Stream
Positionable
Stream
Externa Internal
Stream Stream
Externa ReadStream WriteStream
Stream
Externd Externa ReadWrite TextStream
WriteStream WriteStream Stream

86

Lecture 19: Matrix Example using Streams

Recall the Matrix example. Now, rather than getting the matrix from standard in, we will read

the matrix from a file. To maintain simplicity, we will keep the rules strict, but to allow for

flexibility we will intelligently get the dimensions of the matrix. The rules of the file are as

follows:

e One matrix to a file

e The matrix must be complete. That is, all rows must contain the same number of
elements

e The matrix will start with ‘[' and end with 7.

» Each row will be separated by a carriage return

« Each element will be separated by white space (tabs, cr’s, spaces).

* No element may be negative

So, using these rules, a 3x3 identity matrix would be represented as below:

0

[
0
0]

or r
oo

We need two methods, one to read from a file, and one to write to a file. We will add these
methods to the Matrix2D class.

The read method, fronFi | e: aMatri x is and instance creation method (like new). The
method follows a simple parsing algorithm:

Get characters until [;
rowCount = 1;
Get nextString;
If nextString = \n’
increase rowCount;
add Collection to Matrix
reset Collection to nil
If nextString is a number then add it to Collection

This method accomplishes this by reading one character at a time, building up a string to be
converted into numbers.

Since we don’t know how big the matrix will be, we can’t store the elements immediately into
the matrix. Instead, each row is read into an Or der edCol | ect i on.

Once the Or der edCol | ect i on object is built, the addLast : method is called to add the

Or der edCol | ect i on object to the matrix. The number of rows is then incremented.

The following code implements the method as discussed above

fronFile: aName
"Creates a 2D matrix froma file of the name aNane"

| aStream aFil enane aString aChar aCol | ection aMatri x|

aFil enane : = Fil enane naned: aNane.
aStream : = aFil enane readStream
aChar := aStream next.

"Create the Matrix"
aMatrix := Matrix2D rows: 0 col s: 0.

"eat up everything until the open bracket"
[aChar = $[]

whi | eFal se: [aChar := aStream next].
"matrix has started"

87

aCol l ection := OrderedCol | ecti on new.
astring := String new.
[aChar = $]]

whi | eFal se: [

aChar := aStream next.
aChar aslnteger = 13 "cr"
ifTrue: [
astring size > 0
ifTrue: [

aCol | ecti on add:
(aString asNunber).
astring := String new.
1.
aMatrix addLast: aColl ection.
aMatrix setrows: (aMatrix rows + 1)
cols: (aCollection size).
aCol l ection := OrderedCol | ecti on new.
1.
aChar isSeparator "any white space"
ifTrue: [
astring size > 0
ifTrue: [
aCol | ecti on add:
(aString asNunber).
astring := String new.

]

1.
(aChar isDigit)
ifTrue: [aString := aString,
(aChar digitValue printString)].
1.

aStream cl ose.

"Add the last one, since the ']’ was on the last |ine"
aMatri x addLast: aCol |l ection.
aMatrix setrows: (aMatrix rows + 1)
cols: (aCollection size).
aCol l ection := OrderedCol | ecti on new.

NaMatri x

The method to write the matrix to a file is considerably more simple. A ‘[is written, then
each row is written as characters, then a ‘' is written.

writeToFile: aNanme
"Wites the matrix to the file aNanme. The format is
such that fronFile: can be called to read it back
into a matrix."

| aStream aFil enane|
aFi |l ename : = Fil enane naned: aNane.
aStream : = aFil enane witeStream

aStream next Put: $[.
1to: (self rows) do: [:row |
1 to: (self cols) do: [:col |
((self atRow. row atCol: col) printString)
do: [:char |
aStream next Put: char
1.

aStream nextPut:$. "space"

rbw = (self rows)

88

i fFalse: [

aSt r eam next Put :

].
aStream next Put: $].
aStream cl ose.

13 asCharacter. "cr"].

To illustrate the use of the new file methods, we will read two matrices from text files
(“matrix1.txt” and “matrix2.txt”), then multiply them together. Their product will be written to a

file (“matrix3.txt”). Below is a screen capture of

the two input text files.

E matrix2.txt - Notepad [[=] B3
File Edt Search Help File Edt Search Help
= =
[126 8 8 [123
a1a 615
g8 81] B o 2]
| 2 | K o

The code below will now multiply the matrices together and write the product to a file. The

code also reads the output file back in and prints it to the Transcript as a form of visual sanity

check.

| matrixl matrix2|
matrix1l := Matrix2D fronFil e:
Transcript show ’'matrix1l.
matri x1 writeToTranscript.
matrix2 := Matrix2D fronFil e:
Transcript show ’'matrix2’' .
matri x2 witeToTranscri pt.
(matrix1l matrixWlt:
Transcript show 'Fromfile:
(Matrix2D fronFil e:

#? ¥isualWorks Non-Commercial custom O] x|

LChanges

Ed&l@ »

Eile Browse Toolz

matrix2) witeToFile:
matri x3’ .
"matrix3.txt’) witeToTranscript.

"matrix1.txt’.

"matri x2.txt’.

"matrix3.txt

Databaze 'window Help

|28

matrix

1200 0

0o 1 0

o o1
rratriz2

1 2 3

B 1 &

8 B 2
Fram file: matrix3

120240 360

E 1 &

8 6 2

| v

89

The code results in the output file

90

Lecture 20: Dependency Mechanisms

. Dependency
. Objects depend on the state of other objects.
* For example, we have a lamp with a light switch and a light bulb

« When the state of the switch is changed, the light bulb is notified of the change

e This does not imply when the light bulb status changes (burns out) that the light switch is
notified

. There is no explicit relationship between two objects so we must find a way of
connecting them. Through a special connection, one object is said to be “dependent” on
the other object. Smalltalk has a dependency mechanism to handle the connections
between two objects.

« Use collections to store groups of dependent objects.

* Instead of a light switch, we now have a traffic light with three light bulbs. Each light has
to notify all other lights when it turns itself on so they will turn themselves off. In this
example, no two lights should be on at the same time.

. The protocol for sending messages and updating is provided by class Object.

e A Object sends itself a changed message & its dependents are informed
automatically via the updat e: aMessage, where aMessage can be any message
e self changed
* dependents determine what was changed
« self changed: anAspect
« Object informs dependents of a change involving anAspect
e self changed: anAspect with: aVal ue
e update: with: from
« Method is inherited from class Object, but it is usually overridden.
. Methods for adding and removing dependencies
 addDependent:
e adds the dependency of the argument’s object to the receiver’s object
e tire: addDependent: autonobile. The automobile is sent a message if the
state of the tire is changed.
* renoveDependent:
« removes the dependency of the receiver from the argument
- the receiver no longer updates the argument
e« tire: renoveDependent: autonobile. The automobile is how not updated
when the state of the tire changes
* release
* Releases all of the dependents of an object
e dependents
« Returns an Ordered Collection containing the dependents
. Now we can look at the code for the lamp
* To allow for the light bulb to be easily changed, we’'ll give it a function updat e: si gnal
e The lamp object should also provide the methods for the following
* Getting and setting its state
e Showing the state by writing to the Transcript
e Getting and setting its identification number (id)

hj ect subcl ass: #Lanp
i nstanceVari abl eNanes: ’'state id’
cl assVari abl eNanes:
pool Di ctionaries: '’
category: ' Exanpl es-Lanps’!

91

state
"Returns the state of the lanmp: 0=off, 1=on.

Nstate.!

state: anlnteger
"Sets the state of the lanp: 0=off, 1=on.
The self changed nessage tells the |anps
dependents it is now on."

anlnteger isZero ifFalse: [state := 1.
sel f changed: #on]
ifTrue: [state :=01].! !
i d: anlnteger
"Sets the id of the | anmp"

id:= anlnteger.!

id
"Gets the id of the |anp”
Aid.

showSt at e

“Shows the state of the lamp in the transcript”
Transcript show: 'Lamp '; show: (id printString).
Transcript show: ' state: '; show: (state printString); cr.

ILamp methodsFor: 'updating'!

update: signal
"If some other lamp has turned on, turn myself off."

(signal = #on)
ifTrue: [state := 0.
self changed].!'!

Lamp class
instanceVariableNames: "!

ILamp class methodsFor: ‘instance creation'!

new
"Gets a new instance."

Asuper new! !

Now we will look at the code for the lamplist and traffic signal. Keep in mind that the
LampList and the Lamps are the objects doing the work, and the TrafficSignal provides a
useful example of a device which could use the LamplList.

OrderedCollection variableSubclass: #LampList
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'Lamps’!

LampList class
instanceVariableNames: "!

92

I LanpLi st class nethodsFor: ’'instance creation’!

new
"Creates a new instance."
Asuper newl

new. size

"Creates a new instance."
A(super new. size)! !

bj ect subcl ass: #TrafficLight
i nstanceVari abl eNanmes: ' | anpli st
cl assVari abl eNanes: '’
pool Di cti onari es:
category: ’'Exanpl es-Lanps’!

* Inthemethodinitialize, each lamp is created, and added to the lamplist.

Each lamp in the lamp list is then adds the other lamps to its list of
dependents.
I TrafficLight methodsFor: 'initialization!

initialize
"Creates the three lights and turns the first on"

| I'amp index|
| anplist := LanpList new 3.
I ndex := 1.

3 tinmesRepeat:
[lamp := Lanp new.
| anp state: O.
| anp id: index.
| ampl i st add: [|anp.
(lanplist at: 1) state: 1.
1to: lanplist size do: [:I |
1 to: lanplist size do: [:dep |
| = dep ifFalse:
(lanplist at: |) addDependent:
(lanplist at: dep)]]].! !

I TrafficLi ght nethodsFor: 'accessing’!
| anpl i st

“returns the lanplist"
Alanplist.!

e The method gets the lamp that is on, then turns on the next lamp. If the third
lamp was on, then the first lamp is turned on. Each time the light is changed,
a message is written to the transcript to log that the light was changed.

changelLi ght
"advances to the next light in the Iist”
| index |
Transcript show ’'Changing the Lights'; cr.
index := (self lightlsOn) id.

(lanplist at: ((index rem 3) + 1) state: 1.

e« The method I i ght I sOn is used to tell the traffic light which lamp is currently
turned on. It finds the first lamp which is on (only 1 should be on), and returns
that light.

l'ightlsOn
"returns the index of the light that is on."

A(lanplist detect:
[:lamp | lanmp state = 1]).

showst at es
lamplist do: [:lanp| |anp showState].

TrafficLight class
i nstanceVari abl eNanes: '’!

I TrafficLight class nmethodsFor: 'instance creation’!

new
"Creates a new instance and initializes the lights."

A(super new) initialize.! !

Now we can call the method showst at es to reveal the light that is on. Lamp 2 is initially
set on, then the changeLi ght message is sentto aTr af fi cLi ght . Notice how Lamp 2
automatically turns itself off when changelLi ght turns on Lamp 3. This kind of automation
is the primary value of the dependency mechanism.

| aTrafficLight |
aTrafficLight := TrafficLight new.
((aTrafficLight lanplist) at: 2) state: 1.
aTraf ficLi ght showSt at es.
aTraf ficLi ght changelLi ght.
aTraf ficLi ght showSt at es.

#? ¥isualWorks Non-Commercial custom O] x|

Eile Browse Toolz Change: Database ‘window Help

Eldlelel w|m®|

Lamp 1 state: [

| v

Lamp 2 state: 1
Larp 3 state: O
Changing the Lights
Larmp 1 state; O
Lamp 2 state: O
Lamp 3 state: 1

94

« What happens if we break the dependency on one of the lamp? Let us remove the 2
lamp’s dependency on 3" lamp from the ordered collection. Notice that when the 3" lamp
turns on the 2" Iamp never turns off.

| aTrafficLight |

aTrafficLight := TrafficLight new.

((aTrafficLight lanplist) at: 2) state: 1.

aTraf ficLi ght showSt at es.

(aTrafficLight lanplist at: 3) renpveDependent:
(aTrafficLight lanmplist at: 2).

aTraf ficLi ght changelLi ght.

aTrafficLi ght showSt at es.

#? ¥isualWorks Non-Commercial custom O] x|

File Browse Toolz Changes Database 'W'lnl:ll:nw Help

Elgelel »E*| @

Larp 1 state: O

| v

Lamp 2 state: 1
Larmp 3 state; O
Changing the Lights
Lamp 1 state: [
Lamp 2 state: 1
Lamp 3 state: 1

* For an arbitrary object, Smalltalk does not remove the dependents from the object when it is no
longer in use.

* The system wide dependencies are stored in an identity dictionary Dependent sFi el ds.
Upon inspection of this dictionary, we can see the dependencies we have created in the
last two examples. Each lamp has an entry that includes each of the other lamps in the
traffic light. Note that there are six lamps, as the two examples each added 3 lamps.

4% an IdentityDictionary _ O] =]

ExternalDatabase] #a Lamp a Lamp) =
Objecthemary

2 Lamp
a Lamp
a Lamp
a Lamp
a Lamp
a Lamp
a MenuBuilder

|| =

« Because we do not have a direct way to access the lamp objects from the previous
examples, we will remove their dependencies by removing their entries in

95

Dependent sFi el ds. The following code will remove all keys of the object class Lamp.
The code simply creates a collection of keys to be removed, then removes each one.
| keys |
keys := OrderedCol | ecti on new.
Dependent sFi el ds associ ati onsDo: [
((anOoj ect key) isKindO:
ifTrue: [keys add:
keys do: [:aKey |
Transcript show

anbj ect |
Lanp)
(anObj ect key) 1].

"Renmoving ', aKey printString; cr.
Dependent sFi el ds renoveKey: aKey ifAbsent: []].
#% an IdentityDictionary O] x|
|4 []

ExternalDatabase
a MenuBuilder
OhbjectMermary

=l

=l

To avoid leaving stray dependencies in Dependent sFi el ds, we need to add a method to

Traf ficLi ght that will remove the dependencies of the Lamps. This is done by simply
sending the release message to each Lamp.

r enoveDependent s
"Renoves the dependents of each lanp in the TrafficLight"

lanplist do: [:lanp | |anp rel ease].

After the last showSt at es message, we should now add
aTrafficLi ght renpbveDependents.

Inspection of Depedent sFi el ds shows that we have removed all of the dependencies.

96

Lecture 21: The Model-View-Controller Paradigm

. Definitions

. Model: The object to be looked at and/or modified
* Provides the details to be displayed
. View: The object that determines the precise manner in which the model is to be

displayed (i.e. a window manager)
« Displays the model and provides visual feedback for controller interactions

. Controller: The object that handles the keyboard and mouse interactions for this view
The MVC Triad

Model

Controller

* The view and the controller interact to provide a graphical interface to the model.

* An example of a MVC application is the browser. The browser is composed of 5 Views,
each with its own controllers. The model contains the entire source, and the views and
controllers interact to display the source code.

97

#7?System Browser O] x|

Lens-F"rivate-f:II:ujemd Lamp Alinitialization =l =l
Lens-Private-Trans | LampController destruction
Lens-Private-Appli | LampList accessing

Lens-Applications-| | Lamp'iew
Tooe ey |
System-Dependen_|

=|® instance € class =l

b |«

Object subclass: #rafficLight
instance®ariableMames: lamplist lamptiew '
classVariableMames: "
poolDictionaries: "
category: 'Examples-Lamps'

e Each panel of the browser has its own controller, notice how a right mouse button’s menu is
different in each panel. Its also important to note that each time a item in the SelectionView is
clicked one, the other views change as well.

Magnitude-G eneral i| Interval =l =l =l
Magnitude-Numbers LinkedList
Collections-Abstract OrderedCollection
Collections-Unordered SortedCollection
‘?“”“f‘lcmlectIonWIthPoIIc*p
Collections-String Sup MMLEEEEES =
Collections-Text hardcopy
e hie " class = =l
NameOfSuperclass s. _4y pOfClass —
instancevariabler (emamess. [Namel instvarName2'
classVariableMNan remove,. amel ClassVarName2'
poolDictionarias: updT
category: 'Collect o 4l able'
find clazs. .

98

7 System Browser

Magnitude-General Interval
Magnitude-Numbers LinkedList
Collections-Abstract OrdaredCollection
Collections-Unordered SortedCollection
Collections-Sequenceable [E=Telst=ls [ote] XN eI\l 11}
Collections-String Support
Collections-Text

accessing

(ol

SequenceableCollection variableSubclass: #0rde
instanceVariableNames: 'firstindex lastindex '
classVariableNames: "
poolDictionaries: "

category: 'Collections-Sequenceable'

= instance

7 System Browser

Magnitude-General Interval
Magnitude-Numbers LinkedList
Collections-Abstract OrderedCollection
Collections-Unordered SortedCollection
o] | e R ENHEETE | SortedCollectionWithPolicy
Collections-String Support
Collections-Text

enumerating
user interface
testing

e instance O class

message selector and argument names
"commaent stating purpose of message"

| temporary variable names |
statements

99

7 System Browser

Magnitude-General Interval accessing after:

Magnitude-Numbers LinkedList copying

Collections-Abstract OrderedCollection adding at:put:
Collections-Unordered SortedCollection removing before:
o0l EHIEESEL FENHEEDE] | SortedCollectionWithPolicy | enumerating capacity
Collections-String Support user interface first

Collections-Text & instance £ cass tasting last

at: anlnteger
"Answer the element at index aninteger.
at: Is used by a Knowledgeable client to access an existing element”

aninteger isinteger ifFalse: ["self nonintegerindexErrar: aninteger].
{aninteger < 1 or: [aninteger + firstindex - 1 > lastindex])

ifTrue: ["self subscriptBoundsError: aninteger]

ifFalse: [*super at: anintager + firstindex - 1]

7 System Browser

Magnitude-General Interval
Magnitude-Numbers LinkedList
Collections-Abstract i Colleciion
Collections-Unordered SortedCollection

o] | e R ENHEETE | SortedCollectionWithPolicy
Collections-String Support
Collections-Text

e instance O class

at: anlnteger
"Answer the element at index aninteger.
at: Is used by a knowledgeable client to access an existi

aninteger isinteger ifFalse: [*self nonintegerindexError:

{aninteger < 1 or: [aninteger + firstindex - 1 > lastindex]
ifTrue: ["self subscripiBoundsError: aninteger]
ifFalse: [“super at: aninteger + firstindex - 1]

100

e Model

e While the Object class handles dependency coordination, as seen in the
TrafficLight/LampList example, most model objects are created as a subclass of Model.

e Object vs. Model

« Object uses a global dictionary to store dependents.

e This approach provides global dependency coordination, but dependents must be
explicitly removed.

« Model holds the collection of dependents in an instance variable

» The modelis able to find the dependents faster, hence the methods involving the
dependents is speeded up.

« Failure to release an object can be safely ignored. Garbage collection is able to remove
obsolete dependents.

« The traffic light example presented in the previous lectures is an excellent example. To
simplify the model, we will now focus on the LanpLi st and Lanp classes.

e To gain the features of Model, the Lanp and LanpLi st classes should now be subclassed
off Model , rather than Obj ect or Or der edCol | ecti on. It is important to note that two
instance variables have been added to LanpLi st : numi n and t heLi st .

* nunin is an internal counter, which will be discussed when its implementation is shown.
e thelLi st isan O deredCol | ecti on used to store the list of Lamps, since LanpLi st is no
longer subclassed off of Or der edCol | ecti on.

Model subcl ass: #lLanp
i nst anceVari abl eNanes: ’'state id’
cl assVari abl eNarmes: '’
pool Di cti onari es:
category: ' Exanpl es-Lanps’

Mobdel vari abl eSubcl ass: #LanpLi st
i nst anceVari abl eNanmes: "numin |ist’
cl assVari abl eNarmes: '’
pool Di cti onari es:
category: ' Exanpl es-Lanps’

e Several changes must be made to existing methods, and new methods must be added to
compensate for LanpLi st no longer being subclassed off of Or der edCol | ect i on.

* Initialization must now create t heLi st as an Or der edCol | ecti on.

initialize
"Sets the count to zero."
theList := OrderedCol |l ection new.
numn := 0.

* Now that LamplList is subclassed off of Model, it is part of the dependency mechanism.
To maintain the dependency updating process, LampList must implement the update:
method. The instance variable numin is used in this method to count the number of
Lamps that have reported in to the LampList object. Once all lamps have reported in, the
LampList object can send the changed message.

e Inthe next lecture on Views, we use the lamplist as a model for a LampView. We wait for
all of the lamps to report in to avoid a race condition where the view is redrawn before all
lamps have had a chance to update their state.

updat e: signal

"Waits for all lanps to report in, then redraws the view"
numn = numin + 1.
(numn = self size) ifTrue: [

numn = 0.

sel f changed.]

101

Methods to access and add to the LampList must now include implementation of add: , at : ,
do:, detect:, and si ze so other methods will not break. It should be noticed, if other
methods were needed, they could be implemented simply by passing the message to

t helLi st .

add: alLanp
"Adds alLanmp to theList."
t heLi st add: alLanp.
"t heli st.

at: anlnteger
"returns a Lanp for theList."
A(theList at: anlnteger).

detect: aBl ock
"Passes a detect nmessage to thelList"
A(thelLi st detect: aBl ock).

do: aBl ock
"Tells theList to do aBl ock."
A(theLi st do: aBl ock).

si ze
"Returns the size of theList."
A(thelList size).

« Rather than having the Tr af fi cLi ght create the dependency, the method nake:
now adds each lamp to the LanpLi st as a dependent, as well as make each

lamp dependent on every other lamp.

make: anl nt eger

"Makes a lanp list with anlnteger nunber of

| anps input by the user.”

| lanmplist lamp |
| anplist := LanpList new anlnteger.
anl nt eger

ti mesRepeat :

[lamp := Lanp new.

lanp id: (lanplist size + 1).

| anp state: O.
| anpl i st add: |anp.

| anp addDependent: |anplist].

1to: lanplist size do: [:I |
1 to: lanplist size do: [:dep |
| = dep ifFalse: |

(lanplist at: |) addDependent:

(lanplist at:
Alampl i st

No changes are needed for accommodating Lamp’s new subclassing.

With one modification, the examples used for the TrafficLight will work as well now. Since

the make: method creates all of the dependencies, TrafficLight's initialize

only has to make the light.

initialize
"Creates the three lights and turns the first on"

lamplist := LampList make:3.

method

102

"sel f.

« Now we can look at the same code used in earlier Tr af fi cLi ght examples.

| aTrafficLight |
aTrafficLight := TrafficLi ght new.
((aTrafficLight lanplist) at: 2) state: 1.
aTraf ficLi ght showSt at es.
aTraf ficLi ght changeLi ght.
aTraf ficLi ght showSt at es.
“Note — we no longer need to explicitly
remove dependents”

4% ¥isualWorks Non-Commercial custom =]

File Browse Toolz Changes Databaze ‘Window Help

EBlolel@l =]

Larp 1 state: O

| v

Lamp 2 state: 1
Larnp 3 state: O
Changing the Lights
Larmp 1 state: O
Larmp 2 state: O
Lamp 3 state: 1

-
—

The exact same code used earlier produces the exact same output to the transcript. The only
difference can be seen by inspecting DependentsFields . Notice that there are no
dependents left behind? Since the Lamp and LampList objects were all subclassed off Model,
the dependents were all stored locally in an instance variable, and removed once the object
executed.

4% an IdentityDictionary =]
|4 -l
ExternalDatabase

a hMenuBuilder
ObjectMermory

=l =l

« Given the simplicity of maintaining dependents, the model concept is used extensively in
the following:
Dependent Views, which ask for data

103

« Example: Real-time graphs and charts, one model could feed two different windows data
to be displayed.

Controllers associated with dependent views, which supply user input data and request menu

operations

+ Example: modifying the menu choices so the choices are different depending on what
was clicked on

Dependent buttons, which request button operations

« Example: Grey'ing out inactive buttons

Other models, which request data processing and other services

The model itself, which requests data processing and other services.

We will look at coupling the Model with a View and Controller in the next lectures

104

Lecture 22: The View

View

« The view is responsible for displaying aspects of the model. Because there are many
kinds of models, there are many kinds of views, ranging from very simple to incredibly

complex.

« Aview can be thought of as a part of a window in which a visual object is displayed. The
object can be passive, such as an image or text, or be an active object that updates itself
according to changes in the model, such as a real time graph.

The browser window is an excellent example.

« Each pane is a view. The four top panes are SelectionView objects, and the bottom pane
is a TextCollectorView object.

#75ystem Browser O] x|

Lens-Private-Object h-—‘l Lamp -l initialization] changeLight |
Lens-Private-Transpor | LampContraller destruction lamplist
Lens-Private-Applicati | Lamplist sing lightl=Cn
Lens-Applications-Frz | Lampiew showStates

Tools-Help I T—

aystem-Dependenc

Examples-Lamps =l

Examples-Matrix2D ﬂﬁ' ingtance & class =

changeLight

| index |

"advances to the next light in the list”

Transcript show: 'Changing the Lights', cr.
index ;= (=elf lightl=On) id.
(lamplist at: ({{index) rem: 3)) + 1) state: 1.

b [«

» Every view must implement the following instance methods
di spl ayOn: #anAspect
e Completely builds the contents of the view
e Called when a view is first created and each time the entire view is redrawn (e.g.

uncovered by another window)

updat e: #anAspect

e Called whenever the model changes (e.g. sends itself a changed: message)
« Used to reconstruct all or portions of a view depending on how the model was changed

(indicated by #an

Aspect symbol)

« If desired, #anApsect can be ignored in either of these methods.

105

e Suppose we wish to create a view for the Traffic Light example, we would now implement
these methods and a class definition for a new class, LampVi ew. The view will be an
instance of Aut oScrol | i ngVi ew with three lamps in it.

In the class definition, an instance variable must be kept so the view knows what window it is

in.

Aut oScrol I'i ngVi ew subcl ass: #LanpVi ew
i nst anceVari abl eNanes: ' w ndow ’
cl assVari abl eNames: '’
pool Di cti onari es:
category: ' Exanpl es-Lanps’

For now, update: needs to only re-display the view.

updat e: aMbdel
"The receiver’'s nodel has changed. Redisplay the
receiver."

sel f di spl ayObj ect

#anAspect will be ignored, so we create a method di spl ayhj ect , which is called by

di spl ayOn: . displayObject displays the on/off images for each lamp, depending on its state,
then displays each image in its graphicsContext instance variable. graphicsContext is an
instance of GraphicsContext, a feature-rich class used for drawing into a display surface,
such as a view. More can be learned about this class from VisualWork'’s online
documentation.

di spl ayOn: ignored
"Display the lanps in a w ndow. "

sel f displ ayObj ect

di spl ayoj ect
"Di splay the lanps in the w ndow. "

| image |anp |
“model is a LampList”
1 to: model size do:
[:index | lamp := model at: index.
lamp state =0
ifTrue:
[image := lamp getLampOffimage]
ifFalse:
[image := lamp getLampOnimage].

self graphicsContext displaylmage: image
at: lamp position.].

In displayObject , the methods getLampOffimage and getLampOnimage are used. These
methods must be added to the Lamp instance methods. In addition to these methods, we
need to add a class method, initialize , to create the images. You need not be concerned
with the code within, just be aware that the initialize method exists.

getLampOffimage
"Returns the image of the lamp in off state."

ALampOffimage

getLampOnimage
"Returns the image of the lamp in on state."

106

ALanmpOnl mage

initialize
"Initialize class with an i nage."

bitPattern |

bitPattern : =

LanmpOnl nage

di spl ayObj ect still will not work properly. It references the position of each lamp, but until
now the position has not been set. The position needs to be set somewhere, so we will set
the position of each lamp in LamplList’s

extent:
dept h:

pal ette:

#[

2r 00001111
2r 00110000
2r 01000000
2r 10000000
2r 10000000
2r 10000000
2r 10000000
2r 10000000
2r 10000000
2r 01000000
2r 00100000
2r 00010000
2r 00001000
2r 00000100
2r 00000100
2r 00000010
2r 00000010
2r 00000010
2r 00000010
2r 00000010

;= | mage

16@0
1

bits: bitPattern

pad: 8.

LampOr f
extent:
dept h:

pal ette:

2r11110000
2r 00001100
2r 00000010
2r 00000001
2r 00000001
2r 00000001
2r 00000001
2r 00000001
2r 00000001
2r 00000010
2r 00000100
2r 00001000
2r 00010000
2r 00100000
2r 00100000
2r 01000000
2r 01000000
2r 01000000
2r 01000000

2r 01000000 7] .

MappedPal ette bl ackWite

| mage : = | nage

16@0
1

bits: bitPattern

pad: 8.

make: aninteger

"Makes a lamp list with aninteger number of lamps input by

the user."

| lamplist lamp |
lamplist := LampList new: aninteger.
aninteger
timesRepeat:
[lamp := Lamp new.

lamp position: 25 @ (lamplist size * 30).

MappedPal ette whiteBl ack

make method.

lamp id: (lamplist size + 1).

lamp state: 0.

lamplist add: lamp.

lamp addDependent: lamplist].

107

1to: lanplist size do: [:I |
1 to: lanplist size do: [:dep |
| = dep ifFalse: |
(lanplist at: |) addDependent:

(lanplist at: dep)]]].
Al anpl i st

Now we have the methods to create a visual representation of a lamp, and the methods to
update the view, but we still need to attach the model to the view and create the window to

put the view in. To be displayed on the screen, a view must be contained in an instance of
Schedul edW ndow.

* Registering the view as a dependent of the model is simple through the use of the
message nodel : aModel

Schedul edW ndow has a model and a controller

e The “Scheduled” part of Schedul edW ndow refers to the fact that Schedul edW ndow s
part of Schedul edCont r ol | er, the control manager.

Usually, the Schedul edW ndow is created, and its visual components are added before it is

opened. The following code demonstrates this:

| aW ndow |
aW ndow : = Schedul edW ndow new.
aW ndow
conponent: 'Hello World asConposedText.
aW ndow openin: (20 @20 extent: 150 @150).

7 =10 =]
Hello “Woarld

« Now we can create a new view, place it inside a window and register the model in the
same class method for LanpVi ew.

openOn: alLanpli st
"Creates a new Lanmp View on alLanpList."

| view wi ndow |
view : = self new.

“Register the model”
view model: aLamplList.

window := ScheduledWindow new.
window label: 'Lamp Viewer".
window minimumSize: 50@100.
window insideColor:
(ColorValue red: 1.0 green: 0.0 blue: 0.0).
window component: view.
view window: window.
window open.
view.

108

The last task that must be done is the simplest: create an instance of LanpVi ewin the
Traf fi cLi ght. The simplest way is by modifying the i ni ti al i ze method:

initialize
"Creates the three lights and turns the first on"

| anplist := LanpList nake: 3.
| ampVi ew : = LanpVi ew openOn: |anplist.
~sel f.

The following code will create the light, initialize it to the second light, then changes lights
every second for 10 seconds. The screen capture is the resulting window after 11
seconds (black was used as “on”).

| aTrafficLight |
aTrafficLight := TrafficLight new.
((aTrafficLight lanplist) at: 2) state: 1.
10 ti nesRepeat:

[(Delay forSeconds: 1) wait.

aTraf ficLi ght changeLight].

olen M=IET

109

Lecture 23: The Controller

Now, suppose we want to use the code to create a control panel with Lamps, rather than a

traffic light. We also want to control the lamps without entering commands into the

workspace. We need to modify the controller.

» Controllers serve two primary purposes, event handling and menu pop-ups. For now, we
will focus on event handling.

Every controller has a cont r ol Acti vi t y method which functions as an event handler. The

control Acti vi ty method is repeatedly invoked while control is active (e.g. the mouse

pointer is in the view of a window). It is in this method that we check for events from the user,

such as key presses and mouse button pushes, by sending messages to a sensor.

Each window has an input sensor, an instance of WindowSensor. The sensor holds queues

for keyboard events and window sizing/moving/closing events. It also knows the state of the

mouse, including the position of the pointer and the states of the buttons.

Lets start constructing the cont r ol Acti vi t y method for the LanpControl | er by first

checking for keyboard input. We’'ll use the number keys, 1, 2, and 3, to turn on the

corresponding lamp. First we check to see if a key was pressed by using the

keyboar dPressed message:

sensor keyboar dPressed.

« If this message returns true, then a key has been pressed and we need to
determine which one. The sensor will return the character pressed when we
send it the keyboar d message. We then convert the resulting character to an
integer and test if it is a valid lamp number. If so, we set the state of the lamp
to “on”.

* Inthe Smalltalk tradition, we want to keep the cont r ol Acti vi ty method
short, so we’'ll put the keyboard processing code in a separate method.

control Activity
"Do this when the nouse is in the w ndow. "

(sensor keyboar dPressed)
i fTrue: [self processKeyboard]

pr ocessKeyboard

| int |
int := sensor keyboard digitVal ue.
(int between: 1 and: nodel size)
ifTrue: [(nodel at: int) state: 1].

We want to add some way to quit the application, but request confirmation when the user
chooses to quit. Lets implements this when the user presses the yellow (middle for 3 button
mice, right for 2 button mice) mouse button. We can detect a mouse button by sending one of
the following messages to the sensor:

e redButtonPressed

e yell owButtonPressed

* bl ueButtonPressed.
In our case, we use sensor yel | owBut t onPr essed. If this method returns true, then the
confirm message is sent to the Dialog class to bring up a window with “yes” and “no”
buttons. Subsequent mouse presses are ignored until one of the confirm buttons is pressed.
If the “yes” button is pressed, the confirm message returns true and the window is closed.
Below we implement the yellow button activity method that is called when a yellow button
press is detected in the cont rol Acti vi ty method.

110

control Activity
"Do this when the nouse is in the w ndow. "

(sensor keyboar dPressed)
i fTrue: [self processKeyboard]
i fFalse: [
sensor yel | owButt onPressed
ifTrue: [self processYell owButton].

].

processYel | owButt on
“This method is called when the yellow button
is pressed”

(Dialog confirm: 'Quit ?")
ifTrue: [
view window controller closeAndUnschedule].

Lastly, it would be convenient if each lamp would turn on (and turn off all other lamps) by
simply clicking on it. We will use the red (left mouse button) for this operation. As with the
yellow button, we detect the red button press in the controlActivity method sensor
redButtonPressed , then send the processRedButton ~ message if the result is true.

To determine if a lamp was clicked on, we compute a Rectangle (in view coordinates) which
bounds the lamp image. Then we check to see if the point where the red button was clicked
is contained in the bounding rectangle.

We iterate through the LampList until we find a lamp that has been clicked on, in which case
we change that lamp’s state to #on, or until we have examined all lamps.

The following code implements the algorithm discussed above:

processRedBut t on
"This nethod is called when the red button is pressed.”

| npt inage box |

"Wait for the nouse button to be rel eased.”
sensor wait NoBut t on.

"CGet the point where the red nouse button was | ast
pressed down."
nmpt : = sensor | ast DownPoi nt .

"Assuming all |anp inages are the sanme, get the
first lanp image to use for conputation”
imge := (nodel at: 1) getlLanpOfflmage.

"Now iterate through each lanp in the nodel or
until we find one that has been clicked on."
1 to: (nodel size) do: [:lanpNumber | | lanmp |
lanp : = (nodel at: |anpNunber).

"Conput e the boundi ng box of this lanp’s inage
in the view s coordinates."
box : = Rectangle origin: (lanp position)
extent: (inage extent).

"Check if the pointer was on the i nage when
the button was pressed.”

(box containsPoint: npt) ifTrue: |
"I'f so, then turn that |lanmp on."
Alamp state: 1].

111

].

Finally, included for completeness is the class definition as well as the complete
control Acti vity method.

Control |l er subcl ass: #LanpController
i nst anceVari abl eNanes: '’
cl assVari abl eNanes: '’
pool Di ctionaries: '’

category: ' Exanpl es-Lanps’
control Activity
"Do this when the nobuse is in the w ndow. "

(sensor keyboar dPressed)

ifTrue: [self processKeyboard]
i fFalse: [

sensor yel | owButt onPressed

ifTrue: [self processYell owButton].
sensor redButtonPressed

ifTrue: [self processRedButton].

112

Appendix1: VisualWorks 2.5 versus Smalltalk-80

VisualWorks 2.5

Smalltalk-80

Assignment

é

Global Variables

Start with Caps

Does not care

DeepCopy Removed Present
Fractions asRational asFraction
FileName protocol fileNamed: named:

Differences found throughout the lecture note’s examples

Button
DebuggerController
DebuggerTextView
DialogCompositController
DialogController
DialogView
FixedThumbScrollbar
FractionalWidgetView
HandlerController
ListController

ListView
SelectionSetinListController
SelectionInListView
TextltemView
TextltemEditor
TextController

TextView

PopUpMenu
WidgetSpecification

Classes removed from VisualWorks 2.5

113

Appendix2: VisualWorks rules and Smalltalk Syntax

Capitalization rules
e Upper Case

e Class names

e Class variables and global variables
¢ Lower Case

¢ Method names

« Temp variables, instance variables, class instance variables, method arguments

« Use embedded capital letters, not underscores
Reserved words

e nil

e true

« false

e self

e super

e thisContext
Operators

« called ‘gets’ operator, used for assignment

° N

« called ‘returns’ operator, used to return a value

* Example
nane: aSynbol
nanme := aSynbol .
Anare.
Literals

» use VisualWorks syntax chapter for reference here
* Numbers

e Characters

e Strings

e Symbols

* Arrays of literals

e Byte Arrays (notice the use of brackets)
Comments

« “Comment”

« periods allowed within double quotes

114

Appendix 3: A List of Methods for the System Classes

Magnitude:
Creation:
Operations:
< aMagnitude
less than operator returns boolean
<= aMagnitude
less than or equal operator returns boolean
> aMagnitude
greater than operator returns boolean
>= aMagnitude
greater than or equal operator returns boolean
between: min and: max
returns True if object’'s magnitude is between min and max
min: aMagnitude
returns the lesser of the object and aMagnitude
max: aMagnitude
returns the greater of the object and aMagnitude

Magnitude->Date:
Creation:
today
instance representing the current date
fromDays: dayCount
instance representing the date dayCount days from 01/01/1901
newDay: day month: monthName year: yearinteger
instance representing day number of days into monthName in yearinteger
newDay: dayCount year: yearlnteger
instance representing dayCount days into yearlnteger
Operations:
dayOfWeek: dayName
returns index of dayName in the week, #Sunday = 0
nameOfDay: daylndex
returns Symbol representing the day whose index is daylndex
indexOfMonth: monthName
returns index of monthName in the year, #January = 0
nameOfMonth: monthindex
returns Symbol representing the month whose index is monthindex
daysInMonth: monthName forYear: yearlnteger
returns Integer representing the number of days in monthName for year
yearinteger
daysinYear: yearlnteger
returns Integer representing the thumber of days in yearinteger
leapYear: yearinteger
returns 1 if yearinteger is a leap year, 0 otherwise
dateAndTimeNow
returns Array whose first element is current date, and whose second element is
the current time
addDays: dayCount
returns Date that is dayCount days after object
subtractDays: dayCount
returns Date that is dayCount days before object
subtractDate: aDate

115

asSeconds
returns number of seconds between atime on 01/01/1901 and the same time in
the receiver’s day

Magnitude->Time:
Creation:

now
instance representing the current time

fromSeconds: secondCount
instance representing the time of secondCount after midnight

Operations:

millisecondClockValue
returns number of milliseconds since the millisecond clock was reset or rolled
over

millisecondsToRun: timedBlock
returns number of milliseconds timedBlock takes to execute

timeWords
returns the number of seconds since 01/01/1901 (GMT) in 4 element byte array

totalSeconds
returns total number of seconds since 01/01/1901, correcting the time zone and
daylight savings

dateAndTimeNow
returns Array whose first element is current date, and whose second element is
the current time

addTime: timeAmount
returns Time that is timeAmount days after receiver

subtractTime: timeAmount
returns Date that is timeAmount before receiver

asSeconds
returns number of seconds since midnight that receiver represents

Magnitude->Character:
Creation:
value: aninteger
instance of Character which is the ASCII representation of aninteger
digitvalue: aninteger
instance of Character which is the character representation of a munber of radix
35- $0 returns 0, $A returns 10, $Z returns 35
Operations:
asciiValue
returns Integer of ascii character
digitvValue
returns Integer representing numerical radix
isAlphaNumeric
true if receiver is letter or digit
isDigit
true if receiver is digit
isLetter
true if receiver is letter
isLowercase
true if receiver is lowercase
isUppercase
true if receiver is uppercase
isSeparator
true if receiver is space, tab, cr, line feed, or form feed
isVowel

116

trueif receiver isa,e,i,o,u

Magnitude->Number:
Creation:
Operations:
+ aNumber
returns sum of receiver and aNumber
- aNumber
returns difference of reciever and aNumber
* aNumber
returns result of mulitplying receiver by aNumber
/ aNumber
returns result of dividing receiver by aNumber. If result is not a whole number,
then an instance of Fraction is returned
/I a@Number
returns I nteger result of division truncated toward negative infinity
\\ aNumber
returns I nteger representing receiver modulus aNumber
abs
returns Number representing absol ute value of receiver
negated
returns Number representing additive reciprocal
quo: aNumber
returns quotient of receiver divided by aNumber
rem: aNumber
returns remainder of receiver divided by aNumber
reciprocal
returns multiplicative reciproca (L/reciever)
exp
returns e raised to the power of receiver
In
returns natual log of receiver
log: aNumber
returns log base aNumber of receiver
floorLog: radix
returns floor of log base radix of reciever
raisedTo: aNumber
returns result of raising receiver to aNumber
raisedT ol nteger: anl nteger
returns result of raising receiver to anlnteger, where anlnteger must be an
Integer
sort
returns square root of receiver
sguared
returns receiver raised to the second power
even
true if receiver iseven
odd
trueif receiver is odd
negetive
trueif receiveris<=0
positive
trueif receiver is>=0
strictlyPositive
true if receiver >0
sign

117

returns 1 if receiver > 0, O if receiver == 0. —1 if receiver < 0
ceiling
returns result of rounding towards positive infinity
floor
returns result of rounding towards negative infinity
truncated
returns result of rounding towards zero
truncateTo: aNumber
returns result of truncating to multiple of aNumber
rounded
returns result of rounding receiver
roundedTo: aNumber
returns result of rounding receiver to neastest multiple of aNumber
degreesToRadians
returns Float of radian representation of receiver. Assumes receiver is in degrees
radiansToDegrees
returns Float in degrees of conversion of receiver. Assumes receiver is in radians
sin
returns Float of sin(receiver) in radians
cos
returns Float of cos(receiver) in radians
tan
returns Float of tan(receiver) in radians
arcSin
returns Float of arcSin(receiver) in radians
arcCos
returns Float of arcCos(receiver) in radians
arcTan
returns Float of arcTan(receiver) in radians
coerce: aNumber
casts receiver as same type as aNumber
generality
returns the number respresenting the ordering of the receiver in the generality
heirarchy
retry: aSymbol coercing: aNumber
an arithmetic operation aSymbol could not be performed, so the operation is
retried casting the receiver or argument to aNumber (picking the lowest order of
generality)

Magnitude->Number->Integer:
Creation:
Operations:
factorial
returns Integer representing the factorial of the receiver
gcd: aninteger
returns Integer representing the Greatest Common Denominator of the receiver
and aninteger
Icm: aninteger
returns Integer representing the Lowest Common Multiple of the receiver and
aninteger
allMask: aninteger
treat aninteger as a bit mask. Returns True if all 1's in aninteger are 1 in the
receiver
anyMask: aninteger
treat aninteger as a bit mask. Returns True if any on the 1's in aninteger are 1 in
the receiver

118

noMask:

anlnteger
treat an Integer as a bit mask. Returns True if none of the 1's in aninteger are 1
in the receiver

bitAnd: aninteger

returns Integer representing a boolean AND operation between aninteger and the
receiver

bitOr: aninteger

returns Integer representing a boolean OR operation between aninteger and the
receiver

bitXor: aninteger

returns Integer representing a boolean XOR (eXclusive OR) operation between
aninteger and the receiver

bitAt: anindex

returns the bit (0 or 1) at anindex
returns an Integer which is the complement of the receiver

returns an Integer representing the index of the highest order bit

aninteger

returns an Integer whose value (in two’s-complement) is the receiver’s value
shifted aninteger number of bits. Negative shifts are to the right.

om new
instance representation of a random number generator

instance of a random rumber. The receiver must be a random number generator,
which has previously been started

#(Objectl, Object2, Object3, Object4)

instance representing an array containing up to 4 objects passed as arguments
instance representing an empty collection

instance representing a collection

with: anObject

instance representing a collection containing anObject

with: firstObject with: secondObject

bitinvert
highBit
bitShift:
Random
Creation:
:= Rand
next
Operations:
Collection
Creation:
new
new:
Operations:

instance representing a collection containing firstObject and secondObiject

add: newObject

adds newObject to the receiver and returns newObject

addAll: aCollection

remove:

remove:

adds aCollection to the receiver and returns aCollection

oldObject

removes oldObject from the receiver and returns oldObject unless there is no
object oldObject (reports an error).

oldObject ifAbsent: anExceptionBlock

removes oldObject from the receiver, unless it does not exist, in which case
anExceptionBlock is executed. Returns oldObject or result of anExceptionBlock

removeAll: aCollection

119

removes all elements of aCollection from the receiver and returns aCollection,
unless not all elements of aCollection were present in the receiver, in which case
an error is reported.

includes: anObject
returns True if anObject is an element of the receiver

isEmpty
returns True if the receiver has no elements

occurrencesOf: anObject
returns an Integer representing the number of occurrences of anObject in the
receiver

do: aBlock
evaluate aBlock for every element of the receiver

select: aBlock
evaluates aBlock for every element of the receiver. Returns a new Collection
containing all elements of the receiver for which aBlock evaluated to true

reject: aBlock
evaluates aBlock for every element of the reciever. Returns a new Collection
containing all elements for which aBlock evaluated to false

collect: aBlock
evaluates aBlock for every element of the receiver. Returns a new Collection
containing the results of every evaluation of aBlock.

detect: aBlock
evaluates aBlock for every element of the receiver. Returns the object whichis
the first element in the receiver for which aBlock eval uated to true. If no object
evaluated to true, an error is reported.

detect: aBlock ifNone: exceptionBlock
evaluates aBlock for every element of the receiver. Returns the object whichis
the first element in the receiver for which aBlock evaluated to true. If no object
evaluated to true, exceptionBlock is evaluated.

inject: thisValue into: binaryBlock
Evaluates binaryBlock for each element of the receiver, initializing alocal
variable to thisValue. Returns final value of the block. BinaryBlock has two
arguments.

asBag
Returns a Bag with the elements from the receiver

asSet
Returns a Set with the elements from the receiver

asOrderedCollection
Returns an OrderedCollection with the elements from the reciever

asSortedCollection
Returns a SortedCollection with the elements from the receiver, sorted to each
element is less than or eaqual to its successor

asSortedCollection: aBlock
Returns a SortedCollection with the elements from the receiver, sorted
according to the arguemnt aBlock

Collection->Bag
Creation:
Operations:
add: newObject withOccureneces: anlnteger
Adds anlnteger number of occurrences of newObject to the receiver, and returns
newODbject

Collection->Set

Creation:
Operations:

120

Collection->Set->Dictionary and Collection->Set->IdentityDictionary
Creation:
Operations:
at: key if Absent: aBlock
Returns the value named by key. If the key is not present in the dictionary,
returns evaluation of aBlock
associationAt: key
Returns the association named by key. If key is not present, an error is reported
associationAt: key if Absent: aBlock
Returns the association named by key. If key is not present, returns the
evaluation of aBlock.
keyAtValue: value
Returns the name found first for value, or nil if valueis not present
keyAtVaue: valueifAbsent: exceptionBlock
Returns the name found first for value, or the evaluation of exceptionBlock if
valueis not found
keys
Returns Set representing all of the receiver’s keys
values
Returns Set containing all of the receiver’s values
includesAssociation: anAssociation
Returns true if anAssociation is included in the receiver
includesKey: key
Returns true if key is included in the receiver
removeAssociation: anAssociation
Removes anAssociation from the receiver. Returns anAssociation
removeKey: key
Removes key and associated value from the receiver. Returns value associated
with key if key is included in the receiver, otherwise an error is reported
removeKey: key ifAbsent: aBlock
Removes key and associated value from the receiver. Returns value associated
with the key if key is included in the receiver, otherwise returns the evaluation
of aBlock
associationsDo: aBlock
Evaluate aBlock for each of the receiver’s associations
keysDo: aBlock
Evaluate aBlock for each of the receiver’'s keys

Collection->SequenceableCollection
Creation:
Operations:
atAll: aCollection put: anObject
Associate each element of aCollection with anObject.
atAllPut: anObject
Put anObject as every one of the receiver’'s elements
first
Returns the first element of the receiver
last
Returns the last element of the receiver
indexOf: anElement
Returns an Integer representing the index of anElement in the receiver, 0 if not
present
indexOf: anElement ifAbsent: exceptionBlock
Returns an Integer representing the index of anElement in the receiver, or the
evaluation of exceptionBlock if anElement is not in the receiver

121

indexOfSubCollection: aSubCollection startingAt: anlndex
If the elements of aSubCollection appear in order in the receiver, returns the
index of the first element of aSubCollection in the receiver, otherwise returns 0
indexOf SubCollection: aSubCollection: startingAt: anlndex ifAbsent: exceptionBlock
Returns the index of the first element of aSubCollection in the receiver if the
elements of aSubCollection appear in order, otherwise returns the evaluation of
aBlock
replaceFrom: start to: stop with: replacementCollection
Associates every element of the receiver from start to stop with the elements of
replacementCollection and returns the receiver. The size of
replacementCollection must equal start + stop + 1.
replaceFrom: start to: stop with: replacementCollection startingAt: repStart
Associates every element of the receiver from start to stop with the elements of
replacementCollection starting with index repStart in replacementCollection.
The receiver isreturned
, 8SequencableCollection
Returns the receiver concatenated with aSequencableCollection
copyFrom: start to: stop
Returns a subset of the receiver starting at index start and ending an index stop
copyReplaceAll: oldSubCollection with: newSubCollection
Returns a copy of the receiver with all occurrences of oldSubCollection replaced
with newSubCollection
copyWith: newElement
Returns a copy of the receiver with newElement added on to the end
copyWithout: oldElement
Returns a copy of the receiver without all occurrences of oldElement
findFirst: aBlock
Evaluates aBlock for every element of the receiver and returns the index of the
first element for which aBlock evaluates to true.
findLast: aBlock
Evaluates aBlock for each element of the receiver and returns the index of the
last element for which aBlock evaluatesto true
reverseDo: aBlock
Evaluates aBlock for each element of the receiver, starting with the last element
with: aSequenceableCollection do: aBlock
Evaluates aBlock for each element of the receiver and each element of
aSequenceableCollection. The number of elements in aSequenceableCollection
must equal the number of elementsin the receiver and aBlock must have two
arguements

Collection->SequenceableColl ection->OrderedCol lection
Creation:
Operations:
after; oldObject
Returns the element occurring after oldObject, or reports an error if oldObject is
not found or is the last element
before: oldObject
Returns the element occurring before oldObject, or reports an error if oldObject
isnot found or isthefirst element
add: newObject after: oldObject
Inserts newObject after oldObject into the receiver and returns newObject unless
oldObject is not found, in which case an error is reported
add: newObject before: oldObject
Inserts newObject before oldObject into the receiver and returns newObject
unless oldObject is not found, in which case an error is reported
addAllFirst: anOrderedCollection

122

Adds each element of anOrderedCaollection to the beginning of the receiver and
returns anOrderedCollection

addAllLast: anOrderedCollection
Adds each element of anOrderedCollection to the end of the receiver and returns
anOrderedCollection

addFirst: newObject
Adds newObject to the beginning of the receiver and returns newObject

addL ast: newObject
Adds newObject to the end of the receiver and returns newObject

removerirst
Removes the first object from the receiver and returnsit, unless the receiver is
empty in which case an error isreported

removel ast
Removes the last object from the receiver and returnsiit, unless the receiver is
empty in which case an error isreported

Collection->SequenceableColl ection->OrderedCol l ection->SortedCollection
Creation:
sortBlock: aBlock
Instance representing an empty SortedCollection using aBlock to sort its
elements
Operations:
sortBlock
Returns the block that is to be used to sort the elements of the receiver
sortBlock: aBlock
Make aBlock the block used to sort the elements of the receiver

Collection->SeguenceableCollection->LinkedList
Creation:
nextLink: aLink
Instance of Link that references aLink
Operations:
nextLink
Returns the receiver’s reference
nextLink: aLink
Sets the receiver’s reference to be alLink
addFirst: aLink
Adds aLink to the beginning of the receiver’s list and returns aLink
addLast: aLink
Adds aLink to the end of the receiver’s list and returns aLink
removeFirst
Removes the first element from the receiver’s list and returns it. If the list is
empty an error is reported
removelast
Removes the last element from the receiver’s list and returns it. If the list is
empty an error is reported

Collection->SequenceableCollection->Interval
Creation:

from: startinteger to: stoplnteger
Instance starting with the number startinteger and ending with stopinteger,
incrementing by one

from: startinteger to: stoplnteger by: stepinteger
Instance starting with the number startinteger and ending with stopinteger,
incrementing by stepinteger

123

Operations:

Collection->Seguenceabl eCollection->ArrayedCollection
Creation:
Operations:
Collection->Seguenceabl eCollection->ArrayedColl ection->CharacterArray->String
Creation:
Operations:
< aString
Returnstrueif the receiver collates before aString. Caseisignored.
<= aString
Returnstrueif the receiver collates before aString, or is the same as aString.
Caseisignored.
> aString
Returnstrueif the receiver collates after aString. Case isignored.
>= aString
Returnstrueif the receiver collates after aString, or is the same as aString. Case
isignored.
match: aString
Treats the receiver as a pattern containing #'s and *'s which are wild cards (#
represents one character, * represents a substring). Returns true if the reciever
matches aString. Case is ignored.
sameAs: aString
Returns true if the receiver collates exactly with aString. Case is ignored.
asLowercase
Returns a String representing the receiver in all lowercase
asUppercase
Returns a String representing the receiver in all uppercase
asSymbol
Returns a Symbol whose characters are the characters of the receiver

Collection->SequenceableCollection->ArrayedCollection->CharacterArray->Symbol
Creation:
intern; aString
Returns an instance of a Symbol whose characters are those of aString
internCharacter: aCharacter
Returns an instance of a Symbol which consists of aCharacter
Operations:

Collection->MappedCollection
Creation:
Operations:

Stream
Creation:
Operations:
next
Returns the next object accessible by the receiver
next: aninteger
Returns the next aninteger objects accessible by the receiver
nextMatchFor: anObject
Accesses the next object and returns true if it is equal to anObject
contents
Returns all of the objects in the collection accessed by the receiver.
nextPut: anObject

124

Stores anObject as the next object accessible by the receiver and returns
anObject
nextPutAll: aCollection
Store the elements in aCollection as the next objects accessible by the receiver
and returns aCollection. Advances the position reference to the new object.
next: anlnteger put: anObject
Store anObject as the next anlnteger number of objects accessible by the
receiver and returns anObject. Advances the position reference to the new
object.
ateEnd
Returnstrueif the are no more objects accessible by the receiver
do: aBlock
Evaluate aBlock for each of the remaining objects accessible by the receiver

Stream->PositionableStream
Creation:

on: aCollection
Returns an instance which streams over aCollection

on: aCollection from: firstindex to: lastlndex
Returns an instance which streams over a copy of a subcollection of aCollection
from firstindex to lastindex

Operations:

iSEmpty
Returns true if the collection the receiver accesses has no elements

peek
Returns the next object in the collection but does not increment the position
reference

peekFor: anObject
Does a peek, if the next object is equal to anObject, then returns true and
increments the position reference, otherwise just returns false

upTo: anObject
Returns a collection of the elements starting with the next object accessed by the
receiver up to, but not including, anObject. If anObject is not an element of the
remainder of the collection, then the entire remaining collection is returned.

position
Returns the receiver’s current position reference

position: aninteger
Sets the receiver’s position to aninteger. If aninteger exceeds the bounds of the
collection, then an error is reported

reset
Sets the receiver’s position to the beginning of the collection

setToEnd
Sets the receiver’s position to the end of the collection

skip: aninteger
Sets the receiver’s position to the current position + aninteger

skipThrough: anObject
Sets the receiver’s position to be past ther next occurrence of anObject. Returns
true if anObject occurs in the collection

Stream->PositionableStream->ReadStream
Creation:
Operations:

Stream->PositionableStream->WriteStream

Creation:
Operations:

125

cr
Stores the carriage return as the next element of the receiver
crtab
Stores the carriage return and a single tab as the next elements of the receiver
crtab: anlnteger
Stores a carriage return follwed by anl nteger number of tabs as the next
elements of the receiver
space
Stores the space charater as the next element of the receiver
tab
Stores the tab character as the next element of the receiver

Stream->External Stream
Creation:
Operations:

nextNumber: n
Returns a Smalllnteger or LargePositivel nteger representing the next n bytes of
the collection accessed by the receiver

nextNumber: n put: v
Stores v, which isa Smalllnteger or LargePositivel nteger, as the next n bytes of
the collection accessed by the receiver

nextString
Returns a String consisting of the next elements of the collection accessed by the
receiver

nextStringPut: aString
Stores aString in the collection accessed by the receiver

padTo: bsize
Skipsto the next boundary of bsize characters and returns the number of
characters skipped

padTo: bsize put: aCharacter
Skipsto the next boundary of bsize characters, writing aCharacter to each
character skipped, and returns the number of charcters skipped

padToNextWord
Skip to the next word (even) boundary and returns the number of characters
skipped

padToNextWordPut: aCharacter
Skip to the next word (even) boundary, writing aCharacter to each character
skipped, and returns the number of characters skipped

skipWords: nWords
Advance position reference nWords

wordPosition
Returns the current position in words

wordPosition: wp
Sets the position reference in words to wp

126

Index

ADS 64
Abstractionccoceviiiiiiic 16, 22
addDepent entcccoeceveveeencecceree e 91
ANASPECT ..o 91
AN oo 34
= U o ©/0 1 S 67
= Lo o O 67
ArithneticVal ueeeeecicieins 63
ASChar aCt €r ...eveceeeceeceeeece e 66
asFl oat .o, 66
ASFracti on .., 66
aSI N EJEr .o 66
Associated Hashtable...........ccccoeeeveineenen. 70
= TR A T o [14
AL e 13,28
Aut oScrol 1'i NngVi @W...ccvecvecvvieriecee, 106
DAST CAL oo 29
DaSI CSi Z@ i, 29
BEhaVIOr ..o 20
BINAIY ..o 30
Bl OCKCl OSUI €.t 34
BIOCKS ... 34
bl ueBut t onPressed........cccooeeevvreieennen. 110
Boolean...........c.ccoooeeiiiiec e 34
Branching...........cccoooovininiiiiee e, 34
BIrOWSEEcuvviii 52
bytecodeccovvviieeeee e, 14
Capitalizationcocccvereenieneereeee 114
CeIlING vt 67
changed.......cooeiecc e 91
Char oo 63
(o] = TSR 27
(03 - TR 11
Class Hierarchyccccoovvvceviieiece, 11
Class instance variables 32
Class Protocol........cccccvevveeevieeceee e, 43
Class Variables.............ccceoevviciiceeceenenn, 33
cl oseAndUnschedul eccceveenenneeee. 111
COl 1 €Ct e, 41,71
(070 1[=Tox 110] o F SRR 62
COMMENTS ..o 114
Comparison.........cccccoccvvevecenceccesece e 27
Composition............c.cccoeoeveieceeenen, 17, 22
(o701 o} S I g 1 1 OO 41
CONFi M e 110
Control Structures.................. See Branching
control ACti VIity e 110
(000] 11 (o] | [T 97,110
(o7 0] ¢) ST 27
Copying objectsc.cccovveevecnce, 27
(o] 0 1= J OSSP 67

DAt € oo 63
dat e ANdTi MENOW......cceiiriiirereeieeeie e 68
Debugging.........cccocoovievieiicecee e, 41
dEEPCOPY wvereieeierrerieierieeeteste e 27
Dl @Y .o e 109
Dependency.........ccoooeeveeneiiiniinie e 91
dependent S, 91
Dependent sFi el dS. ...cccccvecvecvvcevinveenen, 95
et ECT i 71
det ECT I e 102
[o o [111
DICHONAIYcoveieiieieieeeeeeeee e 70
di spl ayQbj ect ..ccevviiiiiecee 106, 107
di sSpl ayOn: .o 105
QO e 70
doesNot Under st andccccoceveeeeieenicnnns 36
Encapsulationcccccoeoiiiiiiniienen, 20
EQUIVAIENCE.......eeeeeirieeeree e 27
OV i s 34
(=] o] (RS 37
Error Handling.......c...ccocoooviiiineee, 36
errorSignal ., 41
EXCEPLON ..o 41
(2 o PSPPSR 67
EXPONENtS.....cceeiiiiiierie e 67
Factorization.............c...ccccoveiveiene 18, 22
fal SEi 114
Fal Se..iiie 34
File Streams...........c.ccoeeviviivvccicee e, 84
Filing In.......cooooi 48
Filing Out........cocooviiiiiiieee e 48
FindFirst 71
findLast ..o 71
FlOOK . 67
FlUSN 84
Global Variablescccccccoevvrveiiiciennns 33
GraphicsContext.......ccccevveveecesieseeseeniens 106
NAalt . ——————— 41
hal t Si gnal ...ccocvveeeieee e, 41
hardhal t ..o, 41
NASH .o 63
I =Y Y = 34,35
FFTIUE (e, 34
Tz Vo [T 14
0 = o3 SR 71
I NSPECT e 41
Instance ..o, 11
Instance Protocol..........cccccoevininenenicieenn 43
Instance variables................c..ccoeevvenen. 32
I NSTVAr Al oo 40
I SKIiNdOE ., 27

127

I SVENMDEr OF oo 27

FSNIT e 40, 62
i sSequenceabl €., 62
Iteration............c.ccoo e, 70
keyboar dPressedc.ccoevevvveiecrnnnene, 110
KEYWOI.....ooiieeieeeeieieeeese e 30
Launcher...........ccoooooviiiiiii e, 44
LIterals ..o 114
o SRR 67
logarithms ... 67
Magnitude.......ccceveeeeeie e 62
11025 SRR 63
message protocolccoceeeeninccnenne 43
messageNot Under st oodSi gnal 41
Messagesccecevvvvcevvceeveeseeen, 13,14, 30
Method arguments...............c..cccceceeveeeennee. 32
Method Lookup.........ccccoevvriiiincieeee, 30
Methods.........c..ooooveeiieeieece e 13,30
0 1 0 TR 63
MOdEl ... 97, 101
NEWDAY ...oovviiiiiie ettt 68
NEXT i s 82
NEXt NUITDET oo 84
NEXt PUL ..., 82,84
next PUt Al | .o 83,85
NEXT SETT NG oo, 84
N e 40, 114
NOL T Y oo 41
o) A N O 40, 62
NTOW ..ttt nne s 68
ODbject........cccooeeee e 7
OPEratOrS.....cccviviieee s 114
0] SRR 34
PEEK ettt 83
PErf Or Muiiiiicieee e 39
Polymorphism.............cccoconiniinnine 21
0 1] 0 A 0] o 83
Positionable Streams..................cccccoee. 83
primtiveFailed ... 37
PrintString . 35, 65
Procedural Approach.................ccccoveeennns 7
[0 |8 o PSPPSR 67
FeadFr OM...oeeee e 66
readFronStri NG .., 29
ReadStreams............cccccoevvviviievceveeen, 84
redButt onPressed.......ccovovivieeeeenns 110
(=Y =T o S 71
F el ASE. e 91
(=1 10 SRRSO See remainder
FEMAINAET ..o 67
removeDependent ... 1
FESEL e 83
(=1] oToT o Lo [=30 1o S 27

respondsToArithnmetiC....ccvcvveeveennen, 62
Return Values............cccccovveiciivnvnnen, 33
FevVer SEDO0 e 70
Schedul edControll er, ..everennne. 108
Schedul edW ndow........cccccevvviiiniennnne 108
SEI BCT o 71
SelectionVieW.........ccccoevivinenecieseeen, 98, 105
Sl T e 35,114
Sequencabl eCol | eceti on......ccceueeeee. 62
Sequenceabl eCol | eceti on................... 62
shal | OWCOPY ..oovveiriierecce 28
shoul dNot | npl enmentcccoeeveveeveeee 37
SIGNAL ... 41
SI N e s 67
ST ZB e s 29
SKI P et 84
SKi PWOT dS oo 84
Specialization ..o 15
STl N 82
SEAOUL....ooiiece e 82
StOreStrinNg e 65
SUEAMS ... e 62, 82
subcl assResponsi bi ity .o, 38
subcl assResponsi bil i tySi gnal 41
Y U] o] S SRS URP SR 114
System Browserccoocoiiiiiiiiinnenn, 47
Temp variables............ccccoeevviiviiviiecee 32
TextColleCtorView.........cccvvvevenereenecniennne 105
thisContext .o 114
TH B s 63
ti mesRepeat ... 35
10dAY .o 68
Transcriptcoccoveeiienieeee e 52
TrigONOMELIY ..o 67
LU e 114
T UC e 34
TrUNCALION...c.eiiiiieeee e 67
UNAIY oot 30
UndefinedObject...........cccccooviviiiiiccene 40
UPAAL € oo 91
updat €: .o 91, 101
Variablescccccoooiiiiiii e, 32
VIBW oottt 97, 105
Virtual Machine ... 14
Whi |l eFal Se...iciieeccceeee, 35
WHi | €TFUE i 35
WiINAOWSENSONccueieeeiieiiienie e 110
Wi th: dO e 71
WOr dPOST ti ON e 84
WoOrKkspacecooevvreeneeneenenseee e 45, 51
WriteStreams. ..., 84
XOT ettt 34
VAL ittt 68

128

yel | owButt onPressed......cccccceevnenenee. 110 Yoursel f o, 29

129

