
2EMHFW�2ULHQWHG�3URJUDPPLQJ�ZLWK
6PDOOWDON

by Bryce Hendrix

2

Disclaimer: This document is provided for educational purposes, and contains some non-
original content. If you are the author of any material included in this document and
would like it removed, please send mail to Bryce Hendrix at KHQGUL[#HQJU�DUL]RQD�HGX
and it will be removed immediately. Contents of this document cannot be used for
commercial usage without explicit permission from the author.

mailto:bryce.hendrix@amd.com

3

/HFWXUH�����:KDW�LV�DQ�2EMHFW" BB �

• ��5XOHV�RI�6PDOOWDON BB �

• :KDW¶V�VSHFLDO�DERXW�DQ�2EMHFW" BB �

• 22�YHUVXV�3URFHGXUDO�$SSURDFK�WR�SURJUDPPLQJ BBBBBBBBBBBBBBBBBBBBBBBB �

/HFWXUH����&ODVVHV�DQG�,QVWDQFHVBB ��

• &ODVVBBB ��

• ,QVWDQFH BB ��

• &ODVV�+LHUDUFK\ BBB ��

/HFWXUH����0HVVDJHV��0HWKRGV��DQG�3URJUDPPLQJ�LQ�6PDOOWDON BBBBBBBBBBBBBBBBB ��

• 0HVVDJHV BB ��

• 0HWKRGVBB ��

• 3URJUDPPLQJ�LQ�6PDOOWDON BBB ��

/HFWXUH����22�&ODVVLILFDWLRQ�7HFKQLTXHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 6SHFLDOL]DWLRQBBB ��

• $EVWUDFWLRQ BBB ��

• &RPSRVLWLRQBB ��

•)DFWRUL]DWLRQBB ��

/HFWXUH����(QFDSVXODWLRQ�	�3RO\PRUSKLVP BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• (QFDSVXODWLRQ BB ��

• 3RO\PRUSKLVP BB ��

/HFWXUH����22���3DVV�3URFHVV�±�DQ�,QYHVWPHQW�0DQDJHU BBBBBBBBBBBBBBBBBBBBBB ��

• 3DVV����$EVWUDFWLRQ BBB ��

• 3DVV����$EVWUDFWLRQ BBB ��

• 3DVV����&RPSRVLWLRQ BB ��

• 3DVV����)DFWRUL]DWLRQ BB ��

/HFWXUH����7KH�2EMHFW�&ODVVBB ��

•)XQFWLRQDOLW\�RI�DQ�REMHFWBB ��

• &RPSDULVRQ�RI�REMHFWV BB ��

• &RS\LQJ�REMHFWV BB ��

• $FFHVVLQJ�LQGH[HG�YDULDEOHVBBB ��

/HFWXUH����0HVVDJHV�	�0HWKRGV BB ��

• 0HVVDJH�([SUHVVLRQV BBB ��

• 0HWKRG�/RRNXS BBB ��

4

/HFWXUH����9DULDEOHV�DQG�5HWXUQ�YDOXHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 0HWKRG�DUJXPHQWV BB ��

• 7HPS�YDULDEOHV BBB ��

• ,QVWDQFH�YDULDEOHVBBB ��

• &ODVV�LQVWDQFH�YDULDEOHVBBB ��

• &ODVV�9DULDEOHV BBB ��

• *OREDO�9DULDEOHV BB ��

• 5HWXUQ�9DOXHVBBB ��

/HFWXUH�����%ORFNV�DQG�%UDQFKLQJ BB ��

• %ORFNV BBB ��

• &ODVV�%RROHDQ BB ��

• %UDQFKLQJ��&RQWURO�6WUXFWXUHV�BBB ��

/HFWXUH�����5HSRUWLQJ�(UURUV�DQG�'HEXJJLQJ�WHFKQLTXHV BBBBBBBBBBBBBBBBBBBBBB ��

• (UURU�+DQGOLQJ BB ��

• 0HVVDJH�+DQGOLQJ BB ��

• &ODVV�8QGHILQHG2EMHFW BB ��

• 'HEXJJLQJBB ��

• KDOW BBB ��

/HFWXUH�����'HVLJQLQJ�DQG�LPSOHPHQWLQJ�FODVVHVBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 6WHSV�WR�GHYHORS�D�VSHFLILFDWLRQBB ��

• 7KH�PHVVDJH�SURWRFROBBB ��

• 6WHSV�WR�LPSOHPHQWLQJ�D�FODVV BBB ��

• 'HVFULELQJ�D�FODVV BB ��

/HFWXUH�����9LVXDO:RUNV BB ��

6WDUWLQJ�9LVXDO:RUNV BBB ��

9LVXDO:RUNV�/DXQFKHUBB ��

:RUNVSDFH BB ��

8VLQJ�WKH�0RXVH�DQG�WKH�3RS�8S�0HQXV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

6HWWLQJ�XS�9LVXDO:RUNV BBB ��

2QOLQH�'RFXPHQWDWLRQ BB ��

6\VWHP�%URZVHUBB ��

)LOLQJ�,Q�DQG�)LOLQJ�2XW�&RPSRQHQWV BB ��
Filing In __ 48
Filing Out___ 49

5

6WDUWLQJ�DQ�$SSOLFDWLRQBB ��

6DYLQJ�<RXU�:RUN BBB ��

/HFWXUH�����0RUH�RQ�WKH�%DVLF�9LVXDO:RUNV�(QYLURQPHQW BBBBBBBBBBBBBBBBBBBBB ��

:RUNVSDFHV BBB ��

7KH�7UDQVFULSWBBB ��

(GLWLQJ�LQ�9LVXDO:RUNV�:LQGRZV BBB ��

8VLQJ�D�%URZVHU BBB ��

$GGLQJ�D�1HZ�0HWKRG BB ��

$GGLQJ�1HZ�&ODVVHV�RU�0HWKRGV�)URP�([WHUQDO�)LOHV BBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

&KDQJLQJ�([LVWLQJ�0HWKRGV BB ��

$GGLQJ�D�1HZ�&ODVV BB ��

6DYLQJ�&RGH�LQWR�D�)LOH BB ��

/HFWXUH�����6\VWHP�	�0DJQLWXGH�&ODVVHVBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 2YHUYLHZ BBB ��

• 6KDUHG�2EMHFW�3URWRFROVBBB ��

• ��EDVLF�VXEFODVVHV�RI�WKH�0DJQLWXGH�FODVV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 0HWKRGV�SURYLGHG�IRU�FRPSDULVRQBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• ([DPSOH��0RUH�PHWKRGV�IRU�FRPSOH[�QXPEHUV BBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 3DUWLDO�+LHUDUFK\ BB ��

• 7\SH�&RQYHUVLRQBB ��

• 7UXQFDWLRQ��IORRU��FHLOLQJ�DQG�UHPDLQGHUV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 0DWKHPDWLFDO�2SHUDWLRQV BB ��

• 'DWH�DQG�7LPH BB ��

/HFWXUH�����7KH�&ROOHFWLRQ�&ODVVHV BB ��

• 6PDOOWDON¶V�RSWLPL]HG�&ROOHFWLRQ�FODVVHVBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 3DUWLDO�+LHUDUFK\ BB ��

• ,WHUDWLRQ��ZKDW�\RX�FDQ�GR�ZLWK�FROOHFWLRQV� BBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

/HFWXUH�����$Q�H[DPSOH�XVLQJ�WKH�&ROOHFWLRQ�&ODVVHV BBBBBBBBBBBBBBBBBBBBBBBBB ��

/HFWXUH�����7KH�6WUHDP�&ODVVHV BB ��

• 6WUHDPV BB ��

• ,PSRUWDQW�PHWKRGV�IRU�DOO�6WUHDPV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• ,PSRUWDQW�PHWKRGV�IRU�3RVLWLRQDEOH�6WUHDPV BBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• ,PSRUWDQW�PHWKRGV�IRU�5HDG6WUHDPV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

6

• ,PSRUWDQW�PHWKRGV�IRU�:ULWH6WUHDPV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• ,PSRUWDQW�PHWKRGV�IRU�([WHUQDO�DQG�)LOH�6WUHDPVBBBBBBBBBBBBBBBBBBBBBBBB ��

• &RPPRQ�0LVWDNHV BB ��

• +LHUDUFK\BBB ��

/HFWXUH�����0DWUL[�([DPSOH�XVLQJ�6WUHDPV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

/HFWXUH�����'HSHQGHQF\�0HFKDQLVPVBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 'HSHQGHQF\BB ��

/HFWXUH�����7KH�0RGHO�9LHZ�&RQWUROOHU�3DUDGLJP BBBBBBBBBBBBBBBBBBBBBBBBBBB ��

• 'HILQLWLRQVBBB ��

0RGHO BBB ���

/HFWXUH�����7KH�9LHZ BB ���

9LHZ BB ���

/HFWXUH�����7KH�&RQWUROOHU BBB ���

$SSHQGL[���9LVXDO:RUNV�����YHUVXV�6PDOOWDON��� BBBBBBBBBBBBBBBBBBBBBBBBBBB ���

'LIIHUHQFHV�IRXQG�WKURXJKRXW�WKH�OHFWXUH�QRWH¶V�H[DPSOHVBBBBBBBBBBBBBBBBBB ���

• &ODVVHV�UHPRYHG�IURP�9LVXDO:RUNV���� BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ���

$SSHQGL[���9LVXDO:RUNV�UXOHV�DQG�6PDOOWDON�6\QWD[BBBBBBBBBBBBBBBBBBBBBBBB ���

• &DSLWDOL]DWLRQ�UXOHVBBB ���

• 5HVHUYHG�ZRUGVBB ���

• 2SHUDWRUV BBB ���

• /LWHUDOV BB ���

• &RPPHQWVBBB ���

$SSHQGL[����$�/LVW�RI�0HWKRGV�IRU�WKH�6\VWHP�&ODVVHV BBBBBBBBBBBBBBBBBBBBBBB ���

0DJQLWXGH�BBB ���

&ROOHFWLRQ BB ���

6WUHDP BB ���

,QGH[BBB ���

7

/HFWXUH�����:KDW�LV�DQ�2EMHFW"
• ��5XOHV�RI�6PDOOWDON

• (YHU\WKLQJ is an object
• Objects respond only to messages
• Ex: Automobile object

• Variables: velocity, weight, and color
• Methods: accelerate and decelerate

• :KDW¶V�VSHFLDO�DERXW�DQ�2EMHFW"
• Objects contain both VWDWH and EHKDYLRU and communicate with one another via

PHVVDJHV.
• Automobile’s velocity variable is changed by accelerate method
• An application is a group of objects interacting in a coordinate fashion
• Stop light application manages many Automobile objects

• 22�YHUVXV�3URFHGXUDO�$SSURDFK�WR�SURJUDPPLQJ
• Aspects of Procedural Approach

• Behavior is vested in the procedures
• Procedures must know data structures
• Procedures communicate only via data

• Procedural approach places too much emphasis on data, rather than the behavior of the
application.

• Ex: Baker Procedural approach to baking cookies
• Has 2 structures: Baker structure and cookie structure
• Steps:

• Make pointer to a cookie struct
• Call bakeCookies(Baker, cookie), returns pointer to cookies

• Review aspects of Procedural Approach
• Aspects of OO Approach

• An application is a set of objects communicating via messages
• An Object’s functionality is described by its methods
• Data required to support an object’s functionality is stored in private variables

• Examples:
• Baker Object

• State
• Weight
• Height
• Name

• Method
• bakeCake()

• bakeCookies()

• Kitchen Application
• Objects

• Baker
• Chef
• Dishwasher
• Oven

• Procedural Approach
• Treat each object as a data structure. Each object must have its own

data structure & variables.
• Write a function wash(). Note that 4 different functions must be written

• OO Approach

8

• Treat each object as object. Objects can inherit variables form each
other.

• Write a method wash() that operates for all objects. (show in Smalltalk &
C)
• Good Exercise for students: Use polymorphism for one object to do

wash methods for Plates object and Cup object
• Good Exercise for students: write KitchenObject class.

KitchenObject subclass: #Baker
instanceVariableNames:’name weight height’
classVariableNames:’’
PoolDictionaries:’’
category:’’

name
^name

name: aNewName
name := aNewName

bakeCake: ingredients
| cake |
cake := Cake new from: ingredients.
^cake

wash: dirtyDishes
dirtyDishes := dirtyDishes soak.
dirtyDishes := dirtyDishes scrub.
dirtyDishes := dirtyDishes dry.
^dirtyDishes

KitchenObject subclass: #Dishwasher
instanceVariableNames:’name weight height’
classVariableNames:’’
PoolDictionaries:’’
category:’’

name
^name

name: aNewName
name := aNewName

wash: dirtyDishes
^ self runCycleOn: dirtyDishes

runCycleOn: someDishes
someDishes := someDishes rinse.
someDishes := dry.

class CKitchenObject : public CBaker {
public:

char* name;
int weight;
int weight;

public:
CCake bakeCake(CIngredients ingredients);
CDishes wash(CDishes dirtyDishes);

}

9

CCake CBaker::bakeCake(CIngredients ingredients)
{

CCake cake = new CCake(ingredients);
return cake;

}

CDishes CBaker::wash(CDishes dirtyDishes)
{

dirtyDishes.soak();
dirtyDishes.scrub();
dirtyDishes.dry();
return dirtyDishes;

}

class CKitchenObject : public CDishwasher {
public:

char* name;
int weight;
int height;

public:
CDishes wash(CDishes dirtyDishes);

}

CDishes CDishwasher::wash(CDishes dirtyDishes)
{

this.runCycleOn(dirtyDishes);
}

CDishes CDishwasher::runCycleOn(CDishes dirtyDishes)
{

dirtyDishes.rinse();
dirtyDishes.dry();

}

typedef struct {
char* name;
int height;
int weight;

} Worker;

Worker baker;
Worker dishwasher;

char* getName (Worker aWorker)
{

return aWorker.name;
}

void nameWorker(Worker aWorker, char* newName)
{

strcpy(aWorker.name, newName);
}

void bakeCake(Ingredient_struct* ingredients,
Cake* newCake)

{
newCake = doSomethingWith(ingredients);

}

void bakerWashDishes(Dishes* dirtyDishes)
{

10

soak(dirtyDishes);
scrub(dirtyDishes);
dry(dirtyDishes);

}

void dishwasherWashDishes(Dishes* dirtyDishes)
{

dirtyDishes = runCycleOn(dirtyDishes);
}

void runCycleOn(Dishes* dirtyDishes)
{

dirtyDishes = rinse(dirtyDishes);
dirtyDishes = dry(dirtyDishes);

}

11

/HFWXUH����&ODVVHV�DQG�,QVWDQFHV
• &ODVV

• A template for objects that share common characteristics.
• Includes an object’s state variable and methods

• Ex: Vehicle class
Vehicle
 Velocity
 Location
 Color
 Weight
Start()
Stop()
Accelerate()

• ,QVWDQFH
• A particular occurrence of an object is defined by a class

• Classes are sometimes thought of as factories. If we had an automobile factory, the
class would be the factory and the automobiles would be the instances of that
factory.

• Each instance has its own values for instance variables
• Each automobile has its own engine, hood, doors, etc.

• All instances of a class share the same method
• Methods are the functions that are applicable to all instances of a class.

• The method accelerate is applicable to all automobiles
• Ex: A road contains many instances of vehicles, all different colors, going different

speeds, starting, stopping, accelerating, etc
• Ex: cars on a road. It is important to note that car1 and car 3 are not the same object,

but are the both instances of the class Car. car1 and car3 are equivalent, but not
equal. Equality implies they are the same object.

aRoad = Road new.
car1 = Car new withColor: red withSpeed 30.
car2 = Car new withColor: blue withSpeed 45.
car3 = Car new withColor: red withSpeed 30.

• &ODVV�+LHUDUFK\
• Allows sharing of state and behavior

• Subclasses are able to use the methods and variables of the parent classes.
• Each class refines / specializes its ancestors
• Child can add new state information

• A Land Vehicle adds the state information regarding the number of axles
• Child can add, extend or override parent behavior

• All Vehicles can be driven, but all types of vehicles require different sets of methods
to drive

• Superclass is the parent and subclass is a child
• Abstract class holds common behavior & characteristics, concrete classes contain

complete characterization of actual objects
• In the Vehicle example, Vehicle is the Superclass, and Sailboat, Speed boar, Jet,

Helicopter, Car and Truck are the concrete classes.

12

Ex: Vehicle hierarchy (leaves are concrete, all other are abstract)

Vehicle
 YHORFLW\
�����ORFDWLRQ

Water Vehicle Air Vehicle Land Vehicle
D[OHV

Sailboat Speed boat Jet Helicopter Car
FRORU

ZHLJKW

Truck

13

/HFWXUH����0HVVDJHV��0HWKRGV��DQG�3URJUDPPLQJ�LQ�6PDOOWDON
• 0HVVDJHV

• A message specifies what behavior an object is to perform
• Only way to communicate with an object
• Implementation is left up to the receiver object

• Ex: Ask the baker to bake a cake. We don’t care how he does it.
• Ex: baker bakeCake.

• State Information can only be accessed via messages
• Ex: I want to know how old you are (one of your state variables), so I ask you. I don’t

care how you compute your age, all I care about is the answer.
• Ex: baker age.

• The receiver object always returns a result (object).
• A lot of the time a receiver is modified and it doesn’t make sense to return something,

so the argument is returned
• Ex: #(a b c) at: 3 put: #d returns #d

• 0HWKRGV
• A method specifies how a receiver object performs a behavior.
• Executed in response to a message
• Must have access to data (must be passed, or contained in object)

• If there is no access passed or contained in the object, what can be done?
• Needs detailed knowledge of data
• Can manipulate data directly

• Can modify instance variables of the object receiving the message
• Ex: #(a b c) at: 3 put #d. modifies the collection which is the instance variable

• Returns an object as a result of its execution
• Since a method is executed in response to a message, and we have already said all

messages return an object, it should only make sense that the method returns an
object as the result of its execution

• Has same name as the message name
• Ex: #(a b c) size. size is the message called by the receiver, and the size

method is the method in class Array to be executed
• Visual Works does no type checking on arguments, although the types should be type-

compatible.
• Method returns the receiver object by default, unless explicitly returned

• Ex: Bob is asked to bake a cake. Bob’s ‘bake’ method explicitly says to return a cake,
rather than returning himself to the requester.

• Ex: the at: method of class Interval
• Explicitly returns a temp variable

at: anInteger
 "Answer the number at index position
 anInteger in the receiver interval."
 | answer |
 anInteger > 0
 ifTrue: [
 answer := beginning + (increment *(anInteger

 - 1)).
 (increment < 0
 and: [answer between: end and:

beginning])
 ifTrue: [^answer].
 (increment > 0
 and: [answer between: beginning and: end])
 ifTrue: [^answer]].

14

 ^self errorInBounds: anInteger

• Ex: the asString method of class String
• Returns the receiver (self)

asString
"Answer the string representing the
 receiver (the receiver itself)."

 ^self

• 3URJUDPPLQJ�LQ�6PDOOWDON
• Code is written and tested in small pieces

• Usually each method is tested after completion
• Smalltalk is interpreted

• Code is compiled into bytecode incrementally during development
• Once the code has been written, it is “accepted” and compiled into bytecode,

then tested.
• Bytecode is interpreted by the Virtual Machine.
• The advantage to a Virtual Machine is that different machines can have their own VM

to interpret the bytecode. Thus, compiled code should be platform independent.
• Rather than compile all classes for each program, Smalltalk compiles all of the

classes and methods into an “image”

15

/HFWXUH����22�&ODVVLILFDWLRQ�7HFKQLTXHV
• The Vehicle Class Description

Object subclass: #Vehicle
instanceVariableNames: ’speed wheels’
classVariableNames: ’’
PoolDictionaries: ’’
category: ’’.

withWeels: numberOfWheels goingSpeed: aSpeed
"Creates a new Vehicle Object"
| aNewVehicle |
aNewVehicle := self new.
aNewVehicle wheels := numberOfWheels.
aNewVehicle speed := aSpeed.
^aNewVehicle.

driveOn: aRoad
"Returns the reciever, does the driving"
self speed < aRoad speedLimit

ifTrue:
 [self speed := (self speed) + 1.

^self]
ifFalse:
 [self speed := (self speed) - 1.
 ^self].

• 6SHFLDOL]DWLRQ
• The act of creating a subclass of class. The new class inherits, overrides, and extends

the behavior of the superclass.
• How?

• Add instance variables as needed
• Add, extend, or override methods as needed

• “is-a” relationship. An automobile “is-a” vehicle.
• Benefit- code reuse
• Ex: Class Vehicle exists before Class Automobile is invented. Class Automobile is

invented, but based on the methods and variables of Class Vehicle.

Vehicle subclass: #Automobile
instanceVariableNames: ’speed wheels engine’

9HKLFOH
speed
wheels
GULYH2Q

$XWRPRELOH
engine

%LF\FOH

&DUULDJH
horses

16

classVariableNames: ’’
PoolDictionaries: ’’
category: ’’.

withWheels: numberOfWheels goingSpeed: aSpeed withEngine: anEngine
"Create a new Automobile Object"
| aNewAuto |
aNewAuto := self new.
aNewAuto := Vehicle withWheels: numberOfWheels

goingSpeed: aSpeed.
aNewAuto engine := anEngine.
^aNewAuto.

driveOn: aRoad
"Returns the receiver, does the driving"
self speed < aRoad speedLimit

ifTrue: [self engine accelerate. ^self]
ifFalse: [self engine decelerate. ^self].

• $EVWUDFWLRQ
• The act of creating a superclass for several classes.
• How?

• Identify the shared state and /or behavior across the classes
• Move shared properties to the new abstract superclass
• Interpose the new abstract superclass in the class hierarchy

• Benefit: code reuse, simplify maintenance, better understanding
• Example

• Example:

9HKLFOH
speed
wheels
GULYH

$XWRPRELOH
engine

%LF\FOH

&DUULDJH
horses

��:KHHOHG

17

• &RPSRVLWLRQ
• The act of creating a class that is composed of instances of other classes (via instance

variables). The new class does not inherit form the other classes, but can access their
state and behavior via messages.

• How?
• Create a new class that is composed of other classes

• Attributes of the new class are instances of other classes
• The new class obtains the behavior of composition classes by sending messages

to the referenced instances (“delegation”).
• Benefit: provides protection from changes in referenced classes.
• Behavior is not inherited
• “has-a” relationship (also known as “is-part-of”).
• Ex: An instance of class Airplane might be composed of instances of the class variables

Engine, Position, and Velocity.
• Engine points to an instance of class Engine (user defined)
• Position points to an instance of class Position (user defined)
• Velocity points to an instance of Visual Works system class, Float.
• An Airplane “has-a” Engine, Position, and Velocity.

Cheetah
speed
family

speak()

x1
x

1

x

1

Dog
speed
family

speak()

Gorilla
speed
family

speak()

Animal
speed
family

speak()

18

•)DFWRUL]DWLRQ
• The act of breaking a class into smaller classes.
• How?

• Factor the class into smaller classes
• Create a new class for each distinct type of state / behavior
• Recombine the new classes via inheritance and /or composition to achieve

original functionality.
• Example: break the class Animal into different Species Classes
• Benefit: Potential reusable, smaller classes

Object subclass: #Vehicle
instanceVariableNames: ’speed wheels’
classVariableNames: ’’
PoolDictionaries: ’’
category: ’’.

withWeels: numberOfWheels goingSpeed: aSpeed
"Creates a new Vehicle Object"
| aNewVehicle |
aNewVehicle := self new.
aNewVehicle wheels := numberOfWheels.
aNewVehicle speed := aSpeed.
^aNewVehicle.

driveOn: aRoad
"Returns the reciever, does the driving"
self speed > aRoad speedLimit

ifTrue:
 [self speed := (self speed) + 1. ^self]
ifFalse:

Airplane
engine
position
velocity

takeOff()
land()

Engine
thrust
fuel

increaseThrust()
decreaseThrust()

Formal
arguments

AnAirplane
HQJLQH

SRVLWLRQ

YHORFLW\

Formal
arguments

anEngine
WKUXVW

IXHO

Formal
arguments

aCoordinate
ODWLWXGH

ORQJLWXGH

DOWLWXGH

Formal
arguments

aFloat
0.0

Float

Coordinate
latitude

longitude
altitude

altitude()
{constraints}

x

1

x 1

x 1

x 1

19

 [self speed := (self speed) - 1. ^self].

#Vehicle subclass: #TwoWheel
instanceVariableNames: ’speed wheels balance’
classVariableNames: ’’
PoolDictionaries: ’’
category: ’’.

withWeels: numberOfWheels goingSpeed: aSpeed
"Creates a new Vehicle Object"
| aNewVehicle |
aNewVehicle := self new.
aNewVehicle wheels := 2.
aNewVehicle speed := aSpeed.
^aNewVehicle.

driveOn: aRoad
"Returns the reciever, does the driving"
self balnce = nil

ifTrue: [self speed := 0. ^self].
self speed < aRoad speedLimit

ifTrue:
 [self speed := (self speed) + 1. ^self]
ifFalse:
 [self speed := (self speed) - 1. ^self].

#Vehicle subclass: #FourWheel
instanceVariableNames: ’speed wheels fourWheelDrive’
classVariableNames: ’’
PoolDictionaries: ’’
category: ’’.

withWeels: numberOfWheels goingSpeed: aSpeed
isFourWheelDrive: anAnswer

"Creates a new Vehicle Object"
| aNewVehicle |
aNewVehicle := self new.
aNewVehicle wheels := 4.
aNewVehicle speed := aSpeed.
aNewVehicle fourWheedDrive := anAnswer.
^aNewVehicle.

driveOn: aRoad
"Returns the reciever, does the driving"
self speed < aRoad speedLimit

ifTrue:
 [self speed := (self speed) + 1. ^self]
ifFalse:
 [self speed := (self speed) - 1. ^self].

20

/HFWXUH����(QFDSVXODWLRQ�	�3RO\PRUSKLVP
• (QFDSVXODWLRQ

• Objects encapsulates 6WDWH as a collection of variables
• Common practice is to provide a set of private methods for manipulating variables.
• Example: Baker has work state (ie rolling dough, baking, resting)

• baker state. Returns the baker’s state
• baker state: ‘baking’. Sets the baker’s state

• Example: The class Engine
• In the previous lecture we looked the the Automobile class. When we created an

instance of the class Automobile, we assumed the instance creation was called
with an instance of Engine as an argument

• An engine must have many private methods. When you turn the ignition, you
don’t have to start each component of the engine individually. Lets look at a
simple engine class

Object subclass: #Engine
instanceVariableNames: ’state pistons battery’
classVariableNames: ’’
PoolDictionaries: ’’
category: ’’.

start
"Starts up the engine"
self startEachComponent.
^status.

private
startEachComponent

"Checks to see if the battery is charged, and
tries to start the pistons"

status := true.
pistons := Pistons new.
battery := Battery new.
battery status

ifFalse: [status := false].
pistons start

ifFalse: [status := false].

• Objects encapsulates %HKDYLRU as methods invoked by messages
• Set of methods encompasses everything the object knows how to do
• Ex: Baker has setState method to set stateVariable, and queryState to get

stateVariable’s value:

setState: aValue
stateVariable=aValue.

queryState
^StateVariable.

Baker Bob do: ‘resting’.

Bob queryState .

• Encapsulation protects the state information of an object
• Legal Example: Baker object can access thoughts (read and write)
• Illegal Example: Someone else cannot read the baker’s thoughts.

• Encapsulation hides implementation details

21

• Don’t care how baker bakes cake.
• Encapsulation provides a uniform interface for communicating with an object.

• We can ask the baker to bake a cake, or we can ask the chef to bake a cake. They
will do it differently, but we can ask them the same way.

• Facilitates modularity, code reuse and maintenance.
• Side note: C++ faq claims encapsulation does not facilitate code-reuse, this is an

important difference in the language C++ programmers should consider.
• 3RO\PRUSKLVP

• Variety of objects in an application that exhibit the same generic behavior, but implement
it differently
• Ex: Ask a dog to speak, it barks. Ask a cat to speak, it meows. Each animal can be

asked to speak, and each will do it differently.
• Ex: The + operator for class Float and class Integer

• Float:
+ aNumber
 "Answer sum of the receiver and aNumber."
 | result |
 <primitive: 41>
 aNumber isFloat
 ifTrue: [
 result := self class basicNew: 8.

FloatLibrary add: self to: aNumber result:
result.

 ^result]
 ifFalse: [^self + aNumber asFloat]

• Integer:
+ aNumber
 "Answer the sum of the receiver and aNumber."
 <primitive: 21>
 ^aNumber + self

22

/HFWXUH����22���3DVV�3URFHVV�±�DQ�,QYHVWPHQW�0DQDJHU
• 3DVV����$EVWUDFWLRQ

• Abstrction to share state/ behavior common to all investemnts
• 3DVV����$EVWUDFWLRQ

• Abstraction to share state / behavior for securities objects vr. Real estate investment
objects

• 3DVV����&RPSRVLWLRQ
• Composition to create a portfolio of investments with a primary investment plan

• 3DVV����)DFWRUL]DWLRQ
• Factorization to make explicit an anaysis of economic conditions related to investments

• Problem Statement: Design an Investment manager to handle stocks, bonds, mutual funds,
houses and rental property

• Initial Design
• What functionality do all investments share?

• They all have currentValue, purchasePrice and datePurchased instance variables
and calculateGainOrLoss, calculateTax and calculateAnnualIncome methods.

• These variables and methods can be considered as the basis of creating a new,
abstract superclass for the investments.

23

• Design Pass 1 (abstraction)
• We can use abstraction to produce a new class, Investment. This is an abstact class that

serves as the superclass for the concrete investment classes. It holds state variables and
methods common to all investments

object

6WRFN
 name
 priceEarningsRatio
 sharesOutstanding
 currentValue
 purchasePrice
 datePurchased
calculateVolatility
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnualIncome

%RQG
 issuerName
 maturityDate
 priceEarningsRatio
 currentValue
 purchasePrice
 datePurchased
updateRating
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnualIncome

0XWXDO)XQG
 name
 sharePrice
 priceEarningsRatio
 sharesOutstanding
 currentValue
 purchasePrice
 datePurchased
currentNetAssetValue
calculatePriceEarningRatio
calculateGainOrLoss
calulateTax
calculateAnnualIncome

5HQWDO3URSHUW\
 location
 currentValue
 purchasePrice
 datePurchased
calculateValue
calculateDepreciation
calculateGainOrLoss
calulateTax
calculateAnnualIncome

+RPH
 location
 currentValue
 purchasePrice
 datePurchased
calculateValue
calculateGainOrLoss
calulateTax
calculateAnnualIncome

24

• Design Pass 2 (abstraction)
• We now produce two new abstract classes:

• SecuritiesInvestment to hold commonalties between Stock, Bond, and MutualFund.
• RealEstateInvestemnt to hold commonalties between Home and RentalProperty.

,QYHVWPHQW
 currentValue
 purchasePrice
 datePurchased
calculateGainOrLoss
calulateTax
calculateAnnualIncome

6WRFN
 name
 sharesOutstanding
calculateVolatility
calulateTax

%RQG
 issuerName
 maturityDate
updateRating
calulateTax

0XWXDO)XQG
 name
 sharePrice
 sharesOutstanding
currentNetAssetValue
calulateTax

5HQWDO3URSHUW\
calculateValue
calculateDepreciation
calulateTax

+RPH
calculateValue
calulateTax

6HFXULWLHV,QYHVWPHQW
 priceEarningsRatio
calculatePriceEarningRatio

5HDO(VWDWH,QYHVWPHQW
 location
calculateValue

25

• Design Pass 3 (composition)
• Now we create a Portfolio class to hold all of the primary investment aim (risk level) and

the collection of investments.
• We’ll create two state variables which hold the two collections of objects made up from

the two classed defined in Pass 2.

3RUWIROLR
 primaryAim
 secuties
 realEstate
calculatePortfolioWorth
calculatePortfolioRiskTaking

primaryAim
securities
realEstate

Instance

30 shares Microsoft

50 shares Intel

10 shares Citrix

Boardwalk

ParkPlace

Instances of
SecurituiesInvestment

Instances of
RealEstateInvestment

26

• Design Pass 4 (factorizarion)
• In the final pass, we factor out “economic model” state and behavior as apotentially

reusable part of Portfolio, and create the new class EconomicModel. This class lives
outside the hierachy, and becomes part of the Portfolio via composition.

• Remember factorization has two components
• Break up large, complex classes into separate, more reusable components
• Recover the original functionality through composition or inheritance.

• How did we know to use composition instead of inheritance?
• Which makes more sense:

• “is-a” EconomicModel a Portfolio? (Inheritance)
• Is an EconomicModel “part-of” a portfolio? (Composition)

3RUWIROLR
 primaryAim
 secuties
 realEstate
calculatePortfolioWorth
calculatePortfolioRiskTaking

primaryAim
economicAnalysis
securities
realEstate

Instance

30 shares Microsoft

50 shares Intel

10 shares Citrix

Boardwalk

ParkPlace

Instances of
SecurituiesInvestment

Instances of
RealEstateInvestment

primeRate

(FRQRPLF0RGHO
 primeRate
considerInvestmentAims
considerDivsersification
considerTakingProfit

Instance

27

/HFWXUH����7KH�2EMHFW�&ODVV
• The Object class is the main class from which all other classes are derived.
• Any and every kind of object in Smalltalk can respond to the messages defined by the Object

class
• All methods of the Object class are inherited to overridden
•)XQFWLRQDOLW\�RI�DQ�REMHFW

• Determined by its class
• Two ways to test functionality

• Comparing object to a class or superclass to test membership or composition
• receiver isKindOf: aClass

• tests if the receiver is a member of the hierarchy of aClass
• anInteger isKindOf: Integer returns true

• receiver isMemberOf: aClass

• tests if the receiver is of the same class
• anInteger isMemberOf: Magnitude returns false

• receiver respondsTo: aSymbol

• tests if the receiver knows how to answer aSymbol
• anInteger respondsTo: #sin returns true
• anInteger respondsTo: #at: returns false

• Querying the object for its class
• receiver class

• #(1 2 3) class returns Array
• &RPSDULVRQ�RI�REMHFWV

• Comparison and equivalence are very similar, but should not be confused
• == is used to test if the receiver and argument are the same object

• #(a b c) class == Array returns true
• #(a b c) == #(a b c) copy returns false

• = is used to test if the receiver and argument represent the same component
• #(a b c) class = Array returns true
• #(a b c) = #(a b c) copy returns true

• Other comparison operations
• receiver ~= anObject

• Not equal
• receiver ~~ anObject

• Not Equivalent
• receiver hash

• hash provides a nice way of telling objects apart, too much trust should not
be placed in comparing objects of the same class, as hash is often trivialized
(as in the example below, Array uses size has the hash function).

• Ex:
a := 3.147 hash. Ä 132
b := 3.14 hash. Ä 287
c := #(1 2 3) Ä 3
d: = #(3 4 5) Ä 3

• receiver hashMappedBy: map

• &RS\LQJ�REMHFWV
• deepCopy has been removed since VisualWorks 1.0
• Two methods for copying:

• copy returns another instance just like the receiver. Usually copy is simply a shallow
copy, but some classes override it.
• Does not copy the objects that the instance variables contain, but ciopies the

“pointer” to the objects.

28

• shallowCopy returns a copy of the receiver which shares the receiver’s instance
variables. This allows two objects to share one set of instance variables.

• deepCopy must be implemented in the rare cases in which it is needed
• How should this be done? Create new instances of the member objects, then

assign them to the new object.
• Example, shallow copies of arrays.:

| array1 array2 object1 object2 object3|
object1 := #(’A’).
object2 := #(’B’).
object3 := #(’C’).
array1 := Array with: object1 with: object2 with: object3.
array2 := array1 copy.
(array1 at: 1) at: 1 put: ’D’.
array1 inspect.
array2 inspect.

• $FFHVVLQJ�LQGH[HG�YDULDEOHV
• at: index returns the object at index

• #(a b c) at: 2 returns ‘b’

receiver
Shallow Copy

of receiver

a b c

29

• at: index put: anObject puts anObject at index of the receiver
• returns anObject
• #(a b c) at: 4 put: #d returns ‘d’

• basicAt: index is the same as at: index but cannot be overridden
• basicAt: index put: anObject – Same as above
• size returns the number of index in the receiver

• #(a b c d) size returns 4
• basicSize same as size, but cannot be overriden
• readFromString: aString creates an object based on the contents of aString
• Yourself returns the receiver

30

/HFWXUH����0HVVDJHV�	�0HWKRGV
• Messages are what is passed between objects
• Methods are what is defined in a class to act on an instance of the class
• 0HVVDJH�([SUHVVLRQV

• Receiver-object message-selector arguments
• Unary

• Receiver message-selector
• Parsed left to right
• Ex: Time now.
• Ex: 8 squared.

• Binary
• Receiver message argument
• Parsed left to right

• Ex: 1 + 2 * 3. (Note: returns 9)
• Parenthesis do the expected

• Ex: 1 + (2 * 3). (returns 7)
• Keyword

• Receiver message arguments
• Ex:

aString = ‘ABC’.

aString at: 3 put: $D. (Note: returns ‘D’, aString equals #(ABD))
• Important to note that ‘ABC’ at: 3 put: $D returns $D

• aString is the object
• at is the keyword message-selector
• 3 is the argument

• ‘C’ is the object
• put is the keyword message-selector
• $D is the argument ($D is a literal)

• Parentheses change order
• Precedence DOZD\V left to right
• Separated by periods, unless temp variable declaration or comment

• 0HWKRG�/RRNXS
• A method and a message-selector must be exactly the same, or no method will be found

by the method lookup
• The methods defined for the receiver’s class first
• If no match, the superclass is searched
• Path continues through Object unless a method is found.
• self refers to receiver, lookup starts within the class of the reciever
• super refers to receiver, lookup starts in superclass of receiver

31

• Example
• What is the order of initialization? (v1, v2, v3, v4, v5, v6)
• Why? (initialize()’s look to superclass, then return to call their own initialize

because they are implemented as super initialize)

ClassA
v1
v2

 initialize()

ClassB
v3
v4

 super initialize()

ClassC
v5
v6

super initialize()

Formal
arguments

cInstance

x

1

x

1

32

/HFWXUH����9DULDEOHV�DQG�5HWXUQ�YDOXHV
• A variable is a reference to any kind of object
• 0HWKRG�DUJXPHQWV

• Accessibility: private
• Scope: statements within the method
• Extent: life of the method
• Declaration: define with method name on first line of method (name: aString)
• Assignment: Assigned by sender of the message (aNode name: ‘Node2’)
• Accessing : Directly by name
• Ex: anInteger raisedToInteger: 4.

• To understand this, it is easiest to look at literals and constants used as method
arguments. The argument 4 is only visible to the object and the method- it cannot be
accessed outside of the method. This coincides with the life of the variable, as it dies
after the method call.

• 7HPS�YDULDEOHV
• Accessibility: private
• Scope: statements within the method
• Extent: life of the method
• Declaration: use vertical bars
• Assignment: use ‘gets’ operator
• Accessing : Directly by name
• Example:

cubeWithInteger
| x |

x = self raisedToInteger: 3.

• x is created in the method using the vertical bars, and is released once the method is
finished.

• ,QVWDQFH�YDULDEOHV
• Accessibility: private
• Scope: Instance methods of the defining class & subclasses
• Extent: life of the instance
• Declaration: define on the instance side of the class template

Object subclass #Node
InstanceVariableNames: ‘name nextNode’
ClassVariableName: ‘’
PoolDictionaries:’’
Category: ‘’

• Assignment: write a method that sets the value
• Accessing : write a method that gets the value

• Can be either named or keyed
• If keyed, then they can be accessed through ordinary at:put: messages

• &ODVV�LQVWDQFH�YDULDEOHV
• Accessibility: private
• Scope: Class methods of the defining class & subclasses
• Extent: life of the defining class
• Declaration: define on the class side of the class template

Account class
InstanceVaraibleNames: ‘interestRate’

33

• Assignment: write a class LQLWLDOL]H method in the defining class and all of its subclasses
• Accessing : Write a class method that returns the value

• &ODVV�9DULDEOHV
• Accessibility: shared
• Scope: Instance and class methods of the defining class & subclasses
• Extent: life of the defining class
• Declaration: define on the instance side of the class template
• Assignment: write a class LQLWLDOL]H method
• Accessing : Write a class method that returns the value
• Always begin with uppercase

• *OREDO�9DULDEOHV
• Accessibility: shared
• Scope: all objects, all methods
• Extent: while in Smalltalk dictionary
• Declaration: with assignment
• Assignment: with declaration

Smalltalk at: #MyTranscript put: TextCollector new.

• Accessing : Directly by name
• Don’t use, unless absolutely necessary. Bloated images, anti-OO code, incorrect code

are the consequences.
• 5HWXUQ�9DOXHV

• Method always returns an object
• Default return value is self.
• Use ^ to explicitly return a different object
• Can use both implicit and explicit returns in a method (i.e. in a conditional)

34

/HFWXUH�����%ORFNV�DQG�%UDQFKLQJ
• %ORFNV

• Contains a deferred sequence of expressions
• Used in many of the control structures
• Instance of BlockClosure
• Returns the result of the last expression (similar to lisp)

• Ex: [3+4. 5*5. 20-10] returns a Home Context with value of 10.
• [3+4. 5*5, 20-10] value returns 10.

• Ex: [‘Visual’,’Works’] value returns ‘VisualWorks’ (comma is binary method)
• Syntax

[:arg1 :arg2 … :arg255 | |temp vars| executable expressions]

• A block can contain:
• 0 to 255 arguments
• temp variables
• executable expressions

• Block with no arguments: sequence of actions takes place every time value message is
received by the block

• Block with arguments: action takes place every time block receives messages value,
value: value, etc.

• block variables scope is only within defining block
• NOTE: temp variables inside declared blocks have not been successfully tested with

Smalltalk Express or GNU Smalltalk.
• Examples

• [:x :y | x + y / 2] value: 10 value: 20 (returns 15)
• [|x| x := Date today. x day] value (returns the day to today’s Date)

• [Date today day] value returns same value & is more succinct
• [:y | |x| x := y *2. x * x] value: 5 (returns 100)
• #(5 10 15) collect: [:x | x squared] (returns #(25 100 255)

• sends 1 argument 3 times and collects the results into an array
• &ODVV�%RROHDQ

• Classes True and False are subclasses of Boolean
• Logical operators can be used for testing

• The ‘and’ operator: &
• The ‘or’ operator: |
• The negation operator: not

• not is a unary operator
• The equivalence operator: eqv
• The exclusive or operator: xor

• The Boolean classes are used in branching
• and: and or: methods used with alternative blocks returns values of alternative blocks
• ifTrue: and ifFalse are used with blocks to provide if-then support

• can be used together in either order, or separately
• %UDQFKLQJ��&RQWURO�6WUXFWXUHV�

• Boolean classes True and False understand keyword messages:
• ifTrue:

• Ex: (result: anArray = #(‘a’ ‘b’ ‘c’))

| anArray |
anArray := #(‘a’ ‘b’ ‘d’).
(anArray at: 3) asString > ‘c’

ifTrue: [anArray at: 3 put ‘c’].

35

• ifFalse:
• ifTrue: ifFalse:

• Ex: (result: upperArray = #(‘A’ ‘B’ ‘D’))

| anArray upperArray |
anArray := #(‘a’ ‘B’ ‘d’).
upperArray := Array new.
upperArray := anArray collect:

[:aString | aString asUpperCase = aString
ifTrue: [aString]
ifFalse: [aString asUpperCase]].

• ifFalse: ifTrue:

• These messages demand zero argument blocks as their arguments
• Ex:

abs
^self < 0

ifTrue: [0 – self]
ifFalse: [self]

• What happens here?
• self is compared to 0
• corresponding block is executed
• (-self) or self is returned depending on which block was executed

• Repetition
• timesRepeat : message

• Ex: 5 timesRepeat [Transcript show: ‘This is a test’; cr]

• to � message (similar to for loop)
• Ex: 1 to: 15 by: 3 do: [:item | Transcript show: item printString;

cr]

• Conditional Iteration
• Blocks can be used as arguments in messages and can be receiver objects
• whileTrue � and whileFalse � messages

• get sent to blocks. ifTrue: and ifFalse: get sent to Boolean
• Ex (receiver):

Initialize: myArray
| index |
index := 1.
[index <= myArray size]

whileTrue:
[myArray at: index put: 0.
index := index + 1]

• Ex (argument):

Initialize: myArray
| index |
index := 1.
[myArray at: index put: 0.

index := index + 1.
index <= myArray size] whileTrue;

36

/HFWXUH�����5HSRUWLQJ�(UURUV�DQG�'HEXJJLQJ�WHFKQLTXHV
• (UURU�+DQGOLQJ

• Smalltalk’s interpreter handles all errors
• An error is reported by an object sending the interpreter the message

doesNotUnderstand: aMessage

• There are some common error messages supported in the Object class, but
implementation is dependant on the system
• doesNotUnderstand: aMessage

• Lets look at an example of trying to use a method that an object of the class
SmallInteger cannot understand.

| anInteger |
anInteger := 0.
self doesNotUnderstand: (anInteger do:[]).

37

• error: aString uses aString in the report the user sees

self error: ’an Error occurred’.

• primitiveFailed reports that a method implementing a system primitive failed
• shouldNotImplement reports that the superclass says a method should be

implemented in the subclasses, the subclasses do not handle it correctly.
• This method is utilized throughout the collection classes. If we look at the Array

class, we’ll see this method is used inside the add: method.
• Arrays are statically sized collections, and the add: method is used to grow

the size of collections.

38

• subclassResponsibility reports that a subclass should have implemented the
method
• This method is used extensively in abstract classes. This method allows all

objects in the hierarchy to implement a method differently, while reporting an
error if the method was not defined.
• Example: Class Auto defines a method drive, but only calls the

subclassResponsibility method. We define a subclass Truck, but do not
define the method drive. If we then define a Truck object and call the drive
method, then Smalltalk will try to pass the drive message up the tree until a
parent class knows how to implement it- in this case displaying a
subclassResponsibility error message.

Object subclass: #Auto
instanceVariableNames: ’speed ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-General’!

!Auto methodsFor: ’creation’!

withSpeed: aSpeed

self subclassResponsibility! !

!Auto methodsFor: ’driving’!

accelerate

speed := speed + 1.!

decelerate

39

speed := speed + 1.!

drive

self subclassResponsibility! !

Auto subclass: #Truck
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-General’!

!Truck methodsFor: ’creation’!

withSpeed: aSpeed

speed := aSpeed.! !

| aTruck |
aTruck := (Truck new) withSpeed: 5.
aTruck drive.

• 0HVVDJH�+DQGOLQJ
• Used to send messages to objects, usually only created when an error occurs
• perform: is the method called to pass messages, takes many different arguments, or

just aSymbol.
• A good example of this can be seen in the Goldberg book (page 245).

• Suppose we wish to write a simple calculator that checks to make sure each
operator is a valid operator.

40

Object subclass: Calculator
instanceVariableNames: ’result operand’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-General’!

!Calculator methodsFor: ’creation’!

new
^super new initialize

!Calculator methodsFor: ’accessing’!

result
^result

!Calculator methodsFor: ’calculating’!

apply: operator
(result respondsTo: operator)

ifFalse: [self error: ‘operation not understood’].
operand isNil

ifTrue: [result := result perform: operator]
ifFalse:

 [result := result perform: operator with: operand]

clear
operand isNil

ifTrue: [result := 0]
ifFalse: [operand := nil]

operand: aNumber
operand := aNumber

!Calculator methodsFor: 'private'!

initialize
result := 0

• The following code shows an example of how to use the class Calculator

| aCalculator |
aCalculator := Calculator new. “result = 0”
aCalculator operand: 3.
aCalculator apply: #+. “result = result + 3 Ä 3”
aCalculator apply: #squared. “result = 3 ^ 2 Ä 9”
aCalculator operand: 4.
aCalculator apply: #-. “result = result – 4 Ä 5”

• System Primitive Messages
• Messages in class Object used to support system implementation
• InstVarAt: anInteger and instVarAt: anInteger put: anObject are examples

which are used to retrieve and store instance variables.
• In general, these will not be used, but are important to how Smalltalk works.

• &ODVV�8QGHILQHG2EMHFW
• the object nil represents a value for uninitialized variables
• nil also represents meaningless results
• Testing an object’s initialization is done through isNil and notNil messages

41

• 'HEXJJLQJ
• Smalltalk has a small set of methods for error handling and are useful to debugging.

These messages are implemented by passing Signals.
• Whats a signal? A signal is an Exception passed to the VM. A signal will stop the

execution and show a window with a message and has several qualities, such as
whether or not the exception is proceedable. An example of this is the halt:
aString message, which raises a haltSignal with the context of the receiver and
the error message of aString.
• errorSignal
• messageNotUnderstoodSignal
• haltSignal
• subclassResponsibilitySignal

• confirm: similar to notify: method, brings up a window asking for confirmation, not in
all implementations . In VW 3.0 and above, the confirm: method belongs to class Dialog.
• Ex: (Dialog confirm: ‘Quit ?’) ifTrue:[aBlock].

• KDOW
• halt shows the debug window, with ‘halt encountered’ or similar message as

the primary error. Useful for setting a breakpoint to check value of variables
• Ex: self halt.
• Ex: It is possible to stop other objects
Transcript halt.

• halt: aString implements halt, bringing up a window with the label from
aString

• halt: appears very similar to notify:, but with one difference. halt: allows
invariants related to multiple processes to be restored.
• How could I do this? When execution halts, use the workspace to restore the

values.
• hardHalt halts the execution without passing a signal.

• notify: aString: shows a message dialog window with aString as the label. This
method is not available in Smalltalk Express.
• Ex: self notify: ‘custom error message’.

• inspect displays a window showing the object and all of its variables
• Ex:

| anArray upperArray |
anArray := #(‘a’ ‘B’ ‘d’).
upperArray := Array new.
upperArray := anArray collect:

[:aString | aString asUpperCase = aString
ifTrue: [aString]

42

ifFalse: [aString asUpperCase]].
upperArray inspect.

43

/HFWXUH�����'HVLJQLQJ�DQG�LPSOHPHQWLQJ�FODVVHV
• 6WHSV�WR�GHYHORS�D�VSHFLILFDWLRQ

1. Decide what we want the program to do
2. Decide on the data structures
3. Decide on the operations we want to apply to these data structures

• 7KH�PHVVDJH�SURWRFRO
• Class Protocol: A description of the protocol understood by a class
• Typically contains protocols for creating and initializing new instances of the class
• Instance Protocol: A description of the protocol understood by instances of a class
• Messages that may be sent to any instance of the class
• 6WHSV�WR�LPSOHPHQWLQJ�D�FODVV

1. Deciding on a suitable representation for instances of the class.
2. Selecting and implementing efficient algorithms for the methods or operations
3. Deciding on class variable and instance variables

• 'HVFULELQJ�D�FODVV
• Class name: A name that can be used to reference the class
• Superclass name: name of the superclass
• Class variables: variables shared by all instances
• Instance variables: variables found in all instances
• Pool dictionaries: Names of lists of shared variables that are to be accessible to the class

and its instances. Can also be referenced by other unrelated classes
• Class methods: operations understood by the class
• Instance methods: operations that are understood by instances
• Example: A class for complex numbers

• Step 1: What do we want to be able to do?
• Specify real and complex parts
• Do simple operations of complex and real parts

• Step 2: What do we want to use?
• Specify real and complex parts

• Step 3: How are we going to use the data structures?
• Creating a complex number
• Accessing complex and real parts
• Adding and Multiplying Complex numbers

• The Class Description (for more detail refer to LaLonde pages 44-45)

&ODVV�&RPSOH[
Class name Complex
Superclass name Object
Instance variable names realPart imaginaryPart

Class methods

,QVWDQFH�FUHDWLRQ

newWithReal: realValue andImaginary: imaginaryValue
“Returns an initialized instance”
| aComplex |
aComplex := Complex new.
aComplex realPart: realValue;

imaginaryPart: imaginaryValue.
^aComplex

DFFHVVLQJ

44

realPart
“Returns the real component of the reciever”
^realPart

imaginaryPart
“Returns Imaginary part”
^imaginaryPart

RSHUDWLRQV

+ aComplex
“Returns the receiver + aComplex”
| realPartSum imaginaryPartSum |
realPartSum := realPart + aComplex realPart.
imaginaryPartSum := imaginaryPart + aComplex imaginaryPart.
^ Complex newWithReal: realPartSum andImaginary:

imaginaryPartSum.

* aComplex
“Returns the receiver * aComplex”
| realPartProduct imaginaryPartProduct |
realPartProduct := (realPart * aComplex realPart) –

(imaginaryPart * aComplex imaginaryPart).
ComplexPartProduct := (realPart * aComplex imaginaryPart) +

(imaginaryPart * aComplex realPart).
^ Complex newWithReal: realPartProduct andImaginary:

imaginaryPartProduct.

• The following code shows how to use this new class. The code computes the
magnitude of the complex number. After multiplying the number by its conjugate,
there is only a real part, so we just take the square root.

| aNumber |
aNumber := (Complex new) newWithReal: 1 andImaginary: 1.
aNumber := aNumber * (Complex new)

newWithReal: (aNumber realPart)
andImaginary: (0 – aNumber imaginaryPart).

(aNumber realPart) sqrt.

/HFWXUH�����9LVXDO:RUNV
1RWH��7KH�OHFWXUHV�RQ�9LVXDO:RUNV�ZHUH�WDNHQ�IURP
KWWS���ZZZ�FV�FOHPVRQ�HGX�aODE����9:�9:&RYHU�KWPO��2QO\�PLQRU�PRGLILFDWLRQV�KDYH�EHHQ�PDGH�

6WDUWLQJ�9LVXDO:RUNV
To start VisualWorks from the command line of a Unix system, use the command
/usr/local/visual/vw image.im
To start VisualWorks with an image other than the default, use the command
vw LPDJH�ILOH
Enter the appropriate command to start VisualWorks on your system. You should see two windows, the
VisualWorks Launcher and the Workspace.

9LVXDO:RUNV�/DXQFKHU
The VisualWorks Launcher is the main window in VisualWorks. It is used primarily to access the various
tools and resources available. A Launcher window is shown below.

http://www.cs.clemson.edu/~lab428/VW/VWCover.html

45

:RUNVSDFH
A Workspace is used primarily to test pieces of Smalltalk code. A Workspace window is shown below.

8VLQJ�WKH�0RXVH�DQG�WKH�3RS�8S�0HQXV
General familiarity with windowing systems is assumed in this tutorial. Mouse button operations refer to
the left ([Select]) mouse button unless otherwise specified.
There are two types of pop-up menus associated with each window in VisualWorks. There is the [Window]
menu which is accessed by clicking the right mouse button in the window. The [Window] menu is used for
closing, moving, and resizing the current window. The second pop-up menu is the [Operate] menu which is
accessed by clicking the middle mouse button in the window. There may be more than one [Operate] menu
per window, in which case an area will be specified in which to click the middle mouse button. To select an
item from either the [Operate] or [Window] menus the mouse button used to obtain access the menu must
be used.
Note: The following conventions are used for one-button and two-button mice:
7ZR�EXWWRQ�PRXVH
The left button is the [Select] button. The right button is the [Operate] button. The [Window] menu is
obtained by using the Control key and right ([Operate]) button together.
2QH�EXWWRQ�PRXVH
The button alone is the [Select] button. The [Operate] menu is accessed using the Option key and the button
together. The [Window] menu is accessed using the Command key and the button together.
In windows that have a menu bar, pulldown menus are accessed by clicking on the word associated with
the menu. For example, click on)LOH located on the Launcher’s menu bar to obtain the File pulldown menu.
Pulldown menu selections will be specified by the menu name followed by an arrow(-) and the menu item.
For example, the)LOH�6HWWLQJV option from the VisualWorks Launcher refers to the Settings option from
the File pulldown menu. Many pulldown menu options also have a shortcut button on the tool bar, which
will be refer to with its associated icon. For example, the Canvas Tool may be obtained by using either the

7RROV�1HZ�&DQYDV menu option or by the shortcut button .

6HWWLQJ�XS�9LVXDO:RUNV
To insure access to Smalltalk source code and VisualWorks On-line Documentation, the proper paths must
be set using the Settings window. Open the Settings window by selecting the)LOH�6HWWLQJV options from the
VisualWorks launcher. You should see the window depicted below. Make sure that the correct the path for
the VisualWorks source code is displayed (YLVXDOBSDWK/image/visual.sou). If you need to correct the path,
correct as necessary and click $FFHSW. (Note: No changes should be needed at Clemson.)

46

Select the help settings by clicking on the Help tab of the Settings notebook pages (not on the +HOS button
for the Settings window). You should see the following window. Make sure that the path for the online
documentation is correct. Click $FFHSW after making any necessary changes.

Now close the Settings window by selecting FORVH from the Settings [Operate] menu.

47

2QOLQH�'RFXPHQWDWLRQ
Another useful tool in VisualWorks is the online documentation. The online documentation can be
accessed from the VisualWorks Launcher via the +HOS�2SHQ�2QOLQH�'RFXPHQWDWLRQ option or the

shortcut button . Shown below is the Online Documentation window that lists three manuals that may
be used as further references. These three manuals include the following:

'DWDEDVH�&RRNERRN - Gives information on how to connect to a database.
'DWDEDVH�4XLFN�6WDUW�*XLGHV - Gives information on how to create models for database applications.
9LVXDO:RUNV�&RRNERRN - Gives in-depth information on Smalltalk and various windows and widgets.

For example, suppose you needed information on how to construct a Smalltalk message. Select the
9LVXDO:RUNV�&RRN%RRN by clicking on the book title with the mouse button. Now, select &KDSWHU���
6PDOOWDON�%DVLFV, and then select &RQVWUXFWLQJ�D�0HVVDJH. Information on your topic is now displayed in
the Online Documentation window. Close the Online Documentation window.

6\VWHP�%URZVHU
A System Browser is a useful tool for viewing Smalltalk classes, protocols, and methods. Not only does a
Browser provide useful ways to view system and user classes, it also has many features that help the user to
quickly and easily develop classes, protocols, and methods.
To open a System Browser, select %URZVH�$OO�&ODVVHV from the VisualWorks Launcher or use the shortcut

button . Notice that a System Browser is divided into four columns across the top half of the window,
and the bottom half contains a text area. These are important areas to learn. The columns (left-to-right) are
the Category View, the Class View, the Protocol View, and the Method View. The text area that comprises

48

the bottom half of the window is the Code View. These five different views will be referred to frequently in
the development portion of this tutorial.
For example, select the category "Magnitude-General" and the classes associated with that category appear
in the Class View. Select the Date class, and the protocols associated with that class are displayed in the
Protocol View. Finally, select the accessing protocol and the methods associated with that protocol are
displayed in the Method View. The System Browser should now look like the window shown below.

Notice that the Code View currently contains only a template for the code of a method. Select any method
and you will see its code in the Code View. Close the System Browser by selecting FORVH from the System
Browser [Window] menu.

)LOLQJ�,Q�DQG�)LOLQJ�2XW�&RPSRQHQWV
To save categories, classes, or even methods you can write ("file out") these components to a file and then
remove them from your image. Later you can read ("file in") these components into your image.

Filing In
We will illustrate how to "file in" components by adding an application, Calculator Example, to our image.
The CalculatorExample class is in the category UIExamples-General, and it is stored in the file
YLVXDOBSDWK/tutorial/basic/calc.st. First note that the category UIExamples-General is not currently in the
image by scrolling through the categories in the Category View of a System Browser. Open a File List from

the 7RROV�)LOH�/LVW option or the shortcut button of the VisualWorks Launcher. Enter
/opt/local/visual/tutorial/basic/* in the first input field, which is called the Pattern View, and Return. (Note:
This is for the YLVXDOBSDWK at Clemson.) Select �RSW�ORFDO�YLVXDO�WXWRULDO�EDVLF�FDOF�VW from the file list,
which is called the Names View. The File List should look like the following window.

49

Select ILOH�LQ from the Names View [Operate] menu. Verify that the category UIExamples-General is now
in the image by using the System Browser. Close the File List.

Filing Out
You can file out a category, class, or even single methods. For example to file out a category, select (with a
mouse click) a category from the System Browser (so that the category is highlighted). Select ILOH�RXW�DV���
from the Category View [Operate] menu, enter the file name to which you wish to file the category out, and
click 2.. A category, class, or method that is filed out can later (for example, in another VisualWorks
session) be filed in as illustrated in the previous section.

6WDUWLQJ�DQ�$SSOLFDWLRQ
Once you have developed an application you will want to execute it. To start a completed application, open

a Resource Finder using %URZVH�5HVRXUFHV from the VisualWorks Launcher or the shortcut button .
Select 9LHZ�8VHU�&ODVVHV from the Resource Finder menu. Select the class you would like to start. To start
the Calculator Example that we previously filed in, select the &DOFXODWRU([DPSOH class and the
ZLQGRZ6SHF resource as depicted below. (Note that the windowSpec resource is automatically selected
because it is the only resource for the CalculatorExample class.) Select 6WDUW from the Resource Finder and
the Calculator Example will start. When you have finished using the Calculator, close the application by
selecting FORVH from the Calculator [Window] menu. Close the Resource Finder.

50

A class may have one or more "resources", which are user interfaces. To start an application, we select its
class and the appropriate resource for the initial window of the application.

6DYLQJ�<RXU�:RUN
Doing a "Save" in VisualWorks is a complete save. It actually saves an image of all of the current classes
(system and user), active windows, etc. This is a nice feature if it becomes necessary to stop in the middle
of your work. Unfortunately, saving your image has drawbacks. An image on a Solaris platform will take
up approximately 4 megabytes of disk space. To save an image, select)LOH�6DYH�$V from the VisualWorks
Launcher. A dialog box will appear. Enter the name for your image file and click OK. VisualWorks will
save the file in the current directory unless a different path is specified. The file will be have the extension
.im.
VisualWorks automatically creates a .cha file in the directory from which VisualWorks is started, and
VisualWorks periodically records the changes made to the initial image in the .cha file. The .cha files can
be useful for change management, and they can sometimes be used for error recovery (e.g., if you
mistakenly delete some work that you need or fail to file out some work that you wished to save), but you
may wish to delete the .cha files until you use VisualWorks in a large project.

51

/HFWXUH�����0RUH�RQ�WKH�%DVLF�9LVXDO:RUNV�(QYLURQPHQW
7KH�SXUSRVH�RI�WKLV�/HFWXUH�LV�WR�SURYLGH�D�IXUWKHU�LQWURGXFWLRQ�WR�WKH�EDVLF�9LVXDO:RUNV
HQYLURQPHQW�IRU�WKH�VXSSRUW�RI�6PDOOWDON�

Workspaces
The Transcript
Editing in VisualWorks Windows
Using a Browser
Adding a New Method
Adding New Classes or Methods from External Files
Changing Existing Methods
Adding a New Class
Saving Code into a File

VisualWorks includes many tools that facilitate the development of Smalltalk programs. These tools were
introduced in Chapter 2, and this chapter provides further illustrations of the uses of the tools for
implementing Smalltalk programs. The use of VisualWorks for developing GUI applications will be
illustrated in Chapters 4-6.

:RUNVSDFHV
If you do not currently have VisualWorks started, you should start it now. VisualWorks initially displays a
Launcher and a Workspace. The Launcher contains control widgets for various VisualWorks facilities, as
discussed in Chapter 2, and it also includes a Transcript window in the lower part of the window. We will
illustrate some of the facilities of VisualWorks using the Workspace for Smalltalk and the Transcript for
displaying results. You should resize these windows if needed so that they are large enough for several
lines of text.
You can type segments of Smalltalk code into a workspace (or most any other VisualWorks window, for
that matter) and execute it. For example, type

5 + 9
in the workspace. (You should move the cursor down to a new line with the mouse select button and/or the
arrow and return keys first.) Now highlight 5 + 9 by dragging the mouse [Select] across the text. From the
[Operate] (middle button) menu, note that you can GR�LW or SULQW�LW. Selecting GR�LW will cause the code to be
executed, and selecting SULQW�LW will cause the code to be executed and the result printed immediately
following the code. Select SULQW�LW and your workspace should look something like

(Selecting GR�LW here will have no visible effect, because evaluating 5 + 9 does not have any external effect
(side effect).) Note that the result printed is highlighted, so it can easily be deleted by pressing the
Backspace key.

52

Testing code in this way is useful for code development in Smalltalk and also for debugging. Remember
that you can highlight Smalltalk code in most any window and execute it or print its result in this manner.
Multiple statements, separated by periods in the usual way, can be executed with a single GR�LW (or SULQW�LW).

7KH�7UDQVFULSW
The transcript window in the lower part of the Launcher is associated with the Smalltalk global variable
"Transcript". Transcript is an instance of the class TextCollector that allows text to be displayed in the
transcript window. Strings can be displayed in the transcript window by sending a show: message with a
string argument to Transcript. For example,

Transcript show: ’Hello’. Transcript cr
will, when executed, display "Hello" in the transcript beginning at the current Transcript cursor position.
The message cr will then instruct the Transcript to begin a new line. (Before executing this to try it,
position the Transcript cursor at the beginning of a new line below the initial messages that are already
there.) Note that it is easier to use cascading here:

Transcript show: ’Hello’; cr
Displaying values of classes other than String can usually be done fairly easily by using the printString
message to generate a string representation of a value. For example, try executing the code

Transcript show: (5 + 9) printString; cr

(GLWLQJ�LQ�9LVXDO:RUNV�:LQGRZV
Editing in a VisualWorks window is done by using procedures that are fairly standard for screen-based
editors. Text that is typed is inserted at the cursor position. Replacement of text can be done by selecting
the text (by dragging the mouse across it, or double-clicking to select a word, etc.), and then using the
Backspace key to delete it or just typing its replacement to replace it. Cursor movement can be done using
the arrow keys or by selecting the new cursor position with the mouse.
The scroll bars at the right side of a window can be used to scroll up and down, and a scroll bar at the
bottom can be used to scroll left and right. Windows can be moved or resized in standard ways with the
mouse at any time.

8VLQJ�D�%URZVHU
A browser can be used to inspect the definition, comments, and code for all catagories, classes, and
methods in the current image, both those that are provided in the initial image (i.e., the "built-in" classes
and methods) and those that are added by the VisualWorks user. We will illustrate some of the uses of a
browser in this section.
Open a browser from the Launcher with a %URZVH�$OO�&ODVVHV selection or by using the shortcut button

. The classes are listed by category in the top left sub-window (the Category View). Select
"Collections-Unordered" and the classes in this category will be listed in the next sub-window (the Class
View). Select "Dictionary" and the protocols for the methods in class Dictionary will be shown in the next
sub-window (the Protocol View). Select "accessing" from the Protocol View and the methods for this
protocol will be listed in the rightmost sub-window at the top (the Method View). Finally, select "at:put:" in
the Method View, and the code for the at:put: method is displayed in the bottom window (the Code View).
Your browser window should now look like this:

53

It is sometimes difficult to locate a specific class using the approach that was just discussed. Any existing
class can be found quickly by using the ILQG�FODVV��� selection from the [Operate] menu in the Category
View (top left window of the browser). Select the ILQG�FODVV��� option and a dialog box will appear. Type
the name of the class in this box (you can just type the name -- it will replace the highlighted text in the
class name box), and then either press Return or select 2.. Try this by typing String as the class name.
Your browser should then look something like

54

We can obtain a browser organized by class hierarchy for a given class by using the VSDZQ�KLHUDUFK\
menu selection in the Class View. Try this with class String selected, and you should get a new Hierarchy
Browser that looks something like

The indented listing in the Class View of a Hierarchy Browser (there is no Category View in a Hierarchy
Browser) indicates the superclass-subclass hierarchy for the class on which a hierarchy browser was
spawned (String in this case). For example, we can see here that String is a subclass of CharacterArray,
which is a subclass of ArrayedCollection, etc. Also, String has subclasses ByteEncodedString, GapString,
and Symbol.

55

A Hierarchy Browser can help us to find a given method for a class more easily than is generally possible
with a standard System Browser. For example, suppose that we wanted to find the method size for class
String. (This method returns the size of a string.) We begin with a Hierarchy Browser on String and note
that there is no size method in the accessing protocol (nor any other protocol). Selecting the superclass,
CharacterArray, we see that there is also no size method in this class. Continuing up the inheritance
hierarchy to ArrayedCollection, we find a size method here. So String instances inherit the size method
from ArrayedCollection.
You can close the Hierarchy Browser using the [Window] FORVH selection.

$GGLQJ�D�1HZ�0HWKRG
In this section we illustrate how a new method can be added to those in the current image. We will add a
method "mod10" to the Integer class that will return the value of an Integer modulo 10. That is, for an
Integer n,

n mod10
will have the value n rem: 10.
Select the Magnitude-Numbers category, the Integer class, and the arithmetic protocol in the System
Browser. The arithmetic methods will be listed in the Method View, and a template for a method will be
shown in the Code View. We will modify the template to produce the code for our new method.
First, select the first line of text ("message selector and argument names") in the Code View and replace it
by the name of our new method (mod10). Then modify the documentation comment to indicate the
function performed by the method. Finally, replace the temporary variable declaration and statements part
by the code for our mod10 method:

^ self rem: 10
Your System Browser should now look something like

Select DFFHSW from the [Operate] menu in the Code View and the method will be compiled and added to the
system. It will appear in the methods list of the Method View.
Test the mod10 method by executing (GR�LW) some statements such as

56

Transcript show: (27 mod10) printString; cr
(This should cause 7 to be displayed in the Transcript.)

$GGLQJ�1HZ�&ODVVHV�RU�0HWKRGV�)URP�([WHUQDO�)LOHV
Classes, methods, or other code can be entered into the VisualWorks system by using the ILOH�LQ selection
from various [Operate] menus. A file that is filed in must be in an external file format, which uses
exclamation points to delimit class definitions, protocols, and methods. (This is the same format as is used
for top-level input to GNU Smalltalk.)
We will illustrate the use of ILOH�LQ by implementing methods print and printNl (which are similar to
methods of the same names in GNU Smalltalk) to make it easier for us to display results in the Transcript.
The method "print" will cause its receiver to display its printString in the Transcript without a newline (cr)
and "printNl" will cause its receiver to display its printString followed by a newline.
Create a file named "print.st" in the directory from which you started VisualWorks, and put the following
text in the file:

!Object methodsFor: ’printing’!

print
"Display the object in the transcript window;

 leave the cursor at the end of the object’s print string."

(self isMemberOf: ByteString)
ifTrue: [Transcript show: self]
ifFalse: [Transcript show: self printString]!

printNl
"Display the object in the transcript window, and start a new

line"

self print.
Transcript cr ! !

This code implements print and printNl as methods for class Object. Thus all classes will inherit them. (The
test for a string in method print is done because the printString for a String inserts apostrophes around the
String value. You can see this by executing code such as

Transcript show: ’Hello’ ; cr; show: ’Hello’ printString; cr
in a workspace, which will display

Hello
’Hello’
in the Transcript.)
The easiest way to ILOH�LQ an external file is to use a File List, as was illustrated in Chapter 2. Open a File

List from the 7RROV�)LOH�/LVW option in the Launcher or by using the shortcut button . In the first input
field (the Pattern View) enter * and then Return, so that all the files in the local directory will be listed.
Select the file print.st from the Names View, and the contents of the file that you created will appear in the
bottom (File Edit) window. (Note: You can also use the File Edit window to create and edit files. Editing
options are included in the File Edit [Operate] menu.)
Load the methods that are defined in the file print.st into VisualWorks by selecting ILOH�LQ from the Names
View [Operate] menu. As the file is compiled, messages will be displayed in the Transcript indicating what
is happening. If an error (syntactic or semantic) occurs, then the ILOH�LQ terminates. You can correct the error
by editing the file in the File Edit window, saving it using the VDYH option in the File Edit [Operate] menu,
and filing it in again.
After successfully filing in print.st, you can test it by executing code such as

57

’Hello’ printNl
and

(5 + 6) printNl
Your Launcher and Workspace should now look something like

Close the File List using the FORVH selection in the [Window] menu.
,PSRUWDQW�1RWH� It is important to explicitly close each File List, rather than just exiting VisualWorks. On
some systems, exiting VisualWorks without closing a File List will leave the File List running in a
compute-bound mode, so that it will use every available cycle of cpu time even after the user has logged
off.

58

&KDQJLQJ�([LVWLQJ�0HWKRGV
Any method (or class) that is in the system can be changed (or removed) in much the same way as new
code can be added. We will illustrate by changing the rem: method for Number to return a result that is 1
larger than the correct result.
Select the category Magnitude-Numbers, class Number, protocol arithmetic, and method rem: in the
System Browser. The code for method rem: should be in the Code View. Change the line of code by
appending "+ 1" to the end of the line:

^self - ((self quo: aNumber) * aNumber) + 1
Now before changing anything, set up a test in a workspace:

(27 rem: 5) printNl
and if you still have the mod10 method in your image a more interesting test is

(27 rem: 5) printNl. (27 mod10) printNl
Execute (GR�LW) this code, and the correct answer(s) should be displayed in the Transcript:

2
7
Now replace the rem: method by choosing DFFHSW from the [Operate] menu in the Code View of the
System Browser. If there is no error indication, the new code for rem: has been compiled and entered into
the system. To see this, execute the above code again, which will now give:

3
8
Remove the "+ 1" that was previously inserted into the code for rem:, DFFHSW the revised code, and test
again to make sure that rem: now works properly.

$GGLQJ�D�1HZ�&ODVV
In this section we illustrate how to add a new class using a System Browser. (This is the intended way in
which classes and methods are to be added.)
We will add a new class "Random2" as a subclass of existing class Random. An instance of class Random
returns random numbers in response to the message "next". To see how this works, instantiate a random
number by executing code such as

Smalltalk at: #R put: (Random new)
Now generate and display in the Transcript several random numbers by executing

(R next) printNl
several times. The result of R next is a random number (Float) between 0.0 and 1.0, so your Launcher and
Workspace should now look something like

59

(The random numbers in your Transcript will probably be different from those shown here.)
We will implement a new class, Random2 as a subclass of Random, where Random2 will also include a
method between:and: to return a random integer between two given integer values. (Note that we could just
as well have just added the between:and: method to class Random.)
In the system browser, select category Magnitude-Number with no class selection. There will then be a
class template in the Code View:

60

Edit the class definition template to define Random2 as a subclass of Random, with no instance variables
nor class variables:

61

Compile the new class definition by using DFFHSW from the [Operate] menu of the Code View.
Next we add the method between:and: in protocol accessing of class Random2. First, add the protocol
("accessing") by choosing DGG from the [Operate] menu of the Protocol View. (Class Random2 should be
selected in the Class View.) Type the new protocol name (accessing) into the dialog window and Return to
record the new protocol.
Now edit the Code View window to contain the code for between:and:,

between: n1 and: n2
"Return a random integer between n1 and n2 (inclusive)."

^ n1 + (self next * (n2 - n1 + 1)) truncated
and DFFHSW. The method name should appear in the Method View, and your System Browser should now
look something like

We have now added the new class and method. Test it by executing code such as

Smalltalk at: #R2 put: (Random2 new)
and then execute the following several times:

(R2 between: 4 and: 11) printNl
This should display several random integers between 4 and 11 in the Transcript.

6DYLQJ�&RGH�LQWR�D�)LOH
As was briefly discussed in the previous lecture, the entire current image can be saved at any time, and later
it can be used to restart VisualWorks from that saved state. However, an image is fairly large, and it is more
efficient to save small modifications as external code files that can later be filed in to retrieve previous
work.
To see how this works, we will save the Random2 class that was just added. From the System Browser with
the Random2 class selected, choose ILOH�RXW�DV��� from the [Operate] menu in the Class View. A dialog
window should appear with the file name Random2.st highlighted. Change the file name if desired, then

62

select 2. to file out the class. This file can later be filed in to reinstall the Random2 class, and this is left
as an exercise for the reader.

/HFWXUH�����6\VWHP�	�0DJQLWXGH�&ODVVHV
• 2YHUYLHZ

• Shared Object Protocols
• Messages implemented for all objects

• 3 Classes
• Magnitude Classes

• Numbers & characters
• Collection Classes

• Lists, Arrays, and Dictionaries
• Streams

• Text, Files, and Sockets
• 6KDUHG�2EMHFW�3URWRFROV

• 3 messages that can be applied to an object relating to its class
• class finds out what class an object belongs to

• #(this is an array) class Ä Array
• Similar to class are:

• isKindOf: aClass returns true if aClass is a parent class of the reciever
• #(this is an array) isKindOf: Collection Ä true

• ismemberOf: aClass returns true if the receiver is an instance of aClass.
• #(this is an array) isMemberOf: Collection Ä false

• isSequenceable returns Boolean value depending on whether the receiver is
created from a subclass of SequenceableCollecetion
• #(this is an array) isSequenceable Ä true.
• (Bag with: ’this’ with: ’is’ with: ’a’ with: ’bag’) isSequenceable

Ä false
• NOTE: class SequenceableCollection is called class IndexedCollection in

smalltalk express, and isSequenceable is not available
• respondsToArithmetic: returns Boolean

• respondsToArthithmetic is implemented using the more general message,
respondsTo: aSymbol, testing the symbols #+, #-, #*, and #/

• Comparing objects
• ==, ~~ CANNOT be overridden
• =, ~= CAN be overridden
• isNil, notNil

• Example: how to test and compare objects.
• Suppose we want to write a method that takes a set, and creates a dictionary. The

dictionary stores the sorted list of members, the median, and the mean.

compileStats: aSet
|aDictionary sum setSize|
aDictionary := Dictionary new.
(aSet isKindOf: Set)

ifFalse: [self notify: ’warning, argument is not a kind of
class Set’. ^nil].

aSet class == SortedCollection
ifTrue: [aDictionary at: ’Set’ put: aSet]
ifFalse:

[| aNewSet |
aNewSet := SortedCollection new.
aNewSet addAll: aSet.
aDictionary at: ’Set’ put: aNewSet].

63

(aDictionary at: ’Set’) do:
[:x | x respondsToArithmetic

ifFalse: [
self notify: ’Not numeric set’.
^nil]].

setSize := (aDictionary at: ’Set’) size.
aDictionary at: ’median’ put: ((aDictionary at: ’Set’) at:

((setSize/2) rounded)).
sum := 0.
(aDictionary at: ’Set’) do: [:x | sum := sum + x].
aDictionary at: ’mean’ put: ((sum/ setSize) asFloat).
^aDictionary.

• Set(7, 12, 3, 9, 55) would result in the following dictionary

• ��EDVLF�VXEFODVVHV�RI�WKH�0DJQLWXGH�FODVV
• Char

• Similar to char in C, basic class can be treated similarly to number
• ArithmeticValue

• Superclass for all numerical classes
• Date

• Very different from C style of date & time, comparable and human readable
• Time

• Very different from C style of date & time, comparable and human readable
• 0HWKRGV�SURYLGHG�IRU�FRPSDULVRQ

• aMagnitude between: oneMagnitude and: anotherMagnitude (range comparison)
• aMagnitude max: anotherMagnitude (max of the two magnitudes)
• aMagnitude min: anotherMagnitude (min of two magnitudes)
• aMagnitude hash
• <, <=, >, >=

64

• ([DPSOH��0RUH�PHWKRGV�IRU�FRPSOH[�QXPEHUV
abs

“Returns the absolute value of a complex number”
^(self realPart squared + self imaginaryPart squared)sqrt

< aComplex
“Returns True if the reciever is less than aComplex”
aComplex isKindOf: Complex

ifTrue: [^self abs < aComplex abs]
ifFalse: [^self error: ‘Not a complex number’].

max: aComplex
“Returns the greater value of aComplex and the receiver”
self < aComplex

ifTrue: [^aComplex]
ifFalse: [^self].

= aComplex
“Returns True if the receiver is equal to aComplex”
aComplex isKindOf: Complex

ifTrue: [
^self realPart=aComplex realPart and: [

self imaginaryPart = aComplex imaginary
part]]

ifFalse: [^self error: ‘Not a complex number’]

hash
“hashes the absolute value of the reciver”
^self abs hash.

• 3DUWLDO�+LHUDUFK\

Magnitude

Char ArithmeticValue Time

Number Point

Limited
PrecisionReal

FractionIntegerFixedPoint

LargePositive
Integer

LargeNegative
Integer

Small
Integer

Date

Float Double

65

• 7\SH�&RQYHUVLRQ
• Converting to strings

• To produce a string representation of an object use:
• objectName printString

| aTruck |
aTruck := (Truck new) withSpeed: 5.
(aTruck printString) inspect.

• objectName storeString

| aTruck |
aTruck := (Truck new) withSpeed: 5.
(aTruck storeString) inspect.

• To produce the string representation of a number, the above can be used, or more
specialized methods may be used
• anInteger printStringRadix: aRadix (used for base aRadix representation)

| anInteger |
anInteger := 255.

66

(anInteger printStringRadix: 16) inspect.

• anInteger storeStringRadix: aRadix

| anInteger |
anInteger := 255.
(anInteger storeStringRadix: 16) inspect.

• Converting strings to numbers
• Requires streams to get strings from

• This topic will be discussed in a later lecture.
• Ex: Number readFrom: (ReadStream on: aStream)

• Type Conversion
• Conversion is automatic and transparent
• Conversion in direction integer -> fraction -> float to maintain accuracy
• To explicitly do conversion use following methods

• asInteger
• asFraction

• asRational in VisualWorks
• asFloat

• asCharacter (integers only)

67

| anInteger aFloat aList|
anInteger := 85.
aFloat := 3.25.
aList := List new.
aList add: anInteger asInteger.
aList add: anInteger asRational.
aList add: anInteger asFloat.
aList add: anInteger asCharacter.
aList add: aFloat asInteger.
aList add: aFloat asRational.
aList add: aFloat asFloat.
aList inspect.

• 7UXQFDWLRQ��IORRU��FHLOLQJ�DQG�UHPDLQGHUV
• Truncation done through quo: method

• 11 quo: 5 => 2
• 11 quo: -5 => -2

• floor ceiling done though // operator
• 11 // 5 => 2
• 11 // -5 => -3

• ceiling done through \\ operator
• 11 \\ 5 => 3
• 11 \\ -5 => -2

• remainder is done through rem: method
• 11 rem: 5 => 1
• 11 rem: -5 => -1

• 0DWKHPDWLFDO�2SHUDWLRQV
• Smalltalk provides basic subset of functions including

• Trigonometry functions: sin, cos, arcSin, arcCos
• Natural exponents and logarithms (exp and ln)
• Exponents and logarithms
• gcd and lcd
• Ex:

55 gcd: 30 Ä 5
6 lcm: 10 Ä 30
0.523599 sin Ä 0.5
6 exp Ä 403.429
2.718284 ln Ä 1
6 raisedTo: 3 Ä 216
25 log: 5 Ä 2

68

• 'DWH�DQG�7LPH
• Simple protocol for referencing and converting times & dates
• Creating an time or date object

• Use now method for creating the current time
• currentTime := Time now.

• Use today method for creating the current date
• currentDate := Date today.

• You can create an object with both current date and time
• rightNow := Date dateAndTimeNow.

• rightNow := Time dateAndTimeNow

• Can create any time or date easily
• aDate := Date newDay: aDayOfTheYearInteger year: aYearInteger

• Time and Date Conversions
• Timing execution and delays

• Smalltalk provides a simple way to time the execution of a loop

| block1 block2 ms1 ms2 |
block1 := [100 timesRepeat: [Time now. Date today]].
ms1 := Time millisecondsToRun: block1.

block2 := [100 timesRepeat: [Time dateAndTimeNow]].
ms2 := Time millisecondsToRun: block2.

• Smalltalk includes a similar class Delay. The Delay class is useful for creating timers.
Timers can be used to update clocks or send messages regularly.
• Delay should be used with the wait method
• The following shows a simple clock, which writes to the Transcript.

[[true] whileTrue:
[Transcript show: (Time now printString).
(Delay forSeconds: 1) wait]] fork.

69

/HFWXUH�����7KH�&ROOHFWLRQ�&ODVVHV
• 6PDOOWDON¶V�RSWLPL]HG�&ROOHFWLRQ�FODVVHV

• Unlike C, Smalltalk provides optimized classes for most types of collections
• There are three types of Collections

• Not keyed
• Example: Bag

• Keyed by integer
• Example: Array, List, OrderedCollection

• Keyed by value
• Example: Set, Dictionary

• For most situations, one of 5 types will suffice
• SortedCollection

• Sorts elements when inserted
• Example returns SortedCollection (‘a’ ‘b’ ‘c’)

| aSortedCollection |
aSortedCollection := SortedCollection new.
aSortedCollection add: ’c’.
aSortedCollection add: ’a’.
aSortedCollection add: ’b’.
aSortedCollection inspect.

• List
• Most flexible, keeps elements in the order in which they were added.
• Lists can be sorted.
• Elements can be inserted anywhere
• Example returns List ('a' 'b' 'c')

| aList aSortedList|
aList := List new.
aList add: ‘c’.
aList add: ‘b’.
aList add: ‘a’.
aSortedList := aList sort.

• Array
• Does not require adding, removing, or sorting elements
• Example returns #(‘d’ ‘b’ ‘c’)

| anArray |
anArray := Array new.
anArray at: 1 put: ‘a’.
anArray at: 2 put: ‘b’.
anArray at: 3 put: ‘c’.
anArray at: 1 put: ‘d’.

• Set
• Discards duplicate elements
• Does not support replacing elements
• Example

• aSet Ä Set (‘a’ ‘b’)
• aList Ä List (‘a’ ‘b’ ‘a’)

| aList aSet |
aList := List new.
aList add: ’a’.
aList add: ’b’.
aList add: ’a’.
aSet := Set new.
aSet addAll: aList.

70

• Dictionary
• New Concept to C programmers: Dictionary

• Otherwise known as Associated Hashtable
• Add keys and values, and reference values through keys
• Useful for global variables
• Possible to associate keys with any kind of object
• Ex:

| aThesaurus aCollection |
aCollection := Bag new.
aCollection add: ’big’.
aCollection add: ’enormous’.
aCollection add: ’huge’.
aThesaurus := Dictionary new.
aThesaurus at: ’large’ put: aCollection.
aThesaurus at: ’small’ put: ’little’.

• 3DUWLDO�+LHUDUFK\

• ,WHUDWLRQ��ZKDW�\RX�FDQ�GR�ZLWK�FROOHFWLRQV�
• Iterate over a collection

• do: []

• Ex: (sum Ä 15)
| sum aCollection |
aCollection := Bag new.
aCollection add: 3.
aCollection add: 5.
aCollection add: 7.
sum := 0.
aCollection do: [:x | sum := sum + x].

• reverseDo: []

Collection

Bag Sequencable
Collection

Set

Arrayed
Collection

Interval LinkedList Ordered
Collection

Dictionary

List Sorted
Collection

Integer
Array

Character
Array

Array Indentify
Dictionary

ByteArrayTextString

71

• Ex: (OrderedCollection(c b a))
| aReverseCollection aOrderedCollection |
aOrderedCollection := OrderedCollection new.
aOrderedCollection add: #a.
aOrderedCollection add: #b.
aOrderedCollection add: #c.
aReverseCollection := OrderedCollection new.
aOrderedCollection reverseDo:

[:x | aReverseCollection add: x].

• collect: []

• Useful to Create new collections from existing ones
• Ex: (Bag(25 25 25… 0 0 0))

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.2 do: [:x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers collect:
 [:x | x asInteger].

• Iterate over a collection and return a subset
• select: []

• Ex: (retuns only integers between 1 & 25 as floats)

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.5 do: [:x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers select:
 [:x | (x // 1) asFloat = x].

• reject: []

• Ex: (returns only integers between 1 & 25 as floats)

| someIntegers someNumbers|
someNumbers := Bag new.
1 to: 25 by: 0.5 do: [:x | someNumbers add: x].
someIntegers := Bag new.
someIntegers := someNumbers reject:
 [:x | (x // 1) asFloat ~= x].

• Find occurrences of an object within the collection
• detect: []

• Ex: #(a ’abc’ 3 4 5) detect: [:x | x isInteger]. Ä 3
• Ex: #(a ’abc’ 3 4 5) findFirst: [:x | x isFloat]

ifNone[nil] Ä nil
• findFirst: []

• Ex: #(a ’abc’ 3 4 5) findFirst: [:x | x isInteger]. Ä 3
• findLast:

• Ex: #(a ’abc’ 3 4 5) findLast: [:x | x isInteger]. Ä 5
• Perform special operations

• inject: into: []

• For using temp variables and initializing them outside the block
• Ex: set the temp variable to 100

#(1 2 3) inject:100 into: [:x :y | x := x + y]. Ä 106
• with: do: []

• takes one object from the receiver and one from the argument
• Ex: (result aBag= #(‘aA’ ‘cC’))

72

| aBag |
aBag := Bag new.
#(’a’ ’b’ ’c’) with: #(’A’ ’Z’ ’C’) do:
 [:x :y | x asUpperCase = y
 ifTrue: [aBag add: (x,y)]].

73

/HFWXUH�����$Q�H[DPSOH�XVLQJ�WKH�&ROOHFWLRQ�&ODVVHV
• Matrices are not provided by the collection classes, but can be added very easily. We will

demonstrate the Collection classes by creating a Matrix class.
• The class should provide methods to add, multiply, and transpose matrices and scalars

together.
• The matrix will be represented in row-major order, through a collection of rows, where each

row is an ordered collection. To accomplish this, the matrix needs only two variables to keep
count on the number of rows and columns

• The Class definition is straight forward

OrderedCollection variableSubclass: #Matrix2D
instanceVariableNames: ’numrows numcols ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-Matrix2D’

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Matrix2D
class instanceVariableNames: ’’!

• The instance creation method creates a 2 dimensional matrix sized according to the
arguments, and initializes all elements to 0.0. Note that the matrix is represented by
aNumber1 OrderedCollections.

!Matrix2D class methodsFor: ’instance creation’!

rows: aNumber1 cols: aNumber2
"Creates a 2D matrix of size aNumber1 X aNumber2 and
 initializes all elements to 0."

| matrix |
matrix := self new.
1 to: aNumber1 do: [:i | | temp |

temp := OrderedCollection new.
1 to: aNumber2 do: [:j | temp addLast: 0.0].

matrix addLast: temp].
matrix setrows: aNumber1 cols: aNumber2.
^matrix! !

• The methods for accessing the matrix are straight forward as well, and are used only for
getting elements and setting elements.

!Matrix2D methodsFor: ’accessing’!

at: anArray put: aNumber
"Place an element (aNumber) in the row and column
 specified by anArray in the receiver."

(self at: (anArray at: 1)) at:(anArray at:2) put:aNumber.!

atRow: aNumber1
"Return an ordered collection from row aNumber1of the receiver."

^(self at: aNumber1).!

atRow: aNumber1 put: anOrderedCollection
"Puts an OrderedCollection into the matrix as a row.”

74

super at: aNumber1 put: anOrderedCollection.!

atRow: aNumber1 atCol: aNumber2
"Return an element from row aNumber1, column aNumber2
 in the receiver."

^(self at: aNumber1) at: aNumber2.!

atRow: aNumber1 atCol: aNumber2 put: aNumber3
"Place an element (aNumber3) in row aNumber1, column aNumber2
 in the receiver."

(self at: aNumber1) at: aNumber2 put: aNumber3.!

cols
"Returns the number of cols in the matrix."

^numcols.!

readAt: anArray
"Returns an element from the row and column
 specified by anArray in the receiver."

^(self at: (anArray at: 1)) at:(anArray at:2).!

rows
"Returns the number of rows in the matrix."

^numrows.!

setrows: aNumber1 cols: aNumber2
"Sets the size of the matrix."

numrows := aNumber1.
numcols := aNumber2.! !

• To illustrate the access methods, we will create a 2x2 identity matrix with the code
below. Recall an identity matrix is one which the top left to bottom right diagonal has
1 as the values of its elements, and all other values are 0.

| matrix1 |
matrix1 := Matrix2D rows: 2 cols: 2.
matrix1 at: #(1 1) put: 1.
matrix1 at: #(1 2) put: 0.
matrix1 at: #(2 1) put: 0.
matrix1 at: #(2 2) put: 1.
matrix1 writeToTranscript.

75

• The method writeToTranscript, as used above prints each row, an element at a time.

writeToTranscript
"Writes the matrix to the Transcript."

Transcript show: ’ ’;cr.
1 to: (self rows) do: [:i |

Transcript show: ’ ’; tab.
1 to: (self cols) do: [:j |

Transcript show:
(self atRow: i atCol: j) printString; tab.

].
Transcript show: ’ ’;cr.

].

• Although mathematical operations may appear to be complicated, the operations to be
applied to the matrices are simple Collection manipulations.

• For the operation examples, the following matrices will be used. The code to create them
is also shown below.

| matrix1 matrix2|
matrix1 := Matrix2D rows: 2 cols: 2.
matrix1 at: #(1 1) put: 1.
matrix1 at: #(1 2) put: 2.
matrix1 at: #(2 1) put: 3.
matrix1 at: #(2 2) put: 4.
Transcript show: ’Matrix1’.
matrix1 writeToTranscript.
matrix2 := Matrix2D rows: 2 cols: 2.
matrix2 at: #(1 1) put: 5.
matrix2 at: #(1 2) put: 6.
matrix2 at: #(2 1) put: 7.
matrix2 at: #(2 2) put: 8.
Transcript show: ’Matrix2’.
matrix2 writeToTranscript.

76

• matrixAdd: aMatrix adds aMatrix to the receiver and returns the sum of the two. A check is
done to make sure both matrices are the same size

matrixAdd: aMatrix
"Adds the receiver and aMatrix, that is, Receiver + aMatrix."

| matrix |
((numrows == (aMatrix rows)) & (numcols == (aMatrix cols)))
ifFalse:

[Transcript nextPutAll:
’matrixAdd - bad matrix size’ ;endEntry.

^nil.].
matrix := Matrix2D rows: numrows cols: numcols.
1 to: numrows do: [:row |

1 to: numcols do: [:col |
matrix atRow: row atCol: col put:

((self atRow: row atCol: col) +
 (aMatrix atRow: row atCol: col)).

].
].
"Returns a new matrix"
^matrix

• Below is an example of adding two matrices.

Transcript show: ’matrix1 + matrix2’.
(matrix1 matrixAdd: matrix2) writeToTranscript.

77

78

• matrixMult: aMatrix multiplies the receiver and aMatrix and returns the product. A check
is done to make sure the number of rows in the receiver is equal to the number of columns in
aMatrix (rule of matrix multiplication).

• Recall the product of two matrices is as follows:

• The following code implements the equation above:

matrixMult: aMatrix
"Multiplies the receiver and aMatrix, that is, Receiver *

aMatrix."

| nrows ncols matrix sum |
nrows := self rows.
ncols := self cols.
(ncols == (aMatrix rows))
ifFalse: [Transcript nextPutAll:

’matrixMult - bad matrix size’ ;endEntry.
 ^nil.].

matrix := Matrix2D rows: nrows cols:(aMatrix cols).

1 to: (aMatrix cols) do: [:k |
1 to: nrows do: [:i |

sum := 0.
1 to: ncols do: [:j |

sum := sum + ((self atRow: i atCol: j) *
(aMatrix atRow: j atCol: k)).

].
matrix atRow: i atCol:k put: sum.

]
].
^matrix



















++++++

++++++
++++++

=



















=



















=

QPQPPQPQQQPQQ

QPPPPQQ

QPPPPQQ

QPQQ

P

P

QPQQ

P

P

%$%$%$%$%$%$

%$%$%$%$%$%$

%$%$%$%$%$%$

$[%

%%%

%%%

%%%

%

$$$

$$$

$$$

$

......

......

......

,

22111212111

22221211221221121

12121111121121111

21

22221

11211

21

22221

11211

K

M

K

K

K

M

K

K

K

M

K

K

79

• Below is an example of multiplying two matrices.

Transcript show: ’matrix1 * matrix2’.
(matrix1 matrixMult: matrix2) writeToTranscript.

• The methods to add and multiply scalars are very similar to the matrixAdd: method, but
even simpler.

scalarAdd: aNumber
"Adds aNumber to each element of the receiver."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [:row |

1 to: ncols do: [:col |
matrix atRow: row atCol: col put:

(self atRow: row atCol: col) + aNumber.
].

].
^matrix

scalarMult: aNumber
"Multiplies each element of the receiver by aNumber."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [:row |

1 to: ncols do: [:col |
matrix atRow: row atCol: col put:

(self atRow: row atCol: col) * aNumber.
].

].
^matrix

80

• Below is an example of multiplying a scalar and a matrix.

Transcript show: ’3 * matrix1’.
(matrix1 scalarMult: 3) writeToTranscript.

• The Transpose exchanges rows and columns.

transpose
"Returns the transpose of the receiver."

| nrows ncols matrix |
nrows := self rows.
ncols := self cols.
matrix := Matrix2D rows: nrows cols: ncols.
1 to: nrows do: [:row |

1 to: ncols do: [:col |
matrix atRow: row atCol: col put:

(self atRow: col atCol: row).
].

].
^matrix

• Below is an example of transposing matrix.

Transcript show: ’matrix1 Transposed’.
(matrix1 transpose) writeToTranscript.

81

• Vectors are easily represented through the implementation of the Matrix class we have
demonstrated, since a vector is nothing more than a single row of a matrix.

• Recall the product of a vector and a matrix is a vector as follows:

• The following code will create a vector and multiply it by matrix1

vector1 := Matrix2D rows:1 cols:2.
vector1 at: #(1 1) put: 1.
vector1 at: #(1 2) put: 10.
Transcript show: ’vector1’.
vector1 writeToTranscript.
Transcript show: ’vector1 * matrix1’.
(vector1 matrixMult: matrix1) writeToTranscript.

[]

[]
QPQPPQQ

QPQQ

P

P

Q

09090909090909

000

000

000

09999

++++++=×



















==

......

22
,

22111212111

21

221

11211

21

K

K

M

K

K

K

82

/HFWXUH�����7KH�6WUHDP�&ODVVHV
• 6WUHDPV

• Streams provide basic communication between the Virtual machine and the system
• Types of streams

• Semaphores
• Sockets
• Files
• stdin & stdout

• IMPORTANT: The programmer must close all open streams. Smalltalk will not close
them for you, as in most compiled languages. The operating system has a limit on the
number of open streams, and will quickly run out if the streams are not closed

• ,PSRUWDQW�PHWKRGV�IRU�DOO�6WUHDPV
• Accessing

• next returns the next object in the stream
• next: anInteger returns the next anInteger number of objects
• contents returns all of the objects in the collection
• close closes the stream
• Ex:

| aStream anObject |
aStream := ReadStream on: #(’A’ ’B’ ’C’ ’D’).
anObject := Bag new.
anObject add: aStream next.
anObject add: (aStream next: 2).
anObject add: aStream contents.
aStream close.
anObject inspect.

• Writing
• nextPut: anObject places anObject in the stream so that it is the next accessible

• Ex: Generate & write the alphabet to a stream

| aStream|
aStream := WriteStream on: (String new).
65 to: 90 do: [:aNumber | aStream nextPut: aNumber
asCharacter].
aStream close.
aStream inspect.

83

• nextPutAll: aCollection puts the contents of aCollection into the stream.
• Example: Putting the number 1->10 into a Stream

| aStream aCollection |
aCollection := Array new:10.
1 to: 10 do: [:aNumber | aCollection at: aNumber put:
aNumber].
aStream := ReadWriteStream on: (Array new: 10).
aStream nextPutAll: aCollection.
aStream close.
aStream inspect.

• Example: Different way to get the same results. Which is the safer way? Which is
the more “elegant” way?

| aStream aCollection |
aCollection := Array new: 10.
aStream := PositionableStream on: (aCollection).
1 to: 10 do: [:aNumber | aCollection at: aNumber put: aNumber].
aStream close.
aStream inspect.

• ,PSRUWDQW�PHWKRGV�IRU�3RVLWLRQDEOH�6WUHDPV
• Accessing

• position returns the position in the stream
• peek returns the next object without advancing the position
• reset resets the position in the stream

84

• skip: anInteger skips anInteger positions in the stream
• Ex:

| aStream anObject |
anObject := ’This is a single String’.
aStream := ReadWriteStream on: (String new).
aStream nextPutAll: anObject.
aStream reset.
aStream skip: 2.
(aStream peek) inspect.

• ,PSRUWDQW�PHWKRGV�IRU�5HDG6WUHDPV
• Instance Creation

• ReadStream on: aCollection

• All other positionable stream methods and general methods will work except for ones
which write (such as at:put: methods)

• ,PSRUWDQW�PHWKRGV�IRU�:ULWH6WUHDPV
• Instance Creation

• WriteStream on: aCollection

• Accessing
• flush write all unwritten information to the stream

• Good “book-keeping” habit to do before closing streams or saving images.
• Similar to ReadStream, can access all methods of more general streams, but cannot

read from streams
• ,PSRUWDQW�PHWKRGV�IRU�([WHUQDO�DQG�)LOH�6WUHDPV

• Instance creation
• 2 step process- make the filename, then apply the method to the filename. For the

entire list of possible methods, refer to LaLonde, or the system browser under
Filename->stream creation.

| aStream aFilename |
aFilename := Filename named: ‘yourfile.txt’.
aStream := aFilename writeStream.

• Accessing
• nextNumber: n returns the next n bytes in the stream
• nextString returns the next String from the stream.
• skipwords: nWords advances the position nWords number of words (2 bytes, not to

be confused with strings)
• wordPosition returns the position in words
• wordPosition: wp advances the position to wp in words

• Writing
• nextPut: anObject places anObject in the stream so that it is the next accessible

85

• nextPutAll: aCollection puts the contents of aCollection into the stream.
• Example, writing to a file.

| aStream aFilename |
aFilename := Filename named: ’temp.txt’.
aFilename delete.
aStream := aFilename readWriteStream.
1 to: 20 by: 5 do: [:aPosition |

aStream wordPosition: aPosition.
aStream nextPut: $D].

aStream close.

• &RPPRQ�0LVWDNHV
• Writing a collection to a stream is not the same as writing the contents of the collection.

• Example: What is wrong with this? Shouldn’t we see the number 2 instead of ‘nil’?
No, the first object is the collection, the second object is the end of the stream.

| aStream aCollection |
aCollection := Array new: 10.
aStream :=ReadWriteStream on: (aCollection).
1 to: 10 do: [:aNumber | aCollection at: aNumber put: aNumber].
aStream reset.
(aStream peek) inspect.

86

• +LHUDUFK\

Positionable
Stream

External
Stream

Internal
Stream

ReadStream WriteStream

Peekable
Stream

Stream

External
Stream

External
WriteStream

External
WriteStream

ReadWrite
Stream

TextStream

87

/HFWXUH�����0DWUL[�([DPSOH�XVLQJ�6WUHDPV
• Recall the Matrix example. Now, rather than getting the matrix from standard in, we will read

the matrix from a file. To maintain simplicity, we will keep the rules strict, but to allow for
flexibility we will intelligently get the dimensions of the matrix. The rules of the file are as
follows:
• One matrix to a file
• The matrix must be complete. That is, all rows must contain the same number of

elements
• The matrix will start with ‘[‘ and end with ‘]’.
• Each row will be separated by a carriage return
• Each element will be separated by white space (tabs, cr’s, spaces).
• No element may be negative

• So, using these rules, a 3x3 identity matrix would be represented as below:

[1 0 0
0 1 0
0 0 1]

• We need two methods, one to read from a file, and one to write to a file. We will add these
methods to the Matrix2D class.

• The read method, fromFile: aMatrix is and instance creation method (like new). The
method follows a simple parsing algorithm:

Get characters until ‘[‘;
rowCount = 1;
Get nextString;

If nextString = ‘\n’
increase rowCount;
add Collection to Matrix
reset Collection to nil

If nextString is a number then add it to Collection

• This method accomplishes this by reading one character at a time, building up a string to be
converted into numbers.

• Since we don’t know how big the matrix will be, we can’t store the elements immediately into
the matrix. Instead, each row is read into an OrderedCollection.

• Once the OrderedCollection object is built, the addLast: method is called to add the
OrderedCollection object to the matrix. The number of rows is then incremented.

• The following code implements the method as discussed above

fromFile: aName
"Creates a 2D matrix from a file of the name aName"

| aStream aFilename aString aChar aCollection aMatrix|
aFilename := Filename named: aName.
aStream := aFilename readStream.
aChar := aStream next.

"Create the Matrix"
aMatrix := Matrix2D rows:0 cols:0.

"eat up everything until the open bracket"
[aChar = $[]

whileFalse: [aChar := aStream next].
"matrix has started"

88

aCollection := OrderedCollection new.
aString := String new.
[aChar = $]]
 whileFalse: [

aChar := aStream next.
aChar asInteger = 13 "cr"

ifTrue: [
aString size > 0
 ifTrue: [
 aCollection add:

(aString asNumber).
 aString := String new.
].
aMatrix addLast: aCollection.
aMatrix setrows: (aMatrix rows + 1)

cols: (aCollection size).
aCollection := OrderedCollection new.

].
aChar isSeparator "any white space"
ifTrue: [
aString size > 0

ifTrue: [
aCollection add:
 (aString asNumber).
aString := String new.

]
].

(aChar isDigit)
ifTrue: [aString := aString,

(aChar digitValue printString)].
].
aStream close.

"Add the last one, since the ’]’ was on the last line"
aMatrix addLast: aCollection.
aMatrix setrows: (aMatrix rows + 1)

cols: (aCollection size).
aCollection := OrderedCollection new.

^aMatrix

• The method to write the matrix to a file is considerably more simple. A ‘[‘ is written, then
each row is written as characters, then a ‘]’ is written.

writeToFile: aName
"Writes the matrix to the file aName. The format is

such that fromFile: can be called to read it back
into a matrix."

| aStream aFilename|
aFilename := Filename named: aName.
aStream := aFilename writeStream.

aStream nextPut: $[.
1 to: (self rows) do: [:row |

1 to: (self cols) do: [:col |
((self atRow: row atCol: col) printString)

do: [:char |
aStream nextPut: char

].
aStream nextPut:$. "space"

].
row = (self rows)

89

ifFalse: [
aStream nextPut: 13 asCharacter. "cr"].

].
aStream nextPut: $].
aStream close.

• To illustrate the use of the new file methods, we will read two matrices from text files
(“matrix1.txt” and “matrix2.txt”), then multiply them together. Their product will be written to a
file (“matrix3.txt”). Below is a screen capture of the two input text files.

• The code below will now multiply the matrices together and write the product to a file. The
code also reads the output file back in and prints it to the Transcript as a form of visual sanity
check.

| matrix1 matrix2|
matrix1 := Matrix2D fromFile: ’matrix1.txt’.
Transcript show: ’matrix1’.
matrix1 writeToTranscript.
matrix2 := Matrix2D fromFile: ’matrix2.txt’.
Transcript show: ’matrix2’.
matrix2 writeToTranscript.
(matrix1 matrixMult: matrix2) writeToFile: ’matrix3.txt’.
Transcript show: ’From file: matrix3’.
(Matrix2D fromFile: ’matrix3.txt’) writeToTranscript.

90

• The code results in the output file

91

/HFWXUH�����'HSHQGHQF\�0HFKDQLVPV
• 'HSHQGHQF\

• Objects depend on the state of other objects.
• For example, we have a lamp with a light switch and a light bulb

• When the state of the switch is changed, the light bulb is notified of the change
• This does not imply when the light bulb status changes (burns out) that the light switch is

notified
• There is no explicit relationship between two objects so we must find a way of

connecting them. Through a special connection, one object is said to be “dependent” on
the other object. Smalltalk has a dependency mechanism to handle the connections
between two objects.

• Use collections to store groups of dependent objects.
• Instead of a light switch, we now have a traffic light with three light bulbs. Each light has

to notify all other lights when it turns itself on so they will turn themselves off. In this
example, no two lights should be on at the same time.

• The protocol for sending messages and updating is provided by class Object.
• A Object sends itself a changed message & its dependents are informed

automatically via the update: aMessage, where aMessage can be any message
• self changed

• dependents determine what was changed
• self changed: anAspect

• Object informs dependents of a change involving anAspect
• self changed: anAspect with: aValue

• update: with: from:

• Method is inherited from class Object, but it is usually overridden.
• Methods for adding and removing dependencies

• addDependent:

• adds the dependency of the argument’s object to the receiver’s object
• tire: addDependent: automobile. The automobile is sent a message if the

state of the tire is changed.
• removeDependent:

• removes the dependency of the receiver from the argument
• the receiver no longer updates the argument
• tire: removeDependent: automobile. The automobile is now not updated

when the state of the tire changes
• release

• Releases all of the dependents of an object
• dependents

• Returns an Ordered Collection containing the dependents
• Now we can look at the code for the lamp

• To allow for the light bulb to be easily changed, we’ll give it a function update: signal
• The lamp object should also provide the methods for the following

• Getting and setting its state
• Showing the state by writing to the Transcript
• Getting and setting its identification number (id)

Object subclass: #Lamp
instanceVariableNames: ’state id’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-Lamps’!

92

state
"Returns the state of the lamp: 0=off, 1=on."

^state.!

state: anInteger
"Sets the state of the lamp: 0=off, 1=on.
The self changed message tells the lamps
dependents it is now on."

anInteger isZero ifFalse: [state := 1.
 self changed: #on]
 ifTrue: [state := 0].! !

id: anInteger
"Sets the id of the lamp"
id := anInteger.!

id
"Gets the id of the lamp"
^id.

showState
“Shows the state of the lamp in the transcript”
Transcript show: 'Lamp '; show: (id printString).
Transcript show: ' state: '; show: (state printString); cr.

!Lamp methodsFor: 'updating'!

update: signal
"If some other lamp has turned on, turn myself off."

(signal = #on)
ifTrue: [state := 0.

 self changed].! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Lamp class
instanceVariableNames: ''!

!Lamp class methodsFor: 'instance creation'!

new
"Gets a new instance."

^super new! !

• Now we will look at the code for the lamplist and traffic signal. Keep in mind that the
LampList and the Lamps are the objects doing the work, and the TrafficSignal provides a
useful example of a device which could use the LampList.

OrderedCollection variableSubclass: #LampList
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Lamps'!

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

LampList class
instanceVariableNames: ''!

93

!LampList class methodsFor: ’instance creation’!

new
"Creates a new instance."

^super new!

new: size
"Creates a new instance."

^(super new: size)! !

"--"!

Object subclass: #TrafficLight
instanceVariableNames: ’lamplist ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-Lamps’!

• In the method initialize, each lamp is created, and added to the lamplist.
Each lamp in the lamp list is then adds the other lamps to its list of
dependents.

!TrafficLight methodsFor: ’initialization’!

initialize
"Creates the three lights and turns the first on"

| lamp index|
lamplist := LampList new:3.
Index := 1.
3 timesRepeat:

[lamp := Lamp new.
 lamp state: 0.
 lamp id: index.
 lamplist add: lamp.

(lamplist at: 1) state: 1.
1 to: lamplist size do: [:l |

1 to: lamplist size do: [:dep |
l = dep ifFalse: [

(lamplist at: l) addDependent:
(lamplist at: dep)]]].! !

!TrafficLight methodsFor: ’accessing’!

lamplist
"returns the lamplist"
^lamplist.!

• The method gets the lamp that is on, then turns on the next lamp. If the third
lamp was on, then the first lamp is turned on. Each time the light is changed,
a message is written to the transcript to log that the light was changed.

changeLight
"advances to the next light in the list"
| index |
Transcript show: ’Changing the Lights’; cr.
index := (self lightIsOn) id.

94

(lamplist at: ((index rem: 3) + 1) state: 1.

• The method lightIsOn is used to tell the traffic light which lamp is currently
turned on. It finds the first lamp which is on (only 1 should be on), and returns
that light.

lightIsOn
"returns the index of the light that is on."

^(lamplist detect:
[:lamp | lamp state = 1]).

showStates
lamplist do: [:lamp| lamp showState].

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

TrafficLight class
instanceVariableNames: ’’!

!TrafficLight class methodsFor: ’instance creation’!

new
"Creates a new instance and initializes the lights."

^(super new) initialize.! !

• Now we can call the method showStates to reveal the light that is on. Lamp 2 is initially
set on, then the changeLight message is sent to aTrafficLight. Notice how Lamp 2
automatically turns itself off when changeLight turns on Lamp 3. This kind of automation
is the primary value of the dependency mechanism.

| aTrafficLight |
aTrafficLight := TrafficLight new.
((aTrafficLight lamplist) at: 2) state: 1.
aTrafficLight showStates.
aTrafficLight changeLight.
aTrafficLight showStates.

95

• What happens if we break the dependency on one of the lamp? Let us remove the 2nd

lamp’s dependency on 3rd lamp from the ordered collection. Notice that when the 3rd lamp
turns on the 2nd lamp never turns off.

| aTrafficLight |
aTrafficLight := TrafficLight new.
((aTrafficLight lamplist) at: 2) state: 1.
aTrafficLight showStates.
(aTrafficLight lamplist at: 3) removeDependent:

(aTrafficLight lamplist at: 2).
aTrafficLight changeLight.
aTrafficLight showStates.

• For an arbitrary object, Smalltalk does not remove the dependents from the object when it is no
longer in use.

• The system wide dependencies are stored in an identity dictionary DependentsFields.
Upon inspection of this dictionary, we can see the dependencies we have created in the
last two examples. Each lamp has an entry that includes each of the other lamps in the
traffic light. Note that there are six lamps, as the two examples each added 3 lamps.

• Because we do not have a direct way to access the lamp objects from the previous
examples, we will remove their dependencies by removing their entries in

96

DependentsFields. The following code will remove all keys of the object class Lamp.
The code simply creates a collection of keys to be removed, then removes each one.

| keys |
keys := OrderedCollection new.
DependentsFields associationsDo: [:anObject |

((anObject key) isKindOf: Lamp)
ifTrue: [keys add: (anObject key)]].
 keys do: [:aKey |
 Transcript show: ’Removing ’, aKey printString; cr.
 DependentsFields removeKey: aKey ifAbsent: []].

• To avoid leaving stray dependencies in DependentsFields, we need to add a method to
TrafficLight that will remove the dependencies of the Lamps. This is done by simply
sending the release message to each Lamp.

removeDependents
"Removes the dependents of each lamp in the TrafficLight"

lamplist do: [:lamp | lamp release].

• After the last showStates message, we should now add
aTrafficLight removeDependents.

• Inspection of DepedentsFields shows that we have removed all of the dependencies.

97

/HFWXUH�����7KH�0RGHO�9LHZ�&RQWUROOHU�3DUDGLJP
• 'HILQLWLRQV

• Model: The object to be looked at and/or modified
• Provides the details to be displayed

• View: The object that determines the precise manner in which the model is to be
displayed (i.e. a window manager)
• Displays the model and provides visual feedback for controller interactions

• Controller: The object that handles the keyboard and mouse interactions for this view
• The MVC Triad

• The view and the controller interact to provide a graphical interface to the model.
• An example of a MVC application is the browser. The browser is composed of 5 Views,

each with its own controllers. The model contains the entire source, and the views and
controllers interact to display the source code.

Controller

View

Model

98

• Each panel of the browser has its own controller, notice how a right mouse button’s menu is
different in each panel. Its also important to note that each time a item in the SelectionView is
clicked one, the other views change as well.

99

100

101

• 0RGHO
• While the Object class handles dependency coordination, as seen in the

TrafficLight/LampList example, most model objects are created as a subclass of Model.
• Object vs. Model

• Object uses a global dictionary to store dependents.
• This approach provides global dependency coordination, but dependents must be

explicitly removed.
• Model holds the collection of dependents in an instance variable

• The model is able to find the dependents faster, hence the methods involving the
dependents is speeded up.

• Failure to release an object can be safely ignored. Garbage collection is able to remove
obsolete dependents.

• The traffic light example presented in the previous lectures is an excellent example. To
simplify the model, we will now focus on the LampList and Lamp classes.

• To gain the features of Model, the Lamp and LampList classes should now be subclassed
off Model, rather than Object or OrderedCollection. It is important to note that two
instance variables have been added to LampList: numin and theList.

• numin is an internal counter, which will be discussed when its implementation is shown.
• theList is an OrderedCollection used to store the list of Lamps, since LampList is no

longer subclassed off of OrderedCollection.

Model subclass: #Lamp
instanceVariableNames: ’state id ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-Lamps’

Model variableSubclass: #LampList
instanceVariableNames: ’numin list’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-Lamps’

• Several changes must be made to existing methods, and new methods must be added to
compensate for LampList no longer being subclassed off of OrderedCollection.
• Initialization must now create theList as an OrderedCollection.

initialize
"Sets the count to zero."
theList := OrderedCollection new.
numin := 0.

• Now that LampList is subclassed off of Model, it is part of the dependency mechanism.
To maintain the dependency updating process, LampList must implement the update:
method. The instance variable numin is used in this method to count the number of
Lamps that have reported in to the LampList object. Once all lamps have reported in, the
LampList object can send the changed message.

• In the next lecture on Views, we use the lamplist as a model for a LampView. We wait for
all of the lamps to report in to avoid a race condition where the view is redrawn before all
lamps have had a chance to update their state.

update: signal
"Waits for all lamps to report in, then redraws the view."

numin := numin + 1.
(numin = self size) ifTrue: [

numin := 0.
self changed.]

102

• Methods to access and add to the LampList must now include implementation of add:, at:,
do:, detect:, and size so other methods will not break. It should be noticed, if other
methods were needed, they could be implemented simply by passing the message to
theList.

add: aLamp
"Adds aLamp to theList."
theList add: aLamp.
^theList.

at: anInteger
"returns a Lamp for theList."
^(theList at: anInteger).

detect: aBlock
"Passes a detect message to theList"
^(theList detect: aBlock).

do: aBlock
"Tells theList to do aBlock."
^(theList do: aBlock).

size
"Returns the size of theList."
^(theList size).

• Rather than having the TrafficLight create the dependency, the method make:
now adds each lamp to the LampList as a dependent, as well as make each
lamp dependent on every other lamp.

make: anInteger
"Makes a lamp list with anInteger number of
lamps input by the user."

| lamplist lamp |

lamplist := LampList new: anInteger.
anInteger

timesRepeat:
[lamp := Lamp new.
 lamp id: (lamplist size + 1).
 lamp state: 0.
 lamplist add: lamp.
 lamp addDependent: lamplist].

1 to: lamplist size do: [:l |
1 to: lamplist size do: [:dep |

l = dep ifFalse: [
(lamplist at: l) addDependent:

(lamplist at: dep)]]].
^lamplist

• No changes are needed for accommodating Lamp’s new subclassing.
• With one modification, the examples used for the TrafficLight will work as well now. Since

the make: method creates all of the dependencies, TrafficLight’s initialize method
only has to make the light.

initialize
"Creates the three lights and turns the first on"

lamplist := LampList make:3.

103

^self.

• Now we can look at the same code used in earlier TrafficLight examples.

| aTrafficLight |
aTrafficLight := TrafficLight new.
((aTrafficLight lamplist) at: 2) state: 1.
aTrafficLight showStates.
aTrafficLight changeLight.
aTrafficLight showStates.
“Note – we no longer need to explicitly
remove dependents”

• The exact same code used earlier produces the exact same output to the transcript. The only
difference can be seen by inspecting DependentsFields . Notice that there are no
dependents left behind? Since the Lamp and LampList objects were all subclassed off Model,
the dependents were all stored locally in an instance variable, and removed once the object
executed.

• Given the simplicity of maintaining dependents, the model concept is used extensively in
the following:

• Dependent Views, which ask for data

104

• Example: Real-time graphs and charts, one model could feed two different windows data
to be displayed.

• Controllers associated with dependent views, which supply user input data and request menu
operations
• Example: modifying the menu choices so the choices are different depending on what

was clicked on
• Dependent buttons, which request button operations

• Example: Grey’ing out inactive buttons
• Other models, which request data processing and other services
• The model itself, which requests data processing and other services.
• We will look at coupling the Model with a View and Controller in the next lectures
.

105

/HFWXUH�����7KH�9LHZ
• 9LHZ

• The view is responsible for displaying aspects of the model. Because there are many
kinds of models, there are many kinds of views, ranging from very simple to incredibly
complex.

• A view can be thought of as a part of a window in which a visual object is displayed. The
object can be passive, such as an image or text, or be an active object that updates itself
according to changes in the model, such as a real time graph.

• The browser window is an excellent example.
• Each pane is a view. The four top panes are SelectionView objects, and the bottom pane

is a TextCollectorView object.

• Every view must implement the following instance methods
• displayOn: #anAspect

• Completely builds the contents of the view
• Called when a view is first created and each time the entire view is redrawn (e.g.

uncovered by another window)
• update: #anAspect

• Called whenever the model changes (e.g. sends itself a changed: message)
• Used to reconstruct all or portions of a view depending on how the model was changed

(indicated by #anAspect symbol)
• If desired, #anApsect can be ignored in either of these methods.

106

• Suppose we wish to create a view for the Traffic Light example, we would now implement
these methods and a class definition for a new class, LampView. The view will be an
instance of AutoScrollingView with three lamps in it.

• In the class definition, an instance variable must be kept so the view knows what window it is
in.

AutoScrollingView subclass: #LampView
instanceVariableNames: ’window ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-Lamps’

• For now, update: needs to only re-display the view.

update: aModel
"The receiver’s model has changed. Redisplay the
receiver."

self displayObject

• #anAspect will be ignored, so we create a method displayObject, which is called by
displayOn:. displayObject displays the on/off images for each lamp, depending on its state,
then displays each image in its graphicsContext instance variable. graphicsContext is an
instance of GraphicsContext, a feature-rich class used for drawing into a display surface,
such as a view. More can be learned about this class from VisualWork’s online
documentation.

displayOn: ignored
"Display the lamps in a window."

self displayObject

displayObject
"Display the lamps in the window."

| image lamp |
“model is a LampList”
1 to: model size do:

[:index | lamp := model at: index.
lamp state = 0
 ifTrue:

[image := lamp getLampOffImage]
 ifFalse:

[image := lamp getLampOnImage].

self graphicsContext displayImage: image
at: lamp position.].

• In displayObject , the methods getLampOffImage and getLampOnImage are used. These
methods must be added to the Lamp instance methods. In addition to these methods, we
need to add a class method, initialize , to create the images. You need not be concerned
with the code within, just be aware that the initialize method exists.

getLampOffImage
"Returns the image of the lamp in off state."

^LampOffImage

getLampOnImage
"Returns the image of the lamp in on state."

107

^LampOnImage

initialize
"Initialize class with an image."

| bitPattern |

bitPattern := #[
2r00001111 2r11110000
2r00110000 2r00001100
2r01000000 2r00000010
2r10000000 2r00000001
2r10000000 2r00000001
2r10000000 2r00000001
2r10000000 2r00000001
2r10000000 2r00000001
2r10000000 2r00000001
2r01000000 2r00000010
2r00100000 2r00000100
2r00010000 2r00001000
2r00001000 2r00010000
2r00000100 2r00100000
2r00000100 2r00100000
2r00000010 2r01000000
2r00000010 2r01000000
2r00000010 2r01000000
2r00000010 2r01000000
2r00000010 2r01000000].

LampOnImage := Image
extent: 16@20
depth: 1
palette: MappedPalette blackWhite
bits: bitPattern
pad: 8.

LampOffImage := Image
extent: 16@20
depth: 1
palette: MappedPalette whiteBlack
bits: bitPattern
pad: 8.

• displayObject still will not work properly. It references the position of each lamp, but until
now the position has not been set. The position needs to be set somewhere, so we will set
the position of each lamp in LampList’s make method.

make: anInteger
"Makes a lamp list with anInteger number of lamps input by

the user."

| lamplist lamp |
lamplist := LampList new: anInteger.
anInteger

timesRepeat:
[lamp := Lamp new.
 lamp position: 25 @ (lamplist size * 30).
 lamp id: (lamplist size + 1).
 lamp state: 0.
 lamplist add: lamp.
 lamp addDependent: lamplist].

108

1 to: lamplist size do: [:l |
1 to: lamplist size do: [:dep |

l = dep ifFalse: [
(lamplist at: l) addDependent:

(lamplist at: dep)]]].
^lamplist

• Now we have the methods to create a visual representation of a lamp, and the methods to
update the view, but we still need to attach the model to the view and create the window to
put the view in. To be displayed on the screen, a view must be contained in an instance of
ScheduledWindow.

• Registering the view as a dependent of the model is simple through the use of the
message model: aModel

• ScheduledWindow has a model and a controller
• The “Scheduled” part of ScheduledWindow refers to the fact that ScheduledWindow is

part of ScheduledController, the control manager.
• Usually, the ScheduledWindow is created, and its visual components are added before it is

opened. The following code demonstrates this:

| aWindow |
aWindow := ScheduledWindow new.
aWindow

component: ’Hello World’ asComposedText.
aWindow openIn: (20 @ 20 extent: 150 @ 150).

• Now we can create a new view, place it inside a window and register the model in the
same class method for LampView:

openOn: aLampList
"Creates a new Lamp View on aLampList."

| view window |
view := self new.

“Register the model”
view model: aLampList.

window := ScheduledWindow new.
window label: 'Lamp Viewer'.
window minimumSize: 50@100.
window insideColor:

(ColorValue red: 1.0 green: 0.0 blue: 0.0).
window component: view.
view window: window.
window open.
^view.

109

• The last task that must be done is the simplest: create an instance of LampView in the
TrafficLight. The simplest way is by modifying the initialize method:

initialize
"Creates the three lights and turns the first on"

lamplist := LampList make:3.
lampView := LampView openOn: lamplist.
^self.

• The following code will create the light, initialize it to the second light, then changes lights
every second for 10 seconds. The screen capture is the resulting window after 11
seconds (black was used as “on”).

| aTrafficLight |
aTrafficLight := TrafficLight new.
((aTrafficLight lamplist) at: 2) state: 1.
10 timesRepeat:

[(Delay forSeconds: 1) wait.
aTrafficLight changeLight].

110

/HFWXUH�����7KH�&RQWUROOHU
• Now, suppose we want to use the code to create a control panel with Lamps, rather than a

traffic light. We also want to control the lamps without entering commands into the
workspace. We need to modify the controller.
• Controllers serve two primary purposes, event handling and menu pop-ups. For now, we

will focus on event handling.
• Every controller has a controlActivity method which functions as an event handler. The

controlActivity method is repeatedly invoked while control is active (e.g. the mouse
pointer is in the view of a window). It is in this method that we check for events from the user,
such as key presses and mouse button pushes, by sending messages to a sensor.

• Each window has an input sensor, an instance of WindowSensor. The sensor holds queues
for keyboard events and window sizing/moving/closing events. It also knows the state of the
mouse, including the position of the pointer and the states of the buttons.

• Lets start constructing the controlActivity method for the LampController by first
checking for keyboard input. We’ll use the number keys, 1, 2, and 3, to turn on the
corresponding lamp. First we check to see if a key was pressed by using the
keyboardPressed message:

sensor keyboardPressed.

• If this message returns true, then a key has been pressed and we need to
determine which one. The sensor will return the character pressed when we
send it the keyboard message. We then convert the resulting character to an
integer and test if it is a valid lamp number. If so, we set the state of the lamp
to “on”.

• In the Smalltalk tradition, we want to keep the controlActivity method
short, so we’ll put the keyboard processing code in a separate method.

controlActivity
"Do this when the mouse is in the window."

(sensor keyboardPressed)
ifTrue: [self processKeyboard]

processKeyboard

| int |
int := sensor keyboard digitValue.
(int between: 1 and: model size)

ifTrue: [(model at: int) state: 1].

• We want to add some way to quit the application, but request confirmation when the user
chooses to quit. Lets implements this when the user presses the yellow (middle for 3 button
mice, right for 2 button mice) mouse button. We can detect a mouse button by sending one of
the following messages to the sensor:

• redButtonPressed

• yellowButtonPressed

• blueButtonPressed.
• In our case, we use sensor yellowButtonPressed. If this method returns true, then the

confirm: message is sent to the Dialog class to bring up a window with “yes” and “no”
buttons. Subsequent mouse presses are ignored until one of the confirm buttons is pressed.
If the “yes” button is pressed, the confirm message returns true and the window is closed.

• Below we implement the yellow button activity method that is called when a yellow button
press is detected in the controlActivity method.

111

controlActivity
"Do this when the mouse is in the window."

(sensor keyboardPressed)
ifTrue: [self processKeyboard]
ifFalse: [

sensor yellowButtonPressed
ifTrue: [self processYellowButton].

].

processYellowButton
“This method is called when the yellow button
is pressed”

(Dialog confirm: 'Quit ?')
ifTrue: [
 view window controller closeAndUnschedule].

• Lastly, it would be convenient if each lamp would turn on (and turn off all other lamps) by
simply clicking on it. We will use the red (left mouse button) for this operation. As with the
yellow button, we detect the red button press in the controlActivity method sensor

redButtonPressed , then send the processRedButton message if the result is true.
• To determine if a lamp was clicked on, we compute a Rectangle (in view coordinates) which

bounds the lamp image. Then we check to see if the point where the red button was clicked
is contained in the bounding rectangle.

• We iterate through the LampList until we find a lamp that has been clicked on, in which case
we change that lamp’s state to #on, or until we have examined all lamps.

• The following code implements the algorithm discussed above:

processRedButton
"This method is called when the red button is pressed."

| mpt image box |

"Wait for the mouse button to be released."
sensor waitNoButton.

"Get the point where the red mouse button was last
pressed down."

mpt := sensor lastDownPoint.

"Assuming all lamp images are the same, get the
first lamp image to use for computation"

image := (model at: 1) getLampOffImage.

"Now iterate through each lamp in the model or
until we find one that has been clicked on."

1 to: (model size) do: [:lampNumber | | lamp |
lamp := (model at: lampNumber).

"Compute the bounding box of this lamp’s image
in the view’s coordinates."

box := Rectangle origin: (lamp position)
extent: (image extent).

"Check if the pointer was on the image when
the button was pressed."

(box containsPoint: mpt) ifTrue: [
"If so, then turn that lamp on."
^lamp state: 1].

112

].

• Finally, included for completeness is the class definition as well as the complete
controlActivity method.

Controller subclass: #LampController
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Examples-Lamps’

controlActivity
"Do this when the mouse is in the window."

(sensor keyboardPressed)
ifTrue: [self processKeyboard]
ifFalse: [

sensor yellowButtonPressed
ifTrue: [self processYellowButton].
sensor redButtonPressed
ifTrue: [self processRedButton].

113

$SSHQGL[���9LVXDO:RUNV�����YHUVXV�6PDOOWDON���

9LVXDO:RUNV���� 6PDOOWDON���

Assignment := Ä

Global Variables Start with Caps Does not care

DeepCopy Removed Present

Fractions asRational asFraction

FileName protocol fileNamed: named:

'LIIHUHQFHV�IRXQG�WKURXJKRXW�WKH�OHFWXUH�QRWH¶V�H[DPSOHV

• &ODVVHV�UHPRYHG�IURP�9LVXDO:RUNV����
• Button
• DebuggerController
• DebuggerTextView
• DialogCompositController
• DialogController
• DialogView
• FixedThumbScrollbar
• FractionalWidgetView
• HandlerController
• ListController
• ListView
• SelectionSetInListController
• SelectionInListView
• TextItemView
• TextItemEditor
• TextController
• TextView
• PopUpMenu
• WidgetSpecification

114

$SSHQGL[���9LVXDO:RUNV�UXOHV�DQG�6PDOOWDON�6\QWD[
• &DSLWDOL]DWLRQ�UXOHV

• Upper Case
• Class names
• Class variables and global variables

• Lower Case
• Method names
• Temp variables, instance variables, class instance variables, method arguments

• Use embedded capital letters, not underscores
• 5HVHUYHG�ZRUGV

• nil
• true
• false
• self
• super

• thisContext

• 2SHUDWRUV
• :=

• called ‘gets’ operator, used for assignment
• ^

• called ‘returns’ operator, used to return a value
• Example

name: aSymbol
name := aSymbol.
^name.

• /LWHUDOV
• use VisualWorks syntax chapter for reference here
• Numbers
• Characters
• Strings
• Symbols
• Arrays of literals
• Byte Arrays (notice the use of brackets)

• &RPPHQWV
• “Comment”
• periods allowed within double quotes

115

$SSHQGL[����$�/LVW�RI�0HWKRGV�IRU�WKH�6\VWHP�&ODVVHV

0DJQLWXGH�
Creation:
Operations:

< aMagnitude
less than operator returns boolean

<= aMagnitude
less than or equal operator returns boolean

> aMagnitude
greater than operator returns boolean

>= aMagnitude
greater than or equal operator returns boolean

between: min and: max
returns True if object’s magnitude is between min and max

min: aMagnitude
returns the lesser of the object and aMagnitude

max: aMagnitude
returns the greater of the object and aMagnitude

Magnitude->Date:
Creation:

today
instance representing the current date

fromDays: dayCount
instance representing the date dayCount days from 01/01/1901

newDay: day month: monthName year: yearInteger
instance representing day number of days into monthName in yearInteger

newDay: dayCount year: yearInteger
instance representing dayCount days into yearInteger

Operations:
dayOfWeek: dayName

returns index of dayName in the week, #Sunday = 0
nameOfDay: dayIndex

returns Symbol representing the day whose index is dayIndex
indexOfMonth: monthName

returns index of monthName in the year, #January = 0
nameOfMonth: monthIndex

returns Symbol representing the month whose index is monthIndex
daysInMonth: monthName forYear: yearInteger

returns Integer representing the number of days in monthName for year
yearInteger

daysInYear: yearInteger
returns Integer representing the thumber of days in yearInteger

leapYear: yearInteger
returns 1 if yearInteger is a leap year, 0 otherwise

dateAndTimeNow
returns Array whose first element is current date, and whose second element is
the current time

addDays: dayCount
returns Date that is dayCount days after object

subtractDays: dayCount
returns Date that is dayCount days before object

subtractDate: aDate

116

asSeconds
returns number of seconds between a time on 01/01/1901 and the same time in
the receiver’s day

Magnitude->Time:
Creation:

now
instance representing the current time

fromSeconds: secondCount
instance representing the time of secondCount after midnight

Operations:
millisecondClockValue

returns number of milliseconds since the millisecond clock was reset or rolled
over

millisecondsToRun: timedBlock
returns number of milliseconds timedBlock takes to execute

timeWords
returns the number of seconds since 01/01/1901 (GMT) in 4 element byte array

totalSeconds
returns total number of seconds since 01/01/1901, correcting the time zone and
daylight savings

dateAndTimeNow
returns Array whose first element is current date, and whose second element is
the current time

addTime: timeAmount
returns Time that is timeAmount days after receiver

subtractTime: timeAmount
returns Date that is timeAmount before receiver

asSeconds
returns number of seconds since midnight that receiver represents

Magnitude->Character:
Creation:

value: anInteger
instance of Character which is the ASCII representation of anInteger

digitValue: anInteger
instance of Character which is the character representation of a munber of radix
35- $0 returns 0, $A returns 10, $Z returns 35

Operations:
asciiValue

returns Integer of ascii character
digitValue

returns Integer representing numerical radix
isAlphaNumeric

true if receiver is letter or digit
isDigit

true if receiver is digit
isLetter

true if receiver is letter
isLowercase

true if receiver is lowercase
isUppercase

true if receiver is uppercase
isSeparator

true if receiver is space, tab, cr, line feed, or form feed
isVowel

117

true if receiver is a,e,i,o,u

Magnitude->Number:
Creation:
Operations:

+ aNumber
returns sum of receiver and aNumber

- aNumber
returns difference of reciever and aNumber

* aNumber
returns result of mulitplying receiver by aNumber

/ aNumber
returns result of dividing receiver by aNumber. If result is not a whole number,
then an instance of Fraction is returned

// aNumber
returns Integer result of division truncated toward negative infinity

\\ aNumber
returns Integer representing receiver modulus aNumber

abs
returns Number representing absolute value of receiver

negated
returns Number representing additive reciprocal

quo: aNumber
returns quotient of receiver divided by aNumber

rem: aNumber
returns remainder of receiver divided by aNumber

reciprocal
returns multiplicative reciprocal (1/reciever)

exp
returns e raised to the power of receiver

ln
returns natual log of receiver

log: aNumber
returns log base aNumber of receiver

floorLog: radix
returns floor of log base radix of reciever

raisedTo: aNumber
returns result of raising receiver to aNumber

raisedToInteger: anInteger
returns result of raising receiver to anInteger, where anInteger must be an
Integer

sqrt
returns square root of receiver

squared
returns receiver raised to the second power

even
true if receiver is even

odd
true if receiver is odd

negative
true if receiver is <= 0

positive
true if receiver is >= 0

strictlyPositive
true if receiver > 0

sign

118

returns 1 if receiver > 0, 0 if receiver == 0. –1 if receiver < 0
ceiling

returns result of rounding towards positive infinity
floor

returns result of rounding towards negative infinity
truncated

returns result of rounding towards zero
truncateTo: aNumber

returns result of truncating to multiple of aNumber
rounded

returns result of rounding receiver
roundedTo: aNumber

returns result of rounding receiver to neastest multiple of aNumber
degreesToRadians

returns Float of radian representation of receiver. Assumes receiver is in degrees
radiansToDegrees

returns Float in degrees of conversion of receiver. Assumes receiver is in radians
sin

returns Float of sin(receiver) in radians
cos

returns Float of cos(receiver) in radians
tan

returns Float of tan(receiver) in radians
arcSin

returns Float of arcSin(receiver) in radians
arcCos

returns Float of arcCos(receiver) in radians
arcTan

returns Float of arcTan(receiver) in radians
coerce: aNumber

casts receiver as same type as aNumber
generality

returns the number respresenting the ordering of the receiver in the generality
heirarchy

retry: aSymbol coercing: aNumber
an arithmetic operation aSymbol could not be performed, so the operation is
retried casting the receiver or argument to aNumber (picking the lowest order of
generality)

Magnitude->Number->Integer:
Creation:
Operations:

factorial
returns Integer representing the factorial of the receiver

gcd: anInteger
returns Integer representing the Greatest Common Denominator of the receiver
and anInteger

lcm: anInteger
returns Integer representing the Lowest Common Multiple of the receiver and
anInteger

allMask: anInteger
treat anInteger as a bit mask. Returns True if all 1’s in anInteger are 1 in the
receiver

anyMask: anInteger
treat anInteger as a bit mask. Returns True if any on the 1’s in anInteger are 1 in
the receiver

119

noMask: anInteger
treat an Integer as a bit mask. Returns True if none of the 1’s in anInteger are 1
in the receiver

bitAnd: anInteger
returns Integer representing a boolean AND operation between anInteger and the
receiver

bitOr: anInteger
returns Integer representing a boolean OR operation between anInteger and the
receiver

bitXor: anInteger
returns Integer representing a boolean XOR (eXclusive OR) operation between
anInteger and the receiver

bitAt: anIndex
returns the bit (0 or 1) at anIndex

bitInvert
returns an Integer which is the complement of the receiver

highBit
returns an Integer representing the index of the highest order bit

bitShift: anInteger
returns an Integer whose value (in two’s-complement) is the receiver’s value
shifted anInteger number of bits. Negative shifts are to the right.

Random
Creation:

:= Random new
instance representation of a random number generator

next
instance of a random rumber. The receiver must be a random number generator,
which has previously been started

Operations:

&ROOHFWLRQ
Creation:

#(Object1, Object2, Object3, Object4)
instance representing an array containing up to 4 objects passed as arguments

new
instance representing an empty collection

new:
instance representing a collection

with: anObject
instance representing a collection containing anObject

with: firstObject with: secondObject
instance representing a collection containing firstObject and secondObject

Operations:
add: newObject

adds newObject to the receiver and returns newObject
addAll: aCollection

adds aCollection to the receiver and returns aCollection
remove: oldObject

removes oldObject from the receiver and returns oldObject unless there is no
object oldObject (reports an error).

remove: oldObject ifAbsent: anExceptionBlock
removes oldObject from the receiver, unless it does not exist, in which case
anExceptionBlock is executed. Returns oldObject or result of anExceptionBlock

removeAll: aCollection

120

removes all elements of aCollection from the receiver and returns aCollection,
unless not all elements of aCollection were present in the receiver, in which case
an error is reported.

includes: anObject
returns True if anObject is an element of the receiver

isEmpty
returns True if the receiver has no elements

occurrencesOf: anObject
returns an Integer representing the number of occurrences of anObject in the
receiver

do: aBlock
evaluate aBlock for every element of the receiver

select: aBlock
evaluates aBlock for every element of the receiver. Returns a new Collection
containing all elements of the receiver for which aBlock evaluated to true

reject: aBlock
evaluates aBlock for every element of the reciever. Returns a new Collection
containing all elements for which aBlock evaluated to false

collect: aBlock
evaluates aBlock for every element of the receiver. Returns a new Collection
containing the results of every evaluation of aBlock.

detect: aBlock
evaluates aBlock for every element of the receiver. Returns the object which is
the first element in the receiver for which aBlock evaluated to true. If no object
evaluated to true, an error is reported.

detect: aBlock ifNone: exceptionBlock
evaluates aBlock for every element of the receiver. Returns the object which is
the first element in the receiver for which aBlock evaluated to true. If no object
evaluated to true, exceptionBlock is evaluated.

inject: thisValue into: binaryBlock
Evaluates binaryBlock for each element of the receiver, initializing a local
variable to thisValue. Returns final value of the block. BinaryBlock has two
arguments.

asBag
Returns a Bag with the elements from the receiver

asSet
Returns a Set with the elements from the receiver

asOrderedCollection
Returns an OrderedCollection with the elements from the reciever

asSortedCollection
Returns a SortedCollection with the elements from the receiver, sorted to each
element is less than or eaqual to its successor

asSortedCollection: aBlock
Returns a SortedCollection with the elements from the receiver, sorted
according to the arguemnt aBlock

Collection->Bag
Creation:
Operations:

add: newObject withOccureneces: anInteger
Adds anInteger number of occurrences of newObject to the receiver, and returns
newObject

Collection->Set
Creation:
Operations:

121

Collection->Set->Dictionary and Collection->Set->IdentityDictionary
Creation:
Operations:

at: key ifAbsent: aBlock
Returns the value named by key. If the key is not present in the dictionary,
returns evaluation of aBlock

associationAt: key
Returns the association named by key. If key is not present, an error is reported

associationAt: key ifAbsent: aBlock
Returns the association named by key. If key is not present, returns the
evaluation of aBlock.

keyAtValue: value
Returns the name found first for value, or nil if value is not present

keyAtValue: value ifAbsent: exceptionBlock
Returns the name found first for value, or the evaluation of exceptionBlock if
value is not found

keys
Returns Set representing all of the receiver’s keys

values
Returns Set containing all of the receiver’s values

includesAssociation: anAssociation
Returns true if anAssociation is included in the receiver

includesKey: key
Returns true if key is included in the receiver

removeAssociation: anAssociation
Removes anAssociation from the receiver. Returns anAssociation

removeKey: key
Removes key and associated value from the receiver. Returns value associated
with key if key is included in the receiver, otherwise an error is reported

removeKey: key ifAbsent: aBlock
Removes key and associated value from the receiver. Returns value associated
with the key if key is included in the receiver, otherwise returns the evaluation
of aBlock

associationsDo: aBlock
Evaluate aBlock for each of the receiver’s associations

keysDo: aBlock
Evaluate aBlock for each of the receiver’s keys

Collection->SequenceableCollection
Creation:
Operations:

atAll: aCollection put: anObject
Associate each element of aCollection with anObject.

atAllPut: anObject
Put anObject as every one of the receiver’s elements

first
Returns the first element of the receiver

last
Returns the last element of the receiver

indexOf: anElement
Returns an Integer representing the index of anElement in the receiver, 0 if not
present

indexOf: anElement ifAbsent: exceptionBlock
Returns an Integer representing the index of anElement in the receiver, or the
evaluation of exceptionBlock if anElement is not in the receiver

122

indexOfSubCollection: aSubCollection startingAt: anIndex
If the elements of aSubCollection appear in order in the receiver, returns the
index of the first element of aSubCollection in the receiver, otherwise returns 0

indexOfSubCollection: aSubCollection: startingAt: anIndex ifAbsent: exceptionBlock
Returns the index of the first element of aSubCollection in the receiver if the
elements of aSubCollection appear in order, otherwise returns the evaluation of
aBlock

replaceFrom: start to: stop with: replacementCollection
Associates every element of the receiver from start to stop with the elements of
replacementCollection and returns the receiver. The size of
replacementCollection must equal start + stop + 1.

replaceFrom: start to: stop with: replacementCollection startingAt: repStart
Associates every element of the receiver from start to stop with the elements of
replacementCollection starting with index repStart in replacementCollection.
The receiver is returned

, aSequencableCollection
Returns the receiver concatenated with aSequencableCollection

copyFrom: start to: stop
Returns a subset of the receiver starting at index start and ending an index stop

copyReplaceAll: oldSubCollection with: newSubCollection
Returns a copy of the receiver with all occurrences of oldSubCollection replaced
with newSubCollection

copyWith: newElement
Returns a copy of the receiver with newElement added on to the end

copyWithout: oldElement
Returns a copy of the receiver without all occurrences of oldElement

findFirst: aBlock
Evaluates aBlock for every element of the receiver and returns the index of the
first element for which aBlock evaluates to true.

findLast: aBlock
Evaluates aBlock for each element of the receiver and returns the index of the
last element for which aBlock evaluates to true

reverseDo: aBlock
Evaluates aBlock for each element of the receiver, starting with the last element

with: aSequenceableCollection do: aBlock
Evaluates aBlock for each element of the receiver and each element of
aSequenceableCollection. The number of elements in aSequenceableCollection
must equal the number of elements in the receiver and aBlock must have two
arguements

Collection->SequenceableCollection->OrderedCollection
Creation:
Operations:

after: oldObject
Returns the element occurring after oldObject, or reports an error if oldObject is
not found or is the last element

before: oldObject
Returns the element occurring before oldObject, or reports an error if oldObject
is not found or is the first element

add: newObject after: oldObject
Inserts newObject after oldObject into the receiver and returns newObject unless
oldObject is not found, in which case an error is reported

add: newObject before: oldObject
Inserts newObject before oldObject into the receiver and returns newObject
unless oldObject is not found, in which case an error is reported

addAllFirst: anOrderedCollection

123

Adds each element of anOrderedCollection to the beginning of the receiver and
returns anOrderedCollection

addAllLast: anOrderedCollection
Adds each element of anOrderedCollection to the end of the receiver and returns
anOrderedCollection

addFirst: newObject
Adds newObject to the beginning of the receiver and returns newObject

addLast: newObject
Adds newObject to the end of the receiver and returns newObject

removeFirst
Removes the first object from the receiver and returns it, unless the receiver is
empty in which case an error is reported

removeLast
Removes the last object from the receiver and returns it, unless the receiver is
empty in which case an error is reported

Collection->SequenceableCollection->OrderedCollection->SortedCollection
Creation:

sortBlock: aBlock
Instance representing an empty SortedCollection using aBlock to sort its
elements

Operations:
sortBlock

Returns the block that is to be used to sort the elements of the receiver
sortBlock: aBlock

Make aBlock the block used to sort the elements of the receiver

Collection->SequenceableCollection->LinkedList
Creation:

nextLink: aLink
Instance of Link that references aLink

Operations:
nextLink

Returns the receiver’s reference
nextLink: aLink

Sets the receiver’s reference to be aLink
addFirst: aLink

Adds aLink to the beginning of the receiver’s list and returns aLink
addLast: aLink

Adds aLink to the end of the receiver’s list and returns aLink
removeFirst

Removes the first element from the receiver’s list and returns it. If the list is
empty an error is reported

removeLast
Removes the last element from the receiver’s list and returns it. If the list is
empty an error is reported

Collection->SequenceableCollection->Interval
Creation:

from: startInteger to: stopInteger
Instance starting with the number startInteger and ending with stopInteger,
incrementing by one

from: startInteger to: stopInteger by: stepInteger
Instance starting with the number startInteger and ending with stopInteger,
incrementing by stepInteger

124

Operations:

Collection->SequenceableCollection->ArrayedCollection
Creation:
Operations:

Collection->SequenceableCollection->ArrayedCollection->CharacterArray->String
Creation:
Operations:

< aString
Returns true if the receiver collates before aString. Case is ignored.

<= aString
Returns true if the receiver collates before aString, or is the same as aString.
Case is ignored.

> aString
Returns true if the receiver collates after aString. Case is ignored.

>= aString
Returns true if the receiver collates after aString, or is the same as aString. Case
is ignored.

match: aString
Treats the receiver as a pattern containing #’s and *’s which are wild cards (#
represents one character, * represents a substring). Returns true if the reciever
matches aString. Case is ignored.

sameAs: aString
Returns true if the receiver collates exactly with aString. Case is ignored.

asLowercase
Returns a String representing the receiver in all lowercase

asUppercase
Returns a String representing the receiver in all uppercase

asSymbol
Returns a Symbol whose characters are the characters of the receiver

Collection->SequenceableCollection->ArrayedCollection->CharacterArray->Symbol
Creation:

intern: aString
Returns an instance of a Symbol whose characters are those of aString

internCharacter: aCharacter
Returns an instance of a Symbol which consists of aCharacter

Operations:

Collection->MappedCollection
Creation:
Operations:

6WUHDP
Creation:
Operations:

next
Returns the next object accessible by the receiver

next: anInteger
Returns the next anInteger objects accessible by the receiver

nextMatchFor: anObject
Accesses the next object and returns true if it is equal to anObject

contents
Returns all of the objects in the collection accessed by the receiver.

nextPut: anObject

125

Stores anObject as the next object accessible by the receiver and returns
anObject

nextPutAll: aCollection
Store the elements in aCollection as the next objects accessible by the receiver
and returns aCollection. Advances the position reference to the new object.

next: anInteger put: anObject
Store anObject as the next anInteger number of objects accessible by the
receiver and returns anObject. Advances the position reference to the new
object.

atEnd
Returns true if the are no more objects accessible by the receiver

do: aBlock
Evaluate aBlock for each of the remaining objects accessible by the receiver

Stream->PositionableStream
Creation:

on: aCollection
Returns an instance which streams over aCollection

on: aCollection from: firstIndex to: lastIndex
Returns an instance which streams over a copy of a subcollection of aCollection
from firstIndex to lastIndex

Operations:
isEmpty

Returns true if the collection the receiver accesses has no elements
peek

Returns the next object in the collection but does not increment the position
reference

peekFor: anObject
Does a peek, if the next object is equal to anObject, then returns true and
increments the position reference, otherwise just returns false

upTo: anObject
Returns a collection of the elements starting with the next object accessed by the
receiver up to, but not including, anObject. If anObject is not an element of the
remainder of the collection, then the entire remaining collection is returned.

position
Returns the receiver’s current position reference

position: anInteger
Sets the receiver’s position to anInteger. If anInteger exceeds the bounds of the
collection, then an error is reported

reset
Sets the receiver’s position to the beginning of the collection

setToEnd
Sets the receiver’s position to the end of the collection

skip: anInteger
Sets the receiver’s position to the current position + anInteger

skipThrough: anObject
Sets the receiver’s position to be past ther next occurrence of anObject. Returns
true if anObject occurs in the collection

Stream->PositionableStream->ReadStream
Creation:
Operations:

Stream->PositionableStream->WriteStream
Creation:
Operations:

126

cr
Stores the carriage return as the next element of the receiver

crtab
Stores the carriage return and a single tab as the next elements of the receiver

crtab: anInteger
Stores a carriage return follwed by anInteger number of tabs as the next
elements of the receiver

space
Stores the space charater as the next element of the receiver

tab
Stores the tab character as the next element of the receiver

Stream->ExternalStream
Creation:
Operations:

nextNumber: n
Returns a SmallInteger or LargePositiveInteger representing the next n bytes of
the collection accessed by the receiver

nextNumber: n put: v
Stores v, which is a SmallInteger or LargePositiveInteger, as the next n bytes of
the collection accessed by the receiver

nextString
Returns a String consisting of the next elements of the collection accessed by the
receiver

nextStringPut: aString
Stores aString in the collection accessed by the receiver

padTo: bsize
Skips to the next boundary of bsize characters and returns the number of
characters skipped

padTo: bsize put: aCharacter
Skips to the next boundary of bsize characters, writing aCharacter to each
character skipped, and returns the number of charcters skipped

padToNextWord
Skip to the next word (even) boundary and returns the number of characters
skipped

padToNextWordPut: aCharacter
Skip to the next word (even) boundary, writing aCharacter to each character
skipped, and returns the number of characters skipped

skipWords: nWords
Advance position reference nWords

wordPosition
Returns the current position in words

wordPosition: wp
Sets the position reference in words to wp

127

,QGH[
abs .. 64
$EVWUDFWLRQ ... 16, 22
addDepentent... 91
anAspect .. 91
and .. 34
arcCos ... 67
arcSin ... 67
ArithmeticValue 63
asCharacter ... 66
asFloat... 66
asFraction ... 66
asInteger.. 66
Associated Hashtable 70
asString .. 14
at .. 13, 28
AutoScrollingView............................... 106
basicAt... 29
basicSize.. 29
Behavior.. 20
Binary .. 30
BlockClosure... 34
%ORFNV .. 34
blueButtonPressed............................... 110
%RROHDQ.. 34
%UDQFKLQJ.. 34
%URZVHU ... 52
bytecode ... 14
Capitalization ... 114
ceiling .. 67
changed... 91
Char.. 63
class ... 27
&ODVV... 11
&ODVV�+LHUDUFK\ ... 11
&ODVV�LQVWDQFH�YDULDEOHV 32
Class Protocol.. 43
&ODVV�9DULDEOHV .. 33
closeAndUnschedule 111
collect... 41, 71
Collection.. 62
Comments .. 114
&RPSDULVRQ .. 27
&RPSRVLWLRQ ... 17, 22
confirm... 41
confirm: .. 110
&RQWURO�6WUXFWXUHV6HH�%UDQFKLQJ
controlActivity 110
Controller .. 97, 110
copy.. 27
&RS\LQJ�REMHFWV .. 27
cos .. 67

Date ..63
dateAndTimeNow ..68
'HEXJJLQJ...41
deepCopy ..27
Delay..109
'HSHQGHQF\...91
dependents..91
DependentsFields.95
detect ...71
detect:,..102
Dialog ...111
Dictionary..70
displayObject................................. 106, 107
displayOn:..105
do...70
doesNotUnderstand36
(QFDSVXODWLRQ ..20
equivalence...27
eqv ..34
error..37
(UURU�+DQGOLQJ..36
errorSignal ...41
Exception ..41
exp ..67
Exponents...67
)DFWRUL]DWLRQ ... 18, 22
false..114
False..34
)LOH�6WUHDPV ..84
)LOLQJ�,Q ...48
)LOLQJ�2XW ..48
findFirst ..71
findLast ..71
floor..67
flush..84
*OREDO�9DULDEOHV ..33
GraphicsContext ..106
KDOW ..41
haltSignal..41
hardhalt ..41
hash ..63
ifFalse... 34, 35
ifTrue ...34
image...14
inject ...71
inspect...41
,QVWDQFH ...11
Instance Protocol ...43
,QVWDQFH�YDULDEOHV32
InstVarAt ..40
isKindOf ..27

128

isMemberOf ... 27
isNil ... 40, 62
isSequenceable .. 62
,WHUDWLRQ.. 70
keyboardPressed 110
Keyword.. 30
/DXQFKHU... 44
Literals .. 114
ln .. 67
logarithms ... 67
Magnitude... 62
max .. 63
PHVVDJH�SURWRFRO 43
messageNotUnderstoodSignal 41
0HVVDJHV .. 13, 14, 30
0HWKRG�DUJXPHQWV...................................... 32
0HWKRG�/RRNXS.. 30
0HWKRGV ... 13, 30
min .. 63
Model .. 97, 101
newDay ... 68
next.. 82
nextNumber ... 84
nextPut... 82, 84
nextPutAll ... 83, 85
nextString ... 84
nil .. 40, 114
notify ... 41
notNil ... 40, 62
now .. 68
2EMHFW ... 7
Operators.. 114
or .. 34
peek.. 83
perform... 39
3RO\PRUSKLVP.. 21
position .. 83
3RVLWLRQDEOH�6WUHDPV 83
primitiveFailed 37
printString ... 35, 65
3URFHGXUDO�$SSURDFK 7
quo .. 67
readFrom .. 66
readFromString .. 29
5HDG6WUHDPV .. 84
redButtonPressed 110
reject ... 71
release... 91
rem ..6HH remainder
remainder ... 67
removeDependent 91
reset ... 83
respondsTo ... 27

respondsToArithmetic62
5HWXUQ�9DOXHV ...33
reverseDo ..70
ScheduledController,108
ScheduledWindow....................................108
select ...71
SelectionView... 98, 105
self .. 35, 114
SequencableCollecetion62
SequenceableCollecetion...................62
shallowCopy ...28
shouldNotImplement...............................37
signal ...41
sin ..67
size ..29
skip ..84
skipwords ..84
6SHFLDOL]DWLRQ ...15
stdin..82
stdout...82
storeString ...65
Streams... 62, 82
subclassResponsibility38
subclassResponsibilitySignal.......41
super..114
6\VWHP�%URZVHU ..47
7HPS�YDULDEOHV...32
TextCollectorView..105
thisContext ...114
Time ..63
timesRepeat ...35
today..68
7UDQVFULSW ...52
Trigonometry ..67
true ..114
True ..34
Truncation...67
Unary ...30
8QGHILQHG2EMHFW..40
update ...91
update:... 91, 101
9DULDEOHV ...32
View ... 97, 105
Virtual Machine ..14
whileFalse..35
whileTrue ..35
WindowSensor ...110
with: do ..71
wordPosition ...84
:RUNVSDFH .. 45, 51
:ULWH6WUHDPV ..84
xor ..34
year ..68

129

yellowButtonPressed 110 Yourself ..29

