
Blocks — Advanced Use 1

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

Blocks – Advanced Use

Blocks are a powerful tool in Smalltalk. Their effective use can improve the readability,
reusability and efficiency of code. However, because most programmers are weaned on
languages with no equivalent, many programmers do not make good use of blocks.

This module includes hints on how to make good use of blocks, and describes some
advanced features.

1. Review of Mechanism
Blocks are instances of class BlockClosure. A block may be evaluated by sending it one of
the messages in Table 1, depending on the number of arguments the block expects. The
corresponding methods are all primitives — hence, sending the wrong message will lead
to an error.

Alternatively, blocks with zero arguments may be sent one of the messages repeat,
whileFalse:, whileFalse, whileTrue: or whileTrue — they in turn rely on the use of the value
message.

2. Variable Scope and Lifetime
In addition to arguments, a block may also have its own temporary variables. It can also
refer to self, and any instance variables of self, and any shared (class, pool or global)
variables accessible in the method in which the block is defined.

The Virtual Machine represents the state of execution as Context objects, one per method
or block in progress. Method activations are represented by MethodContexts, block
activations by BlockContexts. Each context contains a reference to the context from which
it is invoked, the receiver, arguments and temporaries in that context, and the method or
block being executed.

message # arguments

value 0

value: 1

value: value: 2

value: value: value: 3

valueWithArguments: any number
(in an Array)

Table 1: The value messages

Blocks — Advanced Use 2

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

Private variables (such as self, instance variables, temporaries and arguments) are
lexically scoped in Smalltalk1. Therefore, these variables are bound in the context in which
the block is defined (its home context), rather than the context in which the block is
evaluated.

As an example, consider the following methods (assume that they are implemented
in some arbitrary class):

testScope
| t |
t := 42.
self testBlock: [Transcript show: t printString]

testBlock: aBlock
| t |
t := nil.
aBlock value

1. Also known asstatic binding of variables — not to be confused with static/dynamic binding of proce-
dures/methods.

Blocks — Advanced Use 3

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

Evaluating the testScope message will cause 42 to be displayed in the Transcript.
However, if Smalltalk was not a dynamically–scoped language (i.e., statically–scoped), the
Transcript would display nil. See Fig.1.

3. Returning from a Block
It is useful to distinguish between two kinds of blocks:

1. Those that end with a return expression. We will call these continuation blocks
(there is no standard, concise term). For example:

[:x :y | ^x + y]

2. Those not ending in a return expression, which we will call simple blocks.

When a simple block completes evaluation, it returns its value (the result of
evaluating the last message expression in the block) to the method that sent it the value
message (the sender).

When a continuation block completes evaluation it returns its result to the method
that activated its home context.See Fig.2.

Figure 1: Lexical scope of variables

testScope
| t |
t := 42.
self testBlock: [Transcript show:

t printString]

[Transcript show: t printString]

t 42

testBlock: aBlock
| t |
t := nil.
aBlock value

t nil

...foo testScope...

contexts

home sender

sender

sender

sender

methods

Blocks — Advanced Use 4

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en
Thus, a block is always evaluated in the context in which it was defined. This means

that it is possible to attempt to return (using a return expression inside a block, i.e. ‘^’)
from a method which has already returned using some other return expression. This run–
time error condition is trapped by the virtual machine, and an error Notifier displayed.
For example, Fig.3 shows the method returnBlock which we have added (for sake of
brevity) to class Object. This method simply returns a block containing an expression to
return self. Evaluating the expression

Object new returnBlock value

causes an error Notifier to appear (Fig.4).

Ex 1. A simple block can be evaluated many times; a continuation block can be
evaluated at most once. Why? Examples:

| b |
b := [:x | Transcript show: x. x].
b value: 'a'; value: 'b'.
b := [:x | Transcript show: x. ^x].
b value: 'a'; value: 'b'

Figure 2: Continuation blocks

removeSelectorSimply
...methodDict removeKey: selector

ifAbsent: [^self]...

removeKey: aKey ifAbsent: aBlock
^accessLock critical:

[super removeKey: aKey
ifAbsent: aBlock]

[^self]

...
index isNil ifTrue: [^aBlock value]

contexts

home

..val := cls removeSelectorSimply.

methods

sender

Blocks — Advanced Use 5

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en
Ex 2. In Smalltalk you can immediately return from a method using a continuation

block:

Figure 3: An example of a block expression that causes an error

Figure 4: A block cannot be evaluated once its has returned

Blocks — Advanced Use 6

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

exampleAbort
self someTest ifTrue: [^nil].
"rest of method"

However, there is no equivalent mechanism for exiting from a block without
evaluating its last statement. Can you think how to build one?

Here is an example use which may help you to discover a solution:

| val |
val := [:exit || goSoon |

goSoon := Dialog confirm: 'Exit now?'.
goSoon ifTrue: [exit value: 'Bye!'].
Transcript show: 'Thank you for not exiting!'.
'and have a nice day!!!!'] valueWithExit.

Transcript show: val

The idea is that the block is passed an exit object which, when sent the message
value:, causes the block to immediately return, with the value passed to the exit
object. (We will return to this code in the optimization module.)

4. Control Structures
Blocks are already used to implement the basic control structures in Smalltalk such as
ifTrue:ifFalse:, whileTrue:, etc., and can be used to create new control structures. However,
this is one place where it is not a good idea to experiment too wildly:

• The basic control structures are treated specially by the current implementation of
VisualWorks (see Appendix D of the VisualWorks User’s Guide). New looping
control structures will not be so treated, and may be incredibly inefficient (unless
implemented using the existing structures). This may be ameliorated should better
Smalltalk compilers become available, but this seems unlikely in the near future.

• Thankfully, it is better to build control structures that are appropriate to the nature
of the objects being manipulated, and these can usually be constructed using the
basic, efficient mechanisms.

4.1. Example: A case Statement
It is relatively straightforward to create a new control structure similar to the case
statement common in other programming languages. However, it is important to note
that case statements should only be used to switch between different values, not classes. To
create a simple case statement, use a Dictionary to represent the mapping between a value
and the block to be evaluated for that value.

For example, the code below demonstrates how to associate a cursor key
(represented by a Symbol) with a block of code.

Blocks — Advanced Use 7

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

| dictionary sensor |
dictionary := Dictionary new.
dictionary at: #Down put: [Transcript cr; show: 'Down!'].
dictionary at: #Up put: [Transcript cr; show: 'Up!'].
dictionary at: #Left put: [Transcript cr; show: 'Left!'].
dictionary at: #Right put: [Transcript cr; show: 'Right!'].
sensor := ScheduledControllers activeController sensor.
[sensor redButtonPressed]

whileFalse:[sensor keyboardPressed
ifTrue:[| char block |
char := sensor keyboardEvent keyValue.
block := dictionary at: char ifAbsent: [].
block notNil ifTrue:[block value]]]

4.2. Iterators
Perhaps the best, and most powerful use of blocks is in building iterators. Iterators can
provide control structures that are tailored to an object, easy to understand and use, and
that do not violate that object’s encapsulation.

Examples: do:, collect:, reject:, select:, inject:into:, in class Collection; findFirst:, findLast:,
reverseDo: in class SequenceableCollection.

Ex 3. Browse the enumerating methods in Collection and SequenceableCollection.

Ex 4. Write methods allSatisfy: and anySatisfy: in Collection that take a block and return
true (resp. false) if all (resp. if any) elements of the collection, when passed to the
block, evaluate to true. For example:

#(1 2 3 4 5) anySatisfy: [:n | n even]

should return true, while

#(1 2 3 4 5) allSatisfy: [:n | n even]

should return false. Ensure that your method is efficient, and returns
immediately in this case:

(1 to: 100000000) allSatisfy: [:n | n even]

When using iterators, take care not to modify the collection being iterated over; few
(none?) of the system–provided collections can cope with this, and will fail in unexpected
ways.

Something not to do:

aSet do: [:elem |
…aSet remove: elem…]

Proof: Evaluate the following expressions a few times (with different classes instead
of Array, such as Set or Dictionary):

Blocks — Advanced Use 8

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

| set |
set := IdentitySet new.
set addAll: Array allInstances.
set do: [:elem | set remove: elem].
set isEmpty

Ex 5. Can you think of a simple way to modify a collection class so that misuse of
iterators (i.e., when the underlying collection is modified during an iteration) is
automatically detected?

5. Unwind Blocks
There are occasions when it is important to guarantee that a sequence of message
expressions will be evaluated in a method, to undo the consequences of earlier message
expressions in the same method. For example, it is important to close a file if an error
occurs whilst writing to it. Example:

| f |
f := 'foo' asFilename writeStream.
self writeMyContentsOn: f.
f close

If the stack is cut back or the process terminated, the close message will not be sent,
possibly losing data.

VisualWorks provides a mechanism for handling this:

| f |
f := 'foo' asFilename writeStream.
[self writeMyContentsOn: f]

valueNowOrOnUnwindDo: [f close]

The receiver of valueNowOrOnUnwindDo: is a zero–argument block, which is executed
immediately, as if it were sent value. The argument to valueNowOrOnUnwindDo: will be
evaluated after the receiver, even if the stack is cut back or unwound through this method
context (see Fig.5).

It is a good idea to provide an evaluation mechanism that does this automatically,
for example, try

Cursor wait showWhile: [(Delay forSeconds: 5) wait. ^nil]

Then browse Cursor>>showWhile:.

Ex 6. Add a class method

time: aBlock value: valueBlock

to Time that measure the time taken to evaluate aBlock (using the code from
Time millisecondsToRun:), passing the time as an argument to valueBlock.

For example:

Blocks — Advanced Use 9

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en
Time

time: [1000 factorial]
value: [:t | Transcript show: t printString; cr]

should return 100! and print in the Transcript the time it takes to calculate the
factorial. Modify your method to use an unwind block to ensure that the value:
block is executed even if the time: block does a non–local return. For example:

Time
time: [^1000 factorial]
value: [:t | Transcript show: t printString; cr]

It is also sometimes necessary to ensure that a a sequence of message expressions is
evaluated only if an error occurs. In this case, there is a similar message valueOnUnwindDo:
which will only evaluated the argument block if the stack is cut back because of an error,
or if the process is terminated.

The use of these two messages highlights the problems described earlier regarding
the inclusion of return expressions in blocks. For example, when evaluated, the message
expression

Figure 5: Unwinding

[^self fileText]

text
Cursor read showWhile:

[...ifTrue: [^self fileText] ...]

contexts

home

f := file text.

showWhile: aBlock
^aBlock

valueNowOrOnUnwindDo:
[oldcursor show]

methods

Blocks — Advanced Use 10

© Bernard Horan, Laura Hill and Mario Wolczko, 1997. All rights reserved.

Spe
cim

en

^['receiver block'] valueNowOrOnUnwindDo:['unwind block']

returns 'receiver block', as expected. However, the inclusion of a return expression
inside the unwind block will cause an error. Thus, the following expression fails:1

^['receiver block'] valueNowOrOnUnwindDo:[^'unwind block']

1. Note that although it is possible to include a return expression in the receiver block, it is considered bad
style.

	Blocks – Advanced Use
	1. Review of Mechanism
	Table 1: The value messages

	2. Variable Scope and Lifetime
	Figure 1: Lexical scope of variables

	3. Returning from a Block
	1. Those that end with a return expression. We wil...
	2. Those not ending in a return expression, which ...
	Figure 2: Continuation blocks
	Figure 3: An example of a block expression that ca...
	Figure 4: A block cannot be evaluated once its has...
	Ex 1. A simple block can be evaluated many times; ...
	Ex 2. In Smalltalk you can immediately return from...

	4. Control Structures
	4.1. Example: A case Statement
	4.2. Iterators
	Ex 3. Browse the enumerating methods in Collection...
	Ex 4. Write methods allSatisfy: and anySatisfy: in...
	Ex 5. Can you think of a simple way to modify a co...

	5. Unwind Blocks
	Figure 5: Unwinding
	Ex 6. Add a class method

