
Part Number: DS10003002

VisualWorks Advanced Tools

User’s Guide

ParcPlace-Digitalk, Inc., 999 East Arques Avenue, Sunnyvale, CA 94086-4593

Copyright © 1995 by ParcPlace-Digitalk, Inc. All rights reserved.

Part Number: DS10003002

Revision 1.2, October 1995 (Software Release 2.5)

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

ObjectKit, ObjectWorks, ParcBench, ParcPlace, and VisualWorks are trademarks of ParcPlace
Systems, Inc., its subsidiaries, or successors and are registered in the United States and other countries.
DataForms, MethodWorks, ObjectLens, ObjectSupport, ParcPlace Smalltalk, Visual Data Modeler,
VisualWorks Advanced Tools, VisualWorks Business Graphics, VisualWorks Database Connect,
VisualWorks DLL and C Connect, and VisualWorks ReportWriter are trademarks of ParcPlace
Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or distributed
except in accordance with the terms of said license. No class names, hierarchies, or protocols may be
copied for implementation in other systems.

This manual set and online system documentation copyright © 1995 by ParcPlace-Digitalk, Inc. All
rights reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior written consent from ParcPlace-Digitalk.

Contents

About This Book v
Audience v
Organization v
Conventions vi
Additional Sources of Information ix
Obtaining Technical Support xi

Chapter 1 Profiling Time and Memory Usage 13
Creating an Object Allocation Profiler 13
Profiling a Block of Code 14
Analyzing the Object Allocation Profile 16
Overview of the Code 21

Chapter 2 Class Reports 23
Overview 23
Creating Class Reports 23
Locating Coding Errors 26
Estimating Memory Requirements 30
Documenting Your Code 31

Chapter 3 Full Protocol Browser 33
Creating a Full Browser 33
Displaying the Full Protocol of a Class 35
Filtering Messages by Class 35
Searching within the Hierarchy 36

Chapter 4 Parser Compiler 39
Overview 39
Scanning Source Code 40
Parsing 40
Creating your Own Compiler 50
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 iii

Contents
Chapter 5 Enhanced Numbers 53
Complex Numbers 53
Metanumbers 54

Chapter 6 Terminal Emulator 59
Creating a Free-Standing Emulator 59
Putting an Emulator in Your Application 62

Chapter 7 Project Browser 63
Opening a Project Browser 63
Entering a Project 65
Inspecting a Change Set 66
Exploring a Window’s Structure 66
Overview of the Code 67

Chapter 8 Benchmarks 69
Using the Benchmark Interface 69
Creating a Benchmark Subclass 75
Introduction 79

Index 83
iv VisualWorks Advanced Tools User’s Guide, Rev. 1.2

orks
e

 order

 and
se

duct
ram-

orks

 order

 the
es a

 and
se
About This Book

This user guide describes the tools and reusable code provided in the VisualW
Advanced Tools™. Each of the remaining chapters deals with one of the cod
modules in the kit. The code modules are independent of one another, so the
in which they are discussed is arbitrary.

For information about installing this product, features specific to this release,
limitations, see the VisualWorks Advanced Tools Installation Guide and Relea
Notes.

Audience

This manual is intended for users of VisualWorks Advanced Tools. As the pro
name suggests, it is assumed that you are familiar with object-oriented prog
ming concepts in general and VisualWorks in particular.

Organization

This user guide describes the tools and reusable code provided in the VisualW
Advanced Tools. Each of the remaining chapters deals with one of the code
modules in the kit. The code modules are independent of one another, so the
in which they are discussed is arbitrary.

Appendix A lists the disk files containing the code modules. It also describes
contents of the disk files in terms of classes and class categories and provid
cross-reference to the appropriate chapters in this guide.

For information about installing this product, features specific to this release,
limitations, see the VisualWorks Advanced Tools Installation Guide and Relea
Notes.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 v

About This Book

rms,
era-

hips:

+,
s

ls
-

lso
e
Conventions

This section describes the notational conventions used to identify technical te
computer-language constructs, mouse buttons, and mouse and keyboard op
tions.

Typographic Conventions

This book uses the following fonts to designate special terms:

Special Symbols

This book uses the following symbols to designate certain items or relations

Example Description

template Indicates new terms where they are defined, emphasized
words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and other C+
UNIX, or DOS constructs to be entered outside VisualWork
Advanced Tools (for example, at a command line).

filename .xwd Indicates a variable element for which you must substitute
a value.

windowSpec Indicates Smalltalk constructs; it also indicates any other
information that you enter through the VisualWorks
Advanced Tools graphical user interface.

Edit menu Indicates VisualWorks Advanced Tools user-interface labe
for menu names, dialog-box fields, and buttons; it also indi
cates emphasis in Smalltalk code samples.

Examples Description

File?New command Indicates the name of an item on a menu.

<Return> key
<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse button; it a
indicates the pop-up menu that is displayed by pressing th
mouse button of the same name.

<Control>-<g> Indicates two keys that must be pressed simultaneously.

<Escape> <c> Indicates two keys that must be pressed sequentially.
vi VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Conventions

f
lt
the

n
wo-
on

and

ta.

-

Screen Conventions

This tutorial contains a number of sample screens that illustrate the results o
various tasks. The windows in these sample screens are shown in the defau
Smalltalk look, rather than the look of any particular platform. Consequently,
windows on your screen will differ slightly from those in the sample screens.

Mouse Buttons

Many hardware configurations supported by VisualWorks have a three-butto
mouse, but a one-button mouse is the standard for Macintosh users, and a t
button mouse is common for OS/2 and Windows users. To avoid the confusi
that would result from referring to <Left>, <Middle>, and <Right> mouse
buttons, this book instead employs the logical names <Select>, <Operate>,
<Window>.

The mouse buttons perform the following interactions:

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Caution: Indicates information that, if ignored, could cause loss of da

Warning: Indicates information that, if ignored, could damage the sys
tem.

<Select> button Select (or choose) a window location or a menu item,
position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are appropriate for
the current view or selection. The menu that is displayed
is referred to as the <Operate> menu.

<Window> button Bring up the menu of actions that can be performed on
any VisualWorks Advanced Tools window (except dia-
logs), such as move and close . The menu that is dis-
played is referred to as the <Window> menu.

Examples Description
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 vii

About This Book

lect>

u
Three-Button Mouse

VisualWorks uses the three-button mouse as the default:

n The left button is the <Select> button.

n The middle button is the <Operate> button.

n The right button is the <Window> button.

Two-Button Mouse

On a two-button mouse:

n The left button is the <Select> button.

n The right button is the <Operate> button.

n To access the <Window> menu, you press the <Control> key and the
<Operate> button together.

One-Button Mouse

On a one-button mouse:

n The unmodified button is the <Select> button.

n To access the <Operate> menu, you press the <Option> key and the <Se
button together.

n To access the <Window> menu, you press the <Command> key and the
<Select> button together.

Mouse Operations

The following table explains the terminology used to describe actions that yo
perform with mouse buttons.

When you see: Do this:

click Press and release the <Select> mouse button.

double-click Press and release the <Select> mouse button twice with-
out moving the pointer.
viii VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Additional Sources of Information

l-

the

re

t

ss

ing

Additional Sources of Information

Printed Documentation

In addition to this tutorial, the core VisualWorks documentation includes the
following documents:

n Installation Guide: Provides instructions for the installation and testing of
VisualWorks on your combination of hardware and operating system.

n Release Notes: Describes the new features of the current release of Visua
Works.

n Tutorial: Introduces the VisualWorks tools, class library, and approach to
application design. It also introduces basic object-oriented concepts and
Smalltalk language.

n Cookbook: Provides step-by-step instructions for performing hundreds of
common VisualWorks tasks.

n User’s Guide: Provides an overview of object-oriented programming, a
description of the Smalltalk programming language, a VisualWorks tools
reference, and a description of various reusable software modules that a
available in VisualWorks.

n International User’s Guide: Describes the VisualWorks facilities that suppor
the creation of nonEnglish and cross-cultural applications.

n Object Reference: Provides detailed information about the VisualWorks cla
library.

The documentation for the VisualWorks database tools consists of the follow
documents:

n VisualWorks’ Database Tools Tutorial and Cookbook: Introduces the process
and tools for creating applications that access relational databases. The

<Shift>-click While holding down the <Shift> key, press and release
the <Select> mouse button.

<Control>-click While holding down the <Control> key, press and
release the <Select> mouse button.

<Meta>-click While holding down the <Meta> or <Alt> key, press and
release the <Select> mouse button.

When you see: Do this:
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 ix

About This Book

s

ta-

.
s,

t

ou
es
ddi-
rt

pared
“Cookbook” chapter describes how to programmatically customize variou
aspects of a database application.

n Database Connect User’s Guide: Provides information about the external
database interface. Versions of it exist for Oracle7, SYBASE, and DB2 da
bases.

Online Documentation

To display the online documentation browser, open the Help pull-down menu
from the VisualWorks main menu bar and select Open Online Documenta-
tion . Your choice of online books includes:

n Database Cookbook: Online version of the “Cookbook” part of the Visual-
Works’ Database Tools Tutorial and Cookbook described above.

n Database Quick Start Guides: Describes how to build database applications
It covers such topics as data models, single- and multiwindow application
and reusable data forms.

n International User’s Guide: Online version of the International User’s Guide
described above.

n VisualWorks Cookbook: Online version of the Cookbook described above.

n VisualWorks DLL and C Connect Reference: Describes C data classes, objec
engine access functions, and user-primitive functions.

Obtaining Technical Support

If, after reading the documentation, you find that you need additional help, y
can contact ParcPlace-Digitalk Technical Support. ParcPlace-Digitalk provid
all customers with help on product installation. ParcPlace-Digitalk provides a
tional technical support to customers who have purchased the ObjectSuppo
package. VisualWorks distributors often provide similar services.

Before Contacting Technical Support

When you need to contact a technical support representative, please be pre
to provide the following information:

n The version id, which indicates the version of the product you are using.
Choose Help?About VisualWorks in the VisualWorks main window. The
version number can be found in the resulting dialog under Version Id: .

n Any modifications (patch files) distributed by ParcPlace-Digitalk that you
have imported into the standard image. Choose Help?About VisualWorks
x VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Obtaining Technical Support

text

nic

talk

 is
in the VisualWorks main window. All installed patches can be found in the
resulting dialog under Patches: .

n The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste the
into a file that you can send to technical support.

How to Contact Technical Support

ParcPlace-Digitalk Technical Support provides assistance by:

n Electronic mail

n Electronic bulletin boards

n World Wide Web

n Telephone and fax

Electronic Mail

To get technical assistance on the VisualWorks line of products, send electro
mail to support-vw@parcplace.com .

Electronic Bulletin Boards

Information is available at any time through the electronic bulletin board
CompuServe. If you have a CompuServe account, enter the ParcPlace-Digi
forum by typing
go ppdforum at the prompt.

World Wide Web

In addition to product and company information, technical support information
available via the World Wide Web:

1. In your Web browser, open this location (URL):

http://www.parcplace.com

2. Click the link labeled “Tech Support.”

Telephone and Fax

Within North America, you can:

n Call ParcPlace-Digitalk Technical Support at 408-773-7474 or 800-727-
2555.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 xi

About This Book

m.,

c-
ical
n Send questions and information via fax at 408-481-9096.

Operating hours are Monday through Thursday from 6:00 a.m. to 5:00 p.
and Friday from 6:00 a.m. to 2:00 p.m., Pacific time.

Outside North America, you must contact the local authorized reseller of Par
Place-Digitalk products to find out the telephone numbers and hours for techn
support.
xii VisualWorks Advanced Tools User’s Guide, Rev. 1.2

e
 for

ed

,

 a
 the

further
Chapter 1

Profiling Time and Memory Usage

The Time Profiler helps you locate portions of your code that consume undu
amounts of processing time. The Allocation Profiler performs a similar service
memory usage.

The user interface is very similar for both profilers, so they are often discuss
generically in this chapter—“profiler” refers to both equally.

Creating an Object Allocation Profiler

To open a Time Profiler, select Profiles in the Advanced Programming Launcher
then select time in the submenu. To open an Allocation Profiler, select alloca-
tions in the submenu. A profiler window contains the following components:
code view for entering the code to be analyzed, a slider control for adjusting
sample size and, in the Allocation Profiler only, a space statistics button to
extend the coverage of the analysis. Each of these components is discussed
below.

Figure 1-1 The parts of a profiler

button

slider

code view
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 13

Chapter 1 Profiling Time and Memory Usage

n the

e you

t it
y’s

ayed
t

g
cess

val

or of
 size

s

g the
ro-

to be
very
te

il the
e (for
 the
Profiling a Block of Code

To create a profile of time or memory usage, enter the Smalltalk expressions i
code view of the profiler encased in a self profile: [] expression (an example is
provided as a template when you open a new profiler). For example, suppos
wanted to find out what proportion of the memory allocated by the following
expression was allocated by the Date method:

self profile: [Transcript show: Date today printString]

Enter the expression in the code view of an Allocation Profiler, then highligh
and select do it in the <Operate> menu. After the expression is executed (toda
date is printed in the System Transcript), the results of the analysis are displ
in a new window. For an explanation of the report, see “Analyzing the Objec
Allocation Profile” on page 15.

In the Allocation Profiler, click on the space statistics check box to include a
summary of object/byte allocations by class. This summary is described on
page 21.

Optimizing the Sample Size

A profiler typically provides only an approximation of the time or memory bein
used by each method that is called. It does so, in effect, by monitoring the pro
at a regular interval, called the sampling interval. For example, if a babysitter
checks in on children playing in their room every half hour, the sampling inter
is 30 minutes.

At each 30 minute check point, the babysitter has to assume that the behavi
the moment has been going on for the past half hour. By reducing the sample
to 15 minutes, the babysitter will get a more accurate picture of the children’
activities, though it will cost more time and effort.

The sample size can affect the accuracy of the results dramatically. Reducin
sample size improves the accuracy, but may slow down the profiling run disp
portionately. Setting the sample size to zero, for example, causes the profile
updated after each indivisible chunk of time or memory is used, which can be
time-consuming. In most situations, the default sample size provides adequa
accuracy without slowing things down unnecessarily.

To reduce the sample size (for brief processes), move the slider to the left unt
desired numerical size is shown below the slider. To increase the sample siz
time- or memory-intensive processes), move the slider to the right. (To move
14 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Analyzing the Object Allocation Profile

n the

 is so
nap-
allo-
cess

t the
sion

re
. In

s the

w
slider, place the cursor on the dark bar, press and hold the <Select> button o
mouse, then move the mouse to position the slider.)

Figure 1-2 Speed versus accuracy trade-off when adjusting the sample size

In the example used above, printing today’s date in the transcript, the process
light in its memory usage that the default sampling interval of 1024 bytes is i
propriate. The process is only monitored a few times, resulting in misleading
cation statistics. The obvious solution is to reduce the sample size so the pro
is checked more frequently.

An alternative technique is to leave the sample size at the default, but repea
process many times. We can accomplish this by entering the following expres
in the code view of the profiler:

self profile: [100 timesRepeat: [Transcript show: Date today printString]]

This approach often gives superior accuracy because the odds of one or mo
checkpoints occurring in a low-consumption part of the process are improved
our example, it turns out that the Date today part of the process only allocates
about 3 percent of the bytes, so in a single pass it would be overlooked unles
sample size was very small.

Analyzing the Object Allocation Profile

After the process that you are profiling has finished executing, the profile is
displayed in a profile window having the following components:

n A record of the sampling parameters.

n A slider for changing the cutoff percentage and a button for applying a ne
percentage.

Large sampling

Small sampling

(speed)

(accuracy)
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 15

Chapter 1 Profiling Time and Memory Usage

out

al
his
er-

 the
n A text view for displaying the statistics.

n A totals switch and a tree switch for selecting the type of statistics to be
displayed in the text view; and, in an allocation profile for which the space
statistics check box was turned on, a third switch labeled space usage
for displaying those statistics.

Figure 1-3 The structure of a profile window

Each of these components is discussed further below.

At the top of the profile window, a set of statistics display useful information ab
the profiling run, which include:

n Number of samples

n Sample size

n Total bytes consumed (allocation profile)

n Total milliseconds consumed, in both elapsed and processor time (time
profile).

This information is useful in judging whether a change in the sampling interv
will prove fruitful—because relatively few samples were taken, for example. T
information also serves to label the profile, distinguishing it from profiles gen
ated by other sampling runs on the same code.

Tree Report

When the tree switch is selected, the text view displays a listing of consuming
methods that were called during the process. This listing is useful for locating

slider

switches

switches
16 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Analyzing the Object Allocation Profile

erit

 of
 is

e or
umed
ct:

ider
 of

ition

d

show
places in your code that consume the most time or memory, and therefore m
your optimizing attention.

Each method selector is preceded by a number representing the percentage
system resource (bytes or milliseconds) consumed by that method. The tree
displayed in the form of an indented list—each method is indented under its
calling method.

Adjusting the Cutoff Percentage

Only those methods that consumed more than a threshold percentage of tim
memory are shown. The default is 2 percent, meaning any method that cons
less than 2 percent of the time or memory is excluded from the listing. In effe
“If it’s smaller than this, don’t bother me with it.”

Figure 1-4 The slider and button used to change cutoff percentage

To get finer detail in the profile, reduce the cutoff percentage by moving the sl
to the left. To restrict the profile to the methods that consumed larger chunks
time or memory, move the slider to the right. After you have changed the pos
of the slider, apply the new cutoff by clicking on the apply cutoff button.

Contracting and Expanding the List

Another means of making the list more manageable in size is to temporarily
remove selected subhierarchies from the display. To do so, select the metho
above an unwanted subhierarchy and then use the contract fully command. The
selected method redisplays in boldface, indicating that it can be expanded to
more detail; its called methods will be eliminated from the display.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 17

Chapter 1 Profiling Time and Memory Usage

>

 then

 the
.

f the
Figure 1-5 A profile entry contracted and expanded

To restore detail under a contracted method, use either expand (for a single level
of called methods) or expand fully (for the entire subhierarchy) in the <Operate
menu.

Spawning a Method Browser

To examine the body of a method in the tree, select the desired method and
use spawn in the <Operate> menu. A method browser will be opened in a
separate window. Besides the selected method, which is listed in boldface in
new window, the browser will list parent and child methods when appropriate

Figure 1-6 A Method Browser on the selected method and its neighbors

While the browser offers most of the features of a code view, including text
editing, you cannot recompile an edited method (via accept) in this window
because that could cause confusion about the state of the code at the time o
profile.

You can also browse senders of the selected message, implementors of the
method, and implementors of messages contained in the selected method.
These operations are the same as in the System Browser.
18 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Analyzing the Object Allocation Profile

tal
urce

you
es to

se the

he
ts are

-
ses.
Totals Report

When the totals switch is selected, the text view displays a list of the fundamen
object-creating methods that were called, with the percentage of system reso
consumed by each.

Figure 1-7 A sample “totals” report

For example, a process that deals with graphics might make many calls to thex:y:
method in the Point class. That activity would be summarized here. If you felt
Point was taking an inordinate amount of time or memory to get the job done,
might investigate alternative coding paths that would generate fewer messag
Point.

To open a code browser on a selected method and its surrounding contexts, u
spawn command as described above.

Space Usage Report

When the space usage switch (only available in an allocation profile) is
selected, the text view displays a list of object types that were created—
technically, a list of classes that were instantiated. For each, the number of
instances is indicated along with the cumulative memory usage (in bytes). T
cutoff percentage has no effect on this report—all classes that allocated objec
listed.

This report differs from the totals report in two important ways. First, it summa
rizes the activity by class rather than by object-allocating methods within clas
For example, Point>>asPoint and Point>>+ might be listed separately in the
totals report but they are subsumed under a single entry for Point in the space
usage report.

Second, space usage shows the number of instances and the amount of memory
used, while total shows a percentage of allocated memory.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 19

Chapter 1 Profiling Time and Memory Usage

is

on-

 can

g
Figure 1-8 A sample “space usage” report

An allocation summary is provided at the bottom of the space usage report,
which shows a count of total objects and the average size of each object. Th
information is broken down by byte-type and pointer-type objects.

Overview of the Code

The following classes provide the kernel of profiler functionality:

n Profiler and its subclasses, TimeProfiler and AllocationProfiler

n MessageTally, a subclass of Magnitude

n ProfilerListHolder, a subclass of ValueHolder

n ProfileOutlineBrowser, a subclass of OutlineBrowser

In early releases of VisualWorks, the MessageTally class provided time-profiling
behavior in addition to its current reduced role. The profiling part of its functi
ality has been factored into Profiler, which provides more general support for
assessing usage of an arbitrary system resource. The two subclasses, TimeProfiler
and AllocationProfiler, specialize that spying ability for specific resources.

This architecture aligns with the fundamental notion that any system resource
be metered with the sampling apparatus provided by Profiler and the storage
mechanism provided by MessageTally. For example, you could construct new
subclasses of Profiler to measure disk seeks.

The newly trimmed-down version of MessageTally represents a single node in
the tree-like hierarchy of message-sends that occur during the process bein
20 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Overview of the Code

od

nted

-
ach
lace,
ge in

 add,

g
th the
ime
e

nced
profiled. When the profiler stops the running process to take a sample, a Messag-
eTally is created for the method that is currently executing (unless that meth
was already tallied in the previous sample, in which case its tally is simply
updated). Then instances of MessageTally are created and/or updated for the
calling methods.

Each MessageTally remembers its place in the calling tree by holding onto its
caller and its callees. This permits the report generator to construct the inde
list known as the tree report.

Allocation Profiler’s Wrapped Methods

While TimeProfiler enforces its sampling interval straightforwardly, by moni-
toring the system clock, AllocationProfiler requires a more complicated mecha
nism. It maintains a list of primitive methods that allocate space for objects. E
time one of these methods is called, the original method is renamed. In its p
a “wrapped” version is substituted. This new version meters the memory usa
addition to performing its original function. At the end of the profiling run, Allo-
cationProfiler restores all such wrapped methods to their original state.

AllocationProfiler assembles its list of allocating primitives during initialization
of the class. The list and the resulting cache can become out of date when you
delete or change a primitive method. Before using AllocationProfiler after you
have filed in or otherwise recompiled code containing primitive calls, execute
AllocationProfiler initialize.

Time and Space Overhead

The profilers impose relatively minor time and space overhead on the runnin
process. Time overhead depends on the sampling frequency you choose—wi
default of 16 milliseconds, the process will take roughly 50-70 percent more t
than in its unmonitored condition. Memory overhead varies depending on th
nature of the code.

The classes described in this chapter are useful in applications requiring adva
mathematical constructs such as complex numbers and infinity.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 21

Chapter 1 Profiling Time and Memory Usage
22 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

-
e in

e

ided

ions
Chapter 2

Class Reports

Overview

The Class Reports tool performs a variety of automated checks on specified
classes and helps you:

n Repair common coding errors.

n Estimate memory requirements of your application.

n Document your code.

Class Reports is a specific tool that is built on top of a set of general system
analysis capabilities. Those system-analysis facilities could well be put to us
other ways as well.

Creating Class Reports

To open a Class Reports window, select Class Reports in the Advanced
Programming Launcher.

The Class Reports window contains the following components for defining th
contents of the report:

n A Class Patterns view for roughly defining the classes to be checked.

n A Class List view for selecting individual target classes.

n Three switches for choosing a type of report.

n Depending on the type of report selected, two extra switches may be prov
for choosing the output destination.

n Depending on the type of report and the output destination, additional opt
may be provided.

n A button labeled run for launching a scan-and-report sequence.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 23

Chapter 2 Class Reports

 Keep
e a

re
y
rate

r
Figure 2-1 Initial display of a Class Report window

Selecting the Target Classes

You can generate a report for a single class, all classes or any list of classes.
in mind as you assemble your list that the amount of time required to produc
report increases with each added class.

Use the Class Patterns view to make a rough cut at the list. Enter one or mo
wildcard patterns, one per line. Each such entry can contain a class categor
component and/or a class component. If both components are present, sepa
them with a greater-than symbol (>). Then choose accept in the <operate> menu
to display all classes matching those criteria in the Class List view. Wildcard
patterns are not case sensitive; an asterisk (*) stands for any string, and a numbe
sign (#) stands for any single character. You can also use the paste command to
insert a list of patterns that you use frequently.
24 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Creating Class Reports

hem

 the

Figure 2-2 Using a wildcard pattern to define a work list of classes

The following examples are all valid class patterns:

Then, in the Class List view, click on the desired class or classes to highlight t
for inclusion in the report. Use the add all command in the <operate> menu to
select all of the classes in the list at once; use clear all to deselect all of them. To
select a range of classes, hold down the <Shift> key while dragging through

Table 2-1 Valid class patterns

Tools* Classes in categories beginning with ‘Tools’

tools* Same as above

Tools-Misc>* Classes in the Tools-Misc category

Tools*>Changes* Classes beginning with ‘Changes’ in categories beginning with
‘Tools’

Changes* Classes beginning with ‘Changes’

ChangesList The class name ChangeList

Classes
beginning with
with ‘Change’

Categories
beginning
with ‘Tools’
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 25

Chapter 2 Class Reports

l> key

ear,

 for

 imple-
riate-
f

t least

eme

ols
.

y the
if
if the

desired class names; to deselect a range of classes, hold down the <Contro
while dragging.

Locating Coding Errors

To scan the selected classes for coding errors, select the Correctness switch in
the upper left corner of the Class Reports window. Two new switches will app
labeled Report and Browse . When the Report switch is selected, ten report
options are displayed. Each option has a check box, and you can check any
number of them to build up the desired report. When the Browse switch is
selected, eight of the options are offered—the other two are only appropriate
report output.

Class Report Options

Messages Sent but Not Implemented

Each method in the class is checked to make sure that every message sent is
mented somewhere in the system. No attempt is made to assure the approp
ness of the implementor. For example, a self grok message is acceptable even i
grok’s implementor is not in the target class or its superclass hierarchy.

Methods that send an unimplemented message are reported or, in Browse mode,
listed in a browser for examination and possible correction.

Messages Implemented but Not Sent

Each method in the class is checked to make sure that its selector is sent by a
one calling method.

Defining what it means for a message to be “sent” is problematic. As an extr
example, one could have code that says self perform: (a,b) asSymbol, where a
and b are variables that hold 'foo' and 'bar', respectively. This code, then, sends
the message foobar, but no practical analyzer can figure this out. So system to
have to take a particular stand as to what it means for a message to be sent

In the case of this facility, the stance taken is exactly the same as that taken b
senders and messages facilities in the System Browser: a message is sent
some compiled code has the message selector as a literal. It will be a literal
selector is used in code (e.g., self foobar), or if the symbol exists in literal form
(e.g., self perform: #foobar). It will not be a literal if the symbol is part of an
array literal (e.g., self perform: #(#foobar) first). (The exception to this rule is a
26 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Locating Coding Errors

lways

 are
ourse,

e but
he

use the
orts
, so the

t
”

ferent

of
nflict

 also
set of special selectors known by the compiler classes. These selectors are a
considered to be sent, even if they do not appear as literals anywhere.)

As a result, the facility may falsely report that some implemented messages
not sent, so the report should be used as a guide. The above example is, of c
poor programming style.

However, there is at least one widely-used idiom that is considered good styl
still fails the current test, and that is the use of arrays to hold menu values. T
message for creating a menu is:

PopUpMenu
label: ...
values: #(#msg1 #msg2 ...)

These messages are performed by the code, so they are sent. However, beca
selectors are stored in literal arrays, they will not be perceived by Class Rep
as having been sent. Often, such messages are not sent from any other code
facility will incorrectly report them as “implemented but not sent.”

This test could, of course, be extended to include literal arrays. However, tha
would be inconsistent with System Browser behavior, which reports “Nobody
for senders of such menu messages.

Methods that are not sent are reported or, in Browse mode, listed in a browser for
examination.

Method Consistency

When two messages sent to the same instance or class variable assume dif
object types, a conflict is reported.

Similarly, when a temporary variable is used to hold two very different kinds
objects (considered bad form) and thus is sent incompatible messages, a co
is reported.

The current value of each class variable, pool variable and global variable is
tested to be sure its class implements the messages that are sent to it.

Finally, an inconsistency is reported when a message is sent to self that is not
understood by the self object.

When inconsistent methods are found, they are reported or, in Browse mode,
listed in a browser.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 27

Chapter 2 Class Reports

ation

 cases,

used.

ne

s,

”.

g
y a

ibed

imilar
Subclass Responsibilities Not Implemented

Each method that consists of a self subclassResponsibility message motivates
a check of each leaf subclass to make sure it owns or inherits a reimplement
of that message.

Note that abstract subclasses need not implement these messages—in such
the report will falsely report errors, so use the report as a guide.

Offending methods are reported or, in Browse mode, listed in a browser.

Undeclared References

Each method in the class is checked to verify that no undeclared literals are
Offending methods are reported or, in Browse mode, listed in a browser.

Instance Variables Not Referenced

Each instance variable is checked to make sure it is referenced by at least o
method. Unreferenced variables are reported; this option is not available in
Browse mode.

Check Comment

The class comment is checked to make sure it mentions all instance variable
class variables and class instance variables that are in the class definition.

The comment is expected to follow a particular syntax:

n Any amount of plain text followed by a line that says “Instance Variables:

n After that line, there should be a line for each instance variable, containin
the variable’s name followed by one or more spaces and tabs, followed b
“type” specification in angle brackets, followed by one or more tabs and
spaces, followed by text describing the variable.

n If the class has indexed instance variables, include another line as descr
above, substituting “(indexed instance variables)” for the variable name.

The type specification is typically one or more class names, or nil, separated by
vertical bars. In place of class name, you can also use "ClassName of: Other-
ClassName", for example "Array of: Boolean". The syntax allows more
complicated descriptions; for more information, see the method comments in
Parser>>typeExpression and Parser>>simpleType.

If the class defines any class variables, the comment should have a section s
to the instance variable section. The heading line is expected to say "Class Vari-
ables:".
28 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Locating Coding Errors

ars to
uide.

rors.

nted
 of

bject

he

ly) in a

big-

ine
r your

ss
).
Finally, if the class has messages defined as self subclassResponsibility, these
messages should be listed in a section with "Subclasses must implement the
following messages:" as its heading.

The parsing of class comments is somewhat rigid and sometimes what appe
be a valid comment will generate errors in this report, so use the report as a g
For example, if a type description does not fit on one line, or if the variable
description does not start on the same line, the facility will report these as er

For instance variables, the facility performs a protocol test:

n All messages sent to each instance variable are verified as being impleme
for the named class (or, if more than one class is named, for at least one
them).

n If the class has existing instances, each variable is expected to hold an o
of the named type.

n For each class variable, the current value is expected to be an object of t
named type.

This option is not available in Browse mode. If a comment contains the words
UNDER DEVELOPMENT (in capital letters), that fact is reported and no
checking takes place for that class.

Backward Compatibility Message Sends

The methods are checked to see whether they send messages that exist (on
backward compatibility protocol.

Indefinite Backward Compatibility Message Sends

Similar to the preceding option, but the checker only pays attention to the am
uous case, when a message send exists in both a backward compatibility
category and another category. In this situation, static analysis cannot determ
whether the message send is inappropriate, so it is reported as a candidate fo
further investigation.

Backward Compatibility Class References

The methods are checked to see whether they refer to a class that is in a cla
category that contains the string ‘backward compat’ (without case sensitivity
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 29

Chapter 2 Class Reports

ct the
ew
ated

r of
niza-

r
such

n

ore

al

g
al
Estimating Memory Requirements

To receive an estimate of the memory requirements of the target classes, sele
Space switch in the upper-right portion of the Class Reports window. Three n
switches will appear. Each button provides a different perspective on the estim
memory requirements, as follows:

n Class Size—For each target class, the report shows the estimated numbe
bytes required for the class definition, variables, methods and class orga
tion.

n Method Size—For each method in a target class, the following measure-
ments are reported:

q Code Bytes—the memory occupied by the method’s byte code, the
portable compiled form of the method that is used to create native
machine code.

q Literals —the number of literal pointers created by the compiler to refe
to such things as message selectors, arrays, strings and floats. Each
literal pointer contributes 4 bytes to the total.

q Literal Bytes—the number of bytes required by literal objects other tha
Symbols.

q Full Blocks—the number of full blocks in each method. Full blocks are
blocks that contain out-of-scope references to temps, or nonlocal (^)
returns. Full blocks are nonoptimal because they are slower and use m
dynamic memory. This is only of concern in methods that are used
frequently. For further information about full blocks, see the VisualWorks
User’s Guide.

q Total—the estimated total number of bytes needed by each method,
including overhead (20 bytes) not reported in the other columns. A tot
byte count for all methods is also displayed.

n Instance Size—For each target class, the following measurements are
reported:

q Count—the number of instances that exist.

q TotBytes—the memory, in bytes, occupied by all instances.

q AveByte—the average number of bytes for each instance.

A summary line reports the same measurements for all target classes.

These reports are intended to help you optimize memory usage by identifyin
places in your code where memory usage is disproportionate to the function
contribution of the code.
30 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Documenting Your Code

arget

ow.

nts
s

e

ds

ion.
Documenting Your Code

To create a listing of some or all of the elements that make up the code in the t
classes, select the Manual switch in the upper left portion of the Class Reports
window. Two new switches will appear, labeled Report and Print . When the
Report switch is selected, the documentation is displayed in a separate wind
When Print is selected, the output is sent to a printer instead.

The following check-box options are provided for defining the code compone
to be included in the listing. The options are hierarchic and interconnected, a
follows:

n class definition

q class comment

n include metaclass —include the metaclass definition.

n protocol names —instance protocol names are reported; class protocol
names are included when the include metaclass check-box is selected.

n include private protocols —include any protocol beginning with the
string “private.” Private protocols are made separable in this way becaus
only public protocol is relevant for certain types of manuals.

n methods —list method selectors, including metaclass and private metho
if those check-boxes are selected.

q method comments

q method bodies —including method comments.

Various text emphases are used for the different components of documentat
For example, #italic is used for the class comment.To change one of these
emphases, modify and recompile the appropriate method in the emphases
protocol on the instance side of the ManualWriter class.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 31

Chapter 2 Class Reports
32 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

 has
u to
sage

the

nts

r
Chapter 3

Full Protocol Browser

The Full Protocol Browser is an expanded version of the System Browser. It
all of the capabilities of a standard System Browser. In addition, it enables yo
include superclass and subclass protocol in the message category and mes
views. You can also filter the methods by class.

This hierarchic view of a class’s functionality can be especially helpful under
following circumstances:

n When you are exploring unfamiliar code, because the Full Browser prese
the full behavior set of each class.

n When you are modifying a polymorphic method, because the Full Browse
makes it easy to trace inherited behavior.

Creating a Full Browser

To create a Full Protocol Browser, select Full Browser in the Advanced
Programming Launcher.

Figure 3-1 System Browser compared to Full Protocol Browser

1 2

5

4
3

Switch bank

Class hierarchy view

1 2 3 4

5

System Browser Full Protocol Browser
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 33

Chapter 3 Full Protocol Browser

ition
 are

to
ed in

riate
rom
sage
h

A Full Browser appears much like a standard System Browser, with the add
of a class hierarchy view, as shown in Figure 3-2. In addition, three switches
provided for filtering the browser’s display.

Figure 3-2 A Full Browser, with the ArithmeticValue class selected

The class hierarchy view enables you to filter out parts of the hierarchy and
perform cross-reference searches that are limited to the hierarchy, as describ
later sections.

Displaying the Full Protocol of a Class

As shown in Figure 3-2, selecting a class such as Fraction in the class view causes
the class’s hierarchy to be displayed in the hierarchy view. The current class
displays in boldface type as a visual cue.

All messages and message categories in this hierarchy display in the approp
views. The message category view, also known as the protocol view, differs f
a view in the System Browser in that the entries list alphabetically. In the mes
view, polymorphic messages are repeated unless you filter them out, so eac
method selector can be identified by the class in which it is implemented. In
Figure 3-2, for example, the reciprocal method is listed twice, once for Arithmet-
icValue and again for Fraction. Messages in the current class are displayed in
boldface for visibility.
34 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Filtering Messages by Class

th
es

ed
hold

ed

rol>

 are

hy,
e
ther
ch
By default, the Object class is excluded from the active list so it is displayed wi
a line through it. The following section tells how to include and exclude class
from the list.

Filtering Messages by Class

The hierarchy view enables you to filter unwanted classes from the protocol
views. To exclude a class, click on it in the hierarchy view. It will be redisplay
with a line through it. To exclude multiple classes that are listed in sequence,
down a <Shift> key while dragging through the classes to be excluded.

Figure 3-3 The appearance of included and excluded classes in the hierarchy view

To include a class that was previously excluded, click on it. It will be redisplay
without the line through it.

To include multiple classes that are listed in sequence, hold down the <Cont
key while dragging through the classes to be included.

Use the switches in the switch bank to set up default filtering that suits your
purposes. Two of the switches provide a convenient means of including or
excluding protocol for all superclasses except Object (supers), or all subclasses
(subs). By default, duplicate inherited methods are not shown (because they
overridden by the local method)—to show them, select show inherited dupli-
cates in the hierarchy view’s menu.

The third switch, names , toggles whether the implementing class is identified
after each method selector.

Searching within the Hierarchy

The senders command in the message view’s menu operates as it does in a
System Browser, searching all classes in the system for methods that se

To limit the search to methods implemented by a class in the current hierarc
select senders in hierarchy in the <Operate> menu of the hierarchy view. Not
that all classes in the hierarchy are included in the search, regardless of whe
they are filtered out of the protocol and message listings. This is typically mu

Excluded

Included
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 35

Chapter 3 Full Protocol Browser

mple-

h

use
eci-

’s
er,
ther-

e class

ts the

useful
gory
In
tors as
d in
faster than a search of the entire library, and tends to exclude uninteresting i
mentations. Similar hierarchic counterparts for the implementors and
messages commands are also available in the hierarchy view’s menu.

Figure 3-4 The <Operate> menu of the hierarchy view, used to limit scope of searc

Scoping Rules

The hierarchy view’s menu also offers a find method command, which differs
from the protocol view’s command of the same name in two ways. First, beca
the list of selectors may be very large, you get an opportunity to filter it by sp
fying a wildcard pattern. Second, the implementing class is shown for each
selector, and duplicates are listed in inheritance order.

The scope of the commands in the class view’s menu and the protocol view
menu are limited to a single class, as in a standard System Browser. Howev
when a method selector is highlighted, the commands relate to that class. O
wise, they relate to the class that is highlighted in the class view. (In Full-
Browser ’s code, selectedClass and nonMetaClass refer to the method
view’s class, while currentClass and currentNonMetaClass refer to the
class view’s class.)

For example, suppose you have selected ArithmeticValue in the class view and
then you highlight the denominator (Fraction) entry in the message list view.
When you select the comment command to display the class comment, Frac-
tion’s comment is displayed. To see the comment for ArithmeticValue, select a
message for that class (or no message at all).

To restate this scoping mechanism, the selected message’s class overrides th
view’s class.

There are two exceptions to this rule: the remove and rename as commands in
the message category view. Removing or renaming a message category affec
class that is highlighted in the class view, in all circumstances.

The scope of a message category is extended in a perhaps unexpected but
way in a Full Browser. As you would expect, when you select a message cate
such as comparing, all comparing methods in the filtered hierarchy are listed.
addition, methods in superclasses and subclasses that have the same selec
comparing methods in the current class are included, even if they are locate
36 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Searching within the Hierarchy

rs

g

his
ocols

tem

e the

-

 of
ry
protocols other than comparing. In other words, when the same selector appea
in two different protocols in the hierarchy, Full Browser lists those that could
conceivably be grouped in the current protocol because they match qualifyin
selectors in the current class.

For example, suppose you select the accessing protocol for the Integer class.
Both Integer and its subclass LargePositiveInteger implement a method called
digitLength. The LargePositiveInteger version of digitLength would be
included even if it were housed in a protocol named other than accessing. T
behavior obeys the convention that polymorphic messages are placed in prot
of the same name, while allowing for human error and personal choice in the
enforcement of that convention.

In summary, the changes in the scoping rules compared with a standard Sys
Browser are as follows:

n Class and protocol view commands apply to the class of the selected
message, if any; otherwise, they apply to the current class. Exceptions ar
remove and rename as commands, which always apply to the current
class.

n In the hierarchy view, the find method command applies to the filtered hier
archy while the other commands ignore the filters.

Conflicts in protocol names for polymorphic messages are ignored.The Time
Profiler helps you locate portions of your code that consume undue amounts
processing time. The Allocation Profiler performs a similar service for memo
usage.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 37

Chapter 3 Full Protocol Browser
38 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

he
r

ors,

g

.
enta-

:

g

oints

-
uring
ne
Chapter 4

Parser Compiler

Overview

The parser compiler classes make it easier to write compilers in Smalltalk. T
SQL classes provide an example of an SQL compiler written using the parse
compiler facilities.

A typical compiler handles four functions:

n Scanning—breaking the source code into tokens (words, numbers, operat
etc.).

n Parsing—combining tokens into larger structured units.

n Semantic analysis—verifying that variables have been declared, performin
type checking, etc.

n Code generation—producing a program in machine code or other final form
This may occur in several phases if optimization or more than one repres
tion of the output code is involved.

The parser compiler classes provide the following support for these activities

n Scanning—the Smalltalk Scanner, slightly modified.

n Parsing—This phase is the primary focus of the Parser Compiler, providin
an efficient language for writing your parser.

n Semantic analysis—the Parser Compiler makes it fairly easy to mix in
semantics during parsing. This helps to generate an error message that p
at the right place in the source code.

n Code generation—you’re on your own. The Parser Compiler itself demon
strates one style of code generation: It generates Smalltalk source code d
parsing. The complexity of most languages prevents being able to combi
code generation with parsing.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 39

Chapter 4 Parser Compiler

e

d-of-
lso
 and

If
er to

e one
rules
go-
and
 in a
Scanning Source Code

The scanner defines seven standard types of token:

n word—a variable or unary message selector

n number—integer or floating point

n character

n string

n binary—infix operators such as + and >=

n keyword—a word followed by a colon (see below)

n signedNumber—a number optionally preceded by a minus sign, with no
intervening delimiters

There is an eighth standard token type, keywords, for one or more keywords in
succession with no intervening delimiters. This produces a single token.
Keywords are only recognized specially if your grammar uses the word keyword
or keywords, or if your grammar includes any literal keywords. (This is for th
benefit of grammars that don’t use keywords, but use the colon for other
purposes.)

In addition, the scanner makes assumptions about delimiters (blank, tab, en
line and new-page), which separate tokens but aren’t tokens themselves. It a
assumes that the following characters are tokens on their own: # () | [] . : = ^
;. To change any of these assumptions requires an understanding of the Scanner’s
mechanics—you have to write your own initScanner method that calls super
initScanner and then substitutes the appropriate entries in the typeTable.

Parsing

For the parsing phase, begin by making your parser a subclass of
ExternalLanguageParser—SQLCompiler has been provided as an example.
your source language is method-oriented and you want the output of the pars
be executable CompiledMethods, make your parser a subclass of General-
Parser instead.

This gives your class basic parsing functionality. The parser scans source cod
character at a time and one token at a time. You must then write production
describing the various parts of your language. These rules define parsing al
rithms, which your parser will use to recognize constructs such as functions
clauses in the source code. The syntax of production rules will be described
moment.
40 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Parsing

d as a
ource

nted
ce

such
ate

in

r

-
rious
Each clause or other construct found in the source code must be instantiate
node in a parse tree. For example, when an SQL clause is recognized in the s
code by SQLCompiler, an instance of SQLClause is created. Classes such as
SQLClause typically are subclassed from a more general class such as
SQLNode.

As an example of this node-creation mechanism, the production rule impleme
by SQLCompiler for recognizing an SQL commit statement creates an instan
of SQLStatement as follows:

EmulationBorderDecorationPolicy unInstallcommitStatement =
#COMMIT #WORK

[statement: 'COMMIT WORK']

In this example, the word COMMIT followed by WORK in the source causes
execution of the block. A statement: message is sent to SQLCompiler, and that
method sends an instance creation message to SQLStatement with the
'COMMIT WORK' string as the statement name.

The ultimate output of the parser is an array containing objects such as SQLFunc-
tion, which themselves are often composites of smaller language constructs
as SQLClause. This array represents a parse tree that you can use to gener
code.

As the parse tree is being assembled, it is stored in an OrderedCollection called
stack, held by GeneralParser. This stack responds to collection protocol such
as removeLast, and stack operations are frequently embedded in blocks with
the production rules. For example, the SQLCompiler>>queryTerm rule contains
the following assignment into a temporary variable:

tableExp := stack removeLast.

A Rule has a Name and a Definition

A production rule describes a semantic unit of the language in terms of othe
semantic units combined with literal tokens. It introduces the name of the
semantic unit, followed by =, followed by the definition, which may include refer
ences to other production rules or to literal keywords that are expected at va
points in the source-code.

As an example, the following production rule is taken from SQLCompiler:
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 41

Chapter 4 Parser Compiler

tion
r the

ted

 to

k
ule is

s a

 way

rule,

d

 each
d

rtical
, the
assignment =

column #= (scalarExp | #NULL)

When a production rule is invoked, its definition is used as a template for the
current source code. If the template fits, the rule returns true, triggering crea
of the appropriate node in the parse tree. If the definition doesn’t match, eithe
rule returns false, or an error notification occurs.

Rules are Similar to Methods

It is no accident that a production rule looks like a Smalltalk method. It is crea
just as a Smalltalk method is, by adding it to the instance protocol for your
compiler class (SQLCompiler, in this case). You can use the System Browser
do so, or you can file it in. This is possible because the ParserCompiler’s respon-
sibility is to take production rules and translate them into equivalent Smalltal
code, which is then translated into an executable method. Each production r
translated into a method whose selector is the name of the production rule. A
result:

n You can browse production rules in the same way you browse Smalltalk
methods.

n Production rules can call Smalltalk code, and vice versa.

Temporary Variables Can be Used

A production rule can have temporary variables. These are defined the same
as in Smalltalk, by enclosing the list of names between two vertical bars.

A production rule begins with a method pattern consisting of the name of the
plus names for any arguments. Except for the terminating equal sign (=), the
syntax is identical to that of a Smalltalk method, allowing for unary, binary an
keyword patterns.

A Rule Definition is a Series of Alternatives

The body of a production rule, called its definition, is a series of alternatives, sepa-
rated by vertical bars (|). The parser tries to match the current source code to
alternative in turn. If a given alternative succeeds, the definition succeeds an
returns true. If an alternative fails, the next alternative is tried.

The final alternative in a series can be left empty to return true immediately. If the
series is enclosed in parentheses, the empty alternative is indicated by a ve
bar preceding the closing parenthesis. If the series is the body of the definition

name of the rule

definition
42 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Parsing

defi-

t
erm
rm in

 it

 that
empty alternative is indicated by making a vertical bar the last element of the
nition.

For example:

(a | b) c The next tokens must match either 'a' or 'b', followed by 'c'

(a |) c The next token or tokens must match either 'a' followed by 'c', or
'c' alone

An Alternative is a Series of Terms

An alternative is a series of terms, each alternative optionally preceded by an a
sign (@). Each term is evaluated sequentially against the source code. If a t
succeeds, the parser proceeds to the next term; otherwise it fails. If the last te
the alternative succeeds, the alternative returns true. If the alternative fails,
behavior depends on several factors:

n If the at sign is present, the source code stream is rolled back to the state
was in when the alternative was started, and false is returned.

n If the term that failed was the first in the alternative, false is returned.

n Otherwise, an error notification is returned.

Figure 4-1 summarizes these outcomes in a decision tree showing that action
results when a term is evaluated under various conditions.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 43

Chapter 4 Parser Compiler

Figure 4-1 Summary of the outcomes in a decision tree

Two examples follow:

a b c

Expect to find an a, followed by b and c. If a is not found, proceed to the next
alternative or return false. If b or c is not found, print an error message.

@ a b c

Expect to find an a, followed by b and c. If a, b, and c are not found when
expected, proceed to the next alternative or return false.

Suppose the parser matches a, but fails to match b. For accurate error detection,
the ParserCompiler will not automatically back up on failure, so in this case a
message would appear saying b expected. However, it is possible that if the
source stream were backed up, we might be able to match c d rather than a b.
Therefore, in this case, it is appropriate to write the rule as:

@ a b | c d

Term matches code

Last term in

First term in

@ precedes alternative

^true

Rollback source

BagLast alternative

Y

NY

Y
Y

Y

N
N

N

N

alternative

proceed
alternative

Rollback source
^false

proceed

BagLast alternative

Y N

^false

error

to next
alternative

proceed
to next
alternative
44 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Parsing

ed,

plate

stead
rna-

g

a

. If

ther

Then, if a succeeds but b fails, the parser will back up and try to match c followed
by d.

Another way to think about it is: When the first term in an alternative is match
the parser assumes it has found the correct alternative. If a later term fails to
match, the parser reports an error based on its assumption that the correct tem
was applied unsuccessfully. The at sign removes that assumption so that, in
of generating an error in this situation, the compiler proceeds to the next alte
tive.

A Term is an Action or a Unit-Plus-Qualifier

A term can be an action, or it can be a unit followed by one of the following
symbols:

* * ! + +! \ \! !*

We will discuss the more common type of term first: units and their quantifyin
modifiers.

A Unit is a Word, Terminal or Parenthesized Definition

A unit can be a word, a terminal, or a definition wrapped in parentheses. If it is
word, that word is assumed to be the name of another production rule. Some
examples:

Table 4-1 Word and associated production rule

foo Evaluate the production rule foo on the current source code
it returns false, fail the current alternative, else continue.

word=#ABC If the next token in the source is ABC, push it on the stack and
scan another token, else fail the alternative.

keyword=#ABC: If the next token in the source is ABC:, push it on the stack and
scan another token, else fail the alternative.

$(If the next token is the open parenthesis character, scan ano
token, else fail the alternative. The stack is unaffected.

#ABC If the next token in the source is ABC, scan another token, else
fail the alternative. The stack is unaffected.

#ABC: [keyword
type]

If the next token in the source is ABC:, scan another token, else
fail the alternative. The stack is unaffected.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 45

Chapter 4 Parser Compiler

ith

iable

-

 rule

ck

ts
The following examples illustrate the use of the seven quantifying symbols w
units. In these examples, foo pushes a FooNode onto the stack, while foo2 does
not affect the stack.

A Terminal is a Single Token

A terminal is a single token in the language, such as a number, a string, a var
name or a keyword. In the ParserCompiler, the following terminals are recog-
nized:

n A dollar sign ($) followed by a single character, representing a literal char
acter in the source.

#~= If the next token in the source is ~=, scan another token, else
fail the alternative. The stack is unaffected.

#’<<=’ If the next token in the source is <<=, scan another token, else
fail the alternative. The stack is unaffected.

(...) When parentheses are encountered, the enclosed part of the
is parsed according to the rules for definition on page 42.

Table 4-2 Quantifying symbols

foo * Expect zero or more repetitions of foo. The top value on the sta
will be an Array of FooNodes.

foo *! Expect zero or more repetitions of foo. The top N values on the
stack will be FooNodes, where N is the number of repetitions.

foo + Expect one or more repetitions of foo. The top value on the stack
will be an Array of FooNodes.

foo +! Expect one or more repetitions of foo. The top N values on the
stack will be FooNodes.

foo \ foo2 Expect one or more repetitions of foo, separated by foo2. The top
value on the stack will be an Array of FooNodes.

foo \! foo2 Expect one or more repetitions of foo, separated by foo2. The top
N values on the stack will be FooNodes.

foo !* Expect one occurrence of foo. Assume that foo leaves an Array on
the stack. Pop the Array off the stack and push each of its elemen
onto the stack.

Table 4-1 Word and associated production rule
46 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Parsing

ays
d

ols:
n A number sign (#) followed by:

q A string (any sequence of characters enclosed in single quotes)

q A word (an alphabetic character followed by alphabetic
characters or digits)

q A keyword (a word followed by a colon)

q A binary symbol (anything that represents a legal binary operator in
Smalltalk, such as //, \\, *, ~~ and ~=)

n The sequence word=#someWord, where someWord is a word as defined
above

n The sequence keyword=#someKeyword, where someKeyword is a
keyword as defined above

The difference between #someWord and word=#someWord, is that in the
former case someWord becomes a reserved word in the language and is alw
treated specially. In the latter case, someWord does not become a reserved wor
and is treated specially only when it is preceded by word=.

An Action is a Block or a Special Symbol

An action can be either a Smalltalk block or one of the following special symb

Table 4-3 Action symbols

Symbol Description

< Saves the source position in a local variable (specifically, the temps
instance variable in ParserCompiler). Note that only one source position
per production rule is saved, so if you overwrite it, the old value is lost.

> Assumes that the source position was previously saved via <, and that the
top value on the stack is a parse node. The parse node is sent a sourcePo-
sition:to: message, with the saved position as the first argument and the
current position as the second argument. This implies that your node
classes must implement a sourcePosition:to: message when you use this
symbol in a production rule.

<< Pushes the source position onto the stack.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 47

Chapter 4 Parser Compiler

es.
rs in
ck. If
 the
inue
rk to
value.

 is
nd

 of

sists
ssage,

t

The first four operations are for matching source code positions to parse nod
The last two are for use with Smalltalk blocks. When a Smalltalk block appea
a production rule, the block is evaluated and the result is pushed onto the sta
you are interested in the effect of the block but not the returned value, follow
block with a period to get rid of the unwanted value. To decide whether to cont
parsing after a block has been evaluated, follow the block with a question ma
cause the current alternative to proceed or abort depending on the returned

Two Types of Block Syntax are Allowed

Two distinct syntaxes are accepted for Smalltalk blocks. One form of syntax
identical to that of normal Smalltalk blocks having zero arguments. The seco
form is nonstandard and requires further explanation—it has the advantage
very concise coding, with the disadvantage of very restricted syntax.

Like a normal block, this special block is enclosed in square brackets. It con
of exactly one message—the message can be either a binary or keyword me
but not a unary message. The receiver is specially coded:

n If there is no receiver, the message is sent to the parser itself.

n If the message selector is preceded by a colon (:), the top value is popped off
the stack and used as the receiver.

Each of the arguments is likewise specially coded:

n If there is no argument, or if the argument is a colon (:), the top value is
popped off the stack and used as the argument.

n If the argument is a normal Smalltalk literal (Symbol, String, Number,
Array, ByteArray, Character, or nil, true or false), it is used in the ordinary
way.

>> Assumes that the top value on the stack is a parse node, and that the nex
value is a source position saved by <<. The parse node is sent a sourcePo-
sition: message, with an interval from the saved position to the current
position as the argument. The source position is removed from the stack,
and the parse node remains the top element.

? Pops the top value off the stack. If it is true, proceed, otherwise fail the cur-
rent alternative.

. Pops the top value off the stack and proceed.

Table 4-3 Action symbols

Symbol Description
48 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Creating your Own Compiler

or

elf:

iler
n If the argument is a temporary variable, instance variable, class variable
global variable, it is used in the ordinary way.

For example, the following block sends a copyWith: message to the top value on
the stack, with the second value on the stack as argument:

[:copyWith:]

Note that no argument can be the result of a message send.

Summary of Grammar for Parsing Methods

Here is a simplified version of the grammar for parsing methods, written in its

method = pattern #= temporaries definition

pattern = word | (keyword word)+

temporaries = $| word* $| |d

definition = alternative ($| alternative)*

alternative = ($@ |) term*

term = unit
((#* | #*!)
| (#+ | #+!)
| (#\ | #\!) unit |)

unit = word | character
| $# (word | keyword | binary | string)
| $(definition $)

Creating your Own Compiler

In preparation for writing programs in your new language, first define a comp
class MyLanguageCompiler, then define a dummy class MyLanguage. Define
the following class method for MyLanguage:
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 49

Chapter 4 Parser Compiler

lied.

r
 is a
the

g

nce
 the

 suit
compilerClass

^MyLanguageCompiler

Then any methods defined in class MyLanguage or any of its subclasses will
compile with MyLanguageCompiler rather than the standard Smalltalk
compiler. The example methods in the SQL class are compiled by SQLCompiler
in just this way.

The typical instance creation protocol for a parser takes either a Stream or a
String as input, as well as the name of the top-level production rule to be app
For example:

CParser parse: aStream as: #cFile

The final step in code generation is done by the message generate:. This message
is defined in GeneralParser on the assumption that the output of your compile
(i.e., the single element left on the stack at the end of recognizing a method)
string that is actually a Smalltalk source method, which then gets handed to
Smalltalk compiler.

However, you can override this method in your own compiler to do somethin
different. It should return a selector if the code generation succeeds, or nil if it
fails. In the case of the SQL example, the final object is an Array containing a
parse tree in the form of a hierarchy of nodes. Try the examples on the insta
side of the SQL class, inspecting the results recursively to see the structure of
parse tree.

This object responds to Smalltalk messages and can thus be manipulated to
the next phase of compilation.
50 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Creating your Own Compiler
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 51

Chapter 4 Parser Compiler
52 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

nced

).

g,
 and
Chapter 5

Enhanced Numbers

The classes described in this chapter are useful in applications requiring adva
mathematical constructs such as complex numbers and infinity.

Complex Numbers

An instance of class Complex has two components, a real number such as a Float,
and an imaginary number (a multiple of i, which represents the square root of -1
A Complex number is represented in the following format: (5.5 + 3 i)—white
space inside the parentheses is ignored.

Creating an Instance

An instance can be created by using the literal form shown above, or via the
real:imaginary: method, as in Complex real: 5.5 imaginary: 3. When the real
component is zero, sending the message i to an integer is sufficient, as in 3 i. When
the imaginary component is zero, the shorter fromReal: method can be used. In
summary, the expressions in the left column generate the Complex numbers in the
right column below:

Protocol Summary

Complex numbers support the usual numeric operations, including accessin
arithmetic, mathematical functions, coercion, comparison, conversion, testing

3 i (0 + 3 i)

5.5 + 3 i (5.5 + 3 i)

Complex fromReal: 5.5 (5.5 + 0 i)

Complex real: 5.5 imaginary: 3 (5.5 + 3 i)
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 53

Chapter 5 Enhanced Numbers

ods,
tic
generality. Nonequal comparison, truncation and rounding are not valid with
complex numbers. Additional methods include:

Metanumbers

MetaNumeric Class

Infinity and Infinitesimal are the best examples of metanumbers, which are
impossible but mathematically useful constructs. The MetaNumeric class is an
abstract superclass with four subclasses, as follows:

MetaNumeric
Infinity
Infinitesimal
NotANumber
SomeNumber

The MetaNumeric class provides coercion and conversion support for its
subclasses. Must of this support comes in the form of double dispatching meth
which bring coercion into play when two unlike numbers fail in some arithme
or comparison operation.

Table 5-1 Accessing

r Same as abs, which returns an absolute magnitude. For example, (5.5
+ 3 i) r returns 6.26498.

theta Return the angle between the receiver and the positive real axis, in
radians

Table 5-2 Arithmetic

conjugated Reverse the sign of the imaginary component.

Table 5-3 Converting

asPoint Return a Point with the real component as the x value and the imaginary
component as the y value.

i Multiply the receiver by (-1 sqrt). This message is also understood by
Number after MetaNum.st is filed in.
54 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Metanumbers

nt
y

ers
lass,

 will
f
For example, suppose you execute the following expression:

 2.3 + (Infinity positive)

The Float method for addition doesn’t know how to add infinity to a floating poi
number directly, so it asks the Infinity object to perform the addition. It does so b
evaluating:

(Infinity positive) sumFromFloat: self

The sumFromFloat: method is implemented by MetaNumeric, the abstract
superclass of Infinity. After coercing the floating point number into meta form
(making it an instance of SomeNumber), the superclass hands off to Infinity to
perform the specific addition. All metanumbers need to have non-metanumb
coerced to meta form, so this behavior is performed by their common superc
MetaNumeric.

Infinity Class

Infinity represents a number too large to be represented in any other form. We
use the terms +infinity and -infinity to denote the positive and negative forms o
this number.

It is defined to mean that for any real number x, the following is true:

-infinity < x < +infinity

Creating an Instance of Infinity

The expression Infinity positive creates a positive instance of Infinity, and Infinity
negative creates a negative instance.

Protocol Summary

The usual numeric operations are supported by Infinity, according to the following
rules (where x is any real number):

x + +infinity = +infinity
x - +infinity = -infinity
x * +infinity = +infinity when x > 0
x * -infinity = -infinity when x > 0
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 55

Chapter 5 Enhanced Numbers

nrep-
this

en-

f

s
0 * +infinity = 0
+infinity + +infinity = +infinity
-infinity - +infinity = -infinity
+infinity * (+/-)infinity = (+/-)infinity
-infinity * (+/-)infinity = (-/+)infinity
+infinity - +infinity = undefined value, and an error occurs

Because +infinity is not a single value, but a set of all real numbers that are u
resentably large, it makes no sense to ask whether +infinity = +infinity. Doing
will cause an error.

Infinitesimal Class

infinitesimal is a number so close to zero it cannot be represented as a conv
tional number—it can be thought of as the reciprocal of Infinity.

Creating an Instance of Infinitesimal

Creating an instance of Infinitesimal is done exactly as with Infinity, by executing
an expression such as:

Infinitesimal positive
Infinitesimal negative
Infinitesimal negative: aBoolean

Protocol Summary

We will use the terms +tiny and -tiny to denote the positive and negative forms o
this number.

The usual numeric operations are supported, according to the following rule
(where x is any real number unless otherwise specified):

x + +tiny = x when x ~= 0.
0 + +tiny = +tiny
x * +tiny = +tiny when x > 0
x * -tiny = -tiny when x > 0
0 * +tiny = 0
+tiny + +tiny = +tiny
-tiny - +tiny = -tiny
+tiny * (+/-)tiny = (+/-)tiny
-tiny * (+/-)tiny = (-/+)tiny
56 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Metanumbers

t are
y =

o
her.
a
ue

in:

-
ions.
gener-
It is
+tiny - +tiny = undefined value, and an error occurs
x / +infinity = +tiny when x > 0
x / +tiny = +infinity when x > 0
+tiny * +infinity = undefined value, and an error occurs

Loosely speaking, +tiny is not a single value, but a set of all real numbers tha
unrepresentably small. As with infinity, it makes no sense to ask whether +tin
+tiny.

NotANumber Class

An instance of NotANumber can be used as a placeholder for the result of an
illegal mathematical expression, such as 8 arcSin. Since the behavior of
NotANumber consists of various kinds of error signals of the form “You can’t d
such-and-such with a NaN,” the result is substituting one kind of error for anot
In theory, NotANumber error signals could be trapped by a signal handler at
high level in your application, which could then decide, for example, to contin
with some time-consuming computation, noting the error in a log, rather than
abort because of the error. NotANumber was created for the sake of
completeness—along with Infinity and Infinitesimal, it is defined by IEEE in the
set of floating point numbers.

Creating an Instance of NotANumber

To create an instance, execute NotANumber new.

Protocol Summary

NotANumber implements the common arithmetic and comparison methods,
raising an error signal for each.

The printable form of an instance is “NaN” so error strings use that term, as

'Can''t perform arithmetic functions on NaN'

SomeNumber Class

SomeNumber represents a conventional scalar number coerced into metanu
meric form so it can be used in both conventional and metanumeric computat
Such a number responds to numeric operations as usual, but has the same
ality as other metanumbers and can be used in metanumeric computations.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 57

Chapter 5 Enhanced Numbers

oten-
essentially a support class for the other metanumeric classes so it has little p
tial for reusability.
58 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

,
r
sers

ith

he
Chapter 6

Terminal Emulator

The Terminal Emulator provides a smart terminal for access to shell facilities
external editors, etc., as well as serial-port connections to modems and othe
devices. It can also be integrated into your Smalltalk application to provide u
access to those external facilities.

Creating a Free-Standing Emulator

To create an emulator, first file in the following auxiliary code files supplied w
VisualWorks in the utils directory or folder (in addition to the Terminal.st
file supplied with this product):

n Serial.st (all platforms)

n ExtIPC.st (UNIX platforms only)

n UnixIPC.st (UNIX platforms only)

Then select Terminal in the Advanced Programming Launcher. A window will
be opened on a VT100 terminal by default. To change the default, execute t
expression:

CTermConnection defaultTerminalEmulation: SunTerminal.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 59

Chapter 6 Terminal Emulator

 is

shell

 on

cs

The
Figure 6-1 Terminal Emulator window

The VT100 and Sun console are the two available terminal types.

In a UNIX environment, the terminal is connected to a UNIX shell whose type
determined from the value of what’s set in the SHELL environment variable.

If that variable is not set, a C shell is used, by default. To change the default
type, execute an expression such as:

CTermConnection defaultUnixShellName: 'sh'

On Microsoft Windows machines and the Macintosh, the terminal is opened
the default serial port.

The terminal supports cursor positioning, highlighting and other characteristi
required by full-screen editors such as vi and emacs. The <F1>, <F2>, <F3> and
<F4> function keys are mapped to the VT100’s <PF1> through <PF4> keys.
user-interrupt key sequence is <F10> rather than <Control>-<c> within the
Terminal window, by default.

The <Operate> menu provides the following commands:
60 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Putting an Emulator in Your Application

ble

o

 the
t-
he

s of

r

 in

e
Perform a software reset of the terminal window.

Most of the features of a VT100 terminal are supported, with the following nota
exceptions:

n Double-width and/or double-height characters

n Graphics character set and international replacement character set

n Software control over numeric keypad mode

n Software control over cursor-key mode (no switching from cursor mode t
application mode)

n Keyboard locking during escape sequences

n Device attribute reports

n Software switching from 80-column mode to 132-column mode

Resizing a Terminal Emulator window can cause undesired results because
external process (such as an emacs editor) is not notified of the change automa
ically. Depending on the program, you may be able to manually inform it of t
new rows-and-columns count (which is displayed in the window label). For
example, the command to reset the window size (in some varieties of UNIX) i
the form:

% stty rows 24 columns 80

Putting an Emulator in Your Application

The free-standing terminal emulator consists of a VisualComponent inside a
ScheduledWindow. To invoke the complete package programmatically rathe

Table 6-1 <Operate> menu commands

Command Description

copy Copy the highlighted text in the terminal view.

paste Insert text that has been copied from another window.

do it Execute the highlighted expression (presumed to be Smalltalk)
the terminal view.

inspect it Execute the highlighted expression and open an inspector on th
result.

reset Perform a software reset of the terminal window.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 61

Chapter 6 Terminal Emulator

es-

ect
 see

ing

n
than from the Advanced Programming Launcher, execute the following expr
sion:

CTermConnection open

This expression opens the same default apparatus as you get when you sel
Terminal in the Launcher. For specific alternatives such as a TTY connection,
the class protocol called view creation in CTermConnection.

To create the VisualComponent separately, for inclusion in a composite view,
use an expression of the following form:

CTermView new model: (CTermConnection connectToTty: 'tty2')

In this example, a connection is established to the device named tty2. To get the
default serial port, use the unary message connectToTty instead. Variants of the
connect message can be found in the instance creation protocol for CTermCon-
nection. Note that connectToPty: does not take a String argument, but rather an
instance of UnixPseudoTtyAccessor. To create a VisualComponent with a
connection to the default pseudoterminal, then you would execute the follow
expression:

CTermView new model: (
CTermConnection connectToPty: (

UnixPseudoTtyAccessor openMaster))

The resulting VisualComponent can then be installed in your composite view i
the usual way.
62 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

er
it the

 You

lect
t
at
iew

ny
 as
Chapter 7

Project Browser

If you use multiple projects to group your VisualWorks windows, the Project
Browser is convenient for navigating among the projects. The Project Brows
also enables you to access the Change Set of any project without having to ex
current project. Finally, the Project Browser provides a convenient window
browser for inspecting any window in any project, including an outline of its
component hierarchy, which can be useful when debugging your application.
can also invoke such a browser by sending inspect to a ScheduledWindow.

For more information about projects, see the VisualWorks User’s Guide.

Opening a Project Browser

To open a Project Browser, select Project Browser in the Advanced Program-
ming Launcher.

A Project Browser lists all of your projects in the upper left view. When you se
one project from the list, the upper-right view lists the windows in that projec
while the bottom view displays the desktop layout of Smalltalk windows in th
project, as shown in Figure 7-1. Selecting a window name in the upper-right v
causes the corresponding image in the bottom view to redisplay in front of a
obscuring window images. In the window-image view, all windows are shown
if they were open, including iconified windows.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 63

Chapter 7 Project Browser

nge
w in

s
ow,

he

d
ntil

 click
Figure 7-1 The three parts of the Project Browser

Relabeling a Window

The entries in the window list view are taken from the window labels. To cha
a window label, even in another project, select the desired project and windo
the Project Browser. Then use the relabel as command in the <Operate> menu
to bring up a prompter for the new label.

Renaming a Project

The entries in the project list view are taken from the text views of the variou
Project windows. To change an entry, edit the text in the pertinent Project wind
then select accept in the text view’s <Operate> menu. You can also use the
rename as command in the Project Browser’s <Operate> menu to rename t
highlighted project.

Updating Project Information

If you open a new project or change the text in a Project window as describe
above, each existing Project Browser will reflect an inaccurate list of projects u
you update it. To do so, make sure no project is selected—if one is selected,
on it to deselect it. Then select update in the <Operate> menu. Similarly, you
must update the list after deleting a project.
64 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Entering a Project

 not
e

 This
r

 is as

uld

an
lpful

pper
Updating Window Information

When the current project is selected, changes in the window configuration are
always reflected in the window list view or the window image view. To updat
those views, select update in the <Operate> menu of the project list view.

Entering a Project

The Project Browser can be used to enter any project from any other project.
permits you to roam freely in the hierarchy of projects, without having to ente
from and exit to a parent project. For example, suppose the project hierarchy
pictured below, with Project P-1 at the root of the hierarchy.

Normally (using the Project windows rather than the Project Browser), you wo
have to enter Project P-2 to get to Project P-3.

Figure 7-2 Using a Project Browser to leapfrog intervening projects

The Project Browser lets you skip P-2 and jump right to P-3. Similarly, you c
exit direct to P-1 from P-3. The deeper your hierarchy of projects, the more he
you will find this feature.

To enter a project from the Project Browser, select the desired project in the u
left view. Then select enter in the <Operate> menu. This technique applies
whether you are traveling up or down in the hierarchy—instead of using exit
project in the Launcher to return to a parent project, just use enter .

Inspecting a Change Set

Each project maintains its own summary of code changes, called a change set.

P-1

P-2

P-3
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 65

Chapter 7 Project Browser

thout
 left

l

 the
Figure 7-3 A Change Set Inspector

The Project Browser enables you to inspect the change set for any project wi
leaving your current project. To do so, select the desired project in the upper
view of the Project Browser, then select inspect changes in the <Operate>
menu. For more information about change sets, see the VisualWorks User’s Guide.

Exploring a Window’s Structure

When a window name is selected, you can use the inspect command to open a
Window Browser on the selected window. In the Window Browser you can
expand and contract portions of the window’s component hierarchy to revea
the parts that interest you most. You can also raise or lower the actual window,
which is useful when a window has become buried.

Figure 7-4 Using a Window Browser to examine window structure

Within the component hierarchy, you can select a particular component and
inspect its instance variables in the inspector views, spawn an Inspector with
66 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Overview of the Code

n

ts

ch

, a
inspect command, or browse the code for its class. Use the flash command to
briefly highlight the component in the actual window.

Overview of the Code

The Project Browser is implemented via three new classes:

n ProjectBrowser, a subclass of Model

n ProjectView, a subclass of View

n WindowBrowser, a subclass of OutlineBrowser

In addition, SelectionInListView is used twice, once for each of the list views i
the Project Browser.

ProjectBrowser class

ProjectBrowser holds a collection of all instances of Project in the window hier-
archy. In addition, it keeps a list of the windows in the selected project, and
remembers both the selected project and the selected window. Because of i
specialized functionality, ProjectBrowser is not a likely candidate for reuse
unless you are employing instances of Project in your application.

ProjectView class

ProjectView might be adapted to a model other than a ProjectBrowser.

Figure 7-5 A project view

ProjectView adds a small amount of displaying and updating protocol to the
behavior it inherits from View. Some of the messages it sends to its model, su
as projectWindows, assume a ProjectBrowser as model so you would need to
subclass it and change such assumptions. The update: method may also need
revision, as it expects a parameter indicating whether a project has changed
window has been selected, or a window has been deselected.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 67

Chapter 7 Project Browser

rs,

t,
se.

ls.
The heart of ProjectView is in its method for drawing a useful caricature of an
application window. To modify the caricaturing style (with wider outside borde
for example), you would examine and modify the
displayWindow:on:highlighted: method.

WindowBrowser class

A WindowBrowser holds information about window components as well as
bookkeeping information for managing selective displays of the list. Its paren
OutlineBrowser, is more general and therefore a more likely candidate for reu
OutlineBrowser is a support class provided with VisualWorks Advanced Too
68 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

ions

class
st
orms.

ed by

ow
Chapter 8

Benchmarks

The Benchmark class provides a framework and a convenient interface for
running benchmarks to compare your application’s performance across vers
and in various operating environments. A simple subclass of Benchmark can be
built to run the benchmarking tests. As an example, we have provided a sub
called SystemBenchmark, which contains updated versions of the historic te
suite we at ParcPlace use to compare system performance on different platf

This chapter describes the reusable interface and related mechanisms provid
the Benchmark class, using the SystemBenchmark subclass as an example.
The final section then explains how to implement your own benchmarks.

Using the Benchmark Interface

To open the example System Benchmarks window, select Benchmarks in the
VisualWorks Advanced Tools Launcher.

In addition to the System Benchmarks window, a Benchmark Transcript wind
will open to display the test results.
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 69

Chapter 8 Benchmarks

ram-

g

lated
de in
ck
d test.

he
 both
old

f
Figure 8-1 The System Benchmarks window with default settings

The System Benchmarks window has two views, arranged side by side. The
benchmarks view, on the left side, lists the available benchmark tests. The pa
eters view, on the right, contains a variety of buttons and fill-ins for controllin
report attributes. A button marked run is located below the list view—use the
button to begin execution of a test suite.

Assembling the Test Suite

Although a benchmarking run can be limited to a single type of test, such as
adding 3 + 4 thousands of times, a run frequently involves a suite of several re
tests. You can use the benchmarks view to select the tests you want to inclu
a run. To select an individual test, just click on it with the <Select> button; cli
again to deselect it. A check mark appears in the margin next to each selecte

Selection Techniques

To select multiple adjacent tests, hold down the <Shift> key while dragging t
cursor through the desired tests (the check marks will appear after you release
the mouse button and the <Shift> key). To deselect multiple adjacent tests, h
down the <Control> key while dragging through the test names.

To cancel all selections, use clear selections in the <Operate> menu; use
select all to include all of the tests. The subclass can define a default suite o
tests—in our example, SystemBenchmark uses as defaults the tests used by
70 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Using the Benchmark Interface

 the

tics
w

ed to
a-
e it

ParcPlace for standard comparisons of platform performance. You can reset
test suite to the defaults at any time by selecting reset to default in the
<Operate> menu. To summarize these operations:

Setting the Report’s Granularity

At the end of each benchmarking run, a report is generated containing statis
accumulated during the tests. Three buttons at the top of the parameters vie
control the level of detail in the report, as follows:

Raw Benchmark Measurements

Details about each iteration of each test method. This information can be us
discover significant variations among iterations. The first iteration of an oper
tion, for example, might consume a disproportionate amount of time becaus
might not take advantage of compiled-code caching.

n The following times, for example, were reported for three iterations of two
tests in the SystemBenchmark suite: text displaying and text replacement.

[display text]
10 repetition(s) in
0.921 seconds
92100.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
5.1 seconds
255000.0 microseconds per repetition

Table 8-1 Selection techniques for system benchmarks

Operation Description

click <select> button Select and deselect a single test

<Shift> + drag <select> Select multiple tests

<Control> + drag <select> Deselect multiple tests

select all Select all tests

clear selections Deselect all selected tests

reset to default Select default tests

First iteration

Second iteration

Third iteration
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 71

Chapter 8 Benchmarks

ma-

sing

aw
[display text]
10 repetition(s) in
0.88 seconds
88000.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
4.98 seconds
249000.0 microseconds per repetition

[display text]
10 repetition(s) in
0.94 seconds
94000.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
4.98 seconds
249000.0 microseconds per repetition

Individual Benchmark Statistics

A summary of statistics for each test. In effect, this section of the report sum
rizes the details described above, whether or not the details themselves are
included in the report. This information is useful for identifying the slow
performers in a suite of tests, marking them as candidates for optimization.

Results are converted to rates (by the convert:toRateFor: method in the subclass)
when the rates switch is selected. When the times switch is selected, no such
conversion takes place. (The class comment for Benchmark discusses this mech-
anism and its implications further.) Types of statistics are described in “Choo
Types of Statistics” on page 73.

The following example reports the minimum, maximum and median for the r
times reported in the example above:

Table 8-2 Individual benchmark results (three iterations)

Benchmark Minimum Maximum Median

TextDisplay 136.170 145.455 138.979

TextEditing 82.7451 84.7389 84.7389
72 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Using the Benchmark Interface

e is

 use
um-

ndi-
r
be

f
est
t the

ic

dian

ics.

Benchmark Suite Statistics

A summary for the entire suite, the purpose of creating a suite in the first plac
to measure the performance of some subsystem. Benchmarking provides a
weighted average for the performance of that subsystem, which you can then
to compare with an identical benchmarking run under different operating circ
stances.

For the weighted average, the report displays the same columns as for the i
vidual statistics. For example, if you elect to display only the median value fo
individual benchmarks, only the median value for the suite-wide statistic will
shown.

Let’s use the minimum H-Mean (harmonic mean) to illustrate the derivation o
these statistics further. Each time the test suite is performed, the individual t
results are converted to rates and then combined mathematically to arrive a
harmonic mean score for that iteration.

The suite was performed three times, in our example, so three such harmon
means are derived. The minimum H-Mean represents the lowest of the three
scores. Similarly, the maximum H-Mean is the highest of the three, and the me
H-Mean is the median (or middle value) of the three.

Choosing Types of Statistics

The two summary sections of the report can include different types of statist
You control which types are included in the report by selecting buttons in the
parameters view. The types of statistics are as follows (i represents the number of
iterations):

n Minimum—the result from the best-performing iteration.

n Maximum—the result from the worst-performing iteration.

n Arithmetic mean—the average of all iterations; sum/i.

Table 8-3 Benchmark suite results (three iterations)

Rating Type Minimum Maximum Median

Minimum 118.539 126.309 125.558

Maximum 139.13 142.222 142.222

H-Mean 116.364 119.425 118.321

Median 118.539 126.309 125.558
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 73

Chapter 8 Benchmarks

g

r
he

o it

 disk

le in

esults.
ons,

e
o a

n to

or
ss,
n Harmonic mean—The number of iterations, divided by the sum of the
inverses of the weighted results for the separate iterations.

i/[(1/result1) + (1/result2) + ...]

Note: The median harmonic mean of the SystemBenchmark default test
suite is the standard benchmark score used by ParcPlace when comparin
system performance in different operating configurations. This test suite
differs from the suite used in prior releases of VisualWorks, so the scores
cannot be compared across versions meaningfully.

n Median—the value that is midway through a ranked list of the scores. Fo
example, if you specify five iterations, the median is the third element in t
sorted collection of scores.

The harmonic mean is only useful when summarizing overall performance, s
is not available under the heading Characterize individual and suite results
using: . Under the heading Summarize overall performance using: , the
arithmetic mean is only offered when you select the times switch; when the
rates switch is selected, the harmonic mean is offered.

Setting the Report Destination

The report can be displayed in the Benchmark Transcript window, stored in a
file, or both. Use the buttons under the heading Write report to: in the parame-
ters view to select one or both destinations. You can provide the name of a fi
the fill-in blank. The file will be created in the start-up directory unless you
specify an absolute or relative pathname.

Setting the Number of Iterations

The test suite can be repeated as a means of improving the accuracy of the r
By default, the iteration count is set to three. To change the number of iterati
type the desired number in the fill-in blank labeled Number of iterations per
run .

The number of iterations represents the number of times the test suite will b
repeated—this is not to be confused with repetitions that are hard-coded int
given method. For example, the test3plus4 method repeats the 3 + 4 operation
100,000 times for each iteration, so three iterations would cause the operatio
be repeated 300,000 times.

In some situations, a single iteration may produce more interesting results. F
example, a method might take a relatively long time to execute on its first pa
74 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Creating a Benchmark Subclass

hod

uites
 be

 are

we
for a
me-
d.

ord

riate
but run much faster subsequently. However, if your application calls the met
only infrequently, the first-iteration results might prove more illuminating.

To begin execution of the testing run, click on the run button. If your window
manager is configured to prompt you for placement of windows, you might
consider turning off that feature before running the default test suite or other s
involving window-displaying operations. However, prompt-for-placement can
left on without affecting the results.

Creating a Benchmark Subclass

The benchmarks are implemented via the following four classes, all of which
subclasses of Object:

n Benchmark, and its subclass SystemBenchmark

n BenchmarkTable

n BenchDecompilerTestClass

Benchmark Superclass

Benchmark is an abstract superclass whose protocol provides the interface
have been describing, as well as the timing and statistical analysis facilities
benchmarking run. It has instance variables for remembering the report para
ters as selected in the interface, and the test results as they are accumulate
Benchmark also provides the reporting protocol, making use of Benchmark-
Table (described further below).

SystemBenchmark Subclass

Subclasses of Benchmark, such as SystemBenchmark, are responsible for
providing the specific tests to be run. See the methods that begin with the w
“test” in SystemBenchmark for examples.

In addition, subclasses must implement the following accessing messages:

benchmarkLabelForSelector:

benchmarkSelectors
initiallySelectedBenchmarks

Subclasses may also need to override Benchmark’s weighting protocol, to estab-
lish relative weights for test methods and to convert the results to an approp
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 75

Chapter 8 Benchmarks

er

ake
bels

ides

g
s
rate; and the defaults protocol, which determines the default selections in the us
interface.

BenchmakTable Class

BenchmarkTable provides two-dimensional reporting capabilities that might
well be useful to other applications, though the code requires extensions to m
it more generally useful. It holds onto a report name, a collection of column la
and a collection of rows. Each row is assumed to be a collection itself.

The protocol is tailored to the needs of the benchmark reports, though it prov
a subset of a more generally useful set of behaviors.

BenchDecompilerTestClass Class

BenchDecompilerTestClass is a holder for methods that are decompiled durin
the SystemBenchmark>>testDecompiler benchmark. The code in the method
has no functional value—in fact, it is obsolete.
76 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Creating a Benchmark Subclass
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 77

Chapter 8 Benchmarks
78 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

 file-
 in the
Appendix A

Code Files

Introduction

The following table summarizes important characteristics of the code library
containing the VisualWorks Advanced Tools. For each code module, the disk
name, class category and class names are reported. The modules are listed
same order in which they are describedin this guide.

Table 1 Code files listing

Chapter Filename Category New Classes

(Support files) Install.st (installation tool)

OKLaunch.st (adds methods to the existing Launcher-
View class)

OKSupprt.st AT-Support EvaluationHolder
LabeledObjectHolder
OutlineBrowser

OpenLook.st Interface-
Openlook

OpenLookBorderDecoration-Policy,
OpenLookHorizontalScroll-bar,
OpenLookLabeledButton-View,
OpenLookPushButtonView,
OpenLookScrollar,
OpenLookScrollBarController,
OpenLookVerticalScrollbar,
OpenLookWidgetPolicy

Windows.st Interface-
Windows3

Win3Border, Win3BorderDecoration-
Policy, Win3LabeledButtonView,
Win3PushButtonView, Win3ScrollBar,
Win3WidgetPolicy
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 79

Appendix A Code Files
Support.st Support BasicButtonController,
BasicButtonView,
BasicLabeledButtonView,
BeveledBorder,
EmulationBorderDecoration-Policy,
EmulationFixedThumb-ScrollBar,
EmulationScrollBar,
EmulationScrollBarControl-ler, Label,
PushButtonView, SelectController,
SimpleBorder,
ToggleButtonController,
TriggerButtonController, VisualBlock,
VisualPairButton

Parser compiler Parser.st AT-
ParserCompiler

ExternalLanguageParser
GeneralParser
ParserCompiler
PushFragment
RecognizerFragment

SQL.st AT-Parsing
Example

SQL
SQLClause
SQLCompiler
SQLFunction
SQLIdentifier
SQLInfixOperation
SQLLiteral
SQLModifier
SQLNode
SQLPostModifier
SQLStatement

Enhanced numbers Complex.st Magnitude-
Numbers

Complex

MetaNum.st Magnitude-
Numbers-
MetaNumeric

Infinitesimal
Infinity
MetaNumeric
NotANumber
SomeNumber

Table 1 Code files listing

Chapter Filename Category New Classes
80 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Introduction
Terminal emulator Terminal.st AT-Terminals CharacterTerminal
CTermConnection
CTermController
CTermView
SunTerminal
VT100Terminal

Class reports SysAnal.st AT-
SystemAnalysi
s

ClassDeclarations
ClassNameChooser
ClassReporter
InstanceTally
ManualWriter
MessageAnalyzer
MessageCollector
ReferencePathCollector
SystemAnalyzer

Profiling time and
memory usage

Profiler.st AT-Profiling AllocationProfiler
MessageTally
ProfileOutlineBrowser
Profiler
ProfilerListHolder
TimeProfiler

Benchmarks Bench.st AT-
Benchmarks

BenchDecompilerTestClass
Benchmark
BenchmarkTable
SystemBenchmark

Full protocol browser FullBrow.st AT-Tools FullBrowser

Project browser ProjBrow.st AT-Tools ProjectBrowser
ProjectView
WindowBrowser
ScheduledWindow>>inspect

Table 1 Code files listing

Chapter Filename Category New Classes
VisualWorks Advanced Tools User’s Guide, Rev. 1.2 81

Appendix A Code Files
82 VisualWorks Advanced Tools User’s Guide, Rev. 1.2

Index
Symbols
<Control>-click ix

<Meta>-click ix

<Operate> button viii

<Select> button viii

<Shift>-click ix

<Window> button viii

B
Benchmarks

Arithmetic mean 74

BenchDecompilerTestClass 77

Benchmark class 76

Benchmark suite statistics 73

BenchmarkTable class 76

clear selections command 71

creating a subclass 75

Harmonic mean 74

Individual benchmark statistics 72

Maximum 74

Median 74

Minimum 74

opening example 69

Raw benchmark times 71

report components 71

reset to default command 71

run button 70, 75

select all command 71

SystemBenchmark class 69, 76
VisualWorks Advanced Tools User’s Guide, Rev. 1.
types of statistics 74

window components 70

bulletin boards xii

buttons, mouse, see mouse buttons

C
Class Reports

accept command 24

add all command 25

Browse switch 26

Check comment 28

Class List view 25

Class Patterns view 24

Class Size 30

clear all command 25

Correctness reports 26

finding coding errors 26

Inst vars not referenced 28

Instance Size 31

Manual switch 31

memory usage reports 30

Messages implemented but not sent 26

Messages sent but not implemented 26

Method consistency 27

Method Size 30

opening 23

Report switch 26

Space switch 30

SubclassResponsibilities not implemented 28
2 83

Index
text emphases 32

Undeclared references 28

Wildcard patterns 24

window components 23

click ix

Complex

components 53

instance creation 53

protocol 54

conventions

screen vii

typographic vi–vii

D
documentation, see VisualWorks documentation

double-click ix

E
electronic bulletin boards xii

electronic mail xi

entering a project 65

F
fax support xii

features v

fonts vi–vii

Full Browser

class hierarchy view 35

filtering protocol by class 35

find method command 36

message category scope 37

opening 33

remove command 37

rename command 37

senders in hierarchy command 36
84 V
I
Infinitesimal 54, 56

Infinity 54, 55

installation v

L
limitations v

M
mail

electronic xi

MetaNumeric class 54

mouse buttons vii

<Operate> button viii

<Select> button viii

<Window> button viii

one-button mouse viii

three-button mouse viii

two-button mouse viii

mouse operations ix

<Control>-click ix

<Meta>-click ix

<Shift>-click ix

click ix

double-click ix

N
NotANumber 57

notational conventions vi–vii

O
online documentation, see VisualWorks

documentation
isualWorks Advanced Tools User’s Guide, Rev. 1.2

Index
P
Parser Compiler

action terms 48

alternatives in rules 43

at sign (@) 43

backing up in the input 43

block syntax 49

code generation 39

CompiledMethods as output 40

compilerClass 50

compiling source code 50

generate: 51

parse tree 41

parsing phase 40

production rule 42

production rules 41

quantifying symbols 46

rule grammar summary 50

rules vs. methods 42

scanner delimiters 40

scanner tokens 40

scanning 39

semantic analysis 39

SQL example 39

stack 41

subclassing ExternalLanguageParser 40

subclassing GeneralParser 40

temporary variables in rules 42

terminals 47

terms in an alternative 45

unit terms 45

Profilers

apply cutoff button 17

contract fully command 18

cutoff percentage 17

do it command 14

expand command 18

expand fully command 18
VisualWorks Advanced Tools User’s Guide, Rev. 1.
MessageTally class 21

opening 13

overhead 22

profile descriptors 16

profile window 16

Profiler class 21

repetitions 15

reusing 21

space statistics checkbox 14

space usage report 20

space usage switch 20

spawn command 18

threshold percentage 17

totals switch 19

tree list expansion 18

tree switch 17

window components 13

wrapped methods 21

project

entering 65

Project Browser

opening 63

ProjectBrowser class 67

ProjectView class 67

window components 63

S
screen conventions vii

SomeNumber 58

special symbols vi–vii

SQL, parsing example 39

support, technical xi

electronic bulletin boards xii

electronic mail xi

fax xii

telephone xii

World Wide Web xii

symbols used in documentation vi–vii
2 85

Index
T
technical support xi

electonic mail xi

electronic bulletin boards xii

fax support xii

telephone support xii

World Wide Web xii

telephone support xii

Terminal Emulator

capabilities 60

creating 59

inspect it command 61

menu commands 60

reset command 61

resizing 61

reusing 62

shell types 60

terminal types 60

VT100 features 61

typographic conventions vi–vii

V
VisualWorks documentation

online x

Database Cookbookx

Database Quick Start Guidesx

International User’s Guidex

VisualWorks Cookbookx

VisualWorks DLL and C Connect
Referencex

printed

Cookbook ix

Database Connect User’s Guidex

Database Tools Tutorial and Cookbookx

Installation Guide ix

International User’s Guidex

Object Referencex

Release Notesix
86 V
Tutorial ix

User’s Guide ix

W
World Wide Web xii
isualWorks Advanced Tools User’s Guide, Rev. 1.2

	VisualWorks Advanced Tools
	User’s Guide

	Contents
	Chapter 1 Profiling Time and Memory Usage 13
	Chapter 2 Class Reports 23
	Chapter 3 Full Protocol Browser 33
	Chapter 4 Parser Compiler 39
	Chapter 5 Enhanced Numbers 53
	Chapter 6 Terminal Emulator 59
	Chapter 7 Project Browser 63
	Chapter 8 Benchmarks 69

	About This Book
	Audience
	Organization
	Conventions
	Typographic Conventions
	This book uses the following fonts to designate special terms:

	Special Symbols
	This book uses the following symbols to designate certain items or relationships:

	Screen Conventions
	Mouse Buttons
	The mouse buttons perform the following interactions:
	Three-Button Mouse
	VisualWorks uses the three-button mouse as the default:

	Two-Button Mouse
	On a two-button mouse:

	One-Button Mouse
	On a one-button mouse:

	Mouse Operations
	The following table explains the terminology used to describe actions that you perform with mouse...

	Additional Sources of Information
	Printed Documentation
	In addition to this tutorial, the core VisualWorks documentation includes the following documents:

	Online Documentation
	To display the online documentation browser, open the Help pull-down menu from the VisualWorks ma...

	Obtaining Technical Support
	Before Contacting Technical Support
	When you need to contact a technical support representative, please be prepared to provide the fo...

	How to Contact Technical Support
	Parc�Place-Digi�talk Technical Support provides assistance by:
	Electronic Mail
	Electronic Bulletin Boards
	Information is available at any time through the electronic bulletin board CompuServe. If you hav...

	World Wide Web
	1. In your Web browser, open this location (URL):
	2. Click the link labeled “Tech Support.”

	Telephone and Fax
	Within North America, you can:

	Chapter 1�
	Profiling Time and Memory Usage
	Creating an Object Allocation Profiler
	Figure 1-1� The parts of a profiler

	Profiling a Block of Code
	Optimizing the Sample Size
	Figure 1-2� Speed versus accuracy trade-off when adjusting the sample size

	Analyzing the Object Allocation Profile
	Figure 1-3� The structure of a profile window
	Tree Report
	Adjusting the Cutoff Percentage
	Figure 1-4� The slider and button used to change cutoff percentage

	Contracting and Expanding the List
	Figure 1-5� A profile entry contracted and expanded

	Spawning a Method Browser
	Figure 1-6� A Method Browser on the selected method and its neighbors

	Totals Report
	Figure 1-7� A sample “totals” report

	Space Usage Report
	Figure 1-8� A sample “space usage” report

	Overview of the Code
	The following classes provide the kernel of profiler functionality:
	Allocation Profiler’s Wrapped Methods
	Time and Space Overhead

	Chapter 2�
	Class Reports
	Overview
	Creating Class Reports
	Figure 2-1� Initial display of a Class Report window
	Selecting the Target Classes
	Figure 2-2� Using a wildcard pattern to define a work list of classes
	Table 2-1� Valid class patterns
	Then, in the Class List view, click on the desired class or classes to highlight them for inclusi...

	Locating Coding Errors
	Class Report Options
	Messages Sent but Not Implemented��
	Messages Implemented but Not Sent�
	Method Consistency�
	Subclass Responsibilities Not Implemented�
	Undeclared References�
	Instance Variables Not Referenced�
	Check Comment�
	Backward Compatibility Message Sends�
	Indefinite Backward Compatibility Message Sends�
	Backward Compatibility Class References�

	Estimating Memory Requirements
	Documenting Your Code

	Chapter 3�
	Full Protocol Browser
	The Full Protocol Browser is an expanded version of the System Browser. It has all of the capabil...
	Creating a Full Browser
	Figure 3-1� System Browser compared to Full Protocol Browser
	Figure 3-2� A Full Browser, with the ArithmeticValue class selected

	Displaying the Full Protocol of a Class
	Filtering Messages by Class
	Figure 3-3� The appearance of included and excluded classes in the hierarchy view

	Searching within the Hierarchy
	Figure 3-4� The <Operate> menu of the hierarchy view, used to limit scope of search
	Scoping Rules

	Chapter 4�
	Parser Compiler
	Overview
	Scanning Source Code
	Parsing
	EmulationBorderDecorationPolicy unInstallcommitStatement =
	A Rule has a Name and a Definition
	Rules are Similar to Methods
	Temporary Variables Can be Used
	A Rule Definition is a Series of Alternatives
	(a | b) c The next tokens must match either 'a' or 'b', followed by 'c'

	An Alternative is a Series of Terms
	Figure 4-1� Summary of the outcomes in a decision tree
	A Term is an Action or a Unit-Plus-Qualifier
	A Unit is a Word, Terminal or Parenthesized Definition
	Table 4-1� Word and associated production rule
	Table 4-2� Quantifying symbols

	A Terminal is a Single Token
	An Action is a Block or a Special Symbol
	Table 4-3� Action symbols

	Two Types of Block Syntax are Allowed

	Summary of Grammar for Parsing Methods
	method = pattern #= temporaries definition

	Creating your Own Compiler
	compilerClass

	Chapter 5�
	Enhanced Numbers
	Complex Numbers
	Creating an Instance
	Protocol Summary
	Table 5-1� Accessing
	Table 5-2� Arithmetic
	Table 5-3� Converting

	Metanumbers
	MetaNumeric Class
	Infinity Class
	Creating an Instance of Infinity
	Protocol Summary
	x + +infinity = +infinity

	Infinitesimal Class
	Creating an Instance of Infinitesimal
	Infinitesimal positive

	Protocol Summary
	The usual numeric operations are supported, according to the following rules (where x is any real...
	x + +tiny = x when x ~= 0.

	NotANumber Class
	Creating an Instance of NotANumber
	Protocol Summary

	SomeNumber Class

	Chapter 6�
	Terminal Emulator
	Creating a Free-Standing Emulator
	Figure 6-1� Terminal Emulator window
	Table 6-1� <Operate> menu commands

	Putting an Emulator in Your Application

	Chapter 7�
	Project Browser
	Opening a Project Browser
	Figure 7-1� The three parts of the Project Browser
	Relabeling a Window
	Renaming a Project
	Updating Project Information
	Updating Window Information

	Entering a Project
	Figure 7-2� Using a Project Browser to leapfrog intervening projects

	Inspecting a Change Set
	Figure 7-3� A Change Set Inspector

	Exploring a Window’s Structure
	Figure 7-4� Using a Window Browser to examine window structure

	Overview of the Code
	ProjectBrowser class
	ProjectView class
	Figure 7-5� A project view

	WindowBrowser class

	Chapter 8�
	Benchmarks
	Using the Benchmark Interface
	Figure 8-1� The System Benchmarks window with default settings
	Assembling the Test Suite
	Selection Techniques
	Table 8-1� Selection techniques for system benchmarks

	Setting the Report’s Granularity
	Raw Benchmark Measurements�
	[display text]

	Individual Benchmark Statistics�
	Table 8-2� Individual benchmark results (three iterations)

	Benchmark Suite Statistics�
	Table 8-3� Benchmark suite results (three iterations)

	Choosing Types of Statistics
	Setting the Report Destination
	Setting the Number of Iterations

	Creating a Benchmark Subclass
	Benchmark Superclass
	SystemBenchmark Subclass
	benchmarkLabelForSelector:

	BenchmakTable Class
	BenchDecompilerTestClass Class

	Appendix A�
	Code Files
	Introduction
	Table 1� Code files listing

	Index
	Symbols
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	S
	T
	V
	W

