VisualWorks Advanced Tools

User’s Guide

Part Number: DS10003002

Copyright © 1995 by ParcPlace-Digitalk, Inc. All rights reserved.
Part Number: DS10003002
Revision 1.2, October 1995 (Software Release 2.5)

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(2)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

ObjectKit, ObjectWorks, ParcBench, ParcPlace, and VisualWorks are trademarks of ParcPlace
Systems, Inc., its subsidiaries, or successors and are registered in the United States and other countries.
DataForms, MethodWorks, ObjectLens, ObjectSupport, ParcPlace Smalltalk, Visual Data Modeler,
VisualWorks Advanced Tools, VisualWorks Business Graphics, VisualWorks Database Connect,
VisualWorks DLL and C Connect, and VisualWorks ReportWriter are trademarks of ParcPlace
Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or distributed
except in accordance with the terms of said license. No class names, hierarchies, or protocols may be
copied for implementation in other systems.

This manual set and online system documentation copyright © 1995 by ParcPlace-Digitalk, Inc. All
rights reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior written consent from ParcPlace-Digitalk.

ParcPlace-Digitalk, Inc., 999 East Arques Avenue, Sunnyvale, CA 94086-4593

Contents

About This Book

Audience v

Organization v

Conventions i

Additional Sources of Information ix
Obtaining Technical Support xi

Chapter 1 Profiling Time and Memory Usage
Creating an Object Allocation Profiler 13
Profiling a Block of Code 14
Analyzing the Object Allocation Profile 16
Overview of the Code 21

Chapter 2 Class Reports
Overview 23
Creating Class Reports 23
Locating Coding Errors 26
Estimating Memory Requirements 30
Documenting Your Code 31

Chapter 3 Full Protocol Browser
Creating a Full Browser 33
Displaying the Full Protocol of a Class 35
Filtering Messages by Class 35
Searching within the Hierarchy 36

Chapter 4 Parser Compiler
Overview 39
Scanning Source Code 40
Parsing 40
Creating your Own Compiler 50

VisualWorks Advanced Tooldser’s Guide Rev. 1.2

13

23

33

39

Contents

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Enhanced Numbers
Complex Numbers 53
Metanumbers 54

Terminal Emulator
Creating a Free-Standing Emulator 59
Putting an Emulator in Your Application 62

Project Browser

Opening a Project Browser 63
Entering a Project 65

Inspecting a Change Set 66
Exploring a Window’s Structure 66
Overview of the Code 67

Benchmarks

Using the Benchmark Interface 69
Creating 8Benchmark Subclass 75
Introduction 79

Index

53

59

63

69

83

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

About This Book

Audience

This user guide describes the tools and reusable code provided in the VisualWorks
Advanced Tools™. Each of the remaining chapters deals with one of the code
modules in the kit. The code modules are independent of one another, so the order
in which they are discussed is arbitrary.

For information about installing this product, features specific to this release, and
limitations, see th&isualWorks Advanced Tools Installation Guide and Release
Notes

This manual is intended for users of VisualWorks Advanced Tools. As the product
name suggests, it is assumed that you are familiar with object-oriented program-
ming concepts in general and VisualWorks in particular.

Organization

This user guide describes the tools and reusable code provided in the VisualWorks
Advanced Tools. Each of the remaining chapters deals with one of the code
modules in the kit. The code modules are independent of one another, so the order
in which they are discussed is arbitrary.

Appendix A lists the disk files containing the code modules. It also describes the
contents of the disk files in terms of classes and class categories and provides a
cross-reference to the appropriate chapters in this guide.

For information about installing this product, features specific to this release, and
limitations, see th¥isualWorks Advanced Tools Installation Guide and Release
Notes

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 v

About This Book

Conventions

This section describes the notational conventions used to identify technical terms,
computer-language constructs, mouse buttons, and mouse and keyboard opera-
tions.

Typographic Conventions

This book uses the following fonts to designate special terms:

Example Description

template Indicates new terms where they are defined, emphasized
words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and other C++,
UNIX, or DOS constructs to be entered outside VisualWorks
Advanced Tools (for example, at a command line).

filename .xwd Indicates a variable element for which you must substitute
a value.
windowSpec Indicates Smalltalk constructs; it also indicates any other

information that you enter through the VisualWorks
Advanced Tools graphical user interface.

Edit menu Indicates VisualWorks Advanced Tools user-interface labels
for menu names, dialog-box fields, and buttons; it also indi-
cates emphasis in Smalltalk code samples.

Special Symbols

This book uses the following symbols to designate certain items or relationships:

Examples Description

File?New command Indicates the name of an item on a menu.

<Return> key Indicates the name of a keyboard key or mouse button; it also
<Select> button indicates the pop-up menu that is displayed by pressing the
<Operate> menu mouse button of the same name.

<Control>-<g> Indicates two keys that must be pressed simultaneously.
<Escape> <c> Indicates two keys that must be pressed sequentially.

vi VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Conventions

Examples Description

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.
é Caution: Indicates information that, if ignored, could cause loss of data.
Warning: Indicates information that, if ignored, could damage the sys-
A tem.

Screen Conventions

This tutorial contains a number of sample screens that illustrate the results of
various tasks. The windows in these sample screens are shown in the default
Smalltalk look, rather than the look of any particular platform. Consequently, the
windows on your screen will differ slightly from those in the sample screens.

Mouse Buttons

Many hardware configurations supported by VisualWorks have a three-button
mouse, but a one-button mouse is the standard for Macintosh users, and a two-
button mouse is common for OS/2 and Windows users. To avoid the confusion
that would result from referring to <Left>, <Middle>, and <Right> mouse
buttons, this book instead employs the logical names <Select>, <Operate>, and
<Window>.

The mouse buttons perform the following interactions:

<Select> button Select(or choose) a window location or a menu item,
position the text cursor, or highlight text.

<Operate> button Bring up a menuagferationsthat are appropriate for
the current view or selection. The menu that is displayed
is referred to as theOperate> menu

<Window> button Bring up the menu of actions that can be performed on
any VisualWorks Advanced Toolgindow(except dia-
logs), such amove andclose . The menu that is dis-
played is referred to as tk&\Vindow> menu

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 Vii

About This Book

Three-Button Mouse
VisualWorks uses the three-button mouse as the default:

n The left button is the <Select> button.
n The middle button is the <Operate> button.
n The right button is the <Window> button.

Two-Button Mouse
On a two-button mouse:

n The left button is the <Select> button.
n The right button is the <Operate> button.

n To access the <Window> menu, you press the <Control> key and the
<Operate> button together.

One-Button Mouse
On a one-button mouse:

n The unmodified button is the <Select> button.

n To access the <Operate> menu, you press the <Option> key and the <Select>
button together.

n To access the <Window> menu, you press the <Command> key and the
<Select> button together.

Mouse Operations

viii

The following table explains the terminology used to describe actions that you
perform with mouse buttons.

When you see: Do this:
click Press and release the <Select> mouse button.
double-click Press and release the <Select> mouse button twice with-

out moving the pointer.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Additional Sources of Information

When you see: Do this:

<Shift>-click While holding down the <Shift> key, press and release

the <Select> mouse button.

<Control>-click While holding down the <Control> key, press and

release the <Select> mouse button.

<Meta>-click While holding down the <Meta> or <Alt> key, press and

release the <Select> mouse button.

Additional Sources of Information

Printed Documentation

In addition to this tutorial, the core VisualWorks documentation includes the
following documents:

n

Installation Guide:Provides instructions for the installation and testing of
VisualWorks on your combination of hardware and operating system.

Release Notedescribes the new features of the current release of Visual-
Works.

Tutorial: Introduces the VisualWorks tools, class library, and approach to
application design. It also introduces basic object-oriented concepts and the
Smalltalk language.

Cookbook:Provides step-by-step instructions for performing hundreds of
common VisualWorks tasks.

User’s Guide:Provides an overview of object-oriented programming, a
description of the Smalltalk programming language, a VisualWorks tools
reference, and a description of various reusable software modules that are
available in VisualWorks.

International User’s GuideDescribes the VisualWorks facilities that support
the creation of nonEnglish and cross-cultural applications.

Object ReferenceProvides detailed information about the VisualWorks class
library.

The documentation for the VisualWorks database tools consists of the following
documents:

n

VisualWorks’ Database Tools Tutorial and Cookbdakroduces the process
and tools for creating applications that access relational databases. The

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 (¢

About This Book

“Cookbook” chapter describes how to programmatically customize various
aspects of a database application.

n Database Connect User’s Guiderovides information about the external
database interface. Versions of it exist for Oracle7, SYBASE, and DB2 data-
bases.

Online Documentation

To display the online documentation browser, operHise pull-down menu
from the VisualWorks main menu bar and se@pen Online Documenta-
tion . Your choice of online books includes:

n Database CookboolOnline version of the “Cookbook” part of thésual-
Works' Database Tools Tutorial and Cookbat#scribed above.

n Database Quick Start GuideBescribes how to build database applications.
It covers such topics as data models, single- and multiwindow applications,
and reusable data forms.

n International User’s GuideOnline version of thénternational User’s Guide
described above.

n VisualWorks CookboolOnline version of th€ookbookdescribed above.

n VisualWorks DLL and C Connect RefererDescribes C data classes, object
engine access functions, and user-primitive functions.

Obtaining Technical Support

If, after reading the documentation, you find that you need additional help, you
can contact ParcPlace-Digitalk Technical Support. ParcPlace-Digitalk provides
all customers with help on product installation. ParcPlace-Digitalk provides addi-
tional technical support to customers who have purchased the ObjectSupport
package. VisualWorks distributors often provide similar services.

Before Contacting Technical Support

When you need to contact a technical support representative, please be prepared
to provide the following information:

n Theversion id,which indicates the version of the product you are using.
ChooseHelp ?About VisualWorks in the VisualWorks main window. The
version number can be found in the resulting dialog un@desion Id: .

n Any modifications patch fileg distributed by ParcPlace-Digitalk that you
have imported into the standard image. Chdtslp ?About VisualWorks

X VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Obtaining Technical Support

in the VisualWorks main window. All installed patches can be found in the
resulting dialog undePatches: .

n The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, selespy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste the text
into a file that you can send to technical support.

How to Contact Technical Support
ParcPlace-Digitalk Technical Support provides assistance by:

n Electronic mail

n Electronic bulletin boards
n World Wide Web

n Telephone and fax

Electronic Mail

To get technical assistance on the VisualWorks line of products, send electronic
mail to support-vw@parcplace.com

Electronic Bulletin Boards

Information is available at any time through the electronic bulletin board
CompuServe. If you have a CompuServe account, enter the ParcPlace-Digitalk
forum by typing

go ppdforum at the prompt.

World Wide Web

In addition to product and company information, technical support information is
available via the World Wide Web:

1. In your Web browser, open this location (URL):
http://www.parcplace.com
2. Click the link labeled “Tech Support.”

Telephone and Fax
Within North America, you can:

n Call ParcPlace-Digitalk Technical Support at 408-773-7474 or 800-727-
2555,

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 Xi

About This Book

n Send questions and information via fax at 408-481-9096.
Operating hours are Monday through Thursday from 6:00 a.m. to 5:00 p.m.,
and Friday from 6:00 a.m. to 2:00 p.m., Pacific time.

Outside North America, you must contact the local authorized reseller of Parc-
Place-Digitalk products to find out the telephone numbers and hours for technical
support.

Xii VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Chapter 1

Profiling Time and Memory Usage

The Time Profiler helps you locate portions of your code that consume undue

amounts of processing time. The Allocation Profiler performs a similar service for
memory usage.

The user interface is very similar for both profilers, so they are often discussed
generically in this chapter—“profiler” refers to both equally.

Creating an Object Allocation Profiler

To open a Time Profiler, seleRtofiles in the Advanced Programming Launcher,

then selectime in the submenu. To open an Allocation Profiler, sedélota-

tions in the submenu. A profiler window contains the following components: a
code view for entering the code to be analyzed, a slider control for adjusting the
sample size and, in the Allocation Profiler onlgpmce statistics button to

extend the coverage of the analysis. Each of these components is discussed further

below.
Profile object allocation El
Sample size: .
1 4 1 slider
Q 1024 bytes 16384
[space statistics €—— button

self profile: [
100 timesRepeat: [
Transcript show: Date today printStringl],

___ code view

Figure 1-1 The parts of a profiler

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 13

Chapter 1 Profiling Time and Memory Usage

Profiling a Block of Code

To create a profile of time or memory usage, enter the Smalltalk expressions in the
code view of the profiler encased iself profile: [] expression (an example is
provided as a template when you open a new profiler). For example, suppose you
wanted to find out what proportion of the memory allocated by the following
expression was allocated by thate method:

self profile: [Transcript show: Date today printString]

Enter the expression in the code view of an Allocation Profiler, then highlight it
and selectlo it in the <Operate> menu. After the expression is executed (today’s
date is printed in the System Transcript), the results of the analysis are displayed
in a new window. For an explanation of the report, see “Analyzing the Object
Allocation Profile” on page 15.

In the Allocation Profiler, click on thepace statistics check box to include a
summary of object/byte allocations by class. This summary is described on
page 21.

Optimizing the Sample Size

14

A profiler typically provides only an approximation of the time or memory being
used by each method that is called. It does so, in effect, by monitoring the process
at a regular interval, called tampling intervalFor example, if a babysitter

checks in on children playing in their room every half hour, the sampling interval
is 30 minutes.

At each 30 minute check point, the babysitter has to assume that the behavior of
the moment has been going on for the past half hour. By reducing the sample size
to 15 minutes, the babysitter will get a more accurate picture of the children’s
activities, though it will cost more time and effort.

The sample size can affect the accuracy of the results dramatically. Reducing the
sample size improves the accuracy, but may slow down the profiling run dispro-
portionately. Setting the sample size to zero, for example, causes the profile to be
updated after each indivisible chunk of time or memory is used, which can be very
time-consuming. In most situations, the default sample size provides adequate
accuracy without slowing things down unnecessarily.

To reduce the sample size (for brief processes), move the slider to the left until the
desired numerical size is shown below the slider. To increase the sample size (for
time- or memory-intensive processes), move the slider to the right. (To move the

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Analyzing the Object Allocation Profile

slider, place the cursor on the dark bar, press and hold the <Select> button on the
mouse, then move the mouse to position the slider.)

Figure 1-2 Speed versus accuracy trade-off when adjusting the sample size

<4—— Large sampling
(speed)

<4—— Small sampling
(accuracy)

In the example used above, printing today’s date in the transcript, the process is so
light in its memory usage that the default sampling interval of 1024 bytes is inap-
propriate. The process is only monitored a few times, resulting in misleading allo-
cation statistics. The obvious solution is to reduce the sample size so the process
is checked more frequently.

An alternative technique is to leave the sample size at the default, but repeat the
process many times. We can accomplish this by entering the following expression
in the code view of the profiler:

self profile: [100 timesRepeat: [Transcript show: Date today printString]]

This approach often gives superior accuracy because the odds of one or more
checkpoints occurring in a low-consumption part of the process are improved. In
our example, it turns out that tikate today part of the process only allocates
about 3 percent of the bytes, so in a single pass it would be overlooked unless the
sample size was very small.

Analyzing the Object Allocation Profile

After the process that you are profiling has finished executing, the profile is
displayed in a profile window having the following components:

n Arecord of the sampling parameters.

n A slider for changing the cutoff percentage and a button for applying a new
percentage.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 15

Chapter 1 Profiling Time and Memory Usage

n A text view for displaying the statistics.

n A totals switch and aree switch for selecting the type of statistics to be
displayed in the text view; and, in an allocation profile for whichsheze
statistics check box was turned on, a third switch labedpdce usage
for displaying those statistics.

Object allocation profile

17854 samples, 1024 byles per sample — .
18566320 bytes [Spawntext] | slider
Cutoff percentage
L] | 2o {rspace usage

apply cutoff & totals 4———— switches
& tree
100.0 [] in AllecationProfiler:»unboundMethod
100.0 controlManager>>rrestore

55.7 OrderedCollectionysreverseDo:
55.7 [] in ControlManager»»restore .
55.3 ScheduledWindow>>refresh —— switches
54.6 ScheduledWindow:>extentEvent:
45.9 CompositePart:>bounds
45.7 CompositePart:»layoutComponentsForEounds
34. 8 BoundedWrapper »>hounds :
34.8 LayoutWrapper:>bounds
34.2 Wrapper>»>rbounds:
34. 2 BoundedWrapper »»setComponentEoundsTo:
24.7 BorderDecorator»>bounds:
24.7 CompositePart>>bounds:
24.7 CompositePart:>layoutComponentsFor .
21.9 BorderedWrapper »>hounds:

Figure 1-3 The structure of a profile window

Each of these components is discussed further below.

At the top of the profile window, a set of statistics display useful information about

the profiling run, which include:

n Number of samples

n Sample size

n Total bytes consumed (allocation profile)

n Total milliseconds consumed, in both elapsed and processor time (time
profile).

This information is useful in judging whether a change in the sampling interval
will prove fruitful—because relatively few samples were taken, for example. This
information also serves to label the profile, distinguishing it from profiles gener-
ated by other sampling runs on the same code.

Tree Report

When thetree switch is selected, the text view displays a listing of consuming
methods that were called during the process. This listing is useful for locating the

16 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Analyzing the Object Allocation Profile

places in your code that consume the most time or memory, and therefore merit
your optimizing attention.

Each method selector is preceded by a number representing the percentage of
system resource (bytes or milliseconds) consumed by that method. The tree is
displayed in the form of an indented list—each method is indented under its
calling method.

Adjusting the Cutoff Percentage

Only those methods that consumed more than a threshold percentage of time or
memory are shown. The default is 2 percent, meaning any method that consumed
less than 2 percent of the time or memory is excluded from the listing. In effect:
“If it's smaller than this, don't bother me with it.”

Cutoff percentage
1 | z0

_apply cutoff |

Figure 1-4 The slider and button used to change cutoff percentage

To get finer detail in the profile, reduce the cutoff percentage by moving the slider
to the left. To restrict the profile to the methods that consumed larger chunks of
time or memory, move the slider to the right. After you have changed the position
of the slider, apply the new cutoff by clicking on #ygply cutoff button.

Contracting and Expanding the List

Another means of making the list more manageable in size is to temporarily
remove selected subhierarchies from the display. To do so, select the method
above an unwanted subhierarchy and then useotiteact fully command. The
selected method redisplays in boldface, indicating that it can be expanded to show
more detail; its called methods will be eliminated from the display.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 17

Chapter 1

Profiling Time and Memory Usage

45.7 C;JmnpositePart) rlayoutComponentsForBounds :

45,9 CompositePart:rhounds:

45T CompositePar outComponentsForBounds :
34.8 BoundedWrapper » *hounds
34. 8 LayoutWrapper > hounds:

Figure 1-5 A profile entry contracted and expanded

To restore detail under a contracted method, use eigpand (for a single level
of called methods) axpand fully (for the entire subhierarchy) in the <Operate>
menu.

Spawning a Method Browser

18

To examine the body of a method in the tree, select the desired method and then
usespawn in the <Operate> menu. A method browser will be opened in a
separate window. Besides the selected method, which is listed in boldface in the
new window, the browser will list parent and child methods when appropriate.

96.5 TextCollector endEntry]|

96.5 TextCollector show: 2!

96.5 TextCollector endEntry

934.3 Object changed:
2.2 TextCollector beginEntry

<]

[E

endEntry
"If the receiver’s WriteStream is not empty,
then reinitialize it. Send all
depends a message that the streaming has
changed.”
entryStream isEmpty
ifFalse:
[self changed: #appendEntry.
self beginEntry]

W

Figure 1-6 A Method Browser on the selected method and its neighbors

While the browser offers most of the features of a code view, including text
editing, you cannot recompile an edited method deigept) in this window

because that could cause confusion about the state of the code at the time of the
profile.

You can also browssenders of the selected messag@plementors of the
method, and implementors mfessages contained in the selected method.
These operations are the same as in the System Browser.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Analyzing the Object Allocation Profile

Totals Report

When theotals switch is selected, the text view displays a list of the fundamental
object-creating methods that were called, with the percentage of system resource
consumed by each.

13.6 Object copy
1.6 Point +

.8 Point -

.5 Colorvalue Tuminance

.0 Rectangle class origin:corner:

.6 LuminanceBasedColorPolicy renderPaint:usingPalette:
.5 Point class x:y:

.6 GraphicsContext clippingRectangledril

.7 Rectangle class origin:extent:

.2

1
9
g
g
7
4
3
2
2.2 GraphicsContext translation

Figure 1-7 A sample “totals” report

For example, a process that deals with graphics might make many callg o the
method in théPoint class. That activity would be summarized here. If you felt
Point was taking an inordinate amount of time or memory to get the job done, you
might investigate alternative coding paths that would generate fewer messages to
Point.

To open a code browser on a selected method and its surrounding contexts, use the
spawn command as described above.

Space Usage Report

When thespace usage switch (only available in an allocation profile) is

selected, the text view displays a list of object types that were created—
technically, a list of classes that were instantiated. For each, the number of
instances is indicated along with the cumulative memory usage (in bytes). The
cutoff percentage has no effect on this report—all classes that allocated objects are
listed.

This report differs from théotals report in two important ways. First, it summa-
rizes the activity by class rather than by object-allocating methods within classes.
For examplePoint>>asPoint andPoint>>+ might be listed separately in the
totals report but they are subsumed under a single entfiydort in thespace

usage report.

Secondspace usage shows the number of instances andam®untof memory
used, whiletotal shows gpercentageof allocated memory.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 19

Chapter 1 Profiling Time and Memory Usage

Class Instances Bytes
Point E3E3 131260
Rectangle 2083 41660
Float 1694 27104
Interval 181 4344
GraphicsContext 156 13104
Fraction 92 1840
DisplayScanner 57 5472
ByteString 50 1183
Array 36 S84
FontDescription ki) 1200
CharacterBlock 28 784
CharacterBlockScanner 27 3132
Runérray 18 S04
Colorvalue 3 192
Text E 120

Allocation summary:
11029 total objects, average size 21.1 bytes.
1744 byte objects, average size 16.2 bytes.
9285 pointer objects, average size 22.0 bytes.

Figure 1-8 A sample “space usage” report
An allocation summary is provided at the bottom ofdpace usage report,

which shows a count of total objects and the average size of each object. This
information is broken down by byte-type and pointer-type objects.

Overview of the Code

20

The following classes provide the kernel of profiler functionality:

n Profiler and its subclassefimeProfiler andAllocationProfiler
n MessageTally, a subclass dilagnitude

n ProfilerListHolder, a subclass dfalueHolder

n ProfileOutlineBrowser, a subclass dDutlineBrowser

In early releases of VisualWorks, thkessageTally class provided time-profiling
behavior in addition to its current reduced role. The profiling part of its function-
ality has been factored inRrofiler, which provides more general support for
assessing usage of an arbitrary system resource. The two subdlesesofiler
andAllocationProfiler, specialize that spying ability for specific resources.

This architecture aligns with the fundamental notion that any system resource can
be metered with the sampling apparatus providedrbyiler and the storage
mechanism provided bylessageTally. For example, you could construct new
subclasses d®rofiler to measure disk seeks.

The newly trimmed-down version MfessageTally represents a single node in
the tree-like hierarchy of message-sends that occur during the process being

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Overview of the Code

profiled. When the profiler stops the running process to take a san\ssag-
eTally is created for the method that is currently executing (unless that method
was already tallied in the previous sample, in which case its tally is simply
updated). Then instancesMEssageTally are created and/or updated for the
calling methods.

EachMessageTally remembers its place in the calling tree by holding onto its
caller and its callees. This permits the report generator to construct the indented
list known as theéree report.

Allocation Profiler's Wrapped Methods

While TimeProfiler enforces its sampling interval straightforwardly, by moni-
toring the system clocldllocationProfiler requires a more complicated mecha-
nism. It maintains a list of primitive methods that allocate space for objects. Each
time one of these methods is called, the original method is renamed. In its place,
a “wrapped” version is substituted. This new version meters the memory usage in
addition to performing its original function. At the end of the profiling rilig-
cationProfiler restores all such wrapped methods to their original state.

AllocationProfiler assembles its list of allocating primitives during initialization

of the class. The list and the resulting cache can become out of date when you add,
delete or change a primitive method. Before ugiligcationProfiler after you

have filed in or otherwise recompiled code containing primitive calls, execute
AllocationProfiler initialize.

Time and Space Overhead

The profilers impose relatively minor time and space overhead on the running
process. Time overhead depends on the sampling frequency you choose—with the
default of 16 milliseconds, the process will take roughly 50-70 percent more time
than in its unmonitored condition. Memory overhead varies depending on the
nature of the code.

The classes described in this chapter are useful in applications requiring advanced
mathematical constructs such as complex humbers and infinity.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 21

Chapter 1 Profiling Time and Memory Usage

22 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Chapter 2

Class Reports

Overview

The Class Reports tool performs a variety of automated checks on specified
classes and helps you:

n Repair common coding errors.

n Estimate memory requirements of your application.

n Document your code.

Class Reports is a specific tool that is built on top of a set of general system-

analysis capabilities. Those system-analysis facilities could well be put to use in
other ways as well.

Creating Class Reports

To open a Class Reports window, selelzss Reports in the Advanced
Programming Launcher.

The Class Reports window contains the following components for defining the
contents of the report:

n A Class Patterns view for roughly defining the classes to be checked.

n A Class List view for selecting individual target classes.

n Three switches for choosing a type of report.

n Depending on the type of report selected, two extra switches may be provided
for choosing the output destination.

n Depending on the type of report and the output destination, additional options
may be provided.

n A button labeledun for launching a scan-and-report sequence.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 23

Chapter 2 Class Reports

Benchmark Transcript H] System Benchmarks =]
P ¥
- Benchmarks Measure:
"""""" [times rates
 testallCallsOn % *
v testallimplemen .
v testClassOrgan Report:
v testCompiler 1 raw benchmark measurements
" testDecompiler [.
v testinspect W individual benchmark statistics
v testkeyhoardLo M overall performance statistics
W testieyhoardsi
v testPrintDefinitict | Characterize individual and suite results using:
" testPrintHierarc . .
o testTextDisplay M minimum M maximum
v testTextEditing] arithmetic mean W median
v testTextF ormatti ; .
testasFloat Summarize overall perfonmance using:
testBasicat 71 minimum £ maximum

testBasicatPut
testFloatingPoi

testPerform . i
testStringRepla VWrite report to:

" testTextsoanni W benchmark transcript
testLoadinstya 7 1 file: Smaltalk fiming

m Humber of iterations per run: 3

Figure 2-1 Initial display of a Class Report window

M harmonic mean] median

Selecting the Target Classes

You can generate a report for a single class, all classes or any list of classes. Keep
in mind as you assemble your list that the amount of time required to produce a
report increases with each added class.

Use the Class Patterns view to make a rough cut at the list. Enter one or more
wildcard patterns, one per line. Each such entry can contain a class category
component and/or a class component. If both components are present, separate
them with a greater-than symbol)(Then choosaccept in the <operate> menu

to display all classes matching those criteria in the Class List view. Wildcard
patterns are not case sensitive; an asterjsitgdnds for any string, and a number
sign §) stands for any single character. You can also uspaste command to
insert a list of patterns that you use frequently.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Creating Class Reports

Class Patterns

Tools*>Change® 2l
«—_|
Classes
beginning with
] with ‘Change’
Class List
o 2 Categories
Changelist .
ChangelistController beginning
ChangelistView with ‘Tools’

w

Figure 2-2 Using a wildcard pattern to define a work list of classes

The following examples are all valid class patterns:

Table 2-1 Valid class patterns

Tools* Classes in categories beginning with ‘Tools’
tools* Same as above
Tools-Misc>* Classes in the Tools-Misc category

Tools*>Changes* Classes beginning with ‘Changes’ in categories beginning with

‘Tools’
Changes* Classes beginning with ‘Changes’
ChangesList The class name ChangelList

Then, in the Class List view, click on the desired class or classes to highlight them
for inclusion in the report. Use tlald all command in the <operate> menu to
select all of the classes in the list at once;dlsar all to deselect all of them. To
select a range of classes, hold down the <Shift> key while dragging through the

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 25

Chapter 2 Class Reports

desired class names; to deselect a range of classes, hold down the <Control> key
while dragging.

Locating Coding Errors

To scan the selected classes for coding errors, seleCbthectness switch in

the upper left corner of the Class Reports window. Two new switches will appear,
labeledReport andBrowse . When theReport switch is selected, ten report
options are displayed. Each option has a check box, and you can check any
number of them to build up the desired report. WhetBtbavse switch is

selected, eight of the options are offered—the other two are only appropriate for
report output.

Class Report Options

26

Messages Sent but Not Implemented

Each method in the class is checked to make sure that every message sent is imple-
mented somewhere in the system. No attempt is made to assure the appropriate-
ness of the implementor. For examplee# grok message is acceptable even if
grok’s implementor is not in the target class or its superclass hierarchy.

Methods that send an unimplemented message are reporteBrawise mode,
listed in a browser for examination and possible correction.

Messages Implemented but Not Sent

Each method in the class is checked to make sure that its selector is sent by at least
one calling method.

Defining what it means for a message to be “sent” is problematic. As an extreme
example, one could have code that smtsperform: (a,b) asSymbol, wherea

andb are variables that holtbo' and'bar’, respectively. This code, then, sends

the messagm®obar, but no practical analyzer can figure this out. So system tools
have to take a particular stand as to what it means for a message to be sent.

In the case of this facility, the stance taken is exactly the same as that taken by the
senders andmessages facilities in the System Browser: a message is sent if
some compiled code has the message selector as a literal. It will be a literal if the
selector is used in code (e.gelf foobar), or if the symbol exists in literal form
(e.g.,self perform: #foobar). It will not be a literal if the symbol is part of an

array literal (e.g.self perform: #(#foobar) first). (The exception to this rule is a

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Locating Coding Errors

set of special selectors known by the compiler classes. These selectors are always
considered to be sent, even if they do not appear as literals anywhere.)

As a result, the facility may falsely report that some implemented messages are
not sent, so the report should be used as a guide. The above example is, of course,
poor programming style.

However, there is at least one widely-used idiom that is considered good style but
still fails the current test, and that is the use of arrays to hold menu values. The
message for creating a menu is:

PopUpMenu
label: ...
values: #(#msgl #msg2 ...)

These messages are performed by the code, so they are sent. However, because the
selectors are stored in literal arrays, they will not be perceived by Class Reports

as having been sent. Often, such messages are not sent from any other code, so the
facility will incorrectly report them as “implemented but not sent.”

This test could, of course, be extended to include literal arrays. However, that
would be inconsistent with System Browser behavior, which reports “Nobody”
for senders of such menu messages.

Methods that are not sent are reported drswse mode, listed in a browser for
examination.

Method Consistency

When two messages sent to the same instance or class variable assume different
object types, a conflict is reported.

Similarly, when a temporary variable is used to hold two very different kinds of
objects (considered bad form) and thus is sent incompatible messages, a conflict
is reported.

The current value of each class variable, pool variable and global variable is also
tested to be sure its class implements the messages that are sent to it.

Finally, an inconsistency is reported when a message is ssgif that is not
understood by thself object.

When inconsistent methods are found, they are reportedBmimse mode,
listed in a browser.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 27

Chapter 2 Class Reports

28

Subclass Responsibilities Not Implemented

Each method that consists odelf subclassResponsibility message motivates
a check of each leaf subclass to make sure it owns or inherits a reimplementation
of that message.

Note that abstract subclasses need not implement these messages—in such cases,
the report will falsely report errors, so use the report as a guide.

Offending methods are reported orBrowse mode, listed in a browser.

Undeclared References

Each method in the class is checked to verify that no undeclared literals are used.
Offending methods are reported orBrowse mode, listed in a browser.

Instance Variables Not Referenced

Each instance variable is checked to make sure it is referenced by at least one
method. Unreferenced variables are reported; this option is not available in
Browse mode.

Check Comment

The class comment is checked to make sure it mentions all instance variables,
class variables and class instance variables that are in the class definition.

The comment is expected to follow a particular syntax:

n Any amount of plain text followed by a line that says “Instance Variables:”.

n After that line, there should be a line for each instance variable, containing
the variable’s name followed by one or more spaces and tabs, followed by a
“type” specification in angle brackets, followed by one or more tabs and
spaces, followed by text describing the variable.

n If the class has indexed instance variables, include another line as described
above, substituting “(indexed instance variables)” for the variable name.

The type specification is typically one or more class names|,@eparated by
vertical bars. In place of class hame, you can alsdCisssName of: Other-
ClassName", for exampl€'Array of: Boolean". The syntax allows more
complicated descriptions; for more information, see the method comments in
Parser>>typeExpression andParser>>simpleType.

If the class defines any class variables, the comment should have a section similar
to the instance variable section. The heading line is expected tCGlsag Vari-
ables:".

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Locating Coding Errors

Finally, if the class has messages definesedissubclassResponsibility, these
messages should be listed in a section #8ibclasses must implement the
following messages:" as its heading.

The parsing of class comments is somewhat rigid and sometimes what appears to
be a valid comment will generate errors in this report, so use the report as a guide.
For example, if a type description does not fit on one line, or if the variable
description does not start on the same line, the facility will report these as errors.

For instance variables, the facility performs a protocol test:

n All messages sent to each instance variable are verified as being implemented
for the named class (or, if more than one class is named, for at least one of
them).

n If the class has existing instances, each variable is expected to hold an object
of the named type.

n For each class variable, the current value is expected to be an object of the
named type.

This option is not available iBrowse mode. If a comment contains the words
UNDER DEVELOPMENT (in capital letters), that fact is reported and no
checking takes place for that class.

Backward Compatibility Message Sends
The methods are checked to see whether they send messages that exist (only) in a
backward compatibility protocol.

Indefinite Backward Compatibility Message Sends

Similar to the preceding option, but the checker only pays attention to the ambig-
uous case, when a message send exists in tabkavard compatibility

category and another category. In this situation, static analysis cannot determine
whether the message send is inappropriate, so it is reported as a candidate for your
further investigation.

Backward Compatibility Class References

The methods are checked to see whether they refer to a class that is in a class
category that contains the string ‘backward compat’ (without case sensitivity).

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 29

Chapter 2 Class Reports

Estimating Memory Requirements

30

To receive an estimate of the memory requirements of the target classes, select the
Space switch in the upper-right portion of the Class Reports window. Three new
switches will appear. Each button provides a different perspective on the estimated
memory requirements, as follows:

n

Class Size—For each target class, the report shows the estimated number of
bytes required for the class definition, variables, methods and class organiza-
tion.

Method Size—For each method in a target class, the following measure-
ments are reported:

q

Code Bytes—the memory occupied by the method’s byte code, the
portable compiled form of the method that is used to create native
machine code.

Literals —the number of literal pointers created by the compiler to refer
to such things as message selectors, arrays, strings and floats. Each such
literal pointer contributes 4 bytes to the total.

Literal Bytes—the number of bytes required by literal objects other than
Symbols.

Full Blocks—the number of full blocks in each method. Full blocks are
blocks that contain out-of-scope references to temps, or nomgcal (
returns. Full blocks are nonoptimal because they are slower and use more
dynamic memory. This is only of concern in methods that are used
frequently. For further information about full blocks, seeMisgalWorks
User’s Guide

Total—the estimated total number of bytes needed by each method,
including overhead (20 bytes) not reported in the other columns. A total
byte count for all methods is also displayed.

Instance Size—For each target class, the following measurements are
reported:

q
q
q

Count—the number of instances that exist.
TotBytes—the memory, in bytes, occupied by all instances.
AveByte—the average number of bytes for each instance.

A summary line reports the same measurements for all target classes.

These reports are intended to help you optimize memory usage by identifying
places in your code where memory usage is disproportionate to the functional
contribution of the code.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Documenting Your Code

Documenting Your Code

To create a listing of some or all of the elements that make up the code in the target
classes, select tianual switch in the upper left portion of the Class Reports
window. Two new switches will appear, labeRdport andPrint. When the

Report switch is selected, the documentation is displayed in a separate window.
WhenPrint is selected, the output is sent to a printer instead.

The following check-box options are provided for defining the code components
to be included in the listing. The options are hierarchic and interconnected, as
follows:
n class definition

g class comment
n include metaclass —include the metaclass definition.

n protocol names —instance protocol names are reported; class protocol
names are included when timelude metaclass check-box is selected.

n include private protocols —include any protocol beginning with the
string “private.” Private protocols are made separable in this way because
only public protocol is relevant for certain types of manuals.

n methods —list method selectors, including metaclass and private methods
if those check-boxes are selected.

a method comments

a method bodies —including method comments.
Various text emphases are used for the different components of documentation.
For examplettitalic is used for the class comment.To change one of these

emphases, modify and recompile the appropriate method entpbases
protocol on the instance side of thkanualWriter class.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 31

Chapter 2 Class Reports

32 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Chapter 3

Full Protocol Browser

The Full Protocol Browser is an expanded version of the System Browser. It has
all of the capabilities of a standard System Browser. In addition, it enables you to
include superclass and subclass protocol in the message category and message
views. You can also filter the methods by class.

This hierarchic view of a class’s functionality can be especially helpful under the
following circumstances:

n When you are exploring unfamiliar code, because the Full Browser presents
the full behavior set of each class.

n When you are modifying a polymorphic method, because the Full Browser
makes it easy to trace inherited behavior.

Creating a Full Browser

To create a Full Protocol Browser, seleatl Browser in the Advanced
Programming Launcher.

System Browser Full Protocol Browser
1 2 3 4 1 2 4
A
I I
5 /)
5
Switch bank /
Class hierarchy view

Figure 3-1 System Browser compared to Full Protocol Browser

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 33

Chapter 3 Full Protocol Browser

A Full Browser appears much like a standard System Browser, with the addition
of a class hierarchy view, as shown in Figure 3-2. In addition, three switches are
provided for filtering the browser’s display.

System Full Browser

ragnitude-General | Arithmetic'alue
Magnitude - Numbers Complex

[E

* (Fraction)
+ (Fraction)
- (Fraction)

Collections- Ahstract Double coercing I (Fraction)
£ (Mumber)
ahs (Arithmetic'alue)

Collections-Unordere Float comparin

Collections- Sequence

Collections-String Su Integer Tmmmmmmmmes T negated (Fraction)

Collections-Text LargeMegativelnteger ; I guo: (Mumher

Collections- Arrayed LargePositivelnteger | | Magnitude

Collections-Streams |5 — ¥l Arithmeticvalue o rem: (Number) BT

A 3 Hinstance :class |5 B Bl
W SUpers m subs W names |

reciprocal =

“answer 1 divided by the receiver. Result is the denominator or the
denominator negated if the numerator of the receiver is 1 or -1
respectively. Else the result is a new Float. Fail if the numerator

of the receiver is 0."

numerator = 1 ifTrue: [*denominator].
numerator = -1 ifTrue: [*denominator negated).
~Fraction numeratar: denominatar denaminator: numeratar

Figure 3-2 A Full Browser, with theArithmeticValue class selected

The class hierarchy view enables you to filter out parts of the hierarchy and to
perform cross-reference searches that are limited to the hierarchy, as described in
later sections.

Displaying the Full Protocol of a Class

34

As shown in Figure 3-2, selecting a class sudfrastion in the class view causes
the class’s hierarchy to be displayed in the hierarchy view. The current class
displays in boldface type as a visual cue.

All messages and message categories in this hierarchy display in the appropriate
views. The message category view, also known as the protocol view, differs from
aview in the System Browser in that the entries list alphabetically. In the message
view, polymorphic messages are repeated unless you filter them out, so each
method selector can be identified by the class in which it is implemented. In
Figure 3-2, for example, threciprocal method is listed twice, once férithmet-
icValue and again foFraction. Messages in the current class are displayed in
boldface for visibility.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Filtering Messages by Class

By default, theDbject class is excluded from the active list so it is displayed with
a line through it. The following section tells how to include and exclude classes
from the list.

Filtering Messages by Class

The hierarchy view enables you to filter unwanted classes from the protocol
views. To exclude a class, click on it in the hierarchy view. It will be redisplayed
with a line through it. To exclude multiple classes that are listed in sequence, hold
down a <Shift> key while dragging through the classes to be excluded.

= Lu"j-:u_t <4———— Excluded
i agn itude < Included

Figure 3-3 The appearance of included and excluded classes in the hierarchy view

To include a class that was previously excluded, click on it. It will be redisplayed
without the line through it.

To include multiple classes that are listed in sequence, hold down the <Control>
key while dragging through the classes to be included.

Use the switches in the switch bank to set up default filtering that suits your
purposes. Two of the switches provide a convenient means of including or
excluding protocol for all superclasses exd@piect (supers), or all subclasses
(subs). By default, duplicate inherited methods are not shown (because they are
overridden by the local method)—to show them, salkrotv inherited dupli-

cates in the hierarchy view's menu.

The third switchnames, toggles whether the implementing class is identified
after each method selector.

Searching within the Hierarchy

Thesenders command in the message view's menu operates as it does in a
System Browser, searching all classes in the system for methods that se

To limit the search to methods implemented by a class in the current hierarchy,
selectsenders in hierarchy in the <Operate> menu of the hierarchy view. Note
that all classes in the hierarchy are included in the search, regardless of whether
they are filtered out of the protocol and message listings. This is typically much

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 35

Chapter 3 Full Protocol Browser

faster than a search of the entire library, and tends to exclude uninteresting imple-
mentations. Similar hierarchic counterparts forithplementors and
messages commands are also available in the hierarchy view’s menu.

show inherited duplicates
senders in hierarchy
implementars in hierarchy
messages in hierarchy..
find method...

Figure 3-4 The <Operate> menu of the hierarchy view, used to limit scope of search

Scoping Rules

The hierarchy view’s menu also offerfird method command, which differs

from the protocol view’s command of the same name in two ways. First, because
the list of selectors may be very large, you get an opportunity to filter it by speci-
fying a wildcard pattern. Second, the implementing class is shown for each
selector, and duplicates are listed in inheritance order.

The scope of the commands in the class view’s menu and the protocol view’s
menu are limited to a single class, as in a standard System Browser. However,
when a method selector is highlighted, the commands relate to that class. Other-
wise, they relate to the class that is highlighted in the class vieRullin

Browser 's code,selectedClass andnonMetaClass refer to the method

view’s class, whileurrentClass andcurrentNonMetaClass refer to the

class view’s class.)

For example, suppose you have seleétethmeticValue in the class view and
then you highlight theenominator (Fraction) entry in the message list view.
When you select theomment command to display the class comméingc-
tion’'s comment is displayed. To see the commenAfithmeticValue, select a
message for that class (or no message at all).

To restate this scoping mechanism, the selected message’s class overrides the class
view’s class.

There are two exceptions to this rule: tamove andrename as commands in
the message category view. Removing or renaming a message category affects the
class that is highlighted in the class view, in all circumstances.

The scope of a message category is extended in a perhaps unexpected but useful
way in a Full Browser. As you would expect, when you select a message category
such agomparing, all comparing methods in the filtered hierarchy are listed. In
addition, methods in superclasses and subclasses that have the same selectors as
comparing methods in the current class are included, even if they are located in

36 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Searching within the Hierarchy

protocols other thaoomparing. In other words, when the same selector appears
in two different protocols in the hierarchy, Full Browser lists those that could
conceivably be grouped in the current protocol because they match qualifying
selectors in the current class.

For example, suppose you selectdlseessing protocol for thdnteger class.

Both Integer and its subcladsargePositivelnteger implement a method called
digitLength. TheLargePositivelnteger version ofdigitLength would be

included even if it were housed in a protocol named other than accessing. This
behavior obeys the convention that polymorphic messages are placed in protocols
of the same name, while allowing for human error and personal choice in the
enforcement of that convention.

In summary, the changes in the scoping rules compared with a standard System
Browser are as follows:

n Class and protocol view commands apply to the class of the selected
message, if any; otherwise, they apply to the current class. Exceptions are the
remove andrename as commands, which always apply to the current
class.

n In the hierarchy view, théind method command applies to the filtered hier-
archy while the other commands ignore the filters.

Conflicts in protocol names for polymorphic messages are ignored.The Time
Profiler helps you locate portions of your code that consume undue amounts of
processing time. The Allocation Profiler performs a similar service for memory
usage.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 37

Chapter 3 Full Protocol Browser

38 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Chapter 4

Parser Compiler

Overview

The parser compiler classes make it easier to write compilers in Smalltalk. The
SQL classes provide an example of an SQL compiler written using the parser
compiler facilities.

A typical compiler handles four functions:

n Scanning—breaking the source code into tokens (words, numbers, operators,
etc.).

n Parsing—combining tokens into larger structured units.

n Semantic analysis—verifying that variables have been declared, performing
type checking, etc.

n Code generatior—producing a program in machine code or other final form.
This may occur in several phases if optimization or more than one representa-
tion of the output code is involved.

The parser compiler classes provide the following support for these activities:

n Scanning—the Smalltalk Scanner, slightly modified.

n Parsing—This phase is the primary focus of the Parser Compiler, providing
an efficient language for writing your parser.

n Semantic analysis—the Parser Compiler makes it fairly easy to mix in
semantics during parsing. This helps to generate an error message that points
at the right place in the source code.

n Code generatior—you’'re on your own. The Parser Compiler itself demon-
strates one style of code generation: It generates Smalltalk source code during
parsing. The complexity of most languages prevents being able to combine
code generation with parsing.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 39

Chapter 4 Parser Compiler

Scanning Source Code

Parsing

The scanner defines seven standard types of token:

n word—a variable or unary message selector

n number—integer or floating point

n character

n string

n binary—infix operators such asand>=

n keyword—a word followed by a colon (see below)

n signedNumber—a number optionally preceded by a minus sign, with no
intervening delimiters

There is an eighth standard token tykeywords, for one or more keywords in
succession with no intervening delimiters. This produces a single token.
Keywords are only recognized specially if your grammar uses thek&gwbrd

or keywords, or if your grammar includes any literal keywords. (This is for the
benefit of grammars that don't use keywords, but use the colon for other
purposes.)

In addition, the scanner makes assumptions about delimiters (blank, tab, end-of-
line and new-page), which separate tokens but aren’t tokens themselves. It also
assumes that the following characters are tokens on theirown: # () |[].:="and
;. To change any of these assumptions requires an understandin§ cdiimer’s
mechanics—you have to write your owitScanner method that callsuper
initScanner and then substitutes the appropriate entries ityfeTable.

40

For the parsing phase, begin by making your parser a subclass of
ExternalLanguageParser—SQLCompiler has been provided as an example. If
your source language is method-oriented and you want the output of the parser to
be executabl€ompiledMethods, make your parser a subclasGafneral-

Parser instead.

This gives your class basic parsing functionality. The parser scans source code one
character at a time and one token at a time. You must then write production rules
describing the various parts of your language. These rules define parsing algo-
rithms, which your parser will use to recognize constructs such as functions and
clauses in the source code. The syntax of production rules will be described in a
moment.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Parsing

Each clause or other construct found in the source code must be instantiated as a
node in a parse tree. For example, when an SQL clause is recognized in the source
code bySQLCompiler, an instance od6QLClause is created. Classes such as
SQLClause typically are subclassed from a more general class such as
SQLNode.

As an example of this node-creation mechanism, the production rule implemented
by SQLCompiler for recognizing an SQL commit statement creates an instance
of SQLStatement as follows:

EmulationBorderDecorationPolicy uninstallcommitStatement =
#COMMIT #WORK
[statement: 'COMMIT WORK']

In this example, the wor@ OMMIT followed byWORK in the source causes
execution of the block. Atatement: message is sent 8QL Compiler, and that
method sends an instance creation messag@®tdtatement with the
'COMMIT WORK' string as the statement name.

The ultimate output of the parser is an array containing objects s&L&sinc-

tion, which themselves are often composites of smaller language constructs such
asSQLClause. This array represents a parse tree that you can use to generate
code.

As the parse tree is being assembled, it is stored @rdaredCollection called
stack, held byGeneralParser. Thisstack responds to collection protocol such
asremovelast, and stack operations are frequently embedded in blocks within
the production rules. For example, 8@LCompiler>>queryTerm rule contains
the following assignment into a temporary variable:

tableExp := stack removeLast.

A Rule has a Name and a Definition

A production rule describes a semantic unit of the language in terms of other
semantic units combined with literal tokens. It introduces the name of the
semantic unit, followed by, followed by the definition, which may include refer-
ences to other production rules or to literal keywords that are expected at various
points in the source-code.

As an example, the following production rule is taken fi®@LCompiler:

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 41

Chapter 4 Parser Compiler

assignment =
9 <4—— name of the rule

column #= (scalarExp | #NULL) < definition

When a production rule is invoked, its aetnimiuion 1s usea as a template for the
current source code. If the template fits, the rule returns true, triggering creation
of the appropriate node in the parse tree. If the definition doesn’t match, either the
rule returns false, or an error notification occurs.

Rules are Similar to Methods

It is no accident that a production rule looks like a Smalltalk method. It is created
just as a Smalltalk method is, by adding it to the instance protocol for your
compiler classQLCompiler, in this case). You can use the System Browser to
do so, or you can file it in. This is possible becaus®#rserCompiler’s respon-
sibility is to take production rules and translate them into equivalent Smalltalk
code, which is then translated into an executable method. Each production rule is
translated into a method whose selector is the name of the production rule. As a
result:

n You can browse production rules in the same way you browse Smalltalk
methods.

n Production rules can call Smalltalk code, and vice versa.

Temporary Variables Can be Used

A production rule can have temporary variables. These are defined the same way
as in Smalltalk, by enclosing the list of names between two vertical bars.

A production rule begins with a method pattern consisting of the name of the rule,
plus names for any arguments. Except for the terminating equal sign (=), the
syntax is identical to that of a Smalltalk method, allowing for unary, binary and
keyword patterns.

A Rule Definition is a Series of Alternatives

42

The body of a production rule, called its definition, is a seriefi@fnativessepa-

rated by vertical bars (]). The parser tries to match the current source code to each
alternative in turn. If a given alternative succeeds, the definition succeeds and
returnstrue. If an alternative fails, the next alternative is tried.

The final alternative in a series can be left empty to retusimmediately. If the
series is enclosed in parentheses, the empty alternative is indicated by a vertical
bar preceding the closing parenthesis. If the series is the body of the definition, the

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Parsing

empty alternative is indicated by making a vertical bar the last element of the defi-
nition.

For example:

(a]|b)c The nexttokens must match either 'a' or 'b’, followed by 'c'

(a]) c The next token or tokens must match either 'a’ followed by 'c’, or
'c' alone

An Alternative is a Series of Terms

An alternative is a series t#rms each alternative optionally preceded by an at
sign (@). Each term is evaluated sequentially against the source code. If a term
succeeds, the parser proceeds to the next term; otherwise it fails. If the last term in
the alternative succeeds, the alternative rettigs If the alternative fails,

behavior depends on several factors:

n If the at sign is present, the source code stream is rolled back to the state it
was in when the alternative was started, fahsk is returned.

n If the term that failed was the first in the alternatifadse is returned.

n Otherwise, an error notification is returned.

Figure 4-1 summarizes these outcomes in a decision tree showing that action that
results when a term is evaluated under various conditions.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 43

Chapter 4 Parser Compiler

44

(Term matches code)

Y N

Last term in (@ precedes alternative)
alternative

Y N

First term in
alternative

~rue proceed Last alternative
to next

alternative Y

Rollback source

Afalse Last alternative

-<'

error
Rollback source

proceed proceed

Malse {0 next
alternative

Figure 4-1 Summary of the outcomes in a decision tree

Two examples follow:
abc

Expect to find ara, followed byb andc. If a is not found, proceed to the next
alternative or returfalse. If b orc is not found, print an error message.

@abc

Expect to find ara, followed byb andc. If a, b, andc are not found when
expected, proceed to the next alternative or rétlse.

Suppose the parser matcteedut fails to match. For accurate error detection,
theParserCompiler will not automatically back up on failure, so in this case a
message would appear saymgxpected. However, it is possible that if the
source stream were backed up, we might be able to matechther thara b.
Therefore, in this case, it is appropriate to write the rule as:

@ab|cd

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Parsing

Then, ifa succeeds bt fails, the parser will back up and try to matctollowed
by d.

Another way to think about it is: When the first term in an alternative is matched,
the parser assumes it has found the correct alternative. If a later term fails to
match, the parser reports an error based on its assumption that the correct template
was applied unsuccessfully. The at sign removes that assumption so that, instead
of generating an error in this situation, the compiler proceeds to the next alterna-
tive.

A Term is an Action or a Unit-Plus-Qualifier
A term can be aaction, or it can be anit followed by one of the following
symbols:

okl 4+ o+ I*

We will discuss the more common type of term first: units and their quantifying
modifiers.
A Unit is a Word, Terminal or Parenthesized Definition

A unit can be a word, ®rminal, or a definition wrapped in parentheses. If it is a
word, that word is assumed to be the name of another production rule. Some
examples:

Table 4-1 Word and associated production rule

foo Evaluate the production rule foo on the current source code. If
it returns false, fail the current alternative, else continue.

word=#ABC If the next token in the sourceABC, push it on the stack and
scan another token, else fail the alternative.

keyword=#ABC: If the next token in the sourceABC:, push it on the stack and
scan another token, else fail the alternative.

$(If the next token is the open parenthesis character, scan another
token, else fail the alternative. The stack is unaffected.

#ABC If the next token in the sourceABC, scan another token, else
fail the alternative. The stack is unaffected.

#ABC: [keyword If the next token in the sourceABC:, scan another token, else
type] fail the alternative. The stack is unaffected.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 45

Chapter 4 Parser Compiler

Table 4-1 Word and associated production rule

H#~= If the next token in the source+s, scan another token, else
fail the alternative. The stack is unaffected.

#'<<=’ If the next token in the sourceds=, scan another token, else
fail the alternative. The stack is unaffected.

(...) When parentheses are encountered, the enclosed part of the rule
is parsed according to the rules for definition on page 42.

The following examples illustrate the use of the seven quantifying symbols with
units. In these examplef®o pushes &ooNode onto the stack, whiléoo2 does
not affect the stack.

Table 4-2 Quantifying symbols

foo * Expect zero or more repetitions of foo. The top value on the stack
will be anArray of FooNodes.

foo *! Expect zero or more repetitions fo. The top N values on the
stack will beFooNodes, where N is the number of repetitions.

foo + Expect one or more repetitionsfob. The top value on the stack
will be anArray of FooNodes.

foo +! Expect one or more repetitionsfob. The top N values on the
stack will beFooNodes.

foo \ foo2 Expect one or more repetitiondad, separated bfoo2. The top
value on the stack will be akrray of FooNodes.

foo \! foo2 Expect one or more repetitions@d, separated bfoo2. The top
N values on the stack will FBooNodes.

foo I* Expect one occurrence fifo. Assume thatoo leaves array on
the stack. Pop th&rray off the stack and push each of its elements
onto the stack.

A Terminal is a Single Token

A terminal is a single token in the language, such as a number, a string, a variable
name or a keyword. In tHearserCompiler, the following terminals are recog-
nized:

n A dollar sign §) followed by a single character, representing a literal char-
acter in the source.

46 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Parsing

n A number sign#) followed by:
g A string (any sequence of characters enclosed in single quotes)

g A word (an alphabetic character followed by alphabetic
characters or digits)

q A keyword (a word followed by a colon)

g A binary symbol (anything that represents a legal binary operator in
Smalltalk, such a8, \\, *, ~~ and~=)

n The sequenceord=#someWord, wheresomeWord is a word as defined
above

n The sequenckeyword=#someKeyword, wheresomeKeyword is a
keyword as defined above

The difference betwee#someWord andword=#someWord, is that in the

former casesomeWord becomes a reserved word in the language and is always
treated specially. In the latter casemeWord does not become a reserved word
and is treated specially only when it is preceded/byd=.

An Action is a Block or a Special Symbol

An action can be either a Smalltalk block or one of the following special symbols:

Table 4-3 Action symbols

Symbol Description

< Saves the source position in a local variable (specificallyetngs
instance variable iRarserCompiler). Note that only one source position
per production rule is saved, so if you overwrite it, the old value is lost.

> Assumes that the source position was previously saved waiad that the
top value on the stack is a parse node. The parse node isssemt@Po-
sition:to: message, with the saved position as the first argument and the
current position as the second argument. This implies that your node
classes must implemensaurcePosition:to: message when you use this
symbol in a production rule.

<< Pushes the source position onto the stack.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 47

Chapter 4 Parser Compiler

48

Table 4-3 Action symbols

Symbol Description

>> Assumes that the top value on the stack is a parse node, and that the next
value is a source position saved<yy. The parse node is sensaurcePo-
sition: message, with an interval from the saved position to the current
position as the argument. The source position is removed from the stack,
and the parse node remains the top element.

? Pops the top value off the stack. If itrige, proceed, otherwise fail the cur-
rent alternative.

Pops the top value off the stack and proceed.

The first four operations are for matching source code positions to parse nodes.
The last two are for use with Smalltalk blocks. When a Smalltalk block appears in

a production rule, the block is evaluated and the result is pushed onto the stack. If
you are interested in the effect of the block but not the returned value, follow the
block with a period to get rid of the unwanted value. To decide whether to continue
parsing after a block has been evaluated, follow the block with a question mark to
cause the current alternative to proceed or abort depending on the returned value.

Two Types of Block Syntax are Allowed

Two distinct syntaxes are accepted for Smalltalk blocks. One form of syntax is
identical to that of normal Smalltalk blocks having zero arguments. The second
form is nonstandard and requires further explanation—it has the advantage of
very concise coding, with the disadvantage of very restricted syntax.

Like a normal block, this special block is enclosed in square brackets. It consists
of exactly one message—the message can be either a binary or keyword message,
but not a unary message. The receiver is specially coded:
n If there is no receiver, the message is sent to the parser itself.
n If the message selector is preceded by a co)othé top value is popped off
the stack and used as the receiver.
Each of the arguments is likewise specially coded:
n If there is no argument, or if the argument is a colprti{e top value is
popped off the stack and used as the argument.

n If the argument is a normal Smalltalk liter8lygnbol, String, Number,
Array, ByteArray, Character, or nil, true or false), it is used in the ordinary
way.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Creating your Own Compiler

n If the argument is a temporary variable, instance variable, class variable or
global variable, it is used in the ordinary way.

For example, the following block sends@yWith: message to the top value on
the stack, with the second value on the stack as argument:

[:copyWith:]
Note that no argument can be the result of a message send.

Summary of Grammar for Parsing Methods

Here is a simplified version of the grammar for parsing methods, written in itself:

method = pattern #= temporaries definition
pattern = word | (keyword word)+
temporaries = $| word* $| |d
definition = alternative ($| alternative)*
alternative = ($@ |) term*
term = unit

((# [#)

| (#+ | #+)

| (#\ | #\) unit |)
unit = word | character

| $# (word | keyword | binary | string)
| $(definition $)

Creating your Own Compiler

In preparation for writing programs in your new language, first define a compiler
classMyLanguageCompiler, then define a dummy clasy/Language. Define
the following class method fayLanguage:

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 49

Chapter 4 Parser Compiler

compilerClass
AMyLanguageCompiler

Then any methods defined in claggLanguage or any of its subclasses will
compile withMyLanguageCompiler rather than the standard Smalltalk
compiler. The example methods in the SQL class are compils@bhZompiler
in just this way.

The typical instance creation protocol for a parser takes eitbeeam or a
String as input, as well as the name of the top-level production rule to be applied.
For example:

CParser parse: aStream as: #cFile

The final step in code generation is done by the meggageate:. This message

is defined inGeneralParser on the assumption that the output of your compiler
(i.e., the single element left on the stack at the end of recognizing a method) is a
string that is actually a Smalltalk source method, which then gets handed to the
Smalltalk compiler.

However, you can override this method in your own compiler to do something
different. It should return a selector if the code generation succeeilsif dr

fails. In the case of the SQL example, the final object i&rasy containing a

parse tree in the form of a hierarchy of nodes. Try the examples on the instance
side of theSQL class, inspecting the results recursively to see the structure of the
parse tree.

This object responds to Smalltalk messages and can thus be manipulated to suit
the next phase of compilation.

50 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Creating your Own Compiler

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 51

Chapter 4 Parser Compiler

52 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Chapter 5

Enhanced Numbers

The classes described in this chapter are useful in applications requiring advanced
mathematical constructs such as complex humbers and infinity.

Complex Numbers

An instance of clasSomplex has two components, a real number suchFhsat,
and an imaginary number (a multiplei pévhich represents the square root of -1).
A Complex number is represented in the following form(at5 + 3 i)}—white
space inside the parentheses is ignored.

Creating an Instance

An instance can be created by using the literal form shown above, or via the
real:imaginary: method, as ilComplex real: 5.5 imaginary: 3. When the real
component is zero, sending the messagan integer is sufficient, as3i. When
the imaginary component is zero, the shdiremReal: method can be used. In
summary, the expressions in the left column generatedheplex numbers in the
right column below:

3i (0+3i)

55+ 3i (5.5 +3)
Complex fromReal: 5.5 (5.5+0i)
Complex real: 5.5 imaginary: 3 (5.5+3)

Protocol Summary

Complex numbers support the usual numeric operations, including accessing,
arithmetic, mathematical functions, coercion, comparison, conversion, testing and

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 53

Chapter 5 Enhanced Numbers

generality. Nonequal comparison, truncation and rounding are not valid with
complex numbers. Additional methods include:

Table 5-1 Accessing

r Same asbs, which returns an absolute magnitude. For exani®!/g,
+ 3 i) r returns6.26498.

theta Return the angle between the receiver and the positive real axis, in
radians

Table 5-2 Arithmetic

conjugated Reverse the sign of the imaginary component.

Table 5-3 Converting

asPoint Return aPoint with the real component as tkealue and the imaginary
component as thevalue.

i Multiply the receiver by-1 sqrt). This message is also understood by
Number afterMetaNum.st is filed in.

Metanumbers

MetaNumeric Class

54

Infinity andInfinitesimal are the best examples of metanumbers, which are
impossible but mathematically useful constructs. MiaéaNumeric class is an
abstract superclass with four subclasses, as follows:

MetaNumeric
Infinity
Infinitesimal
NotANumber
SomeNumber

TheMetaNumeric class provides coercion and conversion support for its
subclasses. Must of this support comes in the form of double dispatching methods,
which bring coercion into play when two unlike numbers fail in some arithmetic
or comparison operation.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Metanumbers

For example, suppose you execute the following expression:
2.3 + (Infinity positive)

TheFloat method for addition doesn’t know how to add infinity to a floating point
number directly, so it asks thefinity object to perform the addition. It does so by
evaluating:

(Infinity positive) sumFromFloat: self

ThesumFromFloat: method is implemented ByetaNumeric, the abstract
superclass ofinfinity. After coercing the floating point number into meta form
(making it an instance &omeNumber), the superclass hands offltdinity to
perform the specific addition. All metanumbers need to have non-metanumbers
coerced to meta form, so this behavior is performed by their common superclass,
MetaNumeric.

Infinity Class

Infinity represents a number too large to be represented in any other form. We will
use the termsinfinity and-infinity to denote the positive and negative forms of
this number.

It is defined to mean that for any real numkgthe following is true:

-infinity < x < +infinity

Creating an Instance of Infinity

The expressiomfinity positive creates a positive instancedofinity, andinfinity
negative creates a negative instance.

Protocol Summary

The usual numeric operations are supportelahfigity, according to the following
rules (where<is any real number):

X + +infinity = +infinity

X - +infinity = -infinity

X * +infinity = +infinity when x > 0
X * -infinity = -infinity when x > 0

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 55

Chapter 5 Enhanced Numbers

0 * +infinity = 0

+infinity + +infinity = +infinity

-infinity - +infinity = -infinity

+infinity * (+/-)infinity = (+/-)infinity

-infinity * (+/-)infinity = (-/+)infinity

+infinity - +infinity = undefined value, and an error occurs

Because +infinity is not a single value, but a set of all real numbers that are unrep-
resentably large, it makes no sense to ask whether +infinity = +infinity. Doing this
will cause an error.

Infinitesimal Class

infinitesimal is a number so close to zero it cannot be represented as a conven-
tional number—it can be thought of as the reciproc&hfirity.

Creating an Instance of Infinitesimal

Creating an instance bffinitesimal is done exactly as withfinity, by executing
an expression such as:

Infinitesimal positive
Infinitesimal negative
Infinitesimal negative: aBoolean

Protocol Summary

We will use the termstiny and-tiny to denote the positive and negative forms of
this number.

The usual numeric operations are supported, according to the following rules
(wherex is any real number unless otherwise specified):

X + +tiny = x when x ~= 0.
0 + +tiny = +tiny

X * +tiny = +tiny when x > 0
X * -tiny = -tiny when x > 0
0*+tiny =0

+tiny + +tiny = +tiny

-tiny - +tiny = -tiny

+tiny * (+/-)tiny = (+/-)tiny
-tiny * (+/-)tiny = (-/+)tiny

56 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Metanumbers

+tiny - +tiny = undefined value, and an error occurs

x [+infinity = +tiny when x>0

x [+tiny = +infinity when x > 0

+tiny * +infinity = undefined value, and an error occurs

Loosely speaking, +tiny is not a single value, but a set of all real numbers that are
unrepresentably small. As with infinity, it makes no sense to ask whether +tiny =
+tiny.

NotANumber Class

An instance oNotANumber can be used as a placeholder for the result of an
illegal mathematical expression, suchBaarcSin. Since the behavior of
NotANumber consists of various kinds of error signals of the form “You can't do
such-and-such with a NaN,” the result is substituting one kind of error for another.
In theory,NotANumber error signals could be trapped by a signal handler at a
high level in your application, which could then decide, for example, to continue
with some time-consuming computation, noting the error in a log, rather than
abort because of the errblotANumber was created for the sake of
completeness—along withfinity andinfinitesimal, it is defined by IEEE in the

set of floating point numbers.

Creating an Instance of NotANumber

To create an instance, execietANumber new.

Protocol Summary

NotANumber implements the common arithmetic and comparison methods,
raising an error signal for each.

The printable form of an instance is “NaN” so error strings use that term, as in:

'‘Can"t perform arithmetic functions on NaN'

SomeNumber Class

SomeNumber represents a conventional scalar number coerced into metanu-
meric form so it can be used in both conventional and metanumeric computations.
Such a number responds to numeric operations as usual, but has the same gener-
ality as other metanumbers and can be used in metanumeric computations. It is

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 57

Chapter 5 Enhanced Numbers

essentially a support class for the other metanumeric classes so it has little poten-
tial for reusability.

58 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Chapter 6

Terminal Emulator

The Terminal Emulator provides a smart terminal for access to shell facilities,
external editors, etc., as well as serial-port connections to modems and other
devices. It can also be integrated into your Smalltalk application to provide users
access to those external facilities.

Creating a Free-Standing Emulator

To create an emulator, first file in the following auxiliary code files supplied with
VisualWorks in theutils directory or folder (in addition to theerminal.st

file supplied with this product):

n Serial.st (all platforms)

n ExtIPC.st (UNIX platforms only)

n UnixIPC.st (UNIX platforms only)

Then selecTerminal in the Advanced Programming Launcher. A window will

be opened on a VT100 terminal by default. To change the default, execute the
expression:

CTermConnection defaultTerminalEmulation: SunTerminal.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 59

Chapter 6 Terminal Emulator

finfcsh (80x24 vt100)

zodiac:regank [

Figure 6-1 Terminal Emulator window

The VT100 and Sun console are the two available terminal types.

In a UNIX environment, the terminal is connected to a UNIX shell whose type is
determined from the value of what'’s set in 8t6éELL environment variable.

If that variable is not set, a C shell is used, by default. To change the default shell
type, execute an expression such as:

CTermConnection defaultUnixShellName: 'sh’

On Microsoft Windows machines and the Macintosh, the terminal is opened on
the default serial port.

The terminal supports cursor positioning, highlighting and other characteristics
required by full-screen editors suchvasandemacs. The <F1>, <F2>, <F3> and
<F4> function keys are mapped to the VT100’s <PF1> through <PF4> keys. The
user-interrupt key sequence is <F10> rather than <Control>-<c> within the
Terminal window, by default.

The <Operate> menu provides the following commands:

60 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Putting an Emulator in Your Application

Table 6-1 <Operate> menu commands

Command Description

copy Copy the highlighted text in the terminal view.

paste Insert text that has been copied from another window.

do it Execute the highlighted expression (presumed to be Smalltalk) in

the terminal view.

inspect it Execute the highlighted expression and open an inspector on the
result.
reset Perform a software reset of the terminal window.

Perform a software reset of the terminal window.

Most of the features of a VT100 terminal are supported, with the following notable
exceptions:

n Double-width and/or double-height characters

n Graphics character set and international replacement character set

n Software control over numeric keypad mode

n Software control over cursor-key mode (no switching from cursor mode to
application mode)

n Keyboard locking during escape sequences

n Device attribute reports

n Software switching from 80-column mode to 132-column mode

Resizing a Terminal Emulator window can cause undesired results because the
external process (such asemacs editor) is not notified of the change automat-
ically. Depending on the program, you may be able to manually inform it of the
new rows-and-columns count (which is displayed in the window label). For

example, the command to reset the window size (in some varieties of UNIX) is of
the form:

% stty rows 24 columns 80

Putting an Emulator in Your Application

The free-standing terminal emulator consists ¥fsmialComponent inside a
ScheduledWindow. To invoke the complete package programmatically rather

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 61

Chapter 6 Terminal Emulator

62

than from the Advanced Programming Launcher, execute the following expres-
sion:

CTermConnection open

This expression opens the same default apparatus as you get when you select
Terminal inthe Launcher. For specific alternatives such as a TTY connection, see
the class protocol calledew creation in CTermConnection.

To create th&/isualComponent separately, for inclusion in a composite view,
use an expression of the following form:

CTermView new model: (CTermConnection connectToTty: 'tty2")

In this example, a connection is established to the device ngy2edo get the
default serial port, use the unary messam®ectToTty instead. Variants of the
connect message can be found in the instance creation protocof&rmCon-
nection. Note thatonnectToPty: does not take &tring argument, but rather an
instance ofJnixPseudoTtyAccessor. To create &isualComponent with a
connection to the default pseudoterminal, then you would execute the following
expression:

CTermView new model: (
CTermConnection connectToPty: (
UnixPseudoTtyAccessor openMaster))

The resulting/isualComponent can then be installed in your composite view in
the usual way.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Chapter 7

Project Browser

If you use multiple projects to group your VisualWorks windows, the Project
Browser is convenient for navigating among the projects. The Project Browser
also enables you to access the Change Set of any project without having to exit the
current project. Finally, the Project Browser provides a convenient window
browser for inspecting any window in any project, including an outline of its
component hierarchy, which can be useful when debugging your application. You
can also invoke such a browser by sendlirgpect to aScheduledWindow.

For more information about projects, see WualWorks User’s Guide

Opening a Project Browser

To open a Project Browser, sel&bject Browser in the Advanced Program-
ming Launcher.

A Project Browser lists all of your projects in the upper left view. When you select
one project from the list, the upper-right view lists the windows in that project
while the bottom view displays the desktop layout of Smalltalk windows in that
project, as shown in Figure 7-1. Selecting a window name in the upper-right view
causes the corresponding image in the bottom view to redisplay in front of any
obscuring window images. In the window-image view, all windows are shown as
if they were open, including iconified windows.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 63

Chapter 7 Project Browser

Project Browser

>

Froject
Waorkspace
System Transcript
System Browser
Launcher

‘Waorkspace

Figure 7-1 The three parts of the Project Browser

Relabeling a Window

The entries in the window list view are taken from the window labels. To change
a window label, even in another project, select the desired project and window in
the Project Browser. Then use tiedabel as command in the <Operate> menu

to bring up a prompter for the new label.

Renaming a Project

The entries in the project list view are taken from the text views of the various
Project windows. To change an entry, edit the text in the pertinent Project window,
then selechccept in the text view’s <Operate> menu. You can also use the
rename as command in the Project Browser’'s <Operate> menu to rename the
highlighted project.

Updating Project Information

If you open a new project or change the text in a Project window as described
above, each existing Project Browser will reflect an inaccurate list of projects until
you update it. To do so, make sure no project is selected—if one is selected, click
on it to deselect it. Then selegidate in the <Operate> menu. Similarly, you
mustupdate the list after deleting a project.

64 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Entering a Project

Updating Window Information

When the current project is selected, changes in the window configuration are not
always reflected in the window list view or the window image view. To update
those views, selectpdate in the <Operate> menu of the project list view.

Entering a Project

The Project Browser can be used to enter any project from any other project. This
permits you to roam freely in the hierarchy of projects, without having to enter
from and exit to a parent project. For example, suppose the project hierarchy is as
pictured below, with Project P-1 at the root of the hierarchy.

Normally (using the Project windows rather than the Project Browser), you would
have to enter Project P-2 to get to Project P-3.

Figure 7-2 Using a Project Browser to leapfrog intervening projects

The Project Browser lets you skip P-2 and jump right to P-3. Similarly, you can
exit direct to P-1 from P-3. The deeper your hierarchy of projects, the more helpful
you will find this feature.

To enter a project from the Project Browser, select the desired project in the upper
left view. Then seleatnter in the <Operate> menu. This technique applies
whether you are traveling up or down in the hierarchy—instead of egihg

project in the Launcher to return to a parent project, justeuser .

Inspecting a Change Set

Each project maintains its own summary of code changes, catlehge set

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 65

Chapter 7 Project Browser

ChangeSet H]

)

> Reorganized System

==

self

clastshcga added classes:

gl]:ssl;)e Projectiiew
reorgani S|rrl1plgNot|f|erU|ew
specialD UnixPipeAccessor

_______ BarChartView
FinancialHistory
ProjectBrowser
Document

» [locbC ol D lntor »

Figure 7-3 A Change Set Inspector

The Project Browser enables you to inspect the change set for any project without
leaving your current project. To do so, select the desired project in the upper left
view of the Project Browser, then seleipect changes in the <Operate>

menu. For more information about change sets, sedghalWorks User's Guide

Exploring a Window'’s Structure

66

When a window name is selected, you can uséngpect command to open a
Window Browser on the selected window. In the Window Browser you can
expand andcontract portions of the window’s component hierarchy to reveal
the parts that interest you most. You can edése or lower the actual window,
which is useful when a window has become buried.

Window Browser on: Launcher

Lamcher
a CompositePart
a TranslatingWrapper on: DepthlImage (exter|
DepthlImage (extent: 25826 depth: 1)

a LauncherView

w W

arigin = 107@as ~
layout

Figure 7-4 Using a Window Browser to examine window structure

Within the component hierarchy, you can select a particular component and
inspect its instance variables in the inspector views, spawn an Inspector with the

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Overview of the Code

inspect command, obrowse the code for its class. Use tieesh command to
briefly highlight the component in the actual window.

Overview of the Code

The Project Browser is implemented via three new classes:

n ProjectBrowser, a subclass dflodel
n ProjectView, a subclass ofiew
n WindowBrowser, a subclass ddutlineBrowser

In addition,SelectionInListView is used twice, once for each of the list views in
the Project Browser.

ProjectBrowser class

ProjectBrowser holds a collection of all instances®foject in the window hier-
archy. In addition, it keeps a list of the windows in the selected project, and
remembers both the selected project and the selected window. Because of its
specialized functionalityProjectBrowser is not a likely candidate for reuse
unless you are employing instancesobject in your application.

ProjectView class

ProjectView might be adapted to a model other th&r@jectBrowser.

e .

System Browser

workspace

System Transcript Method Browser on Projectview class

Figure 7-5 A project view

ProjectView adds a small amount dfsplayingandupdatingprotocol to the
behavior it inherits fronview. Some of the messages it sends to its model, such
asprojectWindows, assume &rojectBrowser as model so you would need to
subclass it and change such assumptionsuptate: method may also need
revision, as it expects a parameter indicating whether a project has changed, a
window has been selected, or a window has been deselected.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 67

Chapter 7 Project Browser

The heart oProjectView is in its method for drawing a useful caricature of an
application window. To modify the caricaturing style (with wider outside borders,
for example), you would examine and modify the
displayWindow:on:highlighted: method.

WindowBrowser class

68

A WindowBrowser holds information about window components as well as
bookkeeping information for managing selective displays of the list. Its parent,
OutlineBrowser, is more general and therefore a more likely candidate for reuse.
OutlineBrowser is a support class provided with VisualWorks Advanced Tools.

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Chapter 8

Benchmarks

TheBenchmark class provides a framework and a convenient interface for
running benchmarks to compare your application’'s performance across versions
and in various operating environments. A simple subclaBenthmark can be

built to run the benchmarking tests. As an example, we have provided a subclass
calledSystemBenchmark, which contains updated versions of the historic test
suite we at ParcPlace use to compare system performance on different platforms.

This chapter describes the reusable interface and related mechanisms provided by
theBenchmark class, using th8ystemBenchmark subclass as an example.
The final section then explains how to implement your own benchmarks.

Using the Benchmark Interface

To open the example System Benchmarks window, sBE@thmarks in the
VisualWorks Advanced Tools Launcher.

In addition to the System Benchmarks window, a Benchmark Transcript window
will open to display the test results.

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 69

Chapter 8 Benchmarks

System Benchmarks

Benchmarks Measure:

] times » rates

" testallCallsOn

+ testallimplement]]| Report:

+ testClassOrganig [rawe benchmark measurements
v testCompiler ® individual benchmark statistics
7 testDecompiler ® overall performance statistics

~ testinspect

~ testkeyhoardLog irn v i —
 testKeybaardsin Charactt_ar!ze individual and swte_ results using:
v testPrintDefinitio W minimum W maximum
+ testPrintHierarch [arithmetic mean W median
~ testTextDisplay
~ testTextEditing L ;
+ testTextFormatti [minimum I maximum
testasFloat ™ harmonic mean [median
testBasicat
testBasicAtPut Write report to:
testFloatingPoint m benchmark transcript
testPerform o file:
testStringReplac

Summarize overall performance using:

Smalltalk.timing|

<]

Humber of iterations per run: 3
run e

Figure 8-1 The System Benchmarks window with default settings

The System Benchmarks window has two views, arranged side by side. The
benchmarks view, on the left side, lists the available benchmark tests. The param-
eters view, on the right, contains a variety of buttons and fill-ins for controlling
report attributes. A button markeah is located below the list view—use the

button to begin execution of a test suite.

Assembling the Test Suite

Although a benchmarking run can be limited to a single type of test, such as
adding 3 + 4 thousands of times, a run frequently involves a suite of several related
tests. You can use the benchmarks view to select the tests you want to include in
a run. To select an individual test, just click on it with the <Select> button; click
again to deselect it. A check mark appears in the margin next to each selected test.

Selection Techniques

70

To select multiple adjacent tests, hold down the <Shift> key while dragging the
cursor through the desired tests (the check marks will appear after you release both
the mouse button and the <Shift> key). To deselect multiple adjacent tests, hold
down the <Control> key while dragging through the test names.

To cancel all selections, uskar selections in the <Operate> menu; use
select all to include all of the tests. The subclass can define a default suite of
tests—in our exampl&ystemBenchmark uses as defaults the tests used by

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Using the Benchmark Interface

ParcPlace for standard comparisons of platform performance. You can reset the
test suite to the defaults at any time by seleati#sgt to default in the
<Operate> menu. To summarize these operations:

Table 8-1 Selection techniques for system benchmarks

Operation Description

click <select> button Select and deselect a single test
<Shift> + drag <select> Select multiple tests

<Control> + drag <select> Deselect multiple tests

select all Select all tests

clear selections Deig First iteration

reset to default Sel

Setting the Report’'s Granularity

At the end of each benchmarking run,
accumulated during the tests. Three k
control the level of detail in the report,

Raw Benchmark Measurement

ntaining statistics
arameters view

Second iteration

Details about each iteration of each te
discover significant variations among
tion, for example, might consume a di
might not take advantage of compiled

n The following times, for example, v
tests in theSystemBenchmark suite

[display text]
10 repetition(s) in <

ion can be used to
on of an opera-
f time because it

srations of two
replacement.

Third iteration

0.921 seconds
92100.0 microseconds per repetiti

[text replacement and redisplay]
20 repetition(s) in
5.1 seconds
255000.0 microseconds per repeti

VisualWorks Advanced Tooldser’s Guide Rev. 1.2

71

Chapter 8 Benchmarks

72

[display text]
10 repetition(s) in
0.88 seconds
88000.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
4.98 seconds
249000.0 microseconds per repetition

[display text]
10 repetition(s) in
0.94 seconds
94000.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
4.98 seconds
249000.0 microseconds per repetition

Individual Benchmark Statistics

A summary of statistics for each test. In effect, this section of the report summa-
rizes the details described above, whether or not the details themselves are
included in the report. This information is useful for identifying the slow
performers in a suite of tests, marking them as candidates for optimization.

Results are converted to rates (bydbevert:toRateFor: method in the subclass)
when the rates switch is selected. Whentithes switch is selected, no such
conversion takes place. (The class commerBé&mchmark discusses this mech-
anism and its implications further.) Types of statistics are described in “Choosing
Types of Statistics” on page 73.

The following example reports the minimum, maximum and median for the raw
times reported in the example above:

Table 8-2 Individual benchmark results (three iterations)

Benchmark Minimum Maximum Median
TextDisplay 136.170 145.455 138.979
TextEditing 82.7451 84.7389 84.7389

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Using the Benchmark Interface

Benchmark Suite Statistics

A summary for the entire suite, the purpose of creating a suite in the first place is
to measure the performance of some subsystem. Benchmarking provides a
weighted average for the performance of that subsystem, which you can then use
to compare with an identical benchmarking run under different operating circum-
stances.

For the weighted average, the report displays the same columns as for the indi-
vidual statistics. For example, if you elect to display only the median value for
individual benchmarks, only the median value for the suite-wide statistic will be
shown.

Table 8-3 Benchmark suite results (three iterations)

Rating Type Minimum Maximum Median

Minimum 118.539 126.309 125.558
Maximum 139.13 142.222 142.222
H-Mean 116.364 119.425 118.321
Median 118.539 126.309 125.558

Let's use the minimum H-Mean (harmonic mean) to illustrate the derivation of
these statistics further. Each time the test suite is performed, the individual test
results are converted to rates and then combined mathematically to arrive at the
harmonic mean score for that iteration.

The suite was performed three times, in our example, so three such harmonic
means are derived. The minimum H-Mean represents the lowest of the three
scores. Similarly, the maximum H-Mean is the highest of the three, and the median
H-Mean is the median (or middle value) of the three.

Choosing Types of Statistics

The two summary sections of the report can include different types of statistics.
You control which types are included in the report by selecting buttons in the
parameters view. The types of statistics are as follovep(esents the number of
iterations):

n Minimum—the result from the best-performing iteration.

n Maximum—the result from the worst-performing iteration.

n Arithmetic mean—the average of all iterations; sum/

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 73

Chapter 8 Benchmarks

n Harmonic mean—The number of iterations, divided by the sum of the
inverses of the weighted results for the separate iterations.

i(1/resulty) + (L/resulty) + ...]

Note: The median harmonic mean of tBgstemBenchmark default test

suite is the standard benchmark score used by ParcPlace when comparing
system performance in different operating configurations. This test suite
differs from the suite used in prior releases of VisualWorks, so the scores
cannot be compared across versions meaningfully.

n Median—the value that is midway through a ranked list of the scores. For
example, if you specify five iterations, the median is the third element in the
sorted collection of scores.

The harmonic mean is only useful when summarizing overall performance, so it
is not available under the headi@paracterize individual and suite results

using: . Under the headinGummarize overall performance using: , the
arithmetic mean is only offered when you selectitnes switch; when the

rates switch is selected, the harmonic mean is offered.

Setting the Report Destination

The report can be displayed in the Benchmark Transcript window, stored in a disk
file, or both. Use the buttons under the headifge report to: in the parame-

ters view to select one or both destinations. You can provide the name of a file in
the fill-in blank. The file will be created in the start-up directory unless you
specify an absolute or relative pathname.

Setting the Number of Iterations

74

The test suite can be repeated as a means of improving the accuracy of the results.
By default, the iteration count is set to three. To change the number of iterations,
type the desired number in the fill-in blank labeMwaimber of iterations per

run.

The number of iterations represents the number of times the test suite will be
repeated—this is not to be confused with repetitions that are hard-coded into a
given method. For example, thest3plus4 method repeats tige+ 4 operation
100,000 times for each iteration, so three iterations would cause the operation to
be repeated 300,000 times.

In some situations, a single iteration may produce more interesting results. For
example, a method might take a relatively long time to execute on its first pass,

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Creating @Benchmark Subclass

Creating a

but run much faster subsequently. However, if your application calls the method
only infrequently, the first-iteration results might prove more illuminating.

To begin execution of the testing run, click on ttwe button. If your window
manager is configured to prompt you for placement of windows, you might
consider turning off that feature before running the default test suite or other suites
involving window-displaying operations. However, prompt-for-placement can be
left on without affecting the results.

Benchmark Subclass

The benchmarks are implemented via the following four classes, all of which are
subclasses dDbject:

n Benchmark, and its subclasSystemBenchmark

n BenchmarkTable

n BenchDecompilerTestClass

Benchmark Superclass

Benchmark is an abstract superclass whose protocol provides the interface we
have been describing, as well as the timing and statistical analysis facilities for a
benchmarking run. It has instance variables for remembering the report parame-
ters as selected in the interface, and the test results as they are accumulated.
Benchmark also provides the reporting protocol, making usBexchmark-

Table (described further below).

SystemBenchmark Subclass

Subclasses d@enchmark, such aSystemBenchmark, are responsible for
providing the specific tests to be run. See the methods that begin with the word
“test” in SystemBenchmark for examples.

In addition, subclasses must implement the followdngessing messages:

benchmarkLabelForSelector:

benchmarkSelectors
initiallySelectedBenchmarks

Subclasses may also need to overBdachmark’s weighting protocol, to estab-
lish relative weights for test methods and to convert the results to an appropriate

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 75

Chapter 8 Benchmarks

rate; and thdefaults protocol, which determines the default selections in the user
interface.

BenchmakTable Class

BenchmarkTable provides two-dimensional reporting capabilities that might

well be useful to other applications, though the code requires extensions to make
it more generally useful. It holds onto a report name, a collection of column labels
and a collection of rows. Each row is assumed to be a collection itself.

The protocol is tailored to the needs of the benchmark reports, though it provides
a subset of a more generally useful set of behaviors.

BenchDecompilerTestClass Class

BenchDecompilerTestClass is a holder for methods that are decompiled during
theSystemBenchmark>>testDecompiler benchmark. The code in the methods
has no functional value—in fact, it is obsolete.

76 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Creating @Benchmark Subclass

VisualWorks Advanced Tooldser’s Guide Rev. 1.2 77

Chapter 8 Benchmarks

78 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Appendix A
Code Files

Introduction

The following table summarizes important characteristics of the code library
containing the VisualWorks Advanced Tools. For each code module, the disk file-
name, class category and class names are reported. The modules are listed in the
same order in which they are describedin this guide.

Table 1 Code files listing

Chapter Filename

Category

New Classes

(Support files) Install.st

OKLaunch.st

OKSupprt.st

OpenLook.st

Windows.st

AT-Support

Interface-
Openlook

Interface-
Windows3

(installation tool)

(adds methods to the existihguncher-
View class)

EvaluationHolder
LabeledObjectHolder
OutlineBrowser

OpenLookBorderDecoration-Policy,
OpenLookHorizontalScroll-bar,
OpenLookLabeledButton-View,
OpenLookPushButtonView,
OpenLookScrollar,
OpenLookScrollBarController,
OpenLookVerticalScrollbar,
OpenLookWidgetPolicy

Win3Border, Win3BorderDecoration-
Policy, Win3LabeledButtonView,
Win3PushButtonView, Win3ScrollBar,
Win3WidgetPolicy

VisualWorks Advanced Tooldser’s Guide Rev. 1.2

79

Appendix A Code Files

Table 1 Code files listing

Chapter Filename Category New Classes

Support.st Support BasicButtonController,
BasicButtonView,
BasicLabeledButtonView,
BeveledBorder,
EmulationBorderDecoration-Policy,
EmulationFixedThumb-ScrollBar,
EmulationScrollBar,
EmulationScrollBarControl-ler, Label,
PushButtonView, SelectController,
SimpleBorder,
ToggleButtonController,
TriggerButtonController, VisualBlock,
VisualPairButton

Parser compiler Parser.st AT- ExternalLanguageParser
ParserCompiler GeneralParser
ParserCompiler
PushFragment
RecognizerFragment

SQL.st AT-Parsing SQL
Example SQLClause
SQLCompiler
SQLFunction

SQLIdentifier
SQLInfixOperation

SQLLiteral
SQLModifier
SQLNode
SQLPostModifier
SQLStatement
Enhanced numbers Complex.st Magnitude- Complex
Numbers
MetaNum.st Magnitude- Infinitesimal

Numbers- Infinity

MetaNumeric MetaNumeric
NotANumber
SomeNumber

80 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Introduction

Table 1 Code files listing

Chapter Filename

Category

New Classes

Terminal emulator Terminal.st

Class reports SysAnal.st

Profiling time and Profiler.st

memory usage

Benchmarks Bench.st

Full protocol browser FullBrow.st

Project browser ProjBrow.st

AT-Terminals

AT-
SystemAnalysi
S

AT-Profiling

AT-
Benchmarks

AT-Tools

AT-Tools

CharacterTerminal
CTermConnection
CTermController
CTermView
SunTerminal
VT100Terminal

ClassDeclarations
ClassNameChooser
ClassReporter
InstanceTally
ManualWriter
MessageAnalyzer
MessageCollector
ReferencePathCollector
SystemAnalyzer

AllocationProfiler
MessageTally
ProfileOutlineBrowser
Profiler
ProfilerListHolder
TimeProfiler

BenchDecompilerTestClass
Benchmark
BenchmarkTable
SystemBenchmark

FullBrowser

ProjectBrowser

ProjectView
WindowBrowser
ScheduledWindow>>inspect

VisualWorks Advanced Tooldser’s Guide Rev. 1.2

81

Appendix A Code Files

82 VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Index

Symbols

<Control>-click ix
<Meta>-click ix
<Operate> button viii
<Select> button viii
<Shift>-click ix
<Window> button viii

B

Benchmarks
Arithmetic mean 74
BenchDecompilerTestClass 77
Benchmark class 76
Benchmark suite statistics 73
BenchmarkTable class 76
clear selections command 71
creating a subclass 75
Harmonic mean 74
Individual benchmark statistics 72
Maximum 74
Median 74
Minimum 74
opening example 69
Raw benchmark times 71
report components 71
reset to default command 71
run button 70, 75
select all command 71
SystemBenchmark class 69, 76

VisualWorks Advanced Tooldser’s Guide Rev. 1.2

types of statistics 74

window components 70
bulletin boards xii
buttons, mouseseemouse buttons

C

Class Reports
accept command 24
add all command 25
Browse switch 26
Check comment 28
Class List view 25
Class Patterns view 24
Class Size 30
clear all command 25
Correctness reports 26
finding coding errors 26
Inst vars not referenced 28
Instance Size 31
Manual switch 31
memory usage reports 30
Messages implemented but not sent 26
Messages sent but not implemented 26
Method consistency 27
Method Size 30
opening 23
Report switch 26
Space switch 30
SubclassResponsibilities not implemented 28

83

Index

text emphases 32
Undeclared references 28
Wildcard patterns 24
window components 23
click ix
Complex
components 53
instance creation 53
protocol 54
conventions
screen Vii
typographic vi-vii

D

documentationseeVisualWorks documentation
double-click ix

E

electronic bulletin boards xii
electronic mail xi
entering a project 65

F

fax support xii

features v

fonts vi—vii

Full Browser
class hierarchy view 35
filtering protocol by class 35
find method command 36
message category scope 37
opening 33
remove command 37
rename command 37
senders in hierarchy command 36

84

Infinitesimal 54, 56
Infinity 54, 55
installation v

L

limitations v

M
mail
electronic xi
MetaNumeric class 54
mouse buttons vii
<Operate> button viii
<Select> button viii
<Window> button viii
one-button mouse Vviii
three-button mouse viii
two-button mouse Vviii
mouse operations ix
<Control>-click ix
<Meta>-click ix
<Shift>-click ix
click ix
double-click ix

N

NotANumber 57
notational conventions vi—vii

O

online documentatiorseeVisualWorks
documentation

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

Index

P

Parser Compiler
action terms 48
alternatives in rules 43
atsign (@) 43
backing up in the input 43
block syntax 49
code generation 39
CompiledMethods as output 40
compilerClass 50
compiling source code 50
generate: 51
parse tree 41
parsing phase 40
production rule 42
production rules 41
quantifying symbols 46
rule grammar summary 50
rules vs. methods 42
scanner delimiters 40
scanner tokens 40
scanning 39
semantic analysis 39
SQL example 39
stack 41
subclassing ExternalLanguageParser 40
subclassing GeneralParser 40
temporary variables in rules 42
terminals 47
terms in an alternative 45
unit terms 45

Profilers
apply cutoff button 17
contract fully command 18
cutoff percentage 17
do itcommand 14
expand command 18
expand fully command 18

VisualWorks Advanced Tooldser’s Guide Rev. 1.2

MessageTally class 21
opening 13
overhead 22
profile descriptors 16
profile window 16
Profiler class 21
repetitions 15
reusing 21
space statistics checkbox 14
space usage report 20
space usage switch 20
spawn command 18
threshold percentage 17
totals switch 19
tree list expansion 18
tree switch 17
window components 13
wrapped methods 21

project
entering 65

Project Browser
opening 63
ProjectBrowser class 67
ProjectView class 67
window components 63

S

screen conventions vii
SomeNumber 58
special symbols vi—vii
SQL, parsing example 39
support, technical xi
electronic bulletin boards xii
electronic mail Xi
fax xii
telephone xii
World Wide Web xii
symbols used in documentation vi-vii

85

Index

T

technical support xi

electonic mail xi

electronic bulletin boards xii

fax support xii

telephone support xii

World Wide Web xii
telephone support Xxii
Terminal Emulator

capabilities 60

creating 59

inspect it command 61

menu commands 60

reset command 61

resizing 61

reusing 62

shell types 60

terminal types 60

VT100 features 61
typographic conventions vi-vii

\Y

VisualWorks documentation
online x
Database Cookbook
Database Quick Start Guides
International User’s Guidex
VisualWorks Cookbook

VisualWorks DLL and C Connect
Referencex

printed
Cookbookix
Database Connect User’s Guide
Database Tools Tutorial and Cookboak
Installation Guideix
International User’s Guidex
Object Referencex
Release Notesx

86

Tutorial ix
User’s Guideix

W
World Wide Web xii

VisualWorks Advanced ToolMser’s Guide Rev. 1.2

	VisualWorks Advanced Tools
	User’s Guide

	Contents
	Chapter 1 Profiling Time and Memory Usage 13
	Chapter 2 Class Reports 23
	Chapter 3 Full Protocol Browser 33
	Chapter 4 Parser Compiler 39
	Chapter 5 Enhanced Numbers 53
	Chapter 6 Terminal Emulator 59
	Chapter 7 Project Browser 63
	Chapter 8 Benchmarks 69

	About This Book
	Audience
	Organization
	Conventions
	Typographic Conventions
	This book uses the following fonts to designate special terms:

	Special Symbols
	This book uses the following symbols to designate certain items or relationships:

	Screen Conventions
	Mouse Buttons
	The mouse buttons perform the following interactions:
	Three-Button Mouse
	VisualWorks uses the three-button mouse as the default:

	Two-Button Mouse
	On a two-button mouse:

	One-Button Mouse
	On a one-button mouse:

	Mouse Operations
	The following table explains the terminology used to describe actions that you perform with mouse...

	Additional Sources of Information
	Printed Documentation
	In addition to this tutorial, the core VisualWorks documentation includes the following documents:

	Online Documentation
	To display the online documentation browser, open the Help pull-down menu from the VisualWorks ma...

	Obtaining Technical Support
	Before Contacting Technical Support
	When you need to contact a technical support representative, please be prepared to provide the fo...

	How to Contact Technical Support
	Parc�Place-Digi�talk Technical Support provides assistance by:
	Electronic Mail
	Electronic Bulletin Boards
	Information is available at any time through the electronic bulletin board CompuServe. If you hav...

	World Wide Web
	1. In your Web browser, open this location (URL):
	2. Click the link labeled “Tech Support.”

	Telephone and Fax
	Within North America, you can:

	Chapter 1�
	Profiling Time and Memory Usage
	Creating an Object Allocation Profiler
	Figure 1-1� The parts of a profiler

	Profiling a Block of Code
	Optimizing the Sample Size
	Figure 1-2� Speed versus accuracy trade-off when adjusting the sample size

	Analyzing the Object Allocation Profile
	Figure 1-3� The structure of a profile window
	Tree Report
	Adjusting the Cutoff Percentage
	Figure 1-4� The slider and button used to change cutoff percentage

	Contracting and Expanding the List
	Figure 1-5� A profile entry contracted and expanded

	Spawning a Method Browser
	Figure 1-6� A Method Browser on the selected method and its neighbors

	Totals Report
	Figure 1-7� A sample “totals” report

	Space Usage Report
	Figure 1-8� A sample “space usage” report

	Overview of the Code
	The following classes provide the kernel of profiler functionality:
	Allocation Profiler’s Wrapped Methods
	Time and Space Overhead

	Chapter 2�
	Class Reports
	Overview
	Creating Class Reports
	Figure 2-1� Initial display of a Class Report window
	Selecting the Target Classes
	Figure 2-2� Using a wildcard pattern to define a work list of classes
	Table 2-1� Valid class patterns
	Then, in the Class List view, click on the desired class or classes to highlight them for inclusi...

	Locating Coding Errors
	Class Report Options
	Messages Sent but Not Implemented��
	Messages Implemented but Not Sent�
	Method Consistency�
	Subclass Responsibilities Not Implemented�
	Undeclared References�
	Instance Variables Not Referenced�
	Check Comment�
	Backward Compatibility Message Sends�
	Indefinite Backward Compatibility Message Sends�
	Backward Compatibility Class References�

	Estimating Memory Requirements
	Documenting Your Code

	Chapter 3�
	Full Protocol Browser
	The Full Protocol Browser is an expanded version of the System Browser. It has all of the capabil...
	Creating a Full Browser
	Figure 3-1� System Browser compared to Full Protocol Browser
	Figure 3-2� A Full Browser, with the ArithmeticValue class selected

	Displaying the Full Protocol of a Class
	Filtering Messages by Class
	Figure 3-3� The appearance of included and excluded classes in the hierarchy view

	Searching within the Hierarchy
	Figure 3-4� The <Operate> menu of the hierarchy view, used to limit scope of search
	Scoping Rules

	Chapter 4�
	Parser Compiler
	Overview
	Scanning Source Code
	Parsing
	EmulationBorderDecorationPolicy unInstallcommitStatement =
	A Rule has a Name and a Definition
	Rules are Similar to Methods
	Temporary Variables Can be Used
	A Rule Definition is a Series of Alternatives
	(a | b) c The next tokens must match either 'a' or 'b', followed by 'c'

	An Alternative is a Series of Terms
	Figure 4-1� Summary of the outcomes in a decision tree
	A Term is an Action or a Unit-Plus-Qualifier
	A Unit is a Word, Terminal or Parenthesized Definition
	Table 4-1� Word and associated production rule
	Table 4-2� Quantifying symbols

	A Terminal is a Single Token
	An Action is a Block or a Special Symbol
	Table 4-3� Action symbols

	Two Types of Block Syntax are Allowed

	Summary of Grammar for Parsing Methods
	method = pattern #= temporaries definition

	Creating your Own Compiler
	compilerClass

	Chapter 5�
	Enhanced Numbers
	Complex Numbers
	Creating an Instance
	Protocol Summary
	Table 5-1� Accessing
	Table 5-2� Arithmetic
	Table 5-3� Converting

	Metanumbers
	MetaNumeric Class
	Infinity Class
	Creating an Instance of Infinity
	Protocol Summary
	x + +infinity = +infinity

	Infinitesimal Class
	Creating an Instance of Infinitesimal
	Infinitesimal positive

	Protocol Summary
	The usual numeric operations are supported, according to the following rules (where x is any real...
	x + +tiny = x when x ~= 0.

	NotANumber Class
	Creating an Instance of NotANumber
	Protocol Summary

	SomeNumber Class

	Chapter 6�
	Terminal Emulator
	Creating a Free-Standing Emulator
	Figure 6-1� Terminal Emulator window
	Table 6-1� <Operate> menu commands

	Putting an Emulator in Your Application

	Chapter 7�
	Project Browser
	Opening a Project Browser
	Figure 7-1� The three parts of the Project Browser
	Relabeling a Window
	Renaming a Project
	Updating Project Information
	Updating Window Information

	Entering a Project
	Figure 7-2� Using a Project Browser to leapfrog intervening projects

	Inspecting a Change Set
	Figure 7-3� A Change Set Inspector

	Exploring a Window’s Structure
	Figure 7-4� Using a Window Browser to examine window structure

	Overview of the Code
	ProjectBrowser class
	ProjectView class
	Figure 7-5� A project view

	WindowBrowser class

	Chapter 8�
	Benchmarks
	Using the Benchmark Interface
	Figure 8-1� The System Benchmarks window with default settings
	Assembling the Test Suite
	Selection Techniques
	Table 8-1� Selection techniques for system benchmarks

	Setting the Report’s Granularity
	Raw Benchmark Measurements�
	[display text]

	Individual Benchmark Statistics�
	Table 8-2� Individual benchmark results (three iterations)

	Benchmark Suite Statistics�
	Table 8-3� Benchmark suite results (three iterations)

	Choosing Types of Statistics
	Setting the Report Destination
	Setting the Number of Iterations

	Creating a Benchmark Subclass
	Benchmark Superclass
	SystemBenchmark Subclass
	benchmarkLabelForSelector:

	BenchmakTable Class
	BenchDecompilerTestClass Class

	Appendix A�
	Code Files
	Introduction
	Table 1� Code files listing

	Index
	Symbols
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	S
	T
	V
	W

