%)
ye
o
=
©
-
0
>

Tutorial

Part Number: DS20002003

Copyright © 1995 by ParcPlace-Digitalk, Inc. All rights reserved.
Part Number: DS20002003
Revision 2.1, December 1995 (Software Release 2.5)

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Trademark acknowledgments:

ObjectKit, ObjectWorks, ParcBench, ParcPlace, and VisualWorks are trademarks of ParcPlace
Systems, Inc., its subsidiaries, or successors and are registered in the United States and other
countries. DataForms, MethodWorks, ObjectLens, ObjectSupport, ParcPlace Smalltalk, Visual
Data Modeler, VisualWorks Advanced Tools, VisualWorks Business Graphics, VisualWorks
Database Connect, VisualWorks DLL and C Connect, and VisualWorks ReportWriter are
trademarks of ParcPlace Systems, Inc., its subsidiaries, or successors. ENVY is a registered
trademark of Object Technology International, Inc. All other products or services mentioned
herein are trademarks of their respective companies. Specifications subject to change without
notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names, hierarchies, or
protocols may be copied for implementation in other systems.

This manual set and online system documentation copyright © 1995 by ParcPlace-Digitalk, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine-readable form without prior written consent from
ParcPlace-Digitalk.

ParcPlace-Digitalk, Inc., 999 East Arques Avenue, Sunnyvale, CA 94086-4593

Contents

About This Book iX
Audience ix
Organization ix
Conventions X
Typographic Conventions Xi
Special Symbols xi
Screen Conventions Xii
Mouse Buttons xii
Three-Button Mouse xiii
Two-Button Mouse Xiii
One-Button Mouse xiii
Mouse Operations xiv
Additional Sources of Information xiv
Printed Documentation xiv
Online Documentation xv
Obtaining Technical Support xvi
Before Contacting Technical Support xvi
How to Contact Technical Support xvi
Electronic Mail xvii
Electronic Bulletin Boards xvii
World Wide Web xvii
Telephone and Fax xvii

Chapter 1 Getting Started 1
What Is VisualWorks? 1
VisualWorks as a Smalltalk Environment 2
Starting VisualWorks 2
Macintosh Platforms 3
0S/2 Platforms 3
UNIX Platforms 3
Windows Platforms 3

VisualWorks Tutorial, Rev. 2.1 iii

Contents

A First Look at VisualWorks 4
VisualWorks Main Window 4
Main-Window Menus 5
Main-Window Tool Bar 6
System Transcript 6
Workspace Window 6
Interacting with VisualWorks 7
Mouse-Button Functions 7
Getting Some Practice 8
Managing VisualWorks Windows 11
Saving Your VisualWorks Image 13
Creating Your Own Working Image 13
If You Created an Image in a New Location 14
Taking Snapshots 15
Exiting VisualWorks 15
What's Next: The VisualWorks Environment 16

Chapter 2 The VisualWorks Environment 17
Starting Your Working Image 17
Sending Messages to Smalltalk Objects 18
Browsing the Smalltalk Class Library 19
Using a System Browser 19
Finding a Class by Name 23
Adding a Category 24
Browsing the Class Hierarchy 24
Using a Hierarchy Browser 24
Storing and Retrieving Information in Files 26
Writing to Disk Files 26
Retrieving Information from Disk Files 26
Running an Application 28
Browsing Online Documentation 30
Exploring the Cookbook’s Sample Applications 33
Customizing Your Working Image 35
Viewing Changes Since the Last Save 36
What's Next: Creating Applications 37

Chapter 3 Introduction to VisualWorks Application Building 39
Application Requirements 39
VisualWorks Approach to Application Design 40
Layered Structure 40
Domain Models 42
Application Models 42

iv VisualWorks Tutorial, Rev. 2.1

Contents

Why Layering? 43
Ul-Based Structure 44
Why Ul-Based Structure? 44
Building Blocks in the Framework 45
Framework for Database Applications 46
Designing the Sample Application 46
Designing the User Interface 47
Designing the Models 47
Designing Domain Models 47
Designing Application Models 48
What's Next: Constructing the Sample Application 49

Chapter 4 Creating a Graphical User Interface 51
Designing the Checkbook Main Window 51
Design Alternatives 52
Creating the Main Window 53
Opening a Blank Canvas 53
Painting the Canvas 55
Sizing the Canvas 55
Painting a Widget 55
Selecting and Deselecting a Widget 56
Positioning a Widget 57
Resizing a Widget 57
Copying and Pasting a Widget 57
Painting Multiple Copies of a Widget 58
Deleting a Widget 58
Setting Properties 59
Displaying a Widget’'s Properties 59
Applying a Changed Property 60
Moving the Selection to the Next Widget 61
Inspecting the List Properties 61
Setting the Input Field Properties 62
Setting the Window Properties 63
Installing the Canvas 64
Finding an Installed Canvas 66
Editing a Menu Bar 67
Opening the Interface 70
Behind the Scenes 70
Inspecting the Prototype Window 71
Revising the Main Window 72
Adding More Widgets 72
Refining Widget Arrangement 74

VisualWorks Tutorial, Rev. 2.1 v

Contents

Selecting Multiple Widgets 74
Equalizing Widget Sizes 75
Aligning Widgets 76
Spacing by Pixels 77
Grouping Widgets 77
Adjusting Window Layout 78
Creating the Check Window 79
Painting and Setting Properties 79
Previewing a Window for Another Platform 82
What's Next: Programming in Smalltalk 82

Chapter 5 Developing the Domain Models 83
What You Should Read 83
If You Are New to Smalltalk 83
If You Already Know Smalltalk 84
Creating the Check Class 85

Locating the Application’s Category 86

Defining the Data Structure for the Check Class 87
Analysis: The Check Class Definition 88

Creating a Check Instance 89
Analysis: Message Expressions 90
Analysis: Messages for Creating Instances 90

Documenting the Check Class 91
Analysis: The Check Class Comment 91

Providing for Access to Check Data 92
Analysis: Message Protocol 94
Analysis: Method Definitions 95
Analysis: Naming Conventions 96
Analysis: Method Compilation 96
Setting Check Information 97
Analysis: More about Message Expressions 97
Providing for Character-Based Display 99
Analysis: Constructing a String 100
Analysis: Streams 100
Displaying a Check Instance’s Description 101
Analysis: Thedo it, print it , andinspect Commands 102
Analysis: Method Lookup 102
Creating the Checkbook Class 104
Defining and Documenting the Checkbook Class 105
Analysis: Subclasses of Model 106

vi VisualWorks Tutorial, Rev. 2.1

Contents

Creating a Checkbook Instance 107

Providing for Checkbook Initialization 108
Analysis: Initial Data Types 109
Analysis: Class and Instance Methods 109

Creating an Initialized Checkbook Instance 110
Analysis: More about Method Lookup 110

Providing for Access to Checkbook Data 112
Analysis: Limited Access to Variables 113
Analysis: Change Notification 113

Providing for Checkbook Transactions 115
Analysis: More about Complex Expressions 117
Analysis: Alternative Implementation 119

Testing the Checkbook Transactions 120
Analysis: Transcript Messages 122
Analysis: Syntax Errors 123

What's Next: Programming the Interface 125

Chapter 6 Programming the Interface 127
VisualWorks Approach to Interface Programming 127
Specifying Basic Appearance and Behavior 128
Programming Application-Specific Behavior 128

Action Widgets 129
Data Widgets 130
Another Look at Application Structure 131
Programming the Application Model 132
Setting Up Your Work 133
A Few Reminders 133
Browsing the Application Model 134
Providing the Checkbook Behind the Interface 135
Analysis: Initializing an Application Model 135
Programming thé&mount to Deposit: Field 137
Analysis: Aspect Property 139
Analysis: The Definer 139
Analysis: Lazy Initialization, Booleans, Blocks 140
Analysis: Value Holders 142
Programming th®eposit Button 143
Analysis: Action Property 144
Analysis:makeDeposit Logic 144
Analysis: Warning Dialog 146
Testing the Deposit Widgets 147

VisualWorks Tutorial, Rev. 2.1 Vii

Contents

Analysis: Behind the Scenes During Setup 148
Analysis: Behind the Scenes During Operation 149
Analysis: Widgets as Dependents 150
Analysis: Modifying a Running Application 150
Programming th®&alance: Field 151
Analysis: The Definer Revisited 153
Analysis: Aspect Adaptors 153
Testing theBalance: Field 155
Analysis: Setup of the Aspect Adaptor 155
Analysis: Operation of the Aspect Adaptor 156
Programming th&€heck Register List 158
Analysis: Setup of the List 160
Analysis:SelectioninList Instances 161
Analysis: When the Collection Changes 162
Programming the Menu Bar 164
Setting Up for the Remaining Work 166
Providing for Writing New Checks 167
Setting Up the Check Dialog Box's Basic Behavior 168
Analysis: Actions forOK andCancel Buttons 170
Analysis: Setup of the Dialog Box 170
Programming the Input Fields in the Check Dialog Box 172
Analysis: Aspect Paths 175
Analysis: Setup of an Aspect Path 176
Analysis: Subject Channels 177
Analysis: Advantages of Aspect Paths 178
Analysis: Limitations of Aspect Paths 179
Finishing thewriteNewCheck Method 180
Providing for Check Cancellation 181
What's Next? 182

Appendix A Glossary 183
Appendix B Widget Quick Reference 199
Index 207

viii VisualWorks Tutorial, Rev. 2.1

About This Book

Audience

This tutorialintroduces VisualWorks®, a fully object-oriented environment
for constructing applications using the ParcPlace Smalltalk™ programming
language.

This tutorial presents steps for constructing a sample application with Visual-
Works. In the process, this tutorial introduces the VisualWorks tools, class
library, and approach to application design. It also introduces basic object-
oriented concepts and the Smalltalk language.

This tutorial is intended for anyone who is new to VisualWorks. This tutorial
doesnotassume that you know object-oriented concepts, Smalltalk, or graph-
ical user-interface application architecture.

If you are new to applications with graphical user interfaces, you may want
to consult your platform’s documentation for general information about using
a mouse to interact with an application.

Organization

This tutorial falls into three parts.
Chapters 1 and 2 introduce VisualWorks:

n Chapter 1, “Getting Started,” shows you how to start and exit Visual-
Works, find your way around the VisualWorks main window, interact
with VisualWorks’ graphical user interface, and save your work.

n Chapter 2, “The VisualWorks Environment,” introduces the basic tools
for exploring and configuring the VisualWorks environment. Some of
these tools help you find and manipulate Smalltalk objects; others
provide information about your VisualWorks image. Chapter 2 also

VisualWorks Tutorial, Rev. 2.1 4

About This Book

Conventions

introduces basic Smalltalk concepts such as object, message, class,
instance variable, and method.

Chapters 3 through 6 walk you through building a sample application:

n

Chapter 3, “Introduction to VisualWorks Application Building,” intro-
duces the sample application that you will build. It describes the general
design of a VisualWorks application and outlines the design that you will
use for the sample application.

Chapter 4, “Creating a Graphical User Interface,” describes how to
create the visual portion of a graphical user

interface.

Chapter 5, “Developing the Domain Models,” explains how to create the
Smalltalk classes that provide the basic processing for the application.

Chapter 6, “Programming the Interface,” explains how to integrate the
graphical user interface with the Smalltalk classes created in Chapter 5.

Two appendixes explain terms used in this tutorial and in the VisualWorks
interface:

n

n

Appendix A, “Glossary,” defines terms that are particular to VisualWorks
applications and the Smalltalk language.

Appendix B, “Widget Quick Reference,” describes the various widgets
available to you in the VisualWorks Palette.

This section describes the notational conventions used to identify technical
terms, computer-language constructs, mouse buttons, and mouse and
keyboard operations.

Typographic Conventions

This book uses the following fonts to designate special terms:

VisualWorks Tutorial, Rev. 2.1

Conventions

Example

Description

template

cover.doc

filename .xwd

windowSpec

Edit menu

Indicates new terms where they are defined, emphasized
words, book titles, and words as words.

Indicates filenames, pathnames, commands, and other
C++, UNIX, or DOS constructs to be entered outside
VisualWorks (for example, at a command line).

Indicates a variable element for which you must substi-
tute a value.

Indicates Smalltalk constructs; it also indicates any other
information that you enter through the VisualWorks
graphical user interface.

Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also indicates
emphasis in Smalltalk code
samples.

Special Symbols

This book uses the following symbols to designate certain items or relation-

ships:

Examples

Description

File 2New command

<Return> key
<Select> button
<Operate> menu

<Control>-<g>

<Escape> <c>

Integer>>asCharacter

Indicates the name of an item on a menu.

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

Indicates two keys that must be pressed simul-
taneously.

Indicates two keys that must be pressed sequen-
tially.

Indicates an instance method defined in a class.

| VisualWorks Tutorial, Rev. 2.1

Xi

About This Book

Examples Description

Float class>>pi Indicates a class method defined in a class.

Caution: Indicates information that, if ignored, could
cause loss of data.

Warning: Indicates information that, if ignored, could
damage the system.

Screen Conventions

This tutorial contains a number of sample screens that illustrate the results of
various tasks. The windows in these sample screens are shown in the default
Smalltalk look, rather than the look of any particular platform. Consequently,
the windows on your screen will differ slightly from those in the sample
screens.

Mouse Buttons

Many hardware configurations supported by VisualWorks have a three-
button mouse, but a one-button mouse is the standard for Macintosh users,
and a two-button mouse is common for OS/2 and Windows users. To avoid
the confusion that would result from referring to <Left>, <Middle>, and
<Right> mouse buttons, this book instead employs the logical names
<Select>, <Operate>, and <Window>.

The mouse buttons perform the following interactions:

<Select> button Select(or choose) a window location or a menu item,
position the text cursor, or highlight text.

<Operate> button Bring up a menuayerationsthat are appropriate for
the current view or selection. The menu that is displayed
is referred to as theOperate> menu

<Window> button Bring up the menu of actions that can be performed on
any VisualWorksvindow(except dialogs), such as
move andclose . The menu that is displayed is referred
to as the
<Window> menu

Three-Button Mouse

VisualWorks uses the three-button mouse as the default:

Xii VisualWorks Tutorial, Rev. 2.1

Conventions

n The left button is the <Select> button.
n The middle button is the <Operate> button.
n The right button is the <Window> button.

Two-Button Mouse
On a two-button mouse:

n The left button is the <Select> button.
n The right button is the <Operate> button.

n To access the <Window> menu, you press the <Control> key and the
<Operate> button together.

One-Button Mouse
On a one-button mouse:

n The unmodified button is the <Select> button.

n To access the <Operate> menu, you press the <Option> key and the
<Select> button together.

n To access the <Window> menu, you press the <Command> key and the
<Select> button together.

Mouse Operations

The following table explains the terminology used to describe actions that
you perform with mouse buttons.

When you see: Do this:

click Press and release the <Select> mouse but-
ton.

double-click Press and release the <Select> mouse

button twice without moving the pointer.

| VisualWorks Tutorial, Rev. 2.1 xiii

About This Book

When you see: Do this:

<Shift>-click While holding down the <Shift> key,
press and release the <Select> mouse but-
ton.

<Control>-click While holding down the <Control> key,
press and release the <Select> mouse but-
ton.

<Meta>-click While holding down the <Meta> or <Alt>

key, press and release the <Select> mouse
button.

Additional Sources of Information

Printed Documentation

Xiv

In addition to this tutorial, the core VisualWorks documentation includes the
following documents:

n

Installation Guide:Provides instructions for the installation and testing
of VisualWorks on your combination of hardware and operating system.

Release Notedescribes the new features of the current release of Visu-
alWorks.

Cookbook:Provides step-by-step instructions for performing hundreds
of common VisualWorks tasks.

User’s Guide:Provides an overview of object-oriented programming, a
description of the Smalltalk programming language, a VisualWorks tools
reference, and a description of various reusable software modules that
are available in VisualWorks.

International User’s GuideDescribes the VisualWorks facilities that
support the creation of nonEnglish and cross-cultural applications.
Object ReferenceProvides detailed information about the VisualWorks
class library.

The documentation for the VisualWorks database tools consists of the
following documents:

n

VisualWorks’ Database Tools Tutorial and Cookbolakroduces the
process and tools for creating applications that access relational data-

VisualWorks Tutorial, Rev. 2.1

Obtaining Technical Support

bases. The “Cookbook” chapter describes how to programmatically
customize various aspects of a database application.

n Database Connect User’s Guiderovides information about the external
database interface. Versions of it exist for Oracle7, SYBASE, and DB2
databases.

Online Documentation

To display the online documentation browser, opeitde pull-down menu
from the VisualWorks main menu bar and se@pen Online Documen-
tation . Your choice of online books includes:

n Database CookboolOnline version of the “Cookbook” part of tMsu-
alWorks’ Database Tools Tutorial and Cookbatdscribed above.

n Database Quick Start GuideBescribes how to build database applica-
tions. It covers such topics as data models, single- and multiwindow
applications, and reusable data forms.

n International User’s GuideOnline version of thénternational User’s
Guidedescribed above.

n VisualWorks CookboolOnline version of th€ookbookdescribed
above.

Obtaining Technical Support

If, after reading the documentation, you find that you need additional help,
you can contact ParcPlace-Digitalk Technical Support. ParcPlace-Digitalk
provides all customers with help on product installation. ParcPlace-Digitalk
provides additional technical support to customers who have purchased the
ObjectSupport package. VisualWorks distributors often provide similar
services.

Before Contacting Technical Support

When you need to contact a technical support representative, please be
prepared to provide the following information:

n Theversion id,which indicates the version of the product you are using.
ChooseHelp ?About VisualWorks in the VisualWorks main window.
The version number can be found in the resulting dialog Welsion
Id:.

VisualWorks Tutorial, Rev. 2.1 XV

About This Book

n Any modifications patch fileg distributed by ParcPlace-Digitalk that
you have imported into the standard image. Chételp ?About Visu-
alWorks in the VisualWorks main window. All installed patches can be
found in the resulting dialog undBatches: .

n The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, selespy stack in the error
notifier window (or in the stack view of the spawned Debugger). Then
paste the text into a file that you can send to technical support.

How to Contact Technical Support

XVi

ParcPlace-Digitalk Technical Support provides assistance by:

n Electronic mail

n Electronic bulletin boards
n World Wide Web

n Telephone and fax

Electronic Malil

To get technical assistance on the VisualWorks line of products, send elec-
tronic mail tosupport-vw@parcplace.com

Electronic Bulletin Boards

Information is available at any time through the electronic bulletin board
CompusServe. If you have a CompuServe account, enter the ParcPlace-
Digitalk forum by typing

go ppdforum at the prompt.

World Wide Web

In addition to product and company information, technical support informa-
tion is available via the World Wide Web:

1. In your Web browser, open this location (URL):
http://www.parcplace.com
2. Click the link labeled “Tech Support.”

VisualWorks Tutorial, Rev. 2.1

Obtaining Technical Support

Telephone and Fax

Within North America, you can:

n Call ParcPlace-Digitalk Technical Support at 408-773-7474 or 800-727-
2555,

n Send questions and information via fax at 408-481-9096.
Operating hours are Monday through Thursday from 6:00 a.m. to 5:00
p.m., and Friday from 6:00 a.m. to 2:00 p.m., Pacific time.

Outside North America, you must contact the local authorized reseller of
ParcPlace-Digitalk products to find out the telephone numbers and hours for
technical support.

| VisualWorks Tutorial, Rev. 2.1 XVi

About This Book

| xviii VisualWorks Tutorial, Rev. 2.1

Chapter 1
Getting Started

This chapter provides an introductory description of VisualWorks and shows
you how to:

n Start VisualWorks

n Find your way around the VisualWorks main window

n Interact with the VisualWorks graphical user interface

n Save your work

n EXxit VisualWorks

What Is VisualWorks?

VisualWorks is a fully object-oriented environment for constructing applica-
tions, using the ParcPlace Smalltalk programming language. With Visual-
Works, you can rapidly build graphical user interfaces for new and existing
applications. In addition, you can use VisualWorks to link your application to
various relational databases.

With the following VisualWorks features, you can build applications quickly
and easily:

n Point-and-click tools for incorporating controls (@dgets into your
application’s graphical user interface

n A predefined application framework that you can adapt for your own
application

n Mechanisms for reusing applications and interfaces
n Links to relational databases such as Oracle7, SYBASE, and DB2.

n Instant portability of your application over UNIX, Microsoft Windows,
0S/2, and Macintosh platforms

VisualWorks Tutorial, Rev. 2.1 1

Chapter 1 Getting Started

VisualWorks as a Smalltalk Environment

VisualWorks capabilities are implemented in the ParcPlace Smalltalk
programming language and therefore are part oPdrePlace Smalltalk
systemThis system consists of interactialgjects—software units that

contain collections of related data plus operations for manipulating that data.
These objects collaborate to perform a wide variety of functions.

Some of the objects in the ParcPlace Smalltalk system exist so that you can
incorporate them into your own programs. In fact, part of your work in Visu-
alWorks will consist of familiarizing yourself with the objects in the system
library, adapting these objects to suit your needs, and adding new objects to
the system.

Other objects (sometimes callsgstem objecjgprovide functions that are
usually associated with a software development system: an editor, a compiler,
a debugger, print utilities, a window system, and so on. ParcPlace Smalltalk
is more than a programming language; it provides VisualWorks with a
complete programming environment.

Note: Throughout this tutorial, the ter®@malltalkrefers to ParcPlace Small-
talk.

Starting VisualWorks

This tutorial assumes that VisualWorks is already installed on your machine
or system. Starting VisualWorks means runninghject enginevith an
image where:

n Animageis a file or document that contains the entire VisualWorks envi-
ronment; it stores compiled versions of the objects in the Smalltalk
system.

n Theobject engings an executable program that runs Smalltalk on your
platform; it essentially “sets in motion” the system objects in an image.

The first time you start VisualWorks, you use $ti@ndard image-that is, the
image that was delivered with VisualWorks. Thereafter, you normally do your
work in your ownworking imagereturning to the standard image only when
you want to create a new working image from it.

Now start the standard VisualWorks image, following the directions for your
platform. (Start this image even if you already created a custom working
image during installation.)

2 VisualWorks Tutorial, Rev. 2.1

Starting VisualWorks

Macintosh Platforms
To start the standard image on a Macintosh computer:

1. Open themage folder in the VisualWorks installation folder (typically
calledVisual).

2. Double-click thevisual.im document.

OS/2 Platforms
To start the standard image on an OS/2 platform:

%o Double-click theVisualWorks program object in the
VisualWorks 2.5 folder.

UNIX Platforms
To start the standard image on a UNIX platform:

1. Verify that your window manager is operating.
2. Enter a command of the following form at the UNIX prompt:

% visualworks image-path

whereimage-path is the pathname of the standard image (for
example/usr/visual/image/visual.im).

Windows Platforms
To start the standard image on a Windows 95 platform:

%0 Double-click theVisual document in thémage folder in the Visual-
Works installation folder (typically calledisual).

To start the standard image on other Windows platforms:

%o Double-click on the/isualWorks program-item icon in th¥isu-
alWorks 2.5 program group in the Program Manager.

VisualWorks Tutorial, Rev. 2.1 3

Chapter 1 Getting Started

A First Look at VisualWorks

VisualWorks

On all platforms, starting VisualWorks from the standard image opens the
VisualWorks main window and a Workspace, as shown in Figure 1-1. These
windows are described in the following sections.

Note: In the sample screens that follow, the windows are shown in the default
Smalltalk look, rather than the look of any particular platform. Consequently,
the windows on your screen will differ slightly from those in the sample
screens.

VisualWorks

File Browse Tools Changes Database Window Help
BlElE &%

vigualim created at 4 August 1334 10:05:42 am,

[E

<F

Workspace

Jyelcome to
VisualWorks® Release 2.0 of 4 August 1994
Copyright @ 1394 ParcPlace Systems, Inc. All Rights Reserved.

Figure 1-1 The windows displayed in the standard image

Main Window

The VisualWorks main window is the starting point for your work. It remains
on your screen as long as VisualWorks is running.

The VisualWorks main window is identified by the title

VisualWorks in the window’s title bar, as shown in Figure 1-2. It also
contains a menu bar, a tool bar, and a message area knowisgsttéma Tran-
script.

VisualWorks Tutorial, Rev. 2.1

A First Look at VisualWorks

title bar—p VisualWorks

menu bar —» | File Browse Tools Changes Database Window Help
B o = EA R
tool bar

visualim created at 4 August 1334 10:05:42 am,

|>

System /V

Transcript

<

Figure 1-2 The VisualWorks main window

Main-Window Menus

The menus on the VisualWorks main window provide access to all Visual-
Works tools and capabilities. These menus are summarized in the following

table:
Menu Contains commands for:
File Saving, customizing, and exiting the VisualWorks image

Browse Browsing the Smalltalk programs in the image

Tools Opening a variety of development tools, including file editors and
tools for creating graphical user interfaces

Changes Opening tools for viewing changes made to the image and for organiz-
ing your work into separate projects

Data- Invoking VisualWorks’ database tools, which help you create applica-
base tions that access relational databases

Window Managing the open VisualWorks windows

Help Opening the various online documents and guides

Note to Macintosh userdg=or all normal VisualWorks operations, you use the
menus that are displayed in the VisualWorks main window (or in other indi-
vidual VisualWorks windows). You use the menus that VisualWorks places on
the Macintosh menu bar only if VisualWorks fails to respond to the normal
menus. See thdsualWorks Installation Guide (Macintosfgr information

about the VisualWorks menus on the Macintosh menu bar.

VisualWorks Tutorial, Rev. 2.1 5

Chapter 1 Getting Started

Main-Window Tool Bar

The tool bar on the VisualWorks main window provides access to the more
frequently used tools. Each button on the tool bar is a shortcut for a particular
menu command. These buttons are briefly described in the following table:

Button Invokes this tool:

File List, for creating, editing, and viewing files in the plat-
form’s file system

System Browser, for browsing and creating Smalltalk pro-
grams

Workspace, a Smalltalk scratch pad

Canvas, for creating graphical user interfaces for applica-
tions

Resource Finder, for locating and running applications

Data Modeler (see thdésualWorks’ Database Tools Tuto-
rial and Cookbook

Online Documentation Browser, for reading online task ref-
erence and quick start guides

SE gwdl 30 (@ @ o

System Transcript

The System Transcript is the area below the tool bar in the VisualWorks main
window. The System Transcript displays system messages such as reporting
when the current image was created. In Chapter 5, you will use the System
Transcript to display output from testing code. You can also use the System
Transcript as you would a Workspace (see the next section).

Workspace Window

In addition to the VisualWorks main window, the standard image displays a
Workspace. Workspaces are windows that you can use as scratch pads. In
addition to entering text (such as notes to yourself), you can enter and
evaluate fragments of Smalltalk code. This makes Workspaces especially
useful for:

n Prototyping new code before making it a permanent part of the system
n Testing code that has no specific graphical user interface

6 VisualWorks Tutorial, Rev. 2.1

Interacting with VisualWorks

When you first start the standard image, the Workspace that is opened
displays copyright information. You can have more than one Workspace open
at a time.

Interacting with VisualWorks

You interact with VisualWorks through its graphical user interface. That is,
you use a pointing device such as a mouse to manipulate visual controls such
as menus and buttons in the VisualWorks windows. If you are new to using
applications with graphical user interfaces, consult your platform’s documen-
tation for general information about interacting with such

applications.

Mouse-Button Functions

One feature that makes VisualWorks different from other applications is that
you interact with it using three mouse-button functions, called <Select>,
<Operate>, and <Window>. You can invoke these functions from a three-
button, a two-button, or a one-button mouse. To find out how these buttons
correspond to the buttons on your mouse, see page Xii.

In general, you use:

n The <Select> button for making selections in a window—choosing menu
items, clicking action buttons, highlighting text, selecting the location of
keyboard input, and so on.

n The <Operate> button for displaying and making choices from a pop-up
menu called the <Operate> menu. The contents of this menu depend on
the location of the mouse pointer.

n The <Window> button for displaying and making choices from a pop-up
menu called the <Window> menu. The commands on this menu perform
window-management operations such as closing or resizing a window.

Getting Some Practice

Now try some basic operations to get acquainted with the VisualWorks inter-
face and its logical mouse buttons:

1. Move the mouse until the pointer is over some text in the Workspace
window. (The Workspace should still contain the copyright statement.)

2. Click the <Select> button. This moves the text cursor to the position
indicated by the pointer. The text cursor (equivalent to an insertion point

VisualWorks Tutorial, Rev. 2.1 7

Chapter 1 Getting Started

in other applications) is a small, solid triangle between two characters at

the base of the line of text.
3. Type some characters. They are inserted to the left of the text cursor.

Note: You must keep the mouse pointer within the window that is to

receive keyboard input.

4. Undo your typing by choosing thado command from the Work-
space’s <Operate> menu:

n With the pointer still in the Workspace, press and hold the <Operate>

button. Move the pointer over thlmdo command and release the

4 some characters inserted,
. All Rights Reserved.

3 pr——

button.
find...
Workspace
- replace...
Welcame to undo
VisualWorks ® Release 2.0
Copyright © 1994 ParcPlac; copy
cut.
paste
doit
print it
inspect
accept
cancel
hardcopy

Figure 1-3 Theundo command on the <Operate> menu

VisualWorks Tutorial, Rev. 2.1

Interacting with VisualWorks

5. Open an additional Workspace by choosingls "Workspace from
the VisualWorks main window:

n Putthe pointer offools in the menu bar. Press and hold the <Select>
button. Move the pointer over th#orkspace menu item and
release the button.

VisualWorks

Fle Browse : Tools | Changes Database Window Help

EEl 5 rie st

File Editor...]

visual.im created Workspace #

m New Canvas [

Palette

Canvas Tool
Image Editor
Menu Editor

Advanced F

DLL and C Connect

% System Transcript

Figure 1-4 TheWorkspace command on th&ools menu

A window outline is displayed.

&

Figure 1-5 Window outline

6. Move the mouse pointer to position the window outline and click to
display the Workspace.

Note: Unless otherwise specified, words like “click” and “double-click
always refer to the <Select> button.

VisualWorks Tutorial, Rev. 2.1 9

Chapter 1 Getting Started

Workspace

3
3 pr——

Figure 1-6 A new Workspace

7. Open a third Workspace, resizing it as you open it:
a. Click the Workspace button in the tool bar of the VisualWorks main
window.

VisualWorks

File Browse Tools Changes Database Window Help

Bl E5E (@

Workspace button

b. Position the window outline as before.

c. Press and hold the <Select> button. The mouse pointer appears at the
lower-right corner of the outline.

d. Move the mouse pointer to resize the outline as desired.
e. Release the <Select> button.

8. Select some text in the first Workspace, which should still contain the
copyright statement:

n To select an arbitrary amount of text, hold the <Select> button down
and drag the mouse pointer over the desired text; then release the
pointer.

n To deselect text, click anywhere in the window.

n To select all text, double-click at the beginning of the first line or at
the end of the last line.

n To select a single line of text, double-click at the beginning or end of
the line.

n To select a single word, double-click within the word.

n To extend a selection, <Shift>-click where you want the selection to
begin or end.

10 VisualWorks Tutorial, Rev. 2.1

Interacting with VisualWorks

9. With some text selected, choasspy from the <Operate> menu. This
copies the text to your platform’s clipboard.

10. Move the pointer to another Workspace and chpasge from the
<Operate> menu. This inserts the contents of the clipboard into the
Workspace.

11. With the pasted text still selected, choosefrom the <Operate> menu.
This deletes the text from the Workspace and puts it in the clipboard so
you can paste it again.

Note: On many platforms, you can delete unselected characters using a
<Delete> or <Backspace> key; however, such characters are not put into
the clipboard.

12. In a Workspace that contains text:

a. Chooseccept from the <Operate> menu. This causes VisualWorks
to remember the current contents of the window.

b. Make some changes (add, delete, or copy any text).

c. Choosecancel from the <Operate> menu. This causes the window
to revert to its accepted state.

13. Practice finding and replacing text (disel andreplace on the
<Operate> menu).

14. If your platform is set up with a default printer, print the contents of a
Workspace by choosingardcopy from the <Operate> menu.

Managing VisualWorks Windows

You can manage VisualWorks windows using your platform’s window
manager. Alternatively, you can use equivalent VisualWorks operations.

Try some window-management operations on VisualWorks windows:

1. Close one of the Workspaces by choosingcthee command from the
<Window> menu:

n With the pointer in the Workspace, press the <Window> button.
Move the pointer over thelose command and release the button.

VisualWorks Tutorial, Rev. 2.1 11

Chapter 1 Getting Started

12

relabel as...

refresh
move

resize
Workspace front

hack

collapse

close 4

4

Figure 1-7 Theclose command on the <Window> menu

If a notifier is displayed, clickes to discard the text in the Workspace
and close its window. Note that no natifier is displayed if you had
accepted the text in this Workspace in the previous section.

2. Resize a Workspace window:

a. Chooseesize from the <Window> menu. A window outline is
displayed.

b. Move the pointer to resize the outline as desired and then click. The
window is displayed in the new size.

3. Collapse a VisualWorks window by choositwlapse from the
<Window> menu. Collapsing a window is a way of reducing clutter on
your screen while keeping the window available when you need it.

n On Windows, UNIX, and OS/2 platforms, collapsing a window is
equivalent to minimizing or iconifying it.

n On a Macintosh platform, collapsing a window reduces it to its title
bar.

4. Restore the collapsed window to its original size using your platform’s
window-management operations:

n On Windows, UNIX, and OS/2 platforms, you can usually click or
double-click on the collapsed window.

n On a Macintosh platform, click the collapsed window’s zoom box.

Note to Macintosh usersMany Macintosh applications have a grow box in
the lower-right corner for resizing windows. In VisualWorks windows, this

grow box is invisible. To use it, you position the mouse pointer in the window's

lower-right corner, hold down the <Option> key, press and hold the mouse
button, and move the pointer to stretch the window size.

VisualWorks Tutorial, Rev. 2.1

Saving Your VisualWorks Image

Saving Your VisualWorks Image

Whenever you interact with VisualWorks, you affect the state of the image
you are running. Consequently, you save an image whenever you want to
preserve a snapshot of its state.

Creating Your Own Working Image

You normally save your work in a user- or project-spegificking image

rather than the standard image. This preserves the standard image so that you
can use it for reference or to create new images for new application devel-
opers or new projects.

Because this tutorial will guide you through the steps of creating an applica-
tion, it is recommended that you create a working image for that purpose. To
create the new image, you save the currently running image under a new
name:

1. ChooseFile ?Save As... in the VisualWorks main window. A dialog box
prompts you with the name of the current image.

2. In the dialog box, edit (or replace) the current name to specify the
filename for the new image. You can:

n Replace the namédsual with a name such astorial . This
creates the new image in the current working directory; on many plat-
forms, this is the location that contains the standard image.

n Enter a fully qualified pathname to specify the new image’s name and
location in the file system. For example:

C:\MYWORK\TUTOPN a Windows or OS/2 platform
/usr/sue/mywork/tutorial on a UNIX platform
HD:MyWork:tutorial on a Macintosh

Note: Do notinclude theim file extension in the filename. VisualWorks

will add that for you. Furthermore, you must specify a location that
already exists; VisualWorks will not create a directory for you.

Note to Macintosh usersYou construct a pathname using a colon (:) to
separate the volume name, one or more folder names, and the document
name.

3. Click OK. As a result:

n A new file (for exampletutorial.im) is created on your disk. A
message in the System Transcript reports this.

VisualWorks Tutorial, Rev. 2.1 13

Chapter 1 Getting Started

14

n The VisualWorks windows on the screen now belong to the new
image.

4. If you created the new image in the same location as standard image, skip
to “Taking Snapshots,” below. Otherwise, continue with the following
section.

If You Created an Image in a New Location

Every image consults several additional files for adjunct information:

n A sources filgprovides the source text of the image’s compiled Smalltalk
objects.

n A help file provides the text of the online documentation.

If you created your new working image in a location different from that of the

standard image, the new image may not be able to find these files. To ensure
that these files can be found:

1. ChooseFile ?Settings in the VisualWorks main window. This displays
the Settings Tool, which you will learn more about on page 35.

2. Edit theSources: field to specify the fully qualified name of the
installed sources file, typically:

n /usr/visual/image/visual.sou on a UNIX platform

n C:AVISUALAIMAGE\VISUAL.SOU on a Windows or OS/2
platform

n HD:visual:image:visual.sou on a Macintosh computer

3. Click theAccept button.

4. Click theHelp tab fottheHelp button). It is located to the right,
between tabs labelafindow andicon.

5. In theDocumentation Directory: field, specify the fully qualified
name of the installed online documentation directory,

typically:

n Jusr/visual/online on a UNIX platform

n C:\VISUAL\ONLINE on a Windows or OS/2 platform
n HD:visual:online on a Macintosh

6. Click theAccept button and close the Settings Tool.

VisualWorks Tutorial, Rev. 2.1

Exiting VisualWorks

Taking Snapshots

Now that you are running your own working image, you can save all subse-
guent work without affecting the standard image. As with most file-based
applications, it is a good idea to save your image (or “take a snapshot”) peri-
odically, especially after:

n Changing environment settings (as described above)

n Arranging VisualWorks windows in a useful way

n Adding new Smalltalk objects to the system

Save your image now to preserve the current display (and, if applicable, the
changed sources file setting). To do this:

1. ChooseFile ?Save As... in the VisualWorks main window. A dialog box
prompts you with the name of the current image.

2. Click OK. The System Transcript reports the save.

Exiting VisualWorks

To exit VisualWorks:

1. Choosedrile ?Exit VisualWorks... from the VisualWorks main window.
The following dialog box appears:

Exit I
Save then Exit
Cancel

VisualWorks Tutorial, Rev. 2.1 15

Chapter 1 Getting Started

In this dialog box:
n Exit terminates VisualWorks without saving the image.
n Save then Exit saves the image and then exits VisualWorks.
n Cancel leaves VisualWorks running.
2. Because you have already saved your image, Ehik
If you cannot exit using thEile ?Exit VisualWorks... command, see
“Emergency Exit” in Chapter 17 of thdsualWorks User’s Guide

Note for Windows usersYou must exit VisualWorks before you can shut
down Windows.

Note for Macintosh usersWhen exiting VisualWorks normally, do not use
File?Quit from the Macintosh menu bar. This command should be used only
for an emergency exit.

What's Next: The VisualWorks Environment

16

So far, you've learned about what VisualWorks is, how to start it, how to exit
it, and how to perform some of the most basic user operations. In Chapter 2,
you will take a brief look at the basic tools in the VisualWorks environment.

VisualWorks Tutorial, Rev. 2.1

Chapter 2

The VisualWorks Environment

This chapter introduces you to the basic tools for exploring and configuring
the VisualWorks environment. Some of these tools help you find and manip-
ulate Smalltalk objects; others provide information about your VisualWorks
image. In the following sections, you will restart your working image and:

n Send messages to Smalltalk objects

n Browse the Smalltalk class library

n Store and retrieve information in files

n Run an application

n Browse online documentation

n Customize your working image

n View a list of changes made to the image

Starting Your Working Image

If you exited VisualWorks at the end of the last chapter, restart it now. To do
this:

%o Follow the directions on page 3, using the icon or filename for your
working image instead of specifying the standard image. (Your working
image is the image you created on page 13.)

When VisualWorks starts, its windows are arranged as they were when you
last saved the image.

VisualWorks Tutorial, Rev. 2.1 17

Chapter 2 The VisualWorks Environment

Sending Messages to Smalltalk Objects

In Chapter 1, you used a Workspace for simple text editing. In this section,
you will use a Workspace to semssageto Smalltalk objects. Recall from

page 2 that an object consists of some data plus a set of operations that manip-
ulate the data. A message is a request for an object to carry out one of its
operations.

For example, you can cause the System Transcript to display some text by
sending a message to it:

1. Open a Workspace, if necessary.
2. In the Workspace, type the following lines:

Transcript cr.
Transcript show: 'Hello, world!

Be sure to include the period, the colon, and single quotation marks.

3. Select (highlight) these lines.
4. Choose theo it command from the Workspace’s <Operate> menu.

The textHello, world! appears on its own line in the System Transcript
of the VisualWorks main window.

You just entered and evaluated two Smallalissage expressiwrEach
message expression describes a messaga@show:) to areceiver(Tran-
script). When you chooseo it , each message expression is evaluated,
causing the receiver to carry out the operation requested by the message.
Chapter 5 will give you more experience in creating and evaluating message
expressions.

Because VisualWorks is a Smalltalk system, all VisualWorks operations are
accomplished by objects sending messages to other objects. That is,
whenever you choose a menu item or click a button in a VisualWorks tool,
you start a chain of message-sends that perform the tool’s action.

18 VisualWorks Tutorial, Rev. 2.1

Browsing the Smalltalk Class Library

Browsing the Smalltalk Class Library

Every object in the Smalltalk system isiastanceof aclass A class is a
template for defining the data and operations for a particular type of object.
That is, a class defines:

n Theinstance variablegn which instances store data
n Theinstancemethodqprocedures) that describe how instances carry out
operations

All instances of a given class have the same form and behavior, but they
contain different data in their variables.

VisualWorks comes with a lardibrary of predefined classes from which you
can create objects as part of the applications you build. You can also add your
own classes to this library to create more specialized objects.

Using a System Browser

You can use a System Browser to explore the classes in the VisualWorks class
library. (In Chapter 5, you will use the System Browser to create classes as
well.) You can open multiple System Browsers to see different parts of of the
class library at a time. For example, opening two System Browsers is useful
for comparing two classes or methods side by side.

Follow these steps to explore a portion of the VisualWorks class library:

1. Open a System Browser by choosBrgwse ?All Classes in the Visu-
alWorks main window.

Shortcut: Click the System Browser button in the tool bar.

VisualWorks

File Browse Tools Changes Database Window Help

Bl &5 (@
?

System Browser button

VisualWorks Tutorial, Rev. 2.1 19

Chapter 2 The VisualWorks Environment

The System Browser you opened looks something like this:

category v iew scro Il bar

System Browser
v | w » »
S —— /g
Magnitude-General
ragnitude-MNumbers

Collections- Ahstract
Collections-Unorderg| | —
Collections-Sequenciz; P instance & class |

¥ T
X |

Figure 2-1 A newly opened System Browser

A System Browser, like many VisualWorks tools, has regions called
viewsfor displaying different kinds of information. The upper-left view
lists thecategoriesn the system. Categories are the way Smalltalk orga-
nizes groups of similar classes. Every class in the system belongs to
exactly one category.

2. Scroll through the list of categories in the category view:

n Put the pointer on the scroll bar to the right of the list, press and hold
the <Select> button, and drag the scroll bar down to show the
remainder of the list.

3. Select the first category in the lidggnitude-General) to see which
classes belong to it. (Scroll back to it if necessary.) Note that:

n These classes are listed in thass viewnext to the category view.

n A template for creating a new class is displayed in the windovds
view

20 VisualWorks Tutorial, Rev. 2.1

Browsing the Smalltalk Class Library

class view

System Browser

EY QN Al] Al
hitud gneral Character I
ragnitude-MNumbers Date
Collections- Ahstract Magnitude |
Collections-Unordere *

Collections-Sequenciz; P instance & class |

NameOfsuperclass subclass: #MNameOfClass
instanceYariableMames: ‘instY arNamel instYarMamez”

code view —» classWariableMames: 'ClassVarNamel ClassVarName2®

poolDictionaries: ™

category: “Magnitude-General®

B

Figure 2-2 A System Browser with a category selected

4. In the class view, select tlhate class to see its instance variables and
methods. Instances Dfate represent individual days of a year:

n The instance variablesldy, year) appear as part of tteass defini-
tion in the code view.

n The instance methods are groupegratocols which are listed in
the protocol view. Protocols are categories for organizing methods.

protoco | view

System Browser

P — S — B v___.v. _______ = 2]
R . N

ragnitu 1 Character I comparing

ragnitude-Mum accessing

Collections- Ahstract Magnitude 1 arithmetic

Collections-Unorderg| | — = inguiries

Collections-Sequenciz; P instance & class | converting % vl

Magnitude subclass: #Date

instanceYariableMames: ‘day year”

class¥ariableMames: 'DaysindMaonth FirstDayOftdonth MonthMames SecondsinDay
WeekDayMames *

poolDictionaries: ™

category: "Magnitude-General®

B

Figure 2-3 A System Browser with a class selected

VisualWorks Tutorial, Rev. 2.1 21

Chapter 2 The VisualWorks Environment

5. In the protocol view, select the protoeaicessing to see the instance
methods it contains:

n These methods are listed in tmethod view
n A template for creating a new method is displayed in the code view.

method view

System Browser

- - L et e L B L e W-—---- 2]
Fagnitu neral Character day
ragnitude-MNumbers leap

Collections- Ahstract Magnitude 1 a monthindesx
Collections-Unordere 2 inguiries monthMame
Collections-Sequenciz; P instance & class | converting 5] weekday =

=
nessage selector and argument names -
"comment stating purpose of message”

| ternporary variable names |
statements

Figure 2-4 A System Browser with a protocol selected

6. In the method view, select the instance metlvedkday. Its definition
appears in the code view. The method’s comment indicates that this oper-
ation calculates the day of the week on which a given date falls.

Note: If a notifier appears saying your sources file is invalid, you
probably need to perform the steps in the section “If You Created an
Image in a New Location,” on page 14.

22 VisualWorks Tutorial, Rev. 2.1

Browsing the Smalltalk Class Library

System Browser

~

T
ragnitude-General Character day
ragnitude-MNumbers leap
Collections- Ahstract Magnitude | monthindesx
Collections-Unordere 2 inguiries monthiame
Collections-Sequenciz; P instance & class | cohverting eekday
Jeekday

“&nswer the name of the day of the week on which the receiver falls."

~WeakDayMames at: self weekdayindex

Figure 2-5 A System Browser with a method selected

To see theveekday method in action, you can send an appropriate message
to an instance dbate. For example:

1. In a Workspace, type the following message expression:

Date today weekday

2. Select this expression and chopsiat it from the Workspace’s
<Operate> menu. This evaluates the message expression and displays its
result in the Workspace. The expression reports the name of the current

day of the week.

Finding a Class by Name

Browsing categories is a good way to explore the class library. However, if
you already know the name of the class you want to view, you can find it
directly. For example, assume you want to find the class datied, whose
instances represent locations on the screen definedrgy coordinates. To

do this:

1. Put the pointer in the category view and chdogkclass... from the
<Operate> menu.

2. TypePoint in the input field of the dialog box and cli€K. The System
Browser displays the definition &oint, which belongs to the
Graphics-Geometry category.

Note: You can use the asterisk (*) as a wildcard character in the string
you type in the dialog box.

VisualWorks Tutorial, Rev. 2.1 23

Chapter 2 The VisualWorks Environment

Adding a Category

You can add categories to the class library for organizing your own code. For
example, later in this tutorial, you will build a sample application. You can
prepare for this by creating a category to put it in. To do this, you:

1. Click theGraphics-Geometry category to deselect it, if
necessary.

2. Chooseadd... from the category view's <Operate> menu.

3. TypeExamples-VWTutorial in the input field of the dialog box and
click OK. The category view automatically scrolls to the end, showing
the added category.

By default, new categories are created at the end of the list. You can create a
new category in a particular location by selecting an existing category first;
the new category is inserted above the selection.

Browsing the Class Hierarchy

24

Every class (except one) in the Smalltalk class librarysishelassof some

other class (itsuperclasky A subclass is apecializatiornof its superclass—

its instances have the same kind of data and behavior as instances of the
superclass, plus some of their own. That is, as a subclass, every class has more
variables and methods than appear in its definition—it also has the variables
and methods inherits from its superclass. Inheritance captures the similari-
ties among related kinds of objects, while allowing for their differences.

The inheritance relationships among classes form a hierarchy rooted in the
classObject. That is, all classes are directly or indirectly subclasses of the
classObject, which defines the state and behavior common to all objects in
the systemObject does not inherit from any other class.

Using a Hierarchy Browser

You can use a Hierarchy Browser to browse the branch of the inheritance hier-
archy to which a given class belongs. This is useful for getting a complete
picture of a class—what is defined in it and what it inherits.

For example, assume that you want to know how Smalltalk implements
numbers. You can explore the inheritance hierarchy that contains the class
Number:

1. ChooseBrowse ?Class Named... in the VisualWorks main window.

VisualWorks Tutorial, Rev. 2.1

Browsing the Smalltalk Class Library

2. TypeNumber in the input field of the dialog box. This displays a Hier-
archy Browser on thRlumber class.

3. Resize the Hierarchy Browser window as shown in
Figure 2-6 so that you can read the contents of the class view easily.
Subclasses are indented under superclasses in this view.

Hierarchy Browser on: Humber

:-::-: Brs S | * Al
¥ arithmetic
Ohject = mathematical functions
. tagnitude testing
class view atithmeticvalue truncation and round off
dauble dispatching
FixedPoint converting
Fraction intervals
Integer 5 printing
< | m—— 2~ private
binstance bolass | TTTTTTTTTTOC v vl

v
SrithmeticV alue subclass: #Mumber
instanceYariableMames: ”

classYariahleMames: ™
poolDictionaries: ™
category: “Magnitude-Mumbers®

B

Figure 2-6 A Hierarchy Browser on th&/umber class

4. Scroll up the class view to see alldimber’s superclasses, their super-
classes, and so on up@dbject. You can select any of these classes to see
variables and methods that are inheritedNioynber.

5. Scroll down the class view to see alNafmber’s subclasses, their
subclasses, and so on. You can select any of these classes to see the
various kinds of numbers in the system.

6. Close the Hierarchy Browser.
If you are looking at a class in a System Browser and you want to browse its
inheritance hierarchy, you can select the class and cBpas hierarchy

from the class view’s <Operate> menu. This opens a separate window
containing a Hierarchy Browser.

VisualWorks Tutorial, Rev. 2.1 25

Chapter 2 The VisualWorks Environment

Storing and Retrieving Information in Files

A VisualWorks image stores an entire Smalltalk system in a single disk file.
Sometimes it is useful to save subsets of the system in separate disk files. For
example, as you develop new classes for an application, you can write the
category that contains them to a disk file. This is cdiliedy outthe category.

The resulting disk file can serve as a backup, an archive, or a way of
preserving intermediate stages of your work.

Just as you can file out code from an image to a disk file, you cafilaliso
code—that is, you can retrieve filed-out code by reading it back into your
image. This serves as a means of sharing work across images. For example,
if another user creates an application that you can use, that user can file it out
of his or her image so that you can file it into yours.

Writing to Disk Files

You can file out categories, classes, and individual methods from any
browser. For example, you can:
1. Select a class in the System Browser or the Hierarchy Browser.

2. Choosdile out as... from the class view’s <Operate> menu. A dialog
box displays the default name for the new file (the class’s name with the
.st file extension).

3. If desired, enter a different name; then clizK.

4. Use your platform’s file-management facilities to verify that the file was
created in the current working directory.

Retrieving Information from Disk Files

You use a File List to locate and select files in your file system and then read
them into your image. For example, you can file in the provided sample calcu-
lator application (assuming that you installed all of the VisualWorks files and
directories):
1. Choose€Tools ?File List in the VisualWorks main window.

Shortcut: Click the File List button in the tool bar.

26 VisualWorks Tutorial, Rev. 2.1

Storing and Retrieving Information in Files

VisualWorks

File Browse Tools Changes Database Window Help
Bl&lE &%

File List button

An empty File List is displayed:

File List

pattern view —p i W auto read

3

A

names view —»

o Dfiles -

contents view —p

Figure 2-7 An empty File List

2. In thepattern viewat the top of the File List, type a pathname pattern that
matches the contents of theorial subdirectory of your Visual-
Works installation directory, typically:

n [usrivisual/tutorial/* on a UNIX platform
n C:AVISUAL\TUTORIAL* on a Windows or OS/2 platform
n hd:visual:tutorial:* on a Macintosh

In the pattern, the asterisK) (is a wildcard character.

3. Press <Return>. Theames vieuists the files and directories that match
the name in the pattern view. In this case, the names view displays two
directory names.

4. In the names view, select the pathname fobttgc directory. The
contents viewdisplays the selected directory’s contents (two filenames).

VisualWorks Tutorial, Rev. 2.1 27

Chapter 2 The VisualWorks Environment

5. With the pointer in the names view, choogev pattern from the
<Operate> menu. This changes the pattern view so it specifies the
contents of théasic directory and adjusts the names view accordingly.

6. Inthe names view, select the pathnameéde.st . The contents view
displays the source code for the sample application stored in the file.

7. With the pointer in the names view, chofikein from the <Operate>
menu. This reads in the source code from the selected file and compiles it
into the image. Notice the progress messages displayed in the System
Transcript.

8. Close the File List.
9. Verify that the file-in was successful:

a. In a System Browser, scroll to the bottom of the category view to
locate the categoylIExamples-General. If necessary, refresh the
view by choosingipdate from the category view’s <Operate>
menu.

b. Select theJIExamples-General category. Notice that it contains
two classesCalculator andCalculatorExample.

File Lists can also be used as general-purpose browsers for your file system.
Through a File List, you can list the contents of any directory or file, edit a
file, and create new files.

Running an Application

28

Applications built with VisualWorks normally include at least one class that

containsresourcesResources are specific kinds of information that are

required for assembling an application’s graphical user interface. Resources

include:

n Specifications for constructing windows

n Specifications for constructing menus

n Graphical images (such as icons) for use in windows

n Queries for retrieving data for display from a relational database

You use a Resource Finder to locate the resources in the system and the

classes that define them. Consequently, you can use the Resource Finder as a

convenient way to locate and start applications. For example, to locate and

start the calculator application you just filed in, you can:

1. ChooseéBrowse ?Resources from the VisualWorks main window.
Shortcut: Click the Resource Finder button in the tool bar.

VisualWorks Tutorial, Rev. 2.1

Running an Application

VisualWorks

File Browse Tools Changes Database Window Help

Bl WE5E (@
f

Resource Finder button

This brings up the Resource Finder, whose class view lists all the classes
that contain resources:

Resource Finder

View C(lass Resources

Browse E Start E Add... E Remaove... E Edit

Class Resources

w

ActionButtonSpec

. AdHocQueryTool
class view —————» ArhitraryComponent3pec
CalculatorExample
Checkbookinterface
CheckBoxspec
CodingAssistant
ColarToalModel
ComhoBoxspec
CompositeSpec

—_—

A

[e e S

resource
view

v

Figure 2-8 A newly opened Resource Finder

2. Locate theCalculatorExample class in the class view.

Hint: Because you created this class when you filed it in, you can choose
View ?User Classes to filter out the system classes.

VisualWorks Tutorial, Rev. 2.1 29

Chapter 2

The VisualWorks Environment

3. Select the clagSalculatorExample. This lists its resourcevndow-
Spec) in the resource view:

Resource Finder

View Class Resources

Browse E Start E Add...

E Remove... E Edit

Class

w

Resources

ActionButtonSpec
AdHocGueryTool

CalculatorExample
Checkhookinterface
CheckBoxspec
Codingassistant
ColorToolkModel
ComhoBoxSpec
CompositeSpec

Arbitrary ComponentSpec

= windowSpec

£

Figure 2-9 A Resource Finder with a class selected

4. Click the Resource Finder&art button. This starts the application. Try
out the calculator; when you are finished, close its window.

5. Exit the Resource Finder by closing its window or by sele@&jig from

its View menu.

Browsing Online Documentation

30

The VisualWorks online document library contains:

n TheVisualWorks CookboolA collection of “how-to” topics that explain
Smalltalk basics and provide steps for common application-building

tasks

n TheDatabase CookboolA collection of “how-to” topics that pertain

specifically to using VisualWorks’ database tools

n TheDatabase Quick Start Guide&n overview of steps for building
database applications with VisualWorks

n Thelnternational User’s Guidewhich describes the VisualWorks facili-
ties for creating nonEnglish and cross-cultural applications

The online cookbooks also exist as printed books in the VisualWorks docu-

mentation set.

You access the online document library through the Online Documentation
Browser. For example, to find online information about Smalltalk message

expressions, you:

VisualWorks Tutorial, Rev. 2.1

Browsing Online Documentation

1. ChooseHelp ?0Open Online Documentation from the VisualWorks
main window.

Shortcut: Click the Online Documentation button in the tool bar.

VisualWorks

File Browse Tools Changes Database Window Help

Bl WE5E @

Online Documentation button

This brings up the Online Documentation Browser, which displays a list
of online books:

Online Documentation

Hile Bookmark Help

E History E E
N
Page: | 5 e fmay T |
YisualWorks Library
[Book: Database Cookbook o

Book: Datahase Guick Start Guides
Book: International User’s Guide
Book: Visual¥orks Cookhook

W

Figure 2-10 A newly opened Online Documentation Browser
2. In the Online Documentation Browser, selBobk: VisualWorks
Cookbook. This lists the Cookbook’s chapters.

Note: If a notifier informs you that the online books file is missing, you
probably need to perform the steps in the section “If You Created an
Image in a New Location,” on page 14.

VisualWorks Tutorial, Rev. 2.1 31

Chapter 2 The VisualWorks Environment

Online Documentation

File Bookmark Help

Search E History E Examples E See also

Page: | 1 @ Back To: | WisualWorks Library

Book: ‘isualWorks Cookbook

Chapter 1: Smalltalk Basics T
Chapter 2: Euilding Applications
Chapter 3: Widget Basics

Chapter 4: Windows

Chapter 5: Labels

Chapter b: Input fields

Chapter 7: Lines, Boxes, and Ovals
Chapter 8: Buttons

Chapter 9: Text Editors

Chapter 10: Lists

Chapter 11: Datasets

v

Figure 2-11 Browsing the VisualWorks Cookbook chapters

3. SelectChapter 1: Smalltalk Basics. This lists the chapter’s topics.

4. Select the topi€onstructing a message . Cookbook topics normally
contain the following sections:

n STRATEGY (concepts for understanding a task and choosing among
alternative tasks)

n BASIC STEPS (steps for performing that task)
n VARIANTS (steps for performing similar tasks)

5. Read the first two sections @bnstructing a message . The basic
steps give directions for constructing a sample message expression.

6. Click theExamples button in the Online Documentation Browser. This
brings up an Examples window that displays the sample code to which
the steps refer:

32 VisualWorks Tutorial, Rev. 2.1

Browsing Online Documentation

Examples

4Df5 4 | Print it | Inspect | Update

¥
"Print it"
1.0 sin "Step 1"

vl

Figure 2-12 AnExamples window for online documentation

7. Notice that the comment in the Examples window says
"Print it". This means you can click ti®int it button to evaluate the
expression and display the result. (Other examples may tell y@oto
it" or"Inspect it".)

8. Display the next example for this topic by clicking the right arrow at the
top of the Examples window. (This example is described in the
VARIANTS section of the topic.) You can scroll back and forth through
a topic’s examples using the arrows.

9. Close the Examples window (but leave the Online Documentation
Browser open). In the resulting notifier, cligks to discard the results
of step 7.

Exploring the Cookbook’s Sample Applications

In many topics, the code fragments shown in the Examples window are part
of an entire sample application. As you learn more about building applica-
tions, you will want to see the example code in context. The following steps
show you how to find sample applications that are used in the Cookbook:

1. In the Online Documentation Browser, click tack To: button
several times to return to the list of VisualWorks Cookbook chapters.

2. SelectChapter 17: Notebooks and then select the topdading a
notebook .

3. Scroll to theBASIC STEPS section and notice the line:

Online example: Notebook1Example

VisualWorks Tutorial, Rev. 2.1 33

Chapter 2 The VisualWorks Environment

34

This indicates that the examples in the basic steps are part of a sample
application calledNotebookl1Example.

4. Choosd-ile 2Browse Example Class in the Online Documentation

Browser. This displays a list of the sample applications that support the
online documentation:

Browse Example Class
Adaptor Example =
AdaptorZExample
AdaptoriExample
AdaptordExample
AdaptoriE<ample
AdaptorGExample
ButtonExample
ColorExample
ComboBoxExample
CursarExample
Customer1Example
CustomerzExample
Custom¥iewE=ample
DatabaselExample
Dataset! Example

w

o] [

. Locate and seledtotebook1Example in this list; then clickOK.
. In the resulting notifier, click thEile It In button to request that

NotebooklExample be filed into your image. Notice the progress
messages that appear in the System Transcript. When filing in is
complete, a window outline appears.

. Position the window outline and click to display the Hierarchy Browser

on theNotebooklExample class. This is where you can examine the
example code in context.

. Run the sample application by opening a Resource Finder (see page 28),

selectingNotebookl1Example, and clickingStart . This application
illustrates the use of a notebook widget to list all the Smalltalk classes in
alphabetical order.

. Close theNotebook1Example window, the Resource Finder, the Hier-

archy Browser, and the Online Documentation Browser. (Leave the Visu-
alWorks main window open.)

VisualWorks Tutorial, Rev. 2.1

Customizing Your Working Image

Customizing Your Working Image

You can customize a number of aspects of your image through the Settings
Tool. In general, you can:

n Control the default size, look, and behavior for a number of VisualWorks
tools.

n Specify where VisualWorks can find various files and directories. (You
may have already done this on page 14.)
To display the Settings Tool:

1. ChooseFile ?Settings from the VisualWorks main window. As shown
in Figure 2-13, the Settings Tool is arranged astabookwith one page
per customizable feature. Each page is indicated by a latadded

Settings
System Source File Locations |||||

1 - Sources: Souroes pis

| vislal.sou Iette

2 - Changes: Canvas

| visualcha Page Siyle — talTS f:)r
page containing mwsmg selecting
settings n pages

Ul Look
Window
Help

lcon

Text <«

[4«———— tabforshowing
more tabs

Figure 2-13 Settings Tool

2. Click on the tab labeledl Look . The settings on this page control the
look of VisualWorks windows.

3. Click theHelp button on theJl Look page and read the description.
Notice that the default look selectiondsto Select , which means that
VisualWorks selects a look that is compatible with your platform.

4. Choose a different look selection (but le®asic Tools Adopt Look
selected):

VisualWorks Tutorial, Rev. 2.1 35

Chapter 2 The VisualWorks Environment

n With the pointer on theook Selection menu button, press and
hold the <Select> button. Move the cursor to the desired menu item
and then release the button.

5. Click Accept . Notice the effect on any open windows such as the Visu-
alWorks main window.

6. Change the look back fauto Select and clickAccept .
7. Close the Settings Tool.

Viewing Changes Since the Last Save

VisualWorks records the changes that you make to the classes and methods in
the Smalltalk system in your image. These changes are listetiamges filg

which is located in the same directory as the image file. The changes file has
the same name as the image file, except that its file extensidrais

The changes file records:
n Changes to class and method definitions that result from editing or filing

in code
n Actions that create objects and send messages to them
VisualWorks records these changes so that they can be replayed (reloaded) in
your image. This is useful for recovery after power outages or system failures,
because it allows you to reconstruct any unsaved changes in your image. The

more frequently you save your image, the fewer changes you need to replay
when recovering it.

To see the changes that you made since the last time you saved your image:

1. ChooseChanges ?Open Change List from the VisualWorks main
window. This opens an empty Change List.

2. Put the pointer in thehanges vievin the upper-left corner of the Change
List and chooséle infout recover last changes from the
<Operate> menu.

36 VisualWorks Tutorial, Rev. 2.1

What's Next: Creating Applications

Ippsfiafimages/visualbw .cha

S — = [Eshow file
dolt "ppsdafimages/visualbwim cn I|_Tshaw category
changes view —prolt Date today Cile
dolt Date today Cype
daolt Doc openDoclauncher
dolt Transcript cr. . riclass
dolt Date today weekday i categary
dolt Date today weekday [selector
dolt Doc openDocLauncher | = same
¥

Figure 2-14 Change List

Your changes are listed in the change view. You typically need to filter
this list before replaying any changes. For information about recovering
an image, see Chapter 17, “Troubleshooting,” invisealWorks User’s
Guide

3. Close the Change List.

What's Next: Creating Applications

So far, you've been introduced to:

n Basic Smalltalk concepts (objects, messages, classes, instance variables,
and methods)

n Basic VisualWorks tools (Workspace, System Browser, File List,
Resource Finder, Online Documentation Browser, Settings Tool, Change
List)

In the following four chapters, you will build on what you've learned to create
a sample application. Chapter 3 introduces this application, and Chapters 4
through 6 show you how to build it.

Note: If you are specifically interested in creating database applications, you
should read at least Chapters 3 and 4 before consulting the VisualWorks’
Database Tools Tutorial and Cookbook.

Before you go on, you should save your image to keep the category you added
and the code you filed in.

VisualWorks Tutorial, Rev. 2.1 37

Chapter 3

Introduction to VisualWorks Appli-
cation Building

This chapter:

n Introduces the requirements for the sample application that you will
develop over the next few chapters

n Describes the general characteristics of VisualWorks application design

n Outlines the design you will use for the sample application

Application Requirements

Your task is to use VisualWorks to write a simple online checkbook that
records basic checking-account transactions. This application must:

n Enable users to make deposits into a checking account

n Enable users to write checks against the account

n Enable users to cancel written checks

n Provide a list of the written checks

n Provide the account balance

In addition to these functional requirements, there is a design requirement that
the application have graphical user interface—one or more windows

and/or dialog boxes that give the user appropriate controls for viewing infor-
mation, entering information, and invoking operations.

For the sake of simplicity, the Checkbook application does not handle persis-
tent data—that is, it does not connect to a database. Instead, the checkbook
(and the account it represents) is created when the application is started and
destroyed when the application is closed.

VisualWorks Tutorial, Rev. 2.1 39

Chapter 3

Introduction to VisualWorks Application Building

VisualWorks Approach to Application Design

This tutorial presents steps for constructing the sample application with Visu-
alWorks. The end product of this process is a running Smalltalk application—
a set of interrelated objects that interact by sending messages to each other.
Thus, the process of creating an application involves:

n Deciding what objects are required by the application

n Adapting or creating classes that define the data and behavior of these
objects

Although it is possible to design and create an application from fundamental
objects, you can accelerate the process by using the Visualdipksation
framework The classes in this framework provide a core structure that you
augment to build complete applications:

n For some parts of the application, you use point-and-click operations to
specify the relevant portions of the framework.

n For other parts of the application, you create subclasses from the frame-
work classes and add code as appropriate.

The classes in the VisualWorks framework fit together in specific ways.
These classes embody a particular approach to structuring an application,
which you need to understand in order to use classes from the framework and
integrate them with classes of your own.

The following sections describe two main characteristics of VisualWorks
application structure—namely, that it is layered, and that one of these layers
captures and expresses the organization of the user interface.

Layered Structure

40

A VisualWorks application is conceptually divided into two parts:

n Theinformation modelwhich handles data storage and processing
n Theuser interfacewhich handles input and output

VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Application Design

This separation of concerns results in corresponding layers of objects:

n Model objectgor simplymodel3, which define and manipulate data
structures.

n User-interface (Ul) objectsvhich present data from the models and
enable users to interact with this data. Ul objects are the objects that
make up a display screen; they include windowswaidgets(controls
such as input fields, action buttons, scrollable lists, and the like).

display screen / ~ \

RN
Ul objects " h -
model objects /

Figure 3-1 Layers of the user interface and information model

Though distinct, Ul objects and models are highly interconnected. For
example, every widget that displays information depends on some model for
that information. By itself, each Ul object simply provides visual characteris-
tics such as shape and color, as well as any visual response to keyboard and
mouse input (for example, movement or color change).

VisualWorks Tutorial, Rev. 2.1 41

Chapter 3 Introduction to VisualWorks Application Building

A typical application is further layered to distinguish different kinds of
models. Among these are domain models and application models. (Other
kinds of models—namely, value models—are described in Chapter 6.)

Domain Models

Domain modelsimulate the state and behavior of real-world objects in the
application’sdomain,which is the area of endeavor that the application helps
to automate (for example, accounting, inventory control, payroll, and the
like).

Domain models define the data that is relevant to the domain and perform the
operations that process the data. For example, an accounting application
might include domain models such as customers, debtors, and creditors.

Application Models

Application modelprovide a layer of information and services between Ul
objects and domain models. Among other things, an application model
defines the application-specific behavior of individual widgets in the inter-
face—for example, by:

n Establishing the connections between the widgets and the data they
present

n Controlling how the widgets interact with each other

An application model may also provide additional data definition and
processing that are required by the application but are not part of the core
domain. For example, the application model in an accounts-receivable appli-
cation may provide transactions that are not part of any accounting domain
models.

42 VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Application Design

display screen

Ul objects

application models

domain models

Figure 3-2 Layers within the information model

Why Layering?

The layering of models and Ul objects is the foundation for developing
multiple applications in the same domain. That is, families of related applica-
tions can reuse existing domain models and have different application models
to support their different user interfaces.

Similarly, layering facilitates maintenance. In general, an application’s
domain models tend to be relatively stable, whereas its user interface may
require considerable revision from one release to the next. This means editing
or replacing application models, while making only minor changes to domain
models.

VisualWorks Tutorial, Rev. 2.1 43

Chapter 3 Introduction to VisualWorks Application Building

Ul-Based Structure

As arule, each application model in a VisualWorks application supports one
window in the interface. That is, each application model defines the applica-
tion-specific behavior for a particular window and the widgets in it. Conse-
guently, a multiwindow application typically has several interconnected
application models.

More generally, the application-model layer mirrors the organization of the
user interface. A user interface identifies chunks of related information and
operations, and it presents these chunks in one or more interrelated windows,
where:

n Some windows are primary—persistent windows in which users perform
the bulk of their work.

n Other windows are secondary—dialog boxes and “satellite” windows
that are opened only as adjuncts to some primary window.

Each application model corresponds to some portion of the window organi-
zation, supporting an individual window or a group of related windows (for
example, a primary window and its dialogs). In fact, if a window contains
relatively independent subregions, a separate application model may exist for
any of those subregions.

Why Ul-Based Structure?

Like layering, Ul-based structuring promotes reuse. Each application model
that supports a meaningful chunk of user interface can be combined with
other application models to form new interfaces. In fact, you can think of each
application model as defining an independently runnable “application unit”
from which larger applications can be constructed.

44 VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Application Design

' /
~
~ — 7/ A 3 \
s s/ \ \
‘/ 2 | / \ \ \

Figure 3-3 Composing larger applications from smaller ones

Building Blocks in the Framework

The VisualWorks framework provides classes for specific parts of the appli-
cation structure described above:

n Predefined classes for Ul objects (windows and widgets)
n Superclasses for application models

You create your application models as subclasses of the appropriate super-
classes in the framework. Each such application model inherits the ability to
create Ul objects from framework classes. That is, you simply specify the
layout and contents of the windows in the interface and then store these spec-
ifications in the appropriate application models. When the application runs,
each application model builds its window(s) according to your specifica-
tion(s), creating suitable window and widget objects from the classes in the
framework.

VisualWorks Tutorial, Rev. 2.1 45

Chapter 3 Introduction to VisualWorks Application Building

Domain models are not part of the application framework, because their
structure and contents vary widely from domain to domain. Instead, you build
domain models from standard Smalltalk classes. In fact, separate domain
models may be unnecessary in very small applications or where reuse is not
a consideration; in these cases, all of the application’s processing resides in
application models.

Framework for Database Applications

VisualWorks applications that access relational databases have the same basic
structure outlined here, except that they have specialized kinds of application
models (for examplajata formsanddatabase applicationsFurthermore,

instead of “hand-built” domain models, the database applicatiorensiés
classegyenerated automatically from database tables. Sedgtal\Works’
Database Tools Tutorial and Cookbofak more information.

Designing the Sample Application

At this point, you are ready to design the sample application, considering its
requirements in light of the VisualWorks design approach described above.

Designing an application involves making choices and trade-offs; there is no
one right structure. The following sections guide you through the choices
made for the Checkbook application. Note that some of these choices serve
to simplify the application so that the tutorial can focus on essential aspects
of the development process.

The Checkbook application is a very small application with straightforward
requirements. When analyzing and designing more complex applications,
you may want to use a more formal methodology. ParcPlace-Digitalk offers
training and consulting for a methodology called Object Behavior Analysis
and Design (OBA/D).

46 VisualWorks Tutorial, Rev. 2.1

Designing the Sample Application

Designing the User Interface
When you design the Checkbook application’s user interface, you decide:

n How many windows?

n What kind of windows?

n What information and operations belong in each window?

The application’s requirements suggest a user interface consisting of two
windows:

n A persistent main window that:

g Provides controls for initiating the required operations (writing a
check, canceling a check, making a deposit)

g Displays the written checks and the current balance
n A dialog box that gathers the input for writing a new check

Designing the Models
When you design the Checkbook application’s models, you consider:
n What real-world information and processes should the application repre-
sent?

n Which portions, if any, are reusable in other applications (or elsewhere in
the same application)?

n Which portions are likely to change frequently, and which are likely to
remain stable?

Designing Domain Models

The Checkbook application simulates a user’s interactions with a checking
account. A checking account is essentially a quantity of money that you spend
by writing checks. Each check is identified by a unique number and autho-
rizes the transfer of a specific amount of money to some payee. You keep a
record of the checks you write by listing them in the register of a checkbook.
You track the available amount of money in the account by keeping the
running total, or balance, of the checks listed in the register.

From this description, at least two domain models suggest themselves:

n A Check, which contains a unique number, a date, an amount, and a
payee
n A Checkbook, which contains a register and a running balance

VisualWorks Tutorial, Rev. 2.1 47

Chapter 3 Introduction to VisualWorks Application Building

Note that you could define an additional domain modBidjposit) to handle
deposits similar to checks. However, to keep the application simple, deposits
are treated as numbers added to the balance.

Designing Application Models

The Checkbook application needs at least one application model to establish
the connections between the widgets in the interface and the information in
the Check andCheckbook objects.

You could choose to have two application models, one for each window, or
you could choose to support both windows with one application model. The
decomposition of application models is a matter of judgment about what
information makes sense together and what is separately reusable. Assuming
that neither window will be reused separately, you decide on a single applica-
tion model, calledCheckbookinterface.

You could choose to keep domain models separate or to incorporate their state
and behavior into the application model. Assuming that the user interface will
undergo constant revision but the checkbook-related information and
processing will not, you decide to ke€peck andCheckbook as separate
classes.

48 VisualWorks Tutorial, Rev. 2.1

What's Next: Constructing the Sample Application

What's Next: Constructing the Sample Application

The next three chapters of this tutorial guide you through the following
general steps in constructing the sample application:

1. Specify the layout and contents of the main window and the dialog box
(Chapter 4).
2. Create and program tlheckbook andCheck classes (Chapter 5).

3. ProgranCheckbookinterface to connect the specified widgets to
appropriate information and actions (Chapter 6).

Note that when you build your own applications, you may perform similar
steps but in a different order:

n You may start with existing domain models to which you add a user
interface.

n You may complete the user interface and application model and then
decide to split off several separate domain models.

n You may go back and forth between the interface and the models, adding
individual features incrementally.

The work you will do in the next three chapters is cumulative, so you should
save your image periodicallgspecially before taking a break or exiting
VisualWorks.

VisualWorks Tutorial, Rev. 2.1 49

Chapter 4

Creating a Graphical User Interface

This chapter describes how to create the visual portion of a graphical user
interface. For the Checkbook application, this means specifying the contents
and layout of two windows:

n The Checkbook main window
n The Check dialog box

Later, in Chapter 6, you will learn how to program the application-specific
behavior for the various elements you specified.

Designing the Checkbook Main Window

In the previous chapter, you established a preliminary design for the Check-
book application’s main window. Now you refine the preliminary design into
a more detailed design. This means deciding which controladgets you

want in the window and how you want them to be positioned relative to each
other. (See Appendix B for descriptions of the available widgets.)

As a start, assume that you design the window as shown in Figure 4-1. This
design includes:

n Widgets that display information—in particuladist for displaying the
collection of written checks and a read-omgut fieldfor displaying the
balance

n A widget that gathers input—in particular, amput field for entering
deposit amounts

n Widgets that invoke operations—in particulamanu bawith menus
for closing the application and for writing and canceling checks

n Widgets that organize the window—in particulahelsthat identify the
purpose of various other widgets

VisualWorks Tutorial, Rev. 2.1 51

Chapter 4 Creating a Graphical User Interface

Checkhook

menu bar —» | File Checks

label —— % Check Register

B ¥

Twl, 2 August 1334: $114 to Happy Cat Yeterinarian =
list — #2, 22 August 1334: $7.94 to Mom & Pop Gracery Store I

»
L

Amount to Deposit: I $0.00 ; Balance: | $arg.0e ;
* A * A

label input field label input field

Figure 4-1 The Checkbook application’s main window

Design Alternatives

Even an initial, rough-cut design makes choices among alternatives for
presenting information and operations. For example, in the proposed design:

n Each written check is represented as a line of text in a list. Alternatively,
check information could be formatted in columns talale or adataset.

n The deposit operation is invoked by entering an amount in an input field
and pressing <Return>. Alternatively, the operation could be triggered
more explicitly by araction buttonor an item on a menu.

The proposed design is a sufficient starting point, because it is the simplest
design that meets the application requirements. In the next sections of this
chapter, you will create a prototype of the main window with this design and
then refine the prototype to improve its usability.

Creating the Main Window

You create the Checkbook main window by creating a visual specification of
its contents and layout. This process includes the following steps, which are
described in detail in the rest of this section:

1. Opening a blankanvas

52 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

2. Paintingthe canvas with widgets chosen frorRalette

3. Settingpropertiesfor each widget andpplyingthem to the canvas
4. Editing the contents of any menus on the canvas

5. Installing the canvas in an application model

Opening a Blank Canvas

A VisualWorks canvas is a “window under construction"—a work area that
you configure until it looks like the window you want in your application. In
general, you create a separate canvas for each window in an application.

To open a blank canvas for the Checkbook main window, you:

1. Start VisualWorks, if necessary.
2. Chooselools ?New Canvas from the VisualWorks main window.
Shortcut: Click on the New Canvas button in the tool bar.

VisualWorks

File Browse Tools Changes Database Window Help

Bl E5E (@

New Canvas button

3. Use the mouse pointer to position the rectangular window outline on the
screen, and then click the <Select> button.

VisualWorks Tutorial, Rev. 2.1 53

Chapter 4 Creating a Graphical User Interface

VisualWorks opens a window containing an unlabeled canvas, plus two addi-
tional tools, as shown in Figure 4-2:

n A Palette of the standard widgets supplied by VisualWorks (these are
described in Appendix B). You choose widgets from this Palette to paint
them on the canvas.

n A Canvas Tool that you use to fine-tune the appearance of the canvas and
to invoke additional canvas-preparation tools.

Canvas Tool on: Unlabeled Canvas

Edit Tools Layout Arrange Grd Look Special |
U ENME R EIRE BN EOREE]

Prapetties Install... Define... Browse.. Open

Unlabeled Canvas

Figure 4-2 A blank canvas, its Palette, and its Canvas Tool

The displayed Palette and Canvas Tool are associated with this particular
canvas; operations you invoke from them affect only this canvas. Every
canvas you open has its own Palette and Canvas Tool associated with it.

Minimizing or closing a canvas automatically closes its Palette and Canvas
Tool. However, you can move, minimize, or close these tools independently
of the canvas. If you close a canvas’s Palette or Canvas Tool, you can bring it
back by positioning the mouse pointer in the canvas and choosing

tools ?palette or tools ?canvas tool from the <Operate> menu.

Painting the Canvas

You paint the blank canvas with the main features of the Checkbook main
window—a list, three input fields, and three labels. (You will add the menu
bar in a later section.)

54 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

Sizing the Canvas

Before you start painting widgets, you resize the canvas to establish the
preferred size of the Checkbook main window:

1. Use your window manager to enlarge the canvas window (use Figure 4-1
as guide).
2. Choosd.ayout Window ?Preferred Size from the Canvas Tool.

Setting a canvas’s preferred size determines the initial size of the window
when the running application opens it.

You can resize the canvas at any time while you paint it. However, resizing
the canvas does not change its preferred size; to do this, you must choose
Layout ?Window ?Preferred Size again.

Painting a Widget
To paint the required list onto the canvas:

1. Verify that thesingle-selection buttoan the Palette is active (it has a
heavy, dark outline; see Figure 4-3). If it is not active, select it by posi-
tioning the mouse pointer over it and clicking the <Select> mouse
button.

When active, the single-selection button allows you to paint a single
copy of a widget on the canvas.

2. Select the list widget on the Palette. Tidicator field at the bottom of
the Palette displays the name of the selected widlggtt)(

If you select the wrong widget, select other widgets until the indicator
field displaysList .

3. Paint the list by moving the mouse pointer to the canvas and clicking the
<Select> button. Figure 4-3 shows the painted list.

VisualWorks Tutorial, Rev. 2.1 55

Chapter 4 Creating a Graphical User Interface

single-selection

button \JW

list widget

widget indicator
field ——»

56

Canvas Tool on: Unlabeled Canvas

Edit Tools Layout Arrange

Grd Look Special

et [all || 3 | =)

= E L E i1 E 1]

It | 1]

Prapetties Install...

Define...

Browse..

Open

Unlabeled Canvas

3 pr——

painted list widget

Figure 4-3 The canvas with a list widget painted on it

Selecting and Deselecting a Widget

Notice theselection handleglack squares) on the four corners of the list you
just painted. They indicate that the widget is selected in the canvas. Practice

deselecting and reselecting the list:

1. To deselect the list, either:

n Click the <Select> button anywhere in the canvas outside the list's

selection handles.

n <Shift>-click inside the selection handles.

2. To reselect the list, click the <Select> button anywhere inside the list or

on its borders.

VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

Positioning a Widget

To position the list within the canvas:

1. Select the list, if necessary, and position the mouse pointer within the
selection handles.

2. Press and hold down the <Select> button; then move the pointer. The list

moves, too.

3. Drag the list to the desired position (use Figure 4-1 as guide), and then
release the <Select> button. The list remains selected.

Resizing a Widget
To change the list's shape and size:

1. Select the list, if necessary.

2. Position the mouse pointer over one of the selection handles.

3. Press and hold down the <Select> button; then move the pointer. The
corner of the list moves, too.

4. Drag the corner until the list is the desired shape (use Figure 4-1 as
guide), and then release the <Select> button. The list remains selected.
You may want to reposition it to accommodate its new size.

Copying and Pasting a Widget

Now you need to paint two input fields onto the canvas. You can paint each
field individually, just as you painted the list, or you can use copy and paste

as a shortcut.
To paint two input fields, using copy and paste:

1. Select the input field widget from the Palette and paint it on the canvas
below the list.
2. With the field still selected, selestiit copy from the <Operate> menu.

3. Seleckedit ?paste from the <Operate> menu. This makes a second copy
of the field directly on top of the original one.

4. Drag the copy to the appropriate location.

Painting Multiple Copies of a Widget

Another shortcut for painting multiple copies of a widgetseat-painting
To repeat-paint the three required labels:

1. Click therepeat-selection buttoan the palette (see Figure 4-4).

VisualWorks Tutorial, Rev. 2.1 57

Chapter 4 Creating a Graphical User Interface

repeat-selection

2. Select the label widget from the Palette.

3. Click on the canvas where each label is to appear (above the list and to
the left of each input field).

4. Turn off repeat-painting by clicking the single-selection button.

Canvas Tool on: Unlabeled Canvas

Edit Tools Layout Arrange Grd Look Special |

button —]

input field

widget

label widget —

e L] e]s]=] [2]eja]e] [T]s)
=) Properies Install... Define... Browse... Open
-]
|.. Unlabeled Canvas
y A Label
=i 5
1
v
P e R R —

Figure 4-4 The canvas with a list, two fields, and three labels

Deleting a Widget

Sometimes you accidentally paint the wrong widget or too many copies of a
widget. To delete a widget:

1. Select the widget to be deleted.

2. Seleckdit ?cut from the <Operate> menu. This saves the widget to the
canvas clipboard so you can paste it back in. On some platforms you can
use the <Delete> or <Backspace> keys to delete a selected widget.

Setting Properties

58

Now that you have painted the basic elements of the Checkbook main
window, you set properties for each widget and for the window itself. Prop-
erties define a variety of visual attributes, such as font, color, borders, and so
on. For some widgets, such as input fields, properties also indicate the nature

VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

of the data to be displayed and how that data is to be referenced by the appli-
cation.

In this section, you will specify just the visual properties for the labels, list,
and input fields. Later, in Chapter 6, you will specify &otion andaspect
properties when you program the Checkbook application’s graphical user
interface.

Displaying a Widget's Properties

To display the properties for a widget:

1. Select the widget in the canvas. In this case, select the label above the
list.

2. Click theProperties button on the Canvas Tool.
VisualWorks opens the Properties Tool. You use the Properties Tool to
examine and change the properties for the selected widget.

As shown in Figure 4-5, the Properties Tool displays the properties that apply
to the current selection in the canvas. These properties are arranged in a
notebook containing pages of related properties. You display other pages by
clicking the tab of the page you want to see.

Note that the Properties Tool does not belong to a particular canvas the way
the Canvas Tool and Palette do. Thus, a single open Properties Tool can be
used for working on multiple canvases.

VisualWorks Tutorial, Rev. 2.1 59

Chapter 4 Creating a Graphical User Interface

type of Widget Properties Tool on: Unlabeled Canvas
selected on
canvas Label
‘ Label: LM Basics tabs for paging
properties Details through Label
1D: | properties
[Label Is Image
move selection to
other widgets on
canvas
applies properties ’/
to canvas P spply | Cancel | Apply & Close | Prev | et |

Figure 4-5 The Properties Tool, showing basic properties for a label

Applying a Changed Property

Like all of the labels on the canvas, the label you selected displays the default
textLabel . You change this text to suit the application by changing and
applyinga property. To do this:
1. Verify that the label above the list is still selected and thaBésics
page is displayed in the Properties Tool.
2. In the Properties Tool, ent€heck Register as the value of thieabel:
property.
3. Click Apply . The new label text appears on the canvas.

Applying properties adds information to the canvas, enriching the specifica-
tion of the selected widget. For many properties, sudtabsl, the added
information is also visible on the canvas.

Where appropriate, you can change multiple properties on a single page and
apply them all at once. However, in this example, you need to change only
one property for each label; the default settings are sufficient for the
remaining properties.

60 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

Moving the Selection to the Next Widget

Now you need to display the properties for the remaining labels so you can
set their text. One way to do this is to move the mouse pointer back to the
canvas and select another label. Alternatively, you can uskettteandPrev
buttons to move the selection on the canvas without moving the mouse
pointer out of the Properties Tool.

To set the text for the remaining labels:

1. Verify that theCheck Register label is still selected in the canvas.

2. Click Next on the Properties Tool to move the selection to the next label
(in the lower-left corner of the canvas). The Properties Tool now displays
properties for this label.

Note: If necessary, cliclPrev or keep clickingVext until the appro-
priate label is selected.

3. Change théabel property for the selected label by enterkmgount to
Deposit: and clickingApply .
4. Click Next to move the selection to the last label.

Note: If Next is disabled, clickApply . You must either apply or cancel
changed properties before moving on to the next widget.

5. Change the Label property for the selected label by entB&lamce:
and clickingApply .

With their new, longer text, the labels may now overlap the input fields. If
necessary, reposition the labels and fields to correct this.

Inspecting the List Properties

This example uses just the default property settings for the list widget. To see
what these default settings are:

1. Move the selection to the list widget. This causes the Properties Tool to
display the list’s properties.
Notice that properties for a list differ from those for a label. You will
return to the list properties shown on Basics page in Chapter 6.

2. Click the tab for th®etails page. Verify that the following properties
are selected:

n Vertical , which provides the vertical scroll bar on the right edge of
the list.

n Bordered , which provides the border surrounding the list.

VisualWorks Tutorial, Rev. 2.1 61

Chapter 4 Creating a Graphical User Interface

62

n Can Tab, which causes the list to be part of the tab chain; that is,
when the application runs, the user will be able to move focus to the
list by tabbing.

Setting the Input Field Properties

The input fields in this application will display amounts of money expressed
in U.S. dollars. You set properties to control how the information appears in
these fields. For each field:

1. Display the field's properties by selecting it in the canvas.

2. Select the nondefault property settings shown in the following table.
(Look for the properties on different pages.)

3. Apply each page of changed settings before going on to the next page (or
to the next widget).

Widget Page Property Setting
Input field Basics Type: Number
(Deposit) Basics Format: $#,##0.00;[Red]($#,##0.00)
Details Align: Right
Input field Basics Type: Number
(Balance) Basics Format: $#,##0.00;[Red]($#,##0.00)
Details Align: Right
Details Can Tab: Off

Details Read Only: On

TheFormat: property controls theutput formattingof each field. Thus,
when the second field displays the current balance, the selected setting causes
this number to be displayed with:

n A preceding dollar sign

n A comma separating the thousands and hundreds columns

n Two decimal places for cents

n Parentheses around negative numbers, which are displayed in red

Setting the Window Properties

You use window properties to provide the Checkbook main window with a
titte and a menu bar. To do this:

1. Deselect all the widgets in the canvas. You can either:

VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

n <Shift>-click on a selected widget
n Click anywhere on the canvas other than in a widget

This causes the Properties Tool to display properties that apply to the
window.

2. Set the window title by enterir@heckbook for theLabel
property.

3. Create an empty menu bar by selecimgble and enteringnenuBar
for theMenu property. (TheMenu property will be explained when you
edit the menu bar.)

4. Apply these settings. The title of the canvas changes\fhaliabeled
Canvas to Checkbook , and an empty menu bar appears on the canvas.

5. If the empty menu bar displaces any other widgets, resize the canvas or
reposition the other widgets as necessary.

Checkbook

Check Register

o P &

Amount to Deposit: $0.00 ; Balance: $0.00

Figure 4-6 The Checkbook canvas with a menu bar

You have finished setting properties for the moment; if you like, you can close
the Properties Tool. Be sure to save your image, especially if you plan to take
a break. However, do not close the canvas until you have completed the next
section.

Installing the Canvas

At any time in the painting process, you can save the canvastajling it

in an application model. Installing a canvas createstarface specification
which serves as the application’s blueprint for building an operational
window. Each installed interface specification is stored in (and returned by) a
unique method in the application model.

VisualWorks Tutorial, Rev. 2.1 63

Chapter 4 Creating a Graphical User Interface

application model

. . [
in which canvas ——® Checkhookinterface,

is installed

method in which
interface specifica-
tion is stored

64

You can think of a canvas as the VisualWorks graphical user interface for
creating and editing an interface specification. Whereas a canvas is a graph-
ical depiction of the window’s contents and layout, an interface specification
is a symbolic representation that an application model can interpret.

To install the canvas for the Checkbook main window:

1. Click Install... in the Canvas Tool. This brings up a dialog box for spec-
ifying the application model and the class method in which to install the
canvas.

2. IntheINSTALL on Class: field of the dialog box, enter
Checkbookinterface. (This is the name you chose on page 48 for the
application model.)

3. Verify that theenter new Selector: field at the bottom of the dialog
box contains the method namindowSpec.

By conventionwindowSpec is the default name for a method that
stores an interface specification for a main window (a window that is to
be opened automatically when an application starts).

IMSTALL on Class:

and Selector:

w

[e

or enter new Selector:

—*windowSpec

Ok Cancel

Figure 4-7 Installing the canvas

4. When the dialog box looks like Figure 4-7, clok.

Because th€heckbookinterface class does not yet exist, an additional
dialog box prompts you to create it.

5. In theCREATE New Class dialog box:

VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

a. Leave théName: field as is (it should contain the nai@&eck-
booklInterface).

b. EnterExamples-VWTutorial in theCategory field to specify the
category that is to contain the new class. (If you didn’t create this
category in Chapter 2, it is created for you in this step.)

c. Click theApplication radio button to specify the type of application
model you want the new class to be. You chogsglication
becauseCheckBookInterface is to support a persistent window in a
nondatabase application.

Note that this choice caus€seckbooklinterface to be created as a
subclass of thépplicationModel class, which is part of the Visual-
Works application framework.

d. When theCREATE New Class dialog box looks like
Figure 4-8, clickOK.

name of new
application model —_ | CREATE Hew Class

m’l Checkhaokinterface

Category: | Examples—'WTutorial
; Define As | type of application
category for new . caonl«——— | | model
L Dial Applicat
application model Q Dialoy @
O Data Form O Diatabase Application

Superclass: | Applicationkdodel €—_

- framework class
from which
applicationmodelis
created

QK | Cancell Help |

Figure 4-8 Creating theCheckbookinterface application model

6. Click OK again in thdNSTALL on Class dialog.
7. Save your image to preserve the newly created application model.

As you will see in later sections, you can do a number of things with an
installed canvas—you can start the application to see a running prototype of
the window, and you can file out the application model so that you can file it

VisualWorks Tutorial, Rev. 2.1 65

Chapter 4 Creating a Graphical User Interface

into another image. For now, though, continue on to the next section, which
describes how to close and reopen the canvas.

Finding an Installed Canvas

Installing a canvas makes it possible to close the canvas and then open it again
through the Resource Finder. To do this:

1. Close the window containing the canvas. The Palette and Canvas Tool
close automatically.

2. Open the Resource Finder—for example, by clicking its icon in the Visu-
alWorks main window.

3. Inthe Resource Finder, locate and selecCtmeckbookinterface class.
Notice thatwindowSpec is listed as a resource of this class.

Resource Finder

View Class Resources

Browse E Start E Add... E Remove... E Edit

Class Resources

ActionButtonSpec % owindowSpec

AdHocGueryTool

Arbitrary ComponentSpec
Checkbooklnterface
CheckBoxspec
v

—

Coding&ssistant
ColorToolModel
ComboBoxSpec
CompositeSpec
DataSetCallbacksspechiodel

Figure 4-9 The Resource Finder witiCheckbookinterface selected

4. WithwindowSpec selected, clickedit in the Resource Finder. This
brings up the canvas whose interface specification is stongthdow-
Spec—that is, the canvas for the Checkbook main window.

Editing a Menu Bar

66

Your initial prototype of the Checkbook main window is almost complete;

you still need to put menus on the empty menu bar. Assume that you have
decided on two menus:

n File, which contains €lose command for closing the
application

VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

n Checks, which contains &V/rite... command for writing new checks
and aCancel command for canceling a selected check

You use the Menu Editor to create the menus that appear on the menu bar.
More specifically, you create textual entries for the desired menu items, and
the Menu Editor uses these entries to generate code for building an appro-
priate menu object. This code is then installed in a method in the application
model, similar to the way an installed interface specification is stored. (You
can use the Menu Editor to create a menu for any widget that provides a menu,
such as a menu button.)

To create the menus for the Checkbook menu bar:

1. Bring up the canvas for the Checkbook main window, if necessary, and
verify that you have completed steps 3 and 4 in “Setting the Window
Properties” on page 62.

2. In the Canvas Tool, choo3eols ?Menu Editor to open the Menu
Editor for this canvas.

3. In the text area of the Menu Editor, type the menu tiféde &nd
Checks) on separate lines.

4. Using Figure 4-10 as a guide, type a one-line entry for each menu item
under the relevant menu title. Each entry must contain the following
elements, from left to right:

n A leading <Tab> character.
n The text of the menu item’s label.
n One or more <Tab> characters.

n The name of the method that will perform the menu item’s action.
Because such method names will not be established until Chapter 6,
simply entemil for now.

VisualWorks Tutorial, Rev. 2.1 67

Chapter 4 Creating a Graphical User Interface

Menu Editor
Read Apply Load.. Install... Build [Test —'|
menu title — |
[»File o
entry for menu item ——»Close hil
Checks
Write... il
Cancel nil,

1
|
leadingtab menuitem label separator tab action method placeholder

Figure 4-10 The Menu Editor with the menu bar contents

5. Click Build to generate code for building a menu object. A test version
of the menu bar you just specified appears at the top of the Menu Editor.

6. Click on each menu title in the Menu Editor’s test bar to verify that the
menus contain the right items. If not, make corrections by repeating steps
4 and 5.

Note that the Menu Editor also provideS$est button. This is useful for
testing menus created for menu buttons.

7. Click Apply to apply the tested menu bar to the canvas.

A dialog box first prompts you to install the menu code in a method
calledmenuBar in Checkbooklinterface. (Recall thaimenuBar is the
name you entered for tidenu property on page 63.)

68 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

IMSTALL on Class:

Checkbookinterface

and Selector:

w

[e

or enter new Selector:

Ok Cancel

Figure 4-11 Installing the menu bar

8. Click OK to install the menu code. After the code is installed, the menus
appear on the canvas.

9. Click Install... on the Canvas Tool to reinstall the canvas (you changed
the canvas when you applied the menu bar to it).IRISTALL on
Class dialog box appears with the method namiedowSpec high-
lighted; click OK.

10. Notice that the Resource Finder now lists two resourcésfeckbook-
Interface:

n windowSpec, which stores the interface specification for the Check-
book main window

n menuBar, which stores the menu code for the main window’s menu
bar

11. Close the Menu Editor and save your image!

Opening the Interface

Congratulations! You have completed the initial version of the Checkbook
main window. By installing the window’s canvas in an application model, you
created a minimal application that can be started.

To start the minimal Checkbook application, you can:

%o Click Open in the Canvas Tool.

VisualWorks Tutorial, Rev. 2.1 69

Chapter 4 Creating a Graphical User Interface

Alternatively, you can start the application from the Resource Finder:

1. SeleciCheckbookinterface in the Resource Finder.
2. Click Start.

Starting the Checkbook application opens the Checkbook main window,
which looks something like Figure 4-12:

Checkhook

File Checks

Check Register

{ [—

Amount to Deposit: $0.00 ; Balance: $0.00

Figure 4-12 The Checkbook main window

Behind the Scenes

Regardless of how you start the application, the same thing happens from a
Smalltalk point of view:

1. The Canvas Tool (or Resource Finder) sendspam message to the
Checkbookinterface class.

2. TheCheckbookinterface class understands this message (because it is
an application model) and responds by creating an instance of itself.

3. This instance, in turn, createbualder, which is an instance of a class in
the VisualWorks framework callédIBuilder.

4. The application model’s builder proceeds to build an operating window
from the interface specification in thendowSpec method. That is, for
each widget in the specification, the builder:

a. ldentifies an appropriate widget class in the VisualWorks framework
b. Creates an instance of the identified class

70 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

The builder then assembles these instances, along with various other
objects created from the framework, into a complete structure that forms
the operating window.

This is a simplified account of a builder’s activities; you will learn more
details as they become relevant.

Inspecting the Prototype Window

At this point, the widgets in the Checkbook main window exhibit fairly
generic behavior, because the rest of the application doesn'’t exist—there is no
information for widgets to display and no actions for them to invoke. In spite
of this, the various widgets respond minimally to mouse and keyboard input.

To see what response is built into the widgets themselves:

1. Select a menu item from the menu bar. Notice that when you click and
drag on the menu title, the menu items are displayed correctly and your
selection is highlighted
appropriately.

2. Now click in theAmount to Deposit: field, type a number, and press
<Return>. The input field knows how to accept the number you entered
and redisplay it, formatted with a dollar sign and a decimal point. The
input field also allows you to select and delete the number.

Notice that the number you enter in the deposit field has no effect on the
balance field because the application has no notion of deposit and
balance yet.

3. Try entering input in thBalance: field. The field prevents you from
doing this because you selectedRtsad Only property on page 62.

4. Shrink and then enlarge the Checkbook main window. Notice that
shrinking the window obscures some widgets, and enlarging the window
exposes white space. This happens because the widgets, as created, have
absolute sizes.

5. Close the running application (you'll have to use a window-management
operation to close it because you haven't provided an action for
File ?Close yet).

In a real development situation, you might file out the application model as a
backup or to share with another user. You can file the class out from the
Resource Finder by selecting it, choos@igss ?File Out As... , and speci-
fying a filename.

VisualWorks Tutorial, Rev. 2.1 71

Chapter 4 Creating a Graphical User Interface

Revising the Main Window

Adding More

72

Most window designs undergo considerable revision through-out the devel-
opment process. This occurs because the choice and placement of widgets is
subject to numerous stylistic, usability, and aesthetic considerations. The
canvas is a useful tool for window design because it allows you to experiment
with different combinations and arrangements of widgets until you arrive at a
prototype suitable for evaluation. You can iteratively edit and reinstall the
canvas to incorporate recommendations.

The following sections describe how to make these improvements to the
Checkbook main window:

n Add an explicit control for invoking the deposit operation (some users
may not realize they need to press <Return> in the deposit input field).

n Refine the arrangement of widgets so that they align more precisely.

n Make the window layout respond appropriately to resizing.

Widgets

There are many ways to provide an explicit control for the deposit operation.
Assume that you have decided to add an action button for users to click after
they have typed the desired deposit amount iAtheunt to Deposit:

field. To do this:

1. Open the canvas for the Checkbook main window by selecting both the
Checkbookinterface class and itsvindowSpec resource in the
Resource Finder and then clickigglit .

2. If necessary, enlarge the canvas window vertically to make room for the
new action button below the deposit field.

3. Select an action button from the Palette and place it below the deposit
field.

4. With the action button selected, open the Properties Tool and apply the
following property settings:

Widget Property Setting

Action button Label: Deposit
Be Default: On
Size as Default: On

5. Enlarge the action button to accommodate its new label.

VisualWorks Tutorial, Rev. 2.1

Revising the Main Window

6. Enclose the three related widgets @mount to Deposit: label, the
input field, and the action button) in a group box:

a. Select a group box from the Palette.

b. Position the box’s upper-left corner on the canvas.

c. Press and hold the <Select> mouse button. The pointer moves to the
lower-right corner of the box.

d. Drag the lower-right corner until the box fits around the desired
widgets.

7. When the canvas looks something like Figure 4-13, install it in the
windowSpec method.

Checkhook

File Checks

Check Register

{ [—

Amount to Deposit: $0.00 i| Balance: $0.00

Deposit

Figure 4-13 After adding an action button and a group box

8. Start the Checkbook application. Notice Beposit action button’s
visual response when you click it.

Refining Widget Arrangement

So far, you've established the basic position and size of the widgets on the
canvas using selection and dragging. In the following sections, you use the
Canvas Tool and arrow keys to refine the arrangement of widgets so that they

align more precisely.

VisualWorks Tutorial, Rev. 2.1 73

Chapter 4 Creating a Graphical User Interface

74

Selecting Multiple Widgets

Most of the operations in the following sections involve selecting multiple
widgets. In some operations, the order of selection counts; in others, all
widgets are selected equally.

To select multiple widgets in order:

1. Click in the first widget to be selected. Its selection handles are solid
squares.

2. <Shift>-click in each additional widget. Its selection handles are hollow.
Note that <Shift>-clicking an already-selected widget turns off the selec-
tion.

To select multiple widgets in no particular order:

1. Put the mouse pointer on the canvas near one of the widgets.

2. While pressing the <Select> mouse button, drag the selection border
around the desired widgets.

3. Release the mouse button; selection handles appear around each selected
widget.

Equalizing Widget Sizes

You can use equalize operations to make two widgets the same size in one or
both dimensions. These operations are available on the Canvas Tool's
Arrange menu or on its tool bar:

Canvas Tool on: Checkhook

Edit Tools Layout Arrange Grid Look Special |

M= E]|S]| &|@]v | TS
(= T lmmdmll Frmfie E [=T INEEY ? Kﬂnnn
Equalize Height Equalize Width

Figure 4-14 The Equalize buttons on the Canvas Tool

Resize one of the input fields, and then make the other field the same size:

1. Select one of the fields and drag a selection handle until the field is the
desired size.

2. <Shift>-click to select the second field.

VisualWorks Tutorial, Rev. 2.1

Revising the Main Window

3. In the tool bar of the Canvas Tool, click the Equalize Height button (see
Figure 4-14). The second field you selected is resized to match the height
of the first field.

4. Leaving the widgets selected, click the Equalize Width button. The
second field is resized to match the first field’'s width.

Aligning Widgets

You can use alignment operations to align widgets along their edges or
centers, along their vertical or horizontal axes. These operations are available

on the Canvas Tool&rrange menu or on its tool bar:

Canvas Tool on: Checkhook

Edit Tools Layout Arrange Grid Look Special |

=

= @l 1

TopAlign — > T = fall [[=F2E | = i

fnﬂinn [Y I_\ FiAfimA E Divmuiamm E [T

Horizontal Center Left Align Vertical Center

Figure 4-15 The Alignment buttons on the Canvas Tool

Align the left edges of the list and ttieck Register label:

1. Select the list. This should automatically deselect the two input fields.

2. <Shift>-click to select th€heck Register label.

3. Click the Left Align button (see Figure 4-15). The label is moved into
alignment with the list.

Center the remaining labels relative to their fields. This means aligning these
widgets around their horizontal centers:

1. Select the input field for deposits.

2. <Shift>-click to select thdmount to Deposit: label.

3. Click the Horizontal Center button (see Figure 4-15). The label is
centered relative to the field.

4. Repeat steps 1-3 for tBalance: label and its field.

Center the action button relative to the deposit field above it. This means
aligning these widgets around their vertical centers:

1. Make sure that thBeposit button is the desired size.
2. Select the input field for deposits.

VisualWorks Tutorial, Rev. 2.1 75

Chapter 4 Creating a Graphical User Interface

76

3. <Shift>-click to select th®eposit button.

4. Click the Vertical Center button (see Figure 4-15). The button is centered
relative to the field.

Spacing by Pixels

You can use arrow keys to move a selected widget a pixel at a time. For
example, you can use the left and right arrow keys to adjust the space between
the input fields and their labels.

Grouping Widgets

When you have arranged a set of widgets to your liking, yograrpthem

into a single composite unit. Grouping a set of widgets prevents you from
accidentally moving one of them out of alignment. Grouping also makes it
possible to move an entire set of widgets while preserving their relative posi-
tioning.

Note: Grouping a set of widgets is different from painting a group box

around them!

Group each input field with its label and then top-align the two groups:

1. Select thAmount to Deposit: label and the deposits field (order of
selection doesn’'t matter).

2. ChooseArrange ?Group in the Canvas Tool. Notice that a single set of
selection handles surrounds the group.

3. Repeat steps 1 and 2 for Balance: label and its field.

4. <Shift>-click to select the first group you created.

5. With both groups selected, click the Top Align button on the Canvas
Tool.

Build up the group of deposit-related widgets:

1. Select just the group that contains Areount to Deposit: label and
its field.

2. <Shift>-click theDeposit action button.

3. ChooseArrange ?Group again to include the action button in the
group.

4. <Shift>-click on the group box widget surrounding the group.

5. Click the Horizontal Center and Vertical Center alignment buttons.

6. ChooseéArrange ?Group again to include the group box in the group.

VisualWorks Tutorial, Rev. 2.1

Revising the Main Window

Note that you cannot select an individual widget within a group. To make
individual selections, you must select the group and then choose
Arrange ?Ungroup to dissolve the group.

Finally, align each group with the list and save the
arrangement:

1. Left-align the deposits group with the list.

2. Right-align the balance group with the list.

3. Reinstall the canvas in thendowSpec method.

Checkbook

File Checks |

Check Register

»

[—

Amount to Deposit: $0.00 Balance: $0.00

Figure 4-16 After fine-tuning the widget arrangement

Adjusting Window Layout

Recall from page 55 that the preferred size of the canvas determines the
window'’s initial size when the application starts. If necessary, adjust the
initial size by resizing the canvas and choosing

Layout Window ?Preferred Size .

Now specify how the window should respond when users attempt to resize it.
You can:

n Allow users to resize the window. In this case, you probably want the
widgets to resize or reposition themselves in proportion to the window.
To specify this:

a. Select all of the widgets in the canvas.
b. Choosd ayout ?Relative from the Canvas Tool.

VisualWorks Tutorial, Rev. 2.1 77

Chapter 4 Creating a Graphical User Interface

If you change your mind, reselect the widgets, if necessary, and choose
Layout ?Fixed .

n Prevent users from resizing the window at all. To specify this, choose
Layout ?Window ?Fixed Size in the Canvas Tool.

If you change your mind, choosayout 2Window ?Clear All .
You are now finished with the Checkbook main window! Be sure to install

the canvas and then save your image before going on to create the window for
the Check dialog box.

Creating the Check Window

The Check window is a dialog box in which users enter information while
writing a new check. Consequently, you design the window to resemble a
physical check.

At this point, there is no difference between a dialog box and a persistent
window. Both kinds of windows are built from interface specifications; the
code that turns the Check specification into a dialog box will be written in

Chapter 6.

The following sections briefly outline the steps for creating the Check
window. Refer to previous sections if you need more detail.

Painting and Setting Properties

To paint the Check canvas:

1.

2.

78

Open a new, empty canvas. (If necessary, close the canvas for the Check-
book main window to make room.)

Using Figure 4-17 as a guide, select, position, and size the widgets on the
canvas. Resize the canvas as necessary.

Hint: Two of the input fields are borderless (you specify this in their
property settings below). You use dividers to simulate the partial borders
around input fields 1 and 3.

VisualWorks Tutorial, Rev. 2.1

Creating the Check Window

input field 1 input field 2 input field 3
divider 1 divider 3
Check
v
_ v

label 1 > Pay to the v

label 2 —— ¥ " —F =

Check number: Cancel | oK |
|3 L3

label 3

action buttons 1 & 2

Figure 4-17 The widgets in the Check dialog window

3. Apply the nondefault property settings that are listed in the following
table. (Look on th®asics andDetails pages.)

Widget Property Setting
Window Label: Check
Label 1 Label: Pay to the
Font: Scaled Small
Label 2 Label: Order of
Font: Scaled Small
Label 3 Label: Check number:
Font: Scaled Small
Input field 1 Type: String
Align: Left
Bordered: Off
Input field 2 Type: Number
Format: $#,##0.00;[Red]($#,##0.00)
Align: Right
Bordered: On

VisualWorks Tutorial, Rev. 2.1

79

Chapter 4 Creating a Graphical User Interface

80

Widget Property Setting
Input field 3 Type: Date
Format: <your choice>
Align: Left
Bordered: Off
Input field 4 Type: Number
Format: 0
Align: Left
Bordered: Off
Read Only: On
Divider 1 Orientation: Horizontal
Divider 2 Orientation: Vertical
Divider 3 Orientation: Horizontal
Action button 1 Label: Cancel
Size as Default On
Action button 2 Label: OK
Be Default On
Size as Default On

4. Align widgets as necessary.

5. Adjust the window size and make the Check window a fixed size.
6. Install the Check canvas in a new method callatbhgSpec in the

CheckbooklInterface class:

a. ClickInstall... in the Canvas Tool.
b. IntheINSTALL on Class: field of the dialog box, type

CheckbooklInterface

c. In theenter new Selector:

field, delete the default value and

replace it withdialogSpec (if you leavewindowSpec in this field,
you will overwrite your main-window canvas).

d. Click OK.
7. Save your image.

VisualWorks Tutorial, Rev. 2.1

Previewing a Window for Another Platform

Previewing a Window for Another Platform

If you are developing an application for use on several platforms, you can
preview the canvas for each platform to see how the platform’s look-and-feel
will affect the appearance of the window.

To preview a canvas for a given platform:

1. Display the canvas you want to preview.

2. From theLook menu on the Canvas Tool, choose the item that corre-
sponds to the desired platform.

Changing the look from the Canvas Tool affects only the canvas; it does not
affect the window’s appearance when you run the application. The look of the
running application is determined by tbié Look page of the Settings Tool
(see page 35). This setting determines the look of all of your VisualWorks
tools and applications.

What's Next: Programming in Smalltalk

So far, you have created specifications for the Checkbook application’s
graphical user interface and you have run the application in its current
minimal form. Chapter 5 shows how to create the two Smalltalk classes that
provide the basic processing for the application.

Because you will be working primarily with a System Browser and a Work-
space, you can close any canvases, Resource Finders, Properties Tools, and
Checkbook application windows that may still be open. Be sure to save your
image if you want to take a break or exit VisualWorks.

VisualWorks Tutorial, Rev. 2.1 81

Chapter 4 Creating a Graphical User Interface

82 VisualWorks Tutorial, Rev. 2.1

Chapter 5

Developing the Domain Models

All Smalltalk code is bundled into classes. The most important role of a class

is to create one or more instances of itself. A common analogy is that a class
is like a factory that can manufacture a particular kind of object. For example,

the Float factory can manufacture floating-point numbers.

In this chapter, you create the two Smalltalk classes that manufacture the
domain models for the Checkbook application. Recall from “Designing
Domain Models” on page 47 that these classes are:

n TheCheck class, which manufactures check objects
n TheCheckbook class, which manufactures checkbook objects

What You Should Read

If You Are New to Smalltalk

To familiarize yourself with Smalltalk, you should work through the entire
chapter. After you complete each task, be sure to read the related subsections
whose titles begin withYy Analysis:”. These subsections highlight the
Smalltalk rules and conventions that apply to the steps you performed. Note
that this chapter is not a comprehensive introduction to Smalltalk. Conse-
guently, you may find it helpful to consult any of the following for additional
explanation:

n Chapter 1 of th&isualWorks Cookbook
n Chapters 2-8 of theisualWorks User’s Guide
n Any Smalltalk textbook

VisualWorks Tutorial, Rev. 2.1 83

Chapter 5 Developing the Domain Models

If You Already Know Smalltalk

To save time, you can work through just the main tasks in this chapter,
skipping the Analysis sections. Alternatively, you can file in the completed
application, browse its domain models, and then continue with Chapter 6. To
do this:

1. In a File List, enter a pattern such as the following, wirestall-
dir stands for the VisualWorks installation
directory:

n [install-dir /tutorial/basic/* on a UNIX platform

n vol \ install-dir \TUTORIAL\BASIC* on a Windows or
0S/2 platform

n vol : install-dir ‘tutorial:basic:* on a Macintosh
computer

2. Selecthkbk.st in the names view and chod#e in from the
<Operate> menu in that view.

3. In a System Browser, select the categexgmples-VWTutorial. If
necessary, choosgpdate from the <Operate> menu in the category
view.

This category now contains tfie Check, T_Checkbook, and
T_Checkbooklinterface classes. (Th&_ prefix prevents these classes
from overwriting classes you have created, sucifeckbookinter-
face.)

4. Prepare the filed-in classes for use in Chapter 6:

a. SelecfT_Checkbookinterface in the class view and choose
remove... from the <Operate> menu to delete this class.

b. Renamd& _Check to Check by selectingl _Check and choosing
rename as... in the class view's <Operate> menu.

c. Inthe dialog box, specifgheck and clickOK. A second dialog box
informs you that existing methods reference the name you are
changing.

d. Click Rename in the second dialog box. A browser is displayed,
highlighting the old name in the referencing method.

e. In the browser, change the old name to the new name and choose
accept from the <Operate> menu.

f. Repeat steps a—e to renameCheckbook to Checkbook.
5. Save your image.

84 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

Creating the Check Class

The Check class manufactures the check objects that are recorded in the
checkbook. Each check object must store the information that defines a check
and respond to messages that seek to obtain or change this information.
Consequently, you program tkheck class withvariablesfor storing the
required data anehethodsor manipulating it.

In the following sections, you will create t#eck class by:

1. Locating the category for the Checkbook application’s classes.

2. Defining the data structure (the class definition and instance variables)
for theCheck class.

3. Documenting th€heck class with a class comment.
4. Defining methods that:

n Provide for access to the data in check objects

n Provide for character-based display of check objects

At various points in this process, you will create and inspect instances of the
Check class.

VisualWorks Tutorial, Rev. 2.1 85

Chapter 5 Developing the Domain Models

Locating the Application’s Category

In this tutorial, you will create all of the Checkbook application classes in a
single class category—namefxamples-VWTutorial, where you created
theCheckbookinterface class on page 64. This makes it easy to identify the
application’s pieces and to file them out as a group. Note, however, that you
could scatter an application’s classes among multiple categories, with no
impact on the application’s operation.

To locate the&examples-VWTutorial category:

1. Open a System Browser.

2. Scroll the category view until you fifekamples-VWTutorial. It should
be near the end of the list.
Alternatively, you can locate the desired category by searching for the
Checkbookinterface class (see “Finding a Class by Name” on
page 23).

3. SelectExamples-VWTutorial in the category viewCheckbookinter-
face appears in the class view, as shown in Figure 5-1.

class view
System Browser
Category view —> Lens-Private-Tools-4& - - kd Ll
Lens-Private-Tools-§ | Checkhookinterface

Lens-Private-Tools-¢ | ------------
UlE=amples- General
Examples-Cookkook

W Tutarial

<
[—

Likinstance »class

code view MNameOfsuperclass subclass: #MameOfClass

—> instanceVariableMames: ‘instvarbamel instvarNamez”
classVariableMames: ClassvarMamel ClassVarMamez’
poolDictionaries:
category: "Examples- WiWTutorial®

Figure 5-1 System Browser for Examples-VWTutorial category

86 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

Defining the Data Structure for the Check Class

Each check object must store a unique sequence number, a date, an amount,
and a payee. You define the data structure for check objects when you create
the Check class definition. The class definition specifies the names of the
variables for holding data.

To create the class definition for té&eck class:
1. LeaveExamples-VWTutorial selected in the category view, and, if
necessary, deseleCheckbookinterface in the class view.

The code view should displayt@emplatefor a new class, as shown in
Figure 5-1. The template is a formatted description of the basic parts of a
class definition.

2. Leave thenstance switch selected below the class view, because you
are defining the data structure for all instanceSluéck.

3. In the code view, edit the class definition template as follows:
a. ReplacelNameOfSuperClass with Object.

Hint: Double-click onNameOfSuperClass to select it, and then
type Object over the selection.

b. Replace KameOfClass with #Check. Leave the pound sign (#),
with no space between it and the class name.

c. ReplacéinstVarNamel instVarName2' with the following list of
instance variable nameésumber amount date payee'.
Hint: Position the mouse pointer between the initial quote and the
following character. Double-click to select the entire quoted string,
and then type the new instance variable names.

d. DeleteClassVarNamel ClassVarName2, leaving the empty
quotes.

4. When the code view appears as in Figure 5-2, chaosspt from the
code view’s <Operate> menu to compile the class definition. The new
class name appears in the class view.

VisualWorks Tutorial, Rev. 2.1 87

Chapter 5 Developing the Domain Models

88

System Browser

Lens-Private-Taoaols- |
Lens-Private-Tools-{
Lens-Private-Tools-q
UlE=amples- General
Examples-Cookhook

W Tutarial

Lrinstance »class

<
L,

DOhject subclass: #Check
instanceVariableMames: ‘number amount date payese *
classVariableMames: ™
poolDictionaries:
category: "Examples- WiWTutorial®

Figure 5-2 The Check class definition

Analysis: The Check Class Definition

You have just added a new cla€iéck) to the Smalltalk class library in your
image. Because of step 3a, this class is a subcl&3isjeft, from which it

inherits variables and methods for printing, error handling, comparing, and so
on. Similarly, as a clas€heck inherits characteristic class behavior as well.
Consequently, the new class can already respond to a number of messages,
even though you have not yet defined any methods.

Each instance ofheck will haveinstance variablemamechumber,

amount, date, andpayee. These are called instance variables because they
will exist for every instance created from keck class—that is, for all
objects manufactured by tiheck factory. Each instance variable will even-
tually hold onto another object, which isvialue When an instance variable
“stores” or “holds onto” an object, it essentially stores a reference to that
object.

Each instance variable can hold an object of any type, although if a variable
is initialized with an inappropriate type of object, that object probably won't
understand the messages it receives. In a later section, you will document the
expected data types for these variables, and you will create the code that
initializes them when you create tBé&eckbook class.

VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

Creating a Check Instance

Although theCheck class is incomplete (you have not defined its methods
yet), the class definition you just created is capable of creating check objects.
That is, like most classeSheck responds to the messagaw by creating a

new instance of itself. To create and look at a check object:

1. Open a Workspace.
2. In the Workspace, type the following message expression:

Check new

3. Select the expression and chomepect from the <Operate> menu.
This opens an Inspector on the new check object. The Inspector displays
a list of variables:

Workspace

w w

Figure 5-3 Inspecting a Check instance

The first variable in this list iself, which is apseudovariablehat refers
to the check object itself. The remaining variables are the instance vari-
ables in this object.

4. Selecself. The phrasa Check is displayed as its value.

5. Select any of the listed instance variables to display its value. Because
none of the variables are initialized, the value of eadiil.is

6. Close the Inspector.

Analysis: Message Expressions

The message expressiBheck new consists of aceiver(theCheck class)
and amessagénew). new is an example of anary messagevhich consists
of a single word, oselector The selector is used for selecting the method that

VisualWorks Tutorial, Rev. 2.1 89

Chapter 5 Developing the Domain Models

90

is to be executed in response to the message. Thus, wheheblke class
receives theew message, the selectwew is used to look up the method that
creates a new instance.

Sending a message to a receiver alwayignsan object. The object to be
returned is determined by the method that executes in response to the
message. If the method doesn’t specify an object to return, the default is to
return the receiver itself. In the casenefv, the object that is returned is the
newly created instance of the receiver class. The Inspector displays the data
structure of a returned object.

Analysis: Messages for Creating Instances

Most classes respond hew as part of their inherited class behavior. Many
classes respond to other messages as well. For example, the class whose
instances represent days in a ye®@ase. This class responds to the message
today with an instance representing the current day. (Try ent&atg

today in a Workspace and inspecting it.)

Note thatnew, as inherited, creates new objects whose instance variables are
empty (their values amgl). In contrast, a more specialized instance-creation
method such a®day typically creates an instaneed assigns values to the
instance variables. Theheck class does not need such a method, although
you will define one for th€heckbook class later in this chapter.

VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

Documenting the Check Class

Whenever you create a new class, it is recommended that you document it for
the benefit of other programmers who may read your code. At a minimum,
the comment for the class should describe the class’s purpose, variables, and
methods.

To document th€heck class:

1. SelectCheck in the class view, if necessary, and leaveitiseance
switch selected.

2. Chooseeomment from the class view’s <Operate> menu. The code
view displays a default placeholder for a comment.

3. Replace the default comment with a comment such as the following:

The Check class is a container for the information that makes up
a check. It has messages for accessing this information and for
printing it on a Stream.

Instance Variables:
number <Integer> Sequence number of check in checkbook
amount <Integer> Amount of money for which the check is
written
date <Date> Date on which the check is written
payee <String> Name of party receiving the check

4. Chooseaaccept from the code view's <Operate> menu to incorporate the
comment into the class.

5. Choosalefinition from the class view's <Operate> menu to redisplay
the class definition in the code view.

Analysis: The Check Class Comment

The comment indicates the type of object that each variable is intended to
hold. By convention, the expected object type is indicated by angle brackets.
Note, however, that commenting the expected object type is not equivalent to
declaring a data type for the variable, because Smalltalk allows any variable
to hold any object.

When you explore the VisualWorks class library on your own, you can read
the class comments for information about unfamiliar classes.

VisualWorks Tutorial, Rev. 2.1 91

Chapter 5 Developing the Domain Models

Providing for Access to Check Data

Whenever you create a class that has instance variables, you usually need to

create methods for getting and setting the values of those variables. Such

methods are callegiccessingnethods, because they provide access to an

object’s data:

n An accessing method that returns a variable’s value is calladcassar

n An accessing method that sets a new value for a variable is called a
mutator

By convention, accessing methods are normally created in a protocol called
accessing.

To create accessing methods for @teeck class:

1. SelectCheck in the class view, if necessary, and leaveitiseance
switch selected, because you are definmggance methodsmethods
that provide behavior for every instanceQffeck.

2. Create a new protocol:
a. Choosedd... in the protocol view.
b. In the dialog box, enter the namecessing and clickOK.

The code view displaystamplatefor a new method. The template is a
formatted description of the basic parts of a method definition.

3. Select the entire method template and replace it with the definition of the
accessor methagmount. The code for this method uses the return
operator §) toreturnthe value of themount instance variable:

amount
Aamount

4. Chooseccept from the code view's <Operate> menu. The name of the
new method appears in the method view, as shown in Figure 5-4.

92 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

System Browser

Lens-Private-Taoaols- |
Lens-Private-Tools-{
Lens-Private-Tools-4 | Checkhookinterface
UlE=amples- General

Examples-Cookkook
A WTutarial
Likinstance »class |

Aamount
~amount protocol view method view

/V

Figure 5-4 The Check Class with themount method

5. Edit the text in the code view to define the mutator me#mdunt:.
Editing this text does not affect the previously accepted accessor method,
because the colon you insert af#@nount defines a new selector for a
new method:

amount: aValue
amount := aValue

6. Chooseaccept from the code view’s <Operate> menu.

Notice that the method view now contains entries for two methods,
amount andamount:.

7. Edit the code view and choosecept for eachof the accessor methods
shown below. You can create them in any order.

date
date

number
number

payee
payee

VisualWorks Tutorial, Rev. 2.1 93

Chapter 5 Developing the Domain Models

8. Edit the code view and choosecept for eachof the mutator methods
shown below. You can create them in any order.

date: aValue
date := aValue

number: aValue
number := aValue

payee: aValue
payee := aValue

At this point, your Check class should look like Figure 5-5:

System Browser

Lens-Private- Query | - ———---——--- 2 - A - 2
Lens-Private-Transpg amaunt
Lens-Private- Applicd | Checkhookinterface amaunt:
Lens-Private-Tools-§ | --=--------- date
Lens-Private-Tools-§ date:
Lens-Private-Taals-{ number
UlE=amples- General number:
Examples- Cookhook payee
payee:
Finstance ¥ class v] ~TTT - vl

nessage selector and argument names
"comment stating purpose of message”

| temporary variable names |
statements

Figure 5-5 The Check class with complete accessing protocol

Analysis: Message Protocol

You have just created a number of instance methods i@ihbek class.

Together, these methods define part ofrttesssage protocdbr check

objects. In general, an object's message protocol is its interface; it is the list
of messages to which the object can respond. For example, a check object can
now respond to date: message by setting idate variable. Note that an

object’s complete message protocol also includes messages that are defined
by inherited methods.

94 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

Analysis: Method Definitions

You created instance methods for @teeck class by enterinmethod defini-
tionsfor them. In general, a method definition containsessage patterand
a sequence of one or more expressions.

In the following definition, the message pattermamount, and the sole
expression i®amount:

amount
Aamount

When an instance @fheck receives a message that matches this pattern (that
is, when the check instance receives the messageint), this method
executes by evaluating its expression.

Return Operator. The expressiohamount uses the special return operator

A, This operator causes the method to return the value of the following expres-
sion (in this case, the instance variadeount). Without an expression
containing®, a method simply returns the receiver of the message.

Keyword MessagesThe message patterns in the accessor methods are
matched by unary (single-word) messages suamasint. In contrast, the
message pattern for each mutator method is matche#édymard message

A keyword message is a message whose selector consists of one or more
keywordswhere a keyword is an identifier with a trailing colon (for example,
amount:). Each keyword in a keyword message is followed bgrgnment
expression (for example, in the keyword messageunt: 40, the valuet0

is the argument of the keywoaginount:). Keyword messages provide a
means of passing additional information for a method to use.

A keyword message such asnount: 40 matches the message pattern in the
following mutator method definition:

amount: aValue
amount := aValue

When the method executes, the argurd@ris used in place of the argument
nameaValue.

Be sure to pay attention to the existence of colons in message selectors. The
trailing colon signals the difference between a keyword message selector
such asmmount: and a unary message selector sucinasunt.

VisualWorks Tutorial, Rev. 2.1 95

Chapter 5 Developing the Domain Models

96

Assignment Operator.In theamount: method definition, the expression
amount := aValue contains the assignment operator This operator
assignsthe value of the expression on the right to be the new value of the
instance variable named on the left. The expression iartfueint: method
definition causes the value of the message argument to be assigned to the
instance variablamount.

Analysis: Naming Conventions

It is common practice to use minimally different names for an instance vari-
able, its accessor, and its mutator. For example, for the instance variable
amount, you created an accessor calddount and a mutator called

amount:. (The only difference among these names is the colamount:).

The similarity of these names reinforces the notion that all three items pertain
to the same aspect of a check object.

This naming convention is not required by Smalltalk. However, the conven-
tion is used throughout the Checkbook application because it helps to create
more readable code, and, as you will see later, it makes it easier to set up
certain objects from the framework that support the user interface.

Analysis: Method Compilation

When you enter a method in a code view and chaosept , the method is
immediately parsed for syntax errors and then compiled into byte codes. At
run time, invoking the method causes the byte codes to be translated to native
machine code appropriate to the run-time platform. This native code is then
cached so that subsequent invocations of the method do not require transla-
tion. Consequently, the performance of Smalltalk applications is comparable
to that of statically compiled languages, but code is portable to any supported
platform without recompilation.

VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

Setting Check Information

Now that theCheck class has accessing methods, you can create a check
object and send it messages to set the values of its instance variables. To do

this:

1. In a Workspace, type the following message expression:
Check new date: Date today

2. Select the expression and chomepect from the <Operate> menu.

3. In the Inspector, select thate variable. Notice that its value is no
longernil but displays the current date. (The values of the remaining
instance variables are stilil.)

4. Close the Inspector.

5. Replace the expression you typed in step 1 with the following sequence
of expressions:

| aCheck |

aCheck := Check new.
aCheck date: Date today.
aCheck number: 1.
aCheck amount: 40.
aCheck payee: 'Fred'

6. Select all of these expressions and chausgect . Now all of the
instance variable have naril-values.

7. Close the Inspector, but keep the Workspace.

Analysis: More about Message Expressions

Complex ExpressionsMessage expressions can serve as receivers or argu-
ments in other message expressions. Thus, in step 1, you entered a keyword
message expression in which:

n The selector iglate:.

n The receiver is the check object returneddineck new.

n The argument is the date object returnedhye today.

This complex message expression creates a new check object and sets its date
to the current date.

VisualWorks Tutorial, Rev. 2.1 97

Chapter 5 Developing the Domain Models

Smalltalk evaluates complex message expressions according to a set of
parsing rules. The rules that apply to unary and keyword expressions are:

n Unary expressions are parsed from left to right.

n Unary expressions take precedence over keyword expressions. Thus, the
expressiorCheck new date: Date today is parsed:

(Check new) date: (Date today)

Sequences of Expression¥ou can resolve a complex expression into a
sequence of simpler ones, typically by usiemporary variablesFor

example, the expression you typed in step 1 can be written as follows (which
forms the basis for the expressions in step 5):

| aCheck |
aCheck := Check new.
aCheck date: Date today

Here,aCheck is declared as a temporary variable. In the first expression, a
new check object is created and then assigned as the valGbedk. In the
second expression, thate: message is sent to the valuea@heck. Notice
that:

n Declarations of temporary variables are enclosed between vertical bars.

n In a sequence of expressions, all but the last one must end in a period.
Cascaded ExpressionsVhen a number of messages are to be sent to the
same receiver, they can bascadedseparated by semicolons). For example,

in step 5 you typed a sequence of expressions that send four messages to the

same check object. Alternatively, you could enter a cascaded expression that
sends the same four messages to the object returnelddmk new:

Check new date: Date today; number: 1; amount: 40; payee: 'Fred'

Cascaded expressions are generally used sparingly; they are harder to read
and debug than sequences of expressions.

98 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

Providing for Character-Based Display

Each instance dfheck is capable of returning a string that describes itself.
This is because th@heck class inherits instance methods fiwinting from

the Object class. (Note that in this context, “printing” refers to producing a
displayable sequence of characters that describe an object, not to producing
hard copy from a printer.) The basic way of obtaining a string description of
an object is to send it thEintString message.

Under the inherited implementation, instance€béck respond tqrint-
String with the default descriptioa Check. (The Inspector displays this
description when you selestlf.) You can cause check objects to print more
informative descriptions by overriding their inherited behavior. You do this
by reimplementing an instance method capeidtOn: in the Check class.
This overrides the inheritgafintOn: method, which composes the actual
string thatprintString prints. To reimplement thgrintOn: method:

1. SelectCheck in the class view, if necessary, and leaveitiseance
switch selected, because you are defining another instance method.

2. Add a new protocol callggrinting.

3. Replace the method template with the following code. Enter the single
guotes and commas exactly as shown:

printOn: aStream
"Print a description of this check on the provided stream.
Format of a sample description: #1, 4 August 1994: $40to Fred "

aStream nextPutAll:
'#', number printString, ', ', date printString, : $', amount printString, ' to ',
payee displayString

Notice that:
n This method contains a comment, which is enclosed in double
guotes.

n The expression is broken across two lines. In general, you can format
expressions with spaces, tab characters, and carriage returns to
improve readability.

4. Chooseccept from the code view’s <Operate> menu.
5. You have completed th@heck class! (Save your image.)

VisualWorks Tutorial, Rev. 2.1 99

Chapter 5 Developing the Domain Models

100

Analysis: Constructing a String

The last line in the method you entered is a single string, which serves as the
argument in the@extPutAll: message. Strings are objects that represent
sequences of characters. A literal string consists of one or more characters
(including blank and tab characters) enclosed in single quotation marks, such
as'to".

You can build strings from other strings by concatenating them. To do this,
you use the concatenation message, which is a comna the above

method, four literal strings are concatenated with four expressions that return
strings. Note that:

n The comma inside single quotation marks is interpreted as a character in
a literal string, not as the concatenation message.

n The messagprintString produces strings describing the objects held by
thenumber, date, andamount variables.

n The messagdisplayString is a variant oprintString that returns the
literal string held by theayee variable without the enclosing quotation
marks.

Analysis: Streams

TheprintString method usesstreamto construct a string describing a check
object. A stream is an object that holds onto a collection of elements (such as
characters) and maintains a positional reference into this collection (for
example, it knows which element is next). In general, streams are useful for
constructing and retrieving sequences of elements, and for manipulating
those elements in sequence.

printString creates an empty stream and then sends itseffitten:

message to insert an appropriate sequence of characters into the stream. (Note
that the message pattern of gré1tOn: method expects a stream as an argu-
ment.)printOn: in turn asks the stream to store the specified characters by
sending it thenextPutAll: message, which is part of the protocol understood

by streams. WheprintOn: finishes,printString returns the contents of the
stream—that is, the newly constructed string.

VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

Displaying a Check Instance’s Description
To see the effect of the ngwintOn: method, you can:

1. Select the code that you typed in the Workspace on page 97:

| aCheck |

aCheck := Check new.
aCheck date: Date today.
aCheck number: 1.
aCheck amount: 40.
aCheck payee: 'Fred'

2. Choosénspect from the Workspace’s <Operate> menu.

3. In the Inspector, seleself. The object description now looks something
like this (you may need to enlarge the Inspector window):

#1, 4 August 1994: $40 to Fred
4. Close the Inspector.

5. With the the code still selected, chopsimt it from the Workspace’s
<Operate> menu. This prints the string description of the check object to
the right of the last expression and highlights it.

6. Delete the highlighted string.

7. Now add another line of code in the Workspace to send the description to
the System Transcript. The entire fragment should look like this:

| aCheck |

aCheck := Check new.

aCheck date: Date today.

aCheck number: 1.

aCheck amount: 40.

aCheck payee: 'Fred'.

Transcript show: aCheck printString; cr

8. Select the code and choakeit from the Workspace’s <Operate> menu.

The object description is now displayed in the System Transcript in the
VisualWorks main window.

VisualWorks Tutorial, Rev. 2.1 101

Chapter 5 Developing the Domain Models

102

Analysis: The do it, print it, and inspect
Commands

The <Operate> menu in a Workspace or a Browser code view contains
several commands for executing Smalltalk code:

n do it simply causes the selected expressions to be evaluated, declaring
variables and evaluating message expressions as appropriate.

n printit evaluates the selected expressions and prints a description of the
object to which the last expression evaluates. The printed description
appears to the right of the code and is highlighted so you can delete it
easily.

n inspect evaluates the selected expressions and opens an Inspector on
the object to which the last expression
evaluates.

Analysis: Method Lookup

When a message is sent to an object, Smalltalk uses a method-lookup mech-
anism to determine which method to execute. This “method finder” searches
the methods in the receiver’s class for one with a matching selector. If none

is found, the methods in that class’s superclass are searched next. The search
continues up the superclass chain until a matching method is found. The
search terminates with ti@bject class. If no matching method is found

there, an error notifier reports that the message is not understood.

Thus, when you send the messagetString to the objecaCheck, the
method finder:

1. Searches the methods in tleeck class for a method whose pattern
matchegrintString. No such method is found (you have defined
printOn: there, noprintString).

2. Searches the methodsGheck’s superclass, which i®bject. It finds
the printString method there and executes it.

The same kind of lookup occurs for each message that is sent as part of the
executing method. For example, the execugingtString method contains
the following message expression:

self printOn: aStream

When this message expression is evaluated, it:

VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

1. Evaluateself, which stands for the receiver that initiated the lookup for
the currently executing method. Because the currently executing method
is printString, self refers toaCheck.

2. Sends the messaggantOn: to aCheck. This causes the method finder
to search the methods in tB@eck class. Because you definpdntOn:
in theCheck class, the search stops, and this method is executed.

Thus, by providing a local definition, ti@heck class overrides the inherited
implementation oprintOn:

VisualWorks Tutorial, Rev. 2.1 103

Chapter 5 Developing the Domain Models

Creating the Checkbook Class

The Checkbook class manufactures the checkbook object that is to be
presented in the user interface. This checkbook object issues new checks,
records the written checks in a register, and keeps track of the current account
balance.

Like any Smalltalk object, the checkbook object does all this by storing data
and responding to messages that are sent to it. Consequently, in the following
sections you will create theheckbook class by:

1. Defining the data structure (the class definition and instance variables)
for theCheckbook class

2. Defining methods that:
n Provide for creating and initializing checkbooks
n Provide for accessing data in a checkbook
n Provide for checkbook transactions

At various points in this process, you will create and inspect instances of the
Checkbook class.

104 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

Defining and Documenting the Checkbook Class

Each instance of théheckbook class must store a register (a list of written
checks), a balance (the amount of money available in the checking account),
and the sequence number to be assigned to the next written check. You define
this data structure by creating tBaeckbook class definition:

1. Select th&xamples-VWTutorial class category in the System Browser,
making sure thinstance switch is selected.

The code view may contain a new class template or the definition of an
existing class in the category.

2. Edit the contents of the code view so that it contains the class definition
shown below:

Model subclass: #Checkbook
instanceVariableNames: 'balance register nextCheckNumber'
classVariableNames: "
poolDictionaries: "
category: 'Examples-VWTutorial'

3. Chooseaccept from the code view's <Operate> menu to compile the
class definition. The new class nan@héckbook) appears in the class
view of the Browser.

4. Document the class by choositmmment from the class view’s
<Operate> menu and replacing the default comment with a comment
such as the following:

Instances of the class Checkbook contain a register of written
checks and a balance; they also assign sequence numbers to the
checks listed in the register. The Checkbook class provides
methods for creating and initializing new instances, accessing the
information in them, and performing checkbook transactions such
as making deposits and writing and canceling checks.

Instance variables:

balance <Integer> The current balance of the checking
account.

register <OrderedCollection of: Check> The list of issued
checks.

nextCheckNumber <Integer> The sequence number of the
next check.

VisualWorks Tutorial, Rev. 2.1 105

Chapter 5 Developing the Domain Models

5. Chooseaccept from the code view’s <Operate> menu.

6. Choosalefinition from the class view's <Operate> menu to redisplay
the class definition.

106 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

Analysis: Subclasses of Model

You have just create@heckbook as a subclass of tivodel class. This
means thaCheckbook is automatically equipped with all the variables and
methods defined in its superclabgdel, as well as those definedifodel’s
superclassDbject.

TogetherModel andObject provideCheckbook with the variables and
methods that support thlependency mechanisanwidely used technique for
coordinating the activities of different objects in an application. Because of
this inherited mechanism, ea€lmeckbook instance is capable of:

n Maintaining a list of objects that depend on it for
information

n Notifying these dependent objects whenever the relevant information
changes

In general, when an object isveodel(that is, an instance of a subclass of
Model), you can program other objects to set themselves up as dependents of
it. You do this for objects that use information in the model and therefore need
to know when that information changes so they can update themselves.

You makeCheckbook a model because you know that the user interface will
display checkbook information that is likely to change (such as the account
balance). Later, in Chapter 6, you will set up dependencies that enable the
user interface to update its display whenever the balance changes. Note that
you did not make th€heck class a model, because once check objects are
created, the information in them never changes.

The termmodelnow has two meanings:

n Objects whose role is to store and manipulate data, as opposed to
presenting it—for example, domain models and application models (see
Chapter 3)

n All subclasses of thklodel class (and their instances)
These definitions generally overlap, because models (in the original sense)
are typically implemented as subclasseMofiel. For example, the applica-

tion modelCheckbooklinterface is a subclass of th&pplicationModel
class, which is a subclassibdel.

VisualWorks Tutorial, Rev. 2.1 107

Chapter 5 Developing the Domain Models

Creating a Checkbook Instance

At this point, you can create an instance of@heckbook class the same
way you created instances©heck—by invoking the inheritediew
method. To create and look at a checkbook object:

1. In a Workspace, type the following message expression:
Checkbook new

2. Select the expression and chomepect from the <Operate> menu.
The Inspector lists the checkbook object’s variables:

Workspace

B
11

Checkbook

----------- r 2 Checkbook

dependents
halance
register
nextCheckMum

w w

Figure 5-6 Inspecting a Checkbook instance

3. Notice that this list includes the variallependents. This variable is
part of the dependency mechanism inherited fikdodel.

4. Select any of the listed instance variables to display its value. Because
none of the variables are initialized, the value of eadiil.is

5. Close the Inspector.

108 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

Providing for Checkbook Initialization

When you create an instanceGieckbook using the inheritedew method,

its variables are aflil. You can override the inheritedw method so that it

both creates a new checkbook object and initializes its variables with objects
of the proper types.

A typical reimplementation afew is for it to send a message to initialize the
new instance’s variables. Consequently, in the following steps, you create two
methods:

n A class methoahew, which creates the new instance

n An instance methothitialize, which initializes the new instance

To create the appropriate methods:

1. SelecCheckbook in the class view of the System Browser, if necessary.

2. Select thelass switch so you can definectass method-a method that
provides behavior for the class itself.

3. Add a protocol nameidstance creation (chooseadd... in the protocol
view).

4. Replace the method template in the code view with the following method
definition and choosaccept :

new
Asuper new initialize

5. Select thénstance switch so that you can define an instance method.
6. Add a protocol nameiditialize-release.

7. In the code view, enter the following method definition and choose
accept:

initialize
"Set up the checkbook with an empty register and a balance of
$0"

register := OrderedCollection new.
balance := 0.
nextCheckNumber := 1

VisualWorks Tutorial, Rev. 2.1 109

Chapter 5 Developing the Domain Models

110

Analysis: Initial Data Types

Theinitialize method you just created initializes a checkbook’s instance vari-
ables by assigning objects to them. In particular:

n register is assigned an empty instance of @releredCollection class.
An ordered collection behaves like a dynamically expandable array
whose elements are organized in the order in which they are added. As
you will see, writing a new check adds an element to this ordered collec-
tion, and canceling a check removes it.

n balance is assigned the obje@t which is an instance of ttf&mallin-
teger class.

n nextCheckNumber is assigned the objett which is another instance
of Smallinteger.

n dependents is left uninitialized, because it is up to other objects to set
themselves up as dependents on a model.

Initializing balance as an integer may seem odd, because dollar amounts
usually have two-place decimals. However, 0 is simply an initial value to
which another number (integer, floating point, or fixed point) can be added.
In general, numbers of different types can be added or subtracted because
their classes implement plus)(@and minus<{) methods that perform appro-
priate conversions. These implicit conversions illustrate thatalence
variable is not strongly typed—that is, throughout the life of a checkbook, this
variable may hold onto objects of different types.

Analysis: Class and Instance Methods

The Checkbook class now contains one instance method and one class
method. In general:

n Class methods define behavior for the class itself. Since only classes are
capable of creating instances, instance-creation methods suel ase
class methods.

n Instance methods define behavior for every instance of the class. Since
each instance is in charge of its own variablesirthialize method is an
instance method.

You can view each kind of method in a System Browser by selecting the
instance orclass switch.

VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

Creating an Initialized Checkbook Instance
Now you can test theew andinitialize methods you just created:

1. In a Workspace, type the following message expression:

Checkbook new

2. Select the expression and chomepect from the <Operate> menu.

3. Select each of the listed instance variables to verify that they have the
correct initial values.

4. Close the Inspector.

Analysis: More about Method Lookup

When a message is sent to a class (su€haskbook), Smalltalk’s “method

finder” searches the receiver’s class methods for one with a matching
selector. If none is found, the class methods for that class’s superclass are
searched, and so on. Thus, when the receiver is an instance, instance methods
are searched; when the receiver is a class, class methods are searched.

Sending the messagew to theCheckbook class causes the method finder
to search the class methods @ireckbook, where it finds the method you
just implemented. The search stops here, instead of continuing through the
class methods faCheckbook’s superclasses. The reimplementedv is
executed, overriding the inherited one.

As it executes, the reimplementeelw method evaluates the following
message expression:

Asuper new initialize

This expression in turn:

1. Evaluatesuper new. As explained below, this creates a néteck-
book instance using the original, inherited implementationeyf.

2. Sendsnitialize to the result of the previous step.

3. Returns the resulting initializegheckbook instance.

In the expressiosuper new, the role ofsuper is similar to that ofelf, in

that it stands for the receiver of the message that invoked the currently

executing method. However, wheresadf initiates a normal lookup for the
message sent to guper causes the method lookup to start with the super-

VisualWorks Tutorial, Rev. 2.1 111

Chapter 5 Developing the Domain Models

112

class of the class that defines the currently executing method. sitpes,
allows you to reuse an inherited method even though you have overridden
that method with a local reimplementation.

Returning to the example, in which the reimplememted is the currently
executing method, th&uper new expression:

1. Evaluatesuper to be theCheckbook class (the receiver of the message
that invoked the currently executing method

2. Sendsew to Checkbook, thereby initiating a method lookup. Because
super was used, this lookup skiggheckbook’s class methods and
starts with the class methods foheckbook’s superclass, namely
Model.

This use okuper allows the reimplementatew method to incorporate the
inheritednew method without duplicating its code.

Note: Although you might expect tihew method to be listed among the
class methods for the clag®ject, you will not find it there. The reason for
this is rooted in the full explanation of class methods, which is beyond the
scope of this tutorial.

VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

Providing for Access to Checkbook Data

Because th€heckbook class has instance variables, you need to consider

providing accessing methods for them as you didCteeck. For reasons

described in the following subsection, you decide to create three methods:

n An accessor method for the balance variable

n An accessor method for the register variable

n A mutator method for the balance variable

To create these methods:

1. SelecCheckbook in the class view of the System Browser, if necessary,
and leave thénstance switch selected.

2. Add a protocol nameaccessing (chooseadd... in the protocol view).

3. Edit the code view and choosecept for eachof the accessor methods
shown below:

balance
"balance

register
“register

4. Edit the code view and choosecept for the mutator method shown
below:

balance: anAmount

"Set the balance to the specified amount, and notify
dependents of

the change."

balance := anAmount.
self changed: #balance

VisualWorks Tutorial, Rev. 2.1 113

Chapter 5 Developing the Domain Models

114

Analysis: Limited Access to Variables

You just defined accessing methods for a subset of the instance variables in a
Checkbook instance. With this message protocol, other objects can access a
subset of a checkbook’s information. For example, any other object can set
the balance of &heckbook instance simply by sending itbalance:

message.

However, no other object can inspect or change the valnex¢€heck-

Number, because no accessing methods exist for this variable. The informa-
tion in thenextCheckNumber variable isprivateto a check object because

of the check’s limited message protocol.

Deciding how much access to provide is often an iterative process. When you
create a class, you may first give full access to all variables and later prune
unnecessary accessors as you refine the application. In the cisectf

book:

n No access is provided for tinextCheckNumber variable, because no
objects other than checkbooks need to know or change the sequence
numbers for checks.

n An accessor method for thegister variable is provided for the user
interface to obtain its collection of written checks. However, no mutator
is provided, because onoegister is initialized, it should never be
assigned another collection.

n Full access is provided ftmalance. The accessdralance exists to
support the user interface, and the muthfdance: is used in the imple-
mentation of other methods @heckbook.

Strictly speakingbalance: is unnecessary, because no object other than
a checkbook should ever set the balance. However, this method is useful
because it consolidates code that would otherwise be repeated.

Analysis: Change Notification

Thebalance: method does more than set a checkbobélance variable; it

also notifies the checkbook that an aspect of its stored data has changed.

Because the notified checkbook is a model (see page 107), it responds by
broadcasting further notification to any objects that have made themselves
dependent on it.

All this is set in motion by theelf changed: #balance expression in the
balance: method. For example, if you send a message suCheskbook
new balance: 40, then:

VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

1. A newCheckbook instance is created (and initialized).
2. Thebalance: method:
n Changes the instancdislance variable fron0 to 40

n Sends &hanged: message teelf (in this case, the ne@heckbook
instance)

3. The newCheckbook instance finds thehanged: method and executes
it.

4. Thechanged: method causes th&heckbook instance to send an
update: message to any objects listed independents variable.

In this example, no objects have made themselves dependentChiettie
book instance, so nopdate: messages are actually sent. When dependents
exist, each executes its owpdate: method in response.

An important part of theelf changed: #balance expression is theymbol
(namely,#balance). A symbol is a string that is guaranteed to be unique in
the system. For example, class and method names are symbols. Note that a
symbol is expressed literally by prefixing it with the charagter

In thechanged: message, the symb@gbalance is an argument that repre-
sents the specific aspect of the checkbook’s data that has changed. In this
case, the aspect symbtidalance indicates that the value of the instance
variablebalance has changed. Ahanged: message passes its aspect

symbol to each dependent, which uses the symbol to decide whether and how
to respond to the change. If an object has multiple dependents that are con-
cerned with different aspects of its data, each dependent can use the aspect
symbol to filter out irrelevant change

notifications.

You can pick any symbol as the aspect symboldhanged: message.

However, when the changed information is held in an instance variable that
has an accessor (as in this example), itis common practice to choose an aspect
symbol that matches the variable and accessor name. This practice makes it
easier to set up dependent objects from the VisualWorks framework when you
program the user interface.

VisualWorks Tutorial, Rev. 2.1 115

Chapter 5 Developing the Domain Models

Providing for Checkbook Transactions

So far, instances @heckbook define an empty holder for check objects and

store a balance &. Now you program th€heckbook class so that its

instances can perform these transactions:

n Deposit a specified amount of money into the checking account

n Provide blank checks ready for issue

n Record an issued check in the register

n Cancel an issued check, removing it from the register

You can create the appropriate methods in any order. For example, you can:

1. SelecCheckbook in the class view of the System Browser, if necessary,
and leave thénstance switch selected.

2. Add a protocol nametlansactions (chooseadd... in the protocol
view).

3. Edit the code view and choosecept for thedeposit: method shown
below:

deposit: anAmount
"Deposit the specified amount and update the balance
accordingly”

self balance: self balance + anAmount

The expression in thgeposit: method:

a. Obtains the checkbook’s current balance
b. Adds the specified amount to it

c. Sets the result to be the new balance

116 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

4. Edit the code view and choaosecept for themakeNewCheck:
method shown below:

makeNewCheck
"Create and initialize a new, blank check"

| newCheck |

newCheck := Check new.

newCheck number: nextCheckNumber.
newCheck date: Date today.
newCheck amount: 0.

newCheck payee: '".

"newCheck

The expressions in theakeNewCheck method:

a. Create a temporary variable and assign a@legck instance to it.

b. Initialize theCheck instance by sending it cascaded messages from
Check’s protocol. Notice thapayee is set to the empty string (two
single quotation marks).

Checks are initialized by a checkbook, because only a checkbook can
determine the sequence number.

c. Return the resultinGheck instance.

5. Edit the code view and choosecept for therecordCheck: method
shown below:

recordCheck: aCheck
"Add the check to the register."
self register add: aCheck.

"Update the balance to reflect the newly recorded check."
self balance: self balance - aCheck amount.

"Increment the sequence number."
nextCheckNumber := nextCheckNumber + 1

VisualWorks Tutorial, Rev. 2.1 117

Chapter 5 Developing the Domain Models

The expressions in threcordCheck: method:

a. Add the specified check to the end of the ordered collection held in
theregister variable. Theadd: message is part of the protocol under-
stood byOrderedCollection instances.

b. Subtract the written check’s amount from the current balance.

c. Calculate the sequence number that will be assignetbkg-
NewCheck to the next check it creates.
6. Edit the code view and choosecept for thecancelCheck: method
shown below:

cancelCheck: aCheck
"Remove the check from the register."
self register remove: aCheck.

"Update the balance."
self balance: self balance + aCheck amount

The expressions in tt@ancelCheck: method:

a. Remove the specified check from the ordered collection.

b. Add the amount of the canceled check back into the balance.
Note that no adjustment is madenextCheckNumber, because

once a given sequence number is assigned, it is never reused.
Canceling a check causes a gap in the sequence numbers.

7. You have completed th@heckbook class! (Save your image.)

Analysis: More about Complex Expressions

Three of the methods you just creatddgosit:, recordCheck:, and
cancelCheck:) contain message expressions that modify the checkbook’s
balance. These expressions are complex, in that each has arguments that are
composed of other expressions. To see how these expressions are parsed,
consider the following expression from theposit: method:

self balance: self balance + anAmount

This expression contains th@aary message, which performs the addition
operation. A binary message has one argument, and its selector is composed
of one or two nonalphanumeric characters. Common binary messages include
arithmetic operations (such asand-) as well as the string concatenation
message (comma).

118 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

When a message expression contains all three kinds of messages (unary,
binary, and keyword):

n

n

n

Unary expressions are parsed from left to right.
Binary expressions are parsed from left to right.

Unary expressions take precedence over binary
expressions.

Binary expressions take precedence over keyword
expressions.

Returning to the example, assume that you senddpesit: message to a
Checkbook instance. Whedeposit: executes:

1.

2.

The unary expressiaelf balance is evaluated, returning tieéheck-
book instance’s current balance.

The binary expression containirgs evaluated. Its receiver is the
current balance returned in step 1; its argumeabAmount. The evalu-
ated expression returns the resulting sum.

. The keyword expression containipglance: is evaluated. Its receiver is

self (theCheckbook instance), and its argument is the sum returned in
the previous step. This expression sets the checkbook balance to be the
new sum.

The evaluated expression can be written with parentheses as follows:

self balance: ((self balance) + anAmount)

VisualWorks Tutorial, Rev. 2.1 119

Chapter 5 Developing the Domain Models

120

Analysis: Alternative Implementation

The transaction methodddposit:, recordCheck:, andcancelCheck:) use
expressions such aelf balance andself balance: to get and set the value

of a checkbook’dalance variable. Because these methods are defined in the
Checkbook class, they can also use assignment expressions to manipulate
Checkbook’s instance variables directly.

For example, the expression in theposit: method could have been imple-
mented as follows:

balance := balance + anAmount.

Deciding whether to reference variables directly or through accessing
messages is often a matter of programming style. It is generally recom-
mended that you use accessing messages because they promote maintain-
ability—if, at some point, you decide to reimplement the structure of a class’s
data, you need to modify only the definitions of the relevant accessing
methods, rather than modifying assignment expressions wherever they occur.

Furthermore, accessing methods promote reuse. For exampleCHehlk-
book’s transaction methods were to changelthlance variable through
assignment statements, gelf changed: #balance expression would have
to be repeated in each method

definition.

VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

Testing the Checkbook Transactions

You can test the transaction methods you just wrote by sending messages in
the Workspace and displaying the results in the System Transcript. This tech-
nique is useful for testing domain models before the user interface is
connected to them.

Use the following steps to teSheckbook transactions. If you encounter a
syntax error, inspect the code for misspelled selectors or missing punctuation
(see page 124 for hints).

1. For convenience, open a new Workspace and enlarge the VisualWorks
main window.

2. Test the checkbook’s ability to deposit into the account by entering the
following code in the Workspace:

|bclc2|

b := Checkbook new.

b deposit: 100.

Transcript cr.

Transcript show: 'Balance after 1st deposit: *;
show: b balance printString;
cr.

b deposit: 50.

Transcript show: 'Balance after 2nd deposit: ';
show: b balance printString;
cr.

Hint: Usecopy andpaste from the <Operate> menu to duplicate
similar lines.

3. Select the code you entered and chalosi from the <Operate> menu.

A dialog box informs you that the temporary variatfeis not used. In
some cases, such a dialog box will alert you to an error or oversight in
your code; in this case, the test code is incomplete, and the variable will
be used later.

4. Click proceed in the dialog box foc2 and again in the dialog box for
cl.

VisualWorks Tutorial, Rev. 2.1 121

Chapter 5 Developing the Domain Models

122

5. Look at the System Transcript in the VisualWorks main window. It

should contain these lines:

Balance after 1st deposit: 100
Balance after 2nd deposit: 150

. Click on the code in the Workspace to deselect it.
. Test the checkbook’s ability to make and record checlaitingthe

following lines to the Workspace immediatelfter the code you entered
in step 2:

cl := b makeNewCheck.
cl payee: 'Fred’
amount: 70.

Transcript show: 'First check: ';
show: c1 printString;
cr.

b recordCheck: c1.

Transcript show: 'Balance after 1st check: *;
show: b balance printString;
cr.

c2 := b makeNewCheck.
c2 payee: 'Barney’;
amount: 20.

Transcript show: 'Second check: ';
show: c2 printString;
cr.

b recordCheck: c2.

Transcript show: 'Balance after 2nd check: ';
show: b balance printString;
cr.

Hint: Usecopy andpaste from the <Operate> menu to duplicate
similar lines.

. Select all the code in the Workspace (that is, all the code you entered in

steps 2 and 7) and choade it from the <Operate> menu.

VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

9. Look at the System Transcript. The output should now include additional
lines like the following:

First check: #1, 15 August 1994: $70 to Fred
Balance after 1st check: 80

Second check: #2, 15 August 1994: $20 to Barney
Balance after 2nd check: 60

10. Click on the code in the Workspace to deselect it.

11. Test the checkbook’s ability to cancel checkadigiingthe following
lines to the Workspace immediatelfter the code you entered in steps 2
and 7:

b cancelCheck: c1.
Transcript show: '‘Balance after canceling 1st check: ';
show: b balance printString;
cr;
show: 'Checks: ';
show: b register printString;
cr.

12. Select all the code in the Workspace (that is, all the code you entered in
steps 2, 7, and 11) and choakeit from the <Operate> menu.

13. Look at the System Transcript. The output should now include additional
lines like the following:

Balance after canceling 1st check: 130
Checks: OrderedCollection (#2, 15 August 1994: $20 to
Barney)

Analysis: Transcript Messages

You display strings in the System Transcript by sending messages to the
receiverTranscript. Transcript is a predefineglobal variablein Small-

talk—a variable whose value can be accessed by all objects in the system.
Transcript thus refers to a special instance of the classCollector that

allows text to be displayed in the window region known as the System Tran-
script.

VisualWorks Tutorial, Rev. 2.1 123

Chapter 5 Developing the Domain Models

124

In this example, you sent:

n Theshow: message with a literal string argument (suctrist check:
") or with an expression that returns a string (sudh laslance print-
String).

n Thecr message to insert a carriage return. This causes the next string to
appear on a new line.

In a number of steps, you constructed a single line of output by sending
multiple cascadedhow: messages tdranscript. As explained on page 98,
cascaded messages are separated by semicolons.

Analysis: Syntax Errors

If you accidentally misspell a word or leave out any punctuation (a single
guotation mark, a colon, a period, or a semicolon), your expressions usually
cannot be compiled. Depending on the context of the omitted punctuation,
you could get any of the errors listed below.

Note that a given type of error may occur for any of several reasons. To
diagnose an error, you need to understand how Smalltalk is parsing your
expressions (refer to the parsing rules on page 119).

n An error notifier such as:

Exception

0 Unhandled exception: Message not
understood: #cr

|Debug| Proceed Terminate

Copy stack Correctit..

ByteString{Object)=>doesMotUnderstand:
UndefinedOhject==unhoundhiethod
UndefinedOhject{Objectj==performMethod:arguments:
UndefinedOhject{Object)==performiethod:
CompilerSmalltalkCompil . eivernotifying:ifF ail:

This notifier indicates that the messagés being sent to a receiver that
doesn’t understand it. Clickerminate and inspect the code for missing
punctuation in front of ar message.

VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

n A dialog box such as:

it is a new

i

|proceed|| correct itl abort |

This dialog box indicates that the watdposit (highlighted in the
Workspace) is parsed as a message selector that is not known to the
system. ClickAbort and inspect the code. The highlighted word may be
misspelled or there may be missing punctuation around it. For example,
the word may be a keyword selector that is missing a colon, or a period
may be missing after a prior expression.

n A dialog box such as:

shovws :show: is a new message

|_proceed|| correct itl ahort |

This dialog box indicates that the two adjacent occurrencsisaf: are
parsed as a single keyword message that is not known to the system.
Click Abort and inspect the code for missing punctuation in the high-
lighted text. For example, a semicolon may be missing between the
argument of onshow: message and the selector of the next.

n A dialog box such as:

Declare Trancript as

termp

glohal

undeclared

This dialog box indicates that a receiver is not known to the system and
therefore is interpreted as the name of an undeclared variable. If the high-
lighted word is a misspelling of a known name, you can try clicking
Correct It . Alternatively, you can clickancel and correct the name.

n The highlighted texhothing more expected-> inserted in your code:

VisualWorks Tutorial, Rev. 2.1 125

Workspace

]

|bhclce|

>

b := Checkhook new.
b deposit: 100,
Transcript cr.

Transcript show [FlOuliERulEg=raal-ln =g B alance after 1st
deposit: ’; show: b halance printString; cr.
b deposit: 50.

Transcript show: ‘Balance after 2nd deposit: 7 show: b
halance printString; cor.

c1:= b makeNewCheck.

cl payee: Fred’; amount: 70.

<]

The highlighted text indicates that the preceding expressions are syntac-
tically complete, even if they are not what you intended. Press <Delete>
or <Backspace> to delete the highlighted error message and inspect the
code for missing punctuation. The error may be in any expression prior
to the highlighted text. In this case, the colon is missing after an occur-
rence ofshow.

What's Next: Programming the Interface

In Chapter 6, you will “glue together” all the pieces you have created so far.
That is, you will program the application mod€hgckbookinterface) so

that it can connect the widgets in the interface specifications to appropriate
checkbook information and actions.

As before, the work you will do in the next chapter is cumulative, so you
shouldsave your image periodicallgspecially before taking a break or
exiting VisualWorks.

Chapter 6

Programming the Interface

In Chapters 4 and 5, you created:

n Two interface specifications that describe the Checkbook application’s
graphical user interface

n Two domain models (th€heckbook andCheck classes) that provide
the data and processing for checkbook and check objects

In this chapter, you program the application’s graphical user interface to
interact with checkbooks and checks. That is, you enable each widget in the
interface to either display a particular piece of information (such as the check-
book balance) or invoke a particular action (such as writing a new check).

This chapter is divided into two major sections:

n “VisualWorks Approach to Interface Programming,” which gives an
overview of the way behavior is defined for a VisualWorks graphical
user interface

n “Programming the Application Model,” which guides you through the
actual interface-programming steps

VisualWorks Approach to Interface Programming

In VisualWorks, you program a graphical user interface by programming one
or more application models. As described in the following sections, you
program these application models so that they:

n Specify the interface’s appearance and basic behavior

n Supplement the interface’s basic behavior with application-specific
behavior

VisualWorks Tutorial, Rev. 2.1 127

Chapter 6 Programming the Interface

Specifying Basic Appearance and Behavior

You program an application model to specify an interface’s basic appearance
and behavior by installing one or more interface specifications in it. For
example, in this tutorial, you programmed the application mdgie¢¢k-
booklinterface) to specify two windows by creating two canvases and
installing them as interface specifications in the class methiodlowSpec
anddialogSpec. Each interface specification is a formula for generating an
operational window containing particular widgets.

The generated widgets have built-in behavior that governs their appearance
(size, location, color) and their response to user actions. Some of this behavior
is fundamental to each widget (as when a selected menu item highlights
itself). Other behavioral characteristics are explicitly chosen through property
settings (as when a field either accepts input or is read-only).

More specifically, an interface specification contains information that tells a
builder, in effect, how to choose widget classes from the application frame-
work, create instances from these classes, and initialize these instances to
endow them with the specified behavior. An interface specification is thus a
means of requesting specific kinds of predefined interface behavior from the
application framework.

The widgets produced by this level of programming have considerable func-
tionality. For example, besides drawing itself in the proper size and location,

the Amount to Deposit: field in the Checkbook main window knows how

to accept input characters, format and display these characters as monetary
amounts, convert these characters to numbers, and so on.

However, this functionality is necessarily limited to what is predefined in the
widget classes. As part of a general-purpose framework, these classes simply
cannot know anything about checkbooks, checks, or other domain objects
you may create.

Programming Application-Specific Behavior

128

The next level of interface programming is to supplement the widgets’ basic,
predefined behavior with application-specific behavior—behavior that
enables users to interact with the application.

For example, in the Checkbook application, you want users to make deposits
by entering a deposit amount in a particular field and then clicking an action
button. For this to work, the widgets in the interface must effectively know
how to:

VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Interface Programming

n Put the entered amount where methods can access it

n Find the relevant checkbook object and ask it to deposit the entered
amount

n Display the new balance

As created from framework classes, the widgets do not themselves hold onto
data or carry out application-specific actions. Instead, they are designed to
delegate these tasks to other objects. You set up these interactions by
programming the application model to accommodate the predefined behavior
of:

n Action widgets—widgets such as action buttons and menu items that
enable a user to invoke an application’s actions

n Data widgets—widgets such as input fields and lists that display some
aspect of an application’s data and/or collect it from the user

Note that widgets serving as purely visual elements, such as labels, dividers,
and group boxes, do not require further programming.

Action Widgets

An action widget is designed to delegate its action to the application model
from which it was built. Thus, when a user activates an action widget (for
example, by clicking or selecting it), the widget knows to respond by sending
a message to its application model, requesting that the application model
carry out the desired action.

As shown later in this chapter, you set up this interaction by:

n Telling the action widget which message to send

n Providing the application model with a corresponding method that
implements the desired action

Note that this action method may, in turn, send messages to domain models
to pass information to them and/or invoke domain-specific operations.
Data Widgets

A data widget is designed to use an auxiliary object callealiee modeto
manage the data it presents. That is, instead of holding onto the data directly,
a data widget delegates this task to a value model:

n When a data widget accepts input from a user, it sends this data to its
value model for storage.

VisualWorks Tutorial, Rev. 2.1 129

Chapter 6 Programming the Interface

n When a data widget needs to update its display, it asks its value model for
the data to be displayed.

As shown later in this chapter, the basic way you set up this interaction is by:

n Telling the widget the name of its value model.

n Programming the application model to create and return the value model.
Depending on the application’s needs, the created value model either
provides its own storage for data or accesses data that is held in a domain
model.

When the interface is opened, the builder obtains the name of the value model
from the widget and then uses this name to request the relevant value model
from the application model. The builder then sets up the necessary connec-
tions between the widget and its value model.

More about Value Models

Value models are instances of the subclass®aloeModel, a class in the
application framework. Data widgets are designed to interact with value
models because:

n Value models define a uniform protocol for accessing data. This enables
all data widgets to store and refresh their data in a standard way (by
sendingvalue: andvalue messages), regardless of where this data is
held by the application.

n Value models are specializations of the class Model (see page 107), so
they notify their dependents whenever changes are made to the managed
data. Each data widget is set up as a dependent on its value model, so it
can receive this change notification and update its display in response.

You will learn more about value models when you set them up for the Check-
book application’s data widgets.

Another Look at Application Structure

130

Value models introduce an additional layer of objects in the information
model of the application (see Figure 6-1). Like other kinds of models, value
models are concerned with storing and retrieving data, not providing display
services. However, whereas other models tend to define complex aggregates
of data, each of the value models manages a single piece of data for an indi-
vidual data widget.

VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Interface Programming

Display screen @
E——k -

v
o7 | A \ h h N
o7 L \ b N
/ AN
- Ve | \ \ N
. e
Ul objects P \ L’j
Value models Li
Application
models

Domain models

Figure 6-1 Value-model layer within the information model

VisualWorks Tutorial, Rev. 2.1 131

Chapter 6 Programming the Interface

Programming the Application Model

The application model for the Checkbook application is the ¢hssk-
booklInterface, which you created when you installed the interface specifica-
tion for the application’s main window. Through inherited behavior, this class
already knows how to start the application—that is, how to create an instance
of itself, tell this instance to create a builder, and give the builder the interface
specification for the main window.

In the rest of this chapter, you will progra®heckbookinterface so that it
can carry out actions for the action widgets and provide appropriate value
models for the data widgets. You do this through a combination of:

n Refining the contents of the class methods (by setting additional widget
properties and editing the menu bar)

n Creating instance variables and methods (by using what you learned in
Chapter 5 in combination with the VisualWorks interface-coding acceler-
ator)

To program the clasSheckbooklinterface, you will:

1. Set up your environment with the relevant tools.

2. BrowseCheckbooklnterface to get acquainted with what is already
there.

3. Provide the application model withCieckbook instance.

. Program thémount to Deposit: field, theDeposit button, the
Balance: field, and theCheck Register list in the Checkbook main
window.

N

5. Program the main window's menu bar.

6. Provide a method for writing a new check through the Check dialog box.
7. Program the fields in the Check dialog box.

8. Provide a method for check canceling.

At various points in this process, you will run the application to test its inter-
face.

132 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Setting Up Your Work

In the sections that follow, you will be setting widget properties and editing
class and method definitions. To prepare for this work:
1. Arrange your screen so that it contains:

n The VisualWorks main window

n A System Browser

n The canvas for the Checkbook main window

Hint: Open a Resource Finder; select both@Gheckbooklinterface
class and thevindowSpec resource, and then click tiElit button.
You can close the Palette, but leave the Canvas Tool open.

n The Properties Tool
Hint: Click theProperties button on the Canvas Tool.

2. Close any other windows you may have accumulated, such as the work-
spaces and inspectors you used in Chapter 5 and the Resource Finder you
used above.

A Few Reminders

Most of the tasks that follow have related subsections whose titles begin with

“3 Analysis:”. As in Chapter 5, these subsections provide extra explanation
about the steps you performed. Some of them highlight Smalltalk rules and
conventions; others provide details about VisualWorks tools or the Visual-
Works application framework. Depending on your learning style, you may
read these subsections as you encounter them, or you may prefer to skip these
subsections and return to them when you need to know more.

Remember that you can file in a completed version of the Checkbook appli-
cation, as described on page 84, steps 1 through 3.

As always, be sure to save your image before taking a break or exiting Visu-
alWork.

VisualWorks Tutorial, Rev. 2.1 133

Chapter 6 Programming the Interface

Browsing the Application Model

134

You created the application modeheckbookinterface when you installed
the canvas for the main window. To familiarize yourself with this class, you:

1.

SelectExamples-VWTutorial in the category view of the System
Browser.

. SelectCheckbookinterface in the System Browser’s class view.
. With theinstance switch selected, examine the class definition. Notice

thatCheckbookinterface:
n Is a subclass of the clagpplicationModel

n Has no instance variables or instance methods at this point (other
than what it inherits frompplicationModel)

. Select thelass switch. Notice tha€heckbooklinterface has two class

method protocols:

n Theinterface specs protocol, which contains the methods in which
you installed the canvases for the main window and dialog box

n Theresources protocol, which contains the method in which you
installed the main window’s menu bar

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Providing the Checkbook Behind the Interface

The Checkbook main window exists to enable users to interact with a check-
book object. Consequently, instancetfeckbookinterface must hold

onto an instance @heckbook so that methods iBheckbookInterface can
access the checkbook’s data or invoke checkbook transactions.

To provide a checkbook for the interface:

1. Display the class definition f@heckbookinterface in the System
Browser (make sur€heckbookinterface is still selected in the class
view and then select thestance switch).

2. Edit the contents of the code view to add an instance variable called
checkbook as shown:

ApplicationModel subclass: #CheckbooklInterface
instanceVariableNames: 'checkbook’
classVariableNames: "
poolDictionaries: "
category: 'Examples-VWTutorial'

3. Chooseaccept from the code view’s <Operate> menu.
4. Add a protocol nameiitialize-release.

5. In the code view, enter the following method definition and choose
accept:

initialize
"Create a new checkbook for the interface to manipulate."

checkbook := Checkbook new

This method creates a né&¥heckbook instance and assigns it to the
checkbook instance variable.

Analysis: Initializing an Application Model

Checkbookinterface inherits an instance-creation methuslv from the
ApplicationModel class. This inherited method is like the one you imple-
mented forCheckbook—it creates a new instance and then sends an
initialize message to this instance.

Thus, when mew message is sent @heckbookInterface (as happens
when you start the Checkbook application):

VisualWorks Tutorial, Rev. 2.1 135

Chapter 6 Programming the Interface

136

1. The inheritechew method creates an instanceGifeckbookinterface
and sends it amitialize message.

2. Theinitialize method defined iheckbookInterface sends the
messag@aew to Checkbook.

3. Thenew method defined fo€heckbook creates an instance 6heck-
book and sends it aimitialize message.

4. Theinitialize method defined iiCheckbook assigns initial values to the
instance’s variables.

5. The resulting initialized instance Gheckbook is assigned to the
checkbook variable of theCheckbooklinterface instance.

The resulting structure is shown in Figure 6-2:

aCheckbookinterface

anOrderedCollection
checkbook Eliﬂf aCheckbook

register ﬁ

balance CtH—>
nextCheckNumber [+

Figure 6-2 An instance of Checkbookinterface holding onto a Checkbook
instance

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Programming the Amount to Deposit: Field

The Amount to Deposit: input field on the Checkbook main window is
where users enter the amount to be deposited into the application’s checkbook
object. Because this field is a data widget, you need to program the applica-
tion model so the builder can set up the field with an appropriate value model.

Put another way, instancestiieckbookinterface must be able to create the
required value model and make it available to the builder on request. The
standard implementation is for the application model to have:

n An instance variable that holds onto the value model
n An accessor method for the instance variable

n Expressions (in some method) that create the value model, tell it what
data to manage, and assign it to the instance variable

The following steps show how to use the VisualWorks coding accelerator (the
Definer) to generate the code for this implementation, based on the input
field’s property settings. Thus, to prograheckbooklinterface for the

Amount to Deposit: field:

1. Decide on a name for the method that will return the value model.
Because the value model will manage data entered as a deposit amount,
you choose the nanmdepositAmount.

2. In the canvas for the Checkbook main window, select the relevant input
field (the field immediately to the right of tiemount to Deposit:
label). The Properties Tool displays the properties for the selected input
field.

Hint: If necessary, chooserrange ?Ungroup to ungroup widgets so
you can select just the field.

3. In the Properties Tool, type the name you chose in step 1 (namely,
depositAmount) as the value of thaspect: property; then click
Apply . This associates the widget with the name of the method that
returns its value model.

4. Reinstall the canvas imindowSpec to make the new property setting
part of the interface specification.

Reminder: Click Install... in the Canvas Tool.

5. With the input field still selected in the canvas, generate the supporting
code for it by clickingDefine... in the Canvas Tool.

A dialog box appears, as shown in Figure 6-3. Notice that it:

VisualWorks Tutorial, Rev. 2.1 137

Chapter 6 Programming the Interface

n Lists the name of the instance variable and accessor method to be

generateddepositAmount)

n Indicates that the generated code will create a value model and

initialize the instance variable with it

DEFINE Model

~* depositémount

W odd Initialization

Cancel

Figure 6-3 The Definer’s dialog box

6. Click OK to generate code.

7. Refresh the System Browser by choosipdate from <Operate> menu
in the category view. A new protocol calladpects appears in the

protocol view.

8. Examine the class definition (sel&@teckbookinterface in the class
view and choosédefinition from the <Operate> menu). Notice the new

instance variabldepositAmount.

9. Select thaspects protocol and thelepositAmount method. The code
view displays the generated method definition:

depositAmount

"This method was generated by UlDefiner. Any edits made

here may be

lost whenever methods are automatically defined. The

initialization

provided below may have been preempted by an initialize

method."

~depositAmount isNil

ifTrue:

[depositAmount := 0 asValue]

ifFalse:

[depositAmount]

138

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

This method returns the valuedépositAmount, initializing it, if
necessary, with a specialized kind of value modeb{ae holde) that
holds an initial deposit amount of 0.

VisualWorks Tutorial, Rev. 2.1 139

Chapter 6 Programming the Interface

140

Analysis: Aspect Property

Every data widget has an aspect property (lab&$gxbct: in the Properties
Tool). Inthe most general terms, this property is where you identifsihect

of the information model that the widget presents to the user. Because the
widget must use a value model to manage its relationship to the presented
information, the aspect property is effectively where you identify the widget’s
value model.

In more concrete terms, an aspect property associates a data widget with a
message selector, which is recorded in the interface specification. When the
interface is opened, the builder uses the selector to obtain a value model for
the widget. That is, the builder sends the selector as a message to the applica-
tion model, which must therefore have a method that returns an appropriate
value model.

Analysis: The Definer

TheDefiner is an accelerator for programming the application model to
support both data and action widgets. You invoke the Definer by selecting one
or more widgets on a canvas and then either clickin@#fime... button on

the Canvas Tool or else choosidgfine... from the <Operate> menu in the
canvas. Selecting multiple widgets allows you to generate code for all of
those widgets in a single operation.

For a data widget such as thmount to Deposit: input field, the Definer

uses information in the widget's properties to generate the standard imple-
mentation for creating and returning a value model. Thus, in this example, the
Definer obtains the nandepositAmount from the aspect property and
generates:

n ThedepositAmount instance variable

n ThedepositAmount accessor method in tlaspects protocol

n Expressions in the accessor method that perfazminitializationof the
instance variable

Because the widget is an input field whdspe: property isNumber,

the generated code initializes the variable with the most basic kind of
value model that a field can use and provides the nuthbstrthe initial
data for the field to display.

Using the Definer is optional—it is a useful shortcut for typing code “by
hand,” and it ensures, for a given data widget, that the application model has
an appropriate method whose name matches the widget's aspect property. As

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

a novice VisualWorks user, you can use the Definer to learn the basic tech-
niques for programming an application model.

As you become more experienced with VisualWorks, you may prefer
different techniques for supporting data widgets. For example, you may want
to write initialization code that creates a different kind of value model or you
may want to put this code in @itialize method such as the one you created
on page 135. In such cases, you can choose to:

n Use the Definer and then modify the generated code (as you will do for
theBalance: field).

n Use the Definer with thAdd Initialization checkbox deselected (this
generates an accessor method containing no initialization code).

n Simply enter all the desired code by hand.

Analysis: Lazy Initialization, Booleans, Blocks

As generated by the Definer, the accessor mediepdsitAmount performs
lazy initializationof the instance variablepositAmount. This means that
the instance variable is initialized only when needed—the first time it is
accessed. In contrast, the instance variabézkbook is initialized as soon
as a new instance @fheckbookinterface is created.

ThedepositAmount method works by first testing whether thepositA-
mount instance variable is uninitialized. In Smalltalk, variables that have no
other object assigned to them hold onto the undefined aofije€onse-
guently, the method determines whether the variable has thenililising

the following expression:

depositAmount isNil

The messageNil returns the objedtue if the variable’s value igil, and the
objectfalse if the variable evaluates to another object.

Booleans.The objectsrue andfalse are calledooleanobjects. They are
special Smalltalk objects that represent the answers to yes-no questions; thus,
they are returned in response to querying messages sisttilaghich asks
whether an object is the samendls

Like other objects, Boolean objects respond to a variety of messages. Among
these are messages that function as conditional control structures, such as the
ifTrue:ifFalse: message. The example uses this message to specify what to
do if the

VisualWorks Tutorial, Rev. 2.1 141

Chapter 6 Programming the Interface

142

depositAmount variable isil (initialize it) and what to do otherwise (return
it).

Block Expressions.TheifTrue:ifFalse: message has two keywordd (ue:
andifFalse:), each of which has an argument thatBack expressiorA

block expression consists of one or more expressions enclosed in brackets
(multiple expressions must be separated by periods). Thus, deplositA-
mount accessor method:

n The argument of thBTrue: keyword is the block expressifaepositA-
mount := 0 asValue].

n The argument of th#False: keyword is the block expressifaeposi-
tAmount].

When a block expression is encountered, the statement(s) within the brackets
are not executed immediately; rather, they are evaluated only on request. For
example, when théTrue:ifFalse: message is sent to a Boolean object:

n The objectrue responds by requesting that the first argument block be
evaluated, but not the second.

n The objecfalse responds by requesting that the second argument block
be evaluated, but not the first.

Thus, when the variable is uninitialized, the test expresipositAmount

isNil evaluates ttrue, so the first argument block is evaluated. This block
creates a value holder and assigns it to the variable, which is returned by the
method. After the variable is initialized, the test expression evaludtsdo

so the second argument block is evaluated. This block evaluates to the current
value of the variable, which is returned by the method.

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Analysis: Value Holders

The initialization codelepositAmount := 0 asValue creates a specialized
kind of value model calledalue holderAs the term implies, a value holder
holds the data it manages. That is, when a widget such as an input field
accepts input from a user and sends this data to a value holder, the value
holder responds by storing the data in an instance variable callesl

The generated code creates the value holder by sending the mes¢aige

to the numbeD. Using behavior inherited fro@bject, the numbeD

responds by “wrapping itself” in a new value holder—that is, by asking the
framework clas¥alueHolder to create a new instance of itself witlas the
held value. When thamount to Deposit: input field is eventually set up,

it will ask the value holder for the held value and display it until the user
enters another value.

Like any value model, a value holder respondstae andvalue: messages.
For a value holder, these messages access and change the valualwé its
instance variable. Thus, tienount to Deposit: field sends the message
value when it wants to get the value to display, and it sends the message
value: to store data entered by a user.

A value holder is an appropriate kind of value model forAhmunt to
Deposit: input field. This is true because an entered deposit amount is
simply a temporary piece of information that the interface must hold onto
until it can be further processed. In contrast, you will see th&dlence:
field uses a different kind of value model, because the data it presents is
already held elsewhere in the application (namely, ib#iance instance
variable of aCheckbook instance).

VisualWorks Tutorial, Rev. 2.1 143

Chapter 6 Programming the Interface

Programming the Deposit Button

TheDeposit action button on the Checkbook main window is what users
click to actually deposit the amount specified in Areount to Deposit:

input field. Because thBeposit button is an action widget, you need to
program the application model so it can carry out the deposit action. That is,
you need to define a method@meckbooklinterface that obtains the entered
amount from the field’s value holder and passes this amount to the checkbook
object for deposit. To define this method:

1. Decide on a name for the method to be defined. Because of the action it
implements, you choose the namakeDeposit.

2. Select the action button labelBéposit in the canvas for the Check-
book main window. If necessary, ungroup widgets so you can select just
the button. The Properties Tool displays the properties for the selected
button.

3. In the Properties Tool, type the name you chose in step 1 (hamely,
makeDeposit) as the value of thaction: property; then clicldpply .
This tells the button what message to send to carry out its action.

4. Reinstall the canvas imindowSpec to make the new property setting
part of the interface specification.

5. With the action button still selected in the canvas, generagtifzod stub
for it by clicking Define... in the Canvas Tool. (A method stub is a
placeholder method you can later fill in with meaningful code.)

The Definer’s dialog box appears, this time listing the selector for the
method stub to be generatédakeDeposit).

6. Click OK to generate code.

7. Refresh the System Browser by choosipdate from the <Operate>
menu in the category view. A new protocol calktions appears in the
protocol view.

8. Select thactions protocol and then themakeDeposit method. The
code view displays the following:

makeDeposit
"This method stub was generated by UlDefiner"

"self

9. In themakeDeposit method definition, replace the expressitse(f)
with expressions that implement the deposit action, and claoecsept :

144 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

makeDeposit
self depositAmount value > 0
ifFalse: [*Dialog warn: 'Enter a positive number'].
checkbook deposit: self depositAmount value.
self depositAmount value: 0

This method tests whether the user entered a valid amount in the
Amount to Deposit: field. If so, the method asks the checkbook object
to deposit the amount, and then it resets the field’s dispRyitmot, the
method opens a dialog advising the user to enter a positive number.

Analysis: Action Property

Every action button has an action property (labdletibn: in the Properties
Tool). The action property associates the button with a message selector,
which is recorded in the interface specification.

When the interface is opened, the builder creates the button and sets it up so
that the specified message is sent when the user clicks the button. As the
receiver of this message, the application model must have an appropriate
method whose name matches the button’s action property.

Analysis: makeDeposit Logic

The purpose of thmakeDeposit method is to obtain, test, and, if appro-
priate, deposit the amount entered in Ameount to Deposit: field.
Because the entered amount is stored in the field’s value holderakebe-
posit method is able to use the following expression to obtain it:

self depositAmount value

This expression sends the messagae to the field’s value holder, which is
returned by the application model’s

depositAmount accessor method. The value holder responds teetloe
message by returning the data it holds. The value holder is thus a link between
the field and the application model—the field sends input data to the value
holder, and methods in the application model obtain this data by asking the
value holder for it.

VisualWorks Tutorial, Rev. 2.1 145

Chapter 6 Programming the Interface

146

ThemakeDeposit method tests whether the entered amount is greater than
0 by using the binary messagdgreater than):

self depositAmount value > 0

The result of this test expression is a Boolean objjea 6rfalse), to which
the keyword messag#-alse: is sent:

self depositAmount value > 0
ifFalse: [*Dialog warn: 'Enter a positive number'].

The response of each Boolean object to this message determines whether the
argument block is evaluated:

n If the test expression evaluateddtse (the deposit amount Bor less),
the argument block is evaluated. This block displaysaning dialog
and returns from the method (notice the return charagt&ecause of
the return, the remaining expressions in the method are not evaluated.

n Ifthe test expression evaluategnge (the deposit amount is greater than
0), the argument block is ignored, and the method continues by evalu-
ating its remaining expressions.

The first of the remaining expressions actually carries out the deposit action:
checkbook deposit: self depositAmount value.

This expression obtains the entered amount from the value holder and passes
it to the checkbook object held by tbleeckbook instance variable. Notice

that thedeposit: message is part of the protocol you defined inGheck-

book class.

The last expression resets the input field's displaylg changing the value
in the field’s value holder:

self depositAmount value: 0

As you will see, in the running application, the value holder automatically
notifies the field of changes to its held value, and the field updates its display.
Thus, a value holder is a way for the application model to programmatically
control what a widget displays—the application model sends data to the

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

widget’s value holder, which notifies the widget. The widget responds by
obtaining the new data from the value holder for display.

Analysis: Warning Dialog

The expression in thfFalse: argument block creates an instance of the class
Dialog. This instance automatically opens a small warning dialog that
displays the specified text and provides a single button lal#edrhe
warning dialog remains displayed until the user cliOks.

TheDialog class provides class methods for several other kinds of special-
purpose dialog. For example, an expression sutliedsg confirm: 'Do you
really want to do that?' opens a dialog box containing the specified text
along with two buttonsYes andNo) for answering the displayed question.

VisualWorks Tutorial, Rev. 2.1 147

Chapter 6 Programming the Interface

Testing the Deposit Widgets

148

At this point, you can test themount to Deposit: field and theDeposit
button in the Checkbook main window. To do this:

1.
2.

Click Open from the Canvas Tool to start the application.

Click in theAmount to Deposit: field to give itkeyboard focusThis
makes the field receptive to input from the keyboard and turns off the
output formatting, causing the displayed amount to change $6060

to 0 (input formatting).

. Type a positive number in tihemount to Deposit: field. (Do not

include a dollar sign or any commas).

. Click theDeposit button.

Notice that:

n TheBalance: field does not reflect the deposit, because this widget
does not yet have a value model.

n TheAmount to Deposit: field is reset t&0.00 because of the last
expression in thenakeDeposit method.

. While the Checkbook application is still running, add the following

expression to the definition of tmeakeDeposit method (insert it just
above thedepositAmount value: 0 expression) and choosecept :

Transcript cr; show: 'Deposited ', self depositAmount value
printString,
' New balance ', checkbook balance printString.

. Click in theAmount to Deposit: field and enter another positive

number; then click thBeposit button. The System Transcript reports:
n The amount you deposited, obtained from the field’s value holder.

n The current balance, obtained from the checkbook object itself. Note
that the reported balance reflects both deposits you made, because the
checkbook object holds onto the balance, even if the interface does
not display it.

. Click in theAmount to Deposit: field, enter another positive number,

and press the <Return> key instead of clickingegosit button.

Because th®eposit button is the window’s default button (recallis
Default: property setting), the <Return> key:

n Activates theDeposit button.

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

n Keeps the keyboard focus on thmount to Deposit: field so you
can continue to enter input without clicking. This resets the field to
instead 0f50.00.

8. Delete the expression added in step 5 and clemzept .

9. Enter a negative number in tAenount to Deposit: field; then click
the Deposit button. A warning dialog advises you to enter a positive
number.

10. ClickOK in the warning dialog. The negative amount remains displayed,
with the appropriate output formatting.

11. Terminate the Checkbook application by closing its window with a
window-management operation.

Analysis: Behind the Scenes During Setup

When you clickOpen on the Canvas Tool:

1. The Canvas Tool sends thygen message t€heckbookinterface. This
class:
a. Creates an instance of itself
b. Tells the instance to create a builder

c. Passes the builder the interface specification stored imitig®w-
Spec class method

When initialized, the&CheckbookInterface instance creates tl&heck-
book object it represents to the user.

2. The builder creates and sets up the various objects that form the Check-
book main window.

For theAmount to Deposit: input field, the builder:
a. Gets the field's aspect prope(tiepositAmount)

b. Sends theepositAmount message to theheckbookinterface
instance, which responds by initializing dspositAmount instance
variable with a value holder holding the vale

c. Assigns the new value holder to an instance variable in the field so
that the field can send it messages

d. Makes the field a dependent of its value holder by listing it in the
value holder'slependents instance variable

For theDeposit action button, the builder:
e. Gets the button’s action propertggkeDeposit)

VisualWorks Tutorial, Rev. 2.1 149

Chapter 6 Programming the Interface

150

f. Sets up the button so that it responds to activation by sending the
makeDeposit message to theheckbooklInterface instance

Figure 6-4 shows the portion of the resulting structure that supports the
Amount to Deposit: field:

aValueHolder

dependents [¢]
value

aCheckbookinterface

depositAmount E/

Figure 6-4 Object structure supporting thdmount to Deposit: field

Analysis: Behind the Scenes During Operation

When you enter a positive amount in h@ount to Deposit: field and
click theDeposit button:

1. The field sends @alue: message to put the entered amount in its value
holder.

2. The button sendsmakeDeposit message to théheckbookinterface
instance.

3. TheCheckbookInterface instance responds by executing thakeDe-
posit method, which sends:

a. Avalue message to the value holder to get the amount

b. A deposit: message to theheckbook instance to deposit the
amount

c. Avalue: message to the value holder to reset the held amoQnt to

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

4. The value holder responds to tredue: message by notifying its depen-
dents that its value has changed.

5. The field responds to notification by sendingadue message to the
value holder to obtain the new value for display.

Analysis: Widgets as Dependents

When the builder sets up a data widget with a value model, it makes the
widget a dependent of the value model. This enables the value model to use
the dependency mechanism to notify the widget when the relevant data
changes.

In the example, the builder adds the input field todbpendents instance
variable of the field’s value holder. Then, during operation, the application
model sends @alue: message to the value holder to reset the deposit amount
programmatically.

Thevalue: method triggers the dependency mechanism by execusialj a
changed: #value expression, similar to the expression you entered for the
balance: method on page 114. The value holder responds tchifreged:
message by sending change notification (a forompalate: message) to any
objects listed in thdependents variable. Because the field is listed there, it
receives theipdate: message. Like any widget, a field responds to an
update: message from its value model by asking the value model for the
current data and then updating its display.

Analysis: Modifying a Running Application

As part of testing the application, you added some statementshakie®e-

posit method while the application was running. In general, you can edit the

definition of a method and see the effects without having to restart the appli-
cation. However, if you change anything that affects an interface specification
(for example, you change the canvas or a widget property), you must close

the application and restart it (thereby rebuilding the interface) for the change
to take effect.

VisualWorks Tutorial, Rev. 2.1 151

Chapter 6 Programming the Interface

Programming the Balance: Field

152

TheBalance: field on the Checkbook main window displays the account
balance that is stored in the application’s checkbook object. Because this field
is a data widget, you need to program the application model so the builder can
set up the field with an appropriate value model.

As before, you use the Definer to provideeckbooklinterface with:

n An instance variable that holds onto a value model
n An accessor method for the instance variable

n Initialization code in the accessor method that creates the value model,
tells it what data to manage, and assigns it to the instance variable

However, for th&alance: field, you will modify the generated initialization
code to create a different kind of value model than the one used for the
Amount to Deposit: field. Instead of creating a value holder to manage the
field’s data, the modified code will create aspect adaptorAn aspect
adaptor:

n Resembles a value holder because it responds to the same protocol and
notifies its dependents of changes to the managed data

n Differs from a value holder in that it accesses data that is held by some
other object (such as a checkbook object), rather than holding the
managed data itself

To programCheckbooklinterface for theBalance: field:

1. Decide on a name for the method that will return the value model.
Because the value model will manage data that represents the amount of
the current balance, you choose the naalanceAmount.

2. Select the relevant input field in the canvas for the Checkbook main
window (select the field immediately to the right of Beance: label).
Ungroup widgets if necessary.

The Properties Tool displays the properties for the selected field.

3. In the Properties Tool, type the name you chose in step 1 (namely,
balanceAmount) as the value of thaspect: property; then click
Apply . This associates the widget with the name of the method that
returns its value model.

4. Reinstall the canvas imindowSpec to make the new property setting
part of the interface specification.

5. With the input field still selected in the canvas, generate supporting code
for it by clicking Define... in the Canvas Tool.

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

The Definer’s dialog box appears, listing the name for the instance
variable and accessor methdlanceAmount) and indicating that
initialization code will be generated.

6. Click OK to generate code.

7. Refresh the System Browser by choosipdate from the <Operate>
menu in the category view.

8. Examine the class definition f@heckbookinterface. Notice the new
instance variablealanceAmount.

9. Select thaspects protocol and then select the new
balanceAmount method. The code view displays the following:

balanceAmount

"This method was generated by UlDefiner. Any edits made
here may be

lost whenever methods are automatically defined. The
initialization

provided below may have been preempted by an initialize
method."

~palanceAmount isNil
ifTrue:
[balanceAmount := 0 asValue]
ifFalse:
[balanceAmount]

This is the standard accessor method generated for an input field; its
initialization code creates a value holder.

10. In thebalanceAmount method definition, keep the basic structure, but
change the initialization code to create an aspect adaptor instead of a
value holder; then choosecept :

~balanceAmount isNil
ifTrue:
[balanceAmount :=
(AspectAdaptor subject: checkbook sendsUpdates:
true)
forAspect: #balance]
ifFalse:
[balanceAmount]

VisualWorks Tutorial, Rev. 2.1 153

Chapter 6 Programming the Interface

154

Analysis: The Definer Revisited

In this section, you used the Definer to generate an accessor method, which
you modified by entering code of your own. From now on, you must avoid
using the Definer for thBalance: field, as long as its aspect property is
balanceAmount. If you regenerate code for this selector, the Definer will
overwrite your modifications with the standard accessor method.

You can either make sure tBalance: field is deselected in the canvas
before invoking the Definer, or else you can deseledb#tenceAmount
selector in the Definer dialog box, if it appears there.

Analysis: Aspect Adaptors

The initialization code you entered creates a specialized kind of value model
called amaspect adaptorLike a value holder, an aspect adaptor manages a
widget’s access to the data it presents. However, rather than holding onto the
data directly, an aspect adaptor accesses data that is held in some other object,
called itssubject In general:

n When a widget accepts input from a user and sends it to an aspect
adaptor, the aspect adaptor responds by asking its subject to hold onto the
data.

n When a widget asks an aspect adaptor for data to display, the aspect
adaptor responds by asking its subject to return the data.

An aspect adaptor effectively translates the messages sent by the widget
(namelyvalue, value:) into messages that are understood by the subject. That
is, an aspect adaptadaptsthe standard value-model protocol to match the
accessor and mutator protocol for a particakpectof a domain model.

Creating an Aspect Adaptor for theBalance: Field. The purpose of the
Balance: field is to display the data held in thalance instance variable of
the application’Checkbook instance. Therefore, the aspect adaptor for this
field must have th€heckbook instance as its subject and it must translate
the messageslue andvalue: tobalance andbalance:, respectively. (This
example exploits only the translation fraralue to balance because the

field is read-only.)

Furthermore, the data in thalance variable changes with every checkbook
transaction, and each change to the balance causea¢bkbook instance

to broadcast change noatification in the formuptlate: messages to its
dependents (see page 114). The aspect adaptor must therefore be told that its

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

subject sendspdate: messages, so that it can relay the change notification
to the field.

The following expressions create and initialize an aspect adaptor that is
appropriate for th8alance: field:

(AspectAdaptor subject: checkbook sendsUpdates: true) forAspect:
#balance

The expression within the parentheses sermibpect:sendsUpdates:
message to the cladspectAdaptor. The class responds to this message by
creating a new aspect adaptor that:

n Has the application'€heckbook instance as its subject
n Sets itself up as a dependent on its subject so it can respond when the
subject sendspdate: messages

The outer expression then sendsrd\spect: message to the new aspect
adaptor, which responds by initializing itself with the aspect symbol
#balance. An aspect adaptor uses its aspect symbol to:

n Construct the accessor and mutator messages it will send to its subject.
These message names are stored in the aspect adgpt8etector and
putSelector instance variables.

n Filter theupdate: messages it receives from its subject, so it can identify
(and respond to) just those that pertain to it.

Thus, you set the aspect symbol to#halance because it matches:

n The name you gave the relevant accessor methGteckbook, which
is the same as the name of the mutator method except for the colon

n The aspect symbol you gave ttteanged: message in theheckbook’s
balance: method (page 113)

Note that additional protocol is available for creating aspect adaptors when
the subject’s accessors, mutators, and aspect symbols have unrelated names.

VisualWorks Tutorial, Rev. 2.1 155

Chapter 6 Programming the Interface

Testing the Balance: Field

Now you can test thBalance: field to see whether it reflects deposits made
to the checkbook:

1.
2.
3.

Click Open from the Canvas Tool to start the application.
Click in theAmount to Deposit: field and type a positive number.

Click theDeposit button. Notice that thBalance: field displays the
deposited amount.

. Enter a second deposit amount. Bagance: field now displays the

sum of the two deposited amounts.

. Terminate the application by closing the window using the window

manager.

Analysis: Setup of the Aspect Adaptor

When you run the application again, it is set up as described on page 149, with
the addition of th&alance: field. That is:

1. Checkbookinterface creates an instance of itself, which creates a

builder and &Checkbook instance.

. The builder creates and sets up the various objects that form the Check-

book main window.
For theBalance: field, the builder:
a. Gets the field’s aspect properbalanceAmount).

b. Sends thbalanceAmount message to theheckbooklinterface
instance, which responds by initializinglitslanceAmount instance
variable with an aspect adaptor.

As created, this aspect adaptor’s subject isheckbook instance,
its aspect symbol #balance, and it is a dependent of its subject
(that is, it is listed in the checkbooldependents variable).

c. Assigns the new aspect adaptor to an instance variable in the field so
that the field can send it messages.

d. Makes the field a dependent of its aspect adaptor by listing it in the
aspect adaptordependents variable.

Figure 6-5 shows the portion of the resulting structure that supports the
Balance: field:

156

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

=z =
—_
A
v
anAspectAdapt
/ dependents [+]
aCheckbookinterface subject
etSelector
balanceAmount E/ 9
checkbook [3 aCheckboo
dependents ﬁ
#balance

balance

Figure 6-5 Object structure supporting thBalance: field

Notice that this structure has two levels of dependency between the
Balance: field and the data it displays:

n The field is a dependent of the aspect adaptor (because widgets are set up
to depend on their value models).

n The aspect adaptor is a dependent ofdheckbook instance (because
you specifiedsendsUpdates: true when you created the aspect
adaptor).

Analysis: Operation of the Aspect Adaptor

During operation, the dependency mechanism works at both levels of depen-
dency to propagate a changed balance to the field that displays it. Thus, when
you enter a deposit amount:

1. TheAmount to Deposit: field and theDeposit button operate as
described on page 150. Among the messages sei@htekbooklinter-
face instance sendsdeposit: message to theheckbook instance.

VisualWorks Tutorial, Rev. 2.1 157

Chapter 6 Programming the Interface

158

. TheCheckbook instance:

a. Adds the specified amount to its current balance

b. Assigns the new balance to litalance instance variable by sending
itself abalance: message

c. Sends itself thehanged: #balance message as part of executing
thebalance: method

d. Responds to thehanged: message by sending thpdate:
#balance message to its dependents (in this case, the aspect adaptor)

. The aspect adaptor responds to change notification by sending an

update: #value message to its dependents (in this case, the field).

. The field responds to change notification by sendinglae message to

the aspect adaptor to obtain the new value.

. The aspect adaptor responds tovhlee message by sendindalance

message to theheckbook instance and passing the returned amount to
the field.

. The field displays the new balance.

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Programming the Check Register List

TheCheck Register list on the Checkbook main window displays the
collection of written checks that is stored in the application’s checkbook
object. In addition to displaying this collection, the list enables a user to select
one of the checks in it. The list must therefore keep track of two pieces of
data—the collection of checks and the index of the currently selected check.
Accordingly, you must program the application model so the builder can set
up the list with two value models.

You use the Definer to generate the cod€leckbookinterface that
supports the list. As with an input field, the Definer generates:

n An instance variable
n An accessor method for the instance variable

n Initialization code in the accessor method that creates an appropriate
object and assigns it to the instance variable

However, the initialization code generated for a list differs from that gener-
ated for an input field:

n For an input field, the generated initialization code creates a single value
holder.

n For alist, the generated initialization code creates an auxiliary object that
contains the required pair of value holders (one for the displayed collec-
tion and one for the selection index).

You then modify the generated code to initialize the appropriate value holder
with the desired collection (namely, the collection of checks stored in the
Checkbook instance). The other value holder is automatically initialized
with 0, indicating there is no selection.

To programCheckbookinterface for theCheck Register list, you:

1. Decide on a name for the method that will return the list’s auxiliary
object. Because this object will manage data that represents the current
list of checks, you choose the naofecksList.

2. Select the list in the canvas for the Checkbook main window. Ungroup
widgets if necessary. The Properties Tool displays the properties for the
selected list.

3. In the Properties Tool, type the name you chose in step 1 (namely,
checksList) as the value of thaspect: property; then cliclpply .
This associates the widget with the name of the method that returns its
auxiliary object.

VisualWorks Tutorial, Rev. 2.1 159

Chapter 6 Programming the Interface

4. Reinstall the canvas imindowSpec to make the new property setting
part of the interface specification.

5. With the list still selected in the canvas, generate supporting code for it
by clicking Define... in the Canvas Tool.

The Definer’s dialog box appears, listing the name for the instance
variable and accessor methathécksList) and indicating that initializa-
tion code will be generated.

6. Click OK to generate code.

7. Refresh the System Browser by choosipdate from the <Operate>
menu in the category view.

8. Examine the class definition (sel&teckbookinterface in the class
view and choosédefinition from the <Operate> menu). Notice the new
instance variablehecksList.

9. Select thaspects protocol and then select the neliecksList method.
The code view displays the following:

checksList

"This method was generated by UlDefiner. Any edits made
here may be

lost whenever methods are automatically defined. The
initialization

provided below may have been preempted by an initialize
method."

~checksList isNil
ifTrue:
[checksList := SelectionInList new]
ifFalse:
[checksList]

This is the standard accessor method generated for a list; its initialization

code creates an instance of the framework Ga$sctionInList, which,
in turn, creates two value holders.

160 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

10. In thechecksList method definition, replace the instance-creation
messag@ew with thewith: message shown below, and choaseept :

checksList

"This method was generated by UlDefiner. Any edits made
here may be

lost whenever methods are automatically defined. The
initialization

provided below may have been preempted by an initialize
method."

~checksList isNil
ifTrue:
[checksList := SelectioninList with: checkbook register]
ifFalse:
[checksList]

Thewith: message specifies the collection for the list to display (namely,
the collection of checks held by the checkbooklgister variable).

Analysis: Setup of the List

If you run the application at this point, it is set up as described on page 156,
with the addition of th&€heck Register list. That is:

1. Checkbookinterface creates an instance of itself, which creates a
builder and an initialize@heckbook instance.

2. The builder creates and sets up the Checkbook main window. For the
Check Register list, the builder:

a. Gets the list widget's aspect propeutii€cksList)

b. Sends thehecksList message to theheckbookinterface instance,
which responds by initializing itshecksList instance variable with a
SelectionInList instance

This instance has two value holders, one holding the checkbook’s
empty collection of checks and the other holding the value

c. Assigns each value holder to an instance variable in the list widget so
the list widget can send it messages

d. Makes the list widget a dependent of each value holder

Figure 6-6 shows the portion of the resulting structure that supports the
Check Register list.

VisualWorks Tutorial, Rev. 2.1 161

Chapter 6 Programming the Interface

aValueHolder

dependents [+]
value [1]
-

v

0

(aSelectionInList

selectionindexHolder ﬂ
listHolder

aCheckbookIryéerface aValueHolder

checksList ﬁ

dependents [+f]
value

anOrderedCollection

Figure 6-6 Object structure supporting th€heck Register list

aCheckbook \

register

Analysis: SelectionInList Instances

The initialization code in thehecksList method creates an instance of the
framework clas$electionInList to support the list widget. Although a
SelectionInList instance is not itself a kind of value model, it creates the two
value models that manage the list widget’s data. More specificélylex-
tionInList instance has:

n A value holder held by an instance variable caligtiolder; this value
holder supplies the collection to be displayed and is initialized by the
with: message.

n A value holder held by an instance variable called
selectionindexHolder; this value holder stores the index of the user’s
current selection in the displayed collection.

162 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

A list widget communicates directly with each of these value holders. When
the list widget needs data to display, it sendalae message to the appro-
priate value holder, which returns the collection it holds. When the user
makes a selection, the list widget sendsilae: message to the other value
holder to store the new selection index.

An application model communicates indirectly with these value holders when
it needs to manipulate the list widget's display programmatically. For
example, an application model can change the displayed collection by
sending dist: message to theelectionlnList instance. This instance, in turn,
sends aalue: message to thiestHolder value holder. You can use the
System Browser to find addition&klectionInList protocol.

The list widget is set up as a dependent of each of the value holders in the
SelectionInList instance. Consequently, the list widget receives change noti-
fication from each value holder whenever that value holder receixsdaex
message.

Analysis: When the Collection Changes

When the Checkbook application starts,libgHolder value holder is initial-

ized with the ordered collection of checks that is held intheckbook
instance’s register. The same ordered collection is held by two other objects
(the value holder and tieheckbook instance), so it can potentially be
changed through either of these objects (in fact, changes such as adding or
removing checks are made only by @leeckbook instance).

When distHolder value holder holds onto an ordered collection that will be
changed by another object, extra programming is needed to trigger change
notification to the widget. For example, if tiideckbook instance were to

add a check to the collection at this point, the value holder would not be able
to notify the list widget, even though it holds onto the changed collection.
This is true because the value holder only sends change notification to its
widget in response to receivingalue: message. Put another way, the value
holder notices when the object it holds is reset, but it cannot detect changes
that are internal to that object.

In later sections, you will provide code for updating the value holder that
supports the&heck Register list. In particular, you will program the appli-
cation model to:

1. Obtain the collection of checks every time @teckbook instance adds
or removes a check from it.

VisualWorks Tutorial, Rev. 2.1 163

Chapter 6 Programming the Interface

164

2. Send the collection to the value holder by sendilig:anessage to the
SelectionInList instance. This instance sendgadue: message to the
value holder, which notifies the list widget to update its display.

Note that no extra code was necessary for the value holder used by the
Amount to Deposit: field because this value holder holds onto data that
has no other storage in the application. Similarly, no extra code is necessary
for an aspect adaptor, because an aspect adaptor knows to notify its widget
upon receiving change notification from its subject.

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Programming the Menu Bar

The menu bar on the Checkbook main window contains three menu items. A
user selects:

n TheFile ?Close menu item to terminate the application and close its
main window

n TheChecks ?Write... menu item to write a new check and add it to the
register

n TheChecks ?Cancel menu item to remove a check from the check-
book register

You need to program the application model with methods that carry out the
desired actions. In facGheckbooklinterface already has a method for
carrying out the first of these actions—namely, ¢feseRequest method
inherited fromApplicationModel. Consequently, you need to define only
two methods (one for writing checks and one for canceling them).

In this section, you program the menu bar to specify the messages that are sent
to the application model when the menu items are selected. (You will imple-
ment the required methods in later sections.) To specify these messages:

1. Decide on the name of the message you want each menu item to send.
For theFile ?Close item, you choose the name of the existing method,
closeRequest. For the other two, you choosgiteNewCheck and
cancelSelectedCheck.

2. Select the canvas itself (click anywhere in the canvas other than on a
widget). This deselects all the widgets.

3. ChooseTools ?Menu Editor from the Canvas Tool to open the Menu
Editor.

4. ClickRead toread in the entries for the canvas’s menu bar. (Rtw
button is disabled, click in the canvas to deselect all widgets.)

5. In each of the entries for menu items, replat®ith the appropriate
message name (use Figure 6-7 for a guide). Be sure to leave the <Tab>
characters as is, and ignore the instancexdl after the menu titles:

VisualWorks Tutorial, Rev. 2.1 165

Chapter 6 Programming the Interface

Me nu Editor

File Checks |

w

File il -
Close closeRequest

Checks nil
Write... writeMewCheck
Cancel cancelSelectedCheck

W

Figure 6-7 The Menu Editor with message names filled in

6. In the Menu Editor, cliclBuild to generate new code for building a
menu object.

7. In the Menu Editor, clicknstall... to install the menu code in the appli-
cation model. A dialog appears, indicating that the code will be installed
in themenuBar class method. ClicOK.

Note that you dmot need to clickApply because you have not changed
anything that affects the canvas, such as a menu label.

8. Close the Menu Editor.
9. Test the menu bar:
a. In the Canvas Tool, clidRpen to start the Checkbook application.

b. ChooseFile ?Close from the Checkbook main window to close the
application.

10. Congratulations! You have finished setting the properties and editing the
menu bar for the Checkbook main window. Save your image.

166 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Setting Up for the Remaining Work

In the remaining sections, you will be setting properties for the widgets in the
Check dialog box, as well as continuing to edit class and method definitions.
To prepare for this work:
1. Close the canvas (and Canvas Tool) for the Checkbook main window.
2. Open the canvas for the Check dialog window:

a. Open a Resource Finder.

b. Select both th€heckbooklInterface class and thdialogSpec
resource.

c. Click theEdit button.

d. Close the Palette, but leave the Canvas Tool and the Resource Finder
open.

3. Leave the System Browser and the Properties Tool open.

VisualWorks Tutorial, Rev. 2.1 167

Chapter 6 Programming the Interface

Providing for Writing New Checks

The Checks ?Write... menu item in the Checkbook main window is what
users choose to write a new check and add it to the checkbook’s register.
When chosen, this menu item senderdeNewCheck message to the appli-
cation model.

Consequently, you will progra@heckbookinterface with a method called
writeNewCheck that:

n Creates a blank check (a new, initialiZédeck instance)

n Opens the Check dialog box so the user can edit the blank check—that is,
fill in the check’s payee and amount

n Records the completed check in the checkbook’s register if the user
clicks OK in the dialog box

n Discards the check if the user cliadRancel

In addition to creating therriteNewCheck method, you will also program

the widgets in the interface of the Check dialog box. For example, you must
provide the input fields with value models that store the user’s input in the
blank check.

The next three sections present the steps for incrementally definingtine
NewCheck method and programming the dialog box’s widgets. That is,
these sections will guide you through the following tasks:

1. Setting up the basic behavior for the Check dialog box. This includes
both writing code and setting properties for @€ andCancel buttons.

2. Programming the input fields in the Check dialog box.

3. Writing the code that creates the blank check and records the completed
check.

These tasks are divided this way so that this tutorial can explain them sepa-
rately. Note, however, that you can write method code and set widget proper-
ties in any order.

168 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Setting Up the Check Dialog Box’s Basic Behavior

A dialog box is essentially a mechanism for allowing a user to specify
whether and how an application action is to proceed. Thus, a method that
needs to process user-supplied information can open a dialog box to gather
the required information. Such a dialog box normally contains:

n

An action widget (such as @K button) that the user clicks to accept the
dialog box. This in effect tells the executing method to process the
gathered information.

An action widget (such as@ancel button) that the user clicks to cancel
the dialog box. This in effect tells the executing method to discard the
information and return.

In the following steps, you define the first part of the

writeNewCheck method—the part that opens the Check dialog box and
determines whether the user has accepted or canceled it. You then program
the OK andCancel buttons to invoke predefined accept and cancel actions:

. In the System Browser, select #iaions instance protocol in the

CheckbooklInterface class.

. In the code view, replace the method template with the following and

chooseaccept :

writeNewCheck
|userHasAccepted|

userHasAccepted := self openDialoginterface: #dialogSpec.
userHasAccepted ifTrue: [
self unimplemented]

The expressions in this method:

a. Define a temporary variableserHasAccepted.

b. Open a dialog box from the interface specification stored in the
dialogSpec class method.

c. Assign the dialog box’s result to theerHasAccepted variable.
This result igrue if the dialog box is accepted afalse if the dialog
box is canceled.

d. Evaluates or ignores the argument block, depending on the value of
userHasAccepted.

VisualWorks Tutorial, Rev. 2.1 169

Chapter 6 Programming the Interface

The expression in the argument blosklf unimplemented) is a place-
holder for the code you will write later to complete the check-writing
action.

3. In the Check canvas, select each action button and fill in its action
property as specified below; then cliglply . (Ungroup widgets, if
necessary, so you can select each button individually.)

Action Button Action: property setting
Button labeledCancel cancel
Button labeleddK accept

4. Reinstall the canvas thialogSpec to make the new property settings
part of the interface specification.

5. Test the basic behavior of the dialog box:
a. Start the Checkbook application.

Hint: In the Resource Finder, select thleeckbookInterface class
and thewindowSpec resource; then clicktart.

b. In the Checkbook main window, choaSkecks AWrite... This
sends thevriteNewCheck message to theheckbookinterface
instance, which brings up the Check dialog box. Note that the input
fields are all empty, because they have no value models yet.

c. In the dialog box, cliciCancel. This invokes the cancel action,
which closes the dialog box and causes the
openDialoglnterface: expression to return the valtese. The
writeNewCheck method terminates because there are no further
expressions to evaluate.

d. ChooseChecks MWrite to invoke thewriteNewCheck method
again.

e. In the dialog box, cliclOK. This invokes the accept action, which
closes the dialog box and causes the
openDialoglnterface: expression to return the valtree. As a
result, thewriteNewCheck method evaluates the expresssedf
unimplemented, which opens an error notifier.

f. Click Terminate in the error notifier.
g. Close the Checkbook application.

170 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Analysis: Actions for OK and Cancel Buttons

The action property setting&cept andcancel cause th©K andCancel

buttons to invoke accept and cancel actions that are predefined by the dialog
box (see below). These actions close the dialog box and determine the result
(true orfalse) that is returned by the expression containingoienDialog-
Interface: message. Because these actions are predefined, you do not have to
create correspondirgccept andcancel methods irCheckbookinterface.

In fact, if you do create such methods, they will be ignored.

If, however, the dialog box had other action widgets, you would have to
program them as you did tieposit button on the Checkbook main
window—Dby filling in their action properties and defining the corresponding
methods inCheckbookinterface.

Analysis: Setup of the Dialog Box

TheopenDialoginterface: message is part of the interface-opening protocol
thatCheckbooklinterface inherits fromApplicationModel. When eCheck-
bookInterface instance receives this message, it creates an instance of the
framework clas$impleDialog and tells this instance to create a window
from the interface specification storeddialogSpec.

BecauseSimpleDialog is a subclass dApplicationModel, theSimpleDi-

alog instance creates its own builder, which, in turn, creates and sets up the
Check dialog box’s internal structure, including its widgets. This builder
opens the dialog box’s interface imadalwindow, which means that a user
can invoke no operation in any other VisualWorks window until the dialog
box is closed (for example, by being accepted or canceled).

Because th&impleDialog instance is created as a result obaenDialog-
Interface: message, it initializes its builder to recognize the application
model (that is, th€heckbookinterface instance) as itsource This means

that the dialog’s builder asks tdeckbookinterface instance to supply any
value models required for setting up data widgets. (In a later section, you will
programCheckbooklinterface accordingly.)

Similarly, action widgets send their messages to the builder’s source, unless
their action properties are setadocept or cancel. In this case, the dialog’s
builder sets up the widgets so that 8impleDialog instance carries out the
accept and cancel actions.

Figure 6-8 gives a general idea of the objects that set up the Checkbook main
window and the Check dialog box:

VisualWorks Tutorial, Rev. 2.1 171

Chapter 6 Programming the Interface

: e
AN v \ v
AN e \ e
\ S AN S

aUlBuilder

source [+

A

/aCheckbookInterface\ aSimpleDialog

builder] builder [*]

_ /
Figure 6-8 After opening the Check dialog box

172 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Programming the Input Fields in the Check Dialog Box

The Check dialog box is where application users enter the data that makes up
a new check. More specifically, the Check dialog box presents a blank check
that users can edit by entering data in the appropriate input fields. Conse-
guently, you need to progra@heckbookinterface so that the dialog’s

builder can set up these input fields with appropriate value models.

Each of the input fields in the Check dialog box presents some aspect of a
particular check object: its date, number, amount, or payee. Therefore, you
can program these input fields by setting them up with aspect adaptors—for
example, by programmingheckbooklInterface so that its instances:

n Create a neCheck instance when the dialog box is opened

n Create, for each input field, an aspect adaptor whose subject is the new
Check instance and whose aspect symbol is the name dtibek’s
accessor for the relevant dataléte, #payee, #amount, or #number)

One way to accomplish this is to use the basic technique you used for the
Balance: field. That is, you can (1) write code that assignsheck

instance to an instance variable (as you did foCtheckbook instance), (2)

use the Definer to generate an instance variable and an accessor method for
each input field, and then (3) modify each accessor method to initialize the
relevant instance variable with an appropriate aspect adaptor.

Aspect Paths.As an alternative to this basic technique, you can take advan-
tage of a shortcut technique that emplagpect pathsAn aspect path is a

way of filling in a widget's aspect property that causes the builder to create
not only the widget, but also its aspect adaptor. This means you do not need
to write code inCheckbooklinterface to create each aspect adaptor.

Rather, you progra@heckbooklInterface to provide asubject channebor

the builder to use when it creates the aspect adaptors. A subject channel is
simply a value holder that holds onto a subject for one or more aspect adap-
tors. In this case, all four aspect adaptors are to be created with a subject
channel that holds onto@heck instance.

In the steps that follow, you will specify the appropriate aspect path for each
input field, use the Definer to generate the code for creating a subject channel,
and then add the code that putSteeck instance into the value holder:

1. Decide on a name for the method that is to create and return the subject
channel; you choose the nagteeckHolder.

VisualWorks Tutorial, Rev. 2.1 173

Chapter 6 Programming the Interface

2. Select each input field in the Check canvas and fill in its aspect property
with the aspect path specified below; then chgply . (Ungroup
widgets, if necessary.)

Input Field Aspect: property
Date field (upper-right corner of the canvas) checkHolder date
Payee field (next to theay to the Order of labels) checkHolder payee
Amount field (next to the payee field) checkHolder

amount

Check number field (next to tt&heck number: label) checkHolder
number

Notice that all four aspect paths have the shesd(namely,check-
Holder) because all four aspect adaptors are to share the same subject
channel.

3. Reinstall the canvas tialogSpec to make the new property settings
part of the interface specification.

4. With any of the input fields selected in the canvas, @iefne... in the
Canvas Tool.

The Definer’s dialog box appears, listing the name of the instance
variable and method to be generatelgeckHolder).

5. Click OK to generate code.

6. Refresh the System Browser by choosipdate from the <Operate>
menu in the category view.

7. Examine the class definition f@heckbookinterface. Notice the new
instance variableheckHolder.

The Definer creates an instance variable only for the head of an aspect
path; because all four paths have the same head, only one instance
variable is created.

174 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

8. Select thaspects protocol and then select the neheckHolder
method. The code view displays the following:

checkHolder

"This method was generated by UlDefiner. Any edits made
here may be

lost whenever methods are automatically defined. The
initialization

provided below may have been preempted by an initialize
method."

~checkHolder isNil
ifTrue:
[checkHolder := nil asValue]
ifFalse:
[checkHolder]

This method accesses ttigeckHolder variable, initializing it if neces-
sary with an empty value holder. The builder will use this value holder as
the subject channel for the aspect adaptors it creates.

9. Select thavriteNewCheck method in thections protocol and add the
expression indicated below by bold type; then chegsept :

writeNewCheck
|userHasAccepted|
self checkHolder value: checkbook makeNewCheck.
userHasAccepted := self openDialoginterface: #dialogSpec.
userHasAccepted ifTrue: [
self unimplemented]

This expression asks ti#heckbook instance to create a new check and
then puts this check in the subject channel (value holder assigned to the
checkHolder instance variable).

Note that you put this expression in theteNewCheck method
because you want a new blank check to be created every time the dialog
box is opened.

10. Test the dialog box’s input fields:
a. Start the Checkbook application from the Resource Finder.

VisualWorks Tutorial, Rev. 2.1 175

Chapter 6 Programming the Interface

b. In the Checkbook main window, chodSkecks AWrite... to bring
up the Check dialog box. Notice that the input fields display the
values of an initialized check:

— The date field contains the current date.
— The amount field contair0.00.
— TheCheck number: field contains the numbdr.

c. In the dialog box, cliciCancel. You may leave the application
running.

Analysis: Aspect Paths

In previous sections, you specified aspect property settings that contain a
single element, such halanceAmount. A single-name setting is essentially

a message for the builder to senabtaina value model for a data widget.

In this section, you entered a multielemaspect pathn the aspect property

of each input field in the dialog box. When the builder encounters an aspect
path, itcreatesthe required value model, rather than obtaining it from the
application model.

More specifically, the builder uses an aspect path’s elements to create an
aspect adaptor. For example, when the builder encounters the aspect path
checkHolder amount, it:

n Sends the path’s heacheckHolder) as a message to the application
model to obtain the subject channel for the aspect adaptor

n Uses the subsequent elemarhpunt) to initialize the aspect adaptor
with an aspect symbol

The resulting aspect adaptor obtains its subject from the subject channel and
then responds tealue andvalue: messages by sending its subpatiount
andamount: messages.

In general, when you specify an aspect path, its head must correspond to a
method in the application model that returns a suitable subject channel for the
resulting aspect adaptor. The element following the head must correspond to
an appropriate accessor message that is defined for the object held by the
subject channel.

176 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Analysis: Setup of an Aspect Path

When you run the Checkbook application and choos€hezks Arite
command:

1. TheCheckbookinterface instance responds to theiteNewCheck
message by:

a. Sending itself theheckHolder message to access the value holder
in thecheckHolder instance variable. (This value holder is created
the first time the variable is accessed.)

b. Asking theCheckbook instance to create a né@@heck instance,
which is placed in theheckHolder value holder.

c. Creating é&impleDialog instance and passing it tH&logSpec
interface specification.

2. TheSimpleDialog instance creates a builder, which, among other things,
builds the dialog box’s input fields and their aspect adaptors. For
example, the dialog’s builder creates and sets up the amount field by:
a. Obtaining the aspect patheckHolder amount from the interface

specification.

b. Sending aheckHolder message to théheckbookinterface
instance, which returns the value holder that contains the check.

c. Creating an aspect adaptor whose subject channel is the returned
value holder and whose aspect symbaldémount. This information
provides the aspect adaptor with its subject @heck instance) and
its accessor and mutator messag@sdunt andamount:).

d. Assigning the new aspect adaptor to an instance variable in the input
field so the input field can send it messages.

e. Making the input field a dependent of its aspect adaptor.

3. The input fields obtain the initial data to display by sendinglae
message to their respective aspect adaptors. Each of these responds by
sending its accessor message toGheck instance and passes the
relevant data to the input field.

4. When a user enters data into one of the input fields, the field sends a
value: message to its aspect adaptor. In response, the aspect adaptor
sends its mutator message to @feeck instance.

Figure 6-9 shows the portion of the resulting structure that supports the
amount field:

VisualWorks Tutorial, Rev. 2.1 177

Chapter 6 Programming the Interface

178

A

v

anAspectAdaptor
dependents [4]
getSelector EI*%

subject Lg—0 |
subjectChannel

aCheckbooklinterface

checkHolder [«(3————+—p aValueHolder

dependents [*]
value +—F——Pp aCheck \

number [<]
date [+]

payee [¢]

amount

Figure 6-9 Object structure for the dialog box’s amount field

Analysis: Subject Channels

In general, when you create an aspect adaptor, you can:

n Specify its subject directly (as you did for fBalance: field’s aspect
adaptor)

n Set it up with a subject channel—a value model (typically a value holder)
from which the aspect adaptor obtains its subject

Aspect adaptors built from aspect paths are always set up with subject chan-
nels.

The advantage of using a subject channel is that it makes it easier to program-
matically introduce a new subject for one or more existing aspect adaptors.

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

This advantage is not exploited in the tutorial example, because each opened
Check dialog box displays only a single check (the dialog box and its aspect
adaptors are rebuilt whenever a new check is needed). If, however, you
wanted the same open Check dialog to display a series of checks, you could
accomplish this by changing the contents of the subject channel.

To see why this works, notice from Figure 6-9 that an aspect adaptor is a
dependent of its subject channel. When the contents of the subject channel
change (as the result ofralue: message), the subject channel, as a value
holder, notifies its dependent aspect adaptor, which responds by obtaining the
new subject and notifying its widget. The widget then asks its aspect adaptor
to obtain the relevant data from the new subject, so it can update its display.

Analysis: Advantages of Aspect Paths

Aspect paths are especially useful whenever multiple widgets are to present
different aspects of the same object. Using aspect paths in this case reduces
the amount of code in the application model—instead of having a separate
instance variable and accessor method to deliver each aspect adaptor to the
builder, the application model has just the code required to deliver a suitable
subject channel. Figure 6-10 shows the aspect adaptors (shaded in gray) that
are built from the aspect paths in the tutorial example.

Although the tutorial example uses aspect paths for the widgets in a dialog
box, they are not limited to this context—they can be used in main windows
as well. In fact the VisualWorks database tools provide aspect paths for the
widgets they generate. Aspect paths have a general syntax that you can use to
generate aspect adaptors (and various other kinds of value models) for
accessing data in very complex structures. For more information, see “Using
an Aspect Path,” in théisualWorks’ Database Tools Tutorial and Cookbook

VisualWorks Tutorial, Rev. 2.1 179

Chapter 6 Programming the Interface

180

= =

anAspectAdaptor
dependents [¥]

getSelector []

subject [*] anAspectAdaptor

subjectChannel [=] %M
/| getSelector [+]

subject [<J

subjectChannel []

anAspectAdaptor

dependents [+]
getSelector [+]
anAspectAdaptor

subject []

subjectChannel [2] dependents <]

getSelector []

subject []
subjectChannel [=]

aCheckbooklnterface

checkHolder [» [aValueHolder
dependents [*] / aCheck N\
value [| 2

L
number [<]
date [<]
payee [+]

amount [=]

Figure 6-10 Aspect adaptors built from aspect paths

Analysis: Limitations of Aspect Paths

Aspect paths are best suited for widgets that simply need to display initial
values and then accept user input. This is true because the aspect adaptors
created by the builder armtset up to depend on their subjects, so they do
not receive any change notification that their subjects may send.

For widgets such as ttgalance: field, which presents data that is changed
programmatically, you can set up the aspect adaptor to depend on its subject
by creating the aspect adaptor explicitly witbudject:sendsUpdates: (or
subjectChannel:sendsUpdates:) message.

VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

Finishing the writeNewCheck Method

In this section, you finish theriteNewCheck method by defining how it
responds when the Check dialog box is accepted by the user:

1. Make sure that theriteNewCheck method is still selected in the
System Browser.

2. In the code view, replace the expressieli unimplemented with the
expressions indicated below by bold type; then chaosept :

writeNewCheck
|userHasAccepted|
self checkHolder value: checkbook makeNewCheck.
userHasAccepted := self openDialoginterface: #dialogSpec.
userHasAccepted ifTrue: [
checkbook recordCheck: self checkHolder value.
self checksList list: checkbook register]

The expressions you added:
n Obtain the edited check from tbbeckHolder value holder
n Ask the checkbook to record the edited check in the register

n Inform the relevant value holder in tBelectionInList instance that
the register has changed, so that this value holder can notify the list
widget (see page 163)

3. Test the completedriteNewCheck method:

a. If necessary, start the Checkbook application from the Resource
Finder.

b. In the Checkbook main window, chodSkecks AWrite...

c. Write a generous check to a deserving party. (Press <Tab> to shift the
keyboard focus among input fields.)

d. Click OK. Notice that:

— An entry for the check appears in tbReck Register list. This
entry is printed in the format you specified in leck’s
printOn: method.

— TheBalance: field displays the negative balance.
You may leave the application running.

VisualWorks Tutorial, Rev. 2.1 181

Chapter 6 Programming the Interface

Providing for Check Cancellation

The Checks ?Cancel menu item in the Checkbook main window is what
users choose to cancel a selected check from the checkbook’s register. When
chosen, this menu item sends a

cancelSelectedCheck message to the application model. You program
Checkbookinterface with acancelSelectedCheck method as follows:

1. Make sure that thections protocol of theCheckbooklInterface class is
selected.

2. Replace the current contents of the code view with the following method
definition and choosaccept :

cancelSelectedCheck
self checksList selection isNil
ifTrue: [*Dialog warn: 'Select a check to cancel.”].
checkbook cancelCheck: self checksList selection.
self checksList list: checkbook register

The expressions in this method:

n Obtain the object that is held at the current selection index in the list
widget’s collection (note the use of thelection message from the
SelectionlInList protocol)

n Test whether the object igl—that is, whether any check is currently
selected

n If no check is selected, display a warning dialog and return from the
method

n Otherwise, ask th€heckbook instance to remove the selected
check from its register, and inform the relevant value holder in the
SelectionlInList instance that the register has changed

3. Test theChecks ?Cancel menu item:
a. Restart the Checkbook application, if necessary.
b. Add a check.
c. Try canceling the check without selecting it.
d. Select and cancel the check.

182 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

What's Next?

Congratulations! You have completed the Checkbook application. At this

point, you can either:

n Keep the code you wrote in your image; be sure to save your image

n Archive the code you wrote by filing out tlxamples-VWTutorial
category and then delete the category from your image

If you choose to keep the Checkbook application code, you can use it for
further exploration. For example, with the help of\imualWorks Cookbogk
you can try:

n Changing the tab order of the widgets in the Check dialog box

n Disabling theChecks ?Cancel menu item when no check is currently
selected

n Replacing the list widget in the Checkbook main window with a table or
dataset that displays check information in four columns

n Providing a new, redesigned application interface by creating new inter-
face specifications and programming a new application model

Besides reading through topics in #isualWorks Cookbooglyou can browse
the VisualWorks User's Guidfar more information about:

n Smalltalk classes you can use in your programs
n Tools such as the Debugger
n The VisualWorks application framework

Finally, see th&/isualWorks’ Database Tools Tutorial and Cookbémk
information about developing applications that interact with databases.

VisualWorks Tutorial, Rev. 2.1 183

Appendix A

Glossary

This glossary defines the main VisualWorks and Smalltalk terms that were
introduced in this tutorial. Within a definition, terms that appear in italic type
are also defined in this glossary.

accessing method A methodthat is either aaccessoor amutator, a
way of referring to operations whose purpose is to either get or set the
valueof avariable

accessor An accessing methathat gets, oreturns thevalueof avari-
able. See alsonutator

action widget A widgetthat enables a user to invoke an application’s
action. Action widgets include action buttons and menu items. Action
widgets are designed to askapplication modeto carry out their
actions.

application A complete program that enables users to define, process,
store, and/or retrieve data in various ways. Applications help to automate
various aspects of operation in sodwenain Typical applications include
word-processing systems, spreadsheets, calculators, and payroll systems.

VisualWorks applications are composite, in that they can be composed of
other applications. Consequently, the term “application” may refer to a
singleapplication mode(plus its associateaser interfaceanddomain
model$ or to a combination of multiple interacting application models.

application framework A set ofclasseghat provide a core structure
from which to build a completapplication

The VisualWorks application framework includes &pplicationModel
class and itsubclassegheUlBuilder class, policy classes for various
platform “look-and-feels,” and classes for the variaidgetsandvalue
models

VisualWorks Tutorial, Rev. 2.1 183

Appendix A Glossary

184

application model A modelin a Smalltalk program that providappli-
cation-specific information and services. At a minimum, an application
model provides the code required to support the mechanics gfathle-
ical user interfaceFor example, an application model establishes the
connections betweemidgetsanddomain modelsand it defines the inter-
actions between widgets.

Application models are usually created from the VisualWagkgication
framework An application model refers tosaibclassf theApplication-
Model classor to aninstanceof such a subclass.

argument An objectthat specifies additional information for an operation.
Arguments are specified agpressiongn binary or keyword messages

aspect adaptor A kind of value modethat accessesvalueheld in
anotheobject called itssubject An aspect adaptor responds&tue and
value: messageby sending appropriaccessoandmutatormessages
to its subject. An aspect adaptor isiastanceof theclassAspect-
Adaptor, which is asubclaswof ValueModel.

aspect path A way of filling in adata widget aspecpropertyto cause
thebuilder to create amspect adaptofor the widget. An aspect path
contains multiple elements, in which the first element (the head) refers to
asubject channdbr the aspect adaptor, and subsequent elements specify
accessomnames.

assignment Anexpressionthat makes a change teaiable's value—for
examplequantity := 19.

binary message A messag¢hat has onargumentand whoseselectoris
made up of one or two special charactéi example, in thenessage
expressior8+4, the binary message 4¢, where+ is the selector andl
is the argument.

block expression A description of a deferred sequence of actions. Block
expressions consist of one or mesgressiongnclosed in square
brackets.

Boolean objects The Smalltalkobjectstrue andfalse, which serve as
the answers to yes-no questions and which respometssagethat
request logical operations and conditional control structures (if-then-else
operations).

browser A windowthat displays portions of the Smalltalk class library for
viewing or editing. A browser displays its information in multipiews

VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

builder An objectthat builds an operatingindowfrom aninterface spec-
ification. A builder is created bgnapplication modelhen theapplica-
tion needs to open a window. The builder, in turn, creates and assembles
appropriatauser-interface objectaccording to the contents of the inter-
face specification and a specifiek policy

A builder holds onto the user-interface objects it creates. Consequently, an
application can sentiessage a builder to obtain programmatic access
to a givenwidgetor to the window itself.

Builders ardanstancef theclassUIBuilder, which is part of the Visual-
Worksapplication framework

canvas A special work area in which yqaintthe contents and layout of
awindow (or part of a window) for ampplication You also affect the
appearance of a canvas by setfimgperties A canvas is the graphical
form of aninterface specification

Canvas Tool The VisualWorks tool for fine-tuning@nvas appearance
and for invoking additional canvas-preparation tools. A Canvas Tool is
automatically opened when you open a canvas.

cascaded messages Multiple messagesent to on@bjectin a single
message expressioA cascaded message expression consists of one
description of theeceiverfollowed by several messages separated by
semicolons. For example:

OrderedCollection new add: 1; add: 2; add: 3

results in threadd: messages being sent to the resuaferedCollec-
tion new.

category A group ofclassesEvery class in the system belongs to exactly
one category. Classes are grouped into categories purely for organiza-
tional purposes; all classes in all categories are globally avaitzde.
alsoprotocol

Change List The VisualWorks tool that displays the changes stored in a
changes fileTo open a Change List, chodSkanges ?Open Change
List from theVisualWorks main windaw

changesfile Afile that lists all the changes made to BeecPlace Small-
talk systenin yourimage(1) The changes file is located in the same direc-
tory as the corresponding image file and has the file exterddian. You
view your changes file using ti@ghange List

VisualWorks Tutorial, Rev. 2.1 185

Appendix A Glossary

186

class A description of a group of similarbjects A class serves as
“template” for defining the data and operations for these objects, which
are itsinstancesA class defines:

n Theinstance variablef which the instances store their data

n Theinstance methodthat describe how instances carry out their
operations

Every class is itself a kind of object and therefore has its own dlats(
variableg and operations{ass methogsOne of the primary operations
of a class is to create the objects that are its instances.

class hierarchy The structure formed by theheritancerelationships
amongclassesThe hierarchy of classes is rooted in the clalsgct,
which defines the state and behavior common tolgéictsin the system.
Obiject does not inherit from any other class.

class method A methodhat defines a particular operation that is carried
out by aclass such as creating anstanceof itself. Class methods are
invoked by sendingnessage® a class rather than to one of its instances.

class variable A variablethat is shared by @dassand all itsinstances
Class variables maintain information that is the same for all instances.

component Seewidget

controller Anobjectin a Smalltalk program that enables the user to
interact with information displayed byview Together, view-controller
pairs formuser-interface objectsuch asvidgets A controller manages a
widgets response to mouse or keyboard input. SeeMMG architec-
ture.

data widget A widgetthat displays some aspect ofapplicatioris data
and/or collects it from the user. Data widgets include input fields, lists,
datasets, and so on. Data widgets are designed talsemodelso
manage their access to the data they present.

Definer The VisualWorks tool for generating Smalltalk code that supports
widgets The code is generated in application modelYou invoke the
Definer from aCanvas Toal

dependency mechanism A widely used technique for coordinating the
activities of differenbbjectsin anapplication whereby one object,
usually arinstanceof asubclasofModel, maintains a list of objects that
depend on it for information and notifies these objects whenever the
relevant information changes. See atsadel

VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

domain The area of endeavor that applicationhelps to automate—for
example, employee payroll, billing, inventory control, accounting, and so
on.

domain model A modelin a Smalltalk program that defines data and
operations that are relevant to tiygplicatioris domain For example, an
accounting application might include domain models such as Customer,
Account, and so on. Domain models are generally kept free of user-inter-
face code, so that they can be reused with other interfaces.

expression A sequence of characters that describeslgect which is
thevalueof the expression. See als®ssage expressiamdblock
expression

file in To load one or more files from a disk into the current VisualWorks
image(1) When Smalltalk files are filed in, amjassandmethoddefini-
tions they contain are compiled into theage(1)

File List The VisualWorks tool for interacting with your operating
system’s file-management facilities. You use a File List to locate and
select files in your file system and then read them into yoage(1) To
open a File List, choosBools ?File List in theVisualWorks main
window

file out To store the source code for one or mdessesmethodsor cate-
goriesin a disk file that is separate from the VisualWarkage(1)file.
When you file out Smalltalk code, you normally append.¢he exten-
sion to the filename. Filing out is a common means of backing up your
work, preserving intermediate versions, or transferring code to another
image (byfiling in).

global variable A variablewhosevaluecan be accessed by alijectsin
the system.

graphical image A bitmapped illustration. You create graphical images
using thelmage Editor You can use graphical images in a variety of
ways—for example, as labels for action buttons. Seenadsk

graphical user interface A user interfacehat consists of a collection of
windowscontaining visual controls, avidgets

In VisualWorks, a graphical user interface includes not only the windows
and widgets themselves, but also various suppootjectsthat are
supplied by thepplication frameworkin addition, a graphical user inter-
face includes the code that implements the widgets’ application-specific
behavior—the functionality that enables them to interact ddtimain

VisualWorks Tutorial, Rev. 2.1 187

Appendix A Glossary

models A VisualWorks graphical user interface is normally implemented
using one or morapplication modelandinterface specifications

Hierarchy Browser A kind of browserthat displays theuperclasseand
subclassesf a particulaclass To open a Hierarchy Browser, you choose
Browse ?Class Named... in theVisualWorks main windoand then
specify the class.

image(1) A file that stores the entire state of an individBatcPlace
Smalltalk systepincluding all the currerbjects all the information on
the screen, and any pending instructions to the system. A VisualWorks
image preserves objects between VisualWorks sessions. When you start
VisualWorks, theobject engingeads the image file and restores the
system to its previous state. You share information between images by
filing source codeut of one image anflling it into another. See also
standard imagendworking image

image(2) Seegraphical image

Image Editor The VisualWorks tool for creating and modifyiggaphical
images with pixel-level control. The Image Editor replaces the Mask
Editor in VisualWorks 1.0. You open the Image Editor fro@eamvas
Tool.

inheritance A mechanism wherebglassesan make use of threethods
andvariablesdefined in all classes above them on their branch of the
class hierarchy

inheritance hierarchy Seeclass hierarchy

Inspector The VisualWorks tool for examining tivaluesof thevariables
in anobject To open an Inspector, you chodsspect from an
<Operate> menu.

install To save aesource(such as a paintezhnvas in anapplication
model Installing a resource createsesource methqdvhich makes the
resource available to the runniagplication

instance An individualobjectdescribed by alass An instance:

n Has private memory consisting iotance variables

n Responds tonessageby invokingmethodglefined or inherited by
its class

Every object in the Smalltalk system is an instance of a.aMiss
instances of a given class are identical in form and behavior, although they
generally hold different data in their instance variables.

188 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

instance method A methodthat describes how a particular operation is
carried out by everinstanceof aclass See alselass method

instance variable A variablethat stores data for anstanceof aclass
Collectively, anobjects instance variables describe the object’s data
structure. Instances of the same class have the same number of instance
variables with the same names; these instance variables generally store
differentvaluesfor different instances of the class. See alsss vari-
able

interface Seegraphical user interface

interface specification A symbolic description of indow (or part of
a window) that is created when ymstall a painteccanvasin anappli-
cation model An interface specification contains a description of the
widgetsyou painted in the canvas, plus fitepertiesyou set for them.
When theapplicationruns, the interface specification serves as the
builders blueprint for constructing an operational window.

keyboard focus The stat®f awidgetthat enables it to receive input from
the keyboard. You can move the keyboard focus among widgets by
clicking them or by pressing the <Tab> key.

keyword An identifier with a trailing colon, such &3rue:. Keywords are
used inkeyword messages

keyword message A messageavith one or mor@argumentsvhose
selectoris made up of one or mokeywords For example, in the
following message expression

aRunArray copyFrom: startindex to: stoplndex

the selector isopyFrom:to: (consisting of keywordsopyFrom: and
to:) and the arguments astartindex andstoplndex.

Launcher The VisualWorks 1.0 window for starting various tools. In
VisualWorks 2.0, the Launcher has been replaced byithalWorks
main window

lazy initialization A technique for initializing amstance variable
Initialization code is put in aaccessoso that thevariableis initialized
the first time it is accessed. This technique is used in code generated by
the Definer.

look policy The platform-specific “look-and-feel” of aapplicatioris
interface which determines the appearance and behavior of buttons,

VisualWorks Tutorial, Rev. 2.1 189

Appendix A Glossary

scroll bars, and so on. You set the look policy by selecting it iSettengs
Tool.

mask A monochromegraphical image

Mask Editor The VisualWorks 1.0 tool for editingasks In VisualWorks
2.0, the Mask Editor has been replaced byiniege Editor

Menu Editor VisualWorks tool for creating and editing menus. You open
the Menu Editor from &€anvas Toal

message A request for ambjectto carry out one of its operations. A
message consists ofalectorand possibly one or moeggumentsSee
alsobinary messageéeyword messagandunary message

message category Seeprotocol

message expression A description of anessagéo areceiver When a
message expression is evaluated, the receiver carries out the operation
requested by the message agtdirnsanobjectto the sender; this object
is thevalueof the message expression. The value is determined by the
methodhat the message invokes. That method is found idalssof the
receiver.

message protocol The list ofmessage® which arobjectcan respond.
message selector Seeselector

method A description of how to perform one of abjects operations.
This description contains a sequence of one or expeessionswhich
are evaluated when the method is execuathods are analogous to
procedures or functions in other programming languages.

A method is executed whemaessagenatching its message pattern is
sent to annstanceof theclassin which the method is found. A method
determines thgalue of amessage expressiogither by explicitly speci-
fying the object to beeturnedor by allowing a default value to be
returned. See aldastance methodndclass method

method lookup The mechanism used to determine whinéthodto
execute when messagés sent to aobject

modal dialog box A dialog box that must be accepted, canceled, or
closed before the user can invoke any o#fpalicationactions.

model An objectin a Smalltalk program that is concerned with defining
and processing data. The data in a model is usually presented to users via
user-interface objectdA typical VisualWorksapplicationcontains a

190 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

number of different kinds of models, includidgmain modelsapplica-
tion modelsandvalue modelsSee alsdVC architecture

Models are composite, in that they can be composed of other models. In
particular, the term “model” may refer to a single piece of information
presented by an individualidgetor to the entire portion of the applica-

tion that stores and processes information, independent of the presentation
services provided by theser interface

Models are generally created frafassesn the VisualWorkspplication
framework Consequently, the term “model” also refers to sulyclasof
the Model class, or to anstanceof such a subclass. As such, models
inherit an implementation of treependency mechanism

mouse pointer Seepointer.

mutator Anaccessing methatiat sets a newaluefor avariable. See also
accessar

MVC architecture The classic Smalltalk programmingethodof decom-
posing arapplication(or a portion of an application) intnodels(M),
views(V), andcontrollers(C).

object A software unit that contains storage for a collection of related data
plus operations for manipulating that data. Fundamental kinds of objects
areclassesandinstanceof classes.

objectengine The executable program that runs BegcPlace Smalltalk
systenon your platform; it essentially “sets in motion” the systdects
in animage

open To start ampplicationby sending ampen messageo create an
instanceof anapplication modelThe term “open” also means causing a
windowto display.

paint To specify the layout and contents ofi@dow(or part of a window)
by selectingvidgetsfrom aPaletteand positioning them appropriately on
acanvas You can also affect the appearance of a canvas by sattipg
erties

Palette The VisualWorks tool that supplies thedgetsyou canpainton a
canvas By default, a Palette is opened automatically when you open a
canvas.

ParcPlace Smalltalk language The general-purposebjectoriented
computer programming language that is provided by VisualWorks. The

VisualWorks Tutorial, Rev. 2.1 191

Appendix A Glossary

applicationsyou build with VisualWorks are implemented in the Parc-
Place Smalltalk language, as is VisualWorks itself.

In the ParcPlace Smalltalk language, every entity is an object, and all
processing is carried out aessagesent among the objects. Because the
VisualWorks implementation of the language also provides a large set of
predefined objects, the language is considered part ¢fatolace
Smalltalk system

ParcPlace Smalltalk system The collection of interactingbjects
implemented in th@arcPlace Smalltalk languag&ome of these objects
provide functions that make up the VisualWorks software development
system: the compiler, debuggerpwsers and so on. Other objects in the
system exist so that you can incorporate them into youramphcations
as, for example, when you uslassesn the VisualWorksapplication
framework You extend this system whenever you create new objects.

pointer A graphic, usually in the shape of an arrow, that you move on the
screen using a pointing device, such as a mouse, trackball, or joystick.
You use a pointer to interact withidgetsin VisualWorkswindows

properties Attributes ofwidgetsandwindowsthat define a variety of
visual characteristics, such as font, color, borders, and so on. For widgets
that display data, properties also indicate the nature of the data to be
displayed and how that data is to be referenced bgghkcation

Properties Tool The VisualWorks tool for setting the variopsperties
for individualwidgets Properties are displayed in a notebook containing
pages of related properties. You open a Properties Tool floangas
Tool.

protocol A group ofmethodsn aclassdefinition. Every method in a class
belongs to exactly one protocol. Methods are grouped into protocols for
organizational purposes only. Also calle@ssage categary

receiver Theobjectto which amessagés sent in anessage expression
The receiver is described by axrpressionlt is up to the receiver to
decide how to respond to the message.

resource An objector description needed by tbheilder to assemble a
particularwindowfor a runningapplication Resources includaterface
specificationgcanvases menu bargyraphical imagesand database
queries. An application’s resources are normally stored in separate
resource methods anapplication model

192 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

Resource Finder The VisualWorks tool for locatinglasseghat contain
resourcesYou can use a Resource Finder to stpplicationsor to open
individual resources for editing. To open a Resource Finder, choose
Browse ?Resources in theVisualWorks main windaw

resource method A method(usually aclass methaogdin anapplication
modelthatreturnsaresourceResource methods are normally invoked by
thebuilder when arapplicationopensawindow

return To communicate information back to the sender wfegsage
Whenever anessage expressitevaluated, theeceiverof the message
always responds by returning abject which becomes thealueof the
message expression. Returning a value indicates that the receiver’s
response to the message is complete.

The object that is returned by a receiver is determined by étleodthat

is invoked by a message. The method may specify the returned object
explicitly through an expression containing the return ope(apother-
wise, the default value returned is usually the receiver itself.

selector The name of anethod the portion of anessagé¢hat determines
which of thereceivers methods will be invoked.

Settings Tool The VisualWorks tool for customizing various global
parameters of amage(1) such as the default size, look, and behavior for
VisualWorks tools. To open the Settings Tool, chdéig®e>Settings in
the VisualWorks main windaw

Smalltalk SeeParcPlace Smalltalk language

snapshot A savedimage(l)file. “Taking a snapshot” of an image refers
to saving that image periodically.

sources file A file that contains the source text of the compiled Smalltalk
objectsin animage(1) Every image consults a sources file to display
classandmethoddefinitions.

standard image Theimage(1)}hat is delivered with the VisualWorks
product. The first time you start VisualWorks, you use the standard image;
thereafter, you normally do your work in your ownorking image

subclass A classthat inheritsrariablesandmethod$rom some other
class (itssuperclasy A subclass is lower in thdass hierarchythan its
superclass. A subclass is generally a specialization of its superclass—its
instanceshave the same kind of data and behavior as instances of the
superclass, plus some of their own. A subclass may also override any of
its inherited behavior by redefining inherited methods.

VisualWorks Tutorial, Rev. 2.1 193

Appendix A Glossary

subject An objectthat holds onto information to be accessed baspect
adaptor Every aspect adaptor is created either with a subjectufrjact
channel

subject channel A value modethat holds onto aubjectfor anaspect
adaptor Subject channels provide a convenient mechanism for changing
a subject that is shared by multiple aspect adaptors.

superclass Theclassfrom whichvariablesandmethod are inherited. A
superclass is higher in tloéass hierarchythan itssubclasses

symbol A string that is guaranteed to beique in the systenClassand
methodnames are symbols. A symbol is expressed literally by prefixing
it with the characte# (for example#balance).

System Browser The principal VisualWorks tool for creating and
viewing classandmethoddefinitions. To open a System Browser, choose
Browse ?All Classes in theVisualWorks main windaw

system classes The set otlasseghat come with th@arcPlace Small-
talk systemThe system classes provide the standard functionality of a
programming language (arithmethic, data structures, control structures,
and input/output facilities) and development environment (editor,
compiler, debugger, window system, and so on).

System Transcript ~ The display area for informational messages gener-
ated by VisualWorks or your code. By default, the System Transcriptis in
the area below the tool bar of thsualWorks main windavlo close or
reopen a System Transcript, cho@sels ?System Transcript from
the VisualWorks main window.

tab chain A sequence ofvidgets(in a single window) whose properties
are set so that thepplicationuser can movkeyboard focuamong them
using the <Tab> key.

temporary variable A variablethat provides temporary storage for a
valuereferenced in one or moexpressionsusually in amethoddefini-
tion. A temporary variable is declared between vertical bars—for
example]l aCheck |.

text cursor A small triangular graphic that shows where typed input will
be inserted. A text cursor appears at the base of a line of text, between two
characters.

Ul object Seeuser-interface object

194 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

unary message A messagevithoutargumentsin amessage expression
such a®) asValue, the unary messageasValue.

user interface The means by which a user can control the behavior of an
application the software that handles input and output. Seegabguh-
ical user interface

user-interface object ~ An objectin a Smalltalk program that is
concerned with presenting information and enabling users to interact with
it. User-interface objects includeindowsandwidgets Each user-inter-
face object is a complex object containingew coupled with a
controllerand associated supporting objects.

value Theobjectthatis described by axpressionThe value of aariable
name is the object that is referenced by the variable. The value of a
message expressidsthe objecteturnedby the invokednethod

In discussions concerninglue models‘value” usually refers to the
object that is returned by sending thessag®alue to a value model.

value holder A kind of value modethat holds onto itgaluethrough an
instance variableA value holder is aimstanceof theclassValueHolder,
which is asubclaswof ValueModel. See als@spect adaptor

value model An objectthat contains or refers to some other object (its
valug and:

n Responds to a standgubtocol (themessagesalue andvalue:) for
accessing the value

n Notifies other interested objects when the value changes

Data widgetsormally depend on value models to store or retrieve the
data they collect or display.

Value models are created from the VisualWapplication framework
The term refers to subclassof theclassValueModel, or to aninstance
of such a subclass. See adspect adaptoandvalue holder

variable A storage place within asbjectfor a reference to another object.
A variable’s name is aexpressiorthat describes the referenced object.

Themethodsn aclasshave access to different kinds of variables (see
class variableglobal variable, instance variablendtemporary vari-
able). These kinds of variables differ in terms of how widely they are
available (their scope) and how long they persist.

VisualWorks Tutorial, Rev. 2.1 195

Appendix A Glossary

view An objectin a Smalltalk program that displays text or graphics repre-
senting information in anodel A view is tightly coupled with a
controller; together, view-controller pairs formser-interface objects
such asvidgets See alsdVC architecture

Views are composite, in that they can be composed of other views. Conse-
guently, the term may refer to the display of a single widget or to the
portion of an entirgraphical user interfacéhat is devoted to displaying.

A view also refers to any of the display regions of a Smaltisdkvser

For example, in &ystem Browsethecategoryview displays a list of
categories in the system, whereas the code view displays textual lines of
code.

visual component Seewidget

VisualWorks main window Thewindowthat serves as the starting point
for your work. The VisualWorks main window is identified by the title
“VisualWorks” in its title bar, and it contains a menu bar and a tool bar for
invoking VisualWorks’ main tools. Formerly known as tteuncher

widget A control that appears in applicatioris graphical user inter-
face—for example, an action button, an input field, or a scrollable list.
Widgets enable the application user to view information, enter informa-
tion, or invoke operations. For a description of the widgets that are
provided by VisualWorks, see Appendix B. See alstion widgetand
data widget

Each widget is aiser-interface objedhat provides a characteristic
display and visual response to keyboard and mouse input. Each widget
consists of aiewcoupled with acontrollerand associated supporting
objects. Widgets are also calledmponentgor visual componenjsn

some VisualWorks documentation.

window A display area on the screen that is part cdiplicatioris graph-
ical user interfaceA window presents the user with information and
controls for invoking operations. You create a window for an application
by painting acanvasandinstalling it in anapplication model

working image A copy of thestandard imagén which a user does his or
her own work.

Workspace A windowin which you can enter text and/or evaluate frag-
ments of Smalltalk code. To open a Workspace, chbosks 2Work-
space in theVisualWorks main windaw

196 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

VisualWorks Tutorial, Rev. 2.1 197

Appendix A Glossary

198 VisualWorks Tutorial, Rev. 2.1

Appendix B
Widget Quick Reference

This appendix describes the various widgets available to you through the
VisualWorks Palette.

single-selector button \‘Lﬂ
=
0

| \repeat-se|ect0r button
EE
[c]
e
||| widget indicator field

widget buttons

gl [Ccal][&][[[>

K

Figure B-1 The VisualWorks Palette

You can get the name of a widget by clicking on a button in the Palette. The
name appears in the widget indicator field. Click the button again to deselect

it.

In the definitions that follow, terms that appear in italic type are also defined
in this quick reference. The icon shown to the left of a widget’s definition
appears on that widget'’s button in the Palette.

VisualWorks Tutorial, Rev. 2.1 199

Appendix B Widget Quick Reference

action button (See Figure B-2) Also called a “push button” on some plat-
forms. Triggers a short action, such as printing, saving, deleting, or
opening a dialog window. Action buttons are generally not used to set a
persistent property or to set a mode.

Action buttons are convenient for the user, but they take up space in a
window. When space is an issue, you can cause actions to be triggered
from a menu.

check box (See Figure B-2) A toggle that enables the user to turn on or
(] -- turn off some attribute in the application. For example, VisualWorks uses
a check box in the Properties Tool to control widget properties such as
Can Tab.

Check boxes are often used in a group to represent a set of related
attributes. However, selecting one check box has no effect on others in the
set, so you can select more than one check box at a time. When you want
only one attribute to be selected at a time,rasié buttonsinstead.

Select Font Characteristics, Then Press "Apply"

[Underlined [Z Bold [iltalic —— |
> Apply

| check boxes

action button ——

Figure B-2 An interface to modify a font

combo box (See Figure B-3) Called a “combination box” on some plat-
% forms. Provides a user-modifiablgut fieldwith a drop-down list of
standard field entries. The application user can select from among the
standard entries or fill in a nonstandard one. A combo box is similar to a
menu buttopexcept that a menu button does not provide an input field for
nonstandard entries.

A combo box provides a customizable pop-up menu for searching and
editing the data in the box. The user activates this menu using the
<Operate> mouse button.

200 VisualWorks Tutorial, Rev. 2.1

Appendix B Widget Quick Reference

slider _— Grayscale Options o
— divider
CTRe —
A
) Light
region Otig < group box
(O Medium
O Dark
Dove Gray
combo box Granite
Battleship
Slate

Figure B-3 Three ways to choose a gray tone

| dataset (See Figure B-8) Aablewith extra features such as in-column

o== editing, dynamic resizing of column widths (both when the dataset is
being added to the interface and when the application is running), and
easy reordering of columns while the dataset is being added to the inter-
face. In addition, any column in the dataset can be specified to be read-
only, aninput field acombo boxor acheck box

Datasets are more useful than tables when the data being presented in
them is likely to be edited. Use a table when the data is unlikely to be
edited, or when you want to display a possibly disparate assortment of
data in a collection that allows two-dimensional access.

divider (See Figure B-3) A line segment that can be used to provide visual
|_ connection or separation between widgets. A divider is one pixel thick.

embedded data form (See Figure B-4) A special-purposebcanvas

== used in database applications to connect a data form to the main applica-
tion window or another data form. For more information about embedded
data forms, see thdsualWorks’ Database Tools Tutorial and Cookbook

field Seeinput field

VisualWorks Tutorial, Rev. 2.1 201

Appendix B Widget Quick Reference

bon group box (See Figure B-3) A rectangle that surrounds groups of related
[_] widgets. The sides of the group box are one pixel thick. The group box
optionally has dabel embedded in its top border.

input field (See Figures B-4 and B-7) Called a “text input” or “text entry”
field on some platforms. A region for presenting and/or entering data that
is only one line long, such as a filename or other string.

An input field provides a customizable pop-up menu for searching and
editing the input data. The user activates this menu using the <Operate>
mouse button.

Note that input fields can be made read-only, so that text can be displayed
but not entered.

label — ¢

:— Product Label Reference
§ VRGeS TARAI < embedded data
Wil List of Labslz form
view holder — | "
A)
linked data form
Widgeel, ID
Enler Loknd Lriy, Sulect o Funl, and Press ‘Apply
subcanvas & P} Ompein input field
) tossn
O charzen

Figure B-4 Embedded interfaces

label (See Figure B-4) A single line of text or a graphic image that is typi-
A cally used:

n In conjunction with another widget, such as a field, to describe that
widget’s purpose

n As titles for groups of widgets
n For a read-only display

For a multiline label, use a read-onéxt editor

202 VisualWorks Tutorial, Rev. 2.1

Appendix B Widget Quick Reference

linked data form (See Figure B-4) A special-purposetion buttonthat,

B when clicked, displays a data form canvas in a separate window. Linked
data forms are used in database applications to connect a data form to the
main application window or another data form. For more information

about linked data forms, see isualWorks Database Tools Tutorial and
Cookbook

list (See Figure B-5) A list widget is useful for displaying any collection of
Eﬂ objects. As an input device, the list enables the user to select one or more
elements in the list as targets for operations such as browsing.

Lists have a built-in search ability, so the user can type the beginning
letters of an item to find it in a large list (<Escape> starts a new search).

You can arrange for a list to have a custom menu that provides commands
that act on the selections or commands that act on the list itself (updating
or filtering its contents).

List Editor Window

w w

list Ti archi: i
archz anarchist architects added .
aurt an architrave of aurochs. < text editor
aurz archly they asked,
aurd Arachs an the archivaolt
axl 1 also?" 1

menu buttons —— |

Figure B-5 A listlinked to a text editor

menu button (See Figure B-5) Provides the user with a well-defined set
Eﬂ of options. A menu button can present a menu of commands or a menu of
values. It is similar to a submenu in a menu bar, with two advantages: it
can be placed anywhere on the canvas, aakiéd can change to reflect
the current selection. A menu button is more visible to the user than a pop-
up menu, but it uses space in the canvas. The menu that a menu button

invokes is a “pull-down” menu (called a “drop-down” menu on some plat-
forms).

= notebook (See Figure B-6) A means of presenting a hierarchy of informa-
j tion. This hierarchy may have one or two tiers, which are called the note-
book’s major keys and its minor keys, respectively.

The minor keys either refine the subdivision imposed by the major keys
or filter the information along a separate dimension. They may be

VisualWorks Tutorial, Rev. 2.1 203

Appendix B Widget Quick Reference

major keys

connected to the major keys in such a way that each major key may
display a different set of minor keys.

Payables
William aiello

Steve Benjamin - |]{jpm
Richard Cox
kartin Goldberg
Lela Keith
Jasen hacie
Duane Ostler
Draniel Rubin
Eryan YWersinger

— minor keys

T AT COUNTING E

SALES
p [OPERATIONS

radio buttons

Figure B-6 A notebook with interdependent tabs

radio button (See Figure B-7) Enables the user of your application to

make a single selection from a limited list of choices. Selecting a radio
button causes any other button in its group to be deselected.

Radio buttons have the advantage of displaying a full set of choices at all
times. However, if the list of choices is long or needs to be reconfigured
dynamically, you should usdliat widget instead of a set of radio buttons.

If you want users to be able to select multiple items on the list, you should
usecheck boxesgor a list that permits multiple selection).

Enter Label String, Select a Font, and Press "Apply"

O Typewriter @4— input field
O Roman

O Chancery

204

Figure B-7 Creating a label

region (See Figure B-3) A shape that surrounds a group of widgets. A

region may be rectangular or elliptic. Its borders can be one of four thick-
nesses, and its interior can be filled with a color.

VisualWorks Tutorial, Rev. 2.1

Appendix B Widget Quick Reference

arange of values, such as the volume setting for a music program. It simu-
lates the sliding switch found on some electronic devices, where changing
the position of the switch changes the value of some property, such as
volume.

TI slider (See Figure B-3) A device for selecting and displaying a value from
==

——=] subcanvas (See Figure B-4) An interface that has been included or

a-0 i i i i

= embedded in another interface. A subcanvas can itself include another
subcanvas. You can nest as many levels of interfaces as you like within
the parent interface.

By using subcanvases, you can create a set of application modules that can
be plugged into larger applications as needed. This approach avoids
wasteful duplication of effort for generic modules, enforces uniformity of
interface design, and makes changes much easier to implement, since you
have to change only the core module to propagate the changes to all the
applications that use that module.

—---] table (See Figure B-8) A means of displaying data that can be organized
3@ usefully in rows and columns.

By default, a table is bordered and has both vertical and horizontal scroll
bars. You can turn off any of these features in the Properties dialog box.
You can also set the font to be used with text that is displayed in the table’s
cells, connect an <Operate> menu to the table, and turn on vertical and

horizontal grid lines to separate rows and columns.

ByCo 9.25 6.0 = ByCo 9.25 6.0
Gaard 10.50 8.5 Gaard 10.50 8.5
SteinHF 9.75 5.0 SteinHF 9.75 5.0
TryggAS | 17.00 | 11.0 TryggAS | 17.00 | 11.0
Vannet 8.25| 5.75 Vannet 8.25 | 5.75
< El * < El *
table dataset

Figure B-8 Presenting columns of information

text editor (See Figure B-5) Aegionfor displaying and editing text. A
text editor is especially useful for text that does not fit withimngauit

field, especially when it is expected to have multiple lines. A text editor

VisualWorks Tutorial, Rev. 2.1 205

Appendix B Widget Quick Reference

has built-in facilities for line wrapping, changing the text style, cutting,
copying, pasting, searching and replacing, undoing, and optionally
executing Smalltalk expressions.

A text editor provides a customizable pop-up menu for searching and
editing text. The user activates this menu using the <Operate> mouse
button.

view holder (See Figure B-4) A means of including a graphic image in an
interface. It allows you to treat a graphic like any other widget: you can
arrange its layout and apply borders and scroll bars. However, you must
supply the code that connects the graphic to your application’s domain
model.

206 VisualWorks Tutorial, Rev. 2.1

Symbols

<Control>-click xiv
<Meta>-click xiv
<Operate> button xiii, 7
<Select> button xiii, 7, 9
<Shift>-click xiv
<Window> button xiii, 7

A

accessing method 92, 112
creating 92-94
defined 183
limited access to variables 113
accessor 92, 112
defined 183
action button 52
creating 73-74
defined 200
programming 143-146
testing 147-150
action property 59, 144
accept andcancel settings 170
action widget 129
defined 183
adding,seecreating 24
aligning widgets 76
application 28
building 39-48
database 46

VisualWorks Tutorial, Rev. 2.1

defined 183
finding 29
layered structure 40-43, 131
modifying while running 150
multiwindow 44
opening 70-72
programming 127-181
running 28
starting 70-71
Ul-based structure 44
application framework 40
defined 183
application model 42, 131
browsing 134
creating 64—66
defined 184
designing 48
initializing 135-136
programming 127-181
applying changed property 60
argument 95
defined 184
aspect adaptor 151, 153
creating for field 153-154
defined 184
operation 156-157
setup 155-156
aspect path 172-179
advantages 178-179
defined 184

207

Index

limitations 179
setup 176-177
aspect property 59, 139
assignment expression 119
defined 184
assignment operator (:=) 96
asterisk (*) 23, 27

B

backup 26

binary message 118

block expression 141
defined 184

Boolean objects 140-141
defined 184

browser, defined 185

browsing
application model 134
class hierarchy 24-25
inheritance hierarchy 25
online documentation 30-34
Smalltalk class library 19-25

builder 71
defined 185

bulletin boards xvii

buttons, mouseseemouse buttons

C

canvas 63
creating 53-54
defined 185
finding an installed 66
installing 64—-66
opening a blank canvas 53-54
previewing for another platform 82
sizing 55
Canvas Tool 6, 54

208

defined 185
cascaded messages 98
defined 185
category 20, 86
adding to class library 24
defined 185
locating 86
category view 20
Change List 36-37
defined 186
change notification 113-114
changes file 36
defined 186
changes view 36
character-based display 99
check box, defined 200
class 19, 83
commenting 91, 105
creating 85-125
creating an instance 89-90, 107
creating definition 87-88, 105-106
defined 186
defining data structure 87-88
documenting 91, 105
editing definition 87
entity class 46
finding by name 23
class definition
creating 87-88, 105-106
viewing 21
class hierarchy
browsing 24-25
defined 186
class library
adding a category 24
browsing 19-25
class method 109
creating 108-109
defined 186

VisualWorks Tutorial, Rev. 2.1

Index

class variable, defined 186
class view 20
click xiv, 9
closing windows 11
code view 20
collapsing a VisualWorks window 12
combo box, defined 200
comma (concatenation message) 100
comments 91, 105
compilation 96
complex expressions 97-98, 117-119
component, defined 186
concatenation message 100
constructing a string 100
contents view 28
controller, defined 186
conventions
naming 96
screen Xii
typographic x—xii
copying and pasting
text 11
widgets 57
creating
action button 73-74
application model 64-66
aspect adaptor 153-154
canvas 53-54
category 24
class 85-125
class definition 87-88
class method 108-109
instance 89-90, 135-136
instance method 92, 108-109
instance variable 87—88
menus 67-69
protocol 92
strings 100
windows 79-81

VisualWorks Tutorial, Rev. 2.1

customizing a working imagseeworking image

D

data forms 46
Data Modeler 6
data type 109
data widget 129, 130
defined 187
database applications 46
dataset 52
defined 201
Definer 139-140, 153
defined 187
dialog box 138
deleting
text 11
widgets 58
dependency mechanism 106, 107
defined 187
deselecting
text 10
widgets 56
dialog box, setting up basic behavior 168-171
disk files 26-28
displaying
descriptive string 99, 102
properties of a widget 59
divider, defined 201
documentationseeVisualWorks documentation
domain 42
defined 187
domain model 42, 131
defined 187
designing 47
developing 83-125
testing 120-125
double-click xiv, 9

209

Index

E
editing
menu bar 67-69
template for class definition 87
text 8, 10
see alsgainting
electronic bulletin boards xvii
electronic mail xvii
embedded data form, defined 201
entity class 46
error 123-125
evaluating Smalltalk expressions 18, 102
exiting VisualWorksseeVisualWorks
expression
defined 187
see alsanessage expression

F

fax support xvii
field, seeinput field
filein 26, 28
defined 187
File List 6, 27
defined 187
file out 26
defined 187
files
disk 26-28
finding
application 29
category 86
class 23
installed canvas 66
fonts x—xii
format of output 62
Format: property 62

210

G

global variable 122
defined 188
glossary 183-198
graphical image, defined 188
graphical user interface 7, 39
creating 51-82
defined 188
designing 47
programming 127-181
programming application-specific
behavior 128-130
specifying basic appearance and behavior 128
group box, defined 202
grouping widgets 77-78

H

help file 14
Hierarchy Browser 24-25
defined 188

image 2
defined 188
saving 13-15
standard 2, 3
working 2
creating 13
customizing 35
starting
Image Editor, defined 188
indicator field 55
information model 40, 43, 131
inheritance 24
defined 189
inheritance hierarchy 24
browsing 25

VisualWorks Tutorial, Rev. 2.1

Index

defined 189

initialization code 151, 158
initializing

application model 135-136
lazy initialization 139, 140-141
variables 108-111

input field 51, 58
creating aspect adaptor for 153-154

creating value holder for 137-138
defined 202

programming 137-142, 151-154, 172-179

setting properties 62
testing 147-150, 155-157

inspecting

default widget properties 61
value of expressiorseelnspector

Inspector 89, 101

defined 189
opening 102

installing

canvas 64-66
defined 189
menu bar 69

instance 19, 24

creating 89-90, 135-136
defined 189

displaying description 101-103
initializing variables 108-111
message for creating 90

instance method 19, 21, 109

creating 92, 108-109
defined 189

instance variable 19, 21, 88, 92

creating 87-88
defined 189
setting value 97

interface 189

opening 70-72
programming 127-181

VisualWorks Tutorial, Rev. 2.1

see alsgraphical user interface
interface specification 64, 128
defined 189

K

keyboard focus, defined 190
keyword 95
defined 190
keyword message 95, 118
defined 190

L

label 51, 58, 60
defined 202
Launcher, defined 190

layered structure of VisualWorks
application 40-43

layout, adjusting window 78
lazy initialization 139, 140-141
defined 190
library, seeclass library
linked data form, defined 203
list widget 51, 58
defined 203
initialization code 158
programming 158-163
setup 160-161
literal string 100
look policy, defined 190
lookup 102-103, 110-111

M

Macintosh platforms 3, 5, 12, 13, 14, 15, 16

mail
electronic xvii

main window,seeVisualWorks, main window

Mask Editor, defined 190

211

Index

mask, defined 190
menu 51
menu bar 51, 63
editing 67-69
installing 69
programming 164-165
menu button, defined 203
Menu Editor 67-69, 164—-165
defined 190
menus
creating 67—-69
VisualWorks main window 5
see alsanenu bar
message 90
binary 118
defined 190
for creating instance 90
keyword 95, 118
sending to Smalltalk objects 18
transcript 122-123
unary 90, 118
message category, defined 191
message expression 18, 23, 90, 97-98
cascaded 98
complex 97-98, 117-119
defined 191
evaluating 102
sequences of expressions 98
message pattern 95
message protocol 94
defined 191
message selector, defined 191
method 19, 24, 85, 92, 108
class method 109
compilation of 96
creating 92, 108
defined 191
generated by the Definer 138
incrementally defining 167-179

212

instance 109
lookup 102-103, 110-111
testing 120-125
see alsaccessing method
method definition 95
method lookup 102-103, 110-111
defined 191
method stub 143
method view 22
modal dialog box 170
defined 191
model 41, 106
application model 42, 131
designing 48
defined 191
domain model 42, 131
designing 47
developing 83-125
information model 40, 43, 131
subclass of Model class 106
value model 130, 131
mouse buttons xii
<Operate> button xiii
<Select> button xiii
<Window> button xiii
functions 7
one-button mouse Xiii
three-button mouse xiii
two-button mouse xiii
using 8-11
mouse operations Xxiv
<Control>click xiv
<Meta>-click xiv
<Shift>-click xiv
click xiv
double-click xiv
mouse pointer, defined 192
moving selection to next widget 61
multiwindow application 44

VisualWorks Tutorial, Rev. 2.1

Index

mutator 92, 112 Palette 54
defined 192 defined 192
MVC architecture, defined 192 ParcPlace Smalltalk language 2
defined 192
N ParcPlace Smalltalk system 2
defined 193

names view 27

naming conventions 96
new 108, 110

nil 140

notational conventions x—Xii
notebook 35

pattern view 27
pixels, spacing by 77
pointer, defined 193
positioning widgets 57
primary windows 44
printing

defined 204 displaying a descriptive string 99
programming
O action button 143-146
object 2 application model 127-181
defined 192 data widget 151-154
Object Behavior Analysis and Design (OBA/D) graphical user interface 127-181
methodology 46 input field 137-142, 151-154, 172-179
object engine 2 list widget 158-163
defined 192 menu bar 164-165
Online Documentation Browser 6, 31-34 properties
online documentatiorseeVisualWorks action 144
documentation applying changed 60
opening aspect 139
application 70-72 defined 193
blank canvas 53-54 displaying a widget's 59
defined 192 inspecting the defaults 61
interface 70-72 painting 79-81
0S/2 platforms 3, 12, 13, 14, 15 setting 59-63, 79-81
output formatting 62 setting input field 62
setting window 63
P Properties Tool 59-60
o defined 193
palntlrllg protocol 21
defined 192)
))) creating 92
multiple copies of widget 58 defined 193

properties 79-81

) protocol view 21
widget 55

pseudovariable 89

VisualWorks Tutorial, Rev. 2.1 213

Index

R

radio button, defined 204
receiver 18, 90

defined 193
region, defined 205
repeat-painting 58
repeat-selection button 58
resizing

canvas 55

widgets 57

window 12
resource 28

defined 193
Resource Finder 6, 29

defined 194
resource method, defined 194
retrieving information from disk files 26—-28
return 90, 92

defined 194
return operator () 95

S

saving
image 13-15
viewing changes since last save 36
screen conventions Xii
secondary windows 44
selecting
multiple widgets 74
text 10
widget 56
selection handle 56
selector 90
defined 194
self 102-103
setting
properties 59-63, 79-81
values of instance variables 97

214

Settings Tool 35

defined 194
single-selection button 55
sizing

canvas 55

widgets 75
slider, defined 205

Smalltalk programming languaggeeParcPlace
Smalltalk language

Smalltalk, defined 194
snapshot 15
defined 194
sources file 14, 170
defined 194
spacing by pixels 77
special symbols x—xii
standard image 2, 3
defined 195
starting application 70-71
starting VisualWorksseeVisualWorks
starting working imageseeworking image
storing information in disk files 26
stream 100
string
concatenation message 100
constructing 100
streams 100
subcanvas, defined 205
subclass 24, 106
defined 195
subject 153
defined 195
subject channel 172, 177-178
defined 195
super 110-111
superclass 24, 106
defined 195
support, technical xvi
electronic bulletin boards xvii

VisualWorks Tutorial, Rev. 2.1

Index

electronic mail xvii transcript message 122-123
fax xvii typographic conventions x—xii
telephone xvii
World Wide Web xvii U

symbol 114

Ul-based structure of VisualWorks application 44
unary message 90, 118

defined 196
UNIX platforms 3, 12, 13, 14, 15

defined 195
symbols used in documentation x—xii
syntax error 123-125
System Browser 6, 19-25

defined 195 user interface 40
i defined 196
opening 19 nec
designing 47

system classes, defined 195
system objects 2
System Transcript 4, 6, 122

see alsgraphical user interface
user-interface object 41

defined 195 defined 196
T \/
tab chain, defined 196 value.88, 92
table 52 defined 196
defined 205 value holder 138, 142
technical support xvi defined 196
electonic mail xvii value Imodel 130, 131
electronic bulletin boards xvii d.efmed 197
fax support xvii variable 19, 24, 85, 92
telephone support xvii defined 197
global 122

World Wide Web xvii
telephone support xvii
template 87, 92
temporary variable 98

initializing 108-111
limited access to 113
temporary 98

defined 196 view 20
testing category 20
action button 147-150 changes 36
domain models 120-125 class 20
input field 147-150, 155-157 code 20
methods 120-125 Corﬁents 28
widgets 147-150 defined 197
text cursor, defined 196 method 22
names 27

text editor, defined 206

VisualWorks Tutorial, Rev. 2.1 215

Index

pattern 27

protocol 21
view holder, defined 206
VisualWorks

application building 39-48

approach to interface programming 127-131

layered structure 40-43
Ul-based structure 44

collapsing a window 12
defined 1

exiting 15

features 1

interacting with 7-13
main window 4, 52

defined 197
menus 5

managing windows 11-13
saving an image 13-15
Smalltalk environment 2
starting 2

on Macintosh platforms 3
on OS/2 platforms 3

on UNIX platforms 3

on Windows platforms 3

Workspace 4, 6
VisualWorks documentation
online xv

browsing 30-34

Database Cookbookyv, 30
Database Quick Start Guidesy, 30
International User’s Guidexv
VisualWorks Cookbookyv, 30, 33

printed

216

Cookbookxiv
Database Connect User’s Guidey

Database Tools Tutorial and Cookboak

Installation Guide xiv
International User’s Guidexv
Object Referencexv

Release Notegiv
User’s Guidexiv

w

warning dialog 145, 146
widget 41

action 129

aligning 76

as a dependent 150

copying and pasting 57

creating 72-74

data 129, 130

defined 198

deleting 58

displaying properties 59

equalizing sizes 75

grouping 77-78

inspecting default properties 61

list 158-163

moving selection to next 61

painting 55

painting multiple copies 58

positioning 57

programming 151-154

quick reference 199-206

refining arrangement 74-78

resizing 57

selecting and deselecting 56

selecting multiple 74

testing 147-150

types and positions 51
wildcard character 23, 27
window outline 9
window-management operations 11
windows

adjusting layout 78

collapsing 12

creating 53, 79-81

VisualWorks Tutorial, Rev. 2.1

Index

defined 198

designing 47, 51-52

inspecting the prototype 71

managing 11-13

painting and setting properties 79-81

previewing for another platform 82

primary 44

resizing 12

revising 72-79

secondary 44

setting properties 63

Workspace 4, 6

see also/isualWorks main window
Windows platforms 3, 12, 13, 14, 15, 16
working image 2

creating 13

customizing 35

defined 198

starting 17
Workspace 4, 6

closingwindows

closing 11

defined 198

resizing 12

sending messages 18
World Wide Web xvii

VisualWorks Tutorial, Rev. 2.1 217

	Contents
	Chapter 1 Getting Started 1
	Chapter 2 The VisualWorks Environment 17
	Chapter 3 Introduction to VisualWorks Application Building 39
	Chapter 4 Creating a Graphical User Interface 51
	Chapter 5 Developing the Domain Models 83
	Chapter 6 Programming the Interface 127
	Appendix A Glossary 183
	Appendix B Widget Quick Reference 199

	About This Book
	Chapter 1�
	Chapter 2�
	Chapter 3�
	Introduction to VisualWorks Application Building
	Application Requirements
	VisualWorks Approach to Application Design
	Layered Structure
	Figure 3-1� Layers of the user interface and information model
	Domain Models
	Application Models
	Figure 3-2� Layers within the information model

	Why Layering?

	UI-Based Structure
	Why UI-Based Structure?
	Figure 3-3� Composing larger applications from smaller ones

	Building Blocks in the Framework
	Framework for Database Applications

	Designing the Sample Application
	Designing the User Interface
	Designing the Models
	Designing Domain Models
	Designing Application Models

	What’s Next: Constructing the Sample Application
	1. Specify the layout and contents of the main window and the dialog box (Chapter 4).
	2. Create and program the Checkbook and Check classes (Chapter 5).
	3. Program CheckbookInterface to connect the specified widgets to appropriate information and act...

	The VisualWorks Environment
	Starting Your Working Image
	Sending Messages to Smalltalk Objects
	1. Open a Workspace, if necessary.
	2. In the Workspace, type the following lines:
	Transcript cr.
	3. Select (highlight) these lines.
	4. Choose the do it command from the Workspace’s <Operate> menu.

	Browsing the Smalltalk Class Library
	Using a System Browser
	1. Open a System Browser by choosing BrowseﬁAll Classes in the VisualWorks main window.
	Figure 2-1� A newly opened System Browser

	2. Scroll through the list of categories in the category view:
	3. Select the first category in the list (Magnitude-General) to see which classes belong to it. (...
	Figure 2-2� A System Browser with a category selected

	4. In the class view, select the Date class to see its instance variables and methods. Instances ...
	Figure 2-3� A System Browser with a class selected

	5. In the protocol view, select the protocol accessing to see the instance methods it contains:
	Figure 2-4� A System Browser with a protocol selected

	6. In the method view, select the instance method weekday. Its definition appears in the code vie...
	Figure 2-5� A System Browser with a method selected

	1. In a Workspace, type the following message expression:
	2. Select this expression and choose print it from the Workspace’s <Operate> menu. This evaluates...

	Finding a Class by Name
	1. Put the pointer in the category view and choose find class... from the <Operate> menu.
	2. Type Point in the input field of the dialog box and click OK. The System Browser displays the ...

	Adding a Category
	1. Click the Graphics-Geometry category to deselect it, if necessary.
	2. Choose add... from the category view’s <Operate> menu.
	3. Type Examples-VWTutorial in the input field of the dialog box and click OK. The category view ...

	Browsing the Class Hierarchy
	Using a Hierarchy Browser
	1. Choose BrowseﬁClass Named... in the VisualWorks main window.
	2. Type Number in the input field of the dialog box. This displays a Hierarchy Browser on the Num...
	3. Resize the Hierarchy Browser window as shown in Figure�2-6 so that you can read the contents o...
	Figure 2-6� A Hierarchy Browser on the Number class

	4. Scroll up the class view to see all of Number’s superclasses, their superclasses, and so on up...
	5. Scroll down the class view to see all of Number’s subclasses, their subclasses, and so on. You...
	6. Close the Hierarchy Browser.

	Storing and Retrieving Information in Files
	Writing to Disk Files
	1. Select a class in the System Browser or the Hierarchy Browser.
	2. Choose file out as... from the class view’s <Operate> menu. A dialog box displays the default ...
	3. If desired, enter a different name; then click OK.
	4. Use your platform’s file-management facilities to verify that the file was created in the curr...

	Retrieving Information from Disk Files
	1. Choose ToolsﬁFile List in the VisualWorks main window.
	Figure 2-7� An empty File List

	2. In the pattern view at the top of the File List, type a pathname pattern that matches the cont...
	3. Press <Return>. The names view lists the files and directories that match the name in the patt...
	4. In the names view, select the pathname for the basic directory. The contents view displays the...
	5. With the pointer in the names view, choose new pattern from the <Operate> menu. This changes t...
	6. In the names view, select the pathname for calc.st. The contents view displays the source code...
	7. With the pointer in the names view, choose file in from the <Operate> menu. This reads in the ...
	8. Close the File List.
	9. Verify that the file-in was successful:
	a. In a System Browser, scroll to the bottom of the category view to locate the category UIExampl...
	b. Select the UIExamples-General category. Notice that it contains two classes, Calculator and Ca...

	Running an Application
	1. Choose BrowseﬁResources from the VisualWorks main window.
	Figure 2-8� A newly opened Resource Finder

	2. Locate the CalculatorExample class in the class view.
	3. Select the class CalculatorExample. This lists its resource (windowSpec) in the resource view:
	Figure 2-9� A Resource Finder with a class selected

	4. Click the Resource Finder’s Start button. This starts the application. Try out the calculator;...
	5. Exit the Resource Finder by closing its window or by selecting Exit from its View menu.

	Browsing Online Documentation
	1. Choose HelpﬁOpen Online Documentation from the VisualWorks main window.
	Figure 2-10� A newly opened Online Documentation Browser

	2. In the Online Documentation Browser, select Book: VisualWorks Cookbook. This lists the Cookboo...
	Figure 2-11� Browsing the VisualWorks Cookbook chapters

	3. Select Chapter 1: Smalltalk Basics. This lists the chapter’s topics.
	4. Select the topic Constructing a message. Cookbook topics normally contain the following sections:
	5. Read the first two sections of Constructing a message. The basic steps give directions for con...
	6. Click the Examples button in the Online Documentation Browser. This brings up an Examples wind...
	Figure 2-12� An Examples window for online documentation

	7. Notice that the comment in the Examples window says "Print it". This means you can click the P...
	8. Display the next example for this topic by clicking the right arrow at the top of the Examples...
	9. Close the Examples window (but leave the Online Documentation Browser open). In the resulting ...
	Exploring the Cookbook’s Sample Applications
	1. In the Online Documentation Browser, click the Back To: button several times to return to the ...
	2. Select Chapter 17: Notebooks and then select the topic Adding a notebook.
	3. Scroll to the BASIC STEPS section and notice the line:
	4. Choose FileﬁBrowse Example Class in the Online Documentation Browser. This displays a list of ...
	5. Locate and select Notebook1Example in this list; then click OK.
	6. In the resulting notifier, click the File It In button to request that Notebook1Example be fil...
	7. Position the window outline and click to display the Hierarchy Browser on the Notebook1Example...
	8. Run the sample application by opening a Resource Finder (see page�28), selecting Notebook1Exam...
	9. Close the Notebook1Example window, the Resource Finder, the Hierarchy Browser, and the Online ...

	Customizing Your Working Image
	1. Choose FileﬁSettings from the VisualWorks main window. As shown in Figure�2-13, the Settings T...
	Figure 2-13� Settings Tool

	2. Click on the tab labeled UI Look. The settings on this page control the look of VisualWorks wi...
	3. Click the Help button on the UI Look page and read the description. Notice that the default lo...
	4. Choose a different look selection (but leave Basic Tools Adopt Look selected):
	5. Click Accept. Notice the effect on any open windows such as the VisualWorks main window.
	6. Change the look back to Auto Select and click Accept.
	7. Close the Settings Tool.

	Viewing Changes Since the Last Save
	1. Choose ChangesﬁOpen Change List from the VisualWorks main window. This opens an empty Change L...
	2. Put the pointer in the changes view in the upper-left corner of the Change List and choose fil...
	Figure 2-14� Change List

	3. Close the Change List.

	What’s Next: Creating Applications

	Getting Started
	What Is VisualWorks?
	VisualWorks as a Smalltalk Environment

	Starting VisualWorks
	Macintosh Platforms
	1. Open the image folder in the VisualWorks installation folder (typically called Visual).
	2. Double-click the visual.im document.

	OS/2 Platforms
	UNIX Platforms
	1. Verify that your window manager is operating.
	2. Enter a command of the following form at the UNIX prompt:

	Windows Platforms

	A First Look at VisualWorks
	Figure 1-1� The windows displayed in the standard image
	VisualWorks Main Window
	Figure 1-2� The VisualWorks main window
	Main-Window Menus
	Main-Window Tool Bar
	System Transcript

	Workspace Window

	Interacting with VisualWorks
	Mouse-Button Functions
	Getting Some Practice
	1. Move the mouse until the pointer is over some text in the Workspace window. (The Workspace sho...
	2. Click the <Select> button. This moves the text cursor to the position indicated by the pointer...
	3. Type some characters. They are inserted to the left of the text cursor.
	4. Undo your typing by choosing the undo command from the Workspace’s <Operate> menu:
	Figure 1-3� The undo command on the <Operate> menu

	5. Open an additional Workspace by choosing ToolsﬁWorkspace from the VisualWorks main window:
	Figure 1-4� TheWorkspace command on theTools menu
	Figure 1-5� Window outline

	6. Move the mouse pointer to position the window outline and click to display the Workspace.
	Figure 1-6� A new Workspace

	7. Open a third Workspace, resizing it as you open it:
	a. Click the Workspace button in the tool bar of the VisualWorks main window.
	b. Position the window outline as before.
	c. Press and hold the <Select> button. The mouse pointer appears at the lower-right corner of the...
	d. Move the mouse pointer to resize the outline as desired.
	e. Release the <Select> button.
	8. Select some text in the first Workspace, which should still contain the copyright statement:
	9. With some text selected, choose copy from the <Operate> menu. This copies the text to your pla...
	10. Move the pointer to another Workspace and choose paste from the <Operate> menu. This inserts ...
	11. With the pasted text still selected, choose cut from the <Operate> menu. This deletes the tex...
	12. In a Workspace that contains text:
	a. Choose accept from the <Operate> menu. This causes VisualWorks to remember the current content...
	b. Make some changes (add, delete, or copy any text).
	c. Choose cancel from the <Operate> menu. This causes the window to revert to its accepted state.
	13. Practice finding and replacing text (use find and replace on the <Operate> menu).
	14. If your platform is set up with a default printer, print the contents of a Workspace by choos...

	Managing VisualWorks Windows
	1. Close one of the Workspaces by choosing the close command from the <Window> menu:
	Figure 1-7� The close command on the <Window> menu

	2. Resize a Workspace window:
	a. Choose resize from the <Window> menu. A window outline is displayed.
	b. Move the pointer to resize the outline as desired and then click. The window is displayed in t...
	3. Collapse a VisualWorks window by choosing collapse from the <Window> menu. Collapsing a window...
	4. Restore the collapsed window to its original size using your platform’s window-management oper...

	Saving Your VisualWorks Image
	Creating Your Own Working Image
	1. Choose FileﬁSave As... in the VisualWorks main window. A dialog box prompts you with the name ...
	2. In the dialog box, edit (or replace) the current name to specify the filename for the new imag...
	3. Click OK. As a result:
	4. If you created the new image in the same location as standard image, skip to “Taking Snapshots...
	If You Created an Image in a New Location
	1. Choose FileﬁSettings in the VisualWorks main window. This displays the Settings Tool, which yo...
	2. Edit the Sources: field to specify the fully qualified name of the installed sources file, typ...
	3. Click the Accept button.
	4. Click the Help tab (not the Help button). It is located to the right, between tabs labeled Win...
	5. In the Documentation Directory: field, specify the fully qualified name of the installed onlin...
	6. Click the Accept button and close the Settings Tool.

	Taking Snapshots
	1. Choose FileﬁSave As... in the VisualWorks main window. A dialog box prompts you with the name ...
	2. Click OK. The System Transcript reports the save.

	Exiting VisualWorks
	1. Choose FileﬁExit VisualWorks... from the VisualWorks main window. The following dialog box app...
	2. Because you have already saved your image, click Exit.
	What’s Next: The VisualWorks Environment

	Audience
	Organization
	Conventions
	Typographic Conventions
	Special Symbols
	Screen Conventions
	Mouse Buttons
	The mouse buttons perform the following interactions:
	Three-Button Mouse
	Two-Button Mouse
	One-Button Mouse

	Mouse Operations

	Additional Sources of Information
	Printed Documentation
	Online Documentation

	Obtaining Technical Support
	Before Contacting Technical Support
	When you need to contact a technical support representative, please be prepared to provide the fo...

	How to Contact Technical Support
	Parc�Place-Digi�talk Technical Support provides assistance by:
	Electronic Mail
	Electronic Bulletin Boards
	Information is available at any time through the electronic bulletin board CompuServe. If you hav...

	World Wide Web
	1. In your Web browser, open this location (URL):
	2. Click the link labeled “Tech Support.”

	Telephone and Fax
	Within North America, you can:

	Chapter 4�
	Creating a Graphical User Interface
	Designing the Checkbook Main Window
	Figure 4-1� The Checkbook application’s main window
	Design Alternatives

	Creating the Main Window
	1. Opening a blank canvas
	2. Painting the canvas with widgets chosen from a Palette
	3. Setting properties for each widget and applying them to the canvas
	4. Editing the contents of any menus on the canvas
	5. Installing the canvas in an application model
	Opening a Blank Canvas
	1. Start VisualWorks, if necessary.
	2. Choose ToolsﬁNew Canvas from the VisualWorks main window.
	3. Use the mouse pointer to position the rectangular window outline on the screen, and then click...
	Figure 4-2� A blank canvas, its Palette, and its Canvas Tool

	Painting the Canvas
	Sizing the Canvas
	1. Use your window manager to enlarge the canvas window (use Figure�4-1 as guide).
	2. Choose LayoutﬁWindowﬁPreferred Size from the Canvas Tool.

	Painting a Widget
	1. Verify that the single-selection button on the Palette is active (it has a heavy, dark outline...
	2. Select the list widget on the Palette. The indicator field at the bottom of the Palette displa...
	3. Paint the list by moving the mouse pointer to the canvas and clicking the <Select> button. Fig...
	Figure 4-3� The canvas with a list widget painted on it

	Selecting and Deselecting a Widget
	1. To deselect the list, either:
	2. To reselect the list, click the <Select> button anywhere inside the list or on its borders.

	Positioning a Widget
	1. Select the list, if necessary, and position the mouse pointer within the selection handles.
	2. Press and hold down the <Select> button; then move the pointer. The list moves, too.
	3. Drag the list to the desired position (use Figure�4-1 as guide), and then release the <Select>...

	Resizing a Widget
	1. Select the list, if necessary.
	2. Position the mouse pointer over one of the selection handles.
	3. Press and hold down the <Select> button; then move the pointer. The corner of the list moves, ...
	4. Drag the corner until the list is the desired shape (use Figure�4-1 as guide), and then releas...

	Copying and Pasting a Widget
	1. Select the input field widget from the Palette and paint it on the canvas below the list.
	2. With the field still selected, select editﬁcopy from the <Operate> menu.
	3. Select editﬁpaste from the <Operate> menu. This makes a second copy of the field directly on t...
	4. Drag the copy to the appropriate location.

	Painting Multiple Copies of a Widget
	1. Click the repeat-selection button on the palette (see Figure�4-4).
	2. Select the label widget from the Palette.
	3. Click on the canvas where each label is to appear (above the list and to the left of each inpu...
	4. Turn off repeat-painting by clicking the single-selection button.
	Figure 4-4� The canvas with a list, two fields, and three labels

	Deleting a Widget
	1. Select the widget to be deleted.
	2. Select editﬁcut from the <Operate> menu. This saves the widget to the canvas clipboard so you ...

	Setting Properties
	Displaying a Widget’s Properties
	1. Select the widget in the canvas. In this case, select the label above the list.
	2. Click the Properties button on the Canvas Tool.
	Figure 4-5� The Properties Tool, showing basic properties for a label

	Applying a Changed Property
	1. Verify that the label above the list is still selected and that the Basics page is displayed i...
	2. In the Properties Tool, enter Check Register as the value of the Label: property.
	3. Click Apply. The new label text appears on the canvas.

	Moving the Selection to the Next Widget
	1. Verify that the Check Register label is still selected in the canvas.
	2. Click Next on the Properties Tool to move the selection to the next label (in the lower-left c...
	3. Change the Label property for the selected label by entering Amount to Deposit: and clicking A...
	4. Click Next to move the selection to the last label.
	5. Change the Label property for the selected label by entering Balance: and clicking Apply.

	Inspecting the List Properties
	1. Move the selection to the list widget. This causes the Properties Tool to display the list’s p...
	2. Click the tab for the Details page. Verify that the following properties are selected:

	Setting the Input Field Properties
	1. Display the field’s properties by selecting it in the canvas.
	2. Select the nondefault property settings shown in the following table. (Look for the properties...
	3. Apply each page of changed settings before going on to the next page (or to the next widget).

	Setting the Window Properties
	1. Deselect all the widgets in the canvas. You can either:
	2. Set the window title by entering Checkbook for the Label property.
	3. Create an empty menu bar by selecting Enable and entering menuBar for the Menu property. (The ...
	4. Apply these settings. The title of the canvas changes from Unlabeled Canvas to Checkbook, and ...
	5. If the empty menu bar displaces any other widgets, resize the canvas or reposition the other w...
	Figure 4-6� The Checkbook canvas with a menu bar

	Installing the Canvas
	1. Click Install... in the Canvas Tool. This brings up a dialog box for specifying the applicatio...
	2. In the INSTALL on Class: field of the dialog box, enter CheckbookInterface. (This is the name ...
	3. Verify that the enter new Selector: field at the bottom of the dialog box contains the method ...
	Figure 4-7� Installing the canvas

	4. When the dialog box looks like Figure�4-7, click OK.
	5. In the CREATE New Class dialog box:
	a. Leave the Name: field as is (it should contain the name CheckbookInterface).
	b. Enter Examples-VWTutorial in the Category field to specify the category that is to contain the...
	c. Click the Application radio button to specify the type of application model you want the new c...
	d. When the CREATE New Class dialog box looks like Figure�4-8, click OK.
	Figure 4-8� Creating the CheckbookInterface application model

	6. Click OK again in the INSTALL on Class dialog.
	7. Save your image to preserve the newly created application model.
	Finding an Installed Canvas
	1. Close the window containing the canvas. The Palette and Canvas Tool close automatically.
	2. Open the Resource Finder—for example, by clicking its icon in the VisualWorks main window.
	3. In the Resource Finder, locate and select the CheckbookInterface class. Notice that windowSpec...
	Figure 4-9� The Resource Finder with CheckbookInterface selected

	4. With windowSpec selected, click Edit in the Resource Finder. This brings up the canvas whose i...

	Editing a Menu Bar
	1. Bring up the canvas for the Checkbook main window, if necessary, and verify that you have comp...
	2. In the Canvas Tool, choose ToolsﬁMenu Editor to open the Menu Editor for this canvas.
	3. In the text area of the Menu Editor, type the menu titles (File and Checks) on separate lines.
	4. Using Figure�4-10 as a guide, type a one-line entry for each menu item under the relevant menu...
	Figure 4-10� The Menu Editor with the menu bar contents

	5. Click Build to generate code for building a menu object. A test version of the menu bar you ju...
	6. Click on each menu title in the Menu Editor’s test bar to verify that the menus contain the ri...
	7. Click Apply to apply the tested menu bar to the canvas.
	Figure 4-11� Installing the menu bar

	8. Click OK to install the menu code. After the code is installed, the menus appear on the canvas.
	9. Click Install... on the Canvas Tool to reinstall the canvas (you changed the canvas when you a...
	10. Notice that the Resource Finder now lists two resources for CheckbookInterface:
	11. Close the Menu Editor and save your image!

	Opening the Interface
	1. Select CheckbookInterface in the Resource Finder.
	2. Click Start.
	Figure 4-12� The Checkbook main window

	Behind the Scenes
	1. The Canvas Tool (or Resource Finder) sends an open message to the CheckbookInterface class.
	2. The CheckbookInterface class understands this message (because it is an application model) and...
	3. This instance, in turn, creates a builder, which is an instance of a class in the VisualWorks ...
	4. The application model’s builder proceeds to build an operating window from the interface speci...
	a. Identifies an appropriate widget class in the VisualWorks framework
	b. Creates an instance of the identified class

	Inspecting the Prototype Window
	1. Select a menu item from the menu bar. Notice that when you click and drag on the menu title, t...
	2. Now click in the Amount to Deposit: field, type a number, and press <Return>. The input field ...
	3. Try entering input in the Balance: field. The field prevents you from doing this because you s...
	4. Shrink and then enlarge the Checkbook main window. Notice that shrinking the window obscures s...
	5. Close the running application (you’ll have to use a window-management operation to close it be...

	Revising the Main Window
	Adding More Widgets
	1. Open the canvas for the Checkbook main window by selecting both the CheckbookInterface class a...
	2. If necessary, enlarge the canvas window vertically to make room for the new action button belo...
	3. Select an action button from the Palette and place it below the deposit field.
	4. With the action button selected, open the Properties Tool and apply the following property set...
	5. Enlarge the action button to accommodate its new label.
	6. Enclose the three related widgets (the Amount to Deposit: label, the input field, and the acti...
	a. Select a group box from the Palette.
	b. Position the box’s upper-left corner on the canvas.
	c. Press and hold the <Select> mouse button. The pointer moves to the lower-right corner of the box.
	d. Drag the lower-right corner until the box fits around the desired widgets.
	7. When the canvas looks something like Figure�4-13, install it in the windowSpec method.
	Figure 4-13� After adding an action button and a group box

	8. Start the Checkbook application. Notice the Deposit action button’s visual response when you c...

	Refining Widget Arrangement
	Selecting Multiple Widgets
	1. Click in the first widget to be selected. Its selection handles are solid squares.
	2. <Shift>-click in each additional widget. Its selection handles are hollow.
	1. Put the mouse pointer on the canvas near one of the widgets.
	2. While pressing the <Select> mouse button, drag the selection border around the desired widgets.
	3. Release the mouse button; selection handles appear around each selected widget.

	Equalizing Widget Sizes
	Figure 4-14� The Equalize buttons on the Canvas Tool
	1. Select one of the fields and drag a selection handle until the field is the desired size.
	2. <Shift>-click to select the second field.
	3. In the tool bar of the Canvas Tool, click the Equalize Height button (see Figure�4-14). The se...
	4. Leaving the widgets selected, click the Equalize Width button. The second field is resized to ...

	Aligning Widgets
	Figure 4-15� The Alignment buttons on the Canvas Tool
	Align the left edges of the list and the Check Register label:
	1. Select the list. This should automatically deselect the two input fields.
	2. <Shift>-click to select the Check Register label.
	3. Click the Left Align button (see Figure�4-15). The label is moved into alignment with the list.
	1. Select the input field for deposits.
	2. <Shift>-click to select the Amount to Deposit: label.
	3. Click the Horizontal Center button (see Figure�4-15). The label is centered relative to the fi...
	4. Repeat steps 1–3 for the Balance: label and its field.
	1. Make sure that the Deposit button is the desired size.
	2. Select the input field for deposits.
	3. <Shift>-click to select the Deposit button.
	4. Click the Vertical Center button (see Figure�4-15). The button is centered relative to the field.

	Spacing by Pixels
	Grouping Widgets
	1. Select the Amount to Deposit: label and the deposits field (order of selection doesn’t matter).
	2. Choose ArrangeﬁGroup in the Canvas Tool. Notice that a single set of selection handles surroun...
	3. Repeat steps 1 and 2 for the Balance: label and its field.
	4. <Shift>-click to select the first group you created.
	5. With both groups selected, click the Top Align button on the Canvas Tool.
	1. Select just the group that contains the Amount to Deposit: label and its field.
	2. <Shift>-click the Deposit action button.
	3. Choose ArrangeﬁGroup again to include the action button in the group.
	4. <Shift>-click on the group box widget surrounding the group.
	5. Click the Horizontal Center and Vertical Center alignment buttons.
	6. Choose ArrangeﬁGroup again to include the group box in the group.
	1. Left-align the deposits group with the list.
	2. Right-align the balance group with the list.
	3. Reinstall the canvas in the windowSpec method.
	Figure 4-16� After fine-tuning the widget arrangement

	Adjusting Window Layout
	a. Select all of the widgets in the canvas.
	b. Choose LayoutﬁRelative from the Canvas Tool.

	Creating the Check Window
	Painting and Setting Properties
	1. Open a new, empty canvas. (If necessary, close the canvas for the Checkbook main window to mak...
	2. Using Figure�4-17 as a guide, select, position, and size the widgets on the canvas. Resize the...
	Figure 4-17� The widgets in the Check dialog window

	3. Apply the nondefault property settings that are listed in the following table. (Look on the Ba...
	4. Align widgets as necessary.
	5. Adjust the window size and make the Check window a fixed size.
	6. Install the Check canvas in a new method called dialogSpec in the CheckbookInterface class:
	a. Click Install... in the Canvas Tool.
	b. In the INSTALL on Class: field of the dialog box, type CheckbookInterface
	c. In the enter new Selector: field, delete the default value and replace it with dialogSpec (if ...
	d. Click OK.
	7. Save your image.

	Previewing a Window for Another Platform
	1. Display the canvas you want to preview.
	2. From the Look menu on the Canvas Tool, choose the item that corresponds to the desired platform.

	What’s Next: Programming in Smalltalk

	Chapter 5�
	Developing the Domain Models
	What You Should Read
	If You Are New to Smalltalk
	If You Already Know Smalltalk
	1. In a File List, enter a pattern such as the following, where install- dir stands for the Visua...
	2. Select chkbk.st in the names view and choose file in from the <Operate> menu in that view.
	3. In a System Browser, select the category Examples-VWTutorial. If necessary, choose update from...
	4. Prepare the filed-in classes for use in Chapter 6:
	a. Select T_CheckbookInterface in the class view and choose remove... from the <Operate> menu to ...
	b. Rename T_Check to Check by selecting T_Check and choosing rename as... in the class view’s <Op...
	c. In the dialog box, specify Check and click OK. A second dialog box informs you that existing m...
	d. Click Rename in the second dialog box. A browser is displayed, highlighting the old name in th...
	e. In the browser, change the old name to the new name and choose accept from the <Operate> menu.
	f. Repeat steps a–e to rename T_Checkbook to Checkbook.

	5. Save your image.

	Creating the Check Class
	1. Locating the category for the Checkbook application’s classes.
	2. Defining the data structure (the class definition and instance variables) for the Check class.
	3. Documenting the Check class with a class comment.
	4. Defining methods that:

	Locating the Application’s Category
	1. Open a System Browser.
	2. Scroll the category view until you find Examples-VWTutorial. It should be near the end of the ...
	3. Select Examples-VWTutorial in the category view. CheckbookInterface appears in the class view,...
	Figure 5-1� System Browser for Examples-VWTutorial category

	Defining the Data Structure for the Check Class
	1. Leave Examples-VWTutorial selected in the category view, and, if necessary, deselect Checkbook...
	2. Leave the instance switch selected below the class view, because you are defining the data str...
	3. In the code view, edit the class definition template as follows:
	a. Replace NameOfSuperClass with Object.
	b. Replace #NameOfClass with #Check. Leave the pound sign (#), with no space between it and the c...
	c. Replace 'instVarName1 instVarName2' with the following list of instance variable names: 'numbe...
	d. Delete ClassVarName1 ClassVarName2, leaving the empty quotes.

	4. When the code view appears as in Figure�5-2, choose accept from the code view’s <Operate> menu...
	Figure 5-2� The Check class definition

	Analysis:� The Check Class Definition

	Creating a Check Instance
	1. Open a Workspace.
	2. In the Workspace, type the following message expression:
	3. Select the expression and choose inspect from the <Operate> menu. This opens an Inspector on t...
	Figure 5-3� Inspecting a Check instance

	4. Select self. The phrase a Check is displayed as its value.
	5. Select any of the listed instance variables to display its value. Because none of the variable...
	6. Close the Inspector.
	Analysis:� Message Expressions
	Analysis:� Messages for Creating Instances

	Documenting the Check Class
	1. Select Check in the class view, if necessary, and leave the instance switch selected.
	2. Choose comment from the class view’s <Operate> menu. The code view displays a default placehol...
	3. Replace the default comment with a comment such as the following:
	The Check class is a container for the information that makes up a check. It has messages for acc...
	4. Choose accept from the code view’s <Operate> menu to incorporate the comment into the class.
	5. Choose definition from the class view’s <Operate> menu to redisplay the class definition in th...

	Analysis:� The Check Class Comment

	Providing for Access to Check Data
	1. Select Check in the class view, if necessary, and leave the instance switch selected, because ...
	2. Create a new protocol:
	a. Choose add... in the protocol view.
	b. In the dialog box, enter the name accessing and click OK.

	3. Select the entire method template and replace it with the definition of the accessor method am...
	amount
	4. Choose accept from the code view’s <Operate> menu. The name of the new method appears in the m...
	Figure 5-4� The Check Class with the amount method

	5. Edit the text in the code view to define the mutator method amount:. Editing this text does no...

	amount: aValue
	6. Choose accept from the code view’s <Operate> menu.
	7. Edit the code view and choose accept for each of the accessor methods shown below. You can cre...

	date
	number
	payee
	8. Edit the code view and choose accept for each of the mutator methods shown below. You can crea...

	date: aValue
	number: aValue
	payee: aValue
	Figure 5-5� The Check class with complete accessing protocol

	Analysis:� Message Protocol
	Analysis:� Method Definitions
	amount
	amount: aValue

	Analysis:� Naming Conventions
	Analysis:� Method Compilation

	Setting Check Information
	1. In a Workspace, type the following message expression:
	2. Select the expression and choose inspect from the <Operate> menu.
	3. In the Inspector, select the date variable. Notice that its value is no longer nil but display...
	4. Close the Inspector.
	5. Replace the expression you typed in step 1 with the following sequence of expressions:
	| aCheck |
	6. Select all of these expressions and choose inspect. Now all of the instance variable have non-...
	7. Close the Inspector, but keep the Workspace.

	Analysis:� More about Message Expressions
	| aCheck |

	Providing for Character-Based Display
	1. Select Check in the class view, if necessary, and leave the instance switch selected, because ...
	2. Add a new protocol called printing.
	3. Replace the method template with the following code. Enter the single quotes and commas exactl...
	printOn: aStream
	4. Choose accept from the code view’s <Operate> menu.
	5. You have completed the Check class! (Save your image.)

	Analysis:� Constructing a String
	Analysis:� Streams

	Displaying a Check Instance’s Description
	1. Select the code that you typed in the Workspace on page�97:
	| aCheck |
	2. Choose inspect from the Workspace’s <Operate> menu.
	3. In the Inspector, select self. The object description now looks something like this (you may n...
	4. Close the Inspector.
	5. With the the code still selected, choose print it from the Workspace’s <Operate> menu. This pr...
	6. Delete the highlighted string.
	7. Now add another line of code in the Workspace to send the description to the System Transcript...

	| aCheck |
	8. Select the code and choose do it from the Workspace’s <Operate> menu. The object description i...

	Analysis:� The do it, print it, and inspect Commands
	Analysis:� Method Lookup
	1. Searches the methods in the Check class for a method whose pattern matches printString. No suc...
	2. Searches the methods in Check’s superclass, which is Object. It finds the printString method t...
	1. Evaluates self, which stands for the receiver that initiated the lookup for the currently exec...
	2. Sends the message printOn: to aCheck. This causes the method finder to search the methods in t...

	Creating the Checkbook Class
	1. Defining the data structure (the class definition and instance variables) for the Checkbook class
	2. Defining methods that:

	Defining and Documenting the Checkbook Class
	1. Select the Examples-VWTutorial class category in the System Browser, making sure the instance ...
	2. Edit the contents of the code view so that it contains the class definition shown below:
	Model subclass: #Checkbook
	3. Choose accept from the code view’s <Operate> menu to compile the class definition. The new cla...
	4. Document the class by choosing comment from the class view’s <Operate> menu and replacing the ...

	Instances of the class Checkbook contain a register of written checks and a balance; they also as...
	5. Choose accept from the code view’s <Operate> menu.
	6. Choose definition from the class view’s <Operate> menu to redisplay the class definition.

	Analysis:� Subclasses of Model

	Creating a Checkbook Instance
	1. In a Workspace, type the following message expression:
	2. Select the expression and choose inspect from the <Operate> menu. The Inspector lists the chec...
	Figure 5-6� Inspecting a Checkbook instance

	3. Notice that this list includes the variable dependents. This variable is part of the dependenc...
	4. Select any of the listed instance variables to display its value. Because none of the variable...
	5. Close the Inspector.

	Providing for Checkbook Initialization
	1. Select Checkbook in the class view of the System Browser, if necessary.
	2. Select the class switch so you can define a class method—a method that provides behavior for t...
	3. Add a protocol named instance creation (choose add... in the protocol view).
	4. Replace the method template in the code view with the following method definition and choose a...
	new
	5. Select the instance switch so that you can define an instance method.
	6. Add a protocol named initialize-release.
	7. In the code view, enter the following method definition and choose accept:

	initialize
	Analysis:� Initial Data Types
	Analysis:� Class and Instance Methods

	Creating an Initialized Checkbook Instance
	1. In a Workspace, type the following message expression:
	2. Select the expression and choose inspect from the <Operate> menu.
	3. Select each of the listed instance variables to verify that they have the correct initial values.
	4. Close the Inspector.
	Analysis:� More about Method Lookup
	1. Evaluates super new. As explained below, this creates a new Checkbook instance using the origi...
	2. Sends initialize to the result of the previous step.
	3. Returns the resulting initialized Checkbook instance.
	1. Evaluates super to be the Checkbook class (the receiver of the message that invoked the curren...
	2. Sends new to Checkbook, thereby initiating a method lookup. Because super was used, this looku...

	Providing for Access to Checkbook Data
	1. Select Checkbook in the class view of the System Browser, if necessary, and leave the instance...
	2. Add a protocol named accessing (choose add... in the protocol view).
	3. Edit the code view and choose accept for each of the accessor methods shown below:
	balance
	register
	4. Edit the code view and choose accept for the mutator method shown below:

	balance: anAmount
	Analysis:� Limited Access to Variables
	Analysis:� Change Notification
	1. A new Checkbook instance is created (and initialized).
	2. The balance: method:
	3. The new Checkbook instance finds the changed: method and executes it.
	4. The changed: method causes the Checkbook instance to send an update: message to any objects li...

	Providing for Checkbook Transactions
	1. Select Checkbook in the class view of the System Browser, if necessary, and leave the instance...
	2. Add a protocol named transactions (choose add... in the protocol view).
	3. Edit the code view and choose accept for the deposit: method shown below:
	deposit: anAmount
	a. Obtains the checkbook’s current balance
	b. Adds the specified amount to it
	c. Sets the result to be the new balance
	4. Edit the code view and choose accept for the makeNewCheck: method shown below:

	makeNewCheck
	a. Create a temporary variable and assign a new Check instance to it.
	b. Initialize the Check instance by sending it cascaded messages from Check’s protocol. Notice th...
	c. Return the resulting Check instance.
	5. Edit the code view and choose accept for the recordCheck: method shown below:

	recordCheck: aCheck
	a. Add the specified check to the end of the ordered collection held in the register variable. Th...
	b. Subtract the written check’s amount from the current balance.
	c. Calculate the sequence number that will be assigned by makeNewCheck to the next check it creates.
	6. Edit the code view and choose accept for the cancelCheck: method shown below:

	cancelCheck: aCheck
	a. Remove the specified check from the ordered collection.
	b. Add the amount of the canceled check back into the balance.
	7. You have completed the Checkbook class! (Save your image.)

	Analysis:� More about Complex Expressions
	1. The unary expression self balance is evaluated, returning the Checkbook instance’s current bal...
	2. The binary expression containing + is evaluated. Its receiver is the current balance returned ...
	3. The keyword expression containing balance: is evaluated. Its receiver is self (the Checkbook i...

	Analysis:� Alternative Implementation

	Testing the Checkbook Transactions
	1. For convenience, open a new Workspace and enlarge the VisualWorks main window.
	2. Test the checkbook’s ability to deposit into the account by entering the following code in the...
	| b c1 c2 |
	3. Select the code you entered and choose do it from the <Operate> menu.
	4. Click proceed in the dialog box for c2 and again in the dialog box for c1.
	5. Look at the System Transcript in the VisualWorks main window. It should contain these lines:

	Balance after 1st deposit: 100
	6. Click on the code in the Workspace to deselect it.
	7. Test the checkbook’s ability to make and record checks by adding the following lines to the Wo...

	c1 := b makeNewCheck.
	8. Select all the code in the Workspace (that is, all the code you entered in steps 2 and 7) and ...
	9. Look at the System Transcript. The output should now include additional lines like the following:

	First check: #1, 15 August 1994: $70 to Fred
	10. Click on the code in the Workspace to deselect it.
	11. Test the checkbook’s ability to cancel checks by adding the following lines to the Workspace ...

	b cancelCheck: c1.
	12. Select all the code in the Workspace (that is, all the code you entered in steps 2, 7, and 11...
	13. Look at the System Transcript. The output should now include additional lines like the follow...

	Balance after canceling 1st check: 130
	Analysis:� Transcript Messages
	Analysis:� Syntax Errors
	What’s Next: Programming the Interface

	Chapter 6�
	Programming the Interface
	VisualWorks Approach to Interface Programming
	Specifying Basic Appearance and Behavior
	Programming Application-Specific Behavior
	Action Widgets
	Data Widgets
	More about Value Models

	Another Look at Application Structure
	Figure 6-1� Value-model layer within the information model

	Programming the Application Model
	1. Set up your environment with the relevant tools.
	2. Browse CheckbookInterface to get acquainted with what is already there.
	3. Provide the application model with a Checkbook instance.
	4. Program the Amount to Deposit: field, the Deposit button, the Balance: field, and the Check Re...
	5. Program the main window’s menu bar.
	6. Provide a method for writing a new check through the Check dialog box.
	7. Program the fields in the Check dialog box.
	8. Provide a method for check canceling.
	Setting Up Your Work
	1. Arrange your screen so that it contains:
	2. Close any other windows you may have accumulated, such as the workspaces and inspectors you us...
	A Few Reminders

	Browsing the Application Model
	1. Select Examples-VWTutorial in the category view of the System Browser.
	2. Select CheckbookInterface in the System Browser’s class view.
	3. With the instance switch selected, examine the class definition. Notice that CheckbookInterface:
	4. Select the class switch. Notice that CheckbookInterface has two class method protocols:

	Providing the Checkbook Behind the Interface
	1. Display the class definition for CheckbookInterface in the System Browser (make sure Checkbook...
	2. Edit the contents of the code view to add an instance variable called checkbook as shown:
	ApplicationModel subclass: #CheckbookInterface
	3. Choose accept from the code view’s <Operate> menu.
	4. Add a protocol named initialize-release.
	5. In the code view, enter the following method definition and choose accept:

	initialize
	Analysis:� Initializing an Application Model
	1. The inherited new method creates an instance of CheckbookInterface and sends it an initialize ...
	2. The initialize method defined in CheckbookInterface sends the message new to Checkbook.
	3. The new method defined for Checkbook creates an instance of Checkbook and sends it an initiali...
	4. The initialize method defined in Checkbook assigns initial values to the instance’s variables.
	5. The resulting initialized instance of Checkbook is assigned to the checkbook variable of the C...
	Figure 6-2� An instance of CheckbookInterface holding onto a Checkbook instance

	Programming the Amount to Deposit: Field
	1. Decide on a name for the method that will return the value model. Because the value model will...
	2. In the canvas for the Checkbook main window, select the relevant input field (the field immedi...
	3. In the Properties Tool, type the name you chose in step 1 (namely, depositAmount) as the value...
	4. Reinstall the canvas in windowSpec to make the new property setting part of the interface spec...
	5. With the input field still selected in the canvas, generate the supporting code for it by clic...
	Figure 6-3� The Definer’s dialog box

	6. Click OK to generate code.
	7. Refresh the System Browser by choosing update from <Operate> menu in the category view. A new ...
	8. Examine the class definition (select �CheckbookInterface in the class view and choose definiti...
	9. Select the aspects protocol and the depositAmount method. The code view displays the generated...
	depositAmount
	Analysis:� Aspect Property
	Analysis:� The Definer
	Analysis:� Lazy Initialization, Booleans, Blocks

	Analysis:� Value Holders

	Programming the Deposit Button
	1. Decide on a name for the method to be defined. Because of the action it implements, you choose...
	2. Select the action button labeled Deposit in the canvas for the Checkbook main window. If neces...
	3. In the Properties Tool, type the name you chose in step 1 (namely, makeDeposit) as the value o...
	4. Reinstall the canvas in windowSpec to make the new property setting part of the interface spec...
	5. With the action button still selected in the canvas, generate a method stub for it by clicking...
	6. Click OK to generate code.
	7. Refresh the System Browser by choosing update from the <Operate> menu in the category view. A ...
	8. Select the actions protocol and then the makeDeposit method. The code view displays the follow...
	makeDeposit
	9. In the makeDeposit method definition, replace the expression (^self) with expressions that imp...
	makeDeposit

	Analysis:� Action Property
	Analysis:� makeDeposit Logic
	self depositAmount value > 0

	Analysis:� Warning Dialog

	Testing the Deposit Widgets
	1. Click Open from the Canvas Tool to start the application.
	2. Click in the Amount to Deposit: field to give it keyboard focus. This makes the field receptiv...
	3. Type a positive number in the Amount to Deposit: field. (Do not include a dollar sign or any c...
	4. Click the Deposit button.
	5. While the Checkbook application is still running, add the following expression to the definiti...
	Transcript cr; show: 'Deposited ', self depositAmount value printString,
	6. Click in the Amount to Deposit: field and enter another positive number; then click the Deposi...
	7. Click in the Amount to Deposit: field, enter another positive number, and press the <Return> k...
	8. Delete the expression added in step 5 and choose accept.
	9. Enter a negative number in the Amount to Deposit: field; then click the Deposit button. A warn...
	10. Click OK in the warning dialog. The negative amount remains displayed, with the appropriate o...
	11. Terminate the Checkbook application by closing its window with a window-management operation.

	Analysis:� Behind the Scenes During Setup
	1. The Canvas Tool sends the open message to CheckbookInterface. This class:
	a. Creates an instance of itself
	b. Tells the instance to create a builder
	c. Passes the builder the interface specification stored in the windowSpec class method

	2. The builder creates and sets up the various objects that form the Checkbook main window.
	a. Gets the field’s aspect property (depositAmount)
	b. Sends the depositAmount message to the CheckbookInterface instance, which responds by initiali...
	c. Assigns the new value holder to an instance variable in the field so that the field can send i...
	d. Makes the field a dependent of its value holder by listing it in the value holder’s dependents...
	e. Gets the button’s action property (makeDeposit)
	f. Sets up the button so that it responds to activation by sending the makeDeposit message to the...
	Figure 6-4� Object structure supporting the Amount to Deposit: field

	Analysis:� Behind the Scenes During Operation
	1. The field sends a value: message to put the entered amount in its value holder.
	2. The button sends a makeDeposit message to the CheckbookInterface instance.
	3. The CheckbookInterface instance responds by executing the makeDeposit method, which sends:
	a. A value message to the value holder to get the amount
	b. A deposit: message to the Checkbook instance to deposit the amount
	c. A value: message to the value holder to reset the held amount to 0

	4. The value holder responds to the value: message by notifying its dependents that its value has...
	5. The field responds to notification by sending a value message to the value holder to obtain th...

	Analysis:� Widgets as Dependents
	Analysis:� Modifying a Running Application

	Programming the Balance: Field
	1. Decide on a name for the method that will return the value model. Because the value model will...
	2. Select the relevant input field in the canvas for the Checkbook main window (select the field ...
	3. In the Properties Tool, type the name you chose in step 1 (namely, balanceAmount) as the value...
	4. Reinstall the canvas in windowSpec to make the new property setting part of the interface spec...
	5. With the input field still selected in the canvas, generate supporting code for it by clicking...
	6. Click OK to generate code.
	7. Refresh the System Browser by choosing update from the <Operate> menu in the category view.
	8. Examine the class definition for CheckbookInterface. Notice the new instance variable balanceA...
	9. Select the aspects protocol and then select the new balanceAmount method. The code view displa...
	balanceAmount
	10. In the balanceAmount method definition, keep the basic structure, but change the initializati...
	^balanceAmount isNil

	Analysis:� The Definer Revisited
	Analysis:� Aspect Adaptors

	Testing the Balance: Field
	1. Click Open from the Canvas Tool to start the application.
	2. Click in the Amount to Deposit: field and type a positive number.
	3. Click the Deposit button. Notice that the Balance: field displays the deposited amount.
	4. Enter a second deposit amount. The Balance: field now displays the sum of the two deposited am...
	5. Terminate the application by closing the window using the window manager.
	Analysis:� Setup of the Aspect Adaptor
	1. CheckbookInterface creates an instance of itself, which creates a builder and a Checkbook inst...
	2. The builder creates and sets up the various objects that form the Checkbook main window.
	a. Gets the field’s aspect property (balanceAmount).
	b. Sends the balanceAmount message to the CheckbookInterface instance, which responds by initiali...
	c. Assigns the new aspect adaptor to an instance variable in the field so that the field can send...
	d. Makes the field a dependent of its aspect adaptor by listing it in the aspect adaptor’s depend...
	Figure 6-5� Object structure supporting the Balance: field

	Analysis:� Operation of the Aspect Adaptor
	1. The Amount to Deposit: field and the Deposit button operate as described on page�150. Among th...
	2. The Checkbook instance:
	a. Adds the specified amount to its current balance
	b. Assigns the new balance to its balance instance variable by sending itself a balance: message
	c. Sends itself the changed: #balance message as part of executing the balance: method
	d. Responds to the changed: message by sending the update: #balance message to its dependents (in...

	3. The aspect adaptor responds to change notification by sending an update: #value message to its...
	4. The field responds to change notification by sending a value message to the aspect adaptor to ...
	5. The aspect adaptor responds to the value message by sending a balance message to the Checkbook...
	6. The field displays the new balance.

	Programming the Check Register List
	1. Decide on a name for the method that will return the list’s auxiliary object. Because this obj...
	2. Select the list in the canvas for the Checkbook main window. Ungroup widgets if necessary. The...
	3. In the Properties Tool, type the name you chose in step 1 (namely, checksList) as the value of...
	4. Reinstall the canvas in windowSpec to make the new property setting part of the interface spec...
	5. With the list still selected in the canvas, generate supporting code for it by clicking Define...
	6. Click OK to generate code.
	7. Refresh the System Browser by choosing update from the <Operate> menu in the category view.
	8. Examine the class definition (select CheckbookInterface in the class view and choose definitio...
	9. Select the aspects protocol and then select the new checksList method. The code view displays ...
	checksList
	10. In the checksList method definition, replace the instance-creation message new with the with:...

	checksList
	Analysis:� Setup of the List
	1. CheckbookInterface creates an instance of itself, which creates a builder and an initialized C...
	2. The builder creates and sets up the Checkbook main window. For the Check Register list, the bu...
	a. Gets the list widget’s aspect property (checksList)
	b. Sends the checksList message to the CheckbookInterface instance, which responds by initializin...
	c. Assigns each value holder to an instance variable in the list widget so the list widget can se...
	d. Makes the list widget a dependent of each value holder
	Figure 6-6� Object structure supporting the Check Register list

	Analysis:� SelectionInList Instances
	Analysis:� When the Collection Changes
	1. Obtain the collection of checks every time the Checkbook instance adds or removes a check from...
	2. Send the collection to the value holder by sending a list: message to the SelectionInList inst...

	Programming the Menu Bar
	1. Decide on the name of the message you want each menu item to send. For the FileﬁClose item, yo...
	2. Select the canvas itself (click anywhere in the canvas other than on a widget). This deselects...
	3. Choose ToolsﬁMenu Editor from the Canvas Tool to open the Menu Editor.
	4. Click Read to read in the entries for the canvas’s menu bar. (If the Read button is disabled, ...
	5. In each of the entries for menu items, replace nil with the appropriate message name (use Figu...
	Figure 6-7� The Menu Editor with message names filled in

	6. In the Menu Editor, click Build to generate new code for building a menu object.
	7. In the Menu Editor, click Install... to install the menu code in the application model. A dial...
	8. Close the Menu Editor.
	9. Test the menu bar:
	a. In the Canvas Tool, click Open to start the Checkbook application.
	b. Choose FileﬁClose from the Checkbook main window to close the application.

	10. Congratulations! You have finished setting the properties and editing the menu bar for the Ch...

	Setting Up for the Remaining Work
	1. Close the canvas (and Canvas Tool) for the Checkbook main window.
	2. Open the canvas for the Check dialog window:
	a. Open a Resource Finder.
	b. Select both the CheckbookInterface class and the dialogSpec resource.
	c. Click the Edit button.
	d. Close the Palette, but leave the Canvas Tool and the Resource Finder open.

	3. Leave the System Browser and the Properties Tool open.

	Providing for Writing New Checks
	1. Setting up the basic behavior for the Check dialog box. This includes both writing code and se...
	2. Programming the input fields in the Check dialog box.
	3. Writing the code that creates the blank check and records the completed check.

	Setting Up the Check Dialog Box’s Basic Behavior
	1. In the System Browser, select the actions instance protocol in the CheckbookInterface class.
	2. In the code view, replace the method template with the following and choose accept:
	writeNewCheck
	a. Define a temporary variable, userHasAccepted.
	b. Open a dialog box from the interface specification stored in the dialogSpec class method.
	c. Assign the dialog box’s result to the userHasAccepted variable. This result is true if the dia...
	d. Evaluates or ignores the argument block, depending on the value of userHasAccepted.
	3. In the Check canvas, select each action button and fill in its action property as specified be...
	4. Reinstall the canvas in dialogSpec to make the new property settings part of the interface spe...
	5. Test the basic behavior of the dialog box:
	a. Start the Checkbook application.
	b. In the Checkbook main window, choose ChecksﬁWrite... This sends the writeNewCheck message to t...
	c. In the dialog box, click Cancel. This invokes the cancel action, which closes the dialog box a...
	d. Choose ChecksﬁWrite to invoke the writeNewCheck method again.
	e. In the dialog box, click OK. This invokes the accept action, which closes the dialog box and c...
	f. Click Terminate in the error notifier.
	g. Close the Checkbook application.

	Analysis:� Actions for OK and Cancel Buttons
	Analysis:� Setup of the Dialog Box
	Figure 6-8� After opening the Check dialog box

	Programming the Input Fields in the Check Dialog Box
	1. Decide on a name for the method that is to create and return the subject channel; you choose t...
	2. Select each input field in the Check canvas and fill in its aspect property with the aspect pa...
	3. Reinstall the canvas in dialogSpec to make the new property settings part of the interface spe...
	4. With any of the input fields selected in the canvas, click Define... in the Canvas Tool.
	5. Click OK to generate code.
	6. Refresh the System Browser by choosing update from the <Operate> menu in the category view.
	7. Examine the class definition for CheckbookInterface. Notice the new instance variable checkHol...
	8. Select the aspects protocol and then select the new checkHolder method. The code view displays...
	checkHolder
	9. Select the writeNewCheck method in the actions protocol and add the expression indicated below...
	writeNewCheck
	10. Test the dialog box’s input fields:
	a. Start the Checkbook application from the Resource Finder.
	b. In the Checkbook main window, choose ChecksﬁWrite... to bring up the Check dialog box. Notice ...
	c. In the dialog box, click Cancel. You may leave the application running.

	Analysis:� Aspect Paths
	Analysis:� Setup of an Aspect Path
	1. The CheckbookInterface instance responds to the writeNewCheck message by:
	a. Sending itself the checkHolder message to access the value holder in the checkHolder instance ...
	b. Asking the Checkbook instance to create a new Check instance, which is placed in the checkHold...
	c. Creating a SimpleDialog instance and passing it the dialogSpec interface specification.

	2. The SimpleDialog instance creates a builder, which, among other things, builds the dialog box’...
	a. Obtaining the aspect path checkHolder amount from the interface specification.
	b. Sending a checkHolder message to the CheckbookInterface instance, which returns the value hold...
	c. Creating an aspect adaptor whose subject channel is the returned value holder and whose aspect...
	d. Assigning the new aspect adaptor to an instance variable in the input field so the input field...
	e. Making the input field a dependent of its aspect adaptor.

	3. The input fields obtain the initial data to display by sending a value message to their respec...
	4. When a user enters data into one of the input fields, the field sends a value: message to its ...
	Figure 6-9� Object structure for the dialog box’s amount field

	Analysis:� Subject Channels
	Analysis:� Advantages of Aspect Paths
	Figure 6-10� Aspect adaptors built from aspect paths

	Analysis:� Limitations of Aspect Paths

	Finishing the writeNewCheck Method
	1. Make sure that the writeNewCheck method is still selected in the System Browser.
	2. In the code view, replace the expression self unimplemented with the expressions indicated bel...
	writeNewCheck
	3. Test the completed writeNewCheck method:
	a. If necessary, start the Checkbook application from the Resource Finder.
	b. In the Checkbook main window, choose ChecksﬁWrite...
	c. Write a generous check to a deserving party. (Press <Tab> to shift the keyboard focus among in...
	d. Click OK. Notice that:

	Providing for Check Cancellation
	1. Make sure that the actions protocol of the CheckbookInterface class is selected.
	2. Replace the current contents of the code view with the following method definition and choose ...
	cancelSelectedCheck
	3. Test the ChecksﬁCancel menu item:
	a. Restart the Checkbook application, if necessary.
	b. Add a check.
	c. Try canceling the check without selecting it.
	d. Select and cancel the check.

	What’s Next?

	Appendix A�
	Glossary

	Appendix B�
	Widget Quick Reference
	Figure B-1� The VisualWorks Palette

	action button�(See Figure�B-2) Also called a “push button” on some platforms. Triggers a short ac...
	Figure B-2� An interface to modify a font
	Figure B-3� Three ways to choose a gray tone

	group box�(See Figure�B-3) A rectangle that surrounds groups of related widgets. The sides of the...
	Figure B-4� Embedded interfaces

	linked data form�(See Figure�B-4) A special-purpose action button that, when clicked, displays a ...
	Figure B-5� A list linked to a text editor
	Figure B-6� A notebook with interdependent tabs
	Figure B-7� Creating a label
	Figure B-8� Presenting columns of information

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

