
Part Number: DS20002003

VisualWorks

Tutorial

ParcPlace-Digitalk, Inc., 999 East Arques Avenue, Sunnyvale, CA 94086-4593

Copyright © 1995 by ParcPlace-Digitalk, Inc. All rights reserved.

Part Number: DS20002003

Revision 2.1, December 1995 (Software Release 2.5)

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Trademark acknowledgments:

ObjectKit, ObjectWorks, ParcBench, ParcPlace, and VisualWorks are trademarks of ParcPlace
Systems, Inc., its subsidiaries, or successors and are registered in the United States and other
countries. DataForms, MethodWorks, ObjectLens, ObjectSupport, ParcPlace Smalltalk, Visual
Data Modeler, VisualWorks Advanced Tools, VisualWorks Business Graphics, VisualWorks
Database Connect, VisualWorks DLL and C Connect, and VisualWorks ReportWriter are
trademarks of ParcPlace Systems, Inc., its subsidiaries, or successors. ENVY is a registered
trademark of Object Technology International, Inc. All other products or services mentioned
herein are trademarks of their respective companies. Specifications subject to change without
notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names, hierarchies, or
protocols may be copied for implementation in other systems.

This manual set and online system documentation copyright © 1995 by ParcPlace-Digitalk, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine-readable form without prior written consent from
ParcPlace-Digitalk.

Contents

About This Book ix
Audience ix
Organization ix
Conventions x

Typographic Conventions xi
Special Symbols xi
Screen Conventions xii
Mouse Buttons xii

Three-Button Mouse xiii
Two-Button Mouse xiii
One-Button Mouse xiii

Mouse Operations xiv
Additional Sources of Information xiv

Printed Documentation xiv
Online Documentation xv

Obtaining Technical Support xvi
Before Contacting Technical Support xvi
How to Contact Technical Support xvi

Electronic Mail xvii
Electronic Bulletin Boards xvii
World Wide Web xvii
Telephone and Fax xvii

Chapter 1 Getting Started 1
What Is VisualWorks? 1

VisualWorks as a Smalltalk Environment 2
Starting VisualWorks 2

Macintosh Platforms 3
OS/2 Platforms 3
UNIX Platforms 3
Windows Platforms 3
VisualWorks Tutorial, Rev. 2.1 iii

Contents
A First Look at VisualWorks 4
VisualWorks Main Window 4

Main-Window Menus 5
Main-Window Tool Bar 6
System Transcript 6

Workspace Window 6
Interacting with VisualWorks 7

Mouse-Button Functions 7
Getting Some Practice 8
Managing VisualWorks Windows 11

Saving Your VisualWorks Image 13
Creating Your Own Working Image 13

If You Created an Image in a New Location 14
Taking Snapshots 15

Exiting VisualWorks 15
What’s Next: The VisualWorks Environment 16

Chapter 2 The VisualWorks Environment 17
Starting Your Working Image 17
Sending Messages to Smalltalk Objects 18
Browsing the Smalltalk Class Library 19

Using a System Browser 19
Finding a Class by Name 23
Adding a Category 24
Browsing the Class Hierarchy 24

Using a Hierarchy Browser 24
Storing and Retrieving Information in Files 26

Writing to Disk Files 26
Retrieving Information from Disk Files 26

Running an Application 28
Browsing Online Documentation 30

Exploring the Cookbook’s Sample Applications 33
Customizing Your Working Image 35
Viewing Changes Since the Last Save 36
What’s Next: Creating Applications 37

Chapter 3 Introduction to VisualWorks Application Building 39
Application Requirements 39
VisualWorks Approach to Application Design 40

Layered Structure 40
Domain Models 42
Application Models 42
iv VisualWorks Tutorial, Rev. 2.1

Contents
Why Layering? 43
UI-Based Structure 44

Why UI-Based Structure? 44
Building Blocks in the Framework 45

Framework for Database Applications 46
Designing the Sample Application 46

Designing the User Interface 47
Designing the Models 47

Designing Domain Models 47
Designing Application Models 48

What’s Next: Constructing the Sample Application 49

Chapter 4 Creating a Graphical User Interface 51
Designing the Checkbook Main Window 51

Design Alternatives 52
Creating the Main Window 53

Opening a Blank Canvas 53
Painting the Canvas 55

Sizing the Canvas 55
Painting a Widget 55
Selecting and Deselecting a Widget 56
Positioning a Widget 57
Resizing a Widget 57
Copying and Pasting a Widget 57
Painting Multiple Copies of a Widget 58
Deleting a Widget 58

Setting Properties 59
Displaying a Widget’s Properties 59
Applying a Changed Property 60
Moving the Selection to the Next Widget 61
Inspecting the List Properties 61
Setting the Input Field Properties 62
Setting the Window Properties 63

Installing the Canvas 64
Finding an Installed Canvas 66

Editing a Menu Bar 67
Opening the Interface 70

Behind the Scenes 70
Inspecting the Prototype Window 71

Revising the Main Window 72
Adding More Widgets 72
Refining Widget Arrangement 74
VisualWorks Tutorial, Rev. 2.1 v

Contents
Selecting Multiple Widgets 74
Equalizing Widget Sizes 75
Aligning Widgets 76
Spacing by Pixels 77
Grouping Widgets 77

Adjusting Window Layout 78
Creating the Check Window 79

Painting and Setting Properties 79
Previewing a Window for Another Platform 82
What’s Next: Programming in Smalltalk 82

Chapter 5 Developing the Domain Models 83
What You Should Read 83

If You Are New to Smalltalk 83
If You Already Know Smalltalk 84

Creating the Check Class 85

Locating the Application’s Category 86

Defining the Data Structure for the Check Class 87
Analysis: The Check Class Definition 88

Creating a Check Instance 89
Analysis: Message Expressions 90
Analysis: Messages for Creating Instances 90

Documenting the Check Class 91
Analysis: The Check Class Comment 91

Providing for Access to Check Data 92
Analysis: Message Protocol 94
Analysis: Method Definitions 95
Analysis: Naming Conventions 96
Analysis: Method Compilation 96

Setting Check Information 97
Analysis: More about Message Expressions 97

Providing for Character-Based Display 99
Analysis: Constructing a String 100
Analysis: Streams 100

Displaying a Check Instance’s Description 101
Analysis: The do it , print it , and inspect Commands 102
Analysis: Method Lookup 102

Creating the Checkbook Class 104

Defining and Documenting the Checkbook Class 105
Analysis: Subclasses of Model 106
vi VisualWorks Tutorial, Rev. 2.1

Contents
Creating a Checkbook Instance 107

Providing for Checkbook Initialization 108
Analysis: Initial Data Types 109
Analysis: Class and Instance Methods 109

Creating an Initialized Checkbook Instance 110
Analysis: More about Method Lookup 110

Providing for Access to Checkbook Data 112
Analysis: Limited Access to Variables 113
Analysis: Change Notification 113

Providing for Checkbook Transactions 115
Analysis: More about Complex Expressions 117
Analysis: Alternative Implementation 119

Testing the Checkbook Transactions 120
Analysis: Transcript Messages 122
Analysis: Syntax Errors 123

What’s Next: Programming the Interface 125

Chapter 6 Programming the Interface 127
VisualWorks Approach to Interface Programming 127

Specifying Basic Appearance and Behavior 128
Programming Application-Specific Behavior 128

Action Widgets 129
Data Widgets 130

Another Look at Application Structure 131
Programming the Application Model 132

Setting Up Your Work 133
A Few Reminders 133

Browsing the Application Model 134

Providing the Checkbook Behind the Interface 135
Analysis: Initializing an Application Model 135

Programming the Amount to Deposit: Field 137
Analysis: Aspect Property 139
Analysis: The Definer 139
Analysis: Lazy Initialization, Booleans, Blocks 140
Analysis: Value Holders 142

Programming the Deposit Button 143
Analysis: Action Property 144
Analysis:makeDeposit Logic 144
Analysis: Warning Dialog 146

Testing the Deposit Widgets 147
VisualWorks Tutorial, Rev. 2.1 vii

Contents
Analysis: Behind the Scenes During Setup 148
Analysis: Behind the Scenes During Operation 149
Analysis: Widgets as Dependents 150
Analysis: Modifying a Running Application 150

Programming the Balance: Field 151
Analysis: The Definer Revisited 153
Analysis: Aspect Adaptors 153

Testing the Balance: Field 155
Analysis: Setup of the Aspect Adaptor 155
Analysis: Operation of the Aspect Adaptor 156

Programming the Check Register List 158
Analysis: Setup of the List 160
Analysis:SelectionInList Instances 161
Analysis: When the Collection Changes 162

Programming the Menu Bar 164

Setting Up for the Remaining Work 166

Providing for Writing New Checks 167

Setting Up the Check Dialog Box’s Basic Behavior 168
Analysis: Actions for OK and Cancel Buttons 170
Analysis: Setup of the Dialog Box 170

Programming the Input Fields in the Check Dialog Box 172
Analysis: Aspect Paths 175
Analysis: Setup of an Aspect Path 176
Analysis: Subject Channels 177
Analysis: Advantages of Aspect Paths 178
Analysis: Limitations of Aspect Paths 179

Finishing the writeNewCheck Method 180

Providing for Check Cancellation 181

What’s Next? 182

Appendix A Glossary 183

Appendix B Widget Quick Reference 199

Index 207
viii VisualWorks Tutorial, Rev. 2.1

t
ing

ual-
s

ct-

ial
ph-

nt
ing

s
About This Book

This tutorial introduces VisualWorks®, a fully object-oriented environmen
for constructing applications using the ParcPlace Smalltalk™ programm
language.

This tutorial presents steps for constructing a sample application with Vis
Works. In the process, this tutorial introduces the VisualWorks tools, clas
library, and approach to application design. It also introduces basic obje
oriented concepts and the Smalltalk language.

Audience

This tutorial is intended for anyone who is new to VisualWorks. This tutor
does not assume that you know object-oriented concepts, Smalltalk, or gra
ical user-interface application architecture.

If you are new to applications with graphical user interfaces, you may wa
to consult your platform’s documentation for general information about us
a mouse to interact with an application.

Organization

This tutorial falls into three parts.

Chapters 1 and 2 introduce VisualWorks:

n Chapter 1, “Getting Started,” shows you how to start and exit Visual-
Works, find your way around the VisualWorks main window, interact
with VisualWorks’ graphical user interface, and save your work.

n Chapter 2, “The VisualWorks Environment,” introduces the basic tool
for exploring and configuring the VisualWorks environment. Some of
these tools help you find and manipulate Smalltalk objects; others
provide information about your VisualWorks image. Chapter 2 also
VisualWorks Tutorial, Rev. 2.1 ix

About This Book

ral
ill

the
n.

e
r 5.

s

ks

s

cal
introduces basic Smalltalk concepts such as object, message, class,
instance variable, and method.

Chapters 3 through 6 walk you through building a sample application:

n Chapter 3, “Introduction to VisualWorks Application Building,” intro-
duces the sample application that you will build. It describes the gene
design of a VisualWorks application and outlines the design that you w
use for the sample application.

n Chapter 4, “Creating a Graphical User Interface,” describes how to
create the visual portion of a graphical user
interface.

n Chapter 5, “Developing the Domain Models,” explains how to create
Smalltalk classes that provide the basic processing for the applicatio

n Chapter 6, “Programming the Interface,” explains how to integrate th
graphical user interface with the Smalltalk classes created in Chapte

Two appendixes explain terms used in this tutorial and in the VisualWork
interface:

n Appendix A, “Glossary,” defines terms that are particular to VisualWor
applications and the Smalltalk language.

n Appendix B, “Widget Quick Reference,” describes the various widget
available to you in the VisualWorks Palette.

Conventions

This section describes the notational conventions used to identify techni
terms, computer-language constructs, mouse buttons, and mouse and
keyboard operations.

Typographic Conventions

This book uses the following fonts to designate special terms:
x VisualWorks Tutorial, Rev. 2.1

Conventions

ion-

ed

r

e
s

l-

uen-

s.
Special Symbols

This book uses the following symbols to designate certain items or relat
ships:

Example Description

template Indicates new terms where they are defined, emphasiz
words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and other
C++, UNIX, or DOS constructs to be entered outside
VisualWorks (for example, at a command line).

filename .xwd Indicates a variable element for which you must substi-
tute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any othe
information that you enter through the VisualWorks
graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also indicates
emphasis in Smalltalk code
samples.

Examples Description

File ?New command Indicates the name of an item on a menu.

<Return> key
<Select> button
<Operate> menu

Indicates the name of a keyboard key or mous
button; it also indicates the pop-up menu that i
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed simu
taneously.

<Escape> <c> Indicates two keys that must be pressed seq
tially.

Integer>>asCharacter Indicates an instance method defined in a clas
VisualWorks Tutorial, Rev. 2.1 xi

About This Book

ts of
fault

tly,

rs,
oid

d

n

Screen Conventions

This tutorial contains a number of sample screens that illustrate the resul
various tasks. The windows in these sample screens are shown in the de
Smalltalk look, rather than the look of any particular platform. Consequen
the windows on your screen will differ slightly from those in the sample
screens.

Mouse Buttons

Many hardware configurations supported by VisualWorks have a three-
button mouse, but a one-button mouse is the standard for Macintosh use
and a two-button mouse is common for OS/2 and Windows users. To av
the confusion that would result from referring to <Left>, <Middle>, and
<Right> mouse buttons, this book instead employs the logical names
<Select>, <Operate>, and <Window>.

The mouse buttons perform the following interactions:

Three-Button Mouse

VisualWorks uses the three-button mouse as the default:

Float class>>pi Indicates a class method defined in a class.

Caution: Indicates information that, if ignored, could
cause loss of data.

Warning: Indicates information that, if ignored, could
damage the system.

<Select> button Select (or choose) a window location or a menu item,
position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are appropriate for
the current view or selection. The menu that is displaye
is referred to as the <Operate> menu.

<Window> button Bring up the menu of actions that can be performed o
any VisualWorks window (except dialogs), such as
move and close . The menu that is displayed is referred
to as the
<Window> menu.

Examples Description
xii VisualWorks Tutorial, Rev. 2.1

Conventions

 the

at

ut-
n The left button is the <Select> button.

n The middle button is the <Operate> button.

n The right button is the <Window> button.

Two-Button Mouse

On a two-button mouse:

n The left button is the <Select> button.

n The right button is the <Operate> button.

n To access the <Window> menu, you press the <Control> key and the
<Operate> button together.

One-Button Mouse

On a one-button mouse:

n The unmodified button is the <Select> button.

n To access the <Operate> menu, you press the <Option> key and the
<Select> button together.

n To access the <Window> menu, you press the <Command> key and
<Select> button together.

Mouse Operations

The following table explains the terminology used to describe actions th
you perform with mouse buttons.

When you see: Do this:

click Press and release the <Select> mouse b
ton.

double-click Press and release the <Select> mouse
button twice without moving the pointer.
VisualWorks Tutorial, Rev. 2.1 xiii

About This Book

the

m.

su-

s

ols
at

s

-

t-

t-

se
Additional Sources of Information

Printed Documentation

In addition to this tutorial, the core VisualWorks documentation includes
following documents:

n Installation Guide: Provides instructions for the installation and testing
of VisualWorks on your combination of hardware and operating syste

n Release Notes: Describes the new features of the current release of Vi
alWorks.

n Cookbook: Provides step-by-step instructions for performing hundred
of common VisualWorks tasks.

n User’s Guide: Provides an overview of object-oriented programming, a
description of the Smalltalk programming language, a VisualWorks to
reference, and a description of various reusable software modules th
are available in VisualWorks.

n International User’s Guide: Describes the VisualWorks facilities that
support the creation of nonEnglish and cross-cultural applications.

n Object Reference: Provides detailed information about the VisualWork
class library.

The documentation for the VisualWorks database tools consists of the
following documents:

n VisualWorks’ Database Tools Tutorial and Cookbook: Introduces the
process and tools for creating applications that access relational data

<Shift>-click While holding down the <Shift> key,
press and release the <Select> mouse bu
ton.

<Control>-click While holding down the <Control> key,
press and release the <Select> mouse bu
ton.

<Meta>-click While holding down the <Meta> or <Alt>
key, press and release the <Select> mou
button.

When you see: Do this:
xiv VisualWorks Tutorial, Rev. 2.1

Obtaining Technical Support

l
2

-

lp,
lk
alk
 the

g.
bases. The “Cookbook” chapter describes how to programmatically
customize various aspects of a database application.

n Database Connect User’s Guide: Provides information about the externa
database interface. Versions of it exist for Oracle7, SYBASE, and DB
databases.

Online Documentation

To display the online documentation browser, open the Help pull-down menu
from the VisualWorks main menu bar and select Open Online Documen-
tation . Your choice of online books includes:

n Database Cookbook: Online version of the “Cookbook” part of the Visu-
alWorks’ Database Tools Tutorial and Cookbook described above.

n Database Quick Start Guides: Describes how to build database applica
tions. It covers such topics as data models, single- and multiwindow
applications, and reusable data forms.

n International User’s Guide: Online version of the International User’s
Guide described above.

n VisualWorks Cookbook: Online version of the Cookbook described
above.

Obtaining Technical Support

If, after reading the documentation, you find that you need additional he
you can contact ParcPlace-Digitalk Technical Support. ParcPlace-Digita
provides all customers with help on product installation. ParcPlace-Digit
provides additional technical support to customers who have purchased
ObjectSupport package. VisualWorks distributors often provide similar
services.

Before Contacting Technical Support

When you need to contact a technical support representative, please be
prepared to provide the following information:

n The version id, which indicates the version of the product you are usin
Choose Help?About VisualWorks in the VisualWorks main window.
The version number can be found in the resulting dialog under Version
Id: .
VisualWorks Tutorial, Rev. 2.1 xv

About This Book

e

ec-

a-
n Any modifications (patch files) distributed by ParcPlace-Digitalk that
you have imported into the standard image. Choose Help?About Visu-
alWorks in the VisualWorks main window. All installed patches can b
found in the resulting dialog under Patches: .

n The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error
notifier window (or in the stack view of the spawned Debugger). Then
paste the text into a file that you can send to technical support.

How to Contact Technical Support

ParcPlace-Digitalk Technical Support provides assistance by:

n Electronic mail

n Electronic bulletin boards

n World Wide Web

n Telephone and fax

Electronic Mail

To get technical assistance on the VisualWorks line of products, send el
tronic mail to support-vw@parcplace.com .

Electronic Bulletin Boards

Information is available at any time through the electronic bulletin board
CompuServe. If you have a CompuServe account, enter the ParcPlace-
Digitalk forum by typing
go ppdforum at the prompt.

World Wide Web

In addition to product and company information, technical support inform
tion is available via the World Wide Web:

1. In your Web browser, open this location (URL):

http://www.parcplace.com

2. Click the link labeled “Tech Support.”
xvi VisualWorks Tutorial, Rev. 2.1

Obtaining Technical Support

7-

0

s for
Telephone and Fax

Within North America, you can:

n Call ParcPlace-Digitalk Technical Support at 408-773-7474 or 800-72
2555.

n Send questions and information via fax at 408-481-9096.

Operating hours are Monday through Thursday from 6:00 a.m. to 5:0
p.m., and Friday from 6:00 a.m. to 2:00 p.m., Pacific time.

Outside North America, you must contact the local authorized reseller of
ParcPlace-Digitalk products to find out the telephone numbers and hour
technical support.
VisualWorks Tutorial, Rev. 2.1 xvii

About This Book
xviii VisualWorks Tutorial, Rev. 2.1

ws

a-
l-
ng
 to

ly
Chapter 1

Getting Started

This chapter provides an introductory description of VisualWorks and sho
you how to:

n Start VisualWorks

n Find your way around the VisualWorks main window

n Interact with the VisualWorks graphical user interface

n Save your work

n Exit VisualWorks

What Is VisualWorks?

VisualWorks is a fully object-oriented environment for constructing applic
tions, using the ParcPlace Smalltalk programming language. With Visua
Works, you can rapidly build graphical user interfaces for new and existi
applications. In addition, you can use VisualWorks to link your application
various relational databases.

With the following VisualWorks features, you can build applications quick
and easily:

n Point-and-click tools for incorporating controls (or widgets) into your
application’s graphical user interface

n A predefined application framework that you can adapt for your own
application

n Mechanisms for reusing applications and interfaces

n Links to relational databases such as Oracle7, SYBASE, and DB2.

n Instant portability of your application over UNIX, Microsoft Windows,
OS/2, and Macintosh platforms
VisualWorks Tutorial, Rev. 2.1 1

Chapter 1 Getting Started

ata.

 can
u-

ts to

piler,
ltalk

ine

vi-

r
e.

our
n

ur

VisualWorks as a Smalltalk Environment

VisualWorks capabilities are implemented in the ParcPlace Smalltalk
programming language and therefore are part of the ParcPlace Smalltalk
system. This system consists of interacting objects—software units that
contain collections of related data plus operations for manipulating that d
These objects collaborate to perform a wide variety of functions.

Some of the objects in the ParcPlace Smalltalk system exist so that you
incorporate them into your own programs. In fact, part of your work in Vis
alWorks will consist of familiarizing yourself with the objects in the system
library, adapting these objects to suit your needs, and adding new objec
the system.

Other objects (sometimes called system objects) provide functions that are
usually associated with a software development system: an editor, a com
a debugger, print utilities, a window system, and so on. ParcPlace Smal
is more than a programming language; it provides VisualWorks with a
complete programming environment.

Note: Throughout this tutorial, the term Smalltalk refers to ParcPlace Small-
talk.

Starting VisualWorks

This tutorial assumes that VisualWorks is already installed on your mach
or system. Starting VisualWorks means running an object engine with an
image, where:

n An image is a file or document that contains the entire VisualWorks en
ronment; it stores compiled versions of the objects in the Smalltalk
system.

n The object engine is an executable program that runs Smalltalk on you
platform; it essentially “sets in motion” the system objects in an imag

The first time you start VisualWorks, you use the standard image—that is, the
image that was delivered with VisualWorks. Thereafter, you normally do y
work in your own working image, returning to the standard image only whe
you want to create a new working image from it.

Now start the standard VisualWorks image, following the directions for yo
platform. (Start this image even if you already created a custom working
image during installation.)
2 VisualWorks Tutorial, Rev. 2.1

Starting VisualWorks
Macintosh Platforms

To start the standard image on a Macintosh computer:

1. Open the image folder in the VisualWorks installation folder (typically
called Visual).

2. Double-click the visual.im document.

OS/2 Platforms

To start the standard image on an OS/2 platform:

‰ Double-click the VisualWorks program object in the
VisualWorks 2.5 folder.

UNIX Platforms

To start the standard image on a UNIX platform:

1. Verify that your window manager is operating.

2. Enter a command of the following form at the UNIX prompt:

% visualworks image-path

where image-path is the pathname of the standard image (for
example, /usr/visual/image/visual.im).

Windows Platforms

To start the standard image on a Windows 95 platform:

‰ Double-click the Visual document in the Image folder in the Visual-
Works installation folder (typically called Visual).

To start the standard image on other Windows platforms:

‰ Double-click on the VisualWorks program-item icon in the Visu-
alWorks 2.5 program group in the Program Manager.
VisualWorks Tutorial, Rev. 2.1 3

Chapter 1 Getting Started

e
ese

ault
tly,

s
A First Look at VisualWorks

On all platforms, starting VisualWorks from the standard image opens th
VisualWorks main window and a Workspace, as shown in Figure 1-1. Th
windows are described in the following sections.

Note: In the sample screens that follow, the windows are shown in the def
Smalltalk look, rather than the look of any particular platform. Consequen
the windows on your screen will differ slightly from those in the sample
screens.

Figure 1-1 The windows displayed in the standard image

VisualWorks Main Window

The VisualWorks main window is the starting point for your work. It remain
on your screen as long as VisualWorks is running.

The VisualWorks main window is identified by the title
VisualWorks in the window’s title bar, as shown in Figure 1-2. It also
contains a menu bar, a tool bar, and a message area known as the System Tran-
script.
4 VisualWorks Tutorial, Rev. 2.1

A First Look at VisualWorks

l-
ing

e
di-
s on
al

iz-

-

Figure 1-2 The VisualWorks main window

Main-Window Menus

The menus on the VisualWorks main window provide access to all Visua
Works tools and capabilities. These menus are summarized in the follow
table:

Note to Macintosh users: For all normal VisualWorks operations, you use th
menus that are displayed in the VisualWorks main window (or in other in
vidual VisualWorks windows). You use the menus that VisualWorks place
the Macintosh menu bar only if VisualWorks fails to respond to the norm
menus. See the VisualWorks Installation Guide (Macintosh) for information
about the VisualWorks menus on the Macintosh menu bar.

Menu Contains commands for:

File Saving, customizing, and exiting the VisualWorks image

Browse Browsing the Smalltalk programs in the image

Tools Opening a variety of development tools, including file editors and
tools for creating graphical user interfaces

Changes Opening tools for viewing changes made to the image and for organ
ing your work into separate projects

Data-
base

Invoking VisualWorks’ database tools, which help you create applica
tions that access relational databases

Window Managing the open VisualWorks windows

Help Opening the various online documents and guides

title bar

menu bar

tool bar

System
Transcript
VisualWorks Tutorial, Rev. 2.1 5

Chapter 1 Getting Started

re
ular
le:

ain
rting
em
tem

s a
. In

ly
Main-Window Tool Bar

The tool bar on the VisualWorks main window provides access to the mo
frequently used tools. Each button on the tool bar is a shortcut for a partic
menu command. These buttons are briefly described in the following tab

System Transcript

The System Transcript is the area below the tool bar in the VisualWorks m
window. The System Transcript displays system messages such as repo
when the current image was created. In Chapter 5, you will use the Syst
Transcript to display output from testing code. You can also use the Sys
Transcript as you would a Workspace (see the next section).

Workspace Window

In addition to the VisualWorks main window, the standard image display
Workspace. Workspaces are windows that you can use as scratch pads
addition to entering text (such as notes to yourself), you can enter and
evaluate fragments of Smalltalk code. This makes Workspaces especial
useful for:

n Prototyping new code before making it a permanent part of the system

n Testing code that has no specific graphical user interface

Button Invokes this tool:

File List, for creating, editing, and viewing files in the plat-
form’s file system

System Browser, for browsing and creating Smalltalk pro-
grams

Workspace, a Smalltalk scratch pad

Canvas, for creating graphical user interfaces for applica-
tions

Resource Finder, for locating and running applications

Data Modeler (see the VisualWorks’ Database Tools Tuto-
rial and Cookbook)

Online Documentation Browser, for reading online task ref-
erence and quick start guides
6 VisualWorks Tutorial, Rev. 2.1

Interacting with VisualWorks

pen

s,
 such
ing
en-

hat

-
ns

nu
of

-up
 on

up
rm

w.

ter-

.)

int
When you first start the standard image, the Workspace that is opened
displays copyright information. You can have more than one Workspace o
at a time.

Interacting with VisualWorks

You interact with VisualWorks through its graphical user interface. That i
you use a pointing device such as a mouse to manipulate visual controls
as menus and buttons in the VisualWorks windows. If you are new to us
applications with graphical user interfaces, consult your platform’s docum
tation for general information about interacting with such
applications.

Mouse-Button Functions

One feature that makes VisualWorks different from other applications is t
you interact with it using three mouse-button functions, called <Select>,
<Operate>, and <Window>. You can invoke these functions from a three
button, a two-button, or a one-button mouse. To find out how these butto
correspond to the buttons on your mouse, see page xii.

In general, you use:

n The <Select> button for making selections in a window—choosing me
items, clicking action buttons, highlighting text, selecting the location
keyboard input, and so on.

n The <Operate> button for displaying and making choices from a pop
menu called the <Operate> menu. The contents of this menu depend
the location of the mouse pointer.

n The <Window> button for displaying and making choices from a pop-
menu called the <Window> menu. The commands on this menu perfo
window-management operations such as closing or resizing a windo

Getting Some Practice

Now try some basic operations to get acquainted with the VisualWorks in
face and its logical mouse buttons:

1. Move the mouse until the pointer is over some text in the Workspace
window. (The Workspace should still contain the copyright statement

2. Click the <Select> button. This moves the text cursor to the position
indicated by the pointer. The text cursor (equivalent to an insertion po
VisualWorks Tutorial, Rev. 2.1 7

Chapter 1 Getting Started

s at

.

te>
in other applications) is a small, solid triangle between two character
the base of the line of text.

3. Type some characters. They are inserted to the left of the text cursor

Note: You must keep the mouse pointer within the window that is to
receive keyboard input.

4. Undo your typing by choosing the undo command from the Work-
space’s <Operate> menu:

n With the pointer still in the Workspace, press and hold the <Opera
button. Move the pointer over the undo command and release the
button.

Figure 1-3 The undo command on the <Operate> menu
8 VisualWorks Tutorial, Rev. 2.1

Interacting with VisualWorks

t>

5. Open an additional Workspace by choosing Tools ?Workspace from
the VisualWorks main window:

n Put the pointer on Tools in the menu bar. Press and hold the <Selec
button. Move the pointer over the Workspace menu item and
release the button.

Figure 1-4 TheWorkspace command on theTools menu

A window outline is displayed.

Figure 1-5 Window outline

6. Move the mouse pointer to position the window outline and click to
display the Workspace.

Note: Unless otherwise specified, words like “click” and “double-click”
always refer to the <Select> button.
VisualWorks Tutorial, Rev. 2.1 9

Chapter 1 Getting Started

in

t the

n
e

t

 of

to
Figure 1-6 A new Workspace

7. Open a third Workspace, resizing it as you open it:

a. Click the Workspace button in the tool bar of the VisualWorks ma
window.

b. Position the window outline as before.

c. Press and hold the <Select> button. The mouse pointer appears a
lower-right corner of the outline.

d. Move the mouse pointer to resize the outline as desired.

e. Release the <Select> button.

8. Select some text in the first Workspace, which should still contain the
copyright statement:

n To select an arbitrary amount of text, hold the <Select> button dow
and drag the mouse pointer over the desired text; then release th
pointer.

n To deselect text, click anywhere in the window.

n To select all text, double-click at the beginning of the first line or a
the end of the last line.

n To select a single line of text, double-click at the beginning or end
the line.

n To select a single word, double-click within the word.

n To extend a selection, <Shift>-click where you want the selection
begin or end.

Workspace button
10 VisualWorks Tutorial, Rev. 2.1

Interacting with VisualWorks

so

g a
to

ks

9. With some text selected, choose copy from the <Operate> menu. This
copies the text to your platform’s clipboard.

10. Move the pointer to another Workspace and choose paste from the
<Operate> menu. This inserts the contents of the clipboard into the
Workspace.

11. With the pasted text still selected, choose cut from the <Operate> menu.
This deletes the text from the Workspace and puts it in the clipboard
you can paste it again.

Note: On many platforms, you can delete unselected characters usin
<Delete> or <Backspace> key; however, such characters are not put in
the clipboard.

12. In a Workspace that contains text:

a. Choose accept from the <Operate> menu. This causes VisualWor
to remember the current contents of the window.

b. Make some changes (add, delete, or copy any text).

c. Choose cancel from the <Operate> menu. This causes the window
to revert to its accepted state.

13. Practice finding and replacing text (use find and replace on the
<Operate> menu).

14. If your platform is set up with a default printer, print the contents of a
Workspace by choosing hardcopy from the <Operate> menu.

Managing VisualWorks Windows

You can manage VisualWorks windows using your platform’s window
manager. Alternatively, you can use equivalent VisualWorks operations.

Try some window-management operations on VisualWorks windows:

1. Close one of the Workspaces by choosing the close command from the
<Window> menu:

n With the pointer in the Workspace, press the <Window> button.
Move the pointer over the close command and release the button.
VisualWorks Tutorial, Rev. 2.1 11

Chapter 1 Getting Started

he

s

w’s

se
Figure 1-7 The close command on the <Window> menu

If a notifier is displayed, click yes to discard the text in the Workspace
and close its window. Note that no notifier is displayed if you had
accepted the text in this Workspace in the previous section.

2. Resize a Workspace window:

a. Choose resize from the <Window> menu. A window outline is
displayed.

b. Move the pointer to resize the outline as desired and then click. T
window is displayed in the new size.

3. Collapse a VisualWorks window by choosing collapse from the
<Window> menu. Collapsing a window is a way of reducing clutter on
your screen while keeping the window available when you need it.

n On Windows, UNIX, and OS/2 platforms, collapsing a window is
equivalent to minimizing or iconifying it.

n On a Macintosh platform, collapsing a window reduces it to its title
bar.

4. Restore the collapsed window to its original size using your platform’
window-management operations:

n On Windows, UNIX, and OS/2 platforms, you can usually click or
double-click on the collapsed window.

n On a Macintosh platform, click the collapsed window’s zoom box.

Note to Macintosh users: Many Macintosh applications have a grow box in
the lower-right corner for resizing windows. In VisualWorks windows, this
grow box is invisible. To use it, you position the mouse pointer in the windo
lower-right corner, hold down the <Option> key, press and hold the mou
button, and move the pointer to stretch the window size.
12 VisualWorks Tutorial, Rev. 2.1

Saving Your VisualWorks Image

e
to

at you
el-

lica-
. To
w

lat-

nd

s

o
ent
Saving Your VisualWorks Image

Whenever you interact with VisualWorks, you affect the state of the imag
you are running. Consequently, you save an image whenever you want
preserve a snapshot of its state.

Creating Your Own Working Image

You normally save your work in a user- or project-specific working image
rather than the standard image. This preserves the standard image so th
can use it for reference or to create new images for new application dev
opers or new projects.

Because this tutorial will guide you through the steps of creating an app
tion, it is recommended that you create a working image for that purpose
create the new image, you save the currently running image under a ne
name:

1. Choose File?Save As... in the VisualWorks main window. A dialog box
prompts you with the name of the current image.

2. In the dialog box, edit (or replace) the current name to specify the
filename for the new image. You can:

n Replace the name visual with a name such as tutorial . This
creates the new image in the current working directory; on many p
forms, this is the location that contains the standard image.

n Enter a fully qualified pathname to specify the new image’s name a
location in the file system. For example:

C:\MYWORK\TUTOR on a Windows or OS/2 platform

/usr/sue/mywork/tutorial on a UNIX platform

HD:MyWork:tutorial on a Macintosh

Note: Do not include the .im file extension in the filename. VisualWork
will add that for you. Furthermore, you must specify a location that
already exists; VisualWorks will not create a directory for you.

Note to Macintosh users: You construct a pathname using a colon (:) t
separate the volume name, one or more folder names, and the docum
name.

3. Click OK. As a result:

n A new file (for example, tutorial.im) is created on your disk. A
message in the System Transcript reports this.
VisualWorks Tutorial, Rev. 2.1 13

Chapter 1 Getting Started

 skip

lk

he
sure

n The VisualWorks windows on the screen now belong to the new
image.

4. If you created the new image in the same location as standard image,
to “Taking Snapshots,” below. Otherwise, continue with the following
section.

If You Created an Image in a New Location

Every image consults several additional files for adjunct information:

n A sources file provides the source text of the image’s compiled Smallta
objects.

n A help file provides the text of the online documentation.

If you created your new working image in a location different from that of t
standard image, the new image may not be able to find these files. To en
that these files can be found:

1. Choose File?Settings in the VisualWorks main window. This displays
the Settings Tool, which you will learn more about on page 35.

2. Edit the Sources: field to specify the fully qualified name of the
installed sources file, typically:

n /usr/visual/image/visual.sou on a UNIX platform

n C:\VISUAL\IMAGE\VISUAL.SOU on a Windows or OS/2
platform

n HD:visual:image:visual.sou on a Macintosh computer

3. Click the Accept button.

4. Click the Help tab (not the Help button). It is located to the right,
between tabs labeled Window and Icon .

5. In the Documentation Directory: field, specify the fully qualified
name of the installed online documentation directory,
typically:

n /usr/visual/online on a UNIX platform

n C:\VISUAL\ONLINE on a Windows or OS/2 platform

n HD:visual:online on a Macintosh

6. Click the Accept button and close the Settings Tool.
14 VisualWorks Tutorial, Rev. 2.1

Exiting VisualWorks

se-

peri-

 the

Taking Snapshots

Now that you are running your own working image, you can save all sub
quent work without affecting the standard image. As with most file-based
applications, it is a good idea to save your image (or “take a snapshot”)
odically, especially after:

n Changing environment settings (as described above)

n Arranging VisualWorks windows in a useful way

n Adding new Smalltalk objects to the system

Save your image now to preserve the current display (and, if applicable,
changed sources file setting). To do this:

1. Choose File?Save As... in the VisualWorks main window. A dialog box
prompts you with the name of the current image.

2. Click OK. The System Transcript reports the save.

Exiting VisualWorks

To exit VisualWorks:

1. Choose File?Exit VisualWorks... from the VisualWorks main window.
The following dialog box appears:
VisualWorks Tutorial, Rev. 2.1 15

Chapter 1 Getting Started

nly

xit
er 2,
nt.
In this dialog box:

n Exit terminates VisualWorks without saving the image.

n Save then Exit saves the image and then exits VisualWorks.

n Cancel leaves VisualWorks running.

2. Because you have already saved your image, click Exit .

If you cannot exit using the File?Exit VisualWorks... command, see
“Emergency Exit” in Chapter 17 of the VisualWorks User’s Guide.

Note for Windows users: You must exit VisualWorks before you can shut
down Windows.

Note for Macintosh users: When exiting VisualWorks normally, do not use
File ?Quit from the Macintosh menu bar. This command should be used o
for an emergency exit.

What’s Next: The VisualWorks Environment

So far, you’ve learned about what VisualWorks is, how to start it, how to e
it, and how to perform some of the most basic user operations. In Chapt
you will take a brief look at the basic tools in the VisualWorks environme
16 VisualWorks Tutorial, Rev. 2.1

ing
nip-
ks
:

 do

ng

you
Chapter 2

The VisualWorks Environment

This chapter introduces you to the basic tools for exploring and configur
the VisualWorks environment. Some of these tools help you find and ma
ulate Smalltalk objects; others provide information about your VisualWor
image. In the following sections, you will restart your working image and

n Send messages to Smalltalk objects

n Browse the Smalltalk class library

n Store and retrieve information in files

n Run an application

n Browse online documentation

n Customize your working image

n View a list of changes made to the image

Starting Your Working Image

If you exited VisualWorks at the end of the last chapter, restart it now. To
this:

‰ Follow the directions on page 3, using the icon or filename for your
working image instead of specifying the standard image. (Your worki
image is the image you created on page 13.)

When VisualWorks starts, its windows are arranged as they were when
last saved the image.
VisualWorks Tutorial, Rev. 2.1 17

Chapter 2 The VisualWorks Environment

n,

anip-
ts

 by

t

e.
age

are

l,
Sending Messages to Smalltalk Objects

In Chapter 1, you used a Workspace for simple text editing. In this sectio
you will use a Workspace to send messages to Smalltalk objects. Recall from
page 2 that an object consists of some data plus a set of operations that m
ulate the data. A message is a request for an object to carry out one of i
operations.

For example, you can cause the System Transcript to display some text
sending a message to it:

1. Open a Workspace, if necessary.

2. In the Workspace, type the following lines:

Transcript cr.
Transcript show: 'Hello, world!'

Be sure to include the period, the colon, and single quotation marks.

3. Select (highlight) these lines.

4. Choose the do it command from the Workspace’s <Operate> menu.

The text Hello, world! appears on its own line in the System Transcrip
of the VisualWorks main window.

You just entered and evaluated two Smalltalk message expressions. Each
message expression describes a message (cr and show:) to a receiver (Tran-
script). When you choose do it , each message expression is evaluated,
causing the receiver to carry out the operation requested by the messag
Chapter 5 will give you more experience in creating and evaluating mess
expressions.

Because VisualWorks is a Smalltalk system, all VisualWorks operations
accomplished by objects sending messages to other objects. That is,
whenever you choose a menu item or click a button in a VisualWorks too
you start a chain of message-sends that perform the tool’s action.
18 VisualWorks Tutorial, Rev. 2.1

Browsing the Smalltalk Class Library

ct.

ut

 your

class
 as
the
eful
Browsing the Smalltalk Class Library

Every object in the Smalltalk system is an instance of a class. A class is a
template for defining the data and operations for a particular type of obje
That is, a class defines:

n The instance variables in which instances store data

n The instance methods (procedures) that describe how instances carry o
operations

All instances of a given class have the same form and behavior, but they
contain different data in their variables.

VisualWorks comes with a large library of predefined classes from which you
can create objects as part of the applications you build. You can also add
own classes to this library to create more specialized objects.

Using a System Browser

You can use a System Browser to explore the classes in the VisualWorks
library. (In Chapter 5, you will use the System Browser to create classes
well.) You can open multiple System Browsers to see different parts of of
class library at a time. For example, opening two System Browsers is us
for comparing two classes or methods side by side.

Follow these steps to explore a portion of the VisualWorks class library:

1. Open a System Browser by choosing Browse ?All Classes in the Visu-
alWorks main window.

Shortcut: Click the System Browser button in the tool bar.

System Browser button
VisualWorks Tutorial, Rev. 2.1 19

Chapter 2 The VisualWorks Environment

a-

old
The System Browser you opened looks something like this:

Figure 2-1 A newly opened System Browser

A System Browser, like many VisualWorks tools, has regions called
views for displaying different kinds of information. The upper-left view
lists the categories in the system. Categories are the way Smalltalk org
nizes groups of similar classes. Every class in the system belongs to
exactly one category.

2. Scroll through the list of categories in the category view:

n Put the pointer on the scroll bar to the right of the list, press and h
the <Select> button, and drag the scroll bar down to show the
remainder of the list.

3. Select the first category in the list (Magnitude-General) to see which
classes belong to it. (Scroll back to it if necessary.) Note that:

n These classes are listed in the class view next to the category view.

n A template for creating a new class is displayed in the window’s code
view.

category v iew scro ll bar
20 VisualWorks Tutorial, Rev. 2.1

Browsing the Smalltalk Class Library

s.
Figure 2-2 A System Browser with a category selected

4. In the class view, select the Date class to see its instance variables and
methods. Instances of Date represent individual days of a year:

n The instance variables (day, year) appear as part of the class defini-
tion in the code view.

n The instance methods are grouped in protocols, which are listed in
the protocol view. Protocols are categories for organizing method

Figure 2-3 A System Browser with a class selected

class v iew

code view

protoco l view
VisualWorks Tutorial, Rev. 2.1 21

Chapter 2 The VisualWorks Environment

w.

per-
5. In the protocol view, select the protocol accessing to see the instance
methods it contains:

n These methods are listed in the method view.

n A template for creating a new method is displayed in the code vie

Figure 2-4 A System Browser with a protocol selected

6. In the method view, select the instance method weekday. Its definition
appears in the code view. The method’s comment indicates that this o
ation calculates the day of the week on which a given date falls.

Note: If a notifier appears saying your sources file is invalid, you
probably need to perform the steps in the section “If You Created an
Image in a New Location,” on page 14.

method view
22 VisualWorks Tutorial, Rev. 2.1

Browsing the Smalltalk Class Library

ge

ys its
ent

, if
t

g
Figure 2-5 A System Browser with a method selected

To see the weekday method in action, you can send an appropriate messa
to an instance of Date. For example:

1. In a Workspace, type the following message expression:

Date today weekday

2. Select this expression and choose print it from the Workspace’s
<Operate> menu. This evaluates the message expression and displa
result in the Workspace. The expression reports the name of the curr
day of the week.

Finding a Class by Name

Browsing categories is a good way to explore the class library. However
you already know the name of the class you want to view, you can find i
directly. For example, assume you want to find the class called Point, whose
instances represent locations on the screen defined by x and y coordinates. To
do this:

1. Put the pointer in the category view and choose find class... from the
<Operate> menu.

2. Type Point in the input field of the dialog box and click OK. The System
Browser displays the definition of Point, which belongs to the
Graphics-Geometry category.

Note: You can use the asterisk (*) as a wildcard character in the strin
you type in the dialog box.
VisualWorks Tutorial, Rev. 2.1 23

Chapter 2 The VisualWorks Environment

 For
n

ate a
st;

e
 more
bles
ri-

the
e
 in

 hier-
te

ss
Adding a Category

You can add categories to the class library for organizing your own code.
example, later in this tutorial, you will build a sample application. You ca
prepare for this by creating a category to put it in. To do this, you:

1. Click the Graphics-Geometry category to deselect it, if
necessary.

2. Choose add... from the category view’s <Operate> menu.

3. Type Examples-VWTutorial in the input field of the dialog box and
click OK. The category view automatically scrolls to the end, showing
the added category.

By default, new categories are created at the end of the list. You can cre
new category in a particular location by selecting an existing category fir
the new category is inserted above the selection.

Browsing the Class Hierarchy

Every class (except one) in the Smalltalk class library is a subclass of some
other class (its superclass). A subclass is a specialization of its superclass—
its instances have the same kind of data and behavior as instances of th
superclass, plus some of their own. That is, as a subclass, every class has
variables and methods than appear in its definition—it also has the varia
and methods it inherits from its superclass. Inheritance captures the simila
ties among related kinds of objects, while allowing for their differences.

The inheritance relationships among classes form a hierarchy rooted in
class Object. That is, all classes are directly or indirectly subclasses of th
class Object, which defines the state and behavior common to all objects
the system. Object does not inherit from any other class.

Using a Hierarchy Browser

You can use a Hierarchy Browser to browse the branch of the inheritance
archy to which a given class belongs. This is useful for getting a comple
picture of a class—what is defined in it and what it inherits.

For example, assume that you want to know how Smalltalk implements
numbers. You can explore the inheritance hierarchy that contains the cla
Number:

1. Choose Browse ?Class Named... in the VisualWorks main window.
24 VisualWorks Tutorial, Rev. 2.1

Browsing the Smalltalk Class Library

-
ee

e

e its
2. Type Number in the input field of the dialog box. This displays a Hier-
archy Browser on the Number class.

3. Resize the Hierarchy Browser window as shown in
Figure 2-6 so that you can read the contents of the class view easily.
Subclasses are indented under superclasses in this view.

Figure 2-6 A Hierarchy Browser on the Number class

4. Scroll up the class view to see all of Number’s superclasses, their super
classes, and so on up to Object. You can select any of these classes to s
variables and methods that are inherited by Number.

5. Scroll down the class view to see all of Number’s subclasses, their
subclasses, and so on. You can select any of these classes to see th
various kinds of numbers in the system.

6. Close the Hierarchy Browser.

If you are looking at a class in a System Browser and you want to brows
inheritance hierarchy, you can select the class and choose spawn hierarchy
from the class view’s <Operate> menu. This opens a separate window
containing a Hierarchy Browser.

class view
VisualWorks Tutorial, Rev. 2.1 25

Chapter 2 The VisualWorks Environment

ile.
. For

he

r
ple,

it out

the

s

ead
lcu-
nd
Storing and Retrieving Information in Files

A VisualWorks image stores an entire Smalltalk system in a single disk f
Sometimes it is useful to save subsets of the system in separate disk files
example, as you develop new classes for an application, you can write t
category that contains them to a disk file. This is called filing out the category.
The resulting disk file can serve as a backup, an archive, or a way of
preserving intermediate stages of your work.

Just as you can file out code from an image to a disk file, you can also file in
code—that is, you can retrieve filed-out code by reading it back into you
image. This serves as a means of sharing work across images. For exam
if another user creates an application that you can use, that user can file
of his or her image so that you can file it into yours.

Writing to Disk Files

You can file out categories, classes, and individual methods from any
browser. For example, you can:

1. Select a class in the System Browser or the Hierarchy Browser.

2. Choose file out as... from the class view’s <Operate> menu. A dialog
box displays the default name for the new file (the class’s name with
.st file extension).

3. If desired, enter a different name; then click OK.

4. Use your platform’s file-management facilities to verify that the file wa
created in the current working directory.

Retrieving Information from Disk Files

You use a File List to locate and select files in your file system and then r
them into your image. For example, you can file in the provided sample ca
lator application (assuming that you installed all of the VisualWorks files a
directories):

1. Choose Tools ?File List in the VisualWorks main window.

Shortcut: Click the File List button in the tool bar.
26 VisualWorks Tutorial, Rev. 2.1

Storing and Retrieving Information in Files

at

o

).
An empty File List is displayed:

Figure 2-7 An empty File List

2. In the pattern view at the top of the File List, type a pathname pattern th
matches the contents of the tutorial subdirectory of your Visual-
Works installation directory, typically:

n /usr/visual/tutorial/* on a UNIX platform

n C:\VISUAL\TUTORIAL* on a Windows or OS/2 platform

n hd:visual:tutorial:* on a Macintosh

In the pattern, the asterisk (*) is a wildcard character.

3. Press <Return>. The names view lists the files and directories that match
the name in the pattern view. In this case, the names view displays tw
directory names.

4. In the names view, select the pathname for the basic directory. The
contents view displays the selected directory’s contents (two filenames

File List button

pattern view

names view

contents view
VisualWorks Tutorial, Rev. 2.1 27

Chapter 2 The VisualWorks Environment

ly.

les it
m

tem.
a

at

rces

e
r as a
nd
5. With the pointer in the names view, choose new pattern from the
<Operate> menu. This changes the pattern view so it specifies the
contents of the basic directory and adjusts the names view according

6. In the names view, select the pathname for calc.st . The contents view
displays the source code for the sample application stored in the file.

7. With the pointer in the names view, choose file in from the <Operate>
menu. This reads in the source code from the selected file and compi
into the image. Notice the progress messages displayed in the Syste
Transcript.

8. Close the File List.

9. Verify that the file-in was successful:

a. In a System Browser, scroll to the bottom of the category view to
locate the category UIExamples-General. If necessary, refresh the
view by choosing update from the category view’s <Operate>
menu.

b. Select the UIExamples-General category. Notice that it contains
two classes, Calculator and CalculatorExample.

File Lists can also be used as general-purpose browsers for your file sys
Through a File List, you can list the contents of any directory or file, edit
file, and create new files.

Running an Application

Applications built with VisualWorks normally include at least one class th
contains resources. Resources are specific kinds of information that are
required for assembling an application’s graphical user interface. Resou
include:

n Specifications for constructing windows

n Specifications for constructing menus

n Graphical images (such as icons) for use in windows

n Queries for retrieving data for display from a relational database

You use a Resource Finder to locate the resources in the system and th
classes that define them. Consequently, you can use the Resource Finde
convenient way to locate and start applications. For example, to locate a
start the calculator application you just filed in, you can:

1. Choose Browse ?Resources from the VisualWorks main window.

Shortcut: Click the Resource Finder button in the tool bar.
28 VisualWorks Tutorial, Rev. 2.1

Running an Application

sses

ose
This brings up the Resource Finder, whose class view lists all the cla
that contain resources:

Figure 2-8 A newly opened Resource Finder

2. Locate the CalculatorExample class in the class view.

Hint: Because you created this class when you filed it in, you can cho
View?User Classes to filter out the system classes.

Resource Finder button

class view resource
view
VisualWorks Tutorial, Rev. 2.1 29

Chapter 2 The VisualWorks Environment

cu-

on
e
3. Select the class CalculatorExample. This lists its resource (window-
Spec) in the resource view:

Figure 2-9 A Resource Finder with a class selected

4. Click the Resource Finder’s Start button. This starts the application. Try
out the calculator; when you are finished, close its window.

5. Exit the Resource Finder by closing its window or by selecting Exit from
its View menu.

Browsing Online Documentation

The VisualWorks online document library contains:

n The VisualWorks Cookbook: A collection of “how-to” topics that explain
Smalltalk basics and provide steps for common application-building
tasks

n The Database Cookbook: A collection of “how-to” topics that pertain
specifically to using VisualWorks’ database tools

n The Database Quick Start Guides: An overview of steps for building
database applications with VisualWorks

n The International User’s Guide, which describes the VisualWorks facili-
ties for creating nonEnglish and cross-cultural applications

The online cookbooks also exist as printed books in the VisualWorks do
mentation set.

You access the online document library through the Online Documentati
Browser. For example, to find online information about Smalltalk messag
expressions, you:
30 VisualWorks Tutorial, Rev. 2.1

Browsing Online Documentation

list

u
1. Choose Help?Open Online Documentation from the VisualWorks
main window.

Shortcut: Click the Online Documentation button in the tool bar.

This brings up the Online Documentation Browser, which displays a
of online books:

Figure 2-10 A newly opened Online Documentation Browser

2. In the Online Documentation Browser, select Book: VisualWorks
Cookbook. This lists the Cookbook’s chapters.

Note: If a notifier informs you that the online book’s file is missing, yo
probably need to perform the steps in the section “If You Created an
Image in a New Location,” on page 14.

Online Documentation button
VisualWorks Tutorial, Rev. 2.1 31

Chapter 2 The VisualWorks Environment

ng

s
h
Figure 2-11 Browsing the VisualWorks Cookbook chapters

3. Select Chapter 1: Smalltalk Basics. This lists the chapter’s topics.

4. Select the topic Constructing a message . Cookbook topics normally
contain the following sections:

n STRATEGY (concepts for understanding a task and choosing amo
alternative tasks)

n BASIC STEPS (steps for performing that task)

n VARIANTS (steps for performing similar tasks)

5. Read the first two sections of Constructing a message . The basic
steps give directions for constructing a sample message expression.

6. Click the Examples button in the Online Documentation Browser. Thi
brings up an Examples window that displays the sample code to whic
the steps refer:
32 VisualWorks Tutorial, Rev. 2.1

Browsing Online Documentation

he

h

part
a-
ps
:

Figure 2-12 An Examples window for online documentation

7. Notice that the comment in the Examples window says
"Print it". This means you can click the Print it button to evaluate the
expression and display the result. (Other examples may tell you to "Do
it" or "Inspect it".)

8. Display the next example for this topic by clicking the right arrow at t
top of the Examples window. (This example is described in the
VARIANTS section of the topic.) You can scroll back and forth throug
a topic’s examples using the arrows.

9. Close the Examples window (but leave the Online Documentation
Browser open). In the resulting notifier, click yes to discard the results
of step 7.

Exploring the Cookbook’s Sample Applications

In many topics, the code fragments shown in the Examples window are
of an entire sample application. As you learn more about building applic
tions, you will want to see the example code in context. The following ste
show you how to find sample applications that are used in the Cookbook

1. In the Online Documentation Browser, click the Back To: button
several times to return to the list of VisualWorks Cookbook chapters.

2. Select Chapter 17: Notebooks and then select the topic Adding a
notebook .

3. Scroll to the BASIC STEPS section and notice the line:

Online example: Notebook1Example
VisualWorks Tutorial, Rev. 2.1 33

Chapter 2 The VisualWorks Environment

le

he

r

28),

s in

-
isu-
This indicates that the examples in the basic steps are part of a samp
application called Notebook1Example.

4. Choose File?Browse Example Class in the Online Documentation
Browser. This displays a list of the sample applications that support t
online documentation:

5. Locate and select Notebook1Example in this list; then click OK .

6. In the resulting notifier, click the File It In button to request that
Notebook1Example be filed into your image. Notice the progress
messages that appear in the System Transcript. When filing in is
complete, a window outline appears.

7. Position the window outline and click to display the Hierarchy Browse
on the Notebook1Example class. This is where you can examine the
example code in context.

8. Run the sample application by opening a Resource Finder (see page
selecting Notebook1Example, and clicking Start . This application
illustrates the use of a notebook widget to list all the Smalltalk classe
alphabetical order.

9. Close the Notebook1Example window, the Resource Finder, the Hier
archy Browser, and the Online Documentation Browser. (Leave the V
alWorks main window open.)
34 VisualWorks Tutorial, Rev. 2.1

Customizing Your Working Image

ngs

rks

u

Customizing Your Working Image

You can customize a number of aspects of your image through the Setti
Tool. In general, you can:

n Control the default size, look, and behavior for a number of VisualWo
tools.

n Specify where VisualWorks can find various files and directories. (Yo
may have already done this on page 14.)

To display the Settings Tool:

1. Choose File?Settings from the VisualWorks main window. As shown
in Figure 2-13, the Settings Tool is arranged as a notebook, with one page
per customizable feature. Each page is indicated by a labeled tab.

Figure 2-13 Settings Tool

2. Click on the tab labeled UI Look . The settings on this page control the
look of VisualWorks windows.

3. Click the Help button on the UI Look page and read the description.
Notice that the default look selection is Auto Select , which means that
VisualWorks selects a look that is compatible with your platform.

4. Choose a different look selection (but leave Basic Tools Adopt Look
selected):

page containing
settings

tabs for
selecting
pages

tab for showing
more tabs
VisualWorks Tutorial, Rev. 2.1 35

Chapter 2 The VisualWorks Environment

m

u-

ds in

 has

ing

ed) in
res,
. The
play

age:

n With the pointer on the Look Selection menu button, press and
hold the <Select> button. Move the cursor to the desired menu ite
and then release the button.

5. Click Accept . Notice the effect on any open windows such as the Vis
alWorks main window.

6. Change the look back to Auto Select and click Accept .

7. Close the Settings Tool.

Viewing Changes Since the Last Save

VisualWorks records the changes that you make to the classes and metho
the Smalltalk system in your image. These changes are listed in a changes file,
which is located in the same directory as the image file. The changes file
the same name as the image file, except that its file extension is .cha .

The changes file records:

n Changes to class and method definitions that result from editing or fil
in code

n Actions that create objects and send messages to them

VisualWorks records these changes so that they can be replayed (reload
your image. This is useful for recovery after power outages or system failu
because it allows you to reconstruct any unsaved changes in your image
more frequently you save your image, the fewer changes you need to re
when recovering it.

To see the changes that you made since the last time you saved your im

1. Choose Changes ?Open Change List from the VisualWorks main
window. This opens an empty Change List.

2. Put the pointer in the changes view in the upper-left corner of the Change
List and choose file in/out ?recover last changes from the
<Operate> menu.
36 VisualWorks Tutorial, Rev. 2.1

What’s Next: Creating Applications

r
ng

bles,

nge

te
s 4

ou
’

dded
Figure 2-14 Change List

Your changes are listed in the change view. You typically need to filte
this list before replaying any changes. For information about recoveri
an image, see Chapter 17, “Troubleshooting,” in the VisualWorks User’s
Guide.

3. Close the Change List.

What’s Next: Creating Applications

So far, you’ve been introduced to:

n Basic Smalltalk concepts (objects, messages, classes, instance varia
and methods)

n Basic VisualWorks tools (Workspace, System Browser, File List,
Resource Finder, Online Documentation Browser, Settings Tool, Cha
List)

In the following four chapters, you will build on what you’ve learned to crea
a sample application. Chapter 3 introduces this application, and Chapter
through 6 show you how to build it.

Note: If you are specifically interested in creating database applications, y
should read at least Chapters 3 and 4 before consulting the VisualWorks
Database Tools Tutorial and Cookbook.

Before you go on, you should save your image to keep the category you a
and the code you filed in.

changes view
VisualWorks Tutorial, Rev. 2.1 37

ign

t that

for-

rsis-
ook
 and
Chapter 3

Introduction to VisualWorks Appli-
cation Building

This chapter:

n Introduces the requirements for the sample application that you will
develop over the next few chapters

n Describes the general characteristics of VisualWorks application des

n Outlines the design you will use for the sample application

Application Requirements

Your task is to use VisualWorks to write a simple online checkbook that
records basic checking-account transactions. This application must:

n Enable users to make deposits into a checking account

n Enable users to write checks against the account

n Enable users to cancel written checks

n Provide a list of the written checks

n Provide the account balance

In addition to these functional requirements, there is a design requiremen
the application have a graphical user interface —one or more windows
and/or dialog boxes that give the user appropriate controls for viewing in
mation, entering information, and invoking operations.

For the sake of simplicity, the Checkbook application does not handle pe
tent data—that is, it does not connect to a database. Instead, the checkb
(and the account it represents) is created when the application is started
destroyed when the application is closed.
VisualWorks Tutorial, Rev. 2.1 39

Chapter 3 Introduction to VisualWorks Application Building

isu-
n—
ther.

se

ntal

ou

 to

me-

n,
 and

ers
VisualWorks Approach to Application Design

This tutorial presents steps for constructing the sample application with V
alWorks. The end product of this process is a running Smalltalk applicatio
a set of interrelated objects that interact by sending messages to each o
Thus, the process of creating an application involves:

n Deciding what objects are required by the application

n Adapting or creating classes that define the data and behavior of the
objects

Although it is possible to design and create an application from fundame
objects, you can accelerate the process by using the VisualWorks application
framework. The classes in this framework provide a core structure that y
augment to build complete applications:

n For some parts of the application, you use point-and-click operations
specify the relevant portions of the framework.

n For other parts of the application, you create subclasses from the fra
work classes and add code as appropriate.

The classes in the VisualWorks framework fit together in specific ways.
These classes embody a particular approach to structuring an applicatio
which you need to understand in order to use classes from the framework
integrate them with classes of your own.

The following sections describe two main characteristics of VisualWorks
application structure—namely, that it is layered, and that one of these lay
captures and expresses the organization of the user interface.

Layered Structure

A VisualWorks application is conceptually divided into two parts:

n The information model, which handles data storage and processing

n The user interface, which handles input and output
40 VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Application Design

l for
ris-
 and
This separation of concerns results in corresponding layers of objects:

n Model objects (or simply models), which define and manipulate data
structures.

n User-interface (UI) objects, which present data from the models and
enable users to interact with this data. UI objects are the objects that
make up a display screen; they include windows and widgets (controls
such as input fields, action buttons, scrollable lists, and the like).

Figure 3-1 Layers of the user interface and information model

Though distinct, UI objects and models are highly interconnected. For
example, every widget that displays information depends on some mode
that information. By itself, each UI object simply provides visual characte
tics such as shape and color, as well as any visual response to keyboard
mouse input (for example, movement or color change).

display screen

UI objects

model objects
VisualWorks Tutorial, Rev. 2.1 41

Chapter 3 Introduction to VisualWorks Application Building

r

e
lps

 the
n
.

I

r-

re
ppli-
ain
A typical application is further layered to distinguish different kinds of
models. Among these are domain models and application models. (Othe
kinds of models—namely, value models—are described in Chapter 6.)

Domain Models

Domain models simulate the state and behavior of real-world objects in th
application’s domain, which is the area of endeavor that the application he
to automate (for example, accounting, inventory control, payroll, and the
like).

Domain models define the data that is relevant to the domain and perform
operations that process the data. For example, an accounting applicatio
might include domain models such as customers, debtors, and creditors

Application Models

Application models provide a layer of information and services between U
objects and domain models. Among other things, an application model
defines the application-specific behavior of individual widgets in the inte
face—for example, by:

n Establishing the connections between the widgets and the data they
present

n Controlling how the widgets interact with each other

An application model may also provide additional data definition and
processing that are required by the application but are not part of the co
domain. For example, the application model in an accounts-receivable a
cation may provide transactions that are not part of any accounting dom
models.
42 VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Application Design

lica-
dels

ay
iting
ain
Figure 3-2 Layers within the information model

Why Layering?

The layering of models and UI objects is the foundation for developing
multiple applications in the same domain. That is, families of related app
tions can reuse existing domain models and have different application mo
to support their different user interfaces.

Similarly, layering facilitates maintenance. In general, an application’s
domain models tend to be relatively stable, whereas its user interface m
require considerable revision from one release to the next. This means ed
or replacing application models, while making only minor changes to dom
models.

display screen

UI objects

application models

domain models
VisualWorks Tutorial, Rev. 2.1 43

Chapter 3 Introduction to VisualWorks Application Building

one
lica-
e-

e
nd
ows,

rm

ni-
or

t for

del

ach
it”
UI-Based Structure

As a rule, each application model in a VisualWorks application supports
window in the interface. That is, each application model defines the app
tion-specific behavior for a particular window and the widgets in it. Cons
quently, a multiwindow application typically has several interconnected
application models.

More generally, the application-model layer mirrors the organization of th
user interface. A user interface identifies chunks of related information a
operations, and it presents these chunks in one or more interrelated wind
where:

n Some windows are primary—persistent windows in which users perfo
the bulk of their work.

n Other windows are secondary—dialog boxes and “satellite” windows
that are opened only as adjuncts to some primary window.

Each application model corresponds to some portion of the window orga
zation, supporting an individual window or a group of related windows (f
example, a primary window and its dialogs). In fact, if a window contains
relatively independent subregions, a separate application model may exis
any of those subregions.

Why UI-Based Structure?

Like layering, UI-based structuring promotes reuse. Each application mo
that supports a meaningful chunk of user interface can be combined with
other application models to form new interfaces. In fact, you can think of e
application model as defining an independently runnable “application un
from which larger applications can be constructed.
44 VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Application Design

pli-

er-
y to
e
spec-
ns,

the
Figure 3-3 Composing larger applications from smaller ones

Building Blocks in the Framework

The VisualWorks framework provides classes for specific parts of the ap
cation structure described above:

n Predefined classes for UI objects (windows and widgets)

n Superclasses for application models

You create your application models as subclasses of the appropriate sup
classes in the framework. Each such application model inherits the abilit
create UI objects from framework classes. That is, you simply specify th
layout and contents of the windows in the interface and then store these
ifications in the appropriate application models. When the application ru
each application model builds its window(s) according to your specifica-
tion(s), creating suitable window and widget objects from the classes in
framework.
VisualWorks Tutorial, Rev. 2.1 45

Chapter 3 Introduction to VisualWorks Application Building

uild
in
s not
s in

 basic
tion

 its
ve.

 no
s
erve
cts

rd
s,
ers
is
Domain models are not part of the application framework, because their
structure and contents vary widely from domain to domain. Instead, you b
domain models from standard Smalltalk classes. In fact, separate doma
models may be unnecessary in very small applications or where reuse i
a consideration; in these cases, all of the application’s processing reside
application models.

Framework for Database Applications

VisualWorks applications that access relational databases have the same
structure outlined here, except that they have specialized kinds of applica
models (for example, data forms and database applications). Furthermore,
instead of “hand-built” domain models, the database application uses entity
classes generated automatically from database tables. See the VisualWorks’
Database Tools Tutorial and Cookbook for more information.

Designing the Sample Application

At this point, you are ready to design the sample application, considering
requirements in light of the VisualWorks design approach described abo

Designing an application involves making choices and trade-offs; there is
one right structure. The following sections guide you through the choice
made for the Checkbook application. Note that some of these choices s
to simplify the application so that the tutorial can focus on essential aspe
of the development process.

The Checkbook application is a very small application with straightforwa
requirements. When analyzing and designing more complex application
you may want to use a more formal methodology. ParcPlace-Digitalk off
training and consulting for a methodology called Object Behavior Analys
and Design (OBA/D).
46 VisualWorks Tutorial, Rev. 2.1

Designing the Sample Application

e:

o

pre-

e in

ng
end
o-
p a
ok.

Designing the User Interface

When you design the Checkbook application’s user interface, you decid

n How many windows?

n What kind of windows?

n What information and operations belong in each window?

The application’s requirements suggest a user interface consisting of tw
windows:

n A persistent main window that:

q Provides controls for initiating the required operations (writing a
check, canceling a check, making a deposit)

q Displays the written checks and the current balance

n A dialog box that gathers the input for writing a new check

Designing the Models

When you design the Checkbook application’s models, you consider:

n What real-world information and processes should the application re
sent?

n Which portions, if any, are reusable in other applications (or elsewher
the same application)?

n Which portions are likely to change frequently, and which are likely to
remain stable?

Designing Domain Models

The Checkbook application simulates a user’s interactions with a checki
account. A checking account is essentially a quantity of money that you sp
by writing checks. Each check is identified by a unique number and auth
rizes the transfer of a specific amount of money to some payee. You kee
record of the checks you write by listing them in the register of a checkbo
You track the available amount of money in the account by keeping the
running total, or balance, of the checks listed in the register.

From this description, at least two domain models suggest themselves:

n A Check, which contains a unique number, a date, an amount, and a
payee

n A Checkbook, which contains a register and a running balance
VisualWorks Tutorial, Rev. 2.1 47

Chapter 3 Introduction to VisualWorks Application Building

sits

blish
 in

 or
he

ming
lica-

 state
 will
Note that you could define an additional domain model (a Deposit) to handle
deposits similar to checks. However, to keep the application simple, depo
are treated as numbers added to the balance.

Designing Application Models

The Checkbook application needs at least one application model to esta
the connections between the widgets in the interface and the information
the Check and Checkbook objects.

You could choose to have two application models, one for each window,
you could choose to support both windows with one application model. T
decomposition of application models is a matter of judgment about what
information makes sense together and what is separately reusable. Assu
that neither window will be reused separately, you decide on a single app
tion model, called CheckbookInterface.

You could choose to keep domain models separate or to incorporate their
and behavior into the application model. Assuming that the user interface
undergo constant revision but the checkbook-related information and
processing will not, you decide to keep Check and Checkbook as separate
classes.
48 VisualWorks Tutorial, Rev. 2.1

What’s Next: Constructing the Sample Application

ox

r

ding

uld
What’s Next: Constructing the Sample Application

The next three chapters of this tutorial guide you through the following
general steps in constructing the sample application:

1. Specify the layout and contents of the main window and the dialog b
(Chapter 4).

2. Create and program the Checkbook and Check classes (Chapter 5).

3. Program CheckbookInterface to connect the specified widgets to
appropriate information and actions (Chapter 6).

Note that when you build your own applications, you may perform simila
steps but in a different order:

n You may start with existing domain models to which you add a user
interface.

n You may complete the user interface and application model and then
decide to split off several separate domain models.

n You may go back and forth between the interface and the models, ad
individual features incrementally.

The work you will do in the next three chapters is cumulative, so you sho
save your image periodically, especially before taking a break or exiting
VisualWorks.
VisualWorks Tutorial, Rev. 2.1 49

er
ents

c

ck-
to

ach

his
Chapter 4

Creating a Graphical User Interface

This chapter describes how to create the visual portion of a graphical us
interface. For the Checkbook application, this means specifying the cont
and layout of two windows:

n The Checkbook main window

n The Check dialog box

Later, in Chapter 6, you will learn how to program the application-specifi
behavior for the various elements you specified.

Designing the Checkbook Main Window

In the previous chapter, you established a preliminary design for the Che
book application’s main window. Now you refine the preliminary design in
a more detailed design. This means deciding which controls, or widgets, you
want in the window and how you want them to be positioned relative to e
other. (See Appendix B for descriptions of the available widgets.)

As a start, assume that you design the window as shown in Figure 4-1. T
design includes:

n Widgets that display information—in particular, a list for displaying the
collection of written checks and a read-only input field for displaying the
balance

n A widget that gathers input—in particular, an input field for entering
deposit amounts

n Widgets that invoke operations—in particular, a menu bar with menus
for closing the application and for writing and canceling checks

n Widgets that organize the window—in particular, labels that identify the
purpose of various other widgets
VisualWorks Tutorial, Rev. 2.1 51

Chapter 4 Creating a Graphical User Interface

sign:

ly,

eld
d

lest
is
nd

 of
 are
Figure 4-1 The Checkbook application’s main window

Design Alternatives

Even an initial, rough-cut design makes choices among alternatives for
presenting information and operations. For example, in the proposed de

n Each written check is represented as a line of text in a list. Alternative
check information could be formatted in columns in a table or a dataset.

n The deposit operation is invoked by entering an amount in an input fi
and pressing <Return>. Alternatively, the operation could be triggere
more explicitly by an action button or an item on a menu.

The proposed design is a sufficient starting point, because it is the simp
design that meets the application requirements. In the next sections of th
chapter, you will create a prototype of the main window with this design a
then refine the prototype to improve its usability.

Creating the Main Window

You create the Checkbook main window by creating a visual specification
its contents and layout. This process includes the following steps, which
described in detail in the rest of this section:

1. Opening a blank canvas

menu bar

list

label input field label input field

label
52 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

at
n
.

 the
2. Painting the canvas with widgets chosen from a Palette

3. Setting properties for each widget and applying them to the canvas

4. Editing the contents of any menus on the canvas

5. Installing the canvas in an application model

Opening a Blank Canvas

A VisualWorks canvas is a “window under construction”—a work area th
you configure until it looks like the window you want in your application. I
general, you create a separate canvas for each window in an application

To open a blank canvas for the Checkbook main window, you:

1. Start VisualWorks, if necessary.

2. Choose Tools ?New Canvas from the VisualWorks main window.

Shortcut: Click on the New Canvas button in the tool bar.

3. Use the mouse pointer to position the rectangular window outline on
screen, and then click the <Select> button.

New Canvas button
VisualWorks Tutorial, Rev. 2.1 53

Chapter 4 Creating a Graphical User Interface

ddi-

int

 and

r

t.

as
ntly
ing it

in
u
VisualWorks opens a window containing an unlabeled canvas, plus two a
tional tools, as shown in Figure 4-2:

n A Palette of the standard widgets supplied by VisualWorks (these are
described in Appendix B). You choose widgets from this Palette to pa
them on the canvas.

n A Canvas Tool that you use to fine-tune the appearance of the canvas
to invoke additional canvas-preparation tools.

Figure 4-2 A blank canvas, its Palette, and its Canvas Tool

The displayed Palette and Canvas Tool are associated with this particula
canvas; operations you invoke from them affect only this canvas. Every
canvas you open has its own Palette and Canvas Tool associated with i

Minimizing or closing a canvas automatically closes its Palette and Canv
Tool. However, you can move, minimize, or close these tools independe
of the canvas. If you close a canvas’s Palette or Canvas Tool, you can br
back by positioning the mouse pointer in the canvas and choosing
tools ?palette or tools ?canvas tool from the <Operate> menu.

Painting the Canvas

You paint the blank canvas with the main features of the Checkbook ma
window—a list, three input fields, and three labels. (You will add the men
bar in a later section.)
54 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

4-1

w

ing
se

i-

 the
Sizing the Canvas

Before you start painting widgets, you resize the canvas to establish the
preferred size of the Checkbook main window:

1. Use your window manager to enlarge the canvas window (use Figure
as guide).

2. Choose Layout ?Window ?Preferred Size from the Canvas Tool.

Setting a canvas’s preferred size determines the initial size of the windo
when the running application opens it.

You can resize the canvas at any time while you paint it. However, resiz
the canvas does not change its preferred size; to do this, you must choo
Layout ?Window ?Preferred Size again.

Painting a Widget

To paint the required list onto the canvas:

1. Verify that the single-selection button on the Palette is active (it has a
heavy, dark outline; see Figure 4-3). If it is not active, select it by pos
tioning the mouse pointer over it and clicking the <Select> mouse
button.

When active, the single-selection button allows you to paint a single
copy of a widget on the canvas.

2. Select the list widget on the Palette. The indicator field at the bottom of
the Palette displays the name of the selected widget (List).

If you select the wrong widget, select other widgets until the indicator
field displays List .

3. Paint the list by moving the mouse pointer to the canvas and clicking
<Select> button. Figure 4-3 shows the painted list.
VisualWorks Tutorial, Rev. 2.1 55

Chapter 4 Creating a Graphical User Interface

u
ctice

s

 or
Figure 4-3 The canvas with a list widget painted on it

Selecting and Deselecting a Widget

Notice the selection handles (black squares) on the four corners of the list yo
just painted. They indicate that the widget is selected in the canvas. Pra
deselecting and reselecting the list:

1. To deselect the list, either:

n Click the <Select> button anywhere in the canvas outside the list’
selection handles.

n <Shift>-click inside the selection handles.

2. To reselect the list, click the <Select> button anywhere inside the list
on its borders.

single-selection
button

list widget

widget indicator
field

painted list widget
56 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

 list

en

e

ed.

ach
ste

as

py
Positioning a Widget

To position the list within the canvas:

1. Select the list, if necessary, and position the mouse pointer within the
selection handles.

2. Press and hold down the <Select> button; then move the pointer. The
moves, too.

3. Drag the list to the desired position (use Figure 4-1 as guide), and th
release the <Select> button. The list remains selected.

Resizing a Widget

To change the list’s shape and size:

1. Select the list, if necessary.

2. Position the mouse pointer over one of the selection handles.

3. Press and hold down the <Select> button; then move the pointer. Th
corner of the list moves, too.

4. Drag the corner until the list is the desired shape (use Figure 4-1 as
guide), and then release the <Select> button. The list remains select
You may want to reposition it to accommodate its new size.

Copying and Pasting a Widget

Now you need to paint two input fields onto the canvas. You can paint e
field individually, just as you painted the list, or you can use copy and pa
as a shortcut.

To paint two input fields, using copy and paste:

1. Select the input field widget from the Palette and paint it on the canv
below the list.

2. With the field still selected, select edit ?copy from the <Operate> menu.

3. Select edit ?paste from the <Operate> menu. This makes a second co
of the field directly on top of the original one.

4. Drag the copy to the appropriate location.

Painting Multiple Copies of a Widget

Another shortcut for painting multiple copies of a widget is repeat-painting.
To repeat-paint the three required labels:

1. Click the repeat-selection button on the palette (see Figure 4-4).
VisualWorks Tutorial, Rev. 2.1 57

Chapter 4 Creating a Graphical User Interface

 to

of a

e
 can

p-
d so
ature
2. Select the label widget from the Palette.

3. Click on the canvas where each label is to appear (above the list and
the left of each input field).

4. Turn off repeat-painting by clicking the single-selection button.

Figure 4-4 The canvas with a list, two fields, and three labels

Deleting a Widget

Sometimes you accidentally paint the wrong widget or too many copies
widget. To delete a widget:

1. Select the widget to be deleted.

2. Select edit ?cut from the <Operate> menu. This saves the widget to th
canvas clipboard so you can paste it back in. On some platforms you
use the <Delete> or <Backspace> keys to delete a selected widget.

Setting Properties

Now that you have painted the basic elements of the Checkbook main
window, you set properties for each widget and for the window itself. Pro
erties define a variety of visual attributes, such as font, color, borders, an
on. For some widgets, such as input fields, properties also indicate the n

repeat-selection
button

input field
widget

label widget
58 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

appli-

t,

r

he

to

pply
a
s by

way
 be
of the data to be displayed and how that data is to be referenced by the
cation.

In this section, you will specify just the visual properties for the labels, lis
and input fields. Later, in Chapter 6, you will specify the action and aspect
properties when you program the Checkbook application’s graphical use
interface.

Displaying a Widget’s Properties

To display the properties for a widget:

1. Select the widget in the canvas. In this case, select the label above t
list.

2. Click the Properties button on the Canvas Tool.

VisualWorks opens the Properties Tool. You use the Properties Tool
examine and change the properties for the selected widget.

As shown in Figure 4-5, the Properties Tool displays the properties that a
to the current selection in the canvas. These properties are arranged in
notebook containing pages of related properties. You display other page
clicking the tab of the page you want to see.

Note that the Properties Tool does not belong to a particular canvas the
the Canvas Tool and Palette do. Thus, a single open Properties Tool can
used for working on multiple canvases.
VisualWorks Tutorial, Rev. 2.1 59

Chapter 4 Creating a Graphical User Interface

fault

ica-

 and
nly
Figure 4-5 The Properties Tool, showing basic properties for a label

Applying a Changed Property

Like all of the labels on the canvas, the label you selected displays the de
text Label . You change this text to suit the application by changing and
applying a property. To do this:

1. Verify that the label above the list is still selected and that the Basics
page is displayed in the Properties Tool.

2. In the Properties Tool, enter Check Register as the value of the Label:
property.

3. Click Apply . The new label text appears on the canvas.

Applying properties adds information to the canvas, enriching the specif
tion of the selected widget. For many properties, such as Label , the added
information is also visible on the canvas.

Where appropriate, you can change multiple properties on a single page
apply them all at once. However, in this example, you need to change o
one property for each label; the default settings are sufficient for the
remaining properties.

type of widget
selected on
canvas

properties

applies properties
to canvas

tabs for paging
through Label
properties

move selection to
other widgets on
canvas
60 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

an
e

bel
ys

f

 see

l to

f
Moving the Selection to the Next Widget

Now you need to display the properties for the remaining labels so you c
set their text. One way to do this is to move the mouse pointer back to th
canvas and select another label. Alternatively, you can use the Next and Prev
buttons to move the selection on the canvas without moving the mouse
pointer out of the Properties Tool.

To set the text for the remaining labels:

1. Verify that the Check Register label is still selected in the canvas.

2. Click Next on the Properties Tool to move the selection to the next la
(in the lower-left corner of the canvas). The Properties Tool now displa
properties for this label.

Note: If necessary, click Prev or keep clicking Next until the appro-
priate label is selected.

3. Change the Label property for the selected label by entering Amount to
Deposit: and clicking Apply .

4. Click Next to move the selection to the last label.

Note: If Next is disabled, click Apply . You must either apply or cancel
changed properties before moving on to the next widget.

5. Change the Label property for the selected label by entering Balance:
and clicking Apply .

With their new, longer text, the labels may now overlap the input fields. I
necessary, reposition the labels and fields to correct this.

Inspecting the List Properties

This example uses just the default property settings for the list widget. To
what these default settings are:

1. Move the selection to the list widget. This causes the Properties Too
display the list’s properties.

Notice that properties for a list differ from those for a label. You will
return to the list properties shown on the Basics page in Chapter 6.

2. Click the tab for the Details page. Verify that the following properties
are selected:

n Vertical , which provides the vertical scroll bar on the right edge o
the list.

n Bordered , which provides the border surrounding the list.
VisualWorks Tutorial, Rev. 2.1 61

Chapter 4 Creating a Graphical User Interface

he

ed
s in

e (or

auses

 a
n Can Tab , which causes the list to be part of the tab chain; that is,
when the application runs, the user will be able to move focus to t
list by tabbing.

Setting the Input Field Properties

The input fields in this application will display amounts of money express
in U.S. dollars. You set properties to control how the information appear
these fields. For each field:

1. Display the field’s properties by selecting it in the canvas.

2. Select the nondefault property settings shown in the following table.
(Look for the properties on different pages.)

3. Apply each page of changed settings before going on to the next pag
to the next widget).

The Format: property controls the output formatting of each field. Thus,
when the second field displays the current balance, the selected setting c
this number to be displayed with:

n A preceding dollar sign

n A comma separating the thousands and hundreds columns

n Two decimal places for cents

n Parentheses around negative numbers, which are displayed in red

Setting the Window Properties

You use window properties to provide the Checkbook main window with
title and a menu bar. To do this:

1. Deselect all the widgets in the canvas. You can either:

Widget Page Property Setting

Input field
(Deposit)

Basics
Basics
Details

Type:
Format:
Align:

Number
$#,##0.00;[Red]($#,##0.00)
Right

Input field
(Balance)

Basics
Basics
Details
Details
Details

Type:
Format:
Align:
Can Tab:
Read Only:

Number
$#,##0.00;[Red]($#,##0.00)
Right
Off
On
62 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

as.

s or

ose
take
 next

y) a
n <Shift>-click on a selected widget

n Click anywhere on the canvas other than in a widget

This causes the Properties Tool to display properties that apply to the
window.

2. Set the window title by entering Checkbook for the Label
property.

3. Create an empty menu bar by selecting Enable and entering menuBar
for the Menu property. (The Menu property will be explained when you
edit the menu bar.)

4. Apply these settings. The title of the canvas changes from Unlabeled
Canvas to Checkbook , and an empty menu bar appears on the canv

5. If the empty menu bar displaces any other widgets, resize the canva
reposition the other widgets as necessary.

Figure 4-6 The Checkbook canvas with a menu bar

You have finished setting properties for the moment; if you like, you can cl
the Properties Tool. Be sure to save your image, especially if you plan to
a break. However, do not close the canvas until you have completed the
section.

Installing the Canvas

At any time in the painting process, you can save the canvas by installing it
in an application model. Installing a canvas creates an interface specification,
which serves as the application’s blueprint for building an operational
window. Each installed interface specification is stored in (and returned b
unique method in the application model.
VisualWorks Tutorial, Rev. 2.1 63

Chapter 4 Creating a Graphical User Interface

r
aph-
ion

c-
he

to

l
You can think of a canvas as the VisualWorks graphical user interface fo
creating and editing an interface specification. Whereas a canvas is a gr
ical depiction of the window’s contents and layout, an interface specificat
is a symbolic representation that an application model can interpret.

To install the canvas for the Checkbook main window:

1. Click Install... in the Canvas Tool. This brings up a dialog box for spe
ifying the application model and the class method in which to install t
canvas.

2. In the INSTALL on Class: field of the dialog box, enter
CheckbookInterface. (This is the name you chose on page 48 for the
application model.)

3. Verify that the enter new Selector: field at the bottom of the dialog
box contains the method name windowSpec.

By convention, windowSpec is the default name for a method that
stores an interface specification for a main window (a window that is
be opened automatically when an application starts).

Figure 4-7 Installing the canvas

4. When the dialog box looks like Figure 4-7, click OK.

Because the CheckbookInterface class does not yet exist, an additiona
dialog box prompts you to create it.

5. In the CREATE New Class dialog box:

application model
in which canvas
is installed

method in which
interface specifica-
tion is stored
64 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

e of
e it
a. Leave the Name: field as is (it should contain the name Check-
bookInterface).

b. Enter Examples-VWTutorial in the Category field to specify the
category that is to contain the new class. (If you didn’t create this
category in Chapter 2, it is created for you in this step.)

c. Click the Application radio button to specify the type of application
model you want the new class to be. You choose Application
because CheckBookInterface is to support a persistent window in a
nondatabase application.

Note that this choice causes CheckbookInterface to be created as a
subclass of the ApplicationModel class, which is part of the Visual-
Works application framework.

d. When the CREATE New Class dialog box looks like
Figure 4-8, click OK.

Figure 4-8 Creating the CheckbookInterface application model

6. Click OK again in the INSTALL on Class dialog.

7. Save your image to preserve the newly created application model.

As you will see in later sections, you can do a number of things with an
installed canvas—you can start the application to see a running prototyp
the window, and you can file out the application model so that you can fil

name o f new
application model

category for new
application model

type of application
model

framework class
from which
application model is
created
VisualWorks Tutorial, Rev. 2.1 65

Chapter 4 Creating a Graphical User Interface

ich

again

ol

su-

;
ve
into another image. For now, though, continue on to the next section, wh
describes how to close and reopen the canvas.

Finding an Installed Canvas

Installing a canvas makes it possible to close the canvas and then open it
through the Resource Finder. To do this:

1. Close the window containing the canvas. The Palette and Canvas To
close automatically.

2. Open the Resource Finder—for example, by clicking its icon in the Vi
alWorks main window.

3. In the Resource Finder, locate and select the CheckbookInterface class.
Notice that windowSpec is listed as a resource of this class.

Figure 4-9 The Resource Finder with CheckbookInterface selected

4. With windowSpec selected, click Edit in the Resource Finder. This
brings up the canvas whose interface specification is stored in window-
Spec—that is, the canvas for the Checkbook main window.

Editing a Menu Bar

Your initial prototype of the Checkbook main window is almost complete
you still need to put menus on the empty menu bar. Assume that you ha
decided on two menus:

n File , which contains a Close command for closing the
application
66 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

ar.
and
ro-
tion
ou
enu,

nd

m

r 6,
n Checks , which contains a Write... command for writing new checks
and a Cancel command for canceling a selected check

You use the Menu Editor to create the menus that appear on the menu b
More specifically, you create textual entries for the desired menu items,
the Menu Editor uses these entries to generate code for building an app
priate menu object. This code is then installed in a method in the applica
model, similar to the way an installed interface specification is stored. (Y
can use the Menu Editor to create a menu for any widget that provides a m
such as a menu button.)

To create the menus for the Checkbook menu bar:

1. Bring up the canvas for the Checkbook main window, if necessary, a
verify that you have completed steps 3 and 4 in “Setting the Window
Properties” on page 62.

2. In the Canvas Tool, choose Tools ?Menu Editor to open the Menu
Editor for this canvas.

3. In the text area of the Menu Editor, type the menu titles (File and
Checks) on separate lines.

4. Using Figure 4-10 as a guide, type a one-line entry for each menu ite
under the relevant menu title. Each entry must contain the following
elements, from left to right:

n A leading <Tab> character.

n The text of the menu item’s label.

n One or more <Tab> characters.

n The name of the method that will perform the menu item’s action.
Because such method names will not be established until Chapte
simply enter nil for now.
VisualWorks Tutorial, Rev. 2.1 67

Chapter 4 Creating a Graphical User Interface

n
itor.

e
teps
Figure 4-10 The Menu Editor with the menu bar contents

5. Click Build to generate code for building a menu object. A test versio
of the menu bar you just specified appears at the top of the Menu Ed

6. Click on each menu title in the Menu Editor’s test bar to verify that th
menus contain the right items. If not, make corrections by repeating s
4 and 5.

Note that the Menu Editor also provides a Test button. This is useful for
testing menus created for menu buttons.

7. Click Apply to apply the tested menu bar to the canvas.

A dialog box first prompts you to install the menu code in a method
called menuBar in CheckbookInterface. (Recall that menuBar is the
name you entered for the Menu property on page 63.)

menu title

entry for menu item

leading tab menu item label separator tab action method placeholder
68 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

us

ed

k-

u

k
ou
Figure 4-11 Installing the menu bar

8. Click OK to install the menu code. After the code is installed, the men
appear on the canvas.

9. Click Install... on the Canvas Tool to reinstall the canvas (you chang
the canvas when you applied the menu bar to it). The INSTALL on
Class dialog box appears with the method name windowSpec high-
lighted; click OK.

10. Notice that the Resource Finder now lists two resources for Checkbook-
Interface:

n windowSpec, which stores the interface specification for the Chec
book main window

n menuBar, which stores the menu code for the main window’s men
bar

11. Close the Menu Editor and save your image!

Opening the Interface

Congratulations! You have completed the initial version of the Checkboo
main window. By installing the window’s canvas in an application model, y
created a minimal application that can be started.

To start the minimal Checkbook application, you can:

‰ Click Open in the Canvas Tool.
VisualWorks Tutorial, Rev. 2.1 69

Chapter 4 Creating a Graphical User Interface

m a

 is

w

rk
Alternatively, you can start the application from the Resource Finder:

1. Select CheckbookInterface in the Resource Finder.

2. Click Start .

Starting the Checkbook application opens the Checkbook main window,
which looks something like Figure 4-12:

Figure 4-12 The Checkbook main window

Behind the Scenes

Regardless of how you start the application, the same thing happens fro
Smalltalk point of view:

1. The Canvas Tool (or Resource Finder) sends an open message to the
CheckbookInterface class.

2. The CheckbookInterface class understands this message (because it
an application model) and responds by creating an instance of itself.

3. This instance, in turn, creates a builder, which is an instance of a class in
the VisualWorks framework called UIBuilder.

4. The application model’s builder proceeds to build an operating windo
from the interface specification in the windowSpec method. That is, for
each widget in the specification, the builder:

a. Identifies an appropriate widget class in the VisualWorks framewo

b. Creates an instance of the identified class
70 VisualWorks Tutorial, Rev. 2.1

Creating the Main Window

r
rms

 is no
ite
put.

d
ur

ed

 the

ow
, have

ent

s a

The builder then assembles these instances, along with various othe
objects created from the framework, into a complete structure that fo
the operating window.

This is a simplified account of a builder’s activities; you will learn more
details as they become relevant.

Inspecting the Prototype Window

At this point, the widgets in the Checkbook main window exhibit fairly
generic behavior, because the rest of the application doesn’t exist—there
information for widgets to display and no actions for them to invoke. In sp
of this, the various widgets respond minimally to mouse and keyboard in

To see what response is built into the widgets themselves:

1. Select a menu item from the menu bar. Notice that when you click an
drag on the menu title, the menu items are displayed correctly and yo
selection is highlighted
appropriately.

2. Now click in the Amount to Deposit: field, type a number, and press
<Return>. The input field knows how to accept the number you enter
and redisplay it, formatted with a dollar sign and a decimal point. The
input field also allows you to select and delete the number.

Notice that the number you enter in the deposit field has no effect on
balance field because the application has no notion of deposit and
balance yet.

3. Try entering input in the Balance: field. The field prevents you from
doing this because you selected its Read Only property on page 62.

4. Shrink and then enlarge the Checkbook main window. Notice that
shrinking the window obscures some widgets, and enlarging the wind
exposes white space. This happens because the widgets, as created
absolute sizes.

5. Close the running application (you’ll have to use a window-managem
operation to close it because you haven’t provided an action for
File ?Close yet).

In a real development situation, you might file out the application model a
backup or to share with another user. You can file the class out from the
Resource Finder by selecting it, choosing Class ?File Out As... , and speci-
fying a filename.
VisualWorks Tutorial, Rev. 2.1 71

Chapter 4 Creating a Graphical User Interface

el-
ets is

ent
t a

).

ion.
after

the

the

it

he
Revising the Main Window

Most window designs undergo considerable revision through-out the dev
opment process. This occurs because the choice and placement of widg
subject to numerous stylistic, usability, and aesthetic considerations. The
canvas is a useful tool for window design because it allows you to experim
with different combinations and arrangements of widgets until you arrive a
prototype suitable for evaluation. You can iteratively edit and reinstall the
canvas to incorporate recommendations.

The following sections describe how to make these improvements to the
Checkbook main window:

n Add an explicit control for invoking the deposit operation (some users
may not realize they need to press <Return> in the deposit input field

n Refine the arrangement of widgets so that they align more precisely.

n Make the window layout respond appropriately to resizing.

Adding More Widgets

There are many ways to provide an explicit control for the deposit operat
Assume that you have decided to add an action button for users to click
they have typed the desired deposit amount in the Amount to Deposit:
field. To do this:

1. Open the canvas for the Checkbook main window by selecting both
CheckbookInterface class and its windowSpec resource in the
Resource Finder and then clicking Edit .

2. If necessary, enlarge the canvas window vertically to make room for
new action button below the deposit field.

3. Select an action button from the Palette and place it below the depos
field.

4. With the action button selected, open the Properties Tool and apply t
following property settings:

5. Enlarge the action button to accommodate its new label.

Widget Property Setting

Action button Label:
Be Default:
Size as Default:

Deposit
On
On
72 VisualWorks Tutorial, Rev. 2.1

Revising the Main Window

 the

he
the
 they
6. Enclose the three related widgets (the Amount to Deposit: label, the
input field, and the action button) in a group box:

a. Select a group box from the Palette.

b. Position the box’s upper-left corner on the canvas.

c. Press and hold the <Select> mouse button. The pointer moves to
lower-right corner of the box.

d. Drag the lower-right corner until the box fits around the desired
widgets.

7. When the canvas looks something like Figure 4-13, install it in the
windowSpec method.

Figure 4-13 After adding an action button and a group box

8. Start the Checkbook application. Notice the Deposit action button’s
visual response when you click it.

Refining Widget Arrangement

So far, you’ve established the basic position and size of the widgets on t
canvas using selection and dragging. In the following sections, you use
Canvas Tool and arrow keys to refine the arrangement of widgets so that
align more precisely.
VisualWorks Tutorial, Rev. 2.1 73

Chapter 4 Creating a Graphical User Interface

w.

lec-

r

lected

ne or

ze:

he
Selecting Multiple Widgets

Most of the operations in the following sections involve selecting multiple
widgets. In some operations, the order of selection counts; in others, all
widgets are selected equally.

To select multiple widgets in order:

1. Click in the first widget to be selected. Its selection handles are solid
squares.

2. <Shift>-click in each additional widget. Its selection handles are hollo

Note that <Shift>-clicking an already-selected widget turns off the se
tion.

To select multiple widgets in no particular order:

1. Put the mouse pointer on the canvas near one of the widgets.

2. While pressing the <Select> mouse button, drag the selection borde
around the desired widgets.

3. Release the mouse button; selection handles appear around each se
widget.

Equalizing Widget Sizes

You can use equalize operations to make two widgets the same size in o
both dimensions. These operations are available on the Canvas Tool’s
Arrange menu or on its tool bar:

Figure 4-14 The Equalize buttons on the Canvas Tool

Resize one of the input fields, and then make the other field the same si

1. Select one of the fields and drag a selection handle until the field is t
desired size.

2. <Shift>-click to select the second field.

Equalize Height Equalize Width
74 VisualWorks Tutorial, Rev. 2.1

Revising the Main Window

ee
ight

lable

.

ese

s
3. In the tool bar of the Canvas Tool, click the Equalize Height button (s
Figure 4-14). The second field you selected is resized to match the he
of the first field.

4. Leaving the widgets selected, click the Equalize Width button. The
second field is resized to match the first field’s width.

Aligning Widgets

You can use alignment operations to align widgets along their edges or
centers, along their vertical or horizontal axes. These operations are avai
on the Canvas Tool’s Arrange menu or on its tool bar:

Figure 4-15 The Alignment buttons on the Canvas Tool

Align the left edges of the list and the Check Register label:

1. Select the list. This should automatically deselect the two input fields

2. <Shift>-click to select the Check Register label.

3. Click the Left Align button (see Figure 4-15). The label is moved into
alignment with the list.

Center the remaining labels relative to their fields. This means aligning th
widgets around their horizontal centers:

1. Select the input field for deposits.

2. <Shift>-click to select the Amount to Deposit: label.

3. Click the Horizontal Center button (see Figure 4-15). The label is
centered relative to the field.

4. Repeat steps 1–3 for the Balance: label and its field.

Center the action button relative to the deposit field above it. This mean
aligning these widgets around their vertical centers:

1. Make sure that the Deposit button is the desired size.

2. Select the input field for deposits.

Horizontal Center Left Align Vertical Center

Top Align
VisualWorks Tutorial, Rev. 2.1 75

Chapter 4 Creating a Graphical User Interface

red

ween

 it
osi-

f
3. <Shift>-click to select the Deposit button.

4. Click the Vertical Center button (see Figure 4-15). The button is cente
relative to the field.

Spacing by Pixels

You can use arrow keys to move a selected widget a pixel at a time. For
example, you can use the left and right arrow keys to adjust the space bet
the input fields and their labels.

Grouping Widgets

When you have arranged a set of widgets to your liking, you can group them
into a single composite unit. Grouping a set of widgets prevents you from
accidentally moving one of them out of alignment. Grouping also makes
possible to move an entire set of widgets while preserving their relative p
tioning.

Note: Grouping a set of widgets is different from painting a group box
around them!

Group each input field with its label and then top-align the two groups:

1. Select the Amount to Deposit: label and the deposits field (order of
selection doesn’t matter).

2. Choose Arrange ?Group in the Canvas Tool. Notice that a single set o
selection handles surrounds the group.

3. Repeat steps 1 and 2 for the Balance: label and its field.

4. <Shift>-click to select the first group you created.

5. With both groups selected, click the Top Align button on the Canvas
Tool.

Build up the group of deposit-related widgets:

1. Select just the group that contains the Amount to Deposit: label and
its field.

2. <Shift>-click the Deposit action button.

3. Choose Arrange ?Group again to include the action button in the
group.

4. <Shift>-click on the group box widget surrounding the group.

5. Click the Horizontal Center and Vertical Center alignment buttons.

6. Choose Arrange ?Group again to include the group box in the group.
76 VisualWorks Tutorial, Rev. 2.1

Revising the Main Window

e it.

.
Note that you cannot select an individual widget within a group. To make
individual selections, you must select the group and then choose
Arrange ?Ungroup to dissolve the group.

Finally, align each group with the list and save the
arrangement:

1. Left-align the deposits group with the list.

2. Right-align the balance group with the list.

3. Reinstall the canvas in the windowSpec method.

Figure 4-16 After fine-tuning the widget arrangement

Adjusting Window Layout

Recall from page 55 that the preferred size of the canvas determines the
window’s initial size when the application starts. If necessary, adjust the
initial size by resizing the canvas and choosing
Layout ?Window ?Preferred Size .

Now specify how the window should respond when users attempt to resiz
You can:

n Allow users to resize the window. In this case, you probably want the
widgets to resize or reposition themselves in proportion to the window
To specify this:

a. Select all of the widgets in the canvas.

b. Choose Layout ?Relative from the Canvas Tool.
VisualWorks Tutorial, Rev. 2.1 77

Chapter 4 Creating a Graphical User Interface

se

ll
w for

a

t
e

heck-

n the

ers
If you change your mind, reselect the widgets, if necessary, and choo
Layout ?Fixed .

n Prevent users from resizing the window at all. To specify this, choose
Layout ?Window ?Fixed Size in the Canvas Tool.

If you change your mind, choose Layout ?Window ?Clear All .

You are now finished with the Checkbook main window! Be sure to insta
the canvas and then save your image before going on to create the windo
the Check dialog box.

Creating the Check Window

The Check window is a dialog box in which users enter information while
writing a new check. Consequently, you design the window to resemble
physical check.

At this point, there is no difference between a dialog box and a persisten
window. Both kinds of windows are built from interface specifications; th
code that turns the Check specification into a dialog box will be written in
Chapter 6.

The following sections briefly outline the steps for creating the Check
window. Refer to previous sections if you need more detail.

Painting and Setting Properties

To paint the Check canvas:

1. Open a new, empty canvas. (If necessary, close the canvas for the C
book main window to make room.)

2. Using Figure 4-17 as a guide, select, position, and size the widgets o
canvas. Resize the canvas as necessary.

Hint: Two of the input fields are borderless (you specify this in their
property settings below). You use dividers to simulate the partial bord
around input fields 1 and 3.
78 VisualWorks Tutorial, Rev. 2.1

Creating the Check Window
Figure 4-17 The widgets in the Check dialog window

3. Apply the nondefault property settings that are listed in the following
table. (Look on the Basics and Details pages.)

Widget Property Setting

Window Label: Check

Label 1 Label:
Font:

Pay to the
Scaled Small

Label 2 Label:
Font:

Order of
Scaled Small

Label 3 Label:
Font:

Check number:
Scaled Small

Input field 1 Type:
Align:
Bordered:

String
Left
Off

Input field 2 Type:
Format:
Align:
Bordered:

Number
$#,##0.00;[Red]($#,##0.00)
Right
On

divider 1 divider 2 divider 3

label 1

label 2

label 3 input field 4 action buttons 1 & 2

input field 1 input field 2 input field 3
VisualWorks Tutorial, Rev. 2.1 79

Chapter 4 Creating a Graphical User Interface
4. Align widgets as necessary.

5. Adjust the window size and make the Check window a fixed size.

6. Install the Check canvas in a new method called dialogSpec in the
CheckbookInterface class:

a. Click Install... in the Canvas Tool.

b. In the INSTALL on Class: field of the dialog box, type
CheckbookInterface

c. In the enter new Selector: field, delete the default value and
replace it with dialogSpec (if you leave windowSpec in this field,
you will overwrite your main-window canvas).

d. Click OK.

7. Save your image.

Input field 3 Type:
Format:
Align:
Bordered:

Date
<your choice>
Left
Off

Input field 4 Type:
Format:
Align:
Bordered:
Read Only:

Number
0
Left
Off
On

Divider 1 Orientation: Horizontal

Divider 2 Orientation: Vertical

Divider 3 Orientation: Horizontal

Action button 1 Label:
Size as Default

Cancel
On

Action button 2 Label:
Be Default
Size as Default

OK
On
On

Widget Property Setting
80 VisualWorks Tutorial, Rev. 2.1

Previewing a Window for Another Platform

n
feel

 not
 the

s

that

k-
, and
our
Previewing a Window for Another Platform

If you are developing an application for use on several platforms, you ca
preview the canvas for each platform to see how the platform’s look-and-
will affect the appearance of the window.

To preview a canvas for a given platform:

1. Display the canvas you want to preview.

2. From the Look menu on the Canvas Tool, choose the item that corre-
sponds to the desired platform.

Changing the look from the Canvas Tool affects only the canvas; it does
affect the window’s appearance when you run the application. The look of
running application is determined by the UI Look page of the Settings Tool
(see page 35). This setting determines the look of all of your VisualWork
tools and applications.

What’s Next: Programming in Smalltalk

So far, you have created specifications for the Checkbook application’s
graphical user interface and you have run the application in its current
minimal form. Chapter 5 shows how to create the two Smalltalk classes
provide the basic processing for the application.

Because you will be working primarily with a System Browser and a Wor
space, you can close any canvases, Resource Finders, Properties Tools
Checkbook application windows that may still be open. Be sure to save y
image if you want to take a break or exit VisualWorks.
VisualWorks Tutorial, Rev. 2.1 81

Chapter 4 Creating a Graphical User Interface
82 VisualWorks Tutorial, Rev. 2.1

lass
lass
ple,

e

ctions

ote
-
l
Chapter 5

Developing the Domain Models

All Smalltalk code is bundled into classes. The most important role of a c
is to create one or more instances of itself. A common analogy is that a c
is like a factory that can manufacture a particular kind of object. For exam
the Float factory can manufacture floating-point numbers.

In this chapter, you create the two Smalltalk classes that manufacture th
domain models for the Checkbook application. Recall from “Designing
Domain Models” on page 47 that these classes are:

n The Check class, which manufactures check objects

n The Checkbook class, which manufactures checkbook objects

What You Should Read

If You Are New to Smalltalk

To familiarize yourself with Smalltalk, you should work through the entire
chapter. After you complete each task, be sure to read the related subse
whose titles begin with “ Analysis:”. These subsections highlight the
Smalltalk rules and conventions that apply to the steps you performed. N
that this chapter is not a comprehensive introduction to Smalltalk. Conse
quently, you may find it helpful to consult any of the following for additiona
explanation:

n Chapter 1 of the VisualWorks Cookbook

n Chapters 2–8 of the VisualWorks User’s Guide

n Any Smalltalk textbook
VisualWorks Tutorial, Rev. 2.1 83

Chapter 5 Developing the Domain Models

d
. To

e
If You Already Know Smalltalk

To save time, you can work through just the main tasks in this chapter,
skipping the Analysis sections. Alternatively, you can file in the complete
application, browse its domain models, and then continue with Chapter 6
do this:

1. In a File List, enter a pattern such as the following, where install-
dir stands for the VisualWorks installation
directory:

n / install-dir /tutorial/basic/* on a UNIX platform

n vol :\ install-dir \TUTORIAL\BASIC* on a Windows or
OS/2 platform

n vol : install-dir :tutorial:basic:* on a Macintosh
computer

2. Select chkbk.st in the names view and choose file in from the
<Operate> menu in that view.

3. In a System Browser, select the category Examples-VWTutorial. If
necessary, choose update from the <Operate> menu in the category
view.

This category now contains the T_Check, T_Checkbook, and
T_CheckbookInterface classes. (The T_ prefix prevents these classes
from overwriting classes you have created, such as CheckbookInter-
face.)

4. Prepare the filed-in classes for use in Chapter 6:

a. Select T_CheckbookInterface in the class view and choose
remove... from the <Operate> menu to delete this class.

b. Rename T_Check to Check by selecting T_Check and choosing
rename as... in the class view’s <Operate> menu.

c. In the dialog box, specify Check and click OK. A second dialog box
informs you that existing methods reference the name you are
changing.

d. Click Rename in the second dialog box. A browser is displayed,
highlighting the old name in the referencing method.

e. In the browser, change the old name to the new name and choos
accept from the <Operate> menu.

f. Repeat steps a–e to rename T_Checkbook to Checkbook.

5. Save your image.
84 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

e
heck
.

s)

 the
Creating the Check Class

The Check class manufactures the check objects that are recorded in th
checkbook. Each check object must store the information that defines a c
and respond to messages that seek to obtain or change this information
Consequently, you program the Check class with variables for storing the
required data and methods for manipulating it.

In the following sections, you will create the Check class by:

1. Locating the category for the Checkbook application’s classes.

2. Defining the data structure (the class definition and instance variable
for the Check class.

3. Documenting the Check class with a class comment.

4. Defining methods that:

n Provide for access to the data in check objects

n Provide for character-based display of check objects

At various points in this process, you will create and inspect instances of
Check class.
VisualWorks Tutorial, Rev. 2.1 85

Chapter 5 Developing the Domain Models

 a

he
you

e
Locating the Application’s Category

In this tutorial, you will create all of the Checkbook application classes in
single class category—namely Examples-VWTutorial, where you created
the CheckbookInterface class on page 64. This makes it easy to identify t
application’s pieces and to file them out as a group. Note, however, that
could scatter an application’s classes among multiple categories, with no
impact on the application’s operation.

To locate the Examples-VWTutorial category:

1. Open a System Browser.

2. Scroll the category view until you find Examples-VWTutorial. It should
be near the end of the list.

Alternatively, you can locate the desired category by searching for th
CheckbookInterface class (see “Finding a Class by Name” on
page 23).

3. Select Examples-VWTutorial in the category view. CheckbookInter-
face appears in the class view, as shown in Figure 5-1.

Figure 5-1 System Browser for Examples-VWTutorial category

category view

code view

class view
86 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

ount,
reate
e

of a

u

,

Defining the Data Structure for the Check Class

Each check object must store a unique sequence number, a date, an am
and a payee. You define the data structure for check objects when you c
the Check class definition. The class definition specifies the names of th
variables for holding data.

To create the class definition for the Check class:

1. Leave Examples-VWTutorial selected in the category view, and, if
necessary, deselect CheckbookInterface in the class view.

The code view should display a template for a new class, as shown in
Figure 5-1. The template is a formatted description of the basic parts
class definition.

2. Leave the instance switch selected below the class view, because yo
are defining the data structure for all instances of Check.

3. In the code view, edit the class definition template as follows:

a. Replace NameOfSuperClass with Object.

Hint: Double-click on NameOfSuperClass to select it, and then
type Object over the selection.

b. Replace #NameOfClass with #Check. Leave the pound sign (#),
with no space between it and the class name.

c. Replace 'instVarName1 instVarName2' with the following list of
instance variable names: 'number amount date payee'.

Hint: Position the mouse pointer between the initial quote and the
following character. Double-click to select the entire quoted string
and then type the new instance variable names.

d. Delete ClassVarName1 ClassVarName2, leaving the empty
quotes.

4. When the code view appears as in Figure 5-2, choose accept from the
code view’s <Operate> menu to compile the class definition. The new
class name appears in the class view.
VisualWorks Tutorial, Rev. 2.1 87

Chapter 5 Developing the Domain Models

d so
ll.
ges,

ey

-

t

ble
n’t
t the
t
Figure 5-2 The Check class definition

Analysis: The Check Class Definition

You have just added a new class (Check) to the Smalltalk class library in your
image. Because of step 3a, this class is a subclass of Object, from which it
inherits variables and methods for printing, error handling, comparing, an
on. Similarly, as a class, Check inherits characteristic class behavior as we
Consequently, the new class can already respond to a number of messa
even though you have not yet defined any methods.

Each instance of Check will have instance variables named number,
amount, date, and payee. These are called instance variables because th
will exist for every instance created from the Check class—that is, for all
objects manufactured by the Check factory. Each instance variable will even
tually hold onto another object, which is its value. When an instance variable
“stores” or “holds onto” an object, it essentially stores a reference to tha
object.

Each instance variable can hold an object of any type, although if a varia
is initialized with an inappropriate type of object, that object probably wo
understand the messages it receives. In a later section, you will documen
expected data types for these variables, and you will create the code tha
initializes them when you create the Checkbook class.
88 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

s
cts.

lays

ri-

se

at
Creating a Check Instance

Although the Check class is incomplete (you have not defined its method
yet), the class definition you just created is capable of creating check obje
That is, like most classes, Check responds to the message new by creating a
new instance of itself. To create and look at a check object:

1. Open a Workspace.

2. In the Workspace, type the following message expression:

Check new

3. Select the expression and choose inspect from the <Operate> menu.
This opens an Inspector on the new check object. The Inspector disp
a list of variables:

Figure 5-3 Inspecting a Check instance

The first variable in this list is self, which is a pseudovariable that refers
to the check object itself. The remaining variables are the instance va
ables in this object.

4. Select self. The phrase a Check is displayed as its value.

5. Select any of the listed instance variables to display its value. Becau
none of the variables are initialized, the value of each is nil.

6. Close the Inspector.

Analysis: Message Expressions

The message expression Check new consists of a receiver (the Check class)
and a message (new). new is an example of a unary message, which consists
of a single word, or selector. The selector is used for selecting the method th
VisualWorks Tutorial, Rev. 2.1 89

Chapter 5 Developing the Domain Models

t

 to

 data

se
e

 are
n

gh
is to be executed in response to the message. Thus, when the Check class
receives the new message, the selector new is used to look up the method tha
creates a new instance.

Sending a message to a receiver always returns an object. The object to be
returned is determined by the method that executes in response to the
message. If the method doesn’t specify an object to return, the default is
return the receiver itself. In the case of new, the object that is returned is the
newly created instance of the receiver class. The Inspector displays the
structure of a returned object.

Analysis: Messages for Creating Instances

Most classes respond to new as part of their inherited class behavior. Many
classes respond to other messages as well. For example, the class who
instances represent days in a year is Date. This class responds to the messag
today with an instance representing the current day. (Try entering Date
today in a Workspace and inspecting it.)

Note that new, as inherited, creates new objects whose instance variables
empty (their values are nil). In contrast, a more specialized instance-creatio
method such as today typically creates an instance and assigns values to the
instance variables. The Check class does not need such a method, althou
you will define one for the Checkbook class later in this chapter.
90 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

 it for
m,
, and

he

to
ets.
nt to
able

ad
Documenting the Check Class

Whenever you create a new class, it is recommended that you document
the benefit of other programmers who may read your code. At a minimu
the comment for the class should describe the class’s purpose, variables
methods.

To document the Check class:

1. Select Check in the class view, if necessary, and leave the instance
switch selected.

2. Choose comment from the class view’s <Operate> menu. The code
view displays a default placeholder for a comment.

3. Replace the default comment with a comment such as the following:

The Check class is a container for the information that makes up
a check. It has messages for accessing this information and for
printing it on a Stream.

Instance Variables:
number <Integer> Sequence number of check in checkbook
amount <Integer> Amount of money for which the check is

written
date <Date> Date on which the check is written
payee <String> Name of party receiving the check

4. Choose accept from the code view’s <Operate> menu to incorporate t
comment into the class.

5. Choose definition from the class view’s <Operate> menu to redisplay
the class definition in the code view.

Analysis: The Check Class Comment

The comment indicates the type of object that each variable is intended
hold. By convention, the expected object type is indicated by angle brack
Note, however, that commenting the expected object type is not equivale
declaring a data type for the variable, because Smalltalk allows any vari
to hold any object.

When you explore the VisualWorks class library on your own, you can re
the class comments for information about unfamiliar classes.
VisualWorks Tutorial, Rev. 2.1 91

Chapter 5 Developing the Domain Models

ed to
h

lled

 the

he
Providing for Access to Check Data

Whenever you create a class that has instance variables, you usually ne
create methods for getting and setting the values of those variables. Suc
methods are called accessing methods, because they provide access to an
object’s data:

n An accessing method that returns a variable’s value is called an accessor.

n An accessing method that sets a new value for a variable is called a
mutator.

By convention, accessing methods are normally created in a protocol ca
accessing.

To create accessing methods for the Check class:

1. Select Check in the class view, if necessary, and leave the instance
switch selected, because you are defining instance methods—methods
that provide behavior for every instance of Check.

2. Create a new protocol:

a. Choose add... in the protocol view.

b. In the dialog box, enter the name accessing and click OK .

The code view displays a template for a new method. The template is a
formatted description of the basic parts of a method definition.

3. Select the entire method template and replace it with the definition of
accessor method amount. The code for this method uses the return
operator (̂) to return the value of the amount instance variable:

amount
^amount

4. Choose accept from the code view’s <Operate> menu. The name of t
new method appears in the method view, as shown in Figure 5-4.
92 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

hod,

Figure 5-4 The Check Class with the amount method

5. Edit the text in the code view to define the mutator method amount:.
Editing this text does not affect the previously accepted accessor met
because the colon you insert after amount defines a new selector for a
new method:

amount: aValue
amount := aValue

6. Choose accept from the code view’s <Operate> menu.

Notice that the method view now contains entries for two methods,
amount and amount:.

7. Edit the code view and choose accept for each of the accessor methods
shown below. You can create them in any order.

date
^date

number
^number

payee
^payee

protocol view method view
VisualWorks Tutorial, Rev. 2.1 93

Chapter 5 Developing the Domain Models

 list
ct can

fined
8. Edit the code view and choose accept for each of the mutator methods
shown below. You can create them in any order.

date: aValue
date := aValue

number: aValue
number := aValue

payee: aValue
payee := aValue

At this point, your Check class should look like Figure 5-5:

Figure 5-5 The Check class with complete accessing protocol

Analysis: Message Protocol

You have just created a number of instance methods in the Check class.
Together, these methods define part of the message protocol for check
objects. In general, an object’s message protocol is its interface; it is the
of messages to which the object can respond. For example, a check obje
now respond to a date: message by setting its date variable. Note that an
object’s complete message protocol also includes messages that are de
by inherited methods.
94 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

hat

r
pres-

re
e,

e

t

. The
r
Analysis: Method Definitions

You created instance methods for the Check class by entering method defini-
tions for them. In general, a method definition contains a message pattern and
a sequence of one or more expressions.

In the following definition, the message pattern is amount, and the sole
expression is ̂amount:

amount
^amount

When an instance of Check receives a message that matches this pattern (t
is, when the check instance receives the message amount), this method
executes by evaluating its expression.

Return Operator. The expression ^amount uses the special return operato
^. This operator causes the method to return the value of the following ex
sion (in this case, the instance variable amount). Without an expression
containing ̂ , a method simply returns the receiver of the message.

Keyword Messages. The message patterns in the accessor methods are
matched by unary (single-word) messages such as amount. In contrast, the
message pattern for each mutator method is matched by a keyword message.

A keyword message is a message whose selector consists of one or mo
keywords, where a keyword is an identifier with a trailing colon (for exampl
amount:). Each keyword in a keyword message is followed by an argument
expression (for example, in the keyword message amount: 40, the value 40
is the argument of the keyword amount:). Keyword messages provide a
means of passing additional information for a method to use.

A keyword message such as amount: 40 matches the message pattern in th
following mutator method definition:

amount: aValue
amount := aValue

When the method executes, the argument 40 is used in place of the argumen
name aValue.

Be sure to pay attention to the existence of colons in message selectors
trailing colon signals the difference between a keyword message selecto
such as amount: and a unary message selector such as amount.
VisualWorks Tutorial, Rev. 2.1 95

Chapter 5 Developing the Domain Models

e

he

ari-

tain

en-
eate
p

. At
ative
en
sla-
ble
rted
Assignment Operator. In the amount: method definition, the expression
amount := aValue contains the assignment operator := . This operator
assigns the value of the expression on the right to be the new value of th
instance variable named on the left. The expression in the amount: method
definition causes the value of the message argument to be assigned to t
instance variable amount.

Analysis: Naming Conventions

It is common practice to use minimally different names for an instance v
able, its accessor, and its mutator. For example, for the instance variable
amount, you created an accessor called amount and a mutator called
amount:. (The only difference among these names is the colon in amount:).
The similarity of these names reinforces the notion that all three items per
to the same aspect of a check object.

This naming convention is not required by Smalltalk. However, the conv
tion is used throughout the Checkbook application because it helps to cr
more readable code, and, as you will see later, it makes it easier to set u
certain objects from the framework that support the user interface.

Analysis: Method Compilation

When you enter a method in a code view and choose accept , the method is
immediately parsed for syntax errors and then compiled into byte codes
run time, invoking the method causes the byte codes to be translated to n
machine code appropriate to the run-time platform. This native code is th
cached so that subsequent invocations of the method do not require tran
tion. Consequently, the performance of Smalltalk applications is compara
to that of statically compiled languages, but code is portable to any suppo
platform without recompilation.
96 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

k
o do

ce

rgu-
word

ts date
Setting Check Information

Now that the Check class has accessing methods, you can create a chec
object and send it messages to set the values of its instance variables. T
this:

1. In a Workspace, type the following message expression:

Check new date: Date today

2. Select the expression and choose inspect from the <Operate> menu.

3. In the Inspector, select the date variable. Notice that its value is no
longer nil but displays the current date. (The values of the remaining
instance variables are still nil.)

4. Close the Inspector.

5. Replace the expression you typed in step 1 with the following sequen
of expressions:

| aCheck |
aCheck := Check new.
aCheck date: Date today.
aCheck number: 1.
aCheck amount: 40.
aCheck payee: 'Fred'

6. Select all of these expressions and choose inspect . Now all of the
instance variable have non-nil values.

7. Close the Inspector, but keep the Workspace.

Analysis: More about Message Expressions

Complex Expressions. Message expressions can serve as receivers or a
ments in other message expressions. Thus, in step 1, you entered a key
message expression in which:

n The selector is date:.

n The receiver is the check object returned by Check new.

n The argument is the date object returned by Date today.

This complex message expression creates a new check object and sets i
to the current date.
VisualWorks Tutorial, Rev. 2.1 97

Chapter 5 Developing the Domain Models

e:

, the

hich

, a

rs.

d.

e
,

 to the
 that

read
Smalltalk evaluates complex message expressions according to a set of
parsing rules. The rules that apply to unary and keyword expressions ar

n Unary expressions are parsed from left to right.

n Unary expressions take precedence over keyword expressions. Thus
expression Check new date: Date today is parsed:

(Check new) date: (Date today)

Sequences of Expressions. You can resolve a complex expression into a
sequence of simpler ones, typically by using temporary variables. For
example, the expression you typed in step 1 can be written as follows (w
forms the basis for the expressions in step 5):

| aCheck |
aCheck := Check new.
aCheck date: Date today

Here, aCheck is declared as a temporary variable. In the first expression
new check object is created and then assigned as the value of aCheck. In the
second expression, the date: message is sent to the value of aCheck. Notice
that:

n Declarations of temporary variables are enclosed between vertical ba

n In a sequence of expressions, all but the last one must end in a perio

Cascaded Expressions. When a number of messages are to be sent to th
same receiver, they can be cascaded (separated by semicolons). For example
in step 5 you typed a sequence of expressions that send four messages
same check object. Alternatively, you could enter a cascaded expression
sends the same four messages to the object returned by Check new:

Check new date: Date today; number: 1; amount: 40; payee: 'Fred'

Cascaded expressions are generally used sparingly; they are harder to
and debug than sequences of expressions.
98 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

lf.

a
cing
 of

e
is

le

mat
Providing for Character-Based Display

Each instance of Check is capable of returning a string that describes itse
This is because the Check class inherits instance methods for printing from
the Object class. (Note that in this context, “printing” refers to producing
displayable sequence of characters that describe an object, not to produ
hard copy from a printer.) The basic way of obtaining a string description
an object is to send it the printString message.

Under the inherited implementation, instances of Check respond to print-
String with the default description a Check. (The Inspector displays this
description when you select self.) You can cause check objects to print mor
informative descriptions by overriding their inherited behavior. You do th
by reimplementing an instance method called printOn: in the Check class.
This overrides the inherited printOn: method, which composes the actual
string that printString prints. To reimplement the printOn: method:

1. Select Check in the class view, if necessary, and leave the instance
switch selected, because you are defining another instance method.

2. Add a new protocol called printing.

3. Replace the method template with the following code. Enter the sing
quotes and commas exactly as shown:

printOn: aStream
"Print a description of this check on the provided stream.
 Format of a sample description: #1, 4 August 1994: $40 to Fred "

aStream nextPutAll:
'#', number printString, ', ', date printString, ': $', amount printString, ' to ',

payee displayString

Notice that:

n This method contains a comment, which is enclosed in double
quotes.

n The expression is broken across two lines. In general, you can for
expressions with spaces, tab characters, and carriage returns to
improve readability.

4. Choose accept from the code view’s <Operate> menu.

5. You have completed the Check class! (Save your image.)
VisualWorks Tutorial, Rev. 2.1 99

Chapter 5 Developing the Domain Models

s the

ers
uch

is,

turn

er in

y

k
h as

l for

 (Note
u-
y
d
Analysis: Constructing a String

The last line in the method you entered is a single string, which serves a
argument in the nextPutAll: message. Strings are objects that represent
sequences of characters. A literal string consists of one or more charact
(including blank and tab characters) enclosed in single quotation marks, s
as ' to '.

You can build strings from other strings by concatenating them. To do th
you use the concatenation message, which is a comma (,). In the above
method, four literal strings are concatenated with four expressions that re
strings. Note that:

n The comma inside single quotation marks is interpreted as a charact
a literal string, not as the concatenation message.

n The message printString produces strings describing the objects held b
the number, date, and amount variables.

n The message displayString is a variant of printString that returns the
literal string held by the payee variable without the enclosing quotation
marks.

Analysis: Streams

The printString method uses a stream to construct a string describing a chec
object. A stream is an object that holds onto a collection of elements (suc
characters) and maintains a positional reference into this collection (for
example, it knows which element is next). In general, streams are usefu
constructing and retrieving sequences of elements, and for manipulating
those elements in sequence.

printString creates an empty stream and then sends itself the printOn:
message to insert an appropriate sequence of characters into the stream.
that the message pattern of the printOn: method expects a stream as an arg
ment.) printOn: in turn asks the stream to store the specified characters b
sending it the nextPutAll: message, which is part of the protocol understoo
by streams. When printOn: finishes, printString returns the contents of the
stream—that is, the newly constructed string.
100 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

t to

n to

.
e
Displaying a Check Instance’s Description

To see the effect of the new printOn: method, you can:

1. Select the code that you typed in the Workspace on page 97:

| aCheck |
aCheck := Check new.
aCheck date: Date today.
aCheck number: 1.
aCheck amount: 40.
aCheck payee: 'Fred'

2. Choose inspect from the Workspace’s <Operate> menu.

3. In the Inspector, select self. The object description now looks something
like this (you may need to enlarge the Inspector window):

#1, 4 August 1994: $40 to Fred

4. Close the Inspector.

5. With the the code still selected, choose print it from the Workspace’s
<Operate> menu. This prints the string description of the check objec
the right of the last expression and highlights it.

6. Delete the highlighted string.

7. Now add another line of code in the Workspace to send the descriptio
the System Transcript. The entire fragment should look like this:

| aCheck |
aCheck := Check new.
aCheck date: Date today.
aCheck number: 1.
aCheck amount: 40.
aCheck payee: 'Fred'.
Transcript show: aCheck printString; cr

8. Select the code and choose do it from the Workspace’s <Operate> menu
The object description is now displayed in the System Transcript in th
VisualWorks main window.
VisualWorks Tutorial, Rev. 2.1 101

Chapter 5 Developing the Domain Models

ing

f the

it

on

ech-
hes
one
earch

f the
Analysis: The do it, print it, and inspect
Commands

The <Operate> menu in a Workspace or a Browser code view contains
several commands for executing Smalltalk code:

n do it simply causes the selected expressions to be evaluated, declar
variables and evaluating message expressions as appropriate.

n print it evaluates the selected expressions and prints a description o
object to which the last expression evaluates. The printed description
appears to the right of the code and is highlighted so you can delete
easily.

n inspect evaluates the selected expressions and opens an Inspector
the object to which the last expression
evaluates.

Analysis: Method Lookup

When a message is sent to an object, Smalltalk uses a method-lookup m
anism to determine which method to execute. This “method finder” searc
the methods in the receiver’s class for one with a matching selector. If n
is found, the methods in that class’s superclass are searched next. The s
continues up the superclass chain until a matching method is found. The
search terminates with the Object class. If no matching method is found
there, an error notifier reports that the message is not understood.

Thus, when you send the message printString to the object aCheck, the
method finder:

1. Searches the methods in the Check class for a method whose pattern
matches printString. No such method is found (you have defined
printOn: there, not printString).

2. Searches the methods in Check’s superclass, which is Object. It finds
the printString method there and executes it.

The same kind of lookup occurs for each message that is sent as part o
executing method. For example, the executing printString method contains
the following message expression:

self printOn: aStream

When this message expression is evaluated, it:
102 VisualWorks Tutorial, Rev. 2.1

Creating the Check Class

r
hod

1. Evaluates self, which stands for the receiver that initiated the lookup fo
the currently executing method. Because the currently executing met
is printString, self refers to aCheck.

2. Sends the message printOn: to aCheck. This causes the method finder
to search the methods in the Check class. Because you defined printOn:
in the Check class, the search stops, and this method is executed.

Thus, by providing a local definition, the Check class overrides the inherited
implementation of printOn:
VisualWorks Tutorial, Rev. 2.1 103

Chapter 5 Developing the Domain Models

s,
ount

ata
wing

s)

 the
Creating the Checkbook Class

The Checkbook class manufactures the checkbook object that is to be
presented in the user interface. This checkbook object issues new check
records the written checks in a register, and keeps track of the current acc
balance.

Like any Smalltalk object, the checkbook object does all this by storing d
and responding to messages that are sent to it. Consequently, in the follo
sections you will create the Checkbook class by:

1. Defining the data structure (the class definition and instance variable
for the Checkbook class

2. Defining methods that:

n Provide for creating and initializing checkbooks

n Provide for accessing data in a checkbook

n Provide for checkbook transactions

At various points in this process, you will create and inspect instances of
Checkbook class.
104 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

n
unt),
efine

r,

an

ion

t
Defining and Documenting the Checkbook Class

Each instance of the Checkbook class must store a register (a list of writte
checks), a balance (the amount of money available in the checking acco
and the sequence number to be assigned to the next written check. You d
this data structure by creating the Checkbook class definition:

1. Select the Examples-VWTutorial class category in the System Browse
making sure the instance switch is selected.

The code view may contain a new class template or the definition of
existing class in the category.

2. Edit the contents of the code view so that it contains the class definit
shown below:

Model subclass: #Checkbook
instanceVariableNames: 'balance register nextCheckNumber'
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-VWTutorial'

3. Choose accept from the code view’s <Operate> menu to compile the
class definition. The new class name (Checkbook) appears in the class
view of the Browser.

4. Document the class by choosing comment from the class view’s
<Operate> menu and replacing the default comment with a commen
such as the following:

Instances of the class Checkbook contain a register of written
checks and a balance; they also assign sequence numbers to the
checks listed in the register. The Checkbook class provides
methods for creating and initializing new instances, accessing the
information in them, and performing checkbook transactions such
as making deposits and writing and canceling checks.

Instance variables:
balance <Integer> The current balance of the checking

account.
register <OrderedCollection of: Check> The list of issued

checks.
nextCheckNumber <Integer> The sequence number of the

next check.
VisualWorks Tutorial, Rev. 2.1 105

Chapter 5 Developing the Domain Models

5. Choose accept from the code view’s <Operate> menu.

6. Choose definition from the class view’s <Operate> menu to redisplay
the class definition.
106 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

d

 of

nts of
eed

ill
unt
he
 that
re

ee

se)
Analysis: Subclasses of Model

You have just created Checkbook as a subclass of the Model class. This
means that Checkbook is automatically equipped with all the variables an
methods defined in its superclass, Model, as well as those defined in Model’s
superclass, Object.

Together, Model and Object provide Checkbook with the variables and
methods that support the dependency mechanism, a widely used technique for
coordinating the activities of different objects in an application. Because
this inherited mechanism, each Checkbook instance is capable of:

n Maintaining a list of objects that depend on it for
information

n Notifying these dependent objects whenever the relevant information
changes

In general, when an object is a model (that is, an instance of a subclass of
Model), you can program other objects to set themselves up as depende
it. You do this for objects that use information in the model and therefore n
to know when that information changes so they can update themselves.

You make Checkbook a model because you know that the user interface w
display checkbook information that is likely to change (such as the acco
balance). Later, in Chapter 6, you will set up dependencies that enable t
user interface to update its display whenever the balance changes. Note
you did not make the Check class a model, because once check objects a
created, the information in them never changes.

The term model now has two meanings:

n Objects whose role is to store and manipulate data, as opposed to
presenting it—for example, domain models and application models (s
Chapter 3)

n All subclasses of the Model class (and their instances)

These definitions generally overlap, because models (in the original sen
are typically implemented as subclasses of Model. For example, the applica-
tion model CheckbookInterface is a subclass of the ApplicationModel
class, which is a subclass of Model.
VisualWorks Tutorial, Rev. 2.1 107

Chapter 5 Developing the Domain Models

se
Creating a Checkbook Instance

At this point, you can create an instance of the Checkbook class the same
way you created instances of Check—by invoking the inherited new
method. To create and look at a checkbook object:

1. In a Workspace, type the following message expression:

Checkbook new

2. Select the expression and choose inspect from the <Operate> menu.
The Inspector lists the checkbook object’s variables:

Figure 5-6 Inspecting a Checkbook instance

3. Notice that this list includes the variable dependents. This variable is
part of the dependency mechanism inherited from Model.

4. Select any of the listed instance variables to display its value. Becau
none of the variables are initialized, the value of each is nil.

5. Close the Inspector.
108 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

ects

e
 two

ry.

od

.

Providing for Checkbook Initialization

When you create an instance of Checkbook using the inherited new method,
its variables are all nil. You can override the inherited new method so that it
both creates a new checkbook object and initializes its variables with obj
of the proper types.

A typical reimplementation of new is for it to send a message to initialize th
new instance’s variables. Consequently, in the following steps, you create
methods:

n A class method new, which creates the new instance

n An instance method initialize, which initializes the new instance

To create the appropriate methods:

1. Select Checkbook in the class view of the System Browser, if necessa

2. Select the class switch so you can define a class method—a method that
provides behavior for the class itself.

3. Add a protocol named instance creation (choose add... in the protocol
view).

4. Replace the method template in the code view with the following meth
definition and choose accept :

new
^super new initialize

5. Select the instance switch so that you can define an instance method

6. Add a protocol named initialize-release.

7. In the code view, enter the following method definition and choose
accept :

initialize
"Set up the checkbook with an empty register and a balance of

$0"

register := OrderedCollection new.
balance := 0.
nextCheckNumber := 1
VisualWorks Tutorial, Rev. 2.1 109

Chapter 5 Developing the Domain Models

ari-

As
llec-

t

s

ed.
se

his

 are

ce

Analysis: Initial Data Types

The initialize method you just created initializes a checkbook’s instance v
ables by assigning objects to them. In particular:

n register is assigned an empty instance of the OrderedCollection class.
An ordered collection behaves like a dynamically expandable array
whose elements are organized in the order in which they are added.
you will see, writing a new check adds an element to this ordered co
tion, and canceling a check removes it.

n balance is assigned the object 0, which is an instance of the SmallIn-
teger class.

n nextCheckNumber is assigned the object 1, which is another instance
of SmallInteger.

n dependents is left uninitialized, because it is up to other objects to se
themselves up as dependents on a model.

Initializing balance as an integer may seem odd, because dollar amount
usually have two-place decimals. However, 0 is simply an initial value to
which another number (integer, floating point, or fixed point) can be add
In general, numbers of different types can be added or subtracted becau
their classes implement plus (+) and minus (-) methods that perform appro-
priate conversions. These implicit conversions illustrate that the balance
variable is not strongly typed—that is, throughout the life of a checkbook, t
variable may hold onto objects of different types.

Analysis: Class and Instance Methods

The Checkbook class now contains one instance method and one class
method. In general:

n Class methods define behavior for the class itself. Since only classes
capable of creating instances, instance-creation methods such as new are
class methods.

n Instance methods define behavior for every instance of the class. Sin
each instance is in charge of its own variables, the initialize method is an
instance method.

You can view each kind of method in a System Browser by selecting the
instance or class switch.
110 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

e

re
thods

.

r

the

-

Creating an Initialized Checkbook Instance

Now you can test the new and initialize methods you just created:

1. In a Workspace, type the following message expression:

Checkbook new

2. Select the expression and choose inspect from the <Operate> menu.

3. Select each of the listed instance variables to verify that they have th
correct initial values.

4. Close the Inspector.

Analysis: More about Method Lookup

When a message is sent to a class (such as Checkbook), Smalltalk’s “method
finder” searches the receiver’s class methods for one with a matching
selector. If none is found, the class methods for that class’s superclass a
searched, and so on. Thus, when the receiver is an instance, instance me
are searched; when the receiver is a class, class methods are searched

Sending the message new to the Checkbook class causes the method finde
to search the class methods for Checkbook, where it finds the method you
just implemented. The search stops here, instead of continuing through
class methods for Checkbook’s superclasses. The reimplemented new is
executed, overriding the inherited one.

As it executes, the reimplemented new method evaluates the following
message expression:

^super new initialize

This expression in turn:

1. Evaluates super new. As explained below, this creates a new Check-
book instance using the original, inherited implementation of new.

2. Sends initialize to the result of the previous step.

3. Returns the resulting initialized Checkbook instance.

In the expression super new, the role of super is similar to that of self, in
that it stands for the receiver of the message that invoked the currently
executing method. However, whereas self initiates a normal lookup for the
message sent to it, super causes the method lookup to start with the super
VisualWorks Tutorial, Rev. 2.1 111

Chapter 5 Developing the Domain Models

en

e

e

e
class of the class that defines the currently executing method. Thus, super
allows you to reuse an inherited method even though you have overridd
that method with a local reimplementation.

Returning to the example, in which the reimplemented new is the currently
executing method, the super new expression:

1. Evaluates super to be the Checkbook class (the receiver of the messag
that invoked the currently executing method).

2. Sends new to Checkbook, thereby initiating a method lookup. Becaus
super was used, this lookup skips Checkbook’s class methods and
starts with the class methods for Checkbook’s superclass, namely
Model.

This use of super allows the reimplemented new method to incorporate the
inherited new method without duplicating its code.

Note: Although you might expect the new method to be listed among the
class methods for the class Object, you will not find it there. The reason for
this is rooted in the full explanation of class methods, which is beyond th
scope of this tutorial.
112 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

er

s:

ry,

Providing for Access to Checkbook Data

Because the Checkbook class has instance variables, you need to consid
providing accessing methods for them as you did for Check. For reasons
described in the following subsection, you decide to create three method

n An accessor method for the balance variable

n An accessor method for the register variable

n A mutator method for the balance variable

To create these methods:

1. Select Checkbook in the class view of the System Browser, if necessa
and leave the instance switch selected.

2. Add a protocol named accessing (choose add... in the protocol view).

3. Edit the code view and choose accept for each of the accessor methods
shown below:

balance
^balance

register
^register

4. Edit the code view and choose accept for the mutator method shown
below:

balance: anAmount
"Set the balance to the specified amount, and notify

dependents of
the change."

balance := anAmount.
self changed: #balance
VisualWorks Tutorial, Rev. 2.1 113

Chapter 5 Developing the Domain Models

s in a
ss a
set

ma-

 you
ne

e

or

an
eful

d.
by
es
Analysis: Limited Access to Variables

You just defined accessing methods for a subset of the instance variable
Checkbook instance. With this message protocol, other objects can acce
subset of a checkbook’s information. For example, any other object can
the balance of a Checkbook instance simply by sending it a balance:
message.

However, no other object can inspect or change the value of nextCheck-
Number, because no accessing methods exist for this variable. The infor
tion in the nextCheckNumber variable is private to a check object because
of the check’s limited message protocol.

Deciding how much access to provide is often an iterative process. When
create a class, you may first give full access to all variables and later pru
unnecessary accessors as you refine the application. In the case of Check-
book:

n No access is provided for the nextCheckNumber variable, because no
objects other than checkbooks need to know or change the sequenc
numbers for checks.

n An accessor method for the register variable is provided for the user
interface to obtain its collection of written checks. However, no mutat
is provided, because once register is initialized, it should never be
assigned another collection.

n Full access is provided for balance. The accessor balance exists to
support the user interface, and the mutator balance: is used in the imple-
mentation of other methods in Checkbook.

Strictly speaking, balance: is unnecessary, because no object other th
a checkbook should ever set the balance. However, this method is us
because it consolidates code that would otherwise be repeated.

Analysis: Change Notification

The balance: method does more than set a checkbook’s balance variable; it
also notifies the checkbook that an aspect of its stored data has change
Because the notified checkbook is a model (see page 107), it responds
broadcasting further notification to any objects that have made themselv
dependent on it.

All this is set in motion by the self changed: #balance expression in the
balance: method. For example, if you send a message such as Checkbook
new balance: 40, then:
114 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

nts

in
at a

is

 how
on-
pect

hat
spect
es it
 you
1. A new Checkbook instance is created (and initialized).

2. The balance: method:

n Changes the instance’s balance variable from 0 to 40

n Sends a changed: message to self (in this case, the new Checkbook
instance)

3. The new Checkbook instance finds the changed: method and executes
it.

4. The changed: method causes the Checkbook instance to send an
update: message to any objects listed in its dependents variable.

In this example, no objects have made themselves dependents of the Check-
book instance, so no update: messages are actually sent. When depende
exist, each executes its own update: method in response.

An important part of the self changed: #balance expression is the symbol
(namely, #balance). A symbol is a string that is guaranteed to be unique
the system. For example, class and method names are symbols. Note th
symbol is expressed literally by prefixing it with the character #.

In the changed: message, the symbol #balance is an argument that repre-
sents the specific aspect of the checkbook’s data that has changed. In th
case, the aspect symbol #balance indicates that the value of the instance
variable balance has changed. A changed: message passes its aspect
symbol to each dependent, which uses the symbol to decide whether and
to respond to the change. If an object has multiple dependents that are c
cerned with different aspects of its data, each dependent can use the as
symbol to filter out irrelevant change
notifications.

You can pick any symbol as the aspect symbol in a changed: message.
However, when the changed information is held in an instance variable t
has an accessor (as in this example), it is common practice to choose an a
symbol that matches the variable and accessor name. This practice mak
easier to set up dependent objects from the VisualWorks framework when
program the user interface.
VisualWorks Tutorial, Rev. 2.1 115

Chapter 5 Developing the Domain Models

d

can:

ry,
Providing for Checkbook Transactions

So far, instances of Checkbook define an empty holder for check objects an
store a balance of 0. Now you program the Checkbook class so that its
instances can perform these transactions:

n Deposit a specified amount of money into the checking account

n Provide blank checks ready for issue

n Record an issued check in the register

n Cancel an issued check, removing it from the register

You can create the appropriate methods in any order. For example, you

1. Select Checkbook in the class view of the System Browser, if necessa
and leave the instance switch selected.

2. Add a protocol named transactions (choose add... in the protocol
view).

3. Edit the code view and choose accept for the deposit: method shown
below:

deposit: anAmount
"Deposit the specified amount and update the balance

accordingly"

self balance: self balance + anAmount

The expression in the deposit: method:

a. Obtains the checkbook’s current balance

b. Adds the specified amount to it

c. Sets the result to be the new balance
116 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

m

 can
4. Edit the code view and choose accept for the makeNewCheck:
method shown below:

makeNewCheck
"Create and initialize a new, blank check"

| newCheck |
newCheck := Check new.
newCheck number: nextCheckNumber.
newCheck date: Date today.
newCheck amount: 0.
newCheck payee: ' '.

^newCheck

The expressions in the makeNewCheck method:

a. Create a temporary variable and assign a new Check instance to it.

b. Initialize the Check instance by sending it cascaded messages fro
Check’s protocol. Notice that payee is set to the empty string (two
single quotation marks).

Checks are initialized by a checkbook, because only a checkbook
determine the sequence number.

c. Return the resulting Check instance.

5. Edit the code view and choose accept for the recordCheck: method
shown below:

recordCheck: aCheck
"Add the check to the register."
self register add: aCheck.

"Update the balance to reflect the newly recorded check."
self balance: self balance - aCheck amount.

"Increment the sequence number."
nextCheckNumber := nextCheckNumber + 1
VisualWorks Tutorial, Rev. 2.1 117

Chapter 5 Developing the Domain Models

in
r-

’s
at are
ed,

osed
lude
The expressions in the recordCheck: method:

a. Add the specified check to the end of the ordered collection held
the register variable. The add: message is part of the protocol unde
stood by OrderedCollection instances.

b. Subtract the written check’s amount from the current balance.

c. Calculate the sequence number that will be assigned by make-
NewCheck to the next check it creates.

6. Edit the code view and choose accept for the cancelCheck: method
shown below:

cancelCheck: aCheck
"Remove the check from the register."
self register remove: aCheck.

"Update the balance."
self balance: self balance + aCheck amount

The expressions in the cancelCheck: method:

a. Remove the specified check from the ordered collection.

b. Add the amount of the canceled check back into the balance.

Note that no adjustment is made to nextCheckNumber, because
once a given sequence number is assigned, it is never reused.
Canceling a check causes a gap in the sequence numbers.

7. You have completed the Checkbook class! (Save your image.)

Analysis: More about Complex Expressions

Three of the methods you just created (deposit:, recordCheck:, and
cancelCheck:) contain message expressions that modify the checkbook
balance. These expressions are complex, in that each has arguments th
composed of other expressions. To see how these expressions are pars
consider the following expression from the deposit: method:

self balance: self balance + anAmount

This expression contains the binary message +, which performs the addition
operation. A binary message has one argument, and its selector is comp
of one or two nonalphanumeric characters. Common binary messages inc
arithmetic operations (such as + and -) as well as the string concatenation
message (comma).
118 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

y,

n
 the
When a message expression contains all three kinds of messages (unar
binary, and keyword):

n Unary expressions are parsed from left to right.

n Binary expressions are parsed from left to right.

n Unary expressions take precedence over binary
expressions.

n Binary expressions take precedence over keyword
expressions.

Returning to the example, assume that you send the deposit: message to a
Checkbook instance. When deposit: executes:

1. The unary expression self balance is evaluated, returning the Check-
book instance’s current balance.

2. The binary expression containing + is evaluated. Its receiver is the
current balance returned in step 1; its argument is anAmount. The evalu-
ated expression returns the resulting sum.

3. The keyword expression containing balance: is evaluated. Its receiver is
self (the Checkbook instance), and its argument is the sum returned i
the previous step. This expression sets the checkbook balance to be
new sum.

The evaluated expression can be written with parentheses as follows:

self balance: ((self balance) + anAmount)
VisualWorks Tutorial, Rev. 2.1 119

Chapter 5 Developing the Domain Models

the
late

ain-
ss’s

ccur.
Analysis: Alternative Implementation

The transaction methods (deposit:, recordCheck:, and cancelCheck:) use
expressions such as self balance and self balance: to get and set the value
of a checkbook’s balance variable. Because these methods are defined in
Checkbook class, they can also use assignment expressions to manipu
Checkbook’s instance variables directly.

For example, the expression in the deposit: method could have been imple-
mented as follows:

balance := balance + anAmount.

Deciding whether to reference variables directly or through accessing
messages is often a matter of programming style. It is generally recom-
mended that you use accessing messages because they promote maint
ability—if, at some point, you decide to reimplement the structure of a cla
data, you need to modify only the definitions of the relevant accessing
methods, rather than modifying assignment expressions wherever they o

Furthermore, accessing methods promote reuse. For example, if the Check-
book’s transaction methods were to change the balance variable through
assignment statements, the self changed: #balance expression would have
to be repeated in each method
definition.
120 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

es in
tech-

tion

ks

e

in
will
Testing the Checkbook Transactions

You can test the transaction methods you just wrote by sending messag
the Workspace and displaying the results in the System Transcript. This
nique is useful for testing domain models before the user interface is
connected to them.

Use the following steps to test Checkbook transactions. If you encounter a
syntax error, inspect the code for misspelled selectors or missing punctua
(see page 124 for hints).

1. For convenience, open a new Workspace and enlarge the VisualWor
main window.

2. Test the checkbook’s ability to deposit into the account by entering th
following code in the Workspace:

| b c1 c2 |

b := Checkbook new.
b deposit: 100.
Transcript cr.
Transcript show: 'Balance after 1st deposit: ';

show: b balance printString;
cr.

b deposit: 50.
Transcript show: 'Balance after 2nd deposit: ';

show: b balance printString;
cr.

Hint: Use copy and paste from the <Operate> menu to duplicate
similar lines.

3. Select the code you entered and choose do it from the <Operate> menu.

A dialog box informs you that the temporary variable c2 is not used. In
some cases, such a dialog box will alert you to an error or oversight
your code; in this case, the test code is incomplete, and the variable
be used later.

4. Click proceed in the dialog box for c2 and again in the dialog box for
c1.
VisualWorks Tutorial, Rev. 2.1 121

Chapter 5 Developing the Domain Models

 in
5. Look at the System Transcript in the VisualWorks main window. It
should contain these lines:

Balance after 1st deposit: 100
Balance after 2nd deposit: 150

6. Click on the code in the Workspace to deselect it.

7. Test the checkbook’s ability to make and record checks by adding the
following lines to the Workspace immediately after the code you entered
in step 2:

c1 := b makeNewCheck.
c1 payee: 'Fred';

amount: 70.
Transcript show: 'First check: ';

show: c1 printString;
cr.

b recordCheck: c1.
Transcript show: 'Balance after 1st check: ';

show: b balance printString;
cr.

c2 := b makeNewCheck.
c2 payee: 'Barney';

amount: 20.
Transcript show: 'Second check: ';

show: c2 printString;
cr.

b recordCheck: c2.
Transcript show: 'Balance after 2nd check: ';

show: b balance printString;
cr.

Hint: Use copy and paste from the <Operate> menu to duplicate
similar lines.

8. Select all the code in the Workspace (that is, all the code you entered
steps 2 and 7) and choose do it from the <Operate> menu.
122 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

nal

d in

nal

m.

ran-
9. Look at the System Transcript. The output should now include additio
lines like the following:

First check: #1, 15 August 1994: $70 to Fred
Balance after 1st check: 80
Second check: #2, 15 August 1994: $20 to Barney
Balance after 2nd check: 60

10. Click on the code in the Workspace to deselect it.

11. Test the checkbook’s ability to cancel checks by adding the following
lines to the Workspace immediately after the code you entered in steps 2
and 7:

b cancelCheck: c1.
Transcript show: 'Balance after canceling 1st check: ';

show: b balance printString;
cr;
show: 'Checks: ' ;
show: b register printString;
cr.

12. Select all the code in the Workspace (that is, all the code you entere
steps 2, 7, and 11) and choose do it from the <Operate> menu.

13. Look at the System Transcript. The output should now include additio
lines like the following:

Balance after canceling 1st check: 130
Checks: OrderedCollection (#2, 15 August 1994: $20 to
Barney)

Analysis: Transcript Messages

You display strings in the System Transcript by sending messages to the
receiver Transcript. Transcript is a predefined global variable in Small-
talk—a variable whose value can be accessed by all objects in the syste
Transcript thus refers to a special instance of the class TextCollector that
allows text to be displayed in the window region known as the System T
script.
VisualWorks Tutorial, Rev. 2.1 123

Chapter 5 Developing the Domain Models

g to

ally
n,

r

In this example, you sent:

n The show: message with a literal string argument (such as 'First check:
') or with an expression that returns a string (such as b balance print-
String).

n The cr message to insert a carriage return. This causes the next strin
appear on a new line.

In a number of steps, you constructed a single line of output by sending
multiple cascaded show: messages to Transcript. As explained on page 98,
cascaded messages are separated by semicolons.

Analysis: Syntax Errors

If you accidentally misspell a word or leave out any punctuation (a single
quotation mark, a colon, a period, or a semicolon), your expressions usu
cannot be compiled. Depending on the context of the omitted punctuatio
you could get any of the errors listed below.

Note that a given type of error may occur for any of several reasons. To
diagnose an error, you need to understand how Smalltalk is parsing you
expressions (refer to the parsing rules on page 119).

n An error notifier such as:

This notifier indicates that the message cr is being sent to a receiver that
doesn’t understand it. Click Terminate and inspect the code for missing
punctuation in front of a cr message.
124 VisualWorks Tutorial, Rev. 2.1

Creating the Checkbook Class

e
le,
od

.

nd
igh-
n A dialog box such as:

This dialog box indicates that the word deposit (highlighted in the
Workspace) is parsed as a message selector that is not known to the
system. Click Abort and inspect the code. The highlighted word may b
misspelled or there may be missing punctuation around it. For examp
the word may be a keyword selector that is missing a colon, or a peri
may be missing after a prior expression.

n A dialog box such as:

This dialog box indicates that the two adjacent occurrences of show: are
parsed as a single keyword message that is not known to the system
Click Abort and inspect the code for missing punctuation in the high-
lighted text. For example, a semicolon may be missing between the
argument of one show: message and the selector of the next.

n A dialog box such as:

This dialog box indicates that a receiver is not known to the system a
therefore is interpreted as the name of an undeclared variable. If the h
lighted word is a misspelling of a known name, you can try clicking
Correct It . Alternatively, you can click Cancel and correct the name.

n The highlighted text nothing more expected-> inserted in your code:
VisualWorks Tutorial, Rev. 2.1 125

tac-
te>
 the
ior
r-

far.

ate

The highlighted text indicates that the preceding expressions are syn
tically complete, even if they are not what you intended. Press <Dele
or <Backspace> to delete the highlighted error message and inspect
code for missing punctuation. The error may be in any expression pr
to the highlighted text. In this case, the colon is missing after an occu
rence of show.

What’s Next: Programming the Interface

In Chapter 6, you will “glue together” all the pieces you have created so
That is, you will program the application model (CheckbookInterface) so
that it can connect the widgets in the interface specifications to appropri
checkbook information and actions.

As before, the work you will do in the next chapter is cumulative, so you
should save your image periodically, especially before taking a break or
exiting VisualWorks.

’s

 the
eck-
).

ne
Chapter 6

Programming the Interface

In Chapters 4 and 5, you created:

n Two interface specifications that describe the Checkbook application
graphical user interface

n Two domain models (the Checkbook and Check classes) that provide
the data and processing for checkbook and check objects

In this chapter, you program the application’s graphical user interface to
interact with checkbooks and checks. That is, you enable each widget in
interface to either display a particular piece of information (such as the ch
book balance) or invoke a particular action (such as writing a new check

This chapter is divided into two major sections:

n “VisualWorks Approach to Interface Programming,” which gives an
overview of the way behavior is defined for a VisualWorks graphical
user interface

n “Programming the Application Model,” which guides you through the
actual interface-programming steps

VisualWorks Approach to Interface Programming

In VisualWorks, you program a graphical user interface by programming o
or more application models. As described in the following sections, you
program these application models so that they:

n Specify the interface’s appearance and basic behavior

n Supplement the interface’s basic behavior with application-specific
behavior
VisualWorks Tutorial, Rev. 2.1 127

Chapter 6 Programming the Interface

nce

an

nce
avior

erty

s a
e-
 to
s a
 the

unc-
ion,

tary

he
imply
ts

sic,

osits
tion
w
Specifying Basic Appearance and Behavior

You program an application model to specify an interface’s basic appeara
and behavior by installing one or more interface specifications in it. For
example, in this tutorial, you programmed the application model (Check-
bookInterface) to specify two windows by creating two canvases and
installing them as interface specifications in the class methods windowSpec
and dialogSpec. Each interface specification is a formula for generating
operational window containing particular widgets.

The generated widgets have built-in behavior that governs their appeara
(size, location, color) and their response to user actions. Some of this beh
is fundamental to each widget (as when a selected menu item highlights
itself). Other behavioral characteristics are explicitly chosen through prop
settings (as when a field either accepts input or is read-only).

More specifically, an interface specification contains information that tell
builder, in effect, how to choose widget classes from the application fram
work, create instances from these classes, and initialize these instances
endow them with the specified behavior. An interface specification is thu
means of requesting specific kinds of predefined interface behavior from
application framework.

The widgets produced by this level of programming have considerable f
tionality. For example, besides drawing itself in the proper size and locat
the Amount to Deposit: field in the Checkbook main window knows how
to accept input characters, format and display these characters as mone
amounts, convert these characters to numbers, and so on.

However, this functionality is necessarily limited to what is predefined in t
widget classes. As part of a general-purpose framework, these classes s
cannot know anything about checkbooks, checks, or other domain objec
you may create.

Programming Application-Specific Behavior

The next level of interface programming is to supplement the widgets’ ba
predefined behavior with application-specific behavior—behavior that
enables users to interact with the application.

For example, in the Checkbook application, you want users to make dep
by entering a deposit amount in a particular field and then clicking an ac
button. For this to work, the widgets in the interface must effectively kno
how to:
128 VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Interface Programming

onto
 to

vior

ers,

del
r
ing
l

dels

ctly,

s
n Put the entered amount where methods can access it

n Find the relevant checkbook object and ask it to deposit the entered
amount

n Display the new balance

As created from framework classes, the widgets do not themselves hold
data or carry out application-specific actions. Instead, they are designed
delegate these tasks to other objects. You set up these interactions by
programming the application model to accommodate the predefined beha
of:

n Action widgets—widgets such as action buttons and menu items that
enable a user to invoke an application’s actions

n Data widgets—widgets such as input fields and lists that display some
aspect of an application’s data and/or collect it from the user

Note that widgets serving as purely visual elements, such as labels, divid
and group boxes, do not require further programming.

Action Widgets

An action widget is designed to delegate its action to the application mo
from which it was built. Thus, when a user activates an action widget (fo
example, by clicking or selecting it), the widget knows to respond by send
a message to its application model, requesting that the application mode
carry out the desired action.

As shown later in this chapter, you set up this interaction by:

n Telling the action widget which message to send

n Providing the application model with a corresponding method that
implements the desired action

Note that this action method may, in turn, send messages to domain mo
to pass information to them and/or invoke domain-specific operations.

Data Widgets

A data widget is designed to use an auxiliary object called a value model to
manage the data it presents. That is, instead of holding onto the data dire
a data widget delegates this task to a value model:

n When a data widget accepts input from a user, it sends this data to it
value model for storage.
VisualWorks Tutorial, Rev. 2.1 129

Chapter 6 Programming the Interface

l for

 by:

del.
r
main

odel
odel
ec-

les

so
aged
so it
e.

eck-

lue
lay
ates

 indi-
n When a data widget needs to update its display, it asks its value mode
the data to be displayed.

As shown later in this chapter, the basic way you set up this interaction is

n Telling the widget the name of its value model.

n Programming the application model to create and return the value mo
Depending on the application’s needs, the created value model eithe
provides its own storage for data or accesses data that is held in a do
model.

When the interface is opened, the builder obtains the name of the value m
from the widget and then uses this name to request the relevant value m
from the application model. The builder then sets up the necessary conn
tions between the widget and its value model.

More about Value Models

Value models are instances of the subclasses of ValueModel, a class in the
application framework. Data widgets are designed to interact with value
models because:

n Value models define a uniform protocol for accessing data. This enab
all data widgets to store and refresh their data in a standard way (by
sending value: and value messages), regardless of where this data is
held by the application.

n Value models are specializations of the class Model (see page 107),
they notify their dependents whenever changes are made to the man
data. Each data widget is set up as a dependent on its value model,
can receive this change notification and update its display in respons

You will learn more about value models when you set them up for the Ch
book application’s data widgets.

Another Look at Application Structure

Value models introduce an additional layer of objects in the information
model of the application (see Figure 6-1). Like other kinds of models, va
models are concerned with storing and retrieving data, not providing disp
services. However, whereas other models tend to define complex aggreg
of data, each of the value models manages a single piece of data for an
vidual data widget.
130 VisualWorks Tutorial, Rev. 2.1

VisualWorks Approach to Interface Programming
Figure 6-1 Value-model layer within the information model

Display screen

UI objects

Value models

Application
models

Domain models
VisualWorks Tutorial, Rev. 2.1 131

Chapter 6 Programming the Interface

ca-
ss
nce

ace

e

et

 in
ler-

ox.

ter-
Programming the Application Model

The application model for the Checkbook application is the class Check-
bookInterface, which you created when you installed the interface specifi
tion for the application’s main window. Through inherited behavior, this cla
already knows how to start the application—that is, how to create an insta
of itself, tell this instance to create a builder, and give the builder the interf
specification for the main window.

In the rest of this chapter, you will program CheckbookInterface so that it
can carry out actions for the action widgets and provide appropriate valu
models for the data widgets. You do this through a combination of:

n Refining the contents of the class methods (by setting additional widg
properties and editing the menu bar)

n Creating instance variables and methods (by using what you learned
Chapter 5 in combination with the VisualWorks interface-coding acce
ator)

To program the class CheckbookInterface, you will:

1. Set up your environment with the relevant tools.

2. Browse CheckbookInterface to get acquainted with what is already
there.

3. Provide the application model with a Checkbook instance.

4. Program the Amount to Deposit: field, the Deposit button, the
Balance: field, and the Check Register list in the Checkbook main
window.

5. Program the main window’s menu bar.

6. Provide a method for writing a new check through the Check dialog b

7. Program the fields in the Check dialog box.

8. Provide a method for check canceling.

At various points in this process, you will run the application to test its in
face.
132 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

g

ork-
r you

with
tion
nd
l-
y
 these

pli-

isu-
Setting Up Your Work

In the sections that follow, you will be setting widget properties and editin
class and method definitions. To prepare for this work:

1. Arrange your screen so that it contains:

n The VisualWorks main window

n A System Browser

n The canvas for the Checkbook main window

Hint: Open a Resource Finder; select both the CheckbookInterface
class and the windowSpec resource, and then click the Edit button.
You can close the Palette, but leave the Canvas Tool open.

n The Properties Tool

Hint: Click the Properties button on the Canvas Tool.

2. Close any other windows you may have accumulated, such as the w
spaces and inspectors you used in Chapter 5 and the Resource Finde
used above.

A Few Reminders

Most of the tasks that follow have related subsections whose titles begin
“ Analysis:”. As in Chapter 5, these subsections provide extra explana
about the steps you performed. Some of them highlight Smalltalk rules a
conventions; others provide details about VisualWorks tools or the Visua
Works application framework. Depending on your learning style, you ma
read these subsections as you encounter them, or you may prefer to skip
subsections and return to them when you need to know more.

Remember that you can file in a completed version of the Checkbook ap
cation, as described on page 84, steps 1 through 3.

As always, be sure to save your image before taking a break or exiting V
alWork.
VisualWorks Tutorial, Rev. 2.1 133

Chapter 6 Programming the Interface

ou:

e

r

Browsing the Application Model

You created the application model CheckbookInterface when you installed
the canvas for the main window. To familiarize yourself with this class, y

1. Select Examples-VWTutorial in the category view of the System
Browser.

2. Select CheckbookInterface in the System Browser’s class view.

3. With the instance switch selected, examine the class definition. Notic
that CheckbookInterface:

n Is a subclass of the class ApplicationModel

n Has no instance variables or instance methods at this point (othe
than what it inherits from ApplicationModel)

4. Select the class switch. Notice that CheckbookInterface has two class
method protocols:

n The interface specs protocol, which contains the methods in which
you installed the canvases for the main window and dialog box

n The resources protocol, which contains the method in which you
installed the main window’s menu bar
134 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

eck-

Providing the Checkbook Behind the Interface

The Checkbook main window exists to enable users to interact with a ch
book object. Consequently, instances of CheckbookInterface must hold
onto an instance of Checkbook so that methods in CheckbookInterface can
access the checkbook’s data or invoke checkbook transactions.

To provide a checkbook for the interface:

1. Display the class definition for CheckbookInterface in the System
Browser (make sure CheckbookInterface is still selected in the class
view and then select the instance switch).

2. Edit the contents of the code view to add an instance variable called
checkbook as shown:

ApplicationModel subclass: #CheckbookInterface
instanceVariableNames: 'checkbook'
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-VWTutorial'

3. Choose accept from the code view’s <Operate> menu.

4. Add a protocol named initialize-release.

5. In the code view, enter the following method definition and choose
accept :

initialize
"Create a new checkbook for the interface to manipulate."

checkbook := Checkbook new

This method creates a new Checkbook instance and assigns it to the
checkbook instance variable.

Analysis: Initializing an Application Model

CheckbookInterface inherits an instance-creation method new from the
ApplicationModel class. This inherited method is like the one you imple-
mented for Checkbook—it creates a new instance and then sends an
initialize message to this instance.

Thus, when a new message is sent to CheckbookInterface (as happens
when you start the Checkbook application):
VisualWorks Tutorial, Rev. 2.1 135

Chapter 6 Programming the Interface
1. The inherited new method creates an instance of CheckbookInterface
and sends it an initialize message.

2. The initialize method defined in CheckbookInterface sends the
message new to Checkbook.

3. The new method defined for Checkbook creates an instance of Check-
book and sends it an initialize message.

4. The initialize method defined in Checkbook assigns initial values to the
instance’s variables.

5. The resulting initialized instance of Checkbook is assigned to the
checkbook variable of the CheckbookInterface instance.

The resulting structure is shown in Figure 6-2:

Figure 6-2 An instance of CheckbookInterface holding onto a Checkbook
instance

aCheckbookInterface

checkbook aCheckbook

register
balance
nextCheckNumber

1

0

anOrderedCollection

136 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

book
lica-
del.

e

t

(the
t

unt,

put

put

ng
Programming the Amount to Deposit: Field

The Amount to Deposit: input field on the Checkbook main window is
where users enter the amount to be deposited into the application’s check
object. Because this field is a data widget, you need to program the app
tion model so the builder can set up the field with an appropriate value mo

Put another way, instances of CheckbookInterface must be able to create the
required value model and make it available to the builder on request. Th
standard implementation is for the application model to have:

n An instance variable that holds onto the value model

n An accessor method for the instance variable

n Expressions (in some method) that create the value model, tell it wha
data to manage, and assign it to the instance variable

The following steps show how to use the VisualWorks coding accelerator
Definer) to generate the code for this implementation, based on the inpu
field’s property settings. Thus, to program CheckbookInterface for the
Amount to Deposit: field:

1. Decide on a name for the method that will return the value model.
Because the value model will manage data entered as a deposit amo
you choose the name depositAmount.

2. In the canvas for the Checkbook main window, select the relevant in
field (the field immediately to the right of the Amount to Deposit:
label). The Properties Tool displays the properties for the selected in
field.

Hint: If necessary, choose Arrange ?Ungroup to ungroup widgets so
you can select just the field.

3. In the Properties Tool, type the name you chose in step 1 (namely,
depositAmount) as the value of the Aspect: property; then click
Apply . This associates the widget with the name of the method that
returns its value model.

4. Reinstall the canvas in windowSpec to make the new property setting
part of the interface specification.

Reminder: Click Install... in the Canvas Tool.

5. With the input field still selected in the canvas, generate the supporti
code for it by clicking Define... in the Canvas Tool.

A dialog box appears, as shown in Figure 6-3. Notice that it:
VisualWorks Tutorial, Rev. 2.1 137

Chapter 6 Programming the Interface

e

n Lists the name of the instance variable and accessor method to b
generated (depositAmount)

n Indicates that the generated code will create a value model and
initialize the instance variable with it

Figure 6-3 The Definer’s dialog box

6. Click OK to generate code.

7. Refresh the System Browser by choosing update from <Operate> menu
in the category view. A new protocol called aspects appears in the
protocol view.

8. Examine the class definition (select CheckbookInterface in the class
view and choose definition from the <Operate> menu). Notice the new
instance variable depositAmount.

9. Select the aspects protocol and the depositAmount method. The code
view displays the generated method definition:

depositAmount
"This method was generated by UIDefiner. Any edits made

here may be
lost whenever methods are automatically defined. The

initialization
provided below may have been preempted by an initialize

method."

^depositAmount isNil
ifTrue:

[depositAmount := 0 asValue]
ifFalse:

[depositAmount]
138 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model
This method returns the value of depositAmount, initializing it, if
necessary, with a specialized kind of value model (a value holder) that
holds an initial deposit amount of 0.
VisualWorks Tutorial, Rev. 2.1 139

Chapter 6 Programming the Interface

e
ed
t’s

h a
 the
l for
plica-
iate

 one

le-
, the

f

 has
y. As
Analysis: Aspect Property

Every data widget has an aspect property (labeled Aspect: in the Properties
Tool). In the most general terms, this property is where you identify the aspect
of the information model that the widget presents to the user. Because th
widget must use a value model to manage its relationship to the present
information, the aspect property is effectively where you identify the widge
value model.

In more concrete terms, an aspect property associates a data widget wit
message selector, which is recorded in the interface specification. When
interface is opened, the builder uses the selector to obtain a value mode
the widget. That is, the builder sends the selector as a message to the ap
tion model, which must therefore have a method that returns an appropr
value model.

Analysis: The Definer

TheDefiner is an accelerator for programming the application model to
support both data and action widgets. You invoke the Definer by selecting
or more widgets on a canvas and then either clicking the Define... button on
the Canvas Tool or else choosing define... from the <Operate> menu in the
canvas. Selecting multiple widgets allows you to generate code for all of
those widgets in a single operation.

For a data widget such as the Amount to Deposit: input field, the Definer
uses information in the widget’s properties to generate the standard imp
mentation for creating and returning a value model. Thus, in this example
Definer obtains the name depositAmount from the aspect property and
generates:

n The depositAmount instance variable

n The depositAmount accessor method in the aspects protocol

n Expressions in the accessor method that perform lazy initialization of the
instance variable

Because the widget is an input field whose Type: property is Number,
the generated code initializes the variable with the most basic kind o
value model that a field can use and provides the number 0 as the initial
data for the field to display.

Using the Definer is optional—it is a useful shortcut for typing code “by
hand,” and it ensures, for a given data widget, that the application model
an appropriate method whose name matches the widget’s aspect propert
140 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

ch-

ant
ou
d

for

no

 thus,

ong
as the
t to
a novice VisualWorks user, you can use the Definer to learn the basic te
niques for programming an application model.

As you become more experienced with VisualWorks, you may prefer
different techniques for supporting data widgets. For example, you may w
to write initialization code that creates a different kind of value model or y
may want to put this code in an initialize method such as the one you create
on page 135. In such cases, you can choose to:

n Use the Definer and then modify the generated code (as you will do
the Balance: field).

n Use the Definer with the Add Initialization checkbox deselected (this
generates an accessor method containing no initialization code).

n Simply enter all the desired code by hand.

Analysis: Lazy Initialization, Booleans, Blocks

As generated by the Definer, the accessor method depositAmount performs
lazy initialization of the instance variable depositAmount. This means that
the instance variable is initialized only when needed—the first time it is
accessed. In contrast, the instance variable checkbook is initialized as soon
as a new instance of CheckbookInterface is created.

The depositAmount method works by first testing whether the depositA-
mount instance variable is uninitialized. In Smalltalk, variables that have
other object assigned to them hold onto the undefined object nil. Conse-
quently, the method determines whether the variable has the value nil using
the following expression:

depositAmount isNil

The message isNil returns the object true if the variable’s value is nil, and the
object false if the variable evaluates to another object.

Booleans. The objects true and false are called Boolean objects. They are
special Smalltalk objects that represent the answers to yes-no questions;
they are returned in response to querying messages such as isNil, which asks
whether an object is the same as nil.

Like other objects, Boolean objects respond to a variety of messages. Am
these are messages that function as conditional control structures, such
ifTrue:ifFalse: message. The example uses this message to specify wha
do if the
VisualWorks Tutorial, Rev. 2.1 141

Chapter 6 Programming the Interface

ets

ckets
. For

e

ck

y the

rrent
depositAmount variable is nil (initialize it) and what to do otherwise (return
it).

Block Expressions. The ifTrue:ifFalse: message has two keywords (ifTrue:
and ifFalse:), each of which has an argument that is a block expression. A
block expression consists of one or more expressions enclosed in brack
(multiple expressions must be separated by periods). Thus, in the depositA-
mount accessor method:

n The argument of the ifTrue: keyword is the block expression [depositA-
mount := 0 asValue].

n The argument of the ifFalse: keyword is the block expression [deposi-
tAmount].

When a block expression is encountered, the statement(s) within the bra
are not executed immediately; rather, they are evaluated only on request
example, when the ifTrue:ifFalse: message is sent to a Boolean object:

n The object true responds by requesting that the first argument block b
evaluated, but not the second.

n The object false responds by requesting that the second argument blo
be evaluated, but not the first.

Thus, when the variable is uninitialized, the test expression depositAmount
isNil evaluates to true, so the first argument block is evaluated. This block
creates a value holder and assigns it to the variable, which is returned b
method. After the variable is initialized, the test expression evaluates to false,
so the second argument block is evaluated. This block evaluates to the cu
value of the variable, which is returned by the method.
142 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

e

e

e

Analysis: Value Holders

The initialization code depositAmount := 0 asValue creates a specialized
kind of value model called a value holder. As the term implies, a value holder
holds the data it manages. That is, when a widget such as an input field
accepts input from a user and sends this data to a value holder, the valu
holder responds by storing the data in an instance variable called value.

The generated code creates the value holder by sending the message asValue
to the number 0. Using behavior inherited from Object, the number 0
responds by “wrapping itself” in a new value holder—that is, by asking th
framework class ValueHolder to create a new instance of itself with 0 as the
held value. When the Amount to Deposit: input field is eventually set up,
it will ask the value holder for the held value and display it until the user
enters another value.

Like any value model, a value holder responds to value and value: messages.
For a value holder, these messages access and change the value of its value
instance variable. Thus, the Amount to Deposit: field sends the message
value when it wants to get the value to display, and it sends the messag
value: to store data entered by a user.

A value holder is an appropriate kind of value model for the Amount to
Deposit: input field. This is true because an entered deposit amount is
simply a temporary piece of information that the interface must hold onto
until it can be further processed. In contrast, you will see that the Balance:
field uses a different kind of value model, because the data it presents is
already held elsewhere in the application (namely, in the balance instance
variable of a Checkbook instance).
VisualWorks Tutorial, Rev. 2.1 143

Chapter 6 Programming the Interface

t is,

ook

n it

just
d

Programming the Deposit Button

The Deposit action button on the Checkbook main window is what users
click to actually deposit the amount specified in the Amount to Deposit:
input field. Because the Deposit button is an action widget, you need to
program the application model so it can carry out the deposit action. Tha
you need to define a method in CheckbookInterface that obtains the entered
amount from the field’s value holder and passes this amount to the checkb
object for deposit. To define this method:

1. Decide on a name for the method to be defined. Because of the actio
implements, you choose the name makeDeposit.

2. Select the action button labeled Deposit in the canvas for the Check-
book main window. If necessary, ungroup widgets so you can select
the button. The Properties Tool displays the properties for the selecte
button.

3. In the Properties Tool, type the name you chose in step 1 (namely,
makeDeposit) as the value of the Action: property; then click Apply .
This tells the button what message to send to carry out its action.

4. Reinstall the canvas in windowSpec to make the new property setting
part of the interface specification.

5. With the action button still selected in the canvas, generate a method stub
for it by clicking Define... in the Canvas Tool. (A method stub is a
placeholder method you can later fill in with meaningful code.)

The Definer’s dialog box appears, this time listing the selector for the
method stub to be generated (makeDeposit).

6. Click OK to generate code.

7. Refresh the System Browser by choosing update from the <Operate>
menu in the category view. A new protocol called actions appears in the
protocol view.

8. Select the actions protocol and then the makeDeposit method. The
code view displays the following:

makeDeposit
"This method stub was generated by UIDefiner"

^self

9. In the makeDeposit method definition, replace the expression (^self)
with expressions that implement the deposit action, and choose accept :
144 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

ct

r,

up so
e

te

een
ue
the
makeDeposit
self depositAmount value > 0

ifFalse: [^Dialog warn: 'Enter a positive number'].
checkbook deposit: self depositAmount value.
self depositAmount value: 0

This method tests whether the user entered a valid amount in the
Amount to Deposit: field. If so, the method asks the checkbook obje
to deposit the amount, and then it resets the field’s display to 0; if not, the
method opens a dialog advising the user to enter a positive number.

Analysis: Action Property

Every action button has an action property (labeled Action: in the Properties
Tool). The action property associates the button with a message selecto
which is recorded in the interface specification.

When the interface is opened, the builder creates the button and sets it
that the specified message is sent when the user clicks the button. As th
receiver of this message, the application model must have an appropria
method whose name matches the button’s action property.

Analysis: makeDeposit Logic

The purpose of the makeDeposit method is to obtain, test, and, if appro-
priate, deposit the amount entered in the Amount to Deposit: field.
Because the entered amount is stored in the field’s value holder, the makeDe-
posit method is able to use the following expression to obtain it:

self depositAmount value

This expression sends the message value to the field’s value holder, which is
returned by the application model’s
depositAmount accessor method. The value holder responds to the value
message by returning the data it holds. The value holder is thus a link betw
the field and the application model—the field sends input data to the val
holder, and methods in the application model obtain this data by asking
value holder for it.
VisualWorks Tutorial, Rev. 2.1 145

Chapter 6 Programming the Interface

an

er the

d.

-

tion:

sses

lay.

ally

The makeDeposit method tests whether the entered amount is greater th
0 by using the binary message > (greater than):

self depositAmount value > 0

The result of this test expression is a Boolean object (true or false), to which
the keyword message ifFalse: is sent:

self depositAmount value > 0
ifFalse: [^Dialog warn: 'Enter a positive number'].

The response of each Boolean object to this message determines wheth
argument block is evaluated:

n If the test expression evaluates to false (the deposit amount is 0 or less),
the argument block is evaluated. This block displays a warning dialog
and returns from the method (notice the return character ^). Because of
the return, the remaining expressions in the method are not evaluate

n If the test expression evaluates to true (the deposit amount is greater than
0), the argument block is ignored, and the method continues by evalu
ating its remaining expressions.

The first of the remaining expressions actually carries out the deposit ac

checkbook deposit: self depositAmount value.

This expression obtains the entered amount from the value holder and pa
it to the checkbook object held by the checkbook instance variable. Notice
that the deposit: message is part of the protocol you defined in the Check-
book class.

The last expression resets the input field’s display to 0 by changing the value
in the field’s value holder:

self depositAmount value: 0

As you will see, in the running application, the value holder automatically
notifies the field of changes to its held value, and the field updates its disp
Thus, a value holder is a way for the application model to programmatic
control what a widget displays—the application model sends data to the
146 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

ss

al-

.

widget’s value holder, which notifies the widget. The widget responds by
obtaining the new data from the value holder for display.

Analysis: Warning Dialog

The expression in the ifFalse: argument block creates an instance of the cla
Dialog. This instance automatically opens a small warning dialog that
displays the specified text and provides a single button labeled OK. The
warning dialog remains displayed until the user clicks OK .

The Dialog class provides class methods for several other kinds of speci
purpose dialog. For example, an expression such as Dialog confirm: 'Do you
really want to do that?' opens a dialog box containing the specified text
along with two buttons (Yes and No) for answering the displayed question
VisualWorks Tutorial, Rev. 2.1 147

Chapter 6 Programming the Interface

et

ote
e the
es

Testing the Deposit Widgets

At this point, you can test the Amount to Deposit: field and the Deposit
button in the Checkbook main window. To do this:

1. Click Open from the Canvas Tool to start the application.

2. Click in the Amount to Deposit: field to give it keyboard focus. This
makes the field receptive to input from the keyboard and turns off the
output formatting, causing the displayed amount to change from $0.00
to 0 (input formatting).

3. Type a positive number in the Amount to Deposit: field. (Do not
include a dollar sign or any commas).

4. Click the Deposit button.

Notice that:

n The Balance: field does not reflect the deposit, because this widg
does not yet have a value model.

n The Amount to Deposit: field is reset to $0.00 because of the last
expression in the makeDeposit method.

5. While the Checkbook application is still running, add the following
expression to the definition of the makeDeposit method (insert it just
above the depositAmount value: 0 expression) and choose accept :

Transcript cr; show: 'Deposited ', self depositAmount value
printString,

' New balance ', checkbook balance printString.

6. Click in the Amount to Deposit: field and enter another positive
number; then click the Deposit button. The System Transcript reports:

n The amount you deposited, obtained from the field’s value holder.

n The current balance, obtained from the checkbook object itself. N
that the reported balance reflects both deposits you made, becaus
checkbook object holds onto the balance, even if the interface do
not display it.

7. Click in the Amount to Deposit: field, enter another positive number,
and press the <Return> key instead of clicking the Deposit button.

Because the Deposit button is the window’s default button (recall its Be
Default: property setting), the <Return> key:

n Activates the Deposit button.
148 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

d,

eck-

o
n Keeps the keyboard focus on the Amount to Deposit: field so you
can continue to enter input without clicking. This resets the field to0
instead of $0.00.

8. Delete the expression added in step 5 and choose accept .

9. Enter a negative number in the Amount to Deposit: field; then click
the Deposit button. A warning dialog advises you to enter a positive
number.

10. Click OK in the warning dialog. The negative amount remains displaye
with the appropriate output formatting.

11. Terminate the Checkbook application by closing its window with a
window-management operation.

Analysis: Behind the Scenes During Setup

When you click Open on the Canvas Tool:

1. The Canvas Tool sends the open message to CheckbookInterface. This
class:

a. Creates an instance of itself

b. Tells the instance to create a builder

c. Passes the builder the interface specification stored in the window-
Spec class method

When initialized, the CheckbookInterface instance creates the Check-
book object it represents to the user.

2. The builder creates and sets up the various objects that form the Ch
book main window.

For the Amount to Deposit: input field, the builder:

a. Gets the field’s aspect property (depositAmount)

b. Sends the depositAmount message to the CheckbookInterface
instance, which responds by initializing its depositAmount instance
variable with a value holder holding the value 0

c. Assigns the new value holder to an instance variable in the field s
that the field can send it messages

d. Makes the field a dependent of its value holder by listing it in the
value holder’s dependents instance variable

For the Deposit action button, the builder:

e. Gets the button’s action property (makeDeposit)
VisualWorks Tutorial, Rev. 2.1 149

Chapter 6 Programming the Interface

he

e

f. Sets up the button so that it responds to activation by sending the
makeDeposit message to the CheckbookInterface instance

Figure 6-4 shows the portion of the resulting structure that supports t
Amount to Deposit: field:

Figure 6-4 Object structure supporting the Amount to Deposit: field

Analysis: Behind the Scenes During Operation

When you enter a positive amount in the Amount to Deposit: field and
click the Deposit button:

1. The field sends a value: message to put the entered amount in its valu
holder.

2. The button sends a makeDeposit message to the CheckbookInterface
instance.

3. The CheckbookInterface instance responds by executing the makeDe-
posit method, which sends:

a. A value message to the value holder to get the amount

b. A deposit: message to the Checkbook instance to deposit the
amount

c. A value: message to the value holder to reset the held amount to0

aCheckbookInterface

depositAmount

aValueHolder

dependents
value

0

150 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

 use

n
unt

e

it

the
ppli-
tion
se

nge
4. The value holder responds to the value: message by notifying its depen-
dents that its value has changed.

5. The field responds to notification by sending a value message to the
value holder to obtain the new value for display.

Analysis: Widgets as Dependents

When the builder sets up a data widget with a value model, it makes the
widget a dependent of the value model. This enables the value model to
the dependency mechanism to notify the widget when the relevant data
changes.

In the example, the builder adds the input field to the dependents instance
variable of the field’s value holder. Then, during operation, the applicatio
model sends a value: message to the value holder to reset the deposit amo
programmatically.

The value: method triggers the dependency mechanism by executing a self
changed: #value expression, similar to the expression you entered for th
balance: method on page 114. The value holder responds to the changed:
message by sending change notification (a form of update: message) to any
objects listed in the dependents variable. Because the field is listed there,
receives the update: message. Like any widget, a field responds to an
update: message from its value model by asking the value model for the
current data and then updating its display.

Analysis: Modifying a Running Application

As part of testing the application, you added some statements to the makeDe-
posit method while the application was running. In general, you can edit
definition of a method and see the effects without having to restart the a
cation. However, if you change anything that affects an interface specifica
(for example, you change the canvas or a widget property), you must clo
the application and restart it (thereby rebuilding the interface) for the cha
to take effect.
VisualWorks Tutorial, Rev. 2.1 151

Chapter 6 Programming the Interface

 field
r can

el,

he

and

e

nt of

ode
Programming the Balance: Field

The Balance: field on the Checkbook main window displays the account
balance that is stored in the application’s checkbook object. Because this
is a data widget, you need to program the application model so the builde
set up the field with an appropriate value model.

As before, you use the Definer to provide CheckbookInterface with:

n An instance variable that holds onto a value model

n An accessor method for the instance variable

n Initialization code in the accessor method that creates the value mod
tells it what data to manage, and assigns it to the instance variable

However, for the Balance: field, you will modify the generated initialization
code to create a different kind of value model than the one used for the
Amount to Deposit: field. Instead of creating a value holder to manage t
field’s data, the modified code will create an aspect adaptor. An aspect
adaptor:

n Resembles a value holder because it responds to the same protocol
notifies its dependents of changes to the managed data

n Differs from a value holder in that it accesses data that is held by som
other object (such as a checkbook object), rather than holding the
managed data itself

To program CheckbookInterface for the Balance: field:

1. Decide on a name for the method that will return the value model.
Because the value model will manage data that represents the amou
the current balance, you choose the name balanceAmount.

2. Select the relevant input field in the canvas for the Checkbook main
window (select the field immediately to the right of the Balance: label).
Ungroup widgets if necessary.

The Properties Tool displays the properties for the selected field.

3. In the Properties Tool, type the name you chose in step 1 (namely,
balanceAmount) as the value of the Aspect: property; then click
Apply . This associates the widget with the name of the method that
returns its value model.

4. Reinstall the canvas in windowSpec to make the new property setting
part of the interface specification.

5. With the input field still selected in the canvas, generate supporting c
for it by clicking Define... in the Canvas Tool.
152 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

t
a
The Definer’s dialog box appears, listing the name for the instance
variable and accessor method (balanceAmount) and indicating that
initialization code will be generated.

6. Click OK to generate code.

7. Refresh the System Browser by choosing update from the <Operate>
menu in the category view.

8. Examine the class definition for CheckbookInterface. Notice the new
instance variable balanceAmount.

9. Select the aspects protocol and then select the new
balanceAmount method. The code view displays the following:

balanceAmount
"This method was generated by UIDefiner. Any edits made

here may be
lost whenever methods are automatically defined. The

initialization
provided below may have been preempted by an initialize

method."

^balanceAmount isNil
ifTrue:

[balanceAmount := 0 asValue]
ifFalse:

 [balanceAmount]

This is the standard accessor method generated for an input field; its
initialization code creates a value holder.

10. In the balanceAmount method definition, keep the basic structure, bu
change the initialization code to create an aspect adaptor instead of
value holder; then choose accept :

^balanceAmount isNil
ifTrue:

[balanceAmount :=
(AspectAdaptor subject: checkbook sendsUpdates:

true)
forAspect: #balance]

ifFalse:
[balanceAmount]
VisualWorks Tutorial, Rev. 2.1 153

Chapter 6 Programming the Interface

hich
id

del
 a
o the
bject,

o the

t

t
hat
e

is
e

k

hat its
Analysis: The Definer Revisited

In this section, you used the Definer to generate an accessor method, w
you modified by entering code of your own. From now on, you must avo
using the Definer for the Balance: field, as long as its aspect property is
balanceAmount. If you regenerate code for this selector, the Definer will
overwrite your modifications with the standard accessor method.

You can either make sure the Balance: field is deselected in the canvas
before invoking the Definer, or else you can deselect the balanceAmount
selector in the Definer dialog box, if it appears there.

Analysis: Aspect Adaptors

The initialization code you entered creates a specialized kind of value mo
called an aspect adaptor. Like a value holder, an aspect adaptor manages
widget’s access to the data it presents. However, rather than holding ont
data directly, an aspect adaptor accesses data that is held in some other o
called its subject. In general:

n When a widget accepts input from a user and sends it to an aspect
adaptor, the aspect adaptor responds by asking its subject to hold ont
data.

n When a widget asks an aspect adaptor for data to display, the aspec
adaptor responds by asking its subject to return the data.

An aspect adaptor effectively translates the messages sent by the widge
(namely value, value:) into messages that are understood by the subject. T
is, an aspect adaptor adapts the standard value-model protocol to match th
accessor and mutator protocol for a particular aspect of a domain model.

Creating an Aspect Adaptor for the Balance: Field. The purpose of the
Balance: field is to display the data held in the balance instance variable of
the application’s Checkbook instance. Therefore, the aspect adaptor for th
field must have the Checkbook instance as its subject and it must translat
the messages value and value: to balance and balance:, respectively. (This
example exploits only the translation from value to balance because the
field is read-only.)

Furthermore, the data in the balance variable changes with every checkboo
transaction, and each change to the balance causes the Checkbook instance
to broadcast change notification in the form of update: messages to its
dependents (see page 114). The aspect adaptor must therefore be told t
154 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

n

y

e

ct.

ify

en
ames.
subject sends update: messages, so that it can relay the change notificatio
to the field.

The following expressions create and initialize an aspect adaptor that is
appropriate for the Balance: field:

(AspectAdaptor subject: checkbook sendsUpdates: true) forAspect:
#balance

The expression within the parentheses sends a subject:sendsUpdates:
message to the class AspectAdaptor. The class responds to this message b
creating a new aspect adaptor that:

n Has the application’s Checkbook instance as its subject

n Sets itself up as a dependent on its subject so it can respond when th
subject sends update: messages

The outer expression then sends a forAspect: message to the new aspect
adaptor, which responds by initializing itself with the aspect symbol
#balance. An aspect adaptor uses its aspect symbol to:

n Construct the accessor and mutator messages it will send to its subje
These message names are stored in the aspect adaptor’s getSelector and
putSelector instance variables.

n Filter the update: messages it receives from its subject, so it can ident
(and respond to) just those that pertain to it.

Thus, you set the aspect symbol to be #balance because it matches:

n The name you gave the relevant accessor method in Checkbook, which
is the same as the name of the mutator method except for the colon

n The aspect symbol you gave the changed: message in the Checkbook’s
balance: method (page 113)

Note that additional protocol is available for creating aspect adaptors wh
the subject’s accessors, mutators, and aspect symbols have unrelated n
VisualWorks Tutorial, Rev. 2.1 155

Chapter 6 Programming the Interface

e

 with

eck-

d so

e
Testing the Balance: Field

Now you can test the Balance: field to see whether it reflects deposits mad
to the checkbook:

1. Click Open from the Canvas Tool to start the application.

2. Click in the Amount to Deposit: field and type a positive number.

3. Click the Deposit button. Notice that the Balance: field displays the
deposited amount.

4. Enter a second deposit amount. The Balance: field now displays the
sum of the two deposited amounts.

5. Terminate the application by closing the window using the window
manager.

Analysis: Setup of the Aspect Adaptor

When you run the application again, it is set up as described on page 149,
the addition of the Balance: field. That is:

1. CheckbookInterface creates an instance of itself, which creates a
builder and a Checkbook instance.

2. The builder creates and sets up the various objects that form the Ch
book main window.

For the Balance: field, the builder:

a. Gets the field’s aspect property (balanceAmount).

b. Sends the balanceAmount message to the CheckbookInterface
instance, which responds by initializing its balanceAmount instance
variable with an aspect adaptor.

As created, this aspect adaptor’s subject is the Checkbook instance,
its aspect symbol is #balance, and it is a dependent of its subject
(that is, it is listed in the checkbook’s dependents variable).

c. Assigns the new aspect adaptor to an instance variable in the fiel
that the field can send it messages.

d. Makes the field a dependent of its aspect adaptor by listing it in th
aspect adaptor’s dependents variable.

Figure 6-5 shows the portion of the resulting structure that supports the
Balance: field:
156 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

et up

pen-
hen
Figure 6-5 Object structure supporting the Balance: field

Notice that this structure has two levels of dependency between the
Balance: field and the data it displays:

n The field is a dependent of the aspect adaptor (because widgets are s
to depend on their value models).

n The aspect adaptor is a dependent of the Checkbook instance (because
you specified sendsUpdates: true when you created the aspect
adaptor).

Analysis: Operation of the Aspect Adaptor

During operation, the dependency mechanism works at both levels of de
dency to propagate a changed balance to the field that displays it. Thus, w
you enter a deposit amount:

1. The Amount to Deposit: field and the Deposit button operate as
described on page 150. Among the messages sent, the CheckbookInter-
face instance sends a deposit: message to the Checkbook instance.

aCheckbookInterface

balanceAmount
checkbook

anAspectAdaptor

dependents
subject
getSelector

aCheckbook

dependents
balance #balance

0

VisualWorks Tutorial, Rev. 2.1 157

Chapter 6 Programming the Interface

ptor)

to
2. The Checkbook instance:

a. Adds the specified amount to its current balance

b. Assigns the new balance to its balance instance variable by sending
itself a balance: message

c. Sends itself the changed: #balance message as part of executing
the balance: method

d. Responds to the changed: message by sending the update:
#balance message to its dependents (in this case, the aspect ada

3. The aspect adaptor responds to change notification by sending an
update: #value message to its dependents (in this case, the field).

4. The field responds to change notification by sending a value message to
the aspect adaptor to obtain the new value.

5. The aspect adaptor responds to the value message by sending a balance
message to the Checkbook instance and passing the returned amount
the field.

6. The field displays the new balance.
158 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

lect
f

eck.
 set

r-

lue

that
ec-

lder

ent

p
the

its
Programming the Check Register List

The Check Register list on the Checkbook main window displays the
collection of written checks that is stored in the application’s checkbook
object. In addition to displaying this collection, the list enables a user to se
one of the checks in it. The list must therefore keep track of two pieces o
data—the collection of checks and the index of the currently selected ch
Accordingly, you must program the application model so the builder can
up the list with two value models.

You use the Definer to generate the code in CheckbookInterface that
supports the list. As with an input field, the Definer generates:

n An instance variable

n An accessor method for the instance variable

n Initialization code in the accessor method that creates an appropriate
object and assigns it to the instance variable

However, the initialization code generated for a list differs from that gene
ated for an input field:

n For an input field, the generated initialization code creates a single va
holder.

n For a list, the generated initialization code creates an auxiliary object
contains the required pair of value holders (one for the displayed coll
tion and one for the selection index).

You then modify the generated code to initialize the appropriate value ho
with the desired collection (namely, the collection of checks stored in the
Checkbook instance). The other value holder is automatically initialized
with 0, indicating there is no selection.

To program CheckbookInterface for the Check Register list, you:

1. Decide on a name for the method that will return the list’s auxiliary
object. Because this object will manage data that represents the curr
list of checks, you choose the name checksList.

2. Select the list in the canvas for the Checkbook main window. Ungrou
widgets if necessary. The Properties Tool displays the properties for
selected list.

3. In the Properties Tool, type the name you chose in step 1 (namely,
checksList) as the value of the Aspect: property; then click Apply .
This associates the widget with the name of the method that returns
auxiliary object.
VisualWorks Tutorial, Rev. 2.1 159

Chapter 6 Programming the Interface

 it

tion
4. Reinstall the canvas in windowSpec to make the new property setting
part of the interface specification.

5. With the list still selected in the canvas, generate supporting code for
by clicking Define... in the Canvas Tool.

The Definer’s dialog box appears, listing the name for the instance
variable and accessor method (checksList) and indicating that initializa-
tion code will be generated.

6. Click OK to generate code.

7. Refresh the System Browser by choosing update from the <Operate>
menu in the category view.

8. Examine the class definition (select CheckbookInterface in the class
view and choose definition from the <Operate> menu). Notice the new
instance variable checksList.

9. Select the aspects protocol and then select the new checksList method.
The code view displays the following:

checksList
"This method was generated by UIDefiner. Any edits made

here may be
lost whenever methods are automatically defined. The

initialization
provided below may have been preempted by an initialize

method."

^checksList isNil
ifTrue:

[checksList := SelectionInList new]
ifFalse:

[checksList]

This is the standard accessor method generated for a list; its initializa
code creates an instance of the framework class SelectionInList, which,
in turn, creates two value holders.
160 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

ly,

56,

e

t so
10. In the checksList method definition, replace the instance-creation
message new with the with: message shown below, and choose accept :

checksList
"This method was generated by UIDefiner. Any edits made

here may be
lost whenever methods are automatically defined. The

initialization
provided below may have been preempted by an initialize

method."

^checksList isNil
ifTrue:

[checksList := SelectionInList with: checkbook register]
ifFalse:

[checksList]

The with: message specifies the collection for the list to display (name
the collection of checks held by the checkbook’s register variable).

Analysis: Setup of the List

If you run the application at this point, it is set up as described on page 1
with the addition of the Check Register list. That is:

1. CheckbookInterface creates an instance of itself, which creates a
builder and an initialized Checkbook instance.

2. The builder creates and sets up the Checkbook main window. For th
Check Register list, the builder:

a. Gets the list widget’s aspect property (checksList)

b. Sends the checksList message to the CheckbookInterface instance,
which responds by initializing its checksList instance variable with a
SelectionInList instance

This instance has two value holders, one holding the checkbook’s
empty collection of checks and the other holding the value 0.

c. Assigns each value holder to an instance variable in the list widge
the list widget can send it messages

d. Makes the list widget a dependent of each value holder

Figure 6-6 shows the portion of the resulting structure that supports the
Check Register list.
VisualWorks Tutorial, Rev. 2.1 161

Chapter 6 Programming the Interface

o

Figure 6-6 Object structure supporting the Check Register list

Analysis: SelectionInList Instances

The initialization code in the checksList method creates an instance of the
framework class SelectionInList to support the list widget. Although a
SelectionInList instance is not itself a kind of value model, it creates the tw
value models that manage the list widget’s data. More specifically, a Selec-
tionInList instance has:

n A value holder held by an instance variable called listHolder; this value
holder supplies the collection to be displayed and is initialized by the
with: message.

n A value holder held by an instance variable called
selectionIndexHolder; this value holder stores the index of the user’s
current selection in the displayed collection.

aValueHolder

dependents
value

0

aValueHolder

dependents
value

aSelectionInList

selectionIndexHolder
listHolder

aCheckbookInterface

checksList
aCheckbook

register

anOrderedCollection

162 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

en

en

he
oti-

ects

g or

e
ge

able
.
ts
e
ges

A list widget communicates directly with each of these value holders. Wh
the list widget needs data to display, it sends a value message to the appro-
priate value holder, which returns the collection it holds. When the user
makes a selection, the list widget sends a value: message to the other value
holder to store the new selection index.

An application model communicates indirectly with these value holders wh
it needs to manipulate the list widget’s display programmatically. For
example, an application model can change the displayed collection by
sending a list: message to the SelectionInList instance. This instance, in turn,
sends a value: message to the listHolder value holder. You can use the
System Browser to find additional SelectionInList protocol.

The list widget is set up as a dependent of each of the value holders in t
SelectionInList instance. Consequently, the list widget receives change n
fication from each value holder whenever that value holder receives a value:
message.

Analysis: When the Collection Changes

When the Checkbook application starts, the listHolder value holder is initial-
ized with the ordered collection of checks that is held in the Checkbook
instance’s register. The same ordered collection is held by two other obj
(the value holder and the Checkbook instance), so it can potentially be
changed through either of these objects (in fact, changes such as addin
removing checks are made only by the Checkbook instance).

When a listHolder value holder holds onto an ordered collection that will b
changed by another object, extra programming is needed to trigger chan
notification to the widget. For example, if the Checkbook instance were to
add a check to the collection at this point, the value holder would not be
to notify the list widget, even though it holds onto the changed collection
This is true because the value holder only sends change notification to i
widget in response to receiving a value: message. Put another way, the valu
holder notices when the object it holds is reset, but it cannot detect chan
that are internal to that object.

In later sections, you will provide code for updating the value holder that
supports the Check Register list. In particular, you will program the appli-
cation model to:

1. Obtain the collection of checks every time the Checkbook instance adds
or removes a check from it.
VisualWorks Tutorial, Rev. 2.1 163

Chapter 6 Programming the Interface

t
sary
get
2. Send the collection to the value holder by sending a list: message to the
SelectionInList instance. This instance sends a value: message to the
value holder, which notifies the list widget to update its display.

Note that no extra code was necessary for the value holder used by the
Amount to Deposit: field because this value holder holds onto data tha
has no other storage in the application. Similarly, no extra code is neces
for an aspect adaptor, because an aspect adaptor knows to notify its wid
upon receiving change notification from its subject.
164 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

s. A

e

the

e sent
ple-
s:

nd.
,

b>
Programming the Menu Bar

The menu bar on the Checkbook main window contains three menu item
user selects:

n The File?Close menu item to terminate the application and close its
main window

n The Checks ?Write... menu item to write a new check and add it to th
register

n The Checks ?Cancel menu item to remove a check from the check-
book register

You need to program the application model with methods that carry out
desired actions. In fact, CheckbookInterface already has a method for
carrying out the first of these actions—namely, the closeRequest method
inherited from ApplicationModel. Consequently, you need to define only
two methods (one for writing checks and one for canceling them).

In this section, you program the menu bar to specify the messages that ar
to the application model when the menu items are selected. (You will im
ment the required methods in later sections.) To specify these message

1. Decide on the name of the message you want each menu item to se
For the File?Close item, you choose the name of the existing method
closeRequest. For the other two, you choose writeNewCheck and
cancelSelectedCheck.

2. Select the canvas itself (click anywhere in the canvas other than on a
widget). This deselects all the widgets.

3. Choose Tools ?Menu Editor from the Canvas Tool to open the Menu
Editor.

4. Click Read to read in the entries for the canvas’s menu bar. (If the Read
button is disabled, click in the canvas to deselect all widgets.)

5. In each of the entries for menu items, replace nil with the appropriate
message name (use Figure 6-7 for a guide). Be sure to leave the <Ta
characters as is, and ignore the instances of nil after the menu titles:
VisualWorks Tutorial, Rev. 2.1 165

Chapter 6 Programming the Interface

led

d

 the
Figure 6-7 The Menu Editor with message names filled in

6. In the Menu Editor, click Build to generate new code for building a
menu object.

7. In the Menu Editor, click Install... to install the menu code in the appli-
cation model. A dialog appears, indicating that the code will be instal
in the menuBar class method. Click OK .

Note that you do not need to click Apply because you have not change
anything that affects the canvas, such as a menu label.

8. Close the Menu Editor.

9. Test the menu bar:

a. In the Canvas Tool, click Open to start the Checkbook application.

b. Choose File?Close from the Checkbook main window to close the
application.

10. Congratulations! You have finished setting the properties and editing
menu bar for the Checkbook main window. Save your image.
166 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

 the
ns.

.

inder
Setting Up for the Remaining Work

In the remaining sections, you will be setting properties for the widgets in
Check dialog box, as well as continuing to edit class and method definitio
To prepare for this work:

1. Close the canvas (and Canvas Tool) for the Checkbook main window

2. Open the canvas for the Check dialog window:

a. Open a Resource Finder.

b. Select both the CheckbookInterface class and the dialogSpec
resource.

c. Click the Edit button.

d. Close the Palette, but leave the Canvas Tool and the Resource F
open.

3. Leave the System Browser and the Properties Tool open.
VisualWorks Tutorial, Rev. 2.1 167

Chapter 6 Programming the Interface

r.

at is,

ust
e

eted

pa-
per-
Providing for Writing New Checks

The Checks ?Write... menu item in the Checkbook main window is what
users choose to write a new check and add it to the checkbook’s registe
When chosen, this menu item sends a writeNewCheck message to the appli-
cation model.

Consequently, you will program Checkbookinterface with a method called
writeNewCheck that:

n Creates a blank check (a new, initialized Check instance)

n Opens the Check dialog box so the user can edit the blank check—th
fill in the check’s payee and amount

n Records the completed check in the checkbook’s register if the user
clicks OK in the dialog box

n Discards the check if the user clicks Cancel

In addition to creating the writeNewCheck method, you will also program
the widgets in the interface of the Check dialog box. For example, you m
provide the input fields with value models that store the user’s input in th
blank check.

The next three sections present the steps for incrementally defining the write-
NewCheck method and programming the dialog box’s widgets. That is,
these sections will guide you through the following tasks:

1. Setting up the basic behavior for the Check dialog box. This includes
both writing code and setting properties for the OK and Cancel buttons.

2. Programming the input fields in the Check dialog box.

3. Writing the code that creates the blank check and records the compl
check.

These tasks are divided this way so that this tutorial can explain them se
rately. Note, however, that you can write method code and set widget pro
ties in any order.
168 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

at
ther

e

l

ram
ns:

 of
Setting Up the Check Dialog Box’s Basic Behavior

A dialog box is essentially a mechanism for allowing a user to specify
whether and how an application action is to proceed. Thus, a method th
needs to process user-supplied information can open a dialog box to ga
the required information. Such a dialog box normally contains:

n An action widget (such as an OK button) that the user clicks to accept th
dialog box. This in effect tells the executing method to process the
gathered information.

n An action widget (such as a Cancel button) that the user clicks to cance
the dialog box. This in effect tells the executing method to discard the
information and return.

In the following steps, you define the first part of the
writeNewCheck method—the part that opens the Check dialog box and
determines whether the user has accepted or canceled it. You then prog
the OK and Cancel buttons to invoke predefined accept and cancel actio

1. In the System Browser, select the actions instance protocol in the
CheckbookInterface class.

2. In the code view, replace the method template with the following and
choose accept :

writeNewCheck
|userHasAccepted|

userHasAccepted := self openDialogInterface: #dialogSpec.
userHasAccepted ifTrue: [

self unimplemented]

The expressions in this method:

a. Define a temporary variable, userHasAccepted.

b. Open a dialog box from the interface specification stored in the
dialogSpec class method.

c. Assign the dialog box’s result to the userHasAccepted variable.
This result is true if the dialog box is accepted and false if the dialog
box is canceled.

d. Evaluates or ignores the argument block, depending on the value
userHasAccepted.
VisualWorks Tutorial, Rev. 2.1 169

Chapter 6 Programming the Interface

ut
The expression in the argument block (self unimplemented) is a place-
holder for the code you will write later to complete the check-writing
action.

3. In the Check canvas, select each action button and fill in its action
property as specified below; then click Apply . (Ungroup widgets, if
necessary, so you can select each button individually.)

4. Reinstall the canvas in dialogSpec to make the new property settings
part of the interface specification.

5. Test the basic behavior of the dialog box:

a. Start the Checkbook application.

Hint: In the Resource Finder, select the CheckbookInterface class
and the windowSpec resource; then click Start .

b. In the Checkbook main window, choose Checks ?Write... This
sends the writeNewCheck message to the CheckbookInterface
instance, which brings up the Check dialog box. Note that the inp
fields are all empty, because they have no value models yet.

c. In the dialog box, click Cancel . This invokes the cancel action,
which closes the dialog box and causes the
openDialogInterface: expression to return the value false. The
writeNewCheck method terminates because there are no further
expressions to evaluate.

d. Choose Checks ?Write to invoke the writeNewCheck method
again.

e. In the dialog box, click OK. This invokes the accept action, which
closes the dialog box and causes the
openDialogInterface: expression to return the value true. As a
result, the writeNewCheck method evaluates the expression self
unimplemented, which opens an error notifier.

f. Click Terminate in the error notifier.

g. Close the Checkbook application.

Action Button Action: property setting

Button labeled Cancel cancel

Button labeled OK accept
170 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

ialog
esult

ve to

g

ol

the

 the

g

 will

less

main
Analysis: Actions for OK and Cancel Buttons

The action property settings accept and cancel cause the OK and Cancel
buttons to invoke accept and cancel actions that are predefined by the d
box (see below). These actions close the dialog box and determine the r
(true or false) that is returned by the expression containing the openDialog-
Interface: message. Because these actions are predefined, you do not ha
create corresponding accept and cancel methods in CheckbookInterface.
In fact, if you do create such methods, they will be ignored.

If, however, the dialog box had other action widgets, you would have to
program them as you did the Deposit button on the Checkbook main
window—by filling in their action properties and defining the correspondin
methods in CheckbookInterface.

Analysis: Setup of the Dialog Box

The openDialogInterface: message is part of the interface-opening protoc
that CheckbookInterface inherits from ApplicationModel. When a Check-
bookInterface instance receives this message, it creates an instance of
framework class SimpleDialog and tells this instance to create a window
from the interface specification stored in dialogSpec.

Because SimpleDialog is a subclass of ApplicationModel, the SimpleDi-
alog instance creates its own builder, which, in turn, creates and sets up
Check dialog box’s internal structure, including its widgets. This builder
opens the dialog box’s interface in a modal window, which means that a user
can invoke no operation in any other VisualWorks window until the dialo
box is closed (for example, by being accepted or canceled).

Because the SimpleDialog instance is created as a result of an openDialog-
Interface: message, it initializes its builder to recognize the application
model (that is, the CheckbookInterface instance) as its source. This means
that the dialog’s builder asks the CheckbookInterface instance to supply any
value models required for setting up data widgets. (In a later section, you
program CheckbookInterface accordingly.)

Similarly, action widgets send their messages to the builder’s source, un
their action properties are set to accept or cancel. In this case, the dialog’s
builder sets up the widgets so that the SimpleDialog instance carries out the
accept and cancel actions.

Figure 6-8 gives a general idea of the objects that set up the Checkbook
window and the Check dialog box:
VisualWorks Tutorial, Rev. 2.1 171

Chapter 6 Programming the Interface
Figure 6-8 After opening the Check dialog box

aCheckbookInterface

builder

aUIBuilder

source

aSimpleDialog

builder

aUIBuilder

source
172 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

s up
eck

e-

f a
ou
for

ew

e

d for
he

an-

te
eed

l is
dap-
ct

ach
nnel,

ject
Programming the Input Fields in the Check Dialog Box

The Check dialog box is where application users enter the data that make
a new check. More specifically, the Check dialog box presents a blank ch
that users can edit by entering data in the appropriate input fields. Cons
quently, you need to program CheckbookInterface so that the dialog’s
builder can set up these input fields with appropriate value models.

Each of the input fields in the Check dialog box presents some aspect o
particular check object: its date, number, amount, or payee. Therefore, y
can program these input fields by setting them up with aspect adaptors—
example, by programming CheckbookInterface so that its instances:

n Create a new Check instance when the dialog box is opened

n Create, for each input field, an aspect adaptor whose subject is the n
Check instance and whose aspect symbol is the name of the Check’s
accessor for the relevant data (#date, #payee, #amount, or #number)

One way to accomplish this is to use the basic technique you used for th
Balance: field. That is, you can (1) write code that assigns the Check
instance to an instance variable (as you did for the Checkbook instance), (2)
use the Definer to generate an instance variable and an accessor metho
each input field, and then (3) modify each accessor method to initialize t
relevant instance variable with an appropriate aspect adaptor.

Aspect Paths. As an alternative to this basic technique, you can take adv
tage of a shortcut technique that employs aspect paths. An aspect path is a
way of filling in a widget’s aspect property that causes the builder to crea
not only the widget, but also its aspect adaptor. This means you do not n
to write code in CheckbookInterface to create each aspect adaptor.

Rather, you program CheckbookInterface to provide a subject channel for
the builder to use when it creates the aspect adaptors. A subject channe
simply a value holder that holds onto a subject for one or more aspect a
tors. In this case, all four aspect adaptors are to be created with a subje
channel that holds onto a Check instance.

In the steps that follow, you will specify the appropriate aspect path for e
input field, use the Definer to generate the code for creating a subject cha
and then add the code that puts a Check instance into the value holder:

1. Decide on a name for the method that is to create and return the sub
channel; you choose the name checkHolder.
VisualWorks Tutorial, Rev. 2.1 173

Chapter 6 Programming the Interface

erty

ect

ct
2. Select each input field in the Check canvas and fill in its aspect prop
with the aspect path specified below; then click Apply . (Ungroup
widgets, if necessary.)

Notice that all four aspect paths have the same head (namely, check-
Holder) because all four aspect adaptors are to share the same subj
channel.

3. Reinstall the canvas in dialogSpec to make the new property settings
part of the interface specification.

4. With any of the input fields selected in the canvas, click Define... in the
Canvas Tool.

The Definer’s dialog box appears, listing the name of the instance
variable and method to be generated (checkHolder).

5. Click OK to generate code.

6. Refresh the System Browser by choosing update from the <Operate>
menu in the category view.

7. Examine the class definition for CheckbookInterface. Notice the new
instance variable checkHolder.

The Definer creates an instance variable only for the head of an aspe
path; because all four paths have the same head, only one instance
variable is created.

 Input Field Aspect: property

Date field (upper-right corner of the canvas) checkHolder date

Payee field (next to the Pay to the Order of labels) checkHolder payee

Amount field (next to the payee field) checkHolder
amount

Check number field (next to the Check number: label) checkHolder
number
174 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

 as

d
 the

alog
8. Select the aspects protocol and then select the new checkHolder
method. The code view displays the following:

checkHolder
"This method was generated by UIDefiner. Any edits made

here may be
lost whenever methods are automatically defined. The

initialization
provided below may have been preempted by an initialize

method."

^checkHolder isNil
ifTrue:

[checkHolder := nil asValue]
ifFalse:

[checkHolder]

This method accesses the checkHolder variable, initializing it if neces-
sary with an empty value holder. The builder will use this value holder
the subject channel for the aspect adaptors it creates.

9. Select the writeNewCheck method in the actions protocol and add the
expression indicated below by bold type; then choose accept :

writeNewCheck
|userHasAccepted|
self checkHolder value: checkbook makeNewCheck.
userHasAccepted := self openDialogInterface: #dialogSpec.
userHasAccepted ifTrue: [

self unimplemented]

This expression asks the Checkbook instance to create a new check an
then puts this check in the subject channel (value holder assigned to
checkHolder instance variable).

Note that you put this expression in the writeNewCheck method
because you want a new blank check to be created every time the di
box is opened.

10. Test the dialog box’s input fields:

a. Start the Checkbook application from the Resource Finder.
VisualWorks Tutorial, Rev. 2.1 175

Chapter 6 Programming the Interface

 a

ect

n
th

l and

to a
r the
d to

he
b. In the Checkbook main window, choose Checks ?Write... to bring
up the Check dialog box. Notice that the input fields display the
values of an initialized check:

– The date field contains the current date.

– The amount field contains $0.00.

– The Check number: field contains the number 1.

c. In the dialog box, click Cancel . You may leave the application
running.

Analysis: Aspect Paths

In previous sections, you specified aspect property settings that contain
single element, such as balanceAmount. A single-name setting is essentially
a message for the builder to send to obtain a value model for a data widget.
In this section, you entered a multielement aspect path in the aspect property
of each input field in the dialog box. When the builder encounters an asp
path, it creates the required value model, rather than obtaining it from the
application model.

More specifically, the builder uses an aspect path’s elements to create a
aspect adaptor. For example, when the builder encounters the aspect pa
checkHolder amount, it:

n Sends the path’s head (checkHolder) as a message to the application
model to obtain the subject channel for the aspect adaptor

n Uses the subsequent element (amount) to initialize the aspect adaptor
with an aspect symbol

The resulting aspect adaptor obtains its subject from the subject channe
then responds to value and value: messages by sending its subject amount
and amount: messages.

In general, when you specify an aspect path, its head must correspond
method in the application model that returns a suitable subject channel fo
resulting aspect adaptor. The element following the head must correspon
an appropriate accessor message that is defined for the object held by t
subject channel.
176 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

r

s,

:

put

s by

r
Analysis: Setup of an Aspect Path

When you run the Checkbook application and choose the Checks ?Write
command:

1. The CheckbookInterface instance responds to the writeNewCheck
message by:

a. Sending itself the checkHolder message to access the value holde
in the checkHolder instance variable. (This value holder is created
the first time the variable is accessed.)

b. Asking the Checkbook instance to create a new Check instance,
which is placed in the checkHolder value holder.

c. Creating a SimpleDialog instance and passing it the dialogSpec
interface specification.

2. The SimpleDialog instance creates a builder, which, among other thing
builds the dialog box’s input fields and their aspect adaptors. For
example, the dialog’s builder creates and sets up the amount field by

a. Obtaining the aspect path checkHolder amount from the interface
specification.

b. Sending a checkHolder message to the CheckbookInterface
instance, which returns the value holder that contains the check.

c. Creating an aspect adaptor whose subject channel is the returned
value holder and whose aspect symbol is #amount. This information
provides the aspect adaptor with its subject (the Check instance) and
its accessor and mutator messages (amount and amount:).

d. Assigning the new aspect adaptor to an instance variable in the in
field so the input field can send it messages.

e. Making the input field a dependent of its aspect adaptor.

3. The input fields obtain the initial data to display by sending a value
message to their respective aspect adaptors. Each of these respond
sending its accessor message to the Check instance and passes the
relevant data to the input field.

4. When a user enters data into one of the input fields, the field sends a
value: message to its aspect adaptor. In response, the aspect adapto
sends its mutator message to the Check instance.

Figure 6-9 shows the portion of the resulting structure that supports the
amount field:
VisualWorks Tutorial, Rev. 2.1 177

Chapter 6 Programming the Interface

er)

han-

ram-
rs.
Figure 6-9 Object structure for the dialog box’s amount field

Analysis: Subject Channels

In general, when you create an aspect adaptor, you can:

n Specify its subject directly (as you did for the Balance: field’s aspect
adaptor)

n Set it up with a subject channel—a value model (typically a value hold
from which the aspect adaptor obtains its subject

Aspect adaptors built from aspect paths are always set up with subject c
nels.

The advantage of using a subject channel is that it makes it easier to prog
matically introduce a new subject for one or more existing aspect adapto

aCheckbookInterface

checkHolder aValueHolder

dependents
value aCheck

number
date
payee
amount

anAspectAdaptor

dependents
getSelector
subject
subjectChannel

#amount

0

178 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

ened
pect

ould

a
nel

g the
ptor
lay.

sent
uces
te

o the
able
) that

og
ws
the
use to

sing
k

This advantage is not exploited in the tutorial example, because each op
Check dialog box displays only a single check (the dialog box and its as
adaptors are rebuilt whenever a new check is needed). If, however, you
wanted the same open Check dialog to display a series of checks, you c
accomplish this by changing the contents of the subject channel.

To see why this works, notice from Figure 6-9 that an aspect adaptor is
dependent of its subject channel. When the contents of the subject chan
change (as the result of a value: message), the subject channel, as a value
holder, notifies its dependent aspect adaptor, which responds by obtainin
new subject and notifying its widget. The widget then asks its aspect ada
to obtain the relevant data from the new subject, so it can update its disp

Analysis: Advantages of Aspect Paths

Aspect paths are especially useful whenever multiple widgets are to pre
different aspects of the same object. Using aspect paths in this case red
the amount of code in the application model—instead of having a separa
instance variable and accessor method to deliver each aspect adaptor t
builder, the application model has just the code required to deliver a suit
subject channel. Figure 6-10 shows the aspect adaptors (shaded in gray
are built from the aspect paths in the tutorial example.

Although the tutorial example uses aspect paths for the widgets in a dial
box, they are not limited to this context—they can be used in main windo
as well. In fact the VisualWorks database tools provide aspect paths for
widgets they generate. Aspect paths have a general syntax that you can
generate aspect adaptors (and various other kinds of value models) for
accessing data in very complex structures. For more information, see “U
an Aspect Path,” in the VisualWorks’ Database Tools Tutorial and Cookboo.
VisualWorks Tutorial, Rev. 2.1 179

Chapter 6 Programming the Interface

al
tors
o

d
bject
Figure 6-10 Aspect adaptors built from aspect paths

Analysis: Limitations of Aspect Paths

Aspect paths are best suited for widgets that simply need to display initi
values and then accept user input. This is true because the aspect adap
created by the builder are not set up to depend on their subjects, so they d
not receive any change notification that their subjects may send.

For widgets such as the Balance: field, which presents data that is change
programmatically, you can set up the aspect adaptor to depend on its su
by creating the aspect adaptor explicitly with a subject:sendsUpdates: (or
subjectChannel:sendsUpdates:) message.

anAspectAdaptor

dependents
getSelector
subject
subjectChannel

anAspectAdaptor

dependents
getSelector
subject
subjectChannel

anAspectAdaptor

dependents
getSelector
subject
subjectChannel

aValueHolder

dependents
value

aCheckbookInterface

checkHolder

aCheck

number
date
payee
amount

anAspectAdaptor

dependents
getSelector
subject
subjectChannel
180 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

ist

t the
Finishing the writeNewCheck Method

In this section, you finish the writeNewCheck method by defining how it
responds when the Check dialog box is accepted by the user:

1. Make sure that the writeNewCheck method is still selected in the
System Browser.

2. In the code view, replace the expression self unimplemented with the
expressions indicated below by bold type; then choose accept :

writeNewCheck
|userHasAccepted|
self checkHolder value: checkbook makeNewCheck.
userHasAccepted := self openDialogInterface: #dialogSpec.
userHasAccepted ifTrue: [

checkbook recordCheck: self checkHolder value.
self checksList list: checkbook register]

The expressions you added:

n Obtain the edited check from the checkHolder value holder

n Ask the checkbook to record the edited check in the register

n Inform the relevant value holder in the SelectionInList instance that
the register has changed, so that this value holder can notify the l
widget (see page 163)

3. Test the completed writeNewCheck method:

a. If necessary, start the Checkbook application from the Resource
Finder.

b. In the Checkbook main window, choose Checks ?Write...

c. Write a generous check to a deserving party. (Press <Tab> to shif
keyboard focus among input fields.)

d. Click OK. Notice that:

– An entry for the check appears in the Check Register list. This
entry is printed in the format you specified in the Check’s
printOn: method.

– The Balance: field displays the negative balance.

You may leave the application running.
VisualWorks Tutorial, Rev. 2.1 181

Chapter 6 Programming the Interface

hen

od

list

he

Providing for Check Cancellation

The Checks ?Cancel menu item in the Checkbook main window is what
users choose to cancel a selected check from the checkbook’s register. W
chosen, this menu item sends a
cancelSelectedCheck message to the application model. You program
Checkbookinterface with a cancelSelectedCheck method as follows:

1. Make sure that the actions protocol of the CheckbookInterface class is
selected.

2. Replace the current contents of the code view with the following meth
definition and choose accept :

cancelSelectedCheck
self checksList selection isNil

ifTrue: [^Dialog warn: 'Select a check to cancel.'].
checkbook cancelCheck: self checksList selection.
self checksList list: checkbook register

The expressions in this method:

n Obtain the object that is held at the current selection index in the
widget’s collection (note the use of the selection message from the
SelectionInList protocol)

n Test whether the object is nil—that is, whether any check is currently
selected

n If no check is selected, display a warning dialog and return from t
method

n Otherwise, ask the Checkbook instance to remove the selected
check from its register, and inform the relevant value holder in the
SelectionInList instance that the register has changed

3. Test the Checks ?Cancel menu item:

a. Restart the Checkbook application, if necessary.

b. Add a check.

c. Try canceling the check without selecting it.

d. Select and cancel the check.
182 VisualWorks Tutorial, Rev. 2.1

Programming the Application Model

r

or

er-
What’s Next?

Congratulations! You have completed the Checkbook application. At this
point, you can either:

n Keep the code you wrote in your image; be sure to save your image

n Archive the code you wrote by filing out the Examples-VWTutorial
category and then delete the category from your image

If you choose to keep the Checkbook application code, you can use it fo
further exploration. For example, with the help of the VisualWorks Cookbook,
you can try:

n Changing the tab order of the widgets in the Check dialog box

n Disabling the Checks ?Cancel menu item when no check is currently
selected

n Replacing the list widget in the Checkbook main window with a table
dataset that displays check information in four columns

n Providing a new, redesigned application interface by creating new int
face specifications and programming a new application model

Besides reading through topics in the VisualWorks Cookbook, you can browse
the VisualWorks User’s Guide for more information about:

n Smalltalk classes you can use in your programs

n Tools such as the Debugger

n The VisualWorks application framework

Finally, see the VisualWorks’ Database Tools Tutorial and Cookbook for
information about developing applications that interact with databases.
VisualWorks Tutorial, Rev. 2.1 183

re
pe

e

,
ate

tems.

d of
a

.

Appendix A

Glossary

This glossary defines the main VisualWorks and Smalltalk terms that we
introduced in this tutorial. Within a definition, terms that appear in italic ty
are also defined in this glossary.

accessing method A method that is either an accessor or a mutator; a
way of referring to operations whose purpose is to either get or set th
value of a variable.

accessor An accessing method that gets, or returns, the value of a vari-
able. See also mutator.

action widget A widget that enables a user to invoke an application’s
action. Action widgets include action buttons and menu items. Action
widgets are designed to ask an application model to carry out their
actions.

application A complete program that enables users to define, process
store, and/or retrieve data in various ways. Applications help to autom
various aspects of operation in some domain. Typical applications include
word-processing systems, spreadsheets, calculators, and payroll sys

VisualWorks applications are composite, in that they can be compose
other applications. Consequently, the term “application” may refer to
single application model (plus its associated user interface and domain
models) or to a combination of multiple interacting application models

application framework A set of classes that provide a core structure
from which to build a complete application.

The VisualWorks application framework includes the ApplicationModel
class and its subclasses, the UIBuilder class, policy classes for various
platform “look-and-feels,” and classes for the various widgets and value
models.
VisualWorks Tutorial, Rev. 2.1 183

Appendix A Glossary

n

.

s to
cify

ck

lse

r
application model A model in a Smalltalk program that provides appli-
cation-specific information and services. At a minimum, an applicatio
model provides the code required to support the mechanics of the graph-
ical user interface. For example, an application model establishes the
connections between widgets and domain models, and it defines the inter-
actions between widgets.

Application models are usually created from the VisualWorks application
framework. An application model refers to a subclass of the Application-
Model class or to an instance of such a subclass.

argument An object that specifies additional information for an operation
Arguments are specified as expressions in binary or keyword messages.

aspect adaptor A kind of value model that accesses a value held in
another object, called its subject. An aspect adaptor responds to value and
value: messages by sending appropriate accessor and mutator messages
to its subject. An aspect adaptor is an instance of the class Aspect-
Adaptor, which is a subclass of ValueModel.

aspect path A way of filling in a data widget’s aspect property to cause
the builder to create an aspect adaptor for the widget. An aspect path
contains multiple elements, in which the first element (the head) refer
a subject channel for the aspect adaptor, and subsequent elements spe
accessor names.

assignment An expression that makes a change to a variable’s value—for
example quantity := 19.

binary message A message that has one argument and whose selector is
made up of one or two special characters. For example, in the message
expression 3+4, the binary message is +4, where + is the selector and 4
is the argument.

block expression A description of a deferred sequence of actions. Blo
expressions consist of one or more expressions enclosed in square
brackets.

Boolean objects The Smalltalk objects true and false, which serve as
the answers to yes-no questions and which respond to messages that
request logical operations and conditional control structures (if-then-e
operations).

browser A window that displays portions of the Smalltalk class library fo
viewing or editing. A browser displays its information in multiple views.
184 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

bles

y, an
s

is

ly
a-

 a

c-
builder An object that builds an operating window from an interface spec-
ification. A builder is created by an application model when the applica-
tion needs to open a window. The builder, in turn, creates and assem
appropriate user-interface objects according to the contents of the inter-
face specification and a specified look policy.

A builder holds onto the user-interface objects it creates. Consequentl
application can send messages to a builder to obtain programmatic acces
to a given widget or to the window itself.

Builders are instances of the class UIBuilder, which is part of the Visual-
Works application framework.

canvas A special work area in which you paint the contents and layout of
a window (or part of a window) for an application. You also affect the
appearance of a canvas by setting properties. A canvas is the graphical
form of an interface specification.

Canvas Tool The VisualWorks tool for fine-tuning a canvas’s appearance
and for invoking additional canvas-preparation tools. A Canvas Tool
automatically opened when you open a canvas.

cascaded messages Multiple messages sent to one object in a single
message expression. A cascaded message expression consists of one
description of the receiver followed by several messages separated by
semicolons. For example:

OrderedCollection new add: 1; add: 2; add: 3

results in three add: messages being sent to the result of OrderedCollec-
tion new.

category A group of classes. Every class in the system belongs to exact
one category. Classes are grouped into categories purely for organiz
tional purposes; all classes in all categories are globally available. See
also protocol.

Change List The VisualWorks tool that displays the changes stored in
changes file. To open a Change List, choose Changes ?Open Change
List from the VisualWorks main window.

changes file A file that lists all the changes made to the ParcPlace Small-
talk system in your image(1). The changes file is located in the same dire
tory as the corresponding image file and has the file extension .cha . You
view your changes file using the Change List.
VisualWorks Tutorial, Rev. 2.1 185

Appendix A Glossary

ch

d

s.

s.

,

rts

class A description of a group of similar objects. A class serves as a
“template” for defining the data and operations for these objects, whi
are its instances. A class defines:

n The instance variables in which the instances store their data

n The instance methods that describe how instances carry out their
operations

Every class is itself a kind of object and therefore has its own data (class
variables) and operations (class methods). One of the primary operations
of a class is to create the objects that are its instances.

class hierarchy The structure formed by the inheritance relationships
among classes. The hierarchy of classes is rooted in the class Object,
which defines the state and behavior common to all objects in the system.
Object does not inherit from any other class.

class method A method that defines a particular operation that is carrie
out by a class, such as creating an instance of itself. Class methods are
invoked by sending messages to a class rather than to one of its instance

class variable A variable that is shared by a class and all its instances.
Class variables maintain information that is the same for all instance

component See widget.

controller An object in a Smalltalk program that enables the user to
interact with information displayed by a view. Together, view-controller
pairs form user-interface objects such as widgets. A controller manages a
widget’s response to mouse or keyboard input. See also MVC architec-
ture.

data widget A widget that displays some aspect of an application’s data
and/or collects it from the user. Data widgets include input fields, lists
datasets, and so on. Data widgets are designed to use value models to
manage their access to the data they present.

Definer The VisualWorks tool for generating Smalltalk code that suppo
widgets. The code is generated in an application model. You invoke the
Definer from a Canvas Tool.

dependency mechanism A widely used technique for coordinating the
activities of different objects in an application, whereby one object,
usually an instance of a subclass of Model, maintains a list of objects that
depend on it for information and notifies these objects whenever the
relevant information changes. See also model.
186 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

 so

er,
ter-

s

r
er

s

ws

-
ific
domain The area of endeavor that an application helps to automate—for
example, employee payroll, billing, inventory control, accounting, and
on.

domain model A model in a Smalltalk program that defines data and
operations that are relevant to the application’s domain. For example, an
accounting application might include domain models such as Custom
Account, and so on. Domain models are generally kept free of user-in
face code, so that they can be reused with other interfaces.

expression A sequence of characters that describes an object, which is
the value of the expression. See also message expression and block
expression.

file in To load one or more files from a disk into the current VisualWork
image(1). When Smalltalk files are filed in, any class and method defini-
tions they contain are compiled into the image(1).

File List The VisualWorks tool for interacting with your operating
system’s file-management facilities. You use a File List to locate and
select files in your file system and then read them into your image(1). To
open a File List, choose Tools ?File List in the VisualWorks main
window.

file out To store the source code for one or more classes, methods, or cate-
gories in a disk file that is separate from the VisualWorks image(1) file.
When you file out Smalltalk code, you normally append the .st exten-
sion to the filename. Filing out is a common means of backing up you
work, preserving intermediate versions, or transferring code to anoth
image (by filing in).

global variable A variable whose value can be accessed by all objects in
the system.

graphical image A bitmapped illustration. You create graphical image
using the Image Editor. You can use graphical images in a variety of
ways—for example, as labels for action buttons. See also mask.

graphical user interface A user interface that consists of a collection of
windows containing visual controls, or widgets.

In VisualWorks, a graphical user interface includes not only the windo
and widgets themselves, but also various supporting objects that are
supplied by the application framework. In addition, a graphical user inter
face includes the code that implements the widgets’ application-spec
behavior—the functionality that enables them to interact with domain
VisualWorks Tutorial, Rev. 2.1 187

Appendix A Glossary

d

e

s
tart

by

they
models. A VisualWorks graphical user interface is normally implemente
using one or more application models and interface specifications.

Hierarchy Browser A kind of browser that displays the superclasses and
subclasses of a particular class. To open a Hierarchy Browser, you choos
Browse ?Class Named... in the VisualWorks main window and then
specify the class.

image(1) A file that stores the entire state of an individual ParcPlace
Smalltalk system, including all the current objects, all the information on
the screen, and any pending instructions to the system. A VisualWork
image preserves objects between VisualWorks sessions. When you s
VisualWorks, the object engine reads the image file and restores the
system to its previous state. You share information between images
filing source code out of one image and filing it into another. See also
standard image and working image.

image(2) See graphical image.

Image Editor The VisualWorks tool for creating and modifying graphical
images, with pixel-level control. The Image Editor replaces the Mask
Editor in VisualWorks 1.0. You open the Image Editor from a Canvas
Tool.

inheritance A mechanism whereby classes can make use of the methods
and variables defined in all classes above them on their branch of the
class hierarchy.

inheritance hierarchy See class hierarchy.

Inspector The VisualWorks tool for examining the values of the variables
in an object. To open an Inspector, you choose inspect from an
<Operate> menu.

install To save a resource (such as a painted canvas) in an application
model. Installing a resource creates a resource method, which makes the
resource available to the running application.

instance An individual object described by a class. An instance:

n Has private memory consisting of instance variables

n Responds to messages by invoking methods defined or inherited by
its class

Every object in the Smalltalk system is an instance of a class. All
instances of a given class are identical in form and behavior, although
generally hold different data in their instance variables.
188 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

s

ance
tore

 by

instance method A method that describes how a particular operation i
carried out by every instance of a class. See also class method.

instance variable A variable that stores data for an instance of a class.
Collectively, an object’s instance variables describe the object’s data
structure. Instances of the same class have the same number of inst
variables with the same names; these instance variables generally s
different values for different instances of the class. See also class vari-
able.

interface See graphical user interface.

interface specification A symbolic description of a window (or part of
a window) that is created when you install a painted canvas in an appli-
cation model. An interface specification contains a description of the
widgets you painted in the canvas, plus the properties you set for them.
When the application runs, the interface specification serves as the
builder’s blueprint for constructing an operational window.

keyboard focus The state of a widget that enables it to receive input from
the keyboard. You can move the keyboard focus among widgets by
clicking them or by pressing the <Tab> key.

keyword An identifier with a trailing colon, such as ifTrue:. Keywords are
used in keyword messages.

keyword message A message with one or more arguments whose
selector is made up of one or more keywords. For example, in the
following message expression:

aRunArray copyFrom: startIndex to: stopIndex

the selector is copyFrom:to: (consisting of keywords copyFrom: and
to:) and the arguments are startIndex and stopIndex.

Launcher The VisualWorks 1.0 window for starting various tools. In
VisualWorks 2.0, the Launcher has been replaced by the VisualWorks
main window.

lazy initialization A technique for initializing an instance variable.
Initialization code is put in an accessor so that the variable is initialized
the first time it is accessed. This technique is used in code generated
the Definer.

look policy The platform-specific “look-and-feel” of an application’s
interface, which determines the appearance and behavior of buttons,
VisualWorks Tutorial, Rev. 2.1 189

Appendix A Glossary

n

ion

e

rs via
scroll bars, and so on. You set the look policy by selecting it in the Settings
Tool.

mask A monochrome graphical image.

Mask Editor The VisualWorks 1.0 tool for editing masks. In VisualWorks
2.0, the Mask Editor has been replaced by the Image Editor.

Menu Editor VisualWorks tool for creating and editing menus. You ope
the Menu Editor from a Canvas Tool.

message A request for an object to carry out one of its operations. A
message consists of a selector and possibly one or more arguments. See
also binary message, keyword message, and unary message.

message category See protocol.

message expression A description of a message to a receiver. When a
message expression is evaluated, the receiver carries out the operat
requested by the message and returns an object to the sender; this object
is the value of the message expression. The value is determined by th
method that the message invokes. That method is found in the class of the
receiver.

message protocol The list of messages to which an object can respond.

message selector See selector.

method A description of how to perform one of an object’s operations.
This description contains a sequence of one or more expressions, which
are evaluated when the method is executed. Methods are analogous to
procedures or functions in other programming languages.

A method is executed when a message matching its message pattern is
sent to an instance of the class in which the method is found. A method
determines the value of a message expression, either by explicitly speci-
fying the object to be returned or by allowing a default value to be
returned. See also instance method and class method.

method lookup The mechanism used to determine which method to
execute when a message is sent to an object.

modal dialog box A dialog box that must be accepted, canceled, or
closed before the user can invoke any other application actions.

model An object in a Smalltalk program that is concerned with defining
and processing data. The data in a model is usually presented to use
user-interface objects. A typical VisualWorks application contains a
190 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

. In

ation

ata
cts

a

a

e
number of different kinds of models, including domain models, applica-
tion models, and value models. See also MVC architecture.

Models are composite, in that they can be composed of other models
particular, the term “model” may refer to a single piece of information
presented by an individual widget or to the entire portion of the applica-
tion that stores and processes information, independent of the present
services provided by the user interface.

Models are generally created from classes in the VisualWorks application
framework. Consequently, the term “model” also refers to any subclass of
the Model class, or to an instance of such a subclass. As such, models
inherit an implementation of the dependency mechanism.

mouse pointer See pointer.

mutator An accessing method that sets a new value for a variable. See also
accessor.

MVC architecture The classic Smalltalk programming method of decom-
posing an application (or a portion of an application) into models (M),
views (V), and controllers (C).

object A software unit that contains storage for a collection of related d
plus operations for manipulating that data. Fundamental kinds of obje
are classes and instances of classes.

object engine The executable program that runs the ParcPlace Smalltalk
system on your platform; it essentially “sets in motion” the system objects
in an image.

open To start an application by sending an open message to create an
instance of an application model. The term “open” also means causing
window to display.

paint To specify the layout and contents of a window (or part of a window)
by selecting widgets from a Palette and positioning them appropriately on
a canvas. You can also affect the appearance of a canvas by setting prop-
erties.

Palette The VisualWorks tool that supplies the widgets you can paint on a
canvas. By default, a Palette is opened automatically when you open
canvas.

ParcPlace Smalltalk language The general-purpose, object-oriented
computer programming language that is provided by VisualWorks. Th
VisualWorks Tutorial, Rev. 2.1 191

Appendix A Glossary

ll
e
t of

nt

.

the
k.

gets

g

for
applications you build with VisualWorks are implemented in the Parc-
Place Smalltalk language, as is VisualWorks itself.

In the ParcPlace Smalltalk language, every entity is an object, and a
processing is carried out as messages sent among the objects. Because th
VisualWorks implementation of the language also provides a large se
predefined objects, the language is considered part of the ParcPlace
Smalltalk system.

ParcPlace Smalltalk system The collection of interacting objects
implemented in the ParcPlace Smalltalk language. Some of these objects
provide functions that make up the VisualWorks software developme
system: the compiler, debugger, browsers, and so on. Other objects in the
system exist so that you can incorporate them into your own applications,
as, for example, when you use classes in the VisualWorks application
framework. You extend this system whenever you create new objects

pointer A graphic, usually in the shape of an arrow, that you move on
screen using a pointing device, such as a mouse, trackball, or joystic
You use a pointer to interact with widgets in VisualWorks windows.

properties Attributes of widgets and windows that define a variety of
visual characteristics, such as font, color, borders, and so on. For wid
that display data, properties also indicate the nature of the data to be
displayed and how that data is to be referenced by the application.

Properties Tool The VisualWorks tool for setting the various properties
for individual widgets. Properties are displayed in a notebook containin
pages of related properties. You open a Properties Tool from a Canvas
Tool.

protocol A group of methods in a class definition. Every method in a class
belongs to exactly one protocol. Methods are grouped into protocols
organizational purposes only. Also called message category.

receiver The object to which a message is sent in a message expression.
The receiver is described by an expression. It is up to the receiver to
decide how to respond to the message.

resource An object or description needed by the builder to assemble a
particular window for a running application. Resources include interface
specifications (canvases), menu bars, graphical images, and database
queries. An application’s resources are normally stored in separate
resource methods in an application model.
192 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

y

ct

or

lk

ge;

its
e
y of
Resource Finder The VisualWorks tool for locating classes that contain
resources. You can use a Resource Finder to start applications or to open
individual resources for editing. To open a Resource Finder, choose
Browse ?Resources in the VisualWorks main window.

resource method A method (usually a class method) in an application
model that returns a resource. Resource methods are normally invoked b
the builder when an application opens a window.

return To communicate information back to the sender of a message.
Whenever a message expression is evaluated, the receiver of the message
always responds by returning an object, which becomes the value of the
message expression. Returning a value indicates that the receiver’s
response to the message is complete.

The object that is returned by a receiver is determined by the method that
is invoked by a message. The method may specify the returned obje
explicitly through an expression containing the return operator (^); other-
wise, the default value returned is usually the receiver itself.

selector The name of a method; the portion of a message that determines
which of the receiver’s methods will be invoked.

Settings Tool The VisualWorks tool for customizing various global
parameters of an image(1), such as the default size, look, and behavior f
VisualWorks tools. To open the Settings Tool, choose File->Settings in
the VisualWorks main window.

Smalltalk See ParcPlace Smalltalk language.

snapshot A saved image(1) file. “Taking a snapshot” of an image refers
to saving that image periodically.

sources file A file that contains the source text of the compiled Smallta
objects in an image(1). Every image consults a sources file to display
class and method definitions.

standard image The image(1) that is delivered with the VisualWorks
product. The first time you start VisualWorks, you use the standard ima
thereafter, you normally do your work in your own working image.

subclass A class that inherits variables and methods from some other
class (its superclass). A subclass is lower in the class hierarchy than its
superclass. A subclass is generally a specialization of its superclass—
instances have the same kind of data and behavior as instances of th
superclass, plus some of their own. A subclass may also override an
its inherited behavior by redefining inherited methods.
VisualWorks Tutorial, Rev. 2.1 193

Appendix A Glossary

ing

ng

e

a
es,

r-
 in

ill
 two
subject An object that holds onto information to be accessed by an aspect
adaptor. Every aspect adaptor is created either with a subject or a subject
channel.

subject channel A value model that holds onto a subject for an aspect
adaptor. Subject channels provide a convenient mechanism for chang
a subject that is shared by multiple aspect adaptors.

superclass The class from which variables and methods are inherited. A
superclass is higher in the class hierarchy than its subclasses.

symbol A string that is guaranteed to be unique in the system. Class and
method names are symbols. A symbol is expressed literally by prefixi
it with the character # (for example, #balance).

System Browser The principal VisualWorks tool for creating and
viewing class and method definitions. To open a System Browser, choos
Browse ?All Classes in the VisualWorks main window.

system classes The set of classes that come with the ParcPlace Small-
talk system. The system classes provide the standard functionality of
programming language (arithmethic, data structures, control structur
and input/output facilities) and development environment (editor,
compiler, debugger, window system, and so on).

System Transcript The display area for informational messages gene
ated by VisualWorks or your code. By default, the System Transcript is
the area below the tool bar of the VisualWorks main window. To close or
reopen a System Transcript, choose Tools ?System Transcript from
the VisualWorks main window.

tab chain A sequence of widgets (in a single window) whose properties
are set so that the application user can move keyboard focus among them
using the <Tab> key.

temporary variable A variable that provides temporary storage for a
value referenced in one or more expressions, usually in a method defini-
tion. A temporary variable is declared between vertical bars—for
example | aCheck |.

text cursor A small triangular graphic that shows where typed input w
be inserted. A text cursor appears at the base of a line of text, between
characters.

UI object See user-interface object.
194 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary

 an

ith

.

unary message A message without arguments. In a message expression
such as 0 asValue, the unary message is asValue.

user interface The means by which a user can control the behavior of
application; the software that handles input and output. See also graph-
ical user interface.

user-interface object An object in a Smalltalk program that is
concerned with presenting information and enabling users to interact w
it. User-interface objects include windows and widgets. Each user-inter-
face object is a complex object containing a view coupled with a
controller and associated supporting objects.

value The object that is described by an expression. The value of a variable
name is the object that is referenced by the variable. The value of a
message expression is the object returned by the invoked method.

In discussions concerning value models, “value” usually refers to the
object that is returned by sending the message value to a value model.

value holder A kind of value model that holds onto its value through an
instance variable. A value holder is an instance of the class ValueHolder,
which is a subclass of ValueModel. See also aspect adaptor.

value model An object that contains or refers to some other object (its
value) and:

n Responds to a standard protocol (the messages value and value:) for
accessing the value

n Notifies other interested objects when the value changes

Data widgets normally depend on value models to store or retrieve the
data they collect or display.

Value models are created from the VisualWorks application framework.
The term refers to a subclass of the class ValueModel, or to an instance
of such a subclass. See also aspect adaptor and value holder.

variable A storage place within an object for a reference to another object
A variable’s name is an expression that describes the referenced object.

The methods in a class have access to different kinds of variables (see
class variable, global variable, instance variable, and temporary vari-
able). These kinds of variables differ in terms of how widely they are
available (their scope) and how long they persist.
VisualWorks Tutorial, Rev. 2.1 195

Appendix A Glossary

re-

nse-

s of

t

for

.
a-

et

on

-

view An object in a Smalltalk program that displays text or graphics rep
senting information in a model. A view is tightly coupled with a
controller; together, view-controller pairs form user-interface objects
such as widgets. See also MVC architecture.

Views are composite, in that they can be composed of other views. Co
quently, the term may refer to the display of a single widget or to the
portion of an entire graphical user interface that is devoted to displaying.

A view also refers to any of the display regions of a Smalltalk browser.
For example, in a System Browser, the category view displays a list of
categories in the system, whereas the code view displays textual line
code.

visual component See widget.

VisualWorks main window The window that serves as the starting poin
for your work. The VisualWorks main window is identified by the title
“VisualWorks” in its title bar, and it contains a menu bar and a tool bar
invoking VisualWorks’ main tools. Formerly known as the Launcher.

widget A control that appears in an application’s graphical user inter-
face—for example, an action button, an input field, or a scrollable list
Widgets enable the application user to view information, enter inform
tion, or invoke operations. For a description of the widgets that are
provided by VisualWorks, see Appendix B. See also action widget and
data widget.

Each widget is a user-interface object that provides a characteristic
display and visual response to keyboard and mouse input. Each widg
consists of a view coupled with a controller and associated supporting
objects. Widgets are also called components (or visual components) in
some VisualWorks documentation.

window A display area on the screen that is part of an application’s graph-
ical user interface. A window presents the user with information and
controls for invoking operations. You create a window for an applicati
by painting a canvas and installing it in an application model.

working image A copy of the standard image in which a user does his or
her own work.

Workspace A window in which you can enter text and/or evaluate frag
ments of Smalltalk code. To open a Workspace, choose Tools ?Work-
space in the VisualWorks main window.
196 VisualWorks Tutorial, Rev. 2.1

Appendix A Glossary
VisualWorks Tutorial, Rev. 2.1 197

Appendix A Glossary
198 VisualWorks Tutorial, Rev. 2.1

e

The
lect

ed

Appendix B

Widget Quick Reference

This appendix describes the various widgets available to you through th
VisualWorks Palette.

Figure B-1 The VisualWorks Palette

You can get the name of a widget by clicking on a button in the Palette.
name appears in the widget indicator field. Click the button again to dese
it.

In the definitions that follow, terms that appear in italic type are also defin
in this quick reference. The icon shown to the left of a widget’s definition
appears on that widget’s button in the Palette.

single-selector button

widget buttons

repeat-selector button

widget indicator field
VisualWorks Tutorial, Rev. 2.1 199

Appendix B Widget Quick Reference

t-

t a

 a
ed

or
es
s

 the
want

t-

e
o a
for

d
action button (See Figure B-2) Also called a “push button” on some pla
forms. Triggers a short action, such as printing, saving, deleting, or
opening a dialog window. Action buttons are generally not used to se
persistent property or to set a mode.

Action buttons are convenient for the user, but they take up space in
window. When space is an issue, you can cause actions to be trigger
from a menu.

check box (See Figure B-2) A toggle that enables the user to turn on
turn off some attribute in the application. For example, VisualWorks us
a check box in the Properties Tool to control widget properties such a
Can Tab .

Check boxes are often used in a group to represent a set of related
attributes. However, selecting one check box has no effect on others in
set, so you can select more than one check box at a time. When you
only one attribute to be selected at a time, use radio buttons instead.

Figure B-2 An interface to modify a font

combo box (See Figure B-3) Called a “combination box” on some pla
forms. Provides a user-modifiable input field with a drop-down list of
standard field entries. The application user can select from among th
standard entries or fill in a nonstandard one. A combo box is similar t
menu button, except that a menu button does not provide an input field
nonstandard entries.

A combo box provides a customizable pop-up menu for searching an
editing the data in the box. The user activates this menu using the
<Operate> mouse button.

action button

check boxes
200 VisualWorks Tutorial, Rev. 2.1

Appendix B Widget Quick Reference

d
ter-

ad-

 in

of

ual
k.

lica-
ed

k

Figure B-3 Three ways to choose a gray tone

dataset (See Figure B-8) A table with extra features such as in-column
editing, dynamic resizing of column widths (both when the dataset is
being added to the interface and when the application is running), an
easy reordering of columns while the dataset is being added to the in
face. In addition, any column in the dataset can be specified to be re
only, an input field, a combo box, or a check box.

Datasets are more useful than tables when the data being presented
them is likely to be edited. Use a table when the data is unlikely to be
edited, or when you want to display a possibly disparate assortment
data in a collection that allows two-dimensional access.

divider (See Figure B-3) A line segment that can be used to provide vis
connection or separation between widgets. A divider is one pixel thic

embedded data form (See Figure B-4) A special-purpose subcanvas
used in database applications to connect a data form to the main app
tion window or another data form. For more information about embedd
data forms, see the VisualWorks’ Database Tools Tutorial and Cookboo.

field See input field.

slider

region

combo box

divider

group box

Mist
Dove Gray
Granite

Slate
Battleship

Mist
VisualWorks Tutorial, Rev. 2.1 201

Appendix B Widget Quick Reference

ted
x

”
that

d
te>

yed

pi-

t
group box (See Figure B-3) A rectangle that surrounds groups of rela
widgets. The sides of the group box are one pixel thick. The group bo
optionally has a label embedded in its top border.

input field (See Figures B-4 and B-7) Called a “text input” or “text entry
field on some platforms. A region for presenting and/or entering data
is only one line long, such as a filename or other string.

An input field provides a customizable pop-up menu for searching an
editing the input data. The user activates this menu using the <Opera
mouse button.

Note that input fields can be made read-only, so that text can be displa
but not entered.

Figure B-4 Embedded interfaces

label (See Figure B-4) A single line of text or a graphic image that is ty
cally used:

n In conjunction with another widget, such as a field, to describe tha
widget’s purpose

n As titles for groups of widgets

n For a read-only display

For a multiline label, use a read-only text editor.

label

view holder

subcanvas

embedded data
form

linked data form

input field
202 VisualWorks Tutorial, Rev. 2.1

Appendix B Widget Quick Reference

ked
o the

of
ore

h).

nds
ting

et
u of
: it

pop-
ton
at-

a-
ote-

ys
linked data form (See Figure B-4) A special-purpose action button that,
when clicked, displays a data form canvas in a separate window. Lin
data forms are used in database applications to connect a data form t
main application window or another data form. For more information
about linked data forms, see the VisualWorks Database Tools Tutorial and
Cookbook.

list (See Figure B-5) A list widget is useful for displaying any collection
objects. As an input device, the list enables the user to select one or m
elements in the list as targets for operations such as browsing.

Lists have a built-in search ability, so the user can type the beginning
letters of an item to find it in a large list (<Escape> starts a new searc

You can arrange for a list to have a custom menu that provides comma
that act on the selections or commands that act on the list itself (upda
or filtering its contents).

Figure B-5 A list linked to a text editor

menu button (See Figure B-5) Provides the user with a well-defined s
of options. A menu button can present a menu of commands or a men
values. It is similar to a submenu in a menu bar, with two advantages
can be placed anywhere on the canvas, and its label can change to reflect
the current selection. A menu button is more visible to the user than a
up menu, but it uses space in the canvas. The menu that a menu but
invokes is a “pull-down” menu (called a “drop-down” menu on some pl
forms).

notebook (See Figure B-6) A means of presenting a hierarchy of inform
tion. This hierarchy may have one or two tiers, which are called the n
book’s major keys and its minor keys, respectively.

The minor keys either refine the subdivision imposed by the major ke
or filter the information along a separate dimension. They may be

text editor
list

menu buttons
VisualWorks Tutorial, Rev. 2.1 203

Appendix B Widget Quick Reference

io

t all
ed
.
uld

ick-
connected to the major keys in such a way that each major key may
display a different set of minor keys.

Figure B-6 A notebook with interdependent tabs

radio button (See Figure B-7) Enables the user of your application to
make a single selection from a limited list of choices. Selecting a rad
button causes any other button in its group to be deselected.

Radio buttons have the advantage of displaying a full set of choices a
times. However, if the list of choices is long or needs to be reconfigur
dynamically, you should use a list widget instead of a set of radio buttons
If you want users to be able to select multiple items on the list, you sho
use check boxes (or a list that permits multiple selection).

Figure B-7 Creating a label

region (See Figure B-3) A shape that surrounds a group of widgets. A
region may be rectangular or elliptic. Its borders can be one of four th
nesses, and its interior can be filled with a color.

major keys

minor keys

radio buttons
input field
204 VisualWorks Tutorial, Rev. 2.1

Appendix B Widget Quick Reference

m
imu-
ing
s

er
hin

t can

of
 you

 the

ed

roll
ox.
le’s
nd

or
slider (See Figure B-3) A device for selecting and displaying a value fro
a range of values, such as the volume setting for a music program. It s
lates the sliding switch found on some electronic devices, where chang
the position of the switch changes the value of some property, such a
volume.

subcanvas (See Figure B-4) An interface that has been included or
embedded in another interface. A subcanvas can itself include anoth
subcanvas. You can nest as many levels of interfaces as you like wit
the parent interface.

By using subcanvases, you can create a set of application modules tha
be plugged into larger applications as needed. This approach avoids
wasteful duplication of effort for generic modules, enforces uniformity
interface design, and makes changes much easier to implement, since
have to change only the core module to propagate the changes to all
applications that use that module.

table (See Figure B-8) A means of displaying data that can be organiz
usefully in rows and columns.

By default, a table is bordered and has both vertical and horizontal sc
bars. You can turn off any of these features in the Properties dialog b
You can also set the font to be used with text that is displayed in the tab
cells, connect an <Operate> menu to the table, and turn on vertical a
horizontal grid lines to separate rows and columns.

Figure B-8 Presenting columns of information

text editor (See Figure B-5) A region for displaying and editing text. A
text editor is especially useful for text that does not fit within an input
field, especially when it is expected to have multiple lines. A text edit

ByCo

Gaard

SteinHF

9.25

10.50

9.75

Vannet 8.25

8.5

6.0

5.0

11.0

5.75

TryggAS 17.00

ByCo

Gaard

SteinHF

9.25

10.50

9.75

Vannet 8.25

8.5

6.0

5.0

11.0

5.75

TryggAS 17.00

table dataset
VisualWorks Tutorial, Rev. 2.1 205

Appendix B Widget Quick Reference

,

e

an
n
ust
in
has built-in facilities for line wrapping, changing the text style, cutting
copying, pasting, searching and replacing, undoing, and optionally
executing Smalltalk expressions.

A text editor provides a customizable pop-up menu for searching and
editing text. The user activates this menu using the <Operate> mous
button.

view holder (See Figure B-4) A means of including a graphic image in
interface. It allows you to treat a graphic like any other widget: you ca
arrange its layout and apply borders and scroll bars. However, you m
supply the code that connects the graphic to your application’s doma
model.
206 VisualWorks Tutorial, Rev. 2.1

Index
Symbols
<Control>-click xiv

<Meta>-click xiv

<Operate> button xiii, 7

<Select> button xiii, 7, 9

<Shift>-click xiv

<Window> button xiii, 7

A
accessing method 92, 112

creating 92–94

defined 183

limited access to variables 113

accessor 92, 112

defined 183

action button 52

creating 73–74

defined 200

programming 143–146

testing 147–150

action property 59, 144

accept and cancel settings 170

action widget 129

defined 183

adding, see creating 24

aligning widgets 76

application 28

building 39–48

database 46
VisualWorks Tutorial, Rev. 2.1
defined 183

finding 29

layered structure 40–43, 131

modifying while running 150

multiwindow 44

opening 70–72

programming 127–181

running 28

starting 70–71

UI-based structure 44

application framework 40

defined 183

application model 42, 131

browsing 134

creating 64–66

defined 184

designing 48

initializing 135–136

programming 127–181

applying changed property 60

argument 95

defined 184

aspect adaptor 151, 153

creating for field 153–154

defined 184

operation 156–157

setup 155–156

aspect path 172–179

advantages 178–179

defined 184
207

Index
limitations 179

setup 176–177

aspect property 59, 139

assignment expression 119

defined 184

assignment operator (:=) 96

asterisk (*) 23, 27

B
backup 26

binary message 118

block expression 141

defined 184

Boolean objects 140–141

defined 184

browser, defined 185

browsing

application model 134

class hierarchy 24–25

inheritance hierarchy 25

online documentation 30–34

Smalltalk class library 19–25

builder 71

defined 185

bulletin boards xvii

buttons, mouse, see mouse buttons

C
canvas 63

creating 53–54

defined 185

finding an installed 66

installing 64–66

opening a blank canvas 53–54

previewing for another platform 82

sizing 55

Canvas Tool 6, 54
208
defined 185

cascaded messages 98

defined 185

category 20, 86

adding to class library 24

defined 185

locating 86

category view 20

Change List 36–37

defined 186

change notification 113–114

changes file 36

defined 186

changes view 36

character-based display 99

check box, defined 200

class 19, 83

commenting 91, 105

creating 85–125

creating an instance 89–90, 107

creating definition 87–88, 105–106

defined 186

defining data structure 87–88

documenting 91, 105

editing definition 87

entity class 46

finding by name 23

class definition

creating 87–88, 105–106

viewing 21

class hierarchy

browsing 24–25

defined 186

class library

adding a category 24

browsing 19–25

class method 109

creating 108–109

defined 186
VisualWorks Tutorial, Rev. 2.1

Index
class variable, defined 186

class view 20

click xiv, 9

closing windows 11

code view 20

collapsing a VisualWorks window 12

combo box, defined 200

comma (concatenation message) 100

comments 91, 105

compilation 96

complex expressions 97–98, 117–119

component, defined 186

concatenation message 100

constructing a string 100

contents view 28

controller, defined 186

conventions

naming 96

screen xii

typographic x–xii

copying and pasting

text 11

widgets 57

creating

action button 73–74

application model 64–66

aspect adaptor 153–154

canvas 53–54

category 24

class 85–125

class definition 87–88

class method 108–109

instance 89–90, 135–136

instance method 92, 108–109

instance variable 87–88

menus 67–69

protocol 92

strings 100

windows 79–81
VisualWorks Tutorial, Rev. 2.1
customizing a working image, see working image

D
data forms 46

Data Modeler 6

data type 109

data widget 129, 130

defined 187

database applications 46

dataset 52

defined 201

Definer 139–140, 153

defined 187

dialog box 138

deleting

text 11

widgets 58

dependency mechanism 106, 107

defined 187

deselecting

text 10

widgets 56

dialog box, setting up basic behavior 168–171

disk files 26–28

displaying

descriptive string 99, 102

properties of a widget 59

divider, defined 201

documentation, see VisualWorks documentation

domain 42

defined 187

domain model 42, 131

defined 187

designing 47

developing 83–125

testing 120–125

double-click xiv, 9
209

Index

8

E
editing

menu bar 67–69

template for class definition 87

text 8, 10

see also painting

electronic bulletin boards xvii

electronic mail xvii

embedded data form, defined 201

entity class 46

error 123–125

evaluating Smalltalk expressions 18, 102

exiting VisualWorks, see VisualWorks

expression

defined 187

see also message expression

F
fax support xvii

field, see input field

file in 26, 28

defined 187

File List 6, 27

defined 187

file out 26

defined 187

files

disk 26–28

finding

application 29

category 86

class 23

installed canvas 66

fonts x–xii

format of output 62

Format: property 62
210
G
global variable 122

defined 188

glossary 183–198

graphical image, defined 188

graphical user interface 7, 39

creating 51–82

defined 188

designing 47

programming 127–181

programming application-specific
behavior 128–130

specifying basic appearance and behavior 12

group box, defined 202

grouping widgets 77–78

H
help file 14

Hierarchy Browser 24–25

defined 188

I
image 2

defined 188

saving 13–15

standard 2, 3

working 2

creating 13

customizing 35

starting

Image Editor, defined 188

indicator field 55

information model 40, 43, 131

inheritance 24

defined 189

inheritance hierarchy 24

browsing 25
VisualWorks Tutorial, Rev. 2.1

Index
defined 189

initialization code 151, 158

initializing

application model 135–136

lazy initialization 139, 140–141

variables 108–111

input field 51, 58

creating aspect adaptor for 153–154

creating value holder for 137–138

defined 202

programming 137–142, 151–154, 172–179

setting properties 62

testing 147–150, 155–157

inspecting

default widget properties 61

value of expression, see Inspector

Inspector 89, 101

defined 189

opening 102

installing

canvas 64–66

defined 189

menu bar 69

instance 19, 24

creating 89–90, 135–136

defined 189

displaying description 101–103

initializing variables 108–111

message for creating 90

instance method 19, 21, 109

creating 92, 108–109

defined 189

instance variable 19, 21, 88, 92

creating 87–88

defined 189

setting value 97

interface 189

opening 70–72

programming 127–181
VisualWorks Tutorial, Rev. 2.1
see also graphical user interface

interface specification 64, 128

defined 189

K
keyboard focus, defined 190

keyword 95

defined 190

keyword message 95, 118

defined 190

L
label 51, 58, 60

defined 202

Launcher, defined 190

layered structure of VisualWorks
application 40–43

layout, adjusting window 78

lazy initialization 139, 140–141

defined 190

library, see class library

linked data form, defined 203

list widget 51, 58

defined 203

initialization code 158

programming 158–163

setup 160–161

literal string 100

look policy, defined 190

lookup 102–103, 110–111

M
Macintosh platforms 3, 5, 12, 13, 14, 15, 16

mail

electronic xvii

main window, see VisualWorks, main window

Mask Editor, defined 190
211

Index
mask, defined 190

menu 51

menu bar 51, 63

editing 67–69

installing 69

programming 164–165

menu button, defined 203

Menu Editor 67–69, 164–165

defined 190

menus

creating 67–69

VisualWorks main window 5

see also menu bar

message 90

binary 118

defined 190

for creating instance 90

keyword 95, 118

sending to Smalltalk objects 18

transcript 122–123

unary 90, 118

message category, defined 191

message expression 18, 23, 90, 97–98

cascaded 98

complex 97–98, 117–119

defined 191

evaluating 102

sequences of expressions 98

message pattern 95

message protocol 94

defined 191

message selector, defined 191

method 19, 24, 85, 92, 108

class method 109

compilation of 96

creating 92, 108

defined 191

generated by the Definer 138

incrementally defining 167–179
212
instance 109

lookup 102–103, 110–111

testing 120–125

see also accessing method

method definition 95

method lookup 102–103, 110–111

defined 191

method stub 143

method view 22

modal dialog box 170

defined 191

model 41, 106

application model 42, 131

designing 48

defined 191

domain model 42, 131

designing 47

developing 83–125

information model 40, 43, 131

subclass of Model class 106

value model 130, 131

mouse buttons xii

<Operate> button xiii

<Select> button xiii

<Window> button xiii

functions 7

one-button mouse xiii

three-button mouse xiii

two-button mouse xiii

using 8–11

mouse operations xiv

<Control>click xiv

<Meta>-click xiv

<Shift>-click xiv

click xiv

double-click xiv

mouse pointer, defined 192

moving selection to next widget 61

multiwindow application 44
VisualWorks Tutorial, Rev. 2.1

Index
mutator 92, 112

defined 192

MVC architecture, defined 192

N
names view 27

naming conventions 96

new 108, 110

nil 140

notational conventions x–xii

notebook 35

defined 204

O
object 2

defined 192

Object Behavior Analysis and Design (OBA/D)
methodology 46

object engine 2

defined 192

Online Documentation Browser 6, 31–34

online documentation, see VisualWorks
documentation

opening

application 70–72

blank canvas 53–54

defined 192

interface 70–72

OS/2 platforms 3, 12, 13, 14, 15

output formatting 62

P
painting

defined 192

multiple copies of widget 58

properties 79–81

widget 55
VisualWorks Tutorial, Rev. 2.1
Palette 54

defined 192

ParcPlace Smalltalk language 2

defined 192

ParcPlace Smalltalk system 2

defined 193

pattern view 27

pixels, spacing by 77

pointer, defined 193

positioning widgets 57

primary windows 44

printing

displaying a descriptive string 99

programming

action button 143–146

application model 127–181

data widget 151–154

graphical user interface 127–181

input field 137–142, 151–154, 172–179

list widget 158–163

menu bar 164–165

properties

action 144

applying changed 60

aspect 139

defined 193

displaying a widget’s 59

inspecting the defaults 61

painting 79–81

setting 59–63, 79–81

setting input field 62

setting window 63

Properties Tool 59–60

defined 193

protocol 21

creating 92

defined 193

protocol view 21

pseudovariable 89
213

Index
R
radio button, defined 204

receiver 18, 90

defined 193

region, defined 205

repeat-painting 58

repeat-selection button 58

resizing

canvas 55

widgets 57

window 12

resource 28

defined 193

Resource Finder 6, 29

defined 194

resource method, defined 194

retrieving information from disk files 26–28

return 90, 92

defined 194

return operator (^) 95

S
saving

image 13–15

viewing changes since last save 36

screen conventions xii

secondary windows 44

selecting

multiple widgets 74

text 10

widget 56

selection handle 56

selector 90

defined 194

self 102–103

setting

properties 59–63, 79–81

values of instance variables 97
214
Settings Tool 35

defined 194

single-selection button 55

sizing

canvas 55

widgets 75

slider, defined 205

Smalltalk programming language, see ParcPlace
Smalltalk language

Smalltalk, defined 194

snapshot 15

defined 194

sources file 14, 170

defined 194

spacing by pixels 77

special symbols x–xii

standard image 2, 3

defined 195

starting application 70–71

starting VisualWorks, see VisualWorks

starting working image, see working image

storing information in disk files 26

stream 100

string

concatenation message 100

constructing 100

streams 100

subcanvas, defined 205

subclass 24, 106

defined 195

subject 153

defined 195

subject channel 172, 177–178

defined 195

super 110–111

superclass 24, 106

defined 195

support, technical xvi

electronic bulletin boards xvii
VisualWorks Tutorial, Rev. 2.1

Index

4

electronic mail xvii

fax xvii

telephone xvii

World Wide Web xvii

symbol 114

defined 195

symbols used in documentation x–xii

syntax error 123–125

System Browser 6, 19–25

defined 195

opening 19

system classes, defined 195

system objects 2

System Transcript 4, 6, 122

defined 195

T
tab chain, defined 196

table 52

defined 205

technical support xvi

electonic mail xvii

electronic bulletin boards xvii

fax support xvii

telephone support xvii

World Wide Web xvii

telephone support xvii

template 87, 92

temporary variable 98

defined 196

testing

action button 147–150

domain models 120–125

input field 147–150, 155–157

methods 120–125

widgets 147–150

text cursor, defined 196

text editor, defined 206
VisualWorks Tutorial, Rev. 2.1
transcript message 122–123

typographic conventions x–xii

U
UI-based structure of VisualWorks application 4

unary message 90, 118

defined 196

UNIX platforms 3, 12, 13, 14, 15

user interface 40

defined 196

designing 47

see also graphical user interface

user-interface object 41

defined 196

V
value 88, 92

defined 196

value holder 138, 142

defined 196

value model 130, 131

defined 197

variable 19, 24, 85, 92

defined 197

global 122

initializing 108–111

limited access to 113

temporary 98

view 20

category 20

changes 36

class 20

code 20

contents 28

defined 197

method 22

names 27
215

Index
pattern 27

protocol 21

view holder, defined 206

VisualWorks

application building 39–48

layered structure 40–43

UI-based structure 44

approach to interface programming 127–131

collapsing a window 12

defined 1

exiting 15

features 1

interacting with 7–13

main window 4, 52

defined 197

menus 5

managing windows 11–13

saving an image 13–15

Smalltalk environment 2

starting 2

on Macintosh platforms 3

on OS/2 platforms 3

on UNIX platforms 3

on Windows platforms 3

Workspace 4, 6

VisualWorks documentation

online xv

browsing 30–34

Database Cookbookxv, 30

Database Quick Start Guidesxv, 30

International User’s Guidexv

VisualWorks Cookbookxv, 30, 33

printed

Cookbookxiv

Database Connect User’s Guidexv

Database Tools Tutorial and Cookbookxv

Installation Guidexiv

International User’s Guidexv

Object Referencexv
216
Release Notesxiv

User’s Guidexiv

W
warning dialog 145, 146

widget 41

action 129

aligning 76

as a dependent 150

copying and pasting 57

creating 72–74

data 129, 130

defined 198

deleting 58

displaying properties 59

equalizing sizes 75

grouping 77–78

inspecting default properties 61

list 158–163

moving selection to next 61

painting 55

painting multiple copies 58

positioning 57

programming 151–154

quick reference 199–206

refining arrangement 74–78

resizing 57

selecting and deselecting 56

selecting multiple 74

testing 147–150

types and positions 51

wildcard character 23, 27

window outline 9

window-management operations 11

windows

adjusting layout 78

collapsing 12

creating 53, 79–81
VisualWorks Tutorial, Rev. 2.1

Index
defined 198

designing 47, 51–52

inspecting the prototype 71

managing 11–13

painting and setting properties 79–81

previewing for another platform 82

primary 44

resizing 12

revising 72–79

secondary 44

setting properties 63

Workspace 4, 6

see also VisualWorks main window

Windows platforms 3, 12, 13, 14, 15, 16

working image 2

creating 13

customizing 35

defined 198

starting 17

Workspace 4, 6

closingwindows

closing 11

defined 198

resizing 12

sending messages 18

World Wide Web xvii
VisualWorks Tutorial, Rev. 2.1
 217

	Contents
	Chapter 1 Getting Started 1
	Chapter 2 The VisualWorks Environment 17
	Chapter 3 Introduction to VisualWorks Application Building 39
	Chapter 4 Creating a Graphical User Interface 51
	Chapter 5 Developing the Domain Models 83
	Chapter 6 Programming the Interface 127
	Appendix A Glossary 183
	Appendix B Widget Quick Reference 199

	About This Book
	Chapter 1�
	Chapter 2�
	Chapter 3�
	Introduction to VisualWorks Application Building
	Application Requirements
	VisualWorks Approach to Application Design
	Layered Structure
	Figure 3-1� Layers of the user interface and information model
	Domain Models
	Application Models
	Figure 3-2� Layers within the information model

	Why Layering?

	UI-Based Structure
	Why UI-Based Structure?
	Figure 3-3� Composing larger applications from smaller ones

	Building Blocks in the Framework
	Framework for Database Applications

	Designing the Sample Application
	Designing the User Interface
	Designing the Models
	Designing Domain Models
	Designing Application Models

	What’s Next: Constructing the Sample Application
	1. Specify the layout and contents of the main window and the dialog box (Chapter 4).
	2. Create and program the Checkbook and Check classes (Chapter 5).
	3. Program CheckbookInterface to connect the specified widgets to appropriate information and act...

	The VisualWorks Environment
	Starting Your Working Image
	Sending Messages to Smalltalk Objects
	1. Open a Workspace, if necessary.
	2. In the Workspace, type the following lines:
	Transcript cr.
	3. Select (highlight) these lines.
	4. Choose the do it command from the Workspace’s <Operate> menu.

	Browsing the Smalltalk Class Library
	Using a System Browser
	1. Open a System Browser by choosing BrowseﬁAll Classes in the VisualWorks main window.
	Figure 2-1� A newly opened System Browser

	2. Scroll through the list of categories in the category view:
	3. Select the first category in the list (Magnitude-General) to see which classes belong to it. (...
	Figure 2-2� A System Browser with a category selected

	4. In the class view, select the Date class to see its instance variables and methods. Instances ...
	Figure 2-3� A System Browser with a class selected

	5. In the protocol view, select the protocol accessing to see the instance methods it contains:
	Figure 2-4� A System Browser with a protocol selected

	6. In the method view, select the instance method weekday. Its definition appears in the code vie...
	Figure 2-5� A System Browser with a method selected

	1. In a Workspace, type the following message expression:
	2. Select this expression and choose print it from the Workspace’s <Operate> menu. This evaluates...

	Finding a Class by Name
	1. Put the pointer in the category view and choose find class... from the <Operate> menu.
	2. Type Point in the input field of the dialog box and click OK. The System Browser displays the ...

	Adding a Category
	1. Click the Graphics-Geometry category to deselect it, if necessary.
	2. Choose add... from the category view’s <Operate> menu.
	3. Type Examples-VWTutorial in the input field of the dialog box and click OK. The category view ...

	Browsing the Class Hierarchy
	Using a Hierarchy Browser
	1. Choose BrowseﬁClass Named... in the VisualWorks main window.
	2. Type Number in the input field of the dialog box. This displays a Hierarchy Browser on the Num...
	3. Resize the Hierarchy Browser window as shown in Figure�2-6 so that you can read the contents o...
	Figure 2-6� A Hierarchy Browser on the Number class

	4. Scroll up the class view to see all of Number’s superclasses, their superclasses, and so on up...
	5. Scroll down the class view to see all of Number’s subclasses, their subclasses, and so on. You...
	6. Close the Hierarchy Browser.

	Storing and Retrieving Information in Files
	Writing to Disk Files
	1. Select a class in the System Browser or the Hierarchy Browser.
	2. Choose file out as... from the class view’s <Operate> menu. A dialog box displays the default ...
	3. If desired, enter a different name; then click OK.
	4. Use your platform’s file-management facilities to verify that the file was created in the curr...

	Retrieving Information from Disk Files
	1. Choose ToolsﬁFile List in the VisualWorks main window.
	Figure 2-7� An empty File List

	2. In the pattern view at the top of the File List, type a pathname pattern that matches the cont...
	3. Press <Return>. The names view lists the files and directories that match the name in the patt...
	4. In the names view, select the pathname for the basic directory. The contents view displays the...
	5. With the pointer in the names view, choose new pattern from the <Operate> menu. This changes t...
	6. In the names view, select the pathname for calc.st. The contents view displays the source code...
	7. With the pointer in the names view, choose file in from the <Operate> menu. This reads in the ...
	8. Close the File List.
	9. Verify that the file-in was successful:
	a. In a System Browser, scroll to the bottom of the category view to locate the category UIExampl...
	b. Select the UIExamples-General category. Notice that it contains two classes, Calculator and Ca...

	Running an Application
	1. Choose BrowseﬁResources from the VisualWorks main window.
	Figure 2-8� A newly opened Resource Finder

	2. Locate the CalculatorExample class in the class view.
	3. Select the class CalculatorExample. This lists its resource (windowSpec) in the resource view:
	Figure 2-9� A Resource Finder with a class selected

	4. Click the Resource Finder’s Start button. This starts the application. Try out the calculator;...
	5. Exit the Resource Finder by closing its window or by selecting Exit from its View menu.

	Browsing Online Documentation
	1. Choose HelpﬁOpen Online Documentation from the VisualWorks main window.
	Figure 2-10� A newly opened Online Documentation Browser

	2. In the Online Documentation Browser, select Book: VisualWorks Cookbook. This lists the Cookboo...
	Figure 2-11� Browsing the VisualWorks Cookbook chapters

	3. Select Chapter 1: Smalltalk Basics. This lists the chapter’s topics.
	4. Select the topic Constructing a message. Cookbook topics normally contain the following sections:
	5. Read the first two sections of Constructing a message. The basic steps give directions for con...
	6. Click the Examples button in the Online Documentation Browser. This brings up an Examples wind...
	Figure 2-12� An Examples window for online documentation

	7. Notice that the comment in the Examples window says "Print it". This means you can click the P...
	8. Display the next example for this topic by clicking the right arrow at the top of the Examples...
	9. Close the Examples window (but leave the Online Documentation Browser open). In the resulting ...
	Exploring the Cookbook’s Sample Applications
	1. In the Online Documentation Browser, click the Back To: button several times to return to the ...
	2. Select Chapter 17: Notebooks and then select the topic Adding a notebook.
	3. Scroll to the BASIC STEPS section and notice the line:
	4. Choose FileﬁBrowse Example Class in the Online Documentation Browser. This displays a list of ...
	5. Locate and select Notebook1Example in this list; then click OK.
	6. In the resulting notifier, click the File It In button to request that Notebook1Example be fil...
	7. Position the window outline and click to display the Hierarchy Browser on the Notebook1Example...
	8. Run the sample application by opening a Resource Finder (see page�28), selecting Notebook1Exam...
	9. Close the Notebook1Example window, the Resource Finder, the Hierarchy Browser, and the Online ...

	Customizing Your Working Image
	1. Choose FileﬁSettings from the VisualWorks main window. As shown in Figure�2-13, the Settings T...
	Figure 2-13� Settings Tool

	2. Click on the tab labeled UI Look. The settings on this page control the look of VisualWorks wi...
	3. Click the Help button on the UI Look page and read the description. Notice that the default lo...
	4. Choose a different look selection (but leave Basic Tools Adopt Look selected):
	5. Click Accept. Notice the effect on any open windows such as the VisualWorks main window.
	6. Change the look back to Auto Select and click Accept.
	7. Close the Settings Tool.

	Viewing Changes Since the Last Save
	1. Choose ChangesﬁOpen Change List from the VisualWorks main window. This opens an empty Change L...
	2. Put the pointer in the changes view in the upper-left corner of the Change List and choose fil...
	Figure 2-14� Change List

	3. Close the Change List.

	What’s Next: Creating Applications

	Getting Started
	What Is VisualWorks?
	VisualWorks as a Smalltalk Environment

	Starting VisualWorks
	Macintosh Platforms
	1. Open the image folder in the VisualWorks installation folder (typically called Visual).
	2. Double-click the visual.im document.

	OS/2 Platforms
	UNIX Platforms
	1. Verify that your window manager is operating.
	2. Enter a command of the following form at the UNIX prompt:

	Windows Platforms

	A First Look at VisualWorks
	Figure 1-1� The windows displayed in the standard image
	VisualWorks Main Window
	Figure 1-2� The VisualWorks main window
	Main-Window Menus
	Main-Window Tool Bar
	System Transcript

	Workspace Window

	Interacting with VisualWorks
	Mouse-Button Functions
	Getting Some Practice
	1. Move the mouse until the pointer is over some text in the Workspace window. (The Workspace sho...
	2. Click the <Select> button. This moves the text cursor to the position indicated by the pointer...
	3. Type some characters. They are inserted to the left of the text cursor.
	4. Undo your typing by choosing the undo command from the Workspace’s <Operate> menu:
	Figure 1-3� The undo command on the <Operate> menu

	5. Open an additional Workspace by choosing ToolsﬁWorkspace from the VisualWorks main window:
	Figure 1-4� TheWorkspace command on theTools menu
	Figure 1-5� Window outline

	6. Move the mouse pointer to position the window outline and click to display the Workspace.
	Figure 1-6� A new Workspace

	7. Open a third Workspace, resizing it as you open it:
	a. Click the Workspace button in the tool bar of the VisualWorks main window.
	b. Position the window outline as before.
	c. Press and hold the <Select> button. The mouse pointer appears at the lower-right corner of the...
	d. Move the mouse pointer to resize the outline as desired.
	e. Release the <Select> button.
	8. Select some text in the first Workspace, which should still contain the copyright statement:
	9. With some text selected, choose copy from the <Operate> menu. This copies the text to your pla...
	10. Move the pointer to another Workspace and choose paste from the <Operate> menu. This inserts ...
	11. With the pasted text still selected, choose cut from the <Operate> menu. This deletes the tex...
	12. In a Workspace that contains text:
	a. Choose accept from the <Operate> menu. This causes VisualWorks to remember the current content...
	b. Make some changes (add, delete, or copy any text).
	c. Choose cancel from the <Operate> menu. This causes the window to revert to its accepted state.
	13. Practice finding and replacing text (use find and replace on the <Operate> menu).
	14. If your platform is set up with a default printer, print the contents of a Workspace by choos...

	Managing VisualWorks Windows
	1. Close one of the Workspaces by choosing the close command from the <Window> menu:
	Figure 1-7� The close command on the <Window> menu

	2. Resize a Workspace window:
	a. Choose resize from the <Window> menu. A window outline is displayed.
	b. Move the pointer to resize the outline as desired and then click. The window is displayed in t...
	3. Collapse a VisualWorks window by choosing collapse from the <Window> menu. Collapsing a window...
	4. Restore the collapsed window to its original size using your platform’s window-management oper...

	Saving Your VisualWorks Image
	Creating Your Own Working Image
	1. Choose FileﬁSave As... in the VisualWorks main window. A dialog box prompts you with the name ...
	2. In the dialog box, edit (or replace) the current name to specify the filename for the new imag...
	3. Click OK. As a result:
	4. If you created the new image in the same location as standard image, skip to “Taking Snapshots...
	If You Created an Image in a New Location
	1. Choose FileﬁSettings in the VisualWorks main window. This displays the Settings Tool, which yo...
	2. Edit the Sources: field to specify the fully qualified name of the installed sources file, typ...
	3. Click the Accept button.
	4. Click the Help tab (not the Help button). It is located to the right, between tabs labeled Win...
	5. In the Documentation Directory: field, specify the fully qualified name of the installed onlin...
	6. Click the Accept button and close the Settings Tool.

	Taking Snapshots
	1. Choose FileﬁSave As... in the VisualWorks main window. A dialog box prompts you with the name ...
	2. Click OK. The System Transcript reports the save.

	Exiting VisualWorks
	1. Choose FileﬁExit VisualWorks... from the VisualWorks main window. The following dialog box app...
	2. Because you have already saved your image, click Exit.
	What’s Next: The VisualWorks Environment

	Audience
	Organization
	Conventions
	Typographic Conventions
	Special Symbols
	Screen Conventions
	Mouse Buttons
	The mouse buttons perform the following interactions:
	Three-Button Mouse
	Two-Button Mouse
	One-Button Mouse

	Mouse Operations

	Additional Sources of Information
	Printed Documentation
	Online Documentation

	Obtaining Technical Support
	Before Contacting Technical Support
	When you need to contact a technical support representative, please be prepared to provide the fo...

	How to Contact Technical Support
	Parc�Place-Digi�talk Technical Support provides assistance by:
	Electronic Mail
	Electronic Bulletin Boards
	Information is available at any time through the electronic bulletin board CompuServe. If you hav...

	World Wide Web
	1. In your Web browser, open this location (URL):
	2. Click the link labeled “Tech Support.”

	Telephone and Fax
	Within North America, you can:

	Chapter 4�
	Creating a Graphical User Interface
	Designing the Checkbook Main Window
	Figure 4-1� The Checkbook application’s main window
	Design Alternatives

	Creating the Main Window
	1. Opening a blank canvas
	2. Painting the canvas with widgets chosen from a Palette
	3. Setting properties for each widget and applying them to the canvas
	4. Editing the contents of any menus on the canvas
	5. Installing the canvas in an application model
	Opening a Blank Canvas
	1. Start VisualWorks, if necessary.
	2. Choose ToolsﬁNew Canvas from the VisualWorks main window.
	3. Use the mouse pointer to position the rectangular window outline on the screen, and then click...
	Figure 4-2� A blank canvas, its Palette, and its Canvas Tool

	Painting the Canvas
	Sizing the Canvas
	1. Use your window manager to enlarge the canvas window (use Figure�4-1 as guide).
	2. Choose LayoutﬁWindowﬁPreferred Size from the Canvas Tool.

	Painting a Widget
	1. Verify that the single-selection button on the Palette is active (it has a heavy, dark outline...
	2. Select the list widget on the Palette. The indicator field at the bottom of the Palette displa...
	3. Paint the list by moving the mouse pointer to the canvas and clicking the <Select> button. Fig...
	Figure 4-3� The canvas with a list widget painted on it

	Selecting and Deselecting a Widget
	1. To deselect the list, either:
	2. To reselect the list, click the <Select> button anywhere inside the list or on its borders.

	Positioning a Widget
	1. Select the list, if necessary, and position the mouse pointer within the selection handles.
	2. Press and hold down the <Select> button; then move the pointer. The list moves, too.
	3. Drag the list to the desired position (use Figure�4-1 as guide), and then release the <Select>...

	Resizing a Widget
	1. Select the list, if necessary.
	2. Position the mouse pointer over one of the selection handles.
	3. Press and hold down the <Select> button; then move the pointer. The corner of the list moves, ...
	4. Drag the corner until the list is the desired shape (use Figure�4-1 as guide), and then releas...

	Copying and Pasting a Widget
	1. Select the input field widget from the Palette and paint it on the canvas below the list.
	2. With the field still selected, select editﬁcopy from the <Operate> menu.
	3. Select editﬁpaste from the <Operate> menu. This makes a second copy of the field directly on t...
	4. Drag the copy to the appropriate location.

	Painting Multiple Copies of a Widget
	1. Click the repeat-selection button on the palette (see Figure�4-4).
	2. Select the label widget from the Palette.
	3. Click on the canvas where each label is to appear (above the list and to the left of each inpu...
	4. Turn off repeat-painting by clicking the single-selection button.
	Figure 4-4� The canvas with a list, two fields, and three labels

	Deleting a Widget
	1. Select the widget to be deleted.
	2. Select editﬁcut from the <Operate> menu. This saves the widget to the canvas clipboard so you ...

	Setting Properties
	Displaying a Widget’s Properties
	1. Select the widget in the canvas. In this case, select the label above the list.
	2. Click the Properties button on the Canvas Tool.
	Figure 4-5� The Properties Tool, showing basic properties for a label

	Applying a Changed Property
	1. Verify that the label above the list is still selected and that the Basics page is displayed i...
	2. In the Properties Tool, enter Check Register as the value of the Label: property.
	3. Click Apply. The new label text appears on the canvas.

	Moving the Selection to the Next Widget
	1. Verify that the Check Register label is still selected in the canvas.
	2. Click Next on the Properties Tool to move the selection to the next label (in the lower-left c...
	3. Change the Label property for the selected label by entering Amount to Deposit: and clicking A...
	4. Click Next to move the selection to the last label.
	5. Change the Label property for the selected label by entering Balance: and clicking Apply.

	Inspecting the List Properties
	1. Move the selection to the list widget. This causes the Properties Tool to display the list’s p...
	2. Click the tab for the Details page. Verify that the following properties are selected:

	Setting the Input Field Properties
	1. Display the field’s properties by selecting it in the canvas.
	2. Select the nondefault property settings shown in the following table. (Look for the properties...
	3. Apply each page of changed settings before going on to the next page (or to the next widget).

	Setting the Window Properties
	1. Deselect all the widgets in the canvas. You can either:
	2. Set the window title by entering Checkbook for the Label property.
	3. Create an empty menu bar by selecting Enable and entering menuBar for the Menu property. (The ...
	4. Apply these settings. The title of the canvas changes from Unlabeled Canvas to Checkbook, and ...
	5. If the empty menu bar displaces any other widgets, resize the canvas or reposition the other w...
	Figure 4-6� The Checkbook canvas with a menu bar

	Installing the Canvas
	1. Click Install... in the Canvas Tool. This brings up a dialog box for specifying the applicatio...
	2. In the INSTALL on Class: field of the dialog box, enter CheckbookInterface. (This is the name ...
	3. Verify that the enter new Selector: field at the bottom of the dialog box contains the method ...
	Figure 4-7� Installing the canvas

	4. When the dialog box looks like Figure�4-7, click OK.
	5. In the CREATE New Class dialog box:
	a. Leave the Name: field as is (it should contain the name CheckbookInterface).
	b. Enter Examples-VWTutorial in the Category field to specify the category that is to contain the...
	c. Click the Application radio button to specify the type of application model you want the new c...
	d. When the CREATE New Class dialog box looks like Figure�4-8, click OK.
	Figure 4-8� Creating the CheckbookInterface application model

	6. Click OK again in the INSTALL on Class dialog.
	7. Save your image to preserve the newly created application model.
	Finding an Installed Canvas
	1. Close the window containing the canvas. The Palette and Canvas Tool close automatically.
	2. Open the Resource Finder—for example, by clicking its icon in the VisualWorks main window.
	3. In the Resource Finder, locate and select the CheckbookInterface class. Notice that windowSpec...
	Figure 4-9� The Resource Finder with CheckbookInterface selected

	4. With windowSpec selected, click Edit in the Resource Finder. This brings up the canvas whose i...

	Editing a Menu Bar
	1. Bring up the canvas for the Checkbook main window, if necessary, and verify that you have comp...
	2. In the Canvas Tool, choose ToolsﬁMenu Editor to open the Menu Editor for this canvas.
	3. In the text area of the Menu Editor, type the menu titles (File and Checks) on separate lines.
	4. Using Figure�4-10 as a guide, type a one-line entry for each menu item under the relevant menu...
	Figure 4-10� The Menu Editor with the menu bar contents

	5. Click Build to generate code for building a menu object. A test version of the menu bar you ju...
	6. Click on each menu title in the Menu Editor’s test bar to verify that the menus contain the ri...
	7. Click Apply to apply the tested menu bar to the canvas.
	Figure 4-11� Installing the menu bar

	8. Click OK to install the menu code. After the code is installed, the menus appear on the canvas.
	9. Click Install... on the Canvas Tool to reinstall the canvas (you changed the canvas when you a...
	10. Notice that the Resource Finder now lists two resources for CheckbookInterface:
	11. Close the Menu Editor and save your image!

	Opening the Interface
	1. Select CheckbookInterface in the Resource Finder.
	2. Click Start.
	Figure 4-12� The Checkbook main window

	Behind the Scenes
	1. The Canvas Tool (or Resource Finder) sends an open message to the CheckbookInterface class.
	2. The CheckbookInterface class understands this message (because it is an application model) and...
	3. This instance, in turn, creates a builder, which is an instance of a class in the VisualWorks ...
	4. The application model’s builder proceeds to build an operating window from the interface speci...
	a. Identifies an appropriate widget class in the VisualWorks framework
	b. Creates an instance of the identified class

	Inspecting the Prototype Window
	1. Select a menu item from the menu bar. Notice that when you click and drag on the menu title, t...
	2. Now click in the Amount to Deposit: field, type a number, and press <Return>. The input field ...
	3. Try entering input in the Balance: field. The field prevents you from doing this because you s...
	4. Shrink and then enlarge the Checkbook main window. Notice that shrinking the window obscures s...
	5. Close the running application (you’ll have to use a window-management operation to close it be...

	Revising the Main Window
	Adding More Widgets
	1. Open the canvas for the Checkbook main window by selecting both the CheckbookInterface class a...
	2. If necessary, enlarge the canvas window vertically to make room for the new action button belo...
	3. Select an action button from the Palette and place it below the deposit field.
	4. With the action button selected, open the Properties Tool and apply the following property set...
	5. Enlarge the action button to accommodate its new label.
	6. Enclose the three related widgets (the Amount to Deposit: label, the input field, and the acti...
	a. Select a group box from the Palette.
	b. Position the box’s upper-left corner on the canvas.
	c. Press and hold the <Select> mouse button. The pointer moves to the lower-right corner of the box.
	d. Drag the lower-right corner until the box fits around the desired widgets.
	7. When the canvas looks something like Figure�4-13, install it in the windowSpec method.
	Figure 4-13� After adding an action button and a group box

	8. Start the Checkbook application. Notice the Deposit action button’s visual response when you c...

	Refining Widget Arrangement
	Selecting Multiple Widgets
	1. Click in the first widget to be selected. Its selection handles are solid squares.
	2. <Shift>-click in each additional widget. Its selection handles are hollow.
	1. Put the mouse pointer on the canvas near one of the widgets.
	2. While pressing the <Select> mouse button, drag the selection border around the desired widgets.
	3. Release the mouse button; selection handles appear around each selected widget.

	Equalizing Widget Sizes
	Figure 4-14� The Equalize buttons on the Canvas Tool
	1. Select one of the fields and drag a selection handle until the field is the desired size.
	2. <Shift>-click to select the second field.
	3. In the tool bar of the Canvas Tool, click the Equalize Height button (see Figure�4-14). The se...
	4. Leaving the widgets selected, click the Equalize Width button. The second field is resized to ...

	Aligning Widgets
	Figure 4-15� The Alignment buttons on the Canvas Tool
	Align the left edges of the list and the Check Register label:
	1. Select the list. This should automatically deselect the two input fields.
	2. <Shift>-click to select the Check Register label.
	3. Click the Left Align button (see Figure�4-15). The label is moved into alignment with the list.
	1. Select the input field for deposits.
	2. <Shift>-click to select the Amount to Deposit: label.
	3. Click the Horizontal Center button (see Figure�4-15). The label is centered relative to the fi...
	4. Repeat steps 1–3 for the Balance: label and its field.
	1. Make sure that the Deposit button is the desired size.
	2. Select the input field for deposits.
	3. <Shift>-click to select the Deposit button.
	4. Click the Vertical Center button (see Figure�4-15). The button is centered relative to the field.

	Spacing by Pixels
	Grouping Widgets
	1. Select the Amount to Deposit: label and the deposits field (order of selection doesn’t matter).
	2. Choose ArrangeﬁGroup in the Canvas Tool. Notice that a single set of selection handles surroun...
	3. Repeat steps 1 and 2 for the Balance: label and its field.
	4. <Shift>-click to select the first group you created.
	5. With both groups selected, click the Top Align button on the Canvas Tool.
	1. Select just the group that contains the Amount to Deposit: label and its field.
	2. <Shift>-click the Deposit action button.
	3. Choose ArrangeﬁGroup again to include the action button in the group.
	4. <Shift>-click on the group box widget surrounding the group.
	5. Click the Horizontal Center and Vertical Center alignment buttons.
	6. Choose ArrangeﬁGroup again to include the group box in the group.
	1. Left-align the deposits group with the list.
	2. Right-align the balance group with the list.
	3. Reinstall the canvas in the windowSpec method.
	Figure 4-16� After fine-tuning the widget arrangement

	Adjusting Window Layout
	a. Select all of the widgets in the canvas.
	b. Choose LayoutﬁRelative from the Canvas Tool.

	Creating the Check Window
	Painting and Setting Properties
	1. Open a new, empty canvas. (If necessary, close the canvas for the Checkbook main window to mak...
	2. Using Figure�4-17 as a guide, select, position, and size the widgets on the canvas. Resize the...
	Figure 4-17� The widgets in the Check dialog window

	3. Apply the nondefault property settings that are listed in the following table. (Look on the Ba...
	4. Align widgets as necessary.
	5. Adjust the window size and make the Check window a fixed size.
	6. Install the Check canvas in a new method called dialogSpec in the CheckbookInterface class:
	a. Click Install... in the Canvas Tool.
	b. In the INSTALL on Class: field of the dialog box, type CheckbookInterface
	c. In the enter new Selector: field, delete the default value and replace it with dialogSpec (if ...
	d. Click OK.
	7. Save your image.

	Previewing a Window for Another Platform
	1. Display the canvas you want to preview.
	2. From the Look menu on the Canvas Tool, choose the item that corresponds to the desired platform.

	What’s Next: Programming in Smalltalk

	Chapter 5�
	Developing the Domain Models
	What You Should Read
	If You Are New to Smalltalk
	If You Already Know Smalltalk
	1. In a File List, enter a pattern such as the following, where install- dir stands for the Visua...
	2. Select chkbk.st in the names view and choose file in from the <Operate> menu in that view.
	3. In a System Browser, select the category Examples-VWTutorial. If necessary, choose update from...
	4. Prepare the filed-in classes for use in Chapter 6:
	a. Select T_CheckbookInterface in the class view and choose remove... from the <Operate> menu to ...
	b. Rename T_Check to Check by selecting T_Check and choosing rename as... in the class view’s <Op...
	c. In the dialog box, specify Check and click OK. A second dialog box informs you that existing m...
	d. Click Rename in the second dialog box. A browser is displayed, highlighting the old name in th...
	e. In the browser, change the old name to the new name and choose accept from the <Operate> menu.
	f. Repeat steps a–e to rename T_Checkbook to Checkbook.

	5. Save your image.

	Creating the Check Class
	1. Locating the category for the Checkbook application’s classes.
	2. Defining the data structure (the class definition and instance variables) for the Check class.
	3. Documenting the Check class with a class comment.
	4. Defining methods that:

	Locating the Application’s Category
	1. Open a System Browser.
	2. Scroll the category view until you find Examples-VWTutorial. It should be near the end of the ...
	3. Select Examples-VWTutorial in the category view. CheckbookInterface appears in the class view,...
	Figure 5-1� System Browser for Examples-VWTutorial category

	Defining the Data Structure for the Check Class
	1. Leave Examples-VWTutorial selected in the category view, and, if necessary, deselect Checkbook...
	2. Leave the instance switch selected below the class view, because you are defining the data str...
	3. In the code view, edit the class definition template as follows:
	a. Replace NameOfSuperClass with Object.
	b. Replace #NameOfClass with #Check. Leave the pound sign (#), with no space between it and the c...
	c. Replace 'instVarName1 instVarName2' with the following list of instance variable names: 'numbe...
	d. Delete ClassVarName1 ClassVarName2, leaving the empty quotes.

	4. When the code view appears as in Figure�5-2, choose accept from the code view’s <Operate> menu...
	Figure 5-2� The Check class definition

	Analysis:� The Check Class Definition

	Creating a Check Instance
	1. Open a Workspace.
	2. In the Workspace, type the following message expression:
	3. Select the expression and choose inspect from the <Operate> menu. This opens an Inspector on t...
	Figure 5-3� Inspecting a Check instance

	4. Select self. The phrase a Check is displayed as its value.
	5. Select any of the listed instance variables to display its value. Because none of the variable...
	6. Close the Inspector.
	Analysis:� Message Expressions
	Analysis:� Messages for Creating Instances

	Documenting the Check Class
	1. Select Check in the class view, if necessary, and leave the instance switch selected.
	2. Choose comment from the class view’s <Operate> menu. The code view displays a default placehol...
	3. Replace the default comment with a comment such as the following:
	The Check class is a container for the information that makes up a check. It has messages for acc...
	4. Choose accept from the code view’s <Operate> menu to incorporate the comment into the class.
	5. Choose definition from the class view’s <Operate> menu to redisplay the class definition in th...

	Analysis:� The Check Class Comment

	Providing for Access to Check Data
	1. Select Check in the class view, if necessary, and leave the instance switch selected, because ...
	2. Create a new protocol:
	a. Choose add... in the protocol view.
	b. In the dialog box, enter the name accessing and click OK.

	3. Select the entire method template and replace it with the definition of the accessor method am...
	amount
	4. Choose accept from the code view’s <Operate> menu. The name of the new method appears in the m...
	Figure 5-4� The Check Class with the amount method

	5. Edit the text in the code view to define the mutator method amount:. Editing this text does no...

	amount: aValue
	6. Choose accept from the code view’s <Operate> menu.
	7. Edit the code view and choose accept for each of the accessor methods shown below. You can cre...

	date
	number
	payee
	8. Edit the code view and choose accept for each of the mutator methods shown below. You can crea...

	date: aValue
	number: aValue
	payee: aValue
	Figure 5-5� The Check class with complete accessing protocol

	Analysis:� Message Protocol
	Analysis:� Method Definitions
	amount
	amount: aValue

	Analysis:� Naming Conventions
	Analysis:� Method Compilation

	Setting Check Information
	1. In a Workspace, type the following message expression:
	2. Select the expression and choose inspect from the <Operate> menu.
	3. In the Inspector, select the date variable. Notice that its value is no longer nil but display...
	4. Close the Inspector.
	5. Replace the expression you typed in step 1 with the following sequence of expressions:
	| aCheck |
	6. Select all of these expressions and choose inspect. Now all of the instance variable have non-...
	7. Close the Inspector, but keep the Workspace.

	Analysis:� More about Message Expressions
	| aCheck |

	Providing for Character-Based Display
	1. Select Check in the class view, if necessary, and leave the instance switch selected, because ...
	2. Add a new protocol called printing.
	3. Replace the method template with the following code. Enter the single quotes and commas exactl...
	printOn: aStream
	4. Choose accept from the code view’s <Operate> menu.
	5. You have completed the Check class! (Save your image.)

	Analysis:� Constructing a String
	Analysis:� Streams

	Displaying a Check Instance’s Description
	1. Select the code that you typed in the Workspace on page�97:
	| aCheck |
	2. Choose inspect from the Workspace’s <Operate> menu.
	3. In the Inspector, select self. The object description now looks something like this (you may n...
	4. Close the Inspector.
	5. With the the code still selected, choose print it from the Workspace’s <Operate> menu. This pr...
	6. Delete the highlighted string.
	7. Now add another line of code in the Workspace to send the description to the System Transcript...

	| aCheck |
	8. Select the code and choose do it from the Workspace’s <Operate> menu. The object description i...

	Analysis:� The do it, print it, and inspect Commands
	Analysis:� Method Lookup
	1. Searches the methods in the Check class for a method whose pattern matches printString. No suc...
	2. Searches the methods in Check’s superclass, which is Object. It finds the printString method t...
	1. Evaluates self, which stands for the receiver that initiated the lookup for the currently exec...
	2. Sends the message printOn: to aCheck. This causes the method finder to search the methods in t...

	Creating the Checkbook Class
	1. Defining the data structure (the class definition and instance variables) for the Checkbook class
	2. Defining methods that:

	Defining and Documenting the Checkbook Class
	1. Select the Examples-VWTutorial class category in the System Browser, making sure the instance ...
	2. Edit the contents of the code view so that it contains the class definition shown below:
	Model subclass: #Checkbook
	3. Choose accept from the code view’s <Operate> menu to compile the class definition. The new cla...
	4. Document the class by choosing comment from the class view’s <Operate> menu and replacing the ...

	Instances of the class Checkbook contain a register of written checks and a balance; they also as...
	5. Choose accept from the code view’s <Operate> menu.
	6. Choose definition from the class view’s <Operate> menu to redisplay the class definition.

	Analysis:� Subclasses of Model

	Creating a Checkbook Instance
	1. In a Workspace, type the following message expression:
	2. Select the expression and choose inspect from the <Operate> menu. The Inspector lists the chec...
	Figure 5-6� Inspecting a Checkbook instance

	3. Notice that this list includes the variable dependents. This variable is part of the dependenc...
	4. Select any of the listed instance variables to display its value. Because none of the variable...
	5. Close the Inspector.

	Providing for Checkbook Initialization
	1. Select Checkbook in the class view of the System Browser, if necessary.
	2. Select the class switch so you can define a class method—a method that provides behavior for t...
	3. Add a protocol named instance creation (choose add... in the protocol view).
	4. Replace the method template in the code view with the following method definition and choose a...
	new
	5. Select the instance switch so that you can define an instance method.
	6. Add a protocol named initialize-release.
	7. In the code view, enter the following method definition and choose accept:

	initialize
	Analysis:� Initial Data Types
	Analysis:� Class and Instance Methods

	Creating an Initialized Checkbook Instance
	1. In a Workspace, type the following message expression:
	2. Select the expression and choose inspect from the <Operate> menu.
	3. Select each of the listed instance variables to verify that they have the correct initial values.
	4. Close the Inspector.
	Analysis:� More about Method Lookup
	1. Evaluates super new. As explained below, this creates a new Checkbook instance using the origi...
	2. Sends initialize to the result of the previous step.
	3. Returns the resulting initialized Checkbook instance.
	1. Evaluates super to be the Checkbook class (the receiver of the message that invoked the curren...
	2. Sends new to Checkbook, thereby initiating a method lookup. Because super was used, this looku...

	Providing for Access to Checkbook Data
	1. Select Checkbook in the class view of the System Browser, if necessary, and leave the instance...
	2. Add a protocol named accessing (choose add... in the protocol view).
	3. Edit the code view and choose accept for each of the accessor methods shown below:
	balance
	register
	4. Edit the code view and choose accept for the mutator method shown below:

	balance: anAmount
	Analysis:� Limited Access to Variables
	Analysis:� Change Notification
	1. A new Checkbook instance is created (and initialized).
	2. The balance: method:
	3. The new Checkbook instance finds the changed: method and executes it.
	4. The changed: method causes the Checkbook instance to send an update: message to any objects li...

	Providing for Checkbook Transactions
	1. Select Checkbook in the class view of the System Browser, if necessary, and leave the instance...
	2. Add a protocol named transactions (choose add... in the protocol view).
	3. Edit the code view and choose accept for the deposit: method shown below:
	deposit: anAmount
	a. Obtains the checkbook’s current balance
	b. Adds the specified amount to it
	c. Sets the result to be the new balance
	4. Edit the code view and choose accept for the makeNewCheck: method shown below:

	makeNewCheck
	a. Create a temporary variable and assign a new Check instance to it.
	b. Initialize the Check instance by sending it cascaded messages from Check’s protocol. Notice th...
	c. Return the resulting Check instance.
	5. Edit the code view and choose accept for the recordCheck: method shown below:

	recordCheck: aCheck
	a. Add the specified check to the end of the ordered collection held in the register variable. Th...
	b. Subtract the written check’s amount from the current balance.
	c. Calculate the sequence number that will be assigned by makeNewCheck to the next check it creates.
	6. Edit the code view and choose accept for the cancelCheck: method shown below:

	cancelCheck: aCheck
	a. Remove the specified check from the ordered collection.
	b. Add the amount of the canceled check back into the balance.
	7. You have completed the Checkbook class! (Save your image.)

	Analysis:� More about Complex Expressions
	1. The unary expression self balance is evaluated, returning the Checkbook instance’s current bal...
	2. The binary expression containing + is evaluated. Its receiver is the current balance returned ...
	3. The keyword expression containing balance: is evaluated. Its receiver is self (the Checkbook i...

	Analysis:� Alternative Implementation

	Testing the Checkbook Transactions
	1. For convenience, open a new Workspace and enlarge the VisualWorks main window.
	2. Test the checkbook’s ability to deposit into the account by entering the following code in the...
	| b c1 c2 |
	3. Select the code you entered and choose do it from the <Operate> menu.
	4. Click proceed in the dialog box for c2 and again in the dialog box for c1.
	5. Look at the System Transcript in the VisualWorks main window. It should contain these lines:

	Balance after 1st deposit: 100
	6. Click on the code in the Workspace to deselect it.
	7. Test the checkbook’s ability to make and record checks by adding the following lines to the Wo...

	c1 := b makeNewCheck.
	8. Select all the code in the Workspace (that is, all the code you entered in steps 2 and 7) and ...
	9. Look at the System Transcript. The output should now include additional lines like the following:

	First check: #1, 15 August 1994: $70 to Fred
	10. Click on the code in the Workspace to deselect it.
	11. Test the checkbook’s ability to cancel checks by adding the following lines to the Workspace ...

	b cancelCheck: c1.
	12. Select all the code in the Workspace (that is, all the code you entered in steps 2, 7, and 11...
	13. Look at the System Transcript. The output should now include additional lines like the follow...

	Balance after canceling 1st check: 130
	Analysis:� Transcript Messages
	Analysis:� Syntax Errors
	What’s Next: Programming the Interface

	Chapter 6�
	Programming the Interface
	VisualWorks Approach to Interface Programming
	Specifying Basic Appearance and Behavior
	Programming Application-Specific Behavior
	Action Widgets
	Data Widgets
	More about Value Models

	Another Look at Application Structure
	Figure 6-1� Value-model layer within the information model

	Programming the Application Model
	1. Set up your environment with the relevant tools.
	2. Browse CheckbookInterface to get acquainted with what is already there.
	3. Provide the application model with a Checkbook instance.
	4. Program the Amount to Deposit: field, the Deposit button, the Balance: field, and the Check Re...
	5. Program the main window’s menu bar.
	6. Provide a method for writing a new check through the Check dialog box.
	7. Program the fields in the Check dialog box.
	8. Provide a method for check canceling.
	Setting Up Your Work
	1. Arrange your screen so that it contains:
	2. Close any other windows you may have accumulated, such as the workspaces and inspectors you us...
	A Few Reminders

	Browsing the Application Model
	1. Select Examples-VWTutorial in the category view of the System Browser.
	2. Select CheckbookInterface in the System Browser’s class view.
	3. With the instance switch selected, examine the class definition. Notice that CheckbookInterface:
	4. Select the class switch. Notice that CheckbookInterface has two class method protocols:

	Providing the Checkbook Behind the Interface
	1. Display the class definition for CheckbookInterface in the System Browser (make sure Checkbook...
	2. Edit the contents of the code view to add an instance variable called checkbook as shown:
	ApplicationModel subclass: #CheckbookInterface
	3. Choose accept from the code view’s <Operate> menu.
	4. Add a protocol named initialize-release.
	5. In the code view, enter the following method definition and choose accept:

	initialize
	Analysis:� Initializing an Application Model
	1. The inherited new method creates an instance of CheckbookInterface and sends it an initialize ...
	2. The initialize method defined in CheckbookInterface sends the message new to Checkbook.
	3. The new method defined for Checkbook creates an instance of Checkbook and sends it an initiali...
	4. The initialize method defined in Checkbook assigns initial values to the instance’s variables.
	5. The resulting initialized instance of Checkbook is assigned to the checkbook variable of the C...
	Figure 6-2� An instance of CheckbookInterface holding onto a Checkbook instance

	Programming the Amount to Deposit: Field
	1. Decide on a name for the method that will return the value model. Because the value model will...
	2. In the canvas for the Checkbook main window, select the relevant input field (the field immedi...
	3. In the Properties Tool, type the name you chose in step 1 (namely, depositAmount) as the value...
	4. Reinstall the canvas in windowSpec to make the new property setting part of the interface spec...
	5. With the input field still selected in the canvas, generate the supporting code for it by clic...
	Figure 6-3� The Definer’s dialog box

	6. Click OK to generate code.
	7. Refresh the System Browser by choosing update from <Operate> menu in the category view. A new ...
	8. Examine the class definition (select �CheckbookInterface in the class view and choose definiti...
	9. Select the aspects protocol and the depositAmount method. The code view displays the generated...
	depositAmount
	Analysis:� Aspect Property
	Analysis:� The Definer
	Analysis:� Lazy Initialization, Booleans, Blocks

	Analysis:� Value Holders

	Programming the Deposit Button
	1. Decide on a name for the method to be defined. Because of the action it implements, you choose...
	2. Select the action button labeled Deposit in the canvas for the Checkbook main window. If neces...
	3. In the Properties Tool, type the name you chose in step 1 (namely, makeDeposit) as the value o...
	4. Reinstall the canvas in windowSpec to make the new property setting part of the interface spec...
	5. With the action button still selected in the canvas, generate a method stub for it by clicking...
	6. Click OK to generate code.
	7. Refresh the System Browser by choosing update from the <Operate> menu in the category view. A ...
	8. Select the actions protocol and then the makeDeposit method. The code view displays the follow...
	makeDeposit
	9. In the makeDeposit method definition, replace the expression (^self) with expressions that imp...
	makeDeposit

	Analysis:� Action Property
	Analysis:� makeDeposit Logic
	self depositAmount value > 0

	Analysis:� Warning Dialog

	Testing the Deposit Widgets
	1. Click Open from the Canvas Tool to start the application.
	2. Click in the Amount to Deposit: field to give it keyboard focus. This makes the field receptiv...
	3. Type a positive number in the Amount to Deposit: field. (Do not include a dollar sign or any c...
	4. Click the Deposit button.
	5. While the Checkbook application is still running, add the following expression to the definiti...
	Transcript cr; show: 'Deposited ', self depositAmount value printString,
	6. Click in the Amount to Deposit: field and enter another positive number; then click the Deposi...
	7. Click in the Amount to Deposit: field, enter another positive number, and press the <Return> k...
	8. Delete the expression added in step 5 and choose accept.
	9. Enter a negative number in the Amount to Deposit: field; then click the Deposit button. A warn...
	10. Click OK in the warning dialog. The negative amount remains displayed, with the appropriate o...
	11. Terminate the Checkbook application by closing its window with a window-management operation.

	Analysis:� Behind the Scenes During Setup
	1. The Canvas Tool sends the open message to CheckbookInterface. This class:
	a. Creates an instance of itself
	b. Tells the instance to create a builder
	c. Passes the builder the interface specification stored in the windowSpec class method

	2. The builder creates and sets up the various objects that form the Checkbook main window.
	a. Gets the field’s aspect property (depositAmount)
	b. Sends the depositAmount message to the CheckbookInterface instance, which responds by initiali...
	c. Assigns the new value holder to an instance variable in the field so that the field can send i...
	d. Makes the field a dependent of its value holder by listing it in the value holder’s dependents...
	e. Gets the button’s action property (makeDeposit)
	f. Sets up the button so that it responds to activation by sending the makeDeposit message to the...
	Figure 6-4� Object structure supporting the Amount to Deposit: field

	Analysis:� Behind the Scenes During Operation
	1. The field sends a value: message to put the entered amount in its value holder.
	2. The button sends a makeDeposit message to the CheckbookInterface instance.
	3. The CheckbookInterface instance responds by executing the makeDeposit method, which sends:
	a. A value message to the value holder to get the amount
	b. A deposit: message to the Checkbook instance to deposit the amount
	c. A value: message to the value holder to reset the held amount to 0

	4. The value holder responds to the value: message by notifying its dependents that its value has...
	5. The field responds to notification by sending a value message to the value holder to obtain th...

	Analysis:� Widgets as Dependents
	Analysis:� Modifying a Running Application

	Programming the Balance: Field
	1. Decide on a name for the method that will return the value model. Because the value model will...
	2. Select the relevant input field in the canvas for the Checkbook main window (select the field ...
	3. In the Properties Tool, type the name you chose in step 1 (namely, balanceAmount) as the value...
	4. Reinstall the canvas in windowSpec to make the new property setting part of the interface spec...
	5. With the input field still selected in the canvas, generate supporting code for it by clicking...
	6. Click OK to generate code.
	7. Refresh the System Browser by choosing update from the <Operate> menu in the category view.
	8. Examine the class definition for CheckbookInterface. Notice the new instance variable balanceA...
	9. Select the aspects protocol and then select the new balanceAmount method. The code view displa...
	balanceAmount
	10. In the balanceAmount method definition, keep the basic structure, but change the initializati...
	^balanceAmount isNil

	Analysis:� The Definer Revisited
	Analysis:� Aspect Adaptors

	Testing the Balance: Field
	1. Click Open from the Canvas Tool to start the application.
	2. Click in the Amount to Deposit: field and type a positive number.
	3. Click the Deposit button. Notice that the Balance: field displays the deposited amount.
	4. Enter a second deposit amount. The Balance: field now displays the sum of the two deposited am...
	5. Terminate the application by closing the window using the window manager.
	Analysis:� Setup of the Aspect Adaptor
	1. CheckbookInterface creates an instance of itself, which creates a builder and a Checkbook inst...
	2. The builder creates and sets up the various objects that form the Checkbook main window.
	a. Gets the field’s aspect property (balanceAmount).
	b. Sends the balanceAmount message to the CheckbookInterface instance, which responds by initiali...
	c. Assigns the new aspect adaptor to an instance variable in the field so that the field can send...
	d. Makes the field a dependent of its aspect adaptor by listing it in the aspect adaptor’s depend...
	Figure 6-5� Object structure supporting the Balance: field

	Analysis:� Operation of the Aspect Adaptor
	1. The Amount to Deposit: field and the Deposit button operate as described on page�150. Among th...
	2. The Checkbook instance:
	a. Adds the specified amount to its current balance
	b. Assigns the new balance to its balance instance variable by sending itself a balance: message
	c. Sends itself the changed: #balance message as part of executing the balance: method
	d. Responds to the changed: message by sending the update: #balance message to its dependents (in...

	3. The aspect adaptor responds to change notification by sending an update: #value message to its...
	4. The field responds to change notification by sending a value message to the aspect adaptor to ...
	5. The aspect adaptor responds to the value message by sending a balance message to the Checkbook...
	6. The field displays the new balance.

	Programming the Check Register List
	1. Decide on a name for the method that will return the list’s auxiliary object. Because this obj...
	2. Select the list in the canvas for the Checkbook main window. Ungroup widgets if necessary. The...
	3. In the Properties Tool, type the name you chose in step 1 (namely, checksList) as the value of...
	4. Reinstall the canvas in windowSpec to make the new property setting part of the interface spec...
	5. With the list still selected in the canvas, generate supporting code for it by clicking Define...
	6. Click OK to generate code.
	7. Refresh the System Browser by choosing update from the <Operate> menu in the category view.
	8. Examine the class definition (select CheckbookInterface in the class view and choose definitio...
	9. Select the aspects protocol and then select the new checksList method. The code view displays ...
	checksList
	10. In the checksList method definition, replace the instance-creation message new with the with:...

	checksList
	Analysis:� Setup of the List
	1. CheckbookInterface creates an instance of itself, which creates a builder and an initialized C...
	2. The builder creates and sets up the Checkbook main window. For the Check Register list, the bu...
	a. Gets the list widget’s aspect property (checksList)
	b. Sends the checksList message to the CheckbookInterface instance, which responds by initializin...
	c. Assigns each value holder to an instance variable in the list widget so the list widget can se...
	d. Makes the list widget a dependent of each value holder
	Figure 6-6� Object structure supporting the Check Register list

	Analysis:� SelectionInList Instances
	Analysis:� When the Collection Changes
	1. Obtain the collection of checks every time the Checkbook instance adds or removes a check from...
	2. Send the collection to the value holder by sending a list: message to the SelectionInList inst...

	Programming the Menu Bar
	1. Decide on the name of the message you want each menu item to send. For the FileﬁClose item, yo...
	2. Select the canvas itself (click anywhere in the canvas other than on a widget). This deselects...
	3. Choose ToolsﬁMenu Editor from the Canvas Tool to open the Menu Editor.
	4. Click Read to read in the entries for the canvas’s menu bar. (If the Read button is disabled, ...
	5. In each of the entries for menu items, replace nil with the appropriate message name (use Figu...
	Figure 6-7� The Menu Editor with message names filled in

	6. In the Menu Editor, click Build to generate new code for building a menu object.
	7. In the Menu Editor, click Install... to install the menu code in the application model. A dial...
	8. Close the Menu Editor.
	9. Test the menu bar:
	a. In the Canvas Tool, click Open to start the Checkbook application.
	b. Choose FileﬁClose from the Checkbook main window to close the application.

	10. Congratulations! You have finished setting the properties and editing the menu bar for the Ch...

	Setting Up for the Remaining Work
	1. Close the canvas (and Canvas Tool) for the Checkbook main window.
	2. Open the canvas for the Check dialog window:
	a. Open a Resource Finder.
	b. Select both the CheckbookInterface class and the dialogSpec resource.
	c. Click the Edit button.
	d. Close the Palette, but leave the Canvas Tool and the Resource Finder open.

	3. Leave the System Browser and the Properties Tool open.

	Providing for Writing New Checks
	1. Setting up the basic behavior for the Check dialog box. This includes both writing code and se...
	2. Programming the input fields in the Check dialog box.
	3. Writing the code that creates the blank check and records the completed check.

	Setting Up the Check Dialog Box’s Basic Behavior
	1. In the System Browser, select the actions instance protocol in the CheckbookInterface class.
	2. In the code view, replace the method template with the following and choose accept:
	writeNewCheck
	a. Define a temporary variable, userHasAccepted.
	b. Open a dialog box from the interface specification stored in the dialogSpec class method.
	c. Assign the dialog box’s result to the userHasAccepted variable. This result is true if the dia...
	d. Evaluates or ignores the argument block, depending on the value of userHasAccepted.
	3. In the Check canvas, select each action button and fill in its action property as specified be...
	4. Reinstall the canvas in dialogSpec to make the new property settings part of the interface spe...
	5. Test the basic behavior of the dialog box:
	a. Start the Checkbook application.
	b. In the Checkbook main window, choose ChecksﬁWrite... This sends the writeNewCheck message to t...
	c. In the dialog box, click Cancel. This invokes the cancel action, which closes the dialog box a...
	d. Choose ChecksﬁWrite to invoke the writeNewCheck method again.
	e. In the dialog box, click OK. This invokes the accept action, which closes the dialog box and c...
	f. Click Terminate in the error notifier.
	g. Close the Checkbook application.

	Analysis:� Actions for OK and Cancel Buttons
	Analysis:� Setup of the Dialog Box
	Figure 6-8� After opening the Check dialog box

	Programming the Input Fields in the Check Dialog Box
	1. Decide on a name for the method that is to create and return the subject channel; you choose t...
	2. Select each input field in the Check canvas and fill in its aspect property with the aspect pa...
	3. Reinstall the canvas in dialogSpec to make the new property settings part of the interface spe...
	4. With any of the input fields selected in the canvas, click Define... in the Canvas Tool.
	5. Click OK to generate code.
	6. Refresh the System Browser by choosing update from the <Operate> menu in the category view.
	7. Examine the class definition for CheckbookInterface. Notice the new instance variable checkHol...
	8. Select the aspects protocol and then select the new checkHolder method. The code view displays...
	checkHolder
	9. Select the writeNewCheck method in the actions protocol and add the expression indicated below...
	writeNewCheck
	10. Test the dialog box’s input fields:
	a. Start the Checkbook application from the Resource Finder.
	b. In the Checkbook main window, choose ChecksﬁWrite... to bring up the Check dialog box. Notice ...
	c. In the dialog box, click Cancel. You may leave the application running.

	Analysis:� Aspect Paths
	Analysis:� Setup of an Aspect Path
	1. The CheckbookInterface instance responds to the writeNewCheck message by:
	a. Sending itself the checkHolder message to access the value holder in the checkHolder instance ...
	b. Asking the Checkbook instance to create a new Check instance, which is placed in the checkHold...
	c. Creating a SimpleDialog instance and passing it the dialogSpec interface specification.

	2. The SimpleDialog instance creates a builder, which, among other things, builds the dialog box’...
	a. Obtaining the aspect path checkHolder amount from the interface specification.
	b. Sending a checkHolder message to the CheckbookInterface instance, which returns the value hold...
	c. Creating an aspect adaptor whose subject channel is the returned value holder and whose aspect...
	d. Assigning the new aspect adaptor to an instance variable in the input field so the input field...
	e. Making the input field a dependent of its aspect adaptor.

	3. The input fields obtain the initial data to display by sending a value message to their respec...
	4. When a user enters data into one of the input fields, the field sends a value: message to its ...
	Figure 6-9� Object structure for the dialog box’s amount field

	Analysis:� Subject Channels
	Analysis:� Advantages of Aspect Paths
	Figure 6-10� Aspect adaptors built from aspect paths

	Analysis:� Limitations of Aspect Paths

	Finishing the writeNewCheck Method
	1. Make sure that the writeNewCheck method is still selected in the System Browser.
	2. In the code view, replace the expression self unimplemented with the expressions indicated bel...
	writeNewCheck
	3. Test the completed writeNewCheck method:
	a. If necessary, start the Checkbook application from the Resource Finder.
	b. In the Checkbook main window, choose ChecksﬁWrite...
	c. Write a generous check to a deserving party. (Press <Tab> to shift the keyboard focus among in...
	d. Click OK. Notice that:

	Providing for Check Cancellation
	1. Make sure that the actions protocol of the CheckbookInterface class is selected.
	2. Replace the current contents of the code view with the following method definition and choose ...
	cancelSelectedCheck
	3. Test the ChecksﬁCancel menu item:
	a. Restart the Checkbook application, if necessary.
	b. Add a check.
	c. Try canceling the check without selecting it.
	d. Select and cancel the check.

	What’s Next?

	Appendix A�
	Glossary

	Appendix B�
	Widget Quick Reference
	Figure B-1� The VisualWorks Palette

	action button�(See Figure�B-2) Also called a “push button” on some platforms. Triggers a short ac...
	Figure B-2� An interface to modify a font
	Figure B-3� Three ways to choose a gray tone

	group box�(See Figure�B-3) A rectangle that surrounds groups of related widgets. The sides of the...
	Figure B-4� Embedded interfaces

	linked data form�(See Figure�B-4) A special-purpose action button that, when clicked, displays a ...
	Figure B-5� A list linked to a text editor
	Figure B-6� A notebook with interdependent tabs
	Figure B-7� Creating a label
	Figure B-8� Presenting columns of information

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

