Do Objects need Occurrence Typing?

Oscar Callad

PLEIAD Laboratory, DCC, University of Chile
oalvarez@dcc.uchile.cl

Abstract—A major challenge of adding a type system to
dynamic languages is to properly accommodate the programming
idioms effectively used by programmers. For instance, occur-
rence typing was proposed to support flow-oriented reasoning in
programs, that is, the common Scheme idiom of distinguishing
the type of variables based on the results of type predicates.
Considering object-oriented design principles, it would seem that
manual dispatch based on explicit type checks should not occur
often in practice. Therefore, when designing a type system for
an existing object-oriented language, the question naturally raises
of whether occurrence typing is at all useful, and if so, to what
extent. This paper answers this question by studying the use of
type predicates in a large base of Smalltalk code. Our study
shows that type predicates are in fact widely used to do explicit
type dispatch, suggesting that occurrence typing or similar flow-
sensitive typing approaches are necessary.

I. INTRODUCTION

Dynamic languages are typically favored for rapid pro-
totyping, but as programs grow large and complex. Many
efforts are targeted at providing retrofitted type systems for
dynamic languages (e.g. [1], [2], [3], [4]). A major challenge in
designing a retrofitted type system is to properly accommodate
the most common programming idioms. Failing to do so means
that the cost of adoption of the type system is likely to be
deemed too high by programmers. The design of such a type
system must therefore be directly informed by the practice of
programming in the considered community.

Occurrence typing: A notable example of this approach is
the Typed Racket effort (formerly Typed Scheme [S], [4]), a
statically-typed variant of Racket, itself a dialect of Scheme.
Typed Racket is based on the notion of occurrence typing.
Occurrence typing allows the type system to account for the
use of type predicates—simple functions—to distinguish the
type of a variable. For instance, consider the following Scheme
definition:

(define (f x) ; x is a number or a string
(if (number? x) (add1 x) (string-length x)))

The function f accepts either a number or a string; if given
a number, it adds 1 to it; if given a string, it returns its length.
Knowing if the argument is a number is determined by the
function number? (of type Any — Boolean). In order to
type this method, the type system must be able to understand
that the application of add1 (of type Number — Number) is
valid, because at this point x is necessarily a number; similarly
for the application of string-length.

Type dispatch with objects: The object-oriented program-
ming paradigm is supposed to free developers from manual
dispatch based on explicit type predicates by relying on
polymorphism. For instance, the following example:

ClassRoom>>inLecture: aPerson ""is a Teacher or a Student"
(aPerson isKindOf: Student)
ifTrue: [aPerson listen] ifFalse: [aPerson talk]

The manual dispatch can be refactored to just call a poly-
morphic method declared in the root class, Person, and im-
plemented in the leaves, Student and Teacher. This suggests
that—at least in theory—the scenarios handled by occurrence
typing are irrelevant in an object-oriented setting. Neverthe-
less, object-oriented languages usually provide operators to do
runtime type checks, such as instanceof in Java or isKindOf:

in Smalltalk. Their use is however strongly discouraged,
precisely because it does not “fit the paradigm” [6], with the
exception of binary equality methods [7]. But if occurrence
typing is only helpful for equality methods, one could reason-
ably argue that it is unnecessary to integrate it in type systems
for object-oriented languages.

Contributions. When designing a type system for a dy-
namic object-oriented language, the question of whether or
not it is worthwhile to integrate occurrence types remains. In
order to answer this question, we perform an empirical study
of the use of type predicates in the dynamic object-oriented
language Smalltalk. We statically analyze 1,000 open source
Smalltalk projects(4 million LOC). Our study reveals if, and
how, type predicates are used in practice, providing guidance
in the design of type systems for object-oriented languages.

Concretely, we study the following research questions:

RQ1: How prevalent is the use of type predicates to do
explicit dispatch?

What are the different forms of type predicates used?
Are some categories largely predominant?

RQ2:

II. EXPERIMENTAL SETUP

This section describes the Smalltalk projects (corpus) that
we are analyzing, the methodology applied to find predicates,
and a classification of the discovered predicates.

A. Corpus

We analyze a body of 1,850 projects, which we used
previously in a study of the use of reflective features [§]. To
exclude small or toy projects we ordered all projects in the
entire corpus by size (LOC) and selected the 1,000 largest
ones. Our project corpus is a snapshot of the Squeaksource
Smalltalk repository taken in early 2010. Squeaksource is the
de facto source code repository for open-source development
in the Squeak and Pharo communities. The corpus includes
a total of 4,445,415 lines of code distributed between 47,720
classes and 652,990 methods.

In order to analyze the 1,000 projects, we extend our
previous framework [8] to statically trace the declarations and
usages of type predicates in the software ecosystenﬂ

B. Finding Predicates and Their Usages

In Smalltalk we are interested in polymorphic methods
(e.g. isString) and primitive type checks using isKindOf:,
Smalltalk’s equivalent of Java’s instanceof, or some variants
thereof. We distinguish three main categories of predicates,
plus one of “special predicates”, all described below.

a) Nominal and Structural: Nominal, this category cor-
responds to nominal type checks, i.e. related to the actual
class of an object (isKindOf: and isMemberOf:) Addition-
ally, we also count type checks performed through explicit
class comparison, such as reference equality ==. Structural,
Smalltalk supports structural type checks using respondsTo:
or canUnderstand:.

b) Polymorphic: Polymorphic type predicates are meth-
ods that play the role of type discriminators, just like string
? in Scheme. This category of predicates is therefore user-
extensible, and we need a heuristic to detect them. Follow-
ing the Smalltalk naming conventions, we consider a type
predicate any selector (i.e. method name) that follows the
pattern isXxxx—the prefix is the verb is, followed by any
camel-case suffix. We only consider selectors that do not take
any argument. The body of a type predicate method should
return a boolean. However, our analysis cannot ensure that a
predicate returns a boolean, unless it is returned literally; still,
we do exclude predicate candidates whose body is literally
not a boolean—we found 79 of these, less than 1% of the
8,573 implementations of type predicates, which comforts our
impression that our heuristic is valid.

¢) Special Predicates: Smalltalk also provides a number
of polymorphic predicates, that we treat separately. These
are families of predicates checking the common cases of
null references (isNil), empty collections (isEmpty), or the
integer zero (isZero). Like for nominal predicates, there are
alternative ways to check these conditions (e.g. using equality).
Since these predicates are very common use cases (similar to
common recursive base cases in a functional language), we
grant them their own category.

III. RQ1: PREVALENCE OF TYPE PREDICATES

We start by reporting on the results of our predicate detec-
tion algorithm, and then classify predicate usages in order to
refine our analysis.

A. Basic statistics in Squeaksource

Our predicate detection algorithm identified 4,513 different
predicates. This represents 1.8% of all selectors in the corpus.
Because the boundary between type and state abstractions
is fuzzy (typestate systems actually account for them [9],
[10], [L1], and typestate-oriented programming in fact fuses
them [12], [13]]), we include these predicates in the study.

I'This extension is available at http:/ss3.gemstone.com/ss/TOC/

Usage context Usages | % Usages
Dispatch* 128,250 74.2%
Collections™ 5,589 3.2%
Assertion*® 22,932 13.3%
Forward 10,420 6.0%
Others 5,654 3.3%
Total 172,845 100%
Selected 156,771 90.7%
Table T

USAGE CATEGORIES OF TYPE PREDICATES. (*, CATEGORIES SELECTED
FOR THE STUDY.)

On the usage side, these predicates are used 172,845 times
in our corpus, spread out in 984 out of the 1,000 projects
we considered. Surprisingly, only 746 usages (0.43%) occur
inside an equality method, suggesting that the recommendation
of using type checks only in equality methods [7] is far from
followed in practice. This already suggests that occurrence
typing would not be helpful only for equality methods, in fact
quite the contrary.

We actually do not include all 172,845 usages in our study,
because some usages do not impact the flow of the program
in a way directly observable to our simple static analysis. The
next section introduces the classification of predicate usages
on which our refinement is based.

B. Usage categories

We classify usage contexts of type predicates as follows:
Dispatch, the predicate is clearly used to drive control flow
in ifTrue:ifFalse, whileTrue, doWhileTrue, etc. This corresponds
to the classical examples where occurrence typing helps.
Collections, the predicate is used to filter or test elements
inside a collection, with select:, reject:, detect:, allSatisfy:,
etc. An occurrence type system can then keep track of this
information, validating invocations of circle-only methods on
elements of the returned collection. Assertions, the predicate
is used in an assertion context, such as assert or deny. From
a typing point of view, this is similar to a conditional where
the false branch raises an error. The next statement after the
assertion can use the predicate assertion or negation fact.
Forward, the predicate is used to define another predicate.
Others, The catch-all category for usages that do not fit in
any of the previous ones.

Table [I shows the number of raw usages and their percent-
ages. Unsurprisingly, simple conditional dispatch is the most
common usage idiom, with three-quarter of overall usages.
Second comes Assertions with 13.3%, showing that type
predicates are often used in testing contexts, or in pre/post-
conditions. The three other categories are relatively scarce.

For the remainder of this study, we keep the predicates
classified as Dispatch, Collections, or Assertions, and exclude
the predicates classified as Forward or Other. Taken together,
the three usage categories we select comprise more than 90%
of the predicate usages we encountered. From this, we can
conclude that predicates are indeed used in order to impact the
control flow in a direct way that would be easily exploitable
by an occurrence type system.

C. Prevalence of predicate usages

After refinement, we are left with 156,771 usages of type
predicates that directly affect the control flow of programs.
We evaluate the presence of type predicate usages at different
levels of granularity: projects (98.3%), classes(47.8%), meth-
0ds(14.7%) and LOCs(3.5%).

In Smalltalk projects, we find that 98.3% of projects use
type predicates, i.e. not using type predicates is the exception
rather than the rule. We find at class-level that slightly less
than half—47.8%—of the classes use type predicates as part
of their implementation. This figure comforts the claim that
programmers use type predicates quite commonly. At a finer-
grained level, we find that 14.7% of the methods are using
type predicates. Clearly, occurrence typing has the potential
to provide more accurate type information in the control flow
of more than one out of 7 methods. But perhaps the most
telling figure is the finest-grained one, which is the density
of type predicate usages per LOC. We find a density of 0.035
predicates per line of code, or 3.5%. In other words, one might
expect to read around 30 lines of code to encounter a type
predicate usage. This further highlights that usages of type
predicates are a common sight in object-oriented source code,
and that better support of these would have a practical impact
on the daily work of programmers.

IV. RQ2: PREVALENCE OF CATEGORIES OF TYPE
PREDICATES

We are also interested in the prevalence of specific cat-
egories of type predicates, as described in Section It
certain categories of type predicates are much more commonly
used than others, this would allow one to make informed
decisions about which are most important to support.

A. Predicate categories

Table shows the distribution of each predicate cate-
gory (nominal, structural, polymorphic) by usages among all
projects by usages (Occ), LOC, and number of methods and
classes. We clearly see the categories of predicates are not
equally distributed. Polymorphic predicate take the lion’s share
at nearly 90% of the total (139,644 usages), nominal type
predicates follow with 10% (15,650 usages), and structural
type predicates only amount to less than 1% of the total usages
(less than 1,500 usages overall). Structural type predicates are
hence very seldom used.

Kinds Occ. | % Occ. | % LOC | % Mth | % Cls
Nominal 15,650 10.0 0.35 1.5 8.7
Structural 1,457 0.9 0.03 0.2 1.6
Polymorphic 139,664 89.1 3.14 13.6 45.5
Nil 76,760 55.0 1.7 8.6 33.7
Empty 14,638 10.5 0.3 1.8 10.9
Zero 11,756 8.4 0.3 1.3 7.6
User Defined 36,510 26.1 0.8 3.7 17.9
All 156,771 100.0 35 14.7 47.8
Table II

USAGES DISTRIBUTIONS FOR COARSE AND FINE-GRAINED PREDICATE
CATEGORIES.

B. Special predicates

Since polymorphic predicates are so prevalent, we inves-
tigate them further. In particular, we separate the special
predicates—Nil, Empty, and Zero—from the user defined
predicates. Table [[I] (last four rows) shows that the Nil category
consists of more than half of the polymorphic predicate usages
(55%; 76,760 usages). If we look at the distribution of usages
of nil predicates (see Table [l), we note that 8.64% of all
methods include a usage of a nil predicate (and a density of
predicates per lines of code of 2%).

C. User-defined predicates

More than a quarter of polymorphic predicate usages
(36,510) are usages of user-defined predicates. These type
predicates are roughly half as prevalent as the Nil category
alone, and account for 23.28% of all type predicate usages.
If we combine these usages with the usages of nominal type
predicates—nominal type predicates can be seen as polymor-
phic type predicates waiting to be implemented—, we arrive
at 52,160 usages, or 33.27% of all usages; close to a third.
This indicates a potential usefulness of a type system able to
handle arbitrary type predicates, as in Typed Racket.

V. RELATED WORK

In [14]], Tobin-Hochstadt and Felleisen report on a study
focused on the use of some known predicates (like number?)
as well as on the use of the or logical combination, which
was not supported in their previous system. They report that
in the source code base of Racket, or is used with 37 different
primitive type predicates almost 500 times, as well as with
user-defined predicates. Our experiment further confirms that
at least occurrence typing is useful, in the context of object-
oriented languages.

When proposing flow typing, Guha et al. briefly report
on the prevalence of type tests and related checks across
a corpus of JavaScript, Python and Ruby code [3]]. In 1,5
million LOC, they detect 13,500 occurrences of type testing
operators. We detect proportionally much more occurrences,
even without considering user-defined polymorphic predicates
(about 3 times more). They use this measurement as a moti-
vation for their work. Our study strengthens the argument that
object-oriented programmers tend to use explicit type checks
sufficiently enough to warrant specific support for them.

VI. CONCLUSION

Designing a type system for an existing dynamic object-
oriented language is a hard task. The choice of features to
include in the type system is delicate. This work sheds light
on the need to support explicit type-based reasoning in object-
oriented programs, looking at a large Smalltalk codebase. We
find that:

e RQI: Programmers do use a fair number of type predi-
cates to do explicit dispatch: overall, there is a density of
one such check per 30 lines of code. Therefore, occur-
rence typing—in any of its possible forms—is definitely
useful for objects.

o RQ2: Special predicates (Nil, Empty, Zero) account for

almost two thirds of all usages. This suggests that a
simpler, less general approach specifically tailored to
these cases would already enjoy a broad applicability.

ACKNOWLEDGMENT

We thank ESUG (esug.org), the European Smalltalk
User Group, for its financial support.

[1]

[2]
3

=

[4

=

[5

=

[6

—

[7]
[8]

—
X2

(10]

[11]

[12]

[13]

[14]

REFERENCES

G. Bracha and D. Griswold, “Strongtalk: Typechecking Smalltalk in
a production environment,” in Proceedings of the 8th International
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 95). Washington, D.C., USA: ACM Press, Oct.
1993, pp. 215-230, aCM SIGPLAN Notices, 28(10).

C. T. Haynes, “Infer: A statically-typed dialect of Scheme,” Indiana
University, Tech. Rep. 367, 1995.

A. Guha, C. Saftoiu, and S. Krishnamurthi, “Typing local control and
state using flow analysis,” in Proceedings of the 20th European Sym-
posium on Programming (ESOP 2011), ser. Lecture Notes in Computer
Science, G. Barthe, Ed., vol. 6602. Springer-Verlag, 2011, pp. 256-275.
S. Tobin-Hochstadt and M. Felleisen, “The design and implementation
of Typed Scheme,” in Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2008).
San Francisco, CA, USA: ACM Press, Jan. 2008, pp. 395-406.

S. Tobin-Hochstadt, “Typed Scheme: From Scripts to Programs,” Ph.D.
dissertation, Northeastern University, Jan. 2010.

S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs
and Designs (3rd Edition). Addison-Wesley, 2005.

J. Bloch, Effective Java, 2nd Edition. Addison-Wesley, 2008.

O. Callau, R. Robbes, E. Tanter, and D. Rothlisberger, “How (and why)
developers use the dynamic features of programming languages: the case
of Smalltalk,” Empirical Software Engineering, 2012, online First.

K. Bierhoff and J. Aldrich, “Modular typestate checking of aliased
objects,” in Proceedings of the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2007). Montreal, Canada: ACM Press, Oct. 2007, pp. 301-
320, aCM SIGPLAN Notices, 42(10).

R. DeLine and M. Féhndrich, “Typestates for objects,” in Proceedings
of the 18th European Conference on Object-Oriented Programming
(ECOOP 2004), ser. Lecture Notes in Computer Science, M. Odersky,
Ed., no. 3086. Oslo, Norway: Springer-Verlag, Jun. 2004, pp. 465—490.
R. E. Strom and S. Yemini, “Typestate: A programming language con-
cept for enhancing software reliability,” IEEE Transactions on Software
Engineering, vol. 12, no. 1, pp. 157-171, 1986.

J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks, “Typestate-oriented
programming,” in Proceedings of Onward! ~ ACM, 2009, pp. 1015-
1022.

R. Wolff, R. Garcia, E. Tanter, and J. Aldrich, “Gradual typestate,”
in Proceedings of the 25th European Conference on Object-oriented
Programming (ECOOP 2011), ser. Lecture Notes in Computer Science,
M. Mezini, Ed., vol. 6813. Lancaster, UK: Springer-Verlag, Jul. 2011,
pp. 459-483.

S. Tobin-Hochstadt and M. Felleisen, “Logical types for untyped lan-
guages,” in Proceedings of the 15th ACM SIGPLAN Conference on
Functional Programming (ICFP 2010). Baltimore, Maryland, USA:
ACM Press, Sep. 2010, pp. 117-128.

	Introduction
	Experimental Setup
	Corpus
	Finding Predicates and Their Usages

	RQ1: Prevalence of type predicates
	Basic statistics in Squeaksource
	Usage categories
	Prevalence of predicate usages

	RQ2: Prevalence of categories of type predicates
	Predicate categories
	Special predicates
	User-defined predicates

	Related Work
	Conclusion
	References

