
Introduction to Blocks
Damien Cassou, Stéphane Ducasse and Luc Fabresse

W2S06

http://www.pharo.org

http://www.pharo.org

Blocks

Blocks are:
 kind of anonymous methods

◦ also called (lexical) closures
 used everywhere in Pharo

◦ loops, conditionals, iterators, ...
◦ GUI frameworks, DSLs, ...
◦ at the heart of the system

 just introduced in Java 8.0

W2S06 2 / 15

Block Definition

A block is defined by []

[expressions. ...]

W2S06 3 / 15

Block Definition Does not Execute Code
 Executing code may signal an Error

(1 / 0)
−> Error

 But, no error when defining a block
◦ a block definition does not execute its body
◦ a block definition freezes its body computation

[1 / 0]
> [1 /0]

[1 / 0].
1 + 2
> 3

W2S06 4 / 15

Executing a Block

Executing a block is done explicitly through value

[2 + 6] value
> 8

[1 / 0] value
> Error

W2S06 5 / 15

A Block with 1 Argument

A block can take arguments (just like methods)

[:x | x + 2]

 [] delimits the block
 :x is a block argument
 x + 2 is the block body

[:x | x + 2] value: 5
> 7

 value: 5 executes the block with 5 as argument
◦ x is 5 during the block execution

W2S06 6 / 15

Block Execution Value

Block execution returns the value of the last expression

[:x |
x + 33.
x + 2] value: 5
> 7

W2S06 7 / 15

Blocks can be Stored

 A block can be stored in a variable
 A block can be evaluated multiple times

| add2 |
add2 := [:x | x + 2].

add2 value: 5.
> 7

add2 value: 33
> 35

W2S06 8 / 15

Defining a Block with 2 Arguments

Example:

[:x :y | x + y]

:x :y are block arguments
How to execute a block with two arguments?

[:x :y | x + y] ??? 5 7
> 12

W2S06 9 / 15

Executing a Block with 2 Arguments

[:x :y | x + y] value: 5 value: 7
> 12

 value: 5 value: 7 evaluates the block with 5 and 7
◦ x is 5 and y is 7 during the block evaluation

W2S06 10 / 15

A Block with Temporary Variables

Blocks can define temp. variables (just like methods)

Collection>>a�ect: anObject when: aBoolean
self do: [:index | | args |
args :=
aBoolean
ifTrue: [anObject do: args]
ifFalse: [anObject doDi�erently: args]].

 | args | defines a temporary variable named args
 args exists only during block evaluation

W2S06 11 / 15

Returning from a Block Returns from the Method
When a return ^ is executed in a block, computation exits the
method defining the block

Integer>>factorial
"Answer the factorial of the receiver."

self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self− 1) factorial].
self error: 'Not valid for negative integers'

0 factorial
>1

42 factorial
>1405006117752879898543142606244511569936384000000000

W2S06 12 / 15

A Design Advice

 Use blocks with 2 or 3 arguments maximum
 Define a class instead of a block for more arguments
 A block encapsulates only 1 computation

◦ it cannot define more facets (e.g., printing)

W2S06 13 / 15

Summary on Blocks

[:variable1 :variable2 ... |
| tmp |
expression1.
... variable1 ...
] value: ... value: ...

 Kind of anonymous method
 Technically lexical closures
 Can be stored in variables and method arguments
 Basis of conditionals, loops and iterators (see companion

lectures)
 Further readings: http://deepintopharo.org

W2S06 14 / 15

http://deepintopharo.org

A course by

and

in collaboration with

Inria 2020

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

