
Powerful Exceptions: an
Overview
Damien Cassou, Stéphane Ducasse and Luc Fabresse

W5S04

http://www.pharo.org

http://www.pharo.org

Exceptions

 Really powerful
 Can be resumed, restarted, and signaled as new exception
 Two important classes:

◦ Error and Notification
 For more complete reference, read Deep into Pharo

W5S04 2 / 21

What You Will Learn

 To raise and trap exceptions
 Some nice helper methods

W5S04 3 / 21

API Overview

 Installing an handler

[doSomething] on: ExceptionClass do: [:ex | something]

 Raising an exception

anException signal

 defaultAction is executed when an exception occurs and it
is not trapped

Convenient messages:
 ensure:, ifCurtailed:

W5S04 4 / 21

Catching Example

[do something] on: ExceptionClass do: [:ex | something]

Example:

| x y |
x := 7.
y := 0.
[x / y]
on: ZeroDivide
do: [:exception | Transcript show: exception description; cr.
0]

> 0

W5S04 5 / 21

Signaling an Exception

To raise an exception:
 create an instance of exception
 send it messages signal or signal: aMessage

(AuthorNameRequest new initialAnswer: 'Stef') signal
(Warning newmessageText: 'Pay attention') signal

W5S04 6 / 21

Signaling an Exception

Usually classes propose a shortcut

OutOfMemory signal.
Warning signal: 'description of the exception'

W5S04 7 / 21

Testing That an Exception Occurs

SUnit offers should:raise: and shouldnt:raise: to check
occurrence of exceptions.

testNameOfMonth

self assert: (Date nameOfMonth: 1) equals: #January.

self
shouldnt: [Date nameOfMonth: 2]
raise: SubscriptOutOfBounds.
self
should: [Date nameOfMonth: 13]
raise: SubscriptOutOfBounds.

W5S04 8 / 21

Kinds of Exceptions

 Error: all errors (subscript, message not understood,
division by zero)

 Halt: to stop the execution (and get a debugger)
 Notification: non fatal exceptions (deprecation, warning,

timedout)
 UnhandledError: when an error occurs and that it is not

trapped

W5S04 9 / 21

Exceptions are Real Objects

When you send an unknown message Point new
strangeAndBizarre

ProtoObject >> doesNotUnderstand: aMessage

^ MessageNotUnderstood new
message: aMessage;
receiver: self;
signal

W5S04 10 / 21

Deprecation

To support API migration, Pharo uses deprecation When the
deprecation setting is on, a warning is raised when a
deprecated method is executed

MenuItem >> title: aString
"Add a title line at the top of this menu."
self deprecated: 'Use method addTitle: instead' on: '29

september' in: #Pharo40.
self addTitle: aString

W5S04 11 / 21

Deprecation Implementation Use

Create an instance of Deprecation and signal it

deprecated: anExplanationString on: date in: version
"Warn that the sending method has been deprecated"
(Deprecation
method: thisContext sender method
explanation: anExplanationString
on: date
in: version) signal

W5S04 12 / 21

Exception Sets

[do some work]
on: ZeroDivide, Warning
do: [:ex | what you want]

Or

| exceptionSet |
exceptionSet := ExceptionSet with: ZeroDivide with: Warning.
[do some work]
on: exceptionSet
do: [:ex | what you want]

W5S04 13 / 21

A Nice Helper: ensure:

 How to ensure that an expression is always executed
(even if the program fails before)?

 [doSomething] ensure: [alwaysExecuteThis]

spyOn: aBlock
"Profile system activity during execution of aBlock."
self startProfiling.
aBlock ensure: [self stopProfiling]

W5S04 14 / 21

Another nice Helper ifCurtailed:

 How to ensure that an expression is executed only if the
program fails or returns?

 [doSomething] ifCurtailed: [onProblem]

wait
"Schedule this Delay, then wait on its semaphore. The current

process will be suspended for the amount of time specified
when this Delay was created."

self schedule.
[delaySemaphore wait] ifCurtailed: [self unschedule]

W5S04 15 / 21

Exception Lookup

 Each process has its own exception environment: an
ordered list of active handlers

 Process starts with an empty list
 [aaaa] on: Error do: [bbb] adds Error,bbb to the beginning

of the list
 When an exception is signaled, the system sends a

message to the first handler
◦ If the handler cannot handle the exception, the next one

is asked
◦ If no handler can handle the exception, then the default

action is performed

W5S04 16 / 21

Handling Exception

Just for your information ;)
Within a handler [aaa] on: anExceptionClass do: [anHandler
], we can:
 Return an alternative result for the protected block (return:)
 Retry the protected block or a different block (retryUsing:)
 Resume the protected block at the failure point (resume:)
 Pass the caught exception to the enclosing handler (pass)
 Resignal a different exception (resignalAs:)

W5S04 17 / 21

Returning From an Exception

[Notification signal. 'Value from protected block']
on: Notification
do: [:ex |ex return: 'Value from handler']

> 'Value from handler'

We return a different string on normal or notification

W5S04 18 / 21

Resuming from Resumable Exception

Warning, Notification and subclasses are resumable

[Notification signal. 'Value from protected block']
on: Notification
do: [:ex | ex resume: 'Value from handler']

> 'Value from protected block'.

 Notification signal raises an exception
 exception is handled
 resume: restores the context and the value returned

normally as if the notification did not occur

W5S04 19 / 21

What You Should Know

 Exceptions are powerful in Pharo.
 Offer a simple API

Raising

anException signal

Installing:

[doSomething] on: ExceptionClass do: [:ex | something]

 Helpers
◦ [doSomething] ensure: [alwaysDoThis]
◦ [doSomething] ifCurtailed: [onProblem]

W5S04 20 / 21

A course by

and

in collaboration with

Inria 2020

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

