Powerful Exceptions: an
Overview

Damien Cassou, Stéphane Ducasse and Luc Fabresse

Phar®

http://www.pharo.org

http://www.pharo.org

Exceptions

Really powerful

Can be resumed, restarted, and signaled as new exception
Two important classes:

o Error and Notification

For more complete reference, read Deep into Pharo

2
»~” W5S04 2/21

What You Will Learn

e To raise and trap exceptions
e Some nice helper methods

»~” W5S04 3/21

API Overview

¢ [nstalling an handler
[doSomething] on: ExceptionClass do: [:ex | something]
e Raising an exception
anException signal

e defaultAction is executed when an exception occurs and it
is not trapped

Convenient messages:
e ensure;, ifCurtailed:

2
»” W5S04 4 /21

Catching Example

[do something] on: ExceptionClass do: [:ex | something]
Example:

Ixy|
X:=T.
y:=0.
[x/yl]
on: ZeroDivide
do: [:exception | Transcript show: exception description; cr.
0]
>0

%
»~” W5S04 5/21

Signaling an Exception

To raise an exception:

e create an instance of exception
e send it messages signal or signal: aMessage

(AuthorNameRequest new initialAnswer: 'Stef') signal
(Warning new messageText: 'Pay attention') signal

»” W5S04 6/21

Signaling an Exception

Usually classes propose a shortcut

OutOfMemory signal.
Warning signal: 'description of the exception'

2
»” W5S04 7 /21

Testing That an Exception Occurs

SUnit offers should:raise: and shouldnt:raise: to check
occurrence of exceptions.

testNameOfMonth
self assert: (Date nameOfMonth: 1) equals: #January.

self
shouldnt: [Date nameOfMonth: 2]
raise: SubscriptOutOfBounds.

self
should: [Date nameOfMonth: 13]
raise: SubscriptOutOfBounds.

2
»~ W5S04 8/21

Kinds of Exceptions

e Error: all errors (subscript, message not understood,
division by zero)

e Halt: to stop the execution (and get a debugger)

e Notification: non fatal exceptions (deprecation, warning,
timedout)

e UnhandledError: when an error occurs and that it is not
trapped

%
»~ W5S04 9/21

Exceptions are Real Objects

When you send an unknown message Point new
strangeAndBizarre

ProtoObject >> doesNotUnderstand: aMessage

A MessageNotUnderstood new
message: aMessage;
receiver: self;
signal

2
»~ W5S04 10/21

Deprecation

To support API migration, Pharo uses deprecation When the
deprecation setting is on, a warning is raised when a
deprecated method is executed

Menultem >> title: aString
"Add a title line at the top of this menu."
self deprecated: 'Use method addTitle: instead' on: '29
september’ in: #Pharo40.
self addTitle: aString

2
»~ W5S04 11/21

Deprecation Implementation Use

Create an instance of Deprecation and signal it

deprecated: anExplanationString on: date in: version
"Warn that the sending method has been deprecated"
(Deprecation
method: thisContext sender method
explanation: anExplanationString
on: date
in: version) signal

2
»~ W5S04 12/21

Exception Sets

[do some work]
on: ZeroDivide, Warning
do: [:ex | what you want]

Or

| exceptionSet |
exceptionSet := ExceptionSet with: ZeroDivide with: Warning.
[do some work]

on: exceptionSet

do: [:ex | what you want]

2
»~ W5S04 13/21

A Nice Helper: ensure:

e How to ensure that an expression is always executed
(even if the program fails before)?

e [doSomething] ensure: [alwaysExecuteThis |

spyOn: aBlock
"Profile system activity during execution of aBlock."
self startProfiling.
aBlock ensure: [self stopProfiling]

2
»~ W5S04 14/21

Another nice Helper ifCurtailed:

e How to ensure that an expression is executed only if the
program fails or returns?

e [doSomething] ifCurtailed: [onProblem]

wait
"Schedule this Delay, then wait on its semaphore. The current
process will be suspended for the amount of time specified
when this Delay was created."

self schedule.
[delaySemaphore wait] ifCurtailed: [self unschedule]

%
»~ W5S04 15/21

Exception Lookup

e Each process has its own exception environment: an
ordered list of active handlers
e Process starts with an empty list
e [aaaa]on: Errordo: [bbb | adds Error,bbb to the beginning
of the list
e When an exception is signaled, the system sends a
message to the first handler
o If the handler cannot handle the exception, the next one
is asked
o If no handler can handle the exception, then the default
action is performed

2
»~ W5S04 16/21

Handling Exception

Just for your information ;)
Within a handler [aaa] on: anExceptionClass do: [anHandler
], we can:

3
2 wss04

Return an alternative result for the protected block (return:)
Retry the protected block or a different block (retryUsing;)
Resume the protected block at the failure point (resume:)
Pass the caught exception to the enclosing handler (pass)
Resignal a different exception (resignalAs:)

17 /21

Returning From an Exception

[Notification signal. 'Value from protected block']
on: Notification
do: [:ex |ex return: 'Value from handler']

> 'Value from handler'

We return a different string on normal or notification

2
»~ W5S04 18/21

Resuming from Resumable Exception

Warning, Notification and subclasses are resumable

[Notification signal. 'Value from protected block']
on: Notification
do: [:ex | ex resume: 'Value from handler']

> 'Value from protected block'.

* Notification signal raises an exception
e exception is handled

e resume: restores the context and the value returned
normally as if the notification did not occur

2
»~ W5S04 19/21

What You Should Know

e Exceptions are powerful in Pharo.
e Offer a simple API

Raising
anException signal
Installing:
[doSomething] on: ExceptionClass do: [:ex | something]

® Helpers

o [doSomething] ensure: [alwaysDoThis |
o [doSomething] ifCurtailed: [onProblem]

2
»~ W5S04 20/21

A course by

v d

Universite de Technologie
Ouverte Pluripartenaire

in collaboration with

i

unis| (it

Université Numérique ==
Ingénierie et Technologie

L\

i
\\\

Université 'u’
de Lille IMT Lille Douai

Ecole Mines-Télécom
IMT-Université de Lille

@®@@ Inria 2020
BY NC ND

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

