
CHA P T E R 1
TinyChat: a Fun and Small Chat

Client/Server

Pharo allows the definition of a REST server in a couple of lines of code thanks
to the Teapot package by zeroflag, which extends the superb HTTP clien-
t/server Zinc developed by BetaNine and was given to the community. The
goal of this chapter is to make you develop, in five small classes, a clien-
t/server chat application with a graphical client. This little adventure will
familiarize you with Pharo and show the ease with which Pharo lets you de-
fine a REST server. Developed in a couple of hours, TinyChat has been de-
signed as a pedagogical application. At the end of the chapter, we propose a
list of possible improvements.

TinyChat has been developed by O. Auverlot and S. Ducasse with a lot of fun.

1.1 Objectives and Architecture

We are going to build a chat server and one graphical client as shown in Fig-
ure 1.1.

The communication between the client and the server will be based on HTTP
and REST. In addition to the classes TCServer and TinyChat (the client), we
will define three other classes: TCMessage which represents exchanged mes-
sages (as a future exercise you could extend TinyChat to use more structured
elements such as JSON or STON (the Pharo object format), TCMessageQueue
which stores messages, and TCConsole the graphical interface.

1

TinyChat: a Fun and Small Chat Client/Server

Figure 1.1 Chatting with TinyChat

1.2 Loading Teapot

Teapot is hosted on github at https://github.com/zeroflag/Teapot Use the fol-
lowing script to load it.

Metacello new
baseline: 'Teapot';
repository: 'github://zeroflag/teapot:master/source';
load.

Now we are ready to start.

1.3 Message Representation

A message is a really simple object with a text and sender identifier.

Class TCMessage

We define the class TCMessage in the package TinyChat.

Object subclass: #TCMessage
instanceVariableNames: 'sender text separator'
classVariableNames: ''
category: 'TinyChat'

The instance variables are as follows:

• sender: the identifier of the sender,

• text: the message text, and

• separator: a character to separate the sender and the text.

Accessor Creation

We create the following accessors:

2

https://github.com/zeroflag/Teapot

1.3 Message Representation

TCMessage >> sender
^ sender

TCMessage >> sender: anObject
sender := anObject

TCMessage >> text
^ text

TCMessage >> text: anObject
text := anObject

Instance Initialisation

Each time an instance is created, its initializemethod is invoked. We re-
define this method to set the separator value to the string >.

TCMessage >> initialize
super initialize.
separator := '>'.

Now we create a class method named from:text: to instantiate a message
(a class method is a method that will be executed on a class and not on an
instance of this class):

TCMessage class >> from: aSender text: aText
^ self new sender: aSender; text: aText; yourself

The message yourself returns the message receiver: this way we ensure
that the returned object is the new instance and not the value returned by
the text: message. This definition is equivalent to the following:

TCMessage class >> from: aSender text: aText
| instance |
instance := self new.
instance sender: aSender; text: aText.
^ instance

Converting a Message Object into a String

We add the method printOn: to transform a message object into a character
string. The model we use is sender-separator-text-crlf. Example: ’john>hello
!!!’. The method printOn: is automatically invoked by the method printString.
This method is invoked by tools such as the debugger or object inspector.

TCMessage >> printOn: aStream

aStream
<< self sender; << separator;
<< self text; << String crlf

3

TinyChat: a Fun and Small Chat Client/Server

Building a Message from a String

We also define two methods to create a message object from a plain string of
the form: 'olivier>tinychat is cool'.

First we create the method fromString: filling up the instance variables
of an instance. It will be invoked like this: TCMessage new fromString:
'olivier>tinychat is cool', then the class method fromString: which
will first create the instance.

TCMessage >> fromString: aString
"Compose a message from a string of this form 'sender>message'."
| items |
items := aString substrings: separator.
self sender: items first.
self text: items second.

You can test the instance method with the following expression TCMessage
new fromString: 'olivier>tinychat is cool'.

TCMessage class >> fromString: aString
^ self new
fromString: aString;
yourself

When you execute the following expression TCMessage fromString: 'olivier>tinychat
is cool' you should get a message. We are now ready to work on the server.

1.4 The Chat Server

For the server, we are going to define a class to manage a message queue.
This is not really mandatory but it allows us to separate responsibilities.

Storing Messages

Create the class TCMessageQueue in the package TinyChat-Server.

Object subclass: #TCMessageQueue
instanceVariableNames: 'messages'
classVariableNames: ''
category: 'TinyChat-server'

The messages instance variable is an ordered collection whose elements are
instances TCMessage. An OrderedCollection is a collection which dynam-
ically grows when elements are added to it. We add an instance initialize
method so that each new instance gets a proper messages collection.

TCMessageQueue >> initialize
super initialize.
messages := OrderedCollection new.

4

1.4 The Chat Server

Basic Operations on Message List

We should be able to add, clear the list, and count the number of messages,
so we define three methods: add:, reset, and size.

TCMessageQueue >> add: aMessage
messages add: aMessage

TCMessageQueue >> reset
messages removeAll

TCMessageQueue >> size
^ messages size

List of Messages from a Position

When a client asks the server about the list of the last exchanged messages,
it mentions the index of the last message it knows. The server then answers
the list of messages received since this index.

TCMessageQueue >> listFrom: aIndex
^ (aIndex > 0 and: [aIndex <= messages size])
ifTrue: [messages copyFrom: aIndex to: messages size]
ifFalse: [#()]

Message Formatting

The server should be able to transfer a list of messages to its client given an
index. We add the possibility to format a list of messages (given an index).
We define the method formattedMessagesFrom: using the formatting of a
single message as follows:

TCMessageQueue >> formattedMessagesFrom: aMessageNumber

^ String streamContents: [:formattedMessagesStream |
(self listFrom: aMessageNumber)

do: [:m | formattedMessagesStream << m printString]
]

Note how the streamContents: lets us manipulate a stream of characters.

The Chat Server

The core of the server is based on the Teapot REST framework. It supports
the sending and receiving of messages. In addition this server keeps a list of
messages that it communicates to clients.

5

TinyChat: a Fun and Small Chat Client/Server

TCServer Class Creation

We create the class TCServer in the TinyChat-Server package.

Object subclass: #TCServer
instanceVariableNames: 'teapotServer messagesQueue'
classVariableNames: ''
category: 'TinyChat-Server'

The instance variable messagesQueue represents the list of received and sent
messages. We initialize it like this:

TCServer >> initialize
super initialize.
messagesQueue := TCMessageQueue new.

The instance variable teapotServer refers to an instance of the Teapot
server that we will create using the method initializePort:

TCServer >> initializePort: anInteger
teapotServer := Teapot configure: {
#defaultOutput -> #text.
#port -> anInteger.
#debugMode -> true

}.
teapotServer start.

The HTTP routes are defined in the method registerRoutes. Three opera-
tions are defined:

• GET messages/count: returns to the client the number of messages
received by the server,

• GET messages/<id:IsInteger>: the server returns messages from an
index, and

• POST /message/add: the client sends a new message to the server.

TCServer >> registerRoutes
teapotServer
GET: '/messages/count' -> (Send message: #messageCount to: self);
GET: '/messages/<id:IsInteger>' -> (Send message: #messagesFrom:
to: self);
POST: '/messages/add' -> (Send message: #addMessage: to: self)

Here we express that the path message/count will execute the message
messageCount on the server itself. The pattern <id:IsInteger> indicates
that the argument should be expressed as number and that it will be con-
verted into an integer.

Error handling is managed in the method registerErrorHandlers. Here we
see how we can get an instance of the class TeaResponse.

6

1.4 The Chat Server

TCServer >> registerErrorHandlers
teapotServer
exception: KeyNotFound -> (TeaResponse notFound body: 'No such
message')

Starting the server is done in the class method TCServer class>>startOn:
that gets the TCP port as argument.

TCServer class >> startOn: aPortNumber
^self new
initializePort: aPortNumber;
registerRoutes;
registerErrorHandlers;
yourself

We should also offer the possibility to stop the server. The method stop
stops the teapot server and empties the message list.

TCServer >> stop
teapotServer stop.
messagesQueue reset.

Since there is a chance that you may execute the expression TCServer startOn:
multiple times, we define the class method stopAll which stops all the servers
by iterating over all the instances of the class TCServer. The method TCServer
class>>stopAll stops each server.

TCServer class >> stopAll
self allInstancesDo: #stop

Server Logic

Now we should define the logic of the server. We define a method addMessage
that extracts the message from the request. It adds a newly created message
(instance of class TCMessage) to the list of messages.

TCServer >> addMessage: aRequest
messagesQueue add: (TCMessage from: (aRequest at: #sender) text:

(aRequest at: #text)).

The method messageCount gives the number of received messages.

TCServer >> messageCount
^ messagesQueue size

The method messageFrom: gives the list of messages received by the server
since a given index (specified by the client). The messages returned to the
client are a string of characters. This is definitively a point to improve - us-
ing string is a poor choice here.

TCServer >> messagesFrom: request
^ messagesQueue formattedMessagesFrom: (request at: #id)

7

TinyChat: a Fun and Small Chat Client/Server

Figure 1.2 Testing the server.

Now the server is finished and we can test it. First let us begin by starting it:

TCServer startOn: 8181

Now we can verify that it is running either with a web browser (figure 1.2),
or with a Zinc expression as follows:

ZnClient new url: 'http://localhost:8181/messages/count' ; get

Shell lovers can also use the curl command:

curl http://localhost:8181/messages/count

We can also add a message the following way:

ZnClient new
url: 'http://localhost:8181/messages/add';
formAt: 'sender' put: 'olivier';
formAt: 'text' put: 'Super cool ce tinychat' ; post

1.5 The Client

Now we can concentrate on the client part of TinyChat. We decomposed the
client into two classes:

• TinyChat is the class that defines the connection logic (connection,
send, and message reception),

8

1.5 The Client

• TCConsole is a class defining the user interface.

The logic of the client is:

• During client startup, it asks the server the index of the last received
message,

• Every two seconds, it requests from the server the messages exchanged
since its last connection. To do so, it passes to the server the index of
the last message it got.

TinyChat Class

We now define the class TinyChat in the package TinyChat-client.

Object subclass: #TinyChat
instanceVariableNames: 'url login exit messages console

lastMessageIndex'
classVariableNames: ''
category: 'TinyChat-client'

This class defines the following instance variables:

• url that contains the server url,

• login a string identifying the client,

• messages is an ordered collection containing the messages read by the
client,

• lastMessageIndex is the index of the last message read by the client,

• exit controls the connection. While exit is false, the client regularly
connects to the server to get the unread messages

• console refers to the graphical console that allows the user to enter
and read messages.

We initialize these variables in the following instance initializemethod.

TinyChat >> initialize
super initialize.
exit := false.
lastMessageIndex := 0.
messages := OrderedCollection new.

HTTP Commands

Now, we define methods to communicate with the server. They are based
on the HTTP protocol. Two methods will format the request. One, which does
not take an argument, builds the requests /messages/add and /messages/count.
The other has an argument used to get the message given a position.

9

TinyChat: a Fun and Small Chat Client/Server

TinyChat >> command: aPath
^'{1}{2}' format: { url . aPath }

TinyChat >> command: aPath argument: anArgument
^'{1}{2}/{3}' format: { url . aPath . anArgument asString }

Now that we have these low-level operations we can define the three HTTP
commands of the client as follows:

TinyChat >> cmdLastMessageID
^ self command: '/messages/count'

TinyChat >> cmdNewMessage
^self command: '/messages/add'

TinyChat >> cmdMessagesFromLastIndexToEnd
"Returns the server messages from my current last index to the

last one on the server."
^ self command: '/messages' argument: lastMessageIndex

Now we can create commands but we need to emit them. This is what we
look at now.

Client Operations

We need to send the commands to the server and to get back information
from the server. We define two methods. The method readLastMessageID
returns the index of the last message received from the server.

TinyChat >> readLastMessageID
| id |
id := (ZnClient new url: self cmdLastMessageID; get) asInteger.
id = 0 ifTrue: [id := 1].
^ id

The method readMissingMessages adds the last messages received from the
server to the list of messages known by the client. This method returns the
number of received messages.

TinyChat >> readMissingMessages
"Gets the new messages that have been posted since the last

request."
| response receivedMessages |
response := (ZnClient new url: self cmdMessagesFromLastIndexToEnd;

get).
^ response
ifNil: [0]
ifNotNil: [

receivedMessages := response substrings: (String crlf).
receivedMessages do: [:msg | messages add: (TCMessage

fromString: msg)].

10

1.5 The Client

receivedMessages size.
].

We are now ready to define the refresh behavior of the client via the method
refreshMessages. It uses a light process to read the messages received from
the server at a regular interval. The delay is set to 2 seconds. (The message
fork sent to a block (a lexical closure in Pharo) executes this block in a light
process). The logic of this method is to loop as long as the client does not
specify to stop via the state of the exit variable.

The expression (Delay forSeconds: 2) wait suspends the execution of
the process in which it is executed for a given number of seconds.

TinyChat >> refreshMessages
[
[exit] whileFalse: [

(Delay forSeconds: 2) wait.
lastMessageIndex := lastMessageIndex + (self

readMissingMessages).
console print: messages.

]
] fork

The method sendNewMessage: posts the message written by the client to the
server.

TinyChat >> sendNewMessage: aMessage
^ ZnClient new
url: self cmdNewMessage;
formAt: 'sender' put: (aMessage sender);
formAt: 'text' put: (aMessage text);
post

This method is used by the method send: that gets the text written by the
user. The string is converted into an instance of TCMessage. The message
is sent and the client updates the index of the last message it knows, then it
prints the message in the graphical interface.

TinyChat >> send: aString
"When we send a message, we push it to the server and in addition

we update the local list of posted messages."

| msg |
msg := TCMessage from: login text: aString.
self sendNewMessage: msg.
lastMessageIndex := lastMessageIndex + (self readMissingMessages).
console print: messages.

We should also handle the server disconnection. We define the method disconnect
that sends a message to the client indicating that it is disconnecting and also
stops the connecting loop of the server by putting exit to true.

11

TinyChat: a Fun and Small Chat Client/Server

TinyChat >> disconnect
self sendNewMessage: (TCMessage from: login text: 'I exited from

the chat room.').
exit := true

Client Connection Parameters

Since the client should contact the server on specific ports, we define a method
to initialize the connection parameters. We define the class method TinyChat
class>>connect:port:login: so that we can connect the following way
to the server: TinyChat connect: 'localhost' port: 8080 login:
'username'
TinyChat class >> connect: aHost port: aPort login: aLogin

^ self new
host: aHost port: aPort login: aLogin;
start

TinyChat class>>connect:port:login: uses the method host:port:login:.
This method just updates the url instance variable and sets the login as
specified.

TinyChat >> host: aHost port: aPort login: aLogin
url := 'http://' , aHost , ':' , aPort asString.
login := aLogin

Finally we define a method start: which creates a graphical console (that
we will define later), tells the server that there is a new client, and gets the
last message received by the server. Note that a good evolution would be to
decouple the model from its user interface by using notifications.

TinyChat >> start
console := TCConsole attach: self.
self sendNewMessage: (TCMessage from: login text: 'I joined the

chat room').
lastMessageIndex := self readLastMessageID.
self refreshMessages.

User Interface

The user interface is composed of a window with a list and an input field as
shown in Figure 1.1.

ComposablePresenter subclass: #TCConsole
instanceVariableNames: 'chat list input'
classVariableNames: ''
category: 'TinyChat-client'

Note that the class TCConsole inherits from ComposablePresenter. This
class is the root of the user interface logic classes. TCConsole defines the

12

1.5 The Client

logic of the client interface (i.e. what happens when we enter text in the in-
put field...). Based on the information given in this class, the Spec user in-
terface builder automatically builds the visual representation. The chat in-
stance variable is a reference to an instance of the client model TinyChat
and requires a setter method (chat:). The list and input instance variables
both require an accessor. This is required by the User Interface builder.

TCConsole >> input
^ input

TCConsole >> list
^ list

TCConsole >> chat: anObject
chat := anObject

We set the title of the window by defining the method title.

TCConsole >> title
^ 'TinyChat'

Now we should specify the layout of the graphical elements that compose the
client. To do so we define the class method TCConsole class>>defaultSpec.
Here we need a column with a list and an input field placed right below.

TCConsole class >> defaultSpec
<spec: #default>

^ SpecLayout composed
newColumn: [:c |

c add: #list; add: #input height: 30]; yourself

We should now initialize the widgets that we will use. The method initializeWidgets
specifies the nature and behavior of the graphical components. The message
acceptBlock: defines the action to be executed then the text is entered in
the input field. Here we send it to the chat model and empty it.

TCConsole >> initializeWidgets

list := ListModel new.
input := TextInputFieldModel new
ghostText: 'Type your message here...';
enabled: true;
acceptBlock: [:string |

chat send: string.
input text: ''].

self focusOrder add: input.

The method print displays the messages received by the client and assigns
them to the list contents.

13

TinyChat: a Fun and Small Chat Client/Server

Figure 1.3 Server access.

TCConsole >> print: aCollectionOfMessages
list items: (aCollectionOfMessages collect: [:m | m printString

])

Note that this method is invoked by the method refreshMessages and that
changing all the list elements when we add just one element is rather ugly
but ok for now.

Finally we need to define the class method TCConsole class>>attach:
that gets the client model as argument. This method opens the graphical el-
ements and puts in place a mechanism that will close the connection as soon
as the client closew the window.

TCConsole class >> attach: aTinyChat
| window |
window := self new chat: aTinyChat.
window openWithSpec whenClosedDo: [aTinyChat disconnect].
^ window

Now you can chat with your server. The example resets the server and opens
two clients.

| tco tcs |
TCServer stopAll.
TCServer startOn: 8080.
tco := TinyChat connect: 'localhost' port: 8080 login: 'olivier'.
tco send: 'hello'.
tcs := TinyChat connect: 'localhost' port: 8080 login: 'Stef'.
tcs send: 'salut olivier'

1.6 Conclusion

We show that creating a REST server is really simple with Teapot. TinyChat
provides a fun context to explore programming in Pharo and we hope that

14

1.6 Conclusion

you like it. We designed TinyChat so that it favors extensions and explo-
ration. Here is a list of possible extensions.

• Using JSON or STON to exchange information and not plain strings.

• Making sure that the clients can handle a failure of the server.

• Adding only the necessary messages to the list in the graphical client.

• Managing concurrent access in the server message collection (if the
server should handle concurrent requests the current implementation
is not correct).

• Managing connection errors.

• Getting the list of connected users.

• Editing the delay to check for new messages.

There are probably more extensions and we hope that you will have fun ex-
ploring some. The code of the project is available at http://www.smalltalkhub.

com/#!/~olivierauverlot/TinyChat.

15

http://www.smalltalkhub.com/#!/~olivierauverlot/TinyChat
http://www.smalltalkhub.com/#!/~olivierauverlot/TinyChat

	TinyChat: a Fun and Small Chat Client/Server
	Objectives and Architecture
	Loading Teapot
	Message Representation
	Class TCMessage
	Accessor Creation
	Instance Initialisation
	Converting a Message Object into a String
	Building a Message from a String

	The Chat Server
	Storing Messages
	Basic Operations on Message List
	List of Messages from a Position
	Message Formatting

	The Chat Server
	TCServer Class Creation
	Server Logic

	The Client
	TinyChat Class
	HTTP Commands
	Client Operations
	Client Connection Parameters
	User Interface

	Conclusion

