1.1

1.2

CHAPTER

TinyChat

Pharo permet la définition en quelques dizaines de lignes un server REST
grace au package Teapot qui étend Zinc, le superbe client/server HTTP de
Pharo développé par la société BetaNine et offert gracieusement a la commu-
nauté. L'objectif de ce chapitre est de vous faire développer en cinq classes,
une application de chat client/server avec un client graphique. Cette pe-

tite aventure vous permettra de vous familiariser avec Pharo et de voir I'ai-
sance avec laquelle un server REST peut étre défini. Développée en quelques
heures, TinyChat a été congu comme une application pédagogique. Dans cet
objectif, a la fin de I’article nous proposons une liste d’améliorations possi-
bles.

Objectifs et architecture

Nous allons donc construire un serveur de discussion (chat) et un client per-
mettant de s’y connecter (voir figure 1.1).

La communication entre le client et le serveur sera basée sur HTTP et REST.
En plus des classes TCServer et TinyChat (le client), nous définirons trois
autres classes : la classe TCMessage qui représente les messages échangés
(dans le future vous pourrez étendre TinyChat pour échanger des éléments
plus structurés comme JSON ou STON le format textuel Pharo.), la classe
TCMessageQueue qui stocke les messages et TCConsole 'interface graphique.

Chargeons Teapot

Teapot est hébergé sur https://github.com/zeroflag/Teapot Vous pouvez utiliser
I'expression suivante pour le charger.

https://github.com/zeroflag/Teapot

1.3

TinyChat

- —
x -0 TinyChat - x -0 TinyChat ~
Stephane>I joined the chat room Olivier>! joined the chat room
Olivier>hello Stéphane>l joined the chat room
Olivier>hello Stef Olivier>hello

Stéphane>hello olivier Olivier>hello Stef
Olivier>Tinychat est vraiment sympa Stéphane>hello olivier
Olivier>Tinychat est vraiment sympa

Figure 1.1 Chatting avec TinyChat

Metacello new
baseline: 'Teapot';
repository: 'github://zeroflag/teapot:master/source';
load.

Représentation d'un message

Un message est un objet trés simple avec un texte et un identifiant pour
I’émetteur.

Classe TCMessage

Nous définissons la classe TCMessage dans le package TinyChat.

Object subclass: #TCMessage
instanceVariableNames: 'sender text separator'
classVariableNames: "'
category: 'TinyChat'

Les variables d’instances sont les suivantes:
« sender : le login de I'expéditeur,
+ text: le texte du message,

* separator : un caractére séparateur pour I'affichage.

Créez les accesseurs pour les variables d'instance ‘sender’ et "text’

Nous créons les accesseurs suivants:

TCMessage >> sender
~ sender

TCMessage >> sender: anObject
sender := anObject

1.3 Représentation d'un message

TCMessage >> text
~ text

TCMessage >> text: anObject
text := anObject

Initialisation de la classe

La méthode initialize définit la valeur du caractére séparateur.

TCMessage >> initialize
super initialize.
separator := '>'.

La méthode de classe TCMessage class>>from:text: permet d’'instancier
un message :
TCMessage class >> from: aSender text: aText

* self new sender: aSender; text: aText; yourself

Le message yourself rend le receveur du message : c’est une maniére de

s’assurer que le nouvel objet créé sera bien retourné par le message from: text:

et non le résultat du message text:.

Convertir un message en chaine de caractéres

Nous ajoutons une méthode printOn: pour transformer le message en une
chaine de caractéres. Le modéle de la chaine est sender-separator-text-crlf.
Exemple: ’john>hello !!!". La méthode printOn: est invoquée par la méthode
printString. Il est important de comprendre que la méthode printOn: est
invoquée par les outils tels que le débogueur ou 'inspecteur d’objets.

TCMessage >> printOn: aStream

aStream
<< self sender; << separator;
<< self text; << String crlf

Construire un message a partir d'une chaine de caractéres

Nous devons également définir deux méthodes pour créer un message a par-
tir d’'une chaine, ayant la forme: 'olivier>tinychat est cool'. Tout
d’abord, créons une méthode de classe qui sera invoquée de la maniére suiv-
ante: TCMessage fromString: 'olivier>tinychat est cool’, puisla
méthode d’instance remplissant les variables de I'objet préalablement créé.

TCMessage class >> fromString: aString
~ self new
fromString: aString;
yourself

1.4

TinyChat

TCMessage >> fromString: aString
"Compose a message from a string of this form 'sender>message'."
| items |
items := aString substrings: separator.
self sender: items first.
self text: items second.

Maintenant nous sommes préts pour définir le serveur.

Le serveur

Pour le serveur, nous allons définir une classe pour gérer une queue de mes-
sages. Ce n’est pas vraiment nécessaire mais cela permet de bien identifier
les responsabilités.

Stockage des messages
Créez la classe TCMessageQueue dans le package TinyChat-Server.

Object subclass: #TCMessageQueue
instanceVariableNames: 'messages’
classVariableNames: "'
category: 'TinyChat-server'

La variable d’instance messages est une collection ordonnée donc le contenu
est composé d’instances de TCMessage. Une OrderedCollection est une col-
lection qui s’agrandit dynamiquement lors d’ajouts.

TCMessageQueue >> initialize
super initialize.
messages := OrderedCollection new.

Opérations de bases sur la liste des messages

On doit pouvoir ajouter un message add:, effacer la liste avec reset et con-
naitre le nombre de messages avec size.

>TCMessageQueue >> add: aMessage
messages add: aMessage

TCMessageQueue >> reset
messages removeAll

TCMessageQueue >> size
" messages size

1.4 Leserveur

Obtenir la liste des messages a partir d'une position

Lorsqu’un client demande au serveur la liste des derniers messages échangés,
il indique au serveur I'index du dernier message qu’il connait. Le serveur
répond alors la liste des messages regus depuis cet index.

TCMessageQueue >> listFrom: aIndex
~ (aIndex > 0 and: [aIndex <= messages sizel)
ifTrue: [messages copyFrom: aIndex to: messages size]
ifFalse: [#() 1

Formatage des messages

La classe TCMessageQueue doit pouvoir formater une liste de messages (a
partir d’un index) en une chaine de caractéres que le serveur pourra trans-
mettre au client. On ajoute ensuite une méthode a la classe TCMessageQueue
pour construire une seule chaine de caractéres a partir de chaque chaine de
caractéres produite par chaque message :

TCMessageQueue >> formattedMessagesFrom: aMessageNumber

A

String streamContents: [:formattedMessagesStream |
(self listFrom: aMessageNumber)
do: [:m | formattedMessagesStream << m printString]

]

Le Serveur de Chat

Le coeur du serveur est basé sur le framework REST Teapot, permettant I’en-
voi et la réception des messages. Il maintient en plus une liste de messages
qu’il communique aux clients.

Créez la classe TCServer dans le package TinyChat-Server

Object subclass: #TCServer
instanceVariableNames: 'teapotServer messagesQueue'
classVariableNames: ''
category: 'TinyChat-Server'

La variable d’instance messagesQueue référence la liste des messages regus
et envoyés par le serveur.

TCServer >> initialize
super initialize.
messagesQueue := TCMessageQueue new.

La variable d’instance teapotServer référence I'instance du serveur TeaPot
que 'on créée a 'aide de la méthode initializePort:

TinyChat

[TcServer >> initializePort: anInteger
teapotServer := Teapot configure: {
#defaultOutput -> #text.
#port -> anlnteger.
#debugMode -> true
.

teapotServer start.

Le routage HTTP est défini dans la méthode registerRoutes. Trois opéra-
tions sont définies :

 GET messages/count : retourne au client le nombre de messages recus
par le serveur,

+ GET messages/<id:IsInteger>: le serveur retourne les messages a
partir de I'index indiqué dans la requéte HTTP,

« POST /message/add : le client envoie un message au serveur.

TCServer >> registerRoutes
teapotServer
GET: '/messages/count' -> (Send message: #messageCount to: self);
GET: '/messages/<id:IsInteger>' -> (Send message: #messagesFrom:
to: self);
POST: '/messages/add' -> (Send message: #addMessage: to: self)

Nous exprimons ici que le chemin message/count va donner lieu a I'execu-

tion du message messageCount sur le serveur lui-méme. Le pattern <id:IsInteger>
indique que I'argument doit étre exprimé sous forme de nombre et qu’il sera
converti en un entier.

La gestion des erreurs est construite dans la méthode registerErrorHandlers.
Ici on voit comment on construit une instance de la classe TeaResponse.

TCServer >> registerErrorHandlers
teapotServer
exception: KeyNotFound -> (TeaResponse notFound body: 'No such
message')

Le démarrage du serveur est confié a la méthode TCServer class>>startOn:
qui regoit le numéro de port TCP en parameétre.

TCServer class >> startOn: aPortNumber

“self new
initializePort: aPortNumber;
registerRoutes;
registerErrorHandlers;
yourself

1l faut également gérer 'arrét du serveur. La méthode stop met fin a 'exécu-
tion du serveur TeaPot et vide la liste des message.

1.4 Leserveur

TCServer >> stop
teapotServer stop.
messagesQueue reset.

Comme il est probable que vous executiez plusieurs fois 'expression TCServer
startOn:, nous définissons la méthode de classe stopAll qui stoppe tous les
serveurs en récuperant toutes les instance de la classe. La méthode TCServer
class>>stopAll demande I'arrét de chaque instance du serveur.

TCServer class >> stopAll
self allInstancesDo: #stop

Traitements réalisés par le serveur

La méthode addMessage extrait de la requéte du client le message posté. Elle
ajoute a la liste des messages une nouvelle instance de TCMessage.

[TCServer >> addMessage: aRequest
messagesQueue add: (TCMessage from: (aRequest at: #sender) text:
(aRequest at: #text)).

La méthode messageCount retourne le nombre de messages regus.

TCServer >> messageCount
* messagesQueue size

La méthode messageFrom: retourne la liste des messages regus par le serveur
depuis I'index indiqué par le client. Les messages sont retournés au client
sous la forme d’une chaine de caractéres. Ce point sera définitivement a
améliorer.

TCServer >> messagesFrom: request
* messagesQueue formattedMessagesFrom: (request at: #id)

Nous en avons fini avec le server. Nous pouvons maintenant le tester un peu.
Commencgons par le lancer :

[TCServer startOn: 8181
Maintenant nous pouvons soit vérifier avec un navigateur web (figure 1.2),
soit a I'aide du client/serveur Zinc disponible par défaut dans Pharo.

[ZnClient new url: 'http://localhost:8181/messages/count' ; get

Les amateurs du shell peuvent également utiliser la commande curl

[curl http://localhost:8181/messages/count

Nous pouvons aussi ajouter un message de la maniére suivante :

ZnClient new
url: 'http://localhost:8181/messages/add’;
i formAt: 'sender' put: 'olivier';

TinyChat

¢l >»|

Figure 1.2 Testons le serveur.

L formAt: 'text' put: 'Super cool ce tinychat' ; post

1.5 Leclient
Maintenant, nous pouvons nous concentrer sur la partie client de TinyChat.

Le client se compose de deux classes:

+ TinyChat est la classe contenant la logique métier (connexion, envoi et
réception des messages),

+ TCConsole est une classe définissant 'interface graphique.
La logique du client est la suivante:

+ Au lancement du client, celui-ci demande au serveur I'index du dernier
message regu,

+ Toutes les deux secondes, le client se connecte au serveur pour lire les
messages échangés depuis sa derniére connexion. Pour cela, il trans-
met au serveur I'index du dernier message dont il a eu connaissance.

De plus, lorsque le client transmet un message au serveur, il en profite pour
également lire les messages échangés depuis sa derniére connexion.

1.5 Leclient

La classe TinyChat

Nous créons la classe TinyChat dans le package TinyChat-client.

Object subclass: #TinyChat
instanceVariableNames: 'url login exit messages console
lastMessageIndex'
classVariableNames:
category: 'TinyChat-client'

Cette classe définit les variables suivantes:
« url contient I'url HTTP permettant au client de se connecter au serveur,
+ login est une chaine de caractéres identifiant le client,

+ messages est une variable d’instance contenant les messages lus par le
client,

+ lastMessagelndex est le numéro du dernier message lu par le client,

+ exit est une valeur booléenne. Tant que cette valeur est vraie, le client
se connecte 2 intervalle régulier au serveur pour lire les messages
échangés depuis sa derniére connexion,

« console pointe sur I'instance de la console graphique permettant a
I'utilisateur de saisir et de consulter les messages.

Nous initialisons les variables qui le nécessitent dans la méthode initialize
suivante.

TinyChat >> initialize
super initialize.

exit := false.
lastMessageIndex := 0.
messages := OrderedCollection new.

Définir les commandes HTTP

Nous définissons les méthodes pour communiquer avec le serveur. Elles re-
spectent le protocole HTTP.

Deux méthodes permettent de formater la requéte. L'une n’a pas d’argument
et permet de construire les requétes /messages/add et /messages/count.
L’autre a un argument qui est utilisé pour la lecture des messages a partir
d’une position.
TinyChat >> command: aPath

~t{1}{2}"' format: { url . aPath }

TinyChat >> command: aPath argument: anArgument
~{1}{2}/{3}" format: { url . aPath . anArgument asString }

11 suffit ensuite de définir les trois commandes HTTP du client:

TinyChat

ETinyChat >> cmdLastMessagelID
* self command: '/messages/count'

TinyChat >> cmdNewMessage
“self command: '/messages/add'

TinyChat >> cmdMessagesFromLastIndexToEnd
"Returns the server messages from my current last index to the
last one on the server."
~ self command: '/messages' argument: lastMessageIndex

Gérer les opérations du client

Nous avons besoin d’émettre ces commandes et de pouvoir récupérer des
informations a partir du serveur. Pour cela, nous définissons deux méthodes.
La méthode readLastMessagelD retourne I'index du dernier message regu
par le serveur.

TinyChat >> readlLastMessageID
| id |
id := (ZnClient new url: self cmdLastMessageID; get) asInteger.
id = 0 ifTrue: [id := 1].
~id

La méthode readMissingMessages ajoute les derniers messages recus par le
serveur 2 la liste des messages connus par le client. Cette méthode retourne
le nombre de messages récupérés.

[TinyChat >> readMissingMessages
"Gets the new messages that have been posted since the last

request.”
| response receivedMessages |
response := (ZnClient new url: self cmdMessagesFromLastIndexToEnd;
get).
~ response
ifNil: [0]
ifNotNil: [
receivedMessages := response substrings: (String crlf).

receivedMessages do: [:msg | messages add: (TCMessage
fromString: msg) 1.
receivedMessages size.

1.

Nous sommes prét a définir le comportement de rafraichissement du client
avec la méthode refreshMessages. Elle utilise un processus léger pour lire &
intervalle régulier les messages regus par le serveur. Le délai est fixé a deux
secondes. Le message fork envoyé a un bloc (une fermeture lexical en Pharo)
exécute ce bloc dans un processus léger. La logique est de boucler tant que

le client ne spécifie pas que veut s’arréter via la variable exit. L’expression

10

1.5 Leclient

(Delay forSeconds: 2) wait suspend I’exécution du processus léger dans
lequel elle se trouve pendant un certain nombre de secondes.

ETinyChat >> refreshMessages
[
[exit] whileFalse: [
(Delay forSeconds: 2) wait.
lastMessageIndex := lastMessageIndex + (self
readMissingMessages).
console print: messages.
1
1 fork

La méthode sendNewMessage: poste le message de l'utilisateur au serveur.

ETinyChat >> sendNewMessage: aMessage
~ ZnClient new
url: self cmdNewMessage;
formAt: 'sender' put: (aMessage sender);
formAt: 'text' put: (aMessage text);
post

Cette méthode est utilisée par la méthode send: qui regoit en parameétre le
texte saisi par l'utilisateur. La chaine de caracteres est alors convertie en une
instance de TCMessage. Le message est envoyé. Le client met a jour I'index
du dernier message connu et déclenche 'affichage du message dans 'inter-
face graphique.

ETinyChat >> send: aString
"When we send a message, we push it to the server and in addition
we update the local list of posted messages."

| msg |

msg := TCMessage from: login text: aString.

self sendNewMessage: msg.

lastMessageIndex := lastMessageIndex + (self readMissingMessages).
console print: messages.

La déconnexion du client est gérée par la méthode disconnect qui envoie
un message au serveur pour signaler le départ de I'utilisateur et met fin a la
boucle de récupération périodique des messages.

TinyChat >> disconnect
self sendNewMessage: (TCMessage from: login text: 'I exited from
the chat room.').
exit := true

Fixer les parametres du client

Pour initialiser les parameétres de connexion, on définit une méthode de class
TinyChat class>>connect:port:login:. Cette méthode permet de se con-

1

TinyChat

necter de la maniére suivante : TinyChat connect: 'localhost' port:
8080 login: 'username'

TinyChat class >> connect: aHost port: aPort login: alLogin

~ self new
host: aHost port: aPort login: alLogin;
start

Le code appelle la méthode host:port:login:. Cette méthode met a jour
la variable d’instance url en construisant I'URL et en affectant le nom de
l'utilisateur a la variable d’instance login.

TinyChat >> host: aHost port: aPort login: alLogin
url := 'http://' , aHost , ':' , aPort asString.
login := alogin

La méthode start envoie un message au serveur pour présenter I'utilisateur,
récupeérer I'index du dernier message regu par le serveur et mettre 2 jour la
liste des messages connus par le client. C’est également cette méthode qui
initialise I'interface graphique de 'utilisateur. Une évolution pourrait étre de
décoreller le modéle de son interface graphique en utilisant une conception
basée sur des évenements.

TinyChat >> start
console := TCConsole attach: self.
self sendNewMessage: (TCMessage from: login text: 'I joined the
chat room').
lastMessageIndex := self readLastMessageID.
self refreshMessages.

Création de l'interface graphique

L’'interface graphique est composée d’une fenétre contenant une liste et un
champ de saisie comme montré dans la figure 1.1.

ComposablePresenter subclass: #TCConsole
instanceVariableNames: 'chat list input'
classVariableNames: "'
category: 'TinyChat-client'

La variable d’instance chat est une référence a une instance de la classe
TinyChat et nécessite uniquement un accesseur en écriture. Les variables
d’instance list et input dispose chacune d’un accesseur en lecture. Ceci est
imposé par Spec le constructeur d’interface.

TCConsole >> input
* input

TCConsole >> list
~ list

12

1.5 Leclient

TCConsole >> chat: anObject
chat := anObject

L'interface graphique a un titre pour la fenétre. Pour le définir, il faut écrire
une méthode title.

TCConsole >> title
~ 'TinyChat'

La méthode de classe TCConsole class>>attach: regoit en argument I'in-
stance du client de chat avec lequel 'interface graphique va étre utilisée.
Cette méthode déclenche I'ouverture de la fenétre et met en place 1'événe-
ment gérant la fermeture de celle ci et donc, provoquant la déconnexion du

client.

TCConsole class >> attach: aTinyChat

| window |

window := self new chat: aTinyChat.

window openWithSpec whenClosedDo: [aTinyChat disconnect].
* window

La méthode TCConsole class>>defaultSpec définit la mise en page des
composants contenus dans la fenétre. Ici nous avons une colonne avec une
liste et un champ de saisie placé juste en dessous.

TCConsole class >> defaultSpec
<spec: #default>

~ SpeclLayout composed
newColumn: [:c |
c add: #list; add: #input height: 30]; yourself

La méthode initializeWidgets spécifie la nature et le comportement des
composants graphiques. Ainsi le acceptBlock: permet de définir I'action
a exécuter lorsque le texte est entré dans le champ de saisie. Ici nous I'en-
voyons a client et nous le vidons.

[TCConsole >> initializewidgets

list := ListModel new.
input := TextInputFieldModel new
ghostText: 'Type your message here...';
enabled: true;
acceptBlock: [:string |
chat send: string.
input text: '' 1.
self focusOrder add: input.

La méthode print affiche les messages recus par le client en les affectant au
contenu de la liste.

13

1.6

TinyChat

Iceweasel
http:/local.../messages/2 % | 4
€ @locathost v &| |Bv Google Ql »

Stéphane>T_joined the chat room
Oliviershello

Oliviershello Stef

Stéphane>hello olivier
OliviersTinyChat est vrainent synpa

Figure 1.3 Acces direct au server.

TCConsole >> print: aCollectionOfMessages
list items: (aCollectionOfMessages collect: [:m | m printString

D

Notez que cette méthode est invoquée par la méthode refreshMessages et
que changer tous les éléments de la liste a chaque ajout d’un nouveau mes-
sages est peu élégant mais 'exemple se veut volontairement simple.

Voila vous pouvez maintenant chatter avec votre serveur.

Conclusion

Nous avons montré que la création d’un serveur REST est extrémement sim-
ple avec Teapot. La définition de TinyChat donne un cadre ludique a 'ex-
ploration de la programmation en Pharo et nous esperons que vous avez
apprécié cette ballade. TinyChat est une petite application que nous avons
développé de maniére trés simple afin de vous permettre de I’étendre et
d’expérimenter. Voici une liste d’améliorations : gestion parcimonieuse

des ajouts d’éléments dans la liste graphique, gestion d’accés concurrents
dans la collection sur le serveur (en effet, si le serveur pouvait recevoir des
requétes concurrentes la structure de donnée utilisée n’est pas adéquate),
gestion des erreurs de connexion, rendre les clients robustes a la ferme-
ture du serveur, obtenir la liste des personnes connectées, pouvoir définir le
délai de récupération des messages, utiliser JSON pour le transport des mes-
sages, afficher le nom de la personne connectée dans la fenétre. Le projet est
disponible a I'adresse http://www.smalltalkhub.com/#!/~olivierauverlot/TinyChat.
A vous de jouer!

14

http://www.smalltalkhub.com/#!/~olivierauverlot/TinyChat

	TinyChat
	Objectifs et architecture
	Chargeons Teapot
	Représentation d'un message
	Classe TCMessage
	Créez les accesseurs pour les variables d'instance 'sender' et 'text'
	Initialisation de la classe
	Convertir un message en chaîne de caractères
	Construire un message à partir d'une chaîne de caractères

	Le serveur
	Stockage des messages
	Opérations de bases sur la liste des messages
	Obtenir la liste des messages à partir d'une position
	Formatage des messages

	Le Serveur de Chat
	Créez la classe TCServer dans le package TinyChat-Server
	Traitements réalisés par le serveur

	Le client
	La classe TinyChat
	Définir les commandes HTTP
	Gérer les opérations du client
	Fixer les paramètres du client
	Création de l'interface graphique

	Conclusion

