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What You Will Learn

e What is an iterator?
e Understand the power of iterators
e Offer an overview of iterators in Pharo

2
»” W2S10 2/26



Applying a message and collecting the results

For example, image we want to get whether a number is odd or not for a complete
collection:

#(2 —34 —354) areOddNumbers
>>> #(false true false true)

A possible limited solution

| result aCol|
aCol:=#(2 —34 —354).
result := Array new: aCol size.
1 to: aCol size do:
[ :each | result at: each put: (aCol at: each) odd ].
result
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A better solution: Using collect:

3
z

collect: applies the block to each element and returns a collection (of the same
kind than the receiver) with the results

e Works on any collection (Set, Array, OrderedCollection,...)

e collect: evaluates the block for each element (using value:)

In the block, each element is sent odd

collect: returns a new collection (of the same kind of the receiver) with all results
[Think object] We ask the collection to do something for us

#(2 —3 4 —354) collect: [ :each | each odd]
>>> #(false true false true)
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Another collect: Example

We want to know the absolute value of each element
#(16 —11 68 19) collect: [:i|iabs]

>>> #(16 11 68 19)
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Basic Iterators Overview

e do: (iterate)

e collect: (iterate and collect results)

e select: (select matching elements)

® reject: (reject matching elements)

e detect: (get first element matching)

e detect:ifNone: (get first element matching or a default value)
e includes: (test inclusion)

® and a lot more...

A\
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do: an Action on Each Clement

e |terates on each elements
¢ Applies the block on each elements

#(16 11 68 19) do: [ :each | Transcript show: each ; cr ]

Here we print each element and insert a carriage return

x — O  Transcript -

16
11
68
19
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select: Elements Matching a Criteria

To select some elements, use select:

#(16 11 68 19) select: [ :i|iodd ]
> #(11 19)
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With Unary Messages, No Block Needed

When a block is just one message, we can pass an unary message selector
#(16 11 68 19) select: [ :i | i odd ]

is equivalent to
#(16 11 68 19) select: #odd
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reject: Some Elements Matching a Criteria

To filter some elements, use reject:

#(16 11 68 19) reject: [:i|iodd]
> #(16 68)
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detect: The First Elements That...

To find the first element that matches, use detect:

#(16 11 68 19) detect: [:i|iodd]
>11
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detect:ifNone:

To find the first element that matches else return a value, use detect:ifNone:

#(16 12 68 20) detect: [:i|iodd]ifNone:[0]
>0
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Pharo code is Compact!

ArrayList<String> strings = new ArrayList<String>();
for(Person person: persons)
strings.add(person.name());

is expressed as

strings := persons collect: [ :person | person name]

® Yes in Java 8.0 it is finally simpler

strings = persons.stream().map(person —> person.getName())

e Butitis like that in Pharo since day one!
e [terators are deep into the core of the language and libraries
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Part of the Collection Hierarchy
Iterators work polymorphically on the entire collection hierarchy. Below a part of
the Collection hierarchy.

A\
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[SequenceableCollection]| [HashedCollection] | Bag |
S T &
LinkedList
Interval [Set]
[ArrayedCollection] [OrderedCollection| f

[IdentityDictionary | [KeyedTree |

[Array]| [String] [Text] [SortedCollection |

[PluggableDictionary |
[ IdentitySet |

PluggableSet

[ByteString | [Symbol |
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Think objects!

e With iterators we tell the collection to iterate on itself
¢ As a client we do not have to know the internal logic of the collection
e Each collection can implement differently the iterator
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Some Powerful Iterators

e anySatisfy: (tests if one object is satisfying the criteria)

e allSatisfy: (tests if all objects are satisfying the criteria)

e reverseDo: (do an action on the collection starting from the end)
e doWithIndex: (do an action with the element and its index)

e pairsDo: (evaluate aBlock with my elements taken two at a time.)
e permutationsDo: ...

A\
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Iterating Two Structures

To iterate with:do:

#(123)
with: #(10 20 30)
do: [:x:y| Transcript show: (y * x) ; cr]

x - 0O Transcript

10
40
90

with:do: requires two structures of the same length
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A little challenge

#() xxx

>>>

#('a") xxx
>>> '3’

#('a' 'b') xxx

>>>"g b’

#('a''b''c') xxx
>>>'a, b, c'
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Use do:separatedBy:

String streamContents: [ :s |
#('a''b''c")
do:[:each|s<<each]
separatedBy: [s<<',']
]

>>>"3 b, c'
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Grouping Elements

To group elements according to a grouping function: groupedBy:

#(1234567) groupedBy: #even
> a PluggableDictionary(false—>#(1357) true—>#(246) )
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Flattening Results

How to remove one level of nesting in a collection? Use flatCollect:
#(#(1 2) #(3) #(4) #(5 6)) collect: [ :each | each ]
> #(#(1 2) #(3) #(4) #(5 6)))

#(#(1 2) #(3) #(4) #(5 6)) flatCollect: [ :each | each ]
>#(123456)
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Opening The Box

® You can learn and discover the system
* You can define your own iterator
e For example how do: is implemented?

SequenceableCollection >> do: aBlock
"Evaluate aBlock with each of the receiver's elements as the argument."

1 to: self size do: [:i | aBlock value: (self at: i)]
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Analysis

Iterators are really powerful because they support polymorphic code
All the collections support them

New ones are defined

Missing controlled navigation as in the lterator design pattern

A\
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Summary

e [terators are your best friends
e Simple and powerful
e Enforce encapsulation of collections and containers

2
»~” W2S10 24 /26



Resources

® Pharo Mooc - W3S09 Videos http://mooc.pharo.org
® Pharo by Example http://books.pharo.org
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