-

Learning Object-Oriented
Programming and Design with TDD

Iterators

a Key Concept

Stéphane Ducasse
http://stephane.ducasse.free.fr

Phar(®

http://www.pharo.org

http://stephane.ducasse.free.fr
http://www.pharo.org

What You Will Learn

e What is an iterator?
e Understand the power of iterators
e Offer an overview of iterators in Pharo

2
»” W2S10 2/26

Applying a message and collecting the results

For example, image we want to get whether a number is odd or not for a complete
collection:

#(2 —34 —354) areOddNumbers
>>> #(false true false true)

A possible limited solution

| result aCol|
aCol:=#(2 —34 —354).
result := Array new: aCol size.
1 to: aCol size do:
[:each | result at: each put: (aCol at: each) odd].
result

» W2S10 3/26

A better solution: Using collect:

3
z

collect: applies the block to each element and returns a collection (of the same
kind than the receiver) with the results

e Works on any collection (Set, Array, OrderedCollection,...)

e collect: evaluates the block for each element (using value:)

In the block, each element is sent odd

collect: returns a new collection (of the same kind of the receiver) with all results
[Think object] We ask the collection to do something for us

#(2 —3 4 —354) collect: [:each | each odd]
>>> #(false true false true)

W2S10 4/26

Another collect: Example

We want to know the absolute value of each element
#(16 —11 68 19) collect: [:i|iabs]

>>> #(16 11 68 19)

» W2S10 5/26

Basic Iterators Overview

e do: (iterate)

e collect: (iterate and collect results)

e select: (select matching elements)

® reject: (reject matching elements)

e detect: (get first element matching)

e detect:ifNone: (get first element matching or a default value)
e includes: (test inclusion)

® and a lot more...

A\

W2S10 6/26

do: an Action on Each Clement

e |terates on each elements
¢ Applies the block on each elements

#(16 11 68 19) do: [:each | Transcript show: each ; cr]

Here we print each element and insert a carriage return

x — O Transcript -

16
11
68
19

ZW2s10 7/26

select: Elements Matching a Criteria

To select some elements, use select:

#(16 11 68 19) select: [:i|iodd]
> #(11 19)

»~ W2S10 8/26

With Unary Messages, No Block Needed

When a block is just one message, we can pass an unary message selector
#(16 11 68 19) select: [:i | i odd]

is equivalent to
#(16 11 68 19) select: #odd

»~ W2S10 9/26

reject: Some Elements Matching a Criteria

To filter some elements, use reject:

#(16 11 68 19) reject: [:i|iodd]
> #(16 68)

%
»~ W2S10 10/26

detect: The First Elements That...

To find the first element that matches, use detect:

#(16 11 68 19) detect: [:i|iodd]
>11

2
»~” W2S10 11/26

detect:ifNone:

To find the first element that matches else return a value, use detect:ifNone:

#(16 12 68 20) detect: [:i|iodd]ifNone:[0]
>0

2 W2s10 12/26

Pharo code is Compact!

ArrayList<String> strings = new ArrayList<String>();
for(Person person: persons)
strings.add(person.name());

is expressed as

strings := persons collect: [:person | person name]

® Yes in Java 8.0 it is finally simpler

strings = persons.stream().map(person —> person.getName())

e Butitis like that in Pharo since day one!
e [terators are deep into the core of the language and libraries

2
»~ W2S10 13/26

Part of the Collection Hierarchy
Iterators work polymorphically on the entire collection hierarchy. Below a part of
the Collection hierarchy.

A\

v VA,

[SequenceableCollection]| [HashedCollection] | Bag |
S T &
LinkedList
Interval [Set]
[ArrayedCollection] [OrderedCollection| f

[IdentityDictionary | [KeyedTree |

[Array]| [String] [Text] [SortedCollection |

[PluggableDictionary |
[IdentitySet |

PluggableSet

[ByteString | [Symbol |

2 W2s10 14/26

Think objects!

e With iterators we tell the collection to iterate on itself
¢ As a client we do not have to know the internal logic of the collection
e Each collection can implement differently the iterator

2
»~ W2S10 15/26

Some Powerful Iterators

e anySatisfy: (tests if one object is satisfying the criteria)

e allSatisfy: (tests if all objects are satisfying the criteria)

e reverseDo: (do an action on the collection starting from the end)
e doWithIndex: (do an action with the element and its index)

e pairsDo: (evaluate aBlock with my elements taken two at a time.)
e permutationsDo: ...

A\

W2S10 16/26

Iterating Two Structures

To iterate with:do:

#(123)
with: #(10 20 30)
do: [:x:y| Transcript show: (y * x) ; cr]

x - 0O Transcript

10
40
90

with:do: requires two structures of the same length

2
»” W2S10 17/26

A little challenge

#() xxx

>>>

#('a") xxx
>>> '3’

#('a' 'b') xxx

>>>"g b’

#('a''b''c') xxx
>>>'a, b, c'

2
»~ W2S10 18/26

Use do:separatedBy:

String streamContents: [:s |
#('a''b''c")
do:[:each|s<<each]
separatedBy: [s<<',']
]

>>>"3 b, c'

2
»~ W2S10 19/26

Grouping Elements

To group elements according to a grouping function: groupedBy:

#(1234567) groupedBy: #even
> a PluggableDictionary(false—>#(1357) true—>#(246))

2 W2s10 20/26

Flattening Results

How to remove one level of nesting in a collection? Use flatCollect:
#(#(1 2) #(3) #(4) #(5 6)) collect: [:each | each]
> #(#(1 2) #(3) #(4) #(5 6)))

#(#(1 2) #(3) #(4) #(5 6)) flatCollect: [:each | each]
>#(123456)

2 W2s10 21/26

Opening The Box

® You can learn and discover the system
* You can define your own iterator
e For example how do: is implemented?

SequenceableCollection >> do: aBlock
"Evaluate aBlock with each of the receiver's elements as the argument."

1 to: self size do: [:i | aBlock value: (self at: i)]

2 W2s10 22/26

Analysis

Iterators are really powerful because they support polymorphic code
All the collections support them

New ones are defined

Missing controlled navigation as in the lterator design pattern

A\

W2S10 23/26

Summary

e [terators are your best friends
e Simple and powerful
e Enforce encapsulation of collections and containers

2
»~” W2S10 24 /26

Resources

® Pharo Mooc - W3S09 Videos http://mooc.pharo.org
® Pharo by Example http://books.pharo.org

2 W2s10 25/26

http://mooc.pharo.org
http://books.pharo.org

A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

