
Learning Object-Oriented
Programming and Design with TDD

Hooks and Templates
An application of self-sends are plans for reuse

Stéphane Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org
W6S05

http://stephane.ducasse.free.fr
http://www.pharo.org

Remember...

 A message send leads to a choice
 A class hierarchy defines the choices
 Code can be reused and refined in subclasses
 Sending a message in a class defines a hook:

◦ i.e., a place where subclasses can inject variations

W6S05 2 / 17

The Template Method
 a template method specifies a skeleton
 the skeleton has hooks, i.e., places to be customized

◦ hooks may or may not have a default behavior

W6S05 3 / 17

The case of printString

(Delay forSeconds: 10) printString
> 'a Delay(10000 msecs)'

W6S05 4 / 17

printString Template Method

Object >> printString
"Answer a String whose characters are a description of the receiver."
^ self printStringLimitedTo: 50000

Object >> printStringLimitedTo: limit
| limitedString |
limitedString := String

streamContents: [:s | self printOn: s]
limitedTo: limit.

limitedString size < limit ifTrue: [^ limitedString].
^ limitedString , '...etc...'

W6S05 5 / 17

printOn: Default Hook
Node new
> a Node

Apple new
> an Apple

Default behavior:

Object >> printOn: aStream
"Append to the argument, aStream, a sequence of characters that identifies the
receiver."

| title |
title := self class name.
aStream
nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a ']);
nextPutAll: title

W6S05 6 / 17

printOn: Refinement

(Delay forSeconds: 1)
> a Delay(1000 msecs)

Reusing and extending default behavior:

Delay >> printOn: aStream
super printOn: aStream.
aStream
nextPutAll: '(';
print: millisecondDelayDuration;
nextPutAll: ' msecs)'

W6S05 7 / 17

printOn: Redefinition

true not
> false

Redefinition in False:

False >> printOn: aStream
aStream nextPutAll: 'false'

W6S05 8 / 17

printOn: Redefinition
1 to: 100
> (1 to: 100)
1 to: 100 by: 3
> (1 to: 100 by: 3)

Redefinition in Interval:
Interval >> printOn: aStream
aStream
nextPut: $(;
print: start;
nextPutAll: ' to: ';
print: stop.
step ~= 1
ifTrue: [aStream nextPutAll: ' by: '; print: step].
aStream nextPut: $)

W6S05 9 / 17

Another Template Method: Object Copy

 Copying objects is complex:
◦ graph of connected objects
◦ cycles
◦ Each class may want a different copy strategy

 Simple solution for simple cases: copy/postCopy

W6S05 10 / 17

Object Copy

Object >> copy
"Answer another instance just like the receiver. Subclasses typically override postCopy

. Copy is a template method in the sense of Design Patterns. So do not override it.
Override postCopy instead. Pay attention that normally you should call postCopy
of your superclass too."

^ self shallowCopy postCopy

Object >> shallowCopy
"Answer a copy of the receiver which shares the receiver's instance variables.

Subclasses that need to specialize the copy should specialize the postCopy hook
method."

<primitive: 148>
...

W6S05 11 / 17

Default hook

Object >> postCopy
"I'm a hookmethod in the sense of Design Patterns TemplateHook/Methods. I'm

called by copy. self is a shallow copy, subclasses should copy fields as necessary to
complete the full copy"

^ self

W6S05 12 / 17

postCopy: Refinement

Collection subclass: #Bag
instanceVariableNames: 'contents'
classVariableNames: ''
package: 'Collections−Unordered'

Bag >> postCopy
super postCopy.
contents := contents copy

W6S05 13 / 17

postCopy: Deeper copy

Dictionary >> postCopy
"Must copy the associations, or later store will a�ect both the original and the copy"
array := array collect: [:association |
association ifNotNil: [association copy]]

W6S05 14 / 17

Conclusion

 Template Method is a very common design pattern
 Sending a message defines a hook
 Sending a message increases potential reuse

W6S05 15 / 17

Resources

 Pharo mooc - Videos W6S05: http://mooc.pharo.org
 Pharo by Example: http://books.pharo.org

W6S05 16 / 17

http://mooc.pharo.org
http://books.pharo.org

A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

