

SmartClient™ Quick Start Guide

SmartClient v6.5
April 2008

SmartClient™ Quick Start Guide
SmartClient v6.5

Copyright ©2001-2008 Isomorphic Software, Inc. All rights reserved. The information
and technical data contained herein are licensed only pursuant to a license agreement that
contains use, duplication, disclosure and other restrictions; accordingly, it is
“Unpublished-rights reserved under the copyright laws of the United States” for purposes
of the FARs.

Isomorphic Software, Inc.
109 Stevenson Street, Level 4
San Francisco, CA 94105
U.S.A.

Web: www.isomorphic.com

Email: info@isomorphic.com

Notice of Proprietary Rights
The software and documentation are copyrighted by and proprietary to Isomorphic
Software, Inc. (“Isomorphic”). Isomorphic retains title and ownership of all copies of the
software and documentation. Except as expressly licensed by Isomorphic in writing, you
may not use, copy, disseminate, distribute, modify, reverse engineer, unobfuscate, sell,
lease, sublicense, rent, give, lend, or in any way transfer, by any means or in any medium,
the software or this documentation.

1. These documents may be used for informational purposes only.

2. Any copy of this document or portion thereof must include the copyright
notice.

3. Commercial reproduction of any kind is prohibited without the express written
consent of Isomorphic.

4. No part of this publication may be stored in a database or retrieval system
without prior written consent of Isomorphic.

Trademarks and Service Marks
Isomorphic Software, SmartClient, and all Isomorphic-based trademarks and logos that
appear herein are trademarks or registered trademarks of Isomorphic Software, Inc. All
other product or company names that appear herein may be claimed as trademarks or
registered trademarks of their respective owners.

Disclaimer of Warranties
THE INFORMATION CONTAINED HEREIN IS PROVIDED “AS IS” AND ALL EXPRESS
OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT AND ONLY TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

mailto:info@isomorphic.com

Contents

Contents ... i
How to use this guide.. iii
Why SmartClient?...v

Rich Client .. v
Thin Client ... vi
Open Architecture ... vi
Proven Technology... vii

1. Overview..1
Architecture .. 1
Standard Capabilities ...2
Optional Modules ...3
SDK Components ...4

2. Installation ..5
Requirements ... 5
Steps.. 5
Browser Configuration (recommended) ... 7
Server Configuration (optional)...8

3. Exploring.. 9
SmartClient Feature Explorer..9
SmartClient Demo Application.. 10
SmartClient Developer Console..11
SmartClient Reference ... 15

4. Coding ... 17
Languages ..17
Headers... 18
Components.. 19
Hello World ..20

5. Visual Components..23
Component Documentation & Examples23
Identifying Components ..24
Manual Layout..24
Hiding & Showing Components ..26
Handling Events...26

Version 6.0 i

Contents SmartClient Quick Start

ii Version 6.5

6. Data Binding... 29
Databound Components .. 29
Fields ..30
Form Controls .. 32
DataSources.. 34
DataSource Operations.. 38
DataBound Component Operations.. 39
Data Binding Summary ...40

7. Layout .. 43
Component Layout... 43
Container Components .. 45
Form Layout... 46

8. Data Integration ... 49
Rapid Prototyping (path 1a) ..51
Java Server Integration (paths 1b, 1c).. 52
Service-Oriented Architecture (paths 2, 3, 4)............................... 52
WSDL Integration.. 54
Generic RPC operations (advanced) ... 56

9. Extending SmartClient ..59
Client-side architecture ... 59
Customized Themes...60
Customized Components ... 62
New Components ... 63
New Form Controls.. 66

10. Tips..67
Beginner Tips ... 67
HTML and CSS Tips .. 67
Architecture Tips.. 69

Contacts.. 71

How to use this guide

The SmartClient Quick Start Guide is designed to introduce you to the
SmartClient™ web presentation layer. Our goals are:

• To have you working with SmartClient components and
services in a matter of minutes.

• To provide a conceptual framework, with pointers to more
detail, so you can explore SmartClient in your areas of interest.

This guide is structured as a series of brief sections, each presenting a set
of concepts and hands-on information that you will need to build
SmartClient-enabled web applications. These sections are intended to be
read in sequence—earlier sections provide the foundation concepts and
configuration for later sections.

This is an interactive manual. You will receive the most benefit from this
guide if you are working in parallel with the SmartClient SDK—following
the documented steps, creating and modifying the code examples, and
finding your own paths to explore. You may want to print this manual for
easier reference, especially if you are working on a single-display system.

We assume that you are somewhat acquainted with basic concepts of web
applications (browsers, pages, markup, scripting), object-oriented
programming (classes, instances, inheritance), and user interface
development (components, layout, events). However, you do not need
deep expertise in any specific technology, language, or system. If you
know how to navigate a file system, create and edit text files, and open
URLs in a web browser, you can start building rich web applications with
SmartClient today.

 If you can’t wait to get started, you can skip directly to

Installation (Section 2) to start a SmartClient development server
and begin Exploring (Section 3) and Coding (Section 4). But if you
can spare a few minutes, we recommend reading the introductory
sections first, for the bigger picture of SmartClient goals and
architecture.

Thank you for choosing SmartClient, and welcome.

Version 6.0 iii

Why SmartClient?

If you are reading this guide, you may have already received sufficient
proof of SmartClient’s value to you and your work. But to keep our
marketing people happy, here is a summary of that value:

SmartClient helps you to build and maintain more usable,
portable, efficient web applications, faster, propelled by
an open, extensible stack of industry-tested components
and services.

What distinguishes SmartClient from other web presentation layers is
that it compromises neither application usability, nor zero-install web
deployment. SmartClient Ajax (Asynchronous JavaScript & XML)
applications are simultaneously rich client applications, providing high-
productivity interfaces to end users, and thin client applications, running
in the standard web browsers available on every workstation, desktop,
and laptop today. They are also open applications, providing total
extensibility, interoperability with existing systems, and integration with
existing code.

Rich Client

Simply put, SmartClient brings user interface intelligence back to the
client, for faster, more intuitive applications. Today’s client systems—
machines often clocked in gigahertz—are left idling while application
servers render and return the most basic HTML pages. SmartClient
harnesses that power by performing complex user interface rendering,
navigation, and data operations on the client.

For developers, the result is a more logically structured, simplified,
maintainable approach to web front-end development. SmartClient
supports a natural separation of user interface logic and business logic
between client and server, so you are not forced to implement complex
artificial boundaries separating these layers in your server-side code.
However, SmartClient is fully compatible with common Model-View-
Controller (MVC) frameworks like Apache Struts or Tapestry, so you may
continue to leverage your existing systems and skills.

Version 6.0 v

Why SmartClient? SmartClient Quick Start

For end users, the result is a more productive, responsive, flicker-free
application. Client and server no longer need to communicate for every
single action in the user interface. When they do communicate, it is by
transparent remote procedure calls (RPCs), carrying the minimum of
required operations and data.

For businesses, the result is a more scalable, efficient production
system. Every new user of a SmartClient application effectively brings
their own CPU to handle user interface rendering and state management.
Application servers are freed to handle the jobs for which they were
originally intended: executing secure business logic, and brokering data
and services from other tiers.

Thin Client

The defining trait of a web application is that it deploys to standard
web browsers. Any client program may access a web application server,
but only a browser-based client will run without software installation on
every desktop and laptop running in offices and homes today. In an
increasingly connected world, client-side installation is no longer an
option for most applications.

SmartClient is the only rich-client system to maintain the zero-install
deployment model that makes web applications so appealing, despite the
shortcomings of web standards for building applications.

To achieve this, SmartClient implements multiple layers of services and
components based upon those standards. These rich capabilities are then
optimized and tested on every popular web browser and operating system.
Essentially, SmartClient treats browser Document Object Model (DOM)
calls as the new “assembly language”, and HTML as the new “pixels”. So
SmartClient applications run without software download, installation or
configuration, on standard web browsers including Internet Explorer,
Firefox, Mozilla, Netscape, Safari and Opera, on Windows, Linux, Solaris,
and MacOS operating systems.

Open Architecture

SmartClient combines the best aspects of rich client and thin client—but
that’s just the beginning of the story.

First, because SmartClient is built entirely with standard web
technologies, it integrates perfectly with your existing web content,
applications, portals, and portlets. You can upgrade existing web
applications and portals at your own pace, by weaving selected
SmartClient components and services into your HTML pages. You can
reuse existing content and portlets by embedding them in SmartClient

vi Version 6.5

SmartClient Quick Start Why SmartClient?

Version 6.0 vii

user interface components. SmartClient allows a smooth evolution of your
existing web applications—you don’t have to start over.

Next, SmartClient is fully open to integration with other technologies. On
the client, you can seamlessly integrate ActiveX controls, Java applets,
Flash/Flex modules, Scalable Vector Graphics (SVG), and other client
technologies for visualization, streaming media, desktop application
integration, and other specialized functionality. On the server,
SmartClient provides flexible, generic interfaces to integrate with any data
or service tier that you can access through Java code.

Finally, SmartClient is totally extensible, all the way down to the web
standards on which the system is constructed. If you can’t do something
“out of the box”, you can build or buy components that seamlessly extend
SmartClient in any manner you desire.

Proven Technology

In a nutshell: SmartClient provides the high-performance, rich-GUI
architecture of traditional client-server applications, but implemented
with the standard technologies of web applications (HTML, CSS,
JavaScript, XML, HTTP). And it does so without limiting your flexibility,
and without requiring a major redesign of your existing applications.

Isomorphic Software focuses exclusively on SmartClient products and
services. We supply and support the toughest customers in the industry—
other software developers—ranging from cutting-edge startups, to the
largest enterprise application vendors.

As a result, SmartClient is the most heavily used, broadly proven rich-
client web presentation layer available today. Hundreds of thousands of
end users work with SmartClient-enabled applications, in systems
including:

• CRM and customer support
• intranet portal servers
• financial analysis
• document management
• supply chain extranets
• business intelligence dashboards
• military command and control
• consumer applications

SmartClient is a living, growing system, continuously improved by
Isomorphic, our customers, and their customers. What can we do for you?
We welcome your comments and requests, however large or small, to
feedback@smartclient.com.

mailto:feedback@smartclient.com

1. Overview

Architecture

The SmartClient architecture spans client and server, enabling Rich
Internet Applications (RIAs) that communicate transparently with your
data and service tiers.

Application Server

Server

Web Browser

Communication Layer

Local
Operations DataSource Binding

Communication Layer
XMLHttp

HTTP(S)

DataSource
schema

Data Providers

Metadata and Operations

GUI Rendering & Interactivity

Client

At the client web browser, SmartClient provides a deep stack of services
and components for rich Ajax (Asynchronous JavaScript and XML)
applications.

With or without the optional SmartClient Java Server, SmartClient
provides a cohesive client-server data binding architecture. SmartClient's
model-driven components understand metadata formats such as XML
Schema, allowing you to create a rich data model that is shared across
client and server, including high-level interfaces for the most common
data operations (Add-Fetch-Update-Remove; aka Create-Retrieve-
Update-Delete).

However, SmartClient does not require that you adopt this entire
architecture. You may choose to integrate with only the layers and
components that are appropriate for your existing systems and
applications.

Version 6.0 1

0BOverview SmartClient Quick Start

Standard Capabilities

The standard capabilities of the SmartClient web presentation layer
include:

Area Description

Foundation
Services

SmartClient class system, data types, JavaScript
extensions, and browser utilities.

Foundation
Components

Building-block visual components, including
Canvas, Img, StretchImg, and
StatefulCanvas.

Event
Handling

SmartClient event handling systems, including
mouse, keyboard, focus, drag & drop,
enable/disable, and selection capabilities.

Controls Basic visual controls, including Button,
Toolbar, Menu, and Menubar.

Forms Form layout managers, value managers, and
controls (including TextItem, DateItem,
CheckboxItem, SelectItem, etc.).

Grids GridRenderer, ListGrid and related
subclasses, providing grid rendering, selection,
sorting, editing, column handling, and cell
events.

Trees Tree data structures, and TreeGrid UI
components, for managing hierarchical data.

Layout Component layout managers and layout-
managed containers, including HLayout,
VLayout, Window, and TabSet.

Data
Binding

Data model, cache management, and
communication components including
DataSource, ResultSet, and RPCManager.

Themes/
Skins

Pervasive support and centralized control over
theme/skin styles, images, and defaults, for
personalization or branding.

2 Version 6.5

SmartClient Quick Start 0BOverview

Optional Modules

Isomorphic also develops and markets the following optional modules to
extend the standard SmartClient system. For more information on these
modules, see SmartClient Reference > Optional Modules.

Option Description

SmartClient
Server

Provides direct Java APIs for databinding and
low level client-server communications, deep
integration with popular Java technologies such
as Spring, Hibernate, Struts, and others.
Extensive server-side validators that match the
client-side versions and work automatically.
For more information, please see the
“SmartClient Server Feature Summary” in the
Concepts section of the SmartClient Reference.

Analytics Multi-dimensional data binding and interactive
CubeGrid components (cross-tabs, dynamic
data loading, drag-and-drop pivoting).

Real-Time
Messaging

Real-time, server push messaging over HTTP,
with Java Message Server (JMS) backed publish
and subscribe services.

Network
Performance

File packaging, caching, and compression
services for optimal performance of distributed
applications.

Client
Bridges

Client-side components and services for deep
integration (including layering, drag-and-drop,
and bi-directional communication) with:

• Java applets

• ActiveX controls

• Flash/Flex plug-ins

• SVG (Scalable Vector Graphic)
documents

Version 6.0 3

0BOverview SmartClient Quick Start

4 Version 6.5

SDK Components

The SmartClient Software Developer Kit (SDK) includes extensive
documentation and examples to accelerate you along the learning curve.
These resources are linked from the SDK Explorer, and are available in
the docs/ and examples/ directories of your SDK distribution.

The SmartClient SDK also provides the following supplementary,
develop-time components for rapid evaluation, prototyping, and
development:

Development Component Component Description

Developer Console

Provides client-side application
debugging, inspection, and profiling.

Admin Console Provides a browser-based UI for server
configuration and datasource
management. Note: Requires
SmartClient Server.

Embedded server
(Tomcat)

Enables a lightweight, stand-alone
development environment.

Embedded database
(HSQLDB)

Provides a basic persistence layer for
rapid prototyping. Note: Requires
SmartClient Server.

Object-relational
connector
(JDBC/ODBC)

Enables rapid development of your
presentation layer against a relational
database, prior to (or in parallel with)
development of your server-side
business logic bindings. Note:
Requires SmartClient Server.

The SmartClient SDK provides direct database support for rapid
prototyping and lightweight application development purposes only.
Production SmartClient applications are typically bound to application-
specific data objects (EJBs, POJOs), web services, email and IM servers,
and structured data feeds.

 Section 8 (Data Integration) outlines the integration layers and

interfaces for your production data and services.

2. Installation

Requirements

To get started quickly, we will use the embedded application server
(Apache Tomcat 5.0) and database engine (HSQL DB 1.7) that are
included in the SmartClient SDK distribution.

Your only system requirements in this case are:

• Java SDK (JDK) v1.4+ (you can download JDK 1.5/5.0 from
http://java.sun.com/j2se/1.5.0/download.jsp)

• a web browser to view SmartClient examples and applications
(see docs/readme.html in the SDK for a complete list of
supported browsers and versions)

• a text editor to create and edit SmartClient code and examples

If you wish to install SmartClient in a different application server and/or
run the SDK examples against a different database, please see
docs/installation.html in the SDK. For purposes of this Quick
Start, we strongly recommend using the embedded server and database.
You can always redeploy and configure your SmartClient SDK in another
application server later.

Steps

To install and start your SmartClient development environment:

1. Download and install JDK 1.4+ if necessary (Mac OS X users note:
JDK 1.4 is pre-installed on your system)

2. Start the embedded server by running
start_embedded_server.bat (Windows), .command (Mac
OS X), or .sh (*nix)

3. Open the open_ISC_SDK_from_server shortcut
(Windows/MacOS) or open a web browser and browse to
http://localhost:8080/index.html (all systems)

Version 6.0 5

http://java.sun.com/j2se/1.5.0/download.jsp
http://localhost:8080/index.html

1BInstallation SmartClient Quick Start

Depending on your system configuration, you may need to perform one or
more additional steps:

• If you already have a JDK or JRE installed on your system, you
may need to set a JAVA_HOME environment variable pointing to
the home directory of JDK 1.4+, so the server will use the correct
version of Java.

• If port 8080 is already in use on your system, you may specify a
different port for the embedded server by appending
--port newPortNum (e.g. --port 8081) to the
start_embedded_server.bat, .command, or .sh command.
If you do change the default port, you must browse directly to
http://localhost:newPortNum/index.html. to open the
SDK Explorer

• If your web browser is configured to use a proxy server, you may
need to bypass that proxy for local addresses. In Internet Explorer,
go to Tools > Internet Options… > Connections > LAN Settings...,
and check “Bypass proxy server for local addresses”. In Firefox, go
to Tools > Options… > General > Connection Settings… and enter
“localhost” in the “No Proxy for” field.

6 Version 6.5

SmartClient Quick Start 1BInstallation

When you have successfully started the server and opened
http://localhost:8080/index.html in your web browser, you
should see the SmartClient SDK Explorer:

Browser Configuration (recommended)

If you are using a recent version of Internet Explorer, you may need to
enable your browser to display interactive web pages directly from the file
system. This approach is useful for stand-alone examples and test cases.

Go to Internet Options… > Advanced > Security, and select “Allow active
content to run in files on My Computer” to enable JavaScript in local files.
This will allow you to run SmartClient-enabled HTML pages simply by
opening them (e.g. double-clicking) from your file system.

This step is not required in Mozilla/Firefox web browsers.

Version 6.0 7

http://localhost:8080/index.html

1BInstallation SmartClient Quick Start

8 Version 6.5

Server Configuration (optional)

You do not need to perform any server configuration for this Quick Start.
However, for your information:

• The SmartClient Admin Console (linked from the SDK Explorer)
provides a graphical interface to configure direct database
connections, create database tables from DataSource descriptors,
and import test data. Note: Requires SmartClient Server.

• Other server settings are exposed for direct configuration in:
 WEB-INF/classes/server.properties
 WEB-INF/web.xml

 If you have any problems installing or starting SmartClient, try the

SmartClient Developer Forums at forums.smartclient.com.

http://forums.smartclient.com/

3. Exploring

SmartClient Feature Explorer

From the SmartClient SDK Explorer, pick Getting Started then
Feature Explorer. When the Feature Explorer has loaded, you should
see the following screen:

The Feature Explorer is your best starting point for exploring SmartClient
capabilities and code.

Version 6.0 9

2BExploring SmartClient Quick Start

The code for the examples in the Feature Explorer can be edited within
the Feature Explorer itself, however, changes will be lost on exit. To
create a permanent, standalone version of an example found in the
Feature Explorer, copy the source code into one of the templates in the
templates/ directory (discussed in more detail in the Headers section
of the next chapter, Coding).

All of the resources used by the Feature Explorer are also available in the
isomorphic/system/reference/ directory. In particular,
exampleTree.xml establishes the tree of examples on the left hand side
of the Feature Explorer interface, and contains paths to example files in
the inlineExamples/ subdirectory. Note that some DataSources
shared by multiple examples are in the central shared/ds and
examples/shared/ds directories.

SmartClient Demo Application

From the SmartClient SDK Explorer, pick Getting Started then Demo
App. The first launch of this application will take several seconds, as the
application server parses and compiles the required files. When the
application has loaded, you should see the following screen:

This example application demonstrates a broad range of SmartClient user
interface, data binding, and layout features.

To experience this application as an end user, follow the steps in the
Instructions window at the bottom left of the application window.

10 Version 6.5

SmartClient Quick Start 2BExploring

The SmartClient SDK provides two versions of the code for this
application, one in JavaScript and one in XML, to demonstrate alternate
coding formats.

 SmartClient JS and XML coding formats are discussed in detail in

Section 4 (Coding)

To explore the application code for this application, click on the XML or
JS links underneath the Demo App icon in the SDK Explorer. You can
also view and edit the source code for this application directly from the
isomorphic/system/reference/inlineExamples/demoApp/
directory in the SDK. After you make changes to the code, simply reload
the page in your web browser to see the results.

Each .jsp file in the demoApp/ directory contains all component
definitions and client-side logic for the application. The only other source
files for this application are demoApp_helpText.js and
demoApp_skinOverrides.js in the same directory, and the two
datasource descriptors in:

examples/shared/ds/supplyItem.ds.xml
examples/shared/ds/supplyCategory.ds.xml

The key concepts underlying this application—SmartClient JS and XML
Coding, Visual Components, DataSources, and Layouts—are covered in
sections 4 through 8 of this guide. You may want to briefly familiarize
yourself with the code of this example now, so you can refer back to the
code to ground each concept as it is introduced.

SmartClient Developer Console

The SmartClient Developer Console is a suite of development tools
implemented in SmartClient itself. The Console runs in its own browser
window, parallel to your running application, so it is always available: in
every browser, and in every deployment environment. Features of the
Developer Console include:

• logging systems
• runtime code inspection and evaluation
• runtime component inspection
• tracing and profiling
• integrated reference docs

Version 6.0 11

2BExploring SmartClient Quick Start

You can open the Developer Console from any SmartClient-enabled page
by typing javascript:isc.showConsole() in the address bar of your
web browser. Try it now, while the demo application is open in your
browser. The following window will appear:

 Popup blocker utilities may prevent the Developer Console

from appearing. If this happens, you must instruct your popup
blocker to allow this window. Please refer to the documentation for
your specific browser or blocker utility. Holding the Ctrl key while
opening the console will allow the popup in most systems.

12 Version 6.5

SmartClient Quick Start 2BExploring

The Results pane of the Developer Console displays:

• Messages logged by SmartClient or your application code through
the SmartClient logging system. The Logging Preferences menu
allows you to enable different levels of diagnostics in over 30
categories, from Layout to Events to Data Binding.

• SmartClient component statistics. As you move the mouse in the
current application, the ID of the current component under the
mouse pointer is displayed in this area. For example, try mousing
over the instructions area for the demo application; you should see
“helpCanvas” as the Current Event Target.

• A runtime code evaluation area. You may evaluate expressions and
execute actions from this area. For example, with the demo
application running, try evaluating each of these expressions:

categoryTree.getSelectedRecord()

helpCanvas.hide()

helpCanvas.show()

The Watch pane of the Developer Console displays a tree of SmartClient
user interface components in the current application. With the demo
application running, this pane appears as follows:

Version 6.0 13

2BExploring SmartClient Quick Start

In the Watch pane, you may:

• Click on any item in the tree to highlight the corresponding
component in the main application window with a flashing, red-
dotted border.

• Right-click on any item in the tree for a menu of operations,
including a direct link to the API reference for that component’s
class.

• Right-click on the column headers of the tree to show or hide
columns.

The Developer Console is an essential tool for all SmartClient application
developers. For easy access, you should create a toolbar link to quickly
show the Console:

In Firefox/Mozilla:

1. Show your Bookmarks toolbar if it is not already visible (View
> Toolbars > Bookmarks Toolbar).

2. Go to the Bookmarks menu and pick “Manage Bookmarks…”

3. Click the “New Bookmark” button and enter
“javascript:isc.showConsole()” as the bookmark Location,
along with whatever name you choose.

4. Drag the new bookmark into the Bookmarks Toolbar folder

In Internet Explorer:

1. Show your Links toolbar if it is not already visible (View >
Toolbars > Links)

2. Type “javascript:isc.showConsole()” into the Address bar

3. Click on the small Isomorphic logo in the Address bar and drag
it to your Links toolbar

4. If a dialog appears saying “You are adding a favorite that may
not be safe. Do you want to continue?”, click Yes.

5. If desired, rename the bookmark (“isc” is chosen as a default
name)

 The Developer Console is associated with a single web

browser window at any time. If you have shown the console for
a SmartClient application in one browser window, and then open an
application in another browser window, you must close the console
before you can show it from the new window.

14 Version 6.5

SmartClient Quick Start 2BExploring

SmartClient Reference

The core documentation for SmartClient is the SmartClient Reference, an
interactive reference viewer implemented in SmartClient. You may access
the SmartClient Reference in any of the following ways:

• from the Reference Docs tab of the Developer Console

• by right-clicking on a component in the Watch tab of the
Developer Console, and selecting “Show doc for…”

• from the SmartClient Reference icon in SDK Explorer > Docs
> SmartClient Reference

• from the docs/SmartClient_Reference.html launcher in
the SDK

The SmartClient Reference provides integrated searching capabilities.
Ener your search term in the field at top-left, then press Enter. The viewer
will display a list of relevance-ranked links. For example, searching on
“drag” generates the following results:

Version 6.0 15

2BExploring SmartClient Quick Start

16 Version 6.5

If you are new to SmartClient, you may want to read the conceptual topics
in the SmartClient Reference for more detail after completing this Quick
Start guide. These topics are indicated by the blue cube icon () in the
reference tree.

4. Coding

Languages

SmartClient applications may be coded in:

XML for declarative user interface and/or
datasource definitions – development in this
format requires the SmartClient Server.

JavaScript (JS) for client-side user interface logic, custom
components, and procedural user interface
definitions

Java for data integration when using the
SmartClient Java Server

SmartClient provides multiple layers of structure and services on top of
the JavaScript language, including a real class system, advanced data
types, object utilities, and other language extensions. The structure of
SmartClient JS code is therefore more similar to Java than it is to the free-
form JavaScript typically found in web pages.

To define user interface components, you may use either SmartClient
XML or SmartClient JS. Both formats have their merits:

SmartClient XML
• more tools available for code validation
• more familiar to HTML programmers
• forces better separation of declarative UI configuration, and

procedural UI logic

SmartClient JS
• more efficient
• easier to read when declarative and procedural code must be

combined
• works in stand-alone examples (no server)
• allows programmatic (runtime) component instantiation

Version 6.0 17

3BCoding SmartClient Quick Start

Each format also has its quirks: In JS, missing or dangling commas are a
common cause of parsing errors. In XML, quoting and escaping rules can
make code difficult to read and write.

 Isomorphic currently recommends using JavaScript (JS)

to define your SmartClient user interface components, for
maximum flexibility as your applications evolve. However, the
SmartClient SDK provides examples in both JS and XML. You can
decide which is appropriate for your style and your specific needs.

If you are new to JavaScript, you will need to be aware that:

• JavaScript identifiers are case-sensitive. e.g., Button and button
refer to different entities. SmartClient component class names
(like Button) are capitalized by convention.

• JavaScript values are not strongly typed, but they are typed. e.g.
myVar=200 sets myVar to the number 200, while myVar="200"
sets myVar to a string.

Headers

Every SmartClient application is launched from a web page, which is
usually called the bootstrap page. In the header of this page, you must
load the SmartClient client-side engine, specify a user interface “skin”,
and configure the paths to various SmartClient resources.

The exact format of this header depends on the technology you use to
serve your bootstrap page. The minimal headers for loading a
SmartClient-enabled .jsp or .html page are as follows.

Java server (.jsp)

 <%@ taglib uri="isomorphic" prefix="isomorphic" %>
 <HTML><HEAD>
 <isomorphic:loadISC skin="SmartClient"/>
 </HEAD><BODY>

Generic web server (.html)

 <HTML><HEAD>
 <SCRIPT>var isomorphicDir="../isomorphic/";</SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Core.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Foundation.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Containers.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Grids.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Forms.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_DataBinding.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/skins/SmartClient/load_skin.js></SCRIPT>
 </HEAD><BODY>

18 Version 6.5

SmartClient Quick Start 3BCoding

If you use the isomorphic:loadISC tag (available in .jsp pages only),
SmartClient will automatically detect and set the appropriate file paths. If
you use the generic header (which will work in any web page), you may
need to change the file paths to locate the isomorphic/ directory. This
example assumes that the bootstrap page is located in a directory that is
adjacent to the isomorphic/ directory.

Note that both examples above load all standard modules. Your
application may need only some modules, or may also load the optional
modules discussed in Chapter 1.

 The SmartClient SDK provides complete .jsp and .html template

pages in the top-level templates/ directory, for easy integration
with your development environment.

 For information about switching to a different skin or using a

custom skin, see the Customized Themes section in Chapter 9,
Extending SmartClient

Components

SmartClient is an object-oriented system. You assemble your web
application GUIs from SmartClient components. These components are
defined as reusable classes, from which you create specific instances.
Component classes and instances provide properties (aka attributes) that
you can set at initialization, and methods (aka functions) that you can call
at any time in your client-side logic.

You use the create() method to instantiate SmartClient components in
JS code. This method takes as its argument a JavaScript object literal—a
collection of comma-delimited property:value pairs, surrounded by
curly braces. For example:

isc.Button.create({title:"Click me", width:200})

For better readability, you can format your component constructors with
one property per line, e.g.

isc.Button.create({
 title: "Click me",
 width: 200
})

 The most common syntax errors in JS code are missing or

dangling commas in object literals. If you omit the comma
after the title value in the example above, the code will not parse
in any web browser. If you include a comma following the width
value, the code will not parse in Internet Explorer. SmartClient
scans for dangling commas and will log this common error to your
server output (visible in the terminal window where you started the
server), for easier debugging.

Version 6.0 19

3BCoding SmartClient Quick Start

To create a SmartClient component in XML code, you create a tag with
the component’s class name. You can set that component’s properties
either as tag attibutes:

<Button
 title="Click me"
 width="200"
/>

or in nested tags:

<Button>
 <title>Click me</title>
 <width>200</width>
</Button>

The latter format allows you to embed JS inside your XML code, e.g., for
dynamic property values, by wrapping it in <JS> tags:

<Button>
 <title>
 <JS>myApp.i18n.clickMe</JS>
 </title>
 <width>200</width>
</Button>

At the page level, SmartClient XML code must be wrapped in
<isomorphic:XML> tags—see below for an example.

Hello World

The following examples provide the complete code for a SmartClient
“Hello World” page, in three different but functionally identical formats.

Try recreating these examples in your editor. You can save them in the
examples/ directory of the SmartClient SDK, with the appropriate file
extensions (.html or .jsp).

helloworld.jsp (SmartClient JS)

 <%@ taglib uri="isomorphic" prefix="isomorphic" %>
 <HTML><HEAD>
 <isomorphic:loadISC skin="standard"/>
 </HEAD><BODY>
 <SCRIPT>

 isc.Button.create({
 title:"Hello",
 click:"isc.say('Hello World')"
 })

 </SCRIPT>
 </BODY></HTML>

20 Version 6.5

SmartClient Quick Start 3BCoding

Version 6.0 21

helloworldXML.jsp (SmartClient XML)

 <%@ taglib uri="isomorphic" prefix="isomorphic" %>
 <HTML><HEAD>
 <isomorphic:loadISC skin="standard"/>
 </HEAD><BODY>
 <SCRIPT><isomorphic:XML>

 <Button
 title="Hello"
 click="isc.say('Hello World')"
 />

 </isomorphic:XML></SCRIPT>
 </BODY></HTML>

helloworld.html (SmartClient JS)

 <HTML><HEAD>
 <SCRIPT>var isomorphicDir="../isomorphic/";</SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Core.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Foundation.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Containers.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Grids.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_Forms.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/system/modules/ISC_DataBinding.js></SCRIPT>
 <SCRIPT SRC=../isomorphic/skins/SmartClient/load_skin.js></SCRIPT>
 </HEAD><BODY>
 <SCRIPT>

 isc.Button.create({
 title:"Hello",
 click:"isc.say('Hello World')"
 })

 </SCRIPT>
 </BODY></HTML>

You can open the .html version directly from your file system (e.g. by
double-clicking the file’s icon), provided your browser allows interactive
web pages to run from your file system (see “Browser Configuration”,
page 7).

You must open the .jsp versions through your server, e.g.

http://localhost:8080/examples/helloworld.jsp

http://localhost:8080/examples/helloworldXML.jsp

 These examples are also provided in the top-level templates/

directory —but we highly recommend creating them yourself for the
learning experience.

The next section explains how to configure and manipulate SmartClient
visual components in more detail.

5. Visual Components

SmartClient provides two families of visual components for rich web
applications:

• Independent visual components, which you will create
and manipulate directly in your applications.

• Managed form controls, which are created and managed
automatically by their “parent” form or editable grid.

This section provides basic usage information for the independent
components only. Managed form controls are discussed in more detail in
the next two sections of this guide.

Component Documentation & Examples

Visual components encapsulate and expose most of the public capabilities
in SmartClient, so they have extensive documentation and examples in
the SmartClient SDK:

SmartClient Reference – For component interfaces (APIs), see
Client Reference. Form controls are sub-listed under Forms > Form
Items.

 Component Code Examples – For live examples of component
usage, see the SmartClient Feature Explorer (Examples > Feature
Explorer in the SDK Explorer, or
http://localhost:8080/isomorphic/system/reference/
SmartClient_Explorer.html from a running SmartClient
server).

The remainder of this section describes basic management and
manipulation of independent visual components only. For
information on the creation and layout of managed form controls,
see Sections 6 (Data Binding) and 7 (Layout), respectively.

Version 6.0 23

http://localhost:8080/isomorphic/system/reference/SmartClient_Explorer.html
http://localhost:8080/isomorphic/system/reference/SmartClient_Explorer.html

4BVisual Components SmartClient Quick Start

Identifying Components

You can identify SmartClient components by setting their ID property:

isc.Label.create({
 ID: "helloWorldLabel",
 contents: "Hello World"
})

By default, component IDs are created in the global namespace, so your
client-side code may reference helloWorldLabel to manipulate the
Label instance created above. You should assign unique IDs that are as
descriptive as possible of the component’s type or purpose. Some
common naming conventions are:

• include the component’s type (e.g. button or btn)
• include the component’s action (e.g. update)
• include the datasource the component affects (e.g. salesOrder)

e.g., salesOrderUpdateBtn

You can alternatively manage your components by saving the internal
reference that is returned from the create() call. For example,

var helloWorldLabel = isc.Label.create({
 contents: "Hello World"
});

In this case, a unique ID will be assigned to the component. The current
internal format for auto-assigned IDs is isc_ClassName_ID_#.

Manual Layout

You can configure and manipulate SmartClient components by setting
component properties and calling component methods. The most basic
properties for a visual component involve its position, size, and overflow:

• left
• top
• width
• height
• overflow
• position

24 Version 6.5

SmartClient Quick Start 4BVisual Components

left and top take integer values, representing a number of pixels from
the top-left of the component’s container (typically a web page, Layout,
Window, or TabSet). width and height take integer pixel values
(default 100 for most classes), and can also take string percentage values
(e.g. "50%"). For example:

isc.Label.create({

 width: 10,

left: 200, top: 200,

 contents: "Hello World"
})

In this example, the specified width is smaller than the contents of the
label, so the text wraps and “overflows” the specified size of the label. This
behavior is controlled by the overflow property, which is managed
automatically by most components. You may need to change this setting
for Canvas, Label, DynamicForm, DetailViewer, or Layout
components whose contents you want to clip or scroll instead. To do this,
set the overflow property to "hidden" (clip), "scroll" (always show
scrollbars), or "auto" (show scrollbars only when needed). For example:

isc.Label.create({
 left: 200, top: 200,
 width: 20,
 contents: "Hello World",
 overflow: "hidden"
})

By default, SmartClient visual components are positioned at absolute
pixel coordinates in their containers. If you need to embed a component
in the flow of existing HTML, you may set its position property to
"relative". For example:

first item

 <SCRIPT>
 isc.Button.create({
 title: "middle item",
 position: "relative"
 })
 </SCRIPT>

last item

 If you work directly with HTML or CSS code, you must test

your code on all supported browsers for inconsistencies.
In particular, the same HTML and CSS layout code can produce
many different results in different browsers, browser versions, and
DOCTYPE modes. Whenever possible, you should consider using
SmartClient components and layouts to insulate you from browser-
specific interpretations of HTML and CSS.

Version 6.0 25

4BVisual Components SmartClient Quick Start

In most applications, you will want more flexible, dynamic layout of your
visual components. Section 7 (Layout) introduces the SmartClient Layout
managers, which you can use to automatically size, position, and reflow
your components at runtime.

Hiding & Showing Components

In a SmartClient-enabled application, you may load hundreds of user
interface components in the bootstrap page, and then navigate between
views on the client by hiding and showing these components. The basic
APIs for hiding and showing components are:

• autoDraw
• show()
• hide()

The autoDraw property defaults to true, so a component is usually
shown as soon as you create() it. Set autoDraw to false to defer
showing the component. For example:

isc.Button.create({
 ID: "hiddenBtn",
 title: "Hidden",
 autoDraw: false
})

To show this button:

1. Open the SmartClient Developer Console from the page that has
created the button.

2. Type hiddenBtn.show() in the JS evaluation area.

3. Click the “Eval” button to execute that code.

 For more information on architecting your applications for high-

performance, client-side view navigation, see SmartClient
Reference > Concepts > SmartClient Architecture.

Handling Events

SmartClient applications implement interactive behavior by responding to
events generated by their environment or user actions. You can provide
the logic for hundreds of different events by implementing event
handlers.

26 Version 6.5

SmartClient Quick Start 4BVisual Components

Version 6.0 27

The most common SmartClient component event handlers include:

• click (for buttons and menu items)
• recordClick (for listgrids and treegrids)
• change (for form controls)
• tabSelected (for tabsets)

Component event handlers are set using a special type of property called a
string method. These properties may be specified either as:

• a string of JavaScript to evaluate when the event occurs; or

• a JavaScript function to call when the event occurs

For example:

isc.Button.create({
 ID: "clickBtn",
 title: "click me",
 click: "isc.warn('button was clicked')"
})

Is functionally identical to:

isc.Button.create({
 ID: "clickBtn",
 title: "click me",
 click: function () {
 isc.warn('button was clicked');
 }
})

For event handling in applications, you can set your event handlers to
strings that execute external functions. This approach enables better
separation of user interface structure and logic:

isc.Button.create({
 ID: "clickBtn",
 title: "click me",
 click: "clickBtnClicked()"
})

function clickBtnClicked() {
 isc.warn('button was clicked');
})

 For more information on available SmartClient events, see:

• SmartClient Reference – Component-specific APIs under Client
Reference

• SmartClient Reference – EventHandler APIs under Client
Reference > System > EventHandler

6. Data Binding

Databound Components

You can bind certain SmartClient components to DataSources that
provide their structure and contents. The following visual components are
designed to display, query, and edit structured data:

Visual
Component

Display
Data

Query
Data

Edit
Data

DynamicForm

ListGrid

TreeGrid

CubeGrid (Analytics option)

DetailViewer

Databound components provide you with both automatic and manual
databinding behaviors. For example:

• Automatic behavior – A databound ListGrid will generate Fetch
operations when a user scrolls the list to view more records.

• Manual behavior – You can call removeSelectedData() on a
databound ListGrid to perform Remove operations on its
datasource.

 This section outlines the client-side interfaces that you may use to

configure databound components and interact with their underlying
datasources. Section 8 (Data Integration) outlines the interfaces for
server-side integration of datasources with your data and service
tiers.

Version 6.0 29

5BData Binding SmartClient Quick Start

Fields

Fields are the building blocks of databound components and datasources.
There are two types of field definitions:

• Component fields provide presentation attributes for
databound visual components (e.g. title, width, alignment).
Component fields are discussed immediately below.

• DataSource fields provide metadata describing the objects in a
particular datasource (e.g. data type, length, required).
DataSource fields are discussed under “DataSources” later in this
section.

Component fields display as the following sub-elements of your
databound components:

Component Fields

DynamicForm form controls

ListGrid columns & form controls

TreeGrid columns & form controls

CubeGrid (Analytics option) facets (row & column headers)

DetailViewer rows

You can specify the displayed fields of a visual component via the fields
property, which takes an array of field definition objects. For example:

isc.ListGrid.create({
 ID: "contactsList",
 left: 50, top: 50,
 width: 300
 fields: [

,

 {name:"salutation", title:"Title"},
 {name:"firstname", title:"First Name"},
 {name:"lastname", title:"Last Name"}
]
})

30 Version 6.5

SmartClient Quick Start 5BData Binding

Try reproducing this example. When you load it in your web browser, you
should see a ListGrid that looks like this:

The name property of a field is the special key that connects that field to
actual data values. For a simple ListGrid or DetailViewer, you can specify
data values directly via the data property, which takes an array of record
objects. Add this code to the ListGrid definition above (remembering to
add a comma between the fields and data properties):

 data: [
 {salutation:"Ms", firstname:"Kathy", lastname:"Whitting"},
 {salutation:"Mr", firstname:"Chris", lastname:"Glover"},
 {salutation:"Mrs", firstname:"Gwen", lastname:"Glover"}
]

Now when you load this example, you should see:

 This approach (directly setting data) is appropriate

mainly for lightweight, read-only uses (i.e., for small, static
lists of options). When your components require dynamic data
operations, data-type awareness, support for large datasets, or
integration with server-side datasources, you will set the
dataSource property instead to bind them to DataSource
objects. See “DataSources” later in this section for details.

The basic field definitions in the ListGrid above are reusable across
components. For example, you could copy these field definitions to create
a DynamicForm:

Version 6.0 31

5BData Binding SmartClient Quick Start

isc.DynamicForm.create({
 ID: "contactsForm",
 left: 50, top: 250,
 width: 300,
 fields: [
 {name:"salutation", title:"Title"},
 {name:"firstname", title:"First Name"},
 {name:"lastname", title:"Last Name"}
]
})

which will display as:

 For complete documentation of component field properties

(presentation attributes), see:

• SmartClient Reference – Client Reference > Forms > Form
Items (all entries)

• SmartClient Reference – Client Reference > Grids > ListGrid >
ListGridField

DataSource field properties (data attributes) are discussed under
“DataSources” later in this section.

Form Controls

Field definitions also determine which form controls are presented to
users, for editable data values in forms and grids. You can specify the
form control to use for a field by setting its editorType property.

The default editorType is "text", which displays a simple text box
editor. This control is an instance of the TextItem class.

If a component is bound to a DataSource, it will automatically display
appropriate form controls based on attributes of its DataSource fields (e.g.
checkbox for boolean values, date picker for date values, etc). However,
there may be more than one way to present the same value. For example,
a dropdown control (selectItem) and a set of radio buttons
(radioGroupItem) are both appropriate for presenting a relatively small
set of values in a form.

32 Version 6.5

SmartClient Quick Start 5BData Binding

To override the default form control for a field, set editorType to the
class name for that control, in lower case, minus the "Item". For
example, for a CheckboxItem, you can set editorType:"checkbox".

The following code extends the previous DynamicForm example to use an
assortment of common form controls, specified by editorType:

 isc.DynamicForm.create({
 ID: "contactsForm",
 left: 50, top: 250,
 width: 300,
 fields: [
 {name:"salutation", title:"Title", editorType: "select",
 valueMap:["Ms", "Mr", "Mrs"]
 },
 {name:"firstname", title:"First Name"},
 {name:"lastname", title:"Last Name"},
 {name:"birthday", title:"Birthday", editorType:"date"},
 {name:"employment", title:"Status", editorType:"radioGroup",
 valueMap:["Employed", "Unemployed"]
 },
 {name:"bio", title:"Biography", editorType:"textArea"},
 {name:"followup", title:"Follow up", editorType:"checkbox"}
]
})

This form will appear as follows:

 For more information on the layout of managed form controls, see

“Form Layout” in Section 7 (Layout).

Version 6.0 33

5BData Binding SmartClient Quick Start

DataSources

SmartClient DataSource objects provide a presentation-independent,
implementation-independent description of a set of persistent data fields.
DataSources enable you to:

• Separate your data model attributes from your presentation
attributes.

• Share your data models across multiple applications and
components, and across both client and server.

• Display and manipulate persistent data and data-model
relationships (e.g. parent-child) through visual components (e.g.
TreeGrid).

• Execute standardized data operations (fetch, sort, add, update,
remove) with built-in support on both client and server for data
typing, validators, paging, unique keys, and more.

• Leverage automatic behaviors including data loading, caching,
filtering, sorting, paging, and validation.

A DataSource descriptor provides the attributes of a set of DataSource
fields. DataSource descriptors can be specified directly in XML or JS
format, or can be created dynamically from existing metadata (for more
information, see SmartClient Reference > Client Reference > Data
Binding > DataSource > Creating DataSources). The XML format is
interpreted and shared by both client and server, while the JS format is
used by the client only. Note that use of the XML format requires the
optional SmartClient Server.

There are four basic rules to creating DataSource descriptors:

1. Specify a unique DataSource ID attribute. The ID will be used to
bind to visual components, and as a default name for object-
relational (table) bindings and test data files. Appending “DS” to
the ID is a good convention to easily identify DataSource
references in your code.

2. Specify a field element with a unique name (in this DataSource)
for each field that will be exposed to the presentation layer.

3. Specify a type attribute on each field element (see below for
supported data types).

4. Mark exactly one field with primaryKey="true". The
primaryKey field must have a unique value in each data object
(record) in a DataSource. A primaryKey field is not required for
read-only DataSources, but it is a good general practice to allow
for future Add, Update, or Remove data operations.

34 Version 6.5

SmartClient Quick Start 5BData Binding

Following these rules, a DataSource descriptor for the “contacts” example
earlier in this section looks like:

 <DataSource ID="contactsDS">
 <fields>
 <field primaryKey="true"
 name="id" hidden="true" type="sequence" />
 <field name="salutation" title="Title" type="text" >
 <valueMap>
 <value>Ms</value>
 <value>Mr</value>
 <value>Mrs</value>
 </valueMap>
 </field>
 <field name="firstname" title="First Name" type="text" />
 <field name="lastname" title="Last Name" type="text" />
 <field name="birthday" title="Birthday" type="date" />
 <field name="employment" title="Status" type="text" >
 <valueMap>
 <value>Employed</value>
 <value>Unemployed</value>
 </valueMap>
 </field>
 <field name="bio" title="Bio" type="text"
 length="2000" />
 <field name="followup" title="Follow up" type="boolean" />
 </fields>
 </DataSource>

For your convenience, this descriptor is already saved in
shared/ds/contactsDS.ds.xml. Note that this code is the entire
content of the file—there are no headers, <HTML> tags, or other wrappers
around the DataSource descriptor.

 Every DataSource field must specify a type, and editable

DataSources (i.e., supporting Add, Update, or Remove
operations) must specify exactly one field with
primaryKey="true".

 For more information on defining, creating, and locating

DataSources, see SmartClient Reference > Client Reference > Data
Binding > DataSource. The Creating DataSources and Client Only
DataSources subtopics provide additional detail.

To load this DataSource in previous “contacts” example, add the following
tag inside the <SCRIPT> tags, before the ListGrid and DynamicForm
components are created:

<isomorphic:loadDS ID="contactsDS" />

Version 6.0 35

5BData Binding SmartClient Quick Start

Now the components can reference this shared DataSource via their
dataSource properties, instead of specifying fields. The complete
code for a page that binds a grid and form to this DataSource is:

 <%@ taglib uri="isomorphic" prefix="isomorphic" %>
 <HTML><HEAD>
 <isomorphic:loadISC />
 </HEAD><BODY>
 <SCRIPT>

 <isomorphic:loadDS ID="contactsDS" />

 isc.ListGrid.create({
 ID: "contactsList",
 left: 50, top: 50,
 width: 500,
 dataSource: contactsDS
 });

 isc.DynamicForm.create({
 ID: "contactsForm",
 left: 50, top: 200,
 width: 300,
 dataSource: contactsDS
 });

 </SCRIPT>
 </BODY></HTML>

This example entirely replaces fields with a dataSource for
simplicity. However, these two properties will usually co-exist on your
databound components. The component field definitions in fields
specify presentation attributes, while the DataSource field definitions
specify data attributes (see table below).

SmartClient merges your component field definitions and DataSource
field definitons based on the name property of the fields. By default, the
order and visibility of fields in a component are determined by the
fields array. To change this behavior, see useAllDataSourceFields
in the SmartClient Reference.

36 Version 6.5

SmartClient Quick Start 5BData Binding

Common DataSource field properties include:

Property Values

name unique field identifier (required on every
DataSource field)

type "text" | "integer" | "float" |
"boolean" | "date" | "sequence"

length maximum length of text value in characters

hidden true; whether this field should be entirely
hidden from the end user. It will not appear in
the default presentation, and it will not appear
in any field selectors (e.g. the column picker
menu in a ListGrid) available to the end user.

required true | false

valueMap an array of values, or an object containing
storedValue:displayValue pairs

primaryKey true; whether this is the field that uniquely
identifies each record in this DataSource (i.e., it
must have a unique value for each record). Each
DataSource must have exactly one field with
primaryKey="true". The primaryKey field is
often specified with type="sequence" and
hidden="true", to generate a unique internal
key for rapid prototyping.

foreignKey a reference to a field in another DataSource
(i.e., dsName.fieldName)

rootValue for fields that establish a tree relationship (by
foreignKey), this value indicates the root
node of the tree

 For complete documentation of the metadata properties supported

by SmartClient DataSources and components, see SmartClient
Reference > Client Reference > Data Binding > DataSource >
DataSourceField.

 For DataSource usage examples, see the descriptors in

examples/shared/ds/. These DataSources are used in various
SmartClient SDK examples, including the SmartClient Feature
Explorer

 For an example of a DataSource relationship using foreignKey,

see examples/databinding/tree_databinding.jsp
(TreeGrid UI) and shared/ds/employees.ds.xml (associated
DataSource).

Version 6.0 37

5BData Binding SmartClient Quick Start

As mentioned under “Form Controls” above, databound components will
automatically display appropriate form controls based on attributes of
their DataSource fields. The rules for this automatic selection of form
controls are:

Field attribute Form control

valueMap provided SelectItem (dropdown)

type:"boolean" CheckboxItem (checkbox)

type:"date" DateItem (date control)

length > 255 TextAreaItem (large text box)

You can override this automatic behavior by explicitly setting
editorType on any component field.

DataSource Operations

SmartClient provides a standardized set of data operations that act upon
DataSources:

Operation Methods Description

fetchData(…) retrieves records from the
datasource that exactly match the
provided criteria

Fetch

filterData(…) retrieves records from the
datasource that contain (substring
match) the provided criteria

Add addData(…) creates a new record in the
datasource with the provided
values

Update updateData(…) updates a record in the
datasource with the provided
values

Remove removeData(…) deletes a record from the
datasource that exactly matches
the provided criteria

38 Version 6.5

SmartClient Quick Start 5BData Binding

These methods each take three parameters:

• a data object containing the criteria for a Fetch or Filter
operation, or the values for an Add, Update, or Remove operation

• a callback expression that will be evaluated when the operation
has completed

• a properties object containing additional parameters for the
operation—timeout length, modal prompt text, etc. (see
DSRequest in the SmartClient Reference for details)

You may call any of these five methods directly on a DataSource object,
or on a databound ListGrid or TreeGrid. For example:

 contactsDS.addData(
 {salutation:"Mr", firstname:"Steven", lastname:"Hudson"},
 "say(data[0].firstname + 'added to contact list')",
 {prompt:"Adding new contact..."}
);

or

 contactsList.fetchData(
 {lastname:"Glover"}
);

 DataSource operations will only execute if the DataSource

is bound to a persistent data store. You can create relational
database tables as a data store for rapid prototyping by using the
“Import DataSources” section in the SmartClient Admin Console.
For deeper integration with your data tiers, see Section 8 (Data
Integration).

DataBound Component Operations

In addition to the standard DataSource operations listed above, you can
perform Add and Update operations from databound form components
by calling the following DynamicForm methods:

Method Description

editRecord() starts editing an existing record

editNewRecord() starts editing a new record

saveData() saves the current edits (Add new
records; Update existing records)

Version 6.0 39

5BData Binding SmartClient Quick Start

Databound components also provide several convenience methods for
working with the selected records in a databound grid:

Convenience Method

listGrid.removeSelectedData()

dynamicForm.editSelectedData(listGrid)

detailViewer.viewSelectedData(listGrid)

 examples/databinding/component_databinding.jsp

shows most of these DataSource and databound component
methods in action, with a ListGrid, DynamicForm, and DetailViewer
that are dynamically bound to several different DataSources.

 For more information, see the Datasource Operations, Databound

Components, and Databound Component Methods subtopics under
SmartClient Reference > Client Reference > Data Binding.

Data Binding Summary

This section began by introducing Databound Components, to build on
the concepts of the previous section (Visual Components). However, in
actual development, DataSources usually come first. The typical steps to
build a databound user interface with SmartClient components are:

1. Create DataSource descriptors (.ds.xml or .js files), specifying
data model (metadata) properties in the DataSource fields.

2. Back your DataSources with an actual data store. The
SmartClient Admin Console GUI creates and populates relational
database tables for rapid prototyping. Section 8 (Data
Integration) describes the integration points for binding to
production object models and data stores.

3. Load DataSource descriptors in your SmartClient-enabled
pages with the isomorphic:loadDS tag (for XML descriptors in
JSP pages) or client-only JS format. See Creating DataSources in
the SmartClient Reference for more information.

4. Create visual components that support databinding (primarily
form, grid, and detail viewer components).

5. Bind visual components to DataSources using the
dataSource property and/or setDataSource() method.

40 Version 6.5

SmartClient Quick Start 5BData Binding

Version 6.0 41

6. Modify component-specific presentation properties in each
databound component’s fields array.

7. Call databound component methods (e.g. fetchData) to
perform standardized data operations through your databound
components.

DataSources effectively hide the back-end implementation of your data
and service tiers from your front-end presentation—so you can change the
back-end implementation at any time, during development or post-
deployment, without changing your client code.

See Section 8 (Data Integration) for an overview of server-side
integration points that address all stages of your application lifecycle.

7. Layout

Component Layout

Most of the code snippets in this guide create just one or two visual
components, and position them manually with the left, top, width,
and height properties.

This manual layout approach becomes brittle and complex with more
components. For example, you may want to:

• consistently position your components relative to each other

• allocate available space based on relative measures (e.g. 30%)

• resize and reposition components when other components are
resized, hidden, shown, added, removed, or reordered

• resize and reposition components when the browser window is
resized by the user

SmartClient includes a set of layout managers to provide these and other
automatic behaviors. The SmartClient layout managers implement
consistent dynamic sizing, positioning, and reflow behaviors that cannot
be accomplished with HTML and CSS alone.

The fundamental SmartClient layout manager is implemented in the
Layout class, which provides four subclasses to use directly:

HLayout manages the positions and widths of a list of
components in a horizontal sequence

VLayout manages the positions and heights of a list of
components in a vertical sequence

HStack........ positions a list of components in a horizontal
sequence, but does not manage their widths

VStack........ positions a list of components in a vertical sequence,
but does not manage their heights

Version 6.0 43

6BLayout SmartClient Quick Start

These layout managers are themselves visual components, so you can
create and configure them the same way you would create a Label, Button,
ListGrid, or other independent component.

The key properties of a layout manager are:

Layout property Description

members an array of components managed by this
layout

membersMargin number of pixels of space between each
member of the layout

layoutMargin number of pixels of space surrounding the
entire layout

The member components also support additional property settings in the
context of their parent layout manager:

Member
property

Description

layoutAlign alignment with respect to the breadth axis of
the layout ("left", "right", "top",
"bottom", or "center")

showResizeBar determines whether a drag-resize bar
appears between this component and the
next member in the layout
(true | false)

width
 or
height

layout-managed components support a "*"
value (in addition to the usual number and
percentage values) for their size on the
length axis of the layout, to indicate that
they should take a share of the remaining
space after fixed-size components have been
counted (this is the default behavior if no
width/height is specified)

 Components that automatically size to fit their contents

will not be resized by a layout manager. By default, Canvas,
Label, DynamicForm, DetailViewer, and Layout components
have overflow:"visible", so they expand to fit their contents. If
you want one of these components to be sized by a layout instead,
you must set its overflow property to "hidden" (clip), "scroll"
(always show scrollbars), or "auto" (show scrollbars only when
needed).

44 Version 6.5

SmartClient Quick Start 6BLayout

You can specify layout members by reference, or by creating them in-line,
and they may include other layout managers. By nesting combinations of
HLayout and VLayout, you can create complex dynamic layouts that
would be difficult or impossible to achieve in HTML and CSS.

You can use the special LayoutSpacer component to insert extra space
into your layouts. For example, here is the code to create a basic page
header layout, with a left-aligned logo and right-aligned title:

isc.HLayout.create({
 ID:"myPageHeader",
 height:50,
 layoutMargin:10,
 members:[
 isc.Img.create({src:"myLogo.png"}),
 isc.LayoutSpacer.create({width:"*"}),
 isc.Label.create({contents:"My Title"})
]
})

 See the SmartClient Demo Application (SDK Explorer > Getting

Started > Demo App) for a good example of layouts in action

 For more information, see SmartClient Reference > Client

Reference > Layout.

Container Components

In addition to the basic layout managers, SmartClient provides a set of
rich container components. These include:

SectionStack to manage multiple stacked, user-expandable
and collapsible ‘sections’ of components

TabSet.................. to manage multiple, user-selectable ‘panes’ of
components in the same space

Window.................. to provide free-floating, modal and non-modal
views that the user can move, resize, maximize,
minimize, or close

 See the SmartClient Demo Application (SDK Explorer > Getting

Started > Demo App) for examples of SectionStack and TabSet
components in action.

 For more information, see SmartClient Reference > Client

Reference > Layout.

Version 6.0 45

6BLayout SmartClient Quick Start

Form Layout

Data entry forms have special layout requirements—they must present
their controls and associated labels in regularly aligned rows and
columns, for intuitive browsing and navigation.

When form controls appear in a DynamicForm, their positions and sizes
are controlled by the SmartClient form layout manager. The form layout
manager generates a layout structure similar to an HTML table. Form
controls and their titles are rendered in a grid from left-to-right, top-to-
bottom. You can configure the high-level structure of this grid with the
following DynamicForm properties:

DynamicForm
property

Description

numCols Total number of columns in the grid, for form
controls and their titles. Set to a multiple of 2,
to allow for titles, so numCols:2 allows one
form control per row, numCols:4 allows two
form controls per row, etc.

titleWidth Number of pixels allocated to each title
column in the layout.

colWidths Optional array of pixel widths for all columns
in the form. If specified, these widths will
override the column widths calculated by the
form layout manager.

You can control the positioning and sizing of form controls in the layout
grid by changing their positions in the fields array, their height and
width properties, and the following field properties:

Field
property

Description

colSpan number of form layout columns occupied by this
control (not counting its title, which occupies
another column)

rowSpan number of form layout rows occupied by this
control

startRow whether this control should always start a new
row (true | false)

endRow whether this control should always end its row
(true | false)

showTitle whether this control should display its title
(true | false)

46 Version 6.5

SmartClient Quick Start 6BLayout

Version 6.0 47

align horizontal alignment of this control within its area
of the form layout grid ("left", "right", or
"center")

 See Feature Explorer > Forms > Layout for examples of usage of

these properties

You can also use the following special form items to include extra space
and formatting elements in your form layouts:

header
blurb
spacer
rowSpacer

To create one of these special controls, simply include a field definition
whose type property is set to one of these four names. See the properties
documented under headerItem, blurbItem, spacerItem, and
rowSpacerItem for additional control.

 For more information on form layout capabilities, see:

• SmartClient Reference – Client Reference > Forms >
DynamicForm

• SmartClient Reference – Client Reference > Forms > Form
Items > FormItem

8. Data Integration

Like client-server desktop applications, SmartClient browser-based
applications interact with remote data and services via background
communication channels. Background requests retrieve chunks of data
rather than new HTML pages, and update your visual components in
place rather than rebuilding the entire user interface.

SmartClient supports two general classes of client-server operations:

DataSource operations standard Fetch, Add, Update, and
Remove operations on structured
data, with built-in, automatic GUI
component behaviors

RPC operations.................... general-purpose RPCs (Remote
Procedure Calls), requiring custom
request/response handling and
GUI integration code

This section focuses primarily on data integration for the DataSource
Operations, which were introduced in Section 6 (Data Binding) of this
guide.

A visual component which has been bound to a DataSource will originate
DataSource Operations, either automatically in response to user actions,
or manually in response to calls to the DataBound component methods.
Data Integration is the process of satisfying those requests by adapting
SmartClient to your existing servers or to third-party services you wish to
consume.

Version 6.0 49

7BData Integration SmartClient Quick Start

You can integrate with any DataSource operation in either of two places:

Server-side using SmartClient server components (on any
supported Java application server) for rapid
prototyping against database tables, or for
integration with existing Java business logic and
data models

Client-side............. using the SmartClient request/response
transformation pipeline to integrate with JSON
or XML data providers (including WSDL-
described web services)

The following diagram shows the available server-side and client-side
data integration paths in more detail:

client

DataSource
operation

(DSRequest)

Relational DataSource
connector (prototyping)

Logical DataSource
connector

SmartClient
DSRequest

WSDL/SOAP
operation

XML
operation

JSON
operation

Direct method
invocation (DMI)

b

c

a

1

4

3

2 JSON service

XML service Remove

Update

Add

Fetch

WSDL/SOAP service

server

operation format data provider

These paths roughly correspond to the following types or levels of
application development:

Development Type Paths

Rapid Prototyping (SmartClient Server) 1a

Java Server Integration (SmartClient Server) 1b, 1c

SOA (Service Oriented Architecture) Integration 2, 3, 4

50 Version 6.5

SmartClient Quick Start 7BData Integration

For a large application, you may choose to follow different integration
paths at different stages of development. For example, you could start
prototyping an application immediately with the Relational DataSource
connector (1a), move to custom DataSource connectors (1b) or DMI (1c)
as your business logic is finalized, and move to XML (3) or SOAP (4)
integration when your business logic provides stable service interfaces.

You may also use any or all of these paths in parallel within the same
application. For example, you could use Java server integration (1b, 1c)
for your internal business logic, JSON service integration (2) to integrate
an external search engine like Yahoo!, and WSDL/SOAP integration (4) to
integrate hosted enterprise services like salesforce.com.

SmartClient provides this range of integration options so you can choose
the best approach for the job at hand. These approaches are discussed in
more detail in the following sections.

Rapid Prototyping (path 1a)

You can use pre-fabricated DataSource connectors to bind directly to a
SQL data store. This is the fastest way to get started with SmartClient
development. You can implement many common interactions—and many
complete, simple applications—without writing any server-side logic.
Note that this path requires the SmartClient Server.

The SmartClient SDK includes an embedded HSQL database, pre-
populated with sample datasets, and a built-in object-relational (OR)
connector for rapid prototyping using the embedded HSQL database or
using external DB2, Oracle, SQL Server, MySQL, and PostgreSQL
databases.

The SmartClient Admin Console provides a browser-based GUI to
configure these database connections, generate database tables from your
DataSource descriptors, and populate those tables with test data. Click the
Tools > Admin Console link in the SDK Explorer, or browse directly to
http://localhost:8080/tools/adminConsole.jsp, to open the
console.

 For running examples that use the built-in OR connector, see the

Data Binding section of the Feature Explorer, and also SDK
Explorer > Examples > Data Binding

 For more information, see:

• SmartClient Reference – Client Reference > Data Binding >
DataSource > SQL DataSources

• SmartClient Reference – Client Reference > Data Binding >
DataSource > Admin Console

Version 6.0 51

http://localhost:8080/tools/adminConsole.jsp

7BData Integration SmartClient Quick Start

Java Server Integration (paths 1b, 1c)

In this approach, DataSource requests issued by DataBound components
arrive on the server as Java Objects. You deliver responses to the browser
by returning Java Objects. Note that this path requires the SmartClient
Server.

There are two approaches for routing inbound requests to your business
logic:

RPCManager dispatch inbound requests are handled by
a Java servlet or .jsp that you
provide. The RPCManager is
used to retrieve requests and
provide responses

Direct Method Invocation….XML declarations route requests
to existing business logic
methods. Inbound request data
is adapted to method parameters,
and method return values are
delivered as responses

Which approach you use is largely a matter of preference. Direct Method
Invocation (DMI) may allow simple integration without writing any
SmartClient-specific server code. RPCManager dispatch integration
provides an earlier point of control, allowing logic that applies across
different DataSource operations to be shared more easily.

 For more information, see:

• SmartClient Reference - Java Server Reference > Server
DataSource Integration

Service-Oriented Architecture (paths 2, 3, 4)

SmartClient supports declarative, XPath-based binding of visual
components to web services that return XML or JSON responses.

To display XML or JSON data in a visual component such as a ListGrid,
you bind the component to a DataSource which provides the URL of the
service, as well as a declaration of how to form inputs to the service and
how to interpret service responses as DataSource records.

An XPath expression, the recordXPath, is applied to the service’s
response to select the XML elements or JSON objects that should be
interpreted as DataSource records. Then, for each field of the
DataSource, an optional valueXPath can be declared which selects the
value for the field from within each of the XML elements or JSON objects
selected by the recordXPath. If no valueXPath is specified, the field

52 Version 6.5

SmartClient Quick Start 7BData Integration

name itself is taken as an XPath, which will select the same-named
subelement or property from the record element or object.

For example, the following code defines a DataSource that a ListGrid
could bind to in order to display an RSS 2.0 feed.

isc.DataSource.create({
 dataURL:feedURL,
 recordXPath:"//item",
 fields:[
 { name:"title" },
 { name:"link" },
 { name:"description" }
]
});

A representative slice of an RSS 2.0 feed follows:

<?xml version="1.0" encoding="iso-8859-1" ?>
<rss version="2.0">
<channel>
 <title>feed title</title>
 ...
 <item>
 <title>article title</title>
 <link>url of article</link>
 <description>
 article description
 </description>
 </item>
 <item>
 ...

Here, the recordXPath selects a list of item elements. Since the
intended values for each DataSource field appear as a simple subelements
of each item element (eg description), the field name is sufficient to
select the correct values, and no explicit valueXPath needs to be
specified.

 For a running example of a ListGrid displaying an RSS feed, see

Feature Explorer > Data Integration > XML > RSS Feed

 For an example of using valueXPath, see Feature Explorer > Data

Integration > XML > XPath Binding

 For corresponding JSON examples, see Feature Explorer > Data

Integration > JSON > Simple JSON and JSON XPath Binding

Version 6.0 53

7BData Integration SmartClient Quick Start

To retrieve an RSS feed, an empty request is sufficient. For contacting
other kinds of services, the dataProtocol property allows you to
customize how data is sent to the service:

Value Description

“getParams” Input data is encoded onto the dataURL, eg
http://service.com/search?keyword=foo

“postParams” Input data is sent via HTTP POST, exactly as
an HTML form would submit them

“soap” Input data is serialized as a SOAP message
and POST’d to the dataURL (used with
WSDL services)

Programmatic control of inputs and outputs is also provided.
DataSource.transformRequest() allows you to modify what data is
sent to the service. DataSource.transformResponse() allows you to
modify or augment the default DSResponse object that SmartClient
assembles based on the recordXPath and valueXPath properties.
This allows data transformations not possible with XPath alone, as well as
integration of DataSource features such as data paging and validation
errors with services that support those features.

 For more information, see SmartClient Reference – Client

Reference > Data Binding > Client-side Data Integration

WSDL Integration

SmartClient supports automated integration with WSDL-described web
services. This support augments capabilities for integrating with generic
XML services, and consists of:

• creation of SOAP XML messages from JavaScript application
data, with automatic namespacing, and support for both "literal"
and "encoded" SOAP messaging, and "document" and "rpc"
WSDL-SOAP bindings

• automatic decode of SOAP XML messages to JavaScript objects,
with types (eg an XML schema "date" type becomes a JavaScript
Date object)

• import of XML Schema (contained in WSDL, or external),
including translating XML Schema "restrictions" to SmartClient
Validators

WSDL services can be contacted by using XMLTools.loadWSDL() or the
<isc:loadWSDL> JSP tag to load the service definition, then invoking
methods on the resulting WebService object.

54 Version 6.5

SmartClient Quick Start 7BData Integration

WebService.callOperation() can be used to manually invoke
operations for custom processing.

 See Feature Explorer > Data Integration > XML > WSDL Web

Services for an example of callOperation()

To bind a component to a web service operation, call

WebService.getFetchDS(operationName,elementName)

to obtain a DataSource which describes the structure of an XML element
or XML Schema type named elementName, which appears in the
response message for the operation named operationName. A
component bound to this DataSource will show fields corresponding to
the structure of the chosen XML element or type, that is, one field per
subelement or attribute. fetchData() called on this DataSource (or on a
component bound to it) will invoke the web service operation and load the
named XML elements as data.

Similarly, WebService.getInputDS(operationName) returns a
DataSource suitable for binding to a form that a user will fill out to
provide inputs to a web service.

These methods allow very quick prototyping, however, typically you
cannot directly use the XML Schema embedded in a WSDL file to drive
visual component DataBinding in your final application, because XML
Schema lacks key metadata such as user-viewable titles.

You can create a DataSource that has manually declared fields and
invokes a web service operation by setting serviceNamespace to the
targetNamespace of the <definitions> element from the WSDL file,
and then setting wsOperation to the name of the web service operation
to invoke. In this usage:

• creation of the operation input SOAP message is still handled
automatically

• all of the custom binding facilities described in the preceding
section are available, including XPath-based extraction of data,
and programmatic manipulation of inbound and outbound data

• you can still leverage XML Schema <simpleType> definitions by
setting field.type to the name of an XML Schema simple type
embedded in the WSDL file.

 See Feature Explorer > Data Integration > XML > Google SOAP

Search for an example of these techniques

 the targetNamespace from the WSDL file is also available as

webService.targetNamespace on a WebService instance

Version 6.0 55

7BData Integration SmartClient Quick Start

For full read-write integration with a service that supports the basic
DataSource operations on persistent data, OperationBindings can be
declared for each DataSource operation, and the wsOperation property
can be used to to bind each DataSource operation (fetch, update, add,
remove) to a corresponding web service operation.

 To maximize performance, the WSDL tab in the Developer Console

allows you to save a .js file representing a WebService object,
which can then be loaded and cached like a normal JavaScript file.

Generic RPC operations (advanced)

Generic RPCs allow you to make arbitrary service calls and content
requests against any type of server, but they also require you to
implement your own request/response processing and GUI integration
logic.

SmartClient
server

RPCRequest

Other server
(JSON, XML,

SOAP)

User action
(eg ListGrid scrolled)

DataSource
operation
DSRequest

SmartClient
server

DSRequest

Generic RPC
RPCRequest

Server
Data &

Services

Client
GUI

Other server
(any content)

Program action
(explicit method call)

As with DataSource operations, RPC operations sent to the SmartClient
Java Server can use two methods to route requests to appropriate server-
side code: Direct Method Invocation (DMI) or RPCManager dispatch.

 For information about implementing RPCs with the SmartClient

server, see the client and server documentation for DMI,
RPCManager, RPCRequest, and RPCResponse:

• SmartClient Reference > Client Reference > RPC

• Javadoc for com.isomorphic.rpc

 examples/server_integration/custom_operations/

shows how to implement, call, and respond to generic RPCs with the
SmartClient Java Server

56 Version 6.5

SmartClient Quick Start 7BData Integration

Version 6.0 57

RPC operations can also be performed with non-SmartClient servers.

If you are using a WSDL-described web service, the operations of that web
service can be invoked either through DataSource binding (as described
under the heading WSDL Integration in this chapter), or can be invoked
directly via webService.callOperation(). Invoking
callOperation() directly is much like an RPC operation, in that it
allows you to bypass the DataSource layer and retrieve data for custom
processing. However, unlike a normal RPC, the web service definition
provides a schema for the inputs and outputs of the operation.

If you are not using a WSDL-described web service, you can retrieve the
raw HTTP response from a server (in JavaScript String form) by setting
the property serverOutputAsString on an RPCRequest. For an
XML response, you may then wish to use the facilities of the
isc.XMLTools class, including the parseXML method, to process the
response.

Responses that are valid JavaScript may be executed via the native
JavaScript method window.eval(), or can be executed automatically as
part of the RPC operation itself by setting rpcRequest.evalResult.

 For information about implementing RPCs with non-SmartClient

servers, see:

• SmartClient Reference > Client Reference > RPC

• SmartClient Reference > Client Reference > Data Binding >
Web Service (for WSDL-based RPCs)

9. Extending SmartClient

Isomorphic provides a rich set of components and services to accelerate
your development, but from time to time, you may want to extend outside
the box of prefabricated features. For example, you might need a new user
interface control, or special styling of an existing control, or a customized
data-flow interaction. With this in mind, we have worked hard to make
SmartClient as open and extensible as possible.

The previous section (Data Integration) outlined the approaches to
extending SmartClient on the server. This section outlines the
customizations and extensions that you can make on the client.

Client-side architecture

The SmartClient client-side system implements multiple layers of services
and components on top of standard web browsers:

Application
Components

Virtual Browser
Layer

Event HandlingRendering

TimingCommunication Accessibility

Web Browser IE
Windows

Netscape
Windows/Mac

Mozilla/Firefox
Win/Mac/Linux/Solaris

Navigation Collections Design

Grids Visualization Containers

Controls Editors Forms

Foundation
Layer

Class System Data StructuresObject Utilities

Browser Utilities

Language Extensions Logging & Debugging

Safari
Mac OS

Application
Services

LayoutSkinning

Data BindingDrag & Drop Context Menus

Localization

Version 6.0 59

8BExtending SmartClient SmartClient Quick Start

From the bottom up:

• The Foundation Layer extends JavaScript to make it a viable
programming language for enterprise applications. SmartClient
adds true class-based inheritance, superclass calls, complex data
structures, logging and debugging systems, and other extensions
that uplift JavaScript from a lightweight scripting language, to a
serious programming environment.

• The Virtual Browser Layer handles the most difficult part of

rich web application programming—the vast collection of
workarounds to avoid browser-specific bugs, and to implement
consistent behavior across all supported browser types, versions,
and modes. SmartClient makes web browsers appear to have
standard rendering, event handling, communication, timing, and
other behaviors—behaviors are not fully specified by web
standards, or not implemented consistently in real web browsers.

• The Application Services layer provides higher level services

that are shared by all SmartClient components and applications.
This sharing radically reduces the footprint and complexity of rich
web application code.

• The Application Components layer provides the pre-fabricated

visual components—ranging from simple buttons, to interactive
pivot tables—that you can assemble and data-bind to create rich
web applications.

Earlier sections of this guide have dealt primarily with the component
layer—because most application development uses pre-fabricated
components, most of the time. But all of these layers are open to you, and
to third-party developers. If you need a new client-side feature, you can
build or buy components that seamlessly extend SmartClient to your exact
requirements. Here’s how:

Customized Themes

The first way to extend a SmartClient application is to change the overall
look-and-feel of the user interface. You can “re-skin” an application to
match corporate branding, to adhere to usability guidelines, or even to
personalize look & feel to individual user preferences.

The SmartClient SDK includes three example themes (aka “skins”) for you
to explore:

standard similar to the Windows Classic theme

Cupertino........ similar to the Mac OS 9 theme

SmartClient ... a unique SmartClient theme

60 Version 6.5

SmartClient Quick Start 8BExtending SmartClient

You can specify a different user interface theme in the header of your
SmartClient-enabled web pages:

• In the isomorphic:loadISC tag, set the skin attribute to the
name of an available user interface skin, e.g.
skin="SmartClient".

-or-

• In a client-only header, change the path to load_skin.js, e.g.
<SCRIPT SRC=../isomorphic/skins/SmartClient/load_skin.js>

The files for all available SmartClient user interface themes are located in
the /isomorphic/skins directory. Each theme provides three
collections of resources to specify look and feel:

Resource Contains

skin_styles.css a collection of CSS styles that are applied to
parts of visual components in various states
(e.g. cellSelectedOver for a selected
cell in a grid with mouse-over highlighting)

images/ a collection of small images that are used as
parts of visual components when CSS
styling is not sufficient (e.g.
TreeGrid/folder_closed.gif)

load_skin.js component property overrides, to change
default interactive behaviors (e.g.
listGrid.canResizeFields) or high-
level programmatic styling (e.g.
listGrid.alternateRecordStyles)

You can customize component appearance in two ways:

1. Create a custom skin: to create a custom skin, copy an existing skin
that most closely matches your intended skin and modify it. For example,
let’s say you wanted to customize the built-in “SmartClient” skin and call
the resulting skin “BrushedMetal”. The procedure is as follows:

• Locate the “SmartClient” skin under /isomorphic/skins and copy
the contents of that entire directory into a new folder called
“BrushedMetal”.

• Edit the /isomorphic/skins/BrushedMetal/load_skin.js file. Find
the line near the top of the file that reads:

isc.Page.setSkinDir("[ISOMORPHIC]/skins/SmartClient/")

and change it to:

isc.Page.setSkinDir("[ISOMORPHIC]/skins/BrushedMetal/")

• Delete the /isomorphic/skins/BrushedMetal/load_skin.js.gz and
the /isomorphic/skins/BrushedMetal/skin_styles.css.gz files.

Version 6.0 61

8BExtending SmartClient SmartClient Quick Start

• Now you’re ready to customize the new skin. You can do so by
modifying any of the files listed in the table above inside your new
skin directory. When modifying your custom skin, best practice is
to group all changes in skin_styles.css and load_skin.js
near the end of the file, so that you can easily apply your
customizations to future, improved versions of the original skin.

• Remember to change the name of the skin to the new skin name
on your page to start using the new skin.

2. Skin individual components: set SmartClient component
properties to use different styles, images, or behaviors. You can customize
these properties on a per-class or per-instance basis.

 See Feature Explorer > Effects > Look & Feel for examples of using

skinning properties to customize component look & feel

 The load_skin.js and skin_styles.css files for the

SmartClient skin provide a good overview of available skinning
properties. Individual properties can be looked up in the
SmartClient Reference.

Customized Components

The easiest way to extend the SmartClient component set is to subclass
and customize existing components.

The two essential methods for customizing SmartClient component
classes are:

isc.defineClass(newClassName, baseClassName)

isc.newClassName.addProperties(properties)

For example, let’s say you want a customized button component that
draws bigger, bolder buttons. The standard SmartClient Button
component has a size of 100 by 20 pixels, a non-wrapping title, and
styling based on CSS style names that begin with "button". So this code:

isc.Button.create({title:"standard button title"});

will create a component that looks like this:

Version 6.5

To create and customize a subclass of the standard Button, you could
define a BigButton class as follows:

isc.defineClass("BigButton", Button);

62

SmartClient Quick Start 8BExtending SmartClient

and add/override relevant properties on this class as follows:

isc.BigButton.addProperties({
 height:50,
 overflow:"visible",
 baseStyle:"bigButton",
 wrap:true
});

Now the following code:

isc.BigButton.create({title:"big button title"});

will create components that look like this:

 examples/custom_components/BigButton contains the code

for this example (including the “bigButton” CSS style definition).

New Components

If you need to extend beyond the customizable properties of the standard
SmartClient component set, you can create entirely new components.

New components are usually based on one of the following foundation
classes: Canvas, StatefulCanvas, Layout, HLayout, VLayout,
HStack, or VStack.

Again, you can use defineClass() to define a new class, e.g.

isc.defineClass("myWidget", Canvas)

In addition to instance properties, new components typically add instance
methods, and may also add class (i.e. static) properties and methods. The
core interfaces to flesh out a new component class are:

className.addProperties(properties)

className.addMethods(methods)

className.addClassProperties(properties)

className.addClassMethods(methods)

 For more information on these and other class-creation interfaces,

see “Class” and “ClassFactory” under SmartClient Reference >
Client Reference > System.

Version 6.0 63

8BExtending SmartClient SmartClient Quick Start

 examples/custom_components/ contains the source code for

several visual components–including SimpleLabel,
SimpleSlider, and SimpleHeader—that are referenced below.
These examples are your best starting points for building new
SmartClient components.

Before you begin development of an entirely new component, try the
SmartClient Developer Forums at forums.smartclient.com. Other
developers may have created similar components, or Isomorphic
Software may have already scheduled, specified, or even
implemented the functionality you need.

64 Version 6.5

http://forums.smartclient.com/

SmartClient Quick Start 8BExtending SmartClient

The three most common approaches to build a new SmartClient visual
component are:

1. Create a Canvas subclass that contains your own HTML and

CSS template code.

 This approach is demonstrated in the SimpleLabel example. It
provides the most flexibility to create components using any feature of
HTML and CSS. However, it also requires that you test, optimize, and
maintain your code on all supported web browsers. Whenever
possible, you should use SmartClient foundation components instead
to buffer your code from browser inconsistencies.

2. Create a Canvas subclass that generates and configures a set

of other foundation components.

 This approach is demonstrated in the SimpleSlider example,
which builds an interactive slider widget out of a Canvas parent,
StretchImg track element, and Img thumb element. The
SmartClient foundation components entirely buffer this code from
browser-specific interpretations of HTML, CSS, events, etc.

3. Create a Layout subclass that generates and manages a set

of other components.

 This approach is demonstrated in the SimpleHeader example,
which automatically generates member components for the header
image, spacer, and title. This is a fairly trivial example; Layout
subclasses are more often used to build high-level compound
components and user interface patterns. For example, you could
define a new class that combines a summary grid, toolbar, and detail
area into a single reusable module.

 Whenever you add new properties or methods to a

SmartClient class or subclass, you should name them with
a unique prefix, to avoid future naming conflicts with
other interfaces. If you intend to deploy your extensions in
portals or other environments where interoperability is a concern,
Isomorphic can confirm and reserve a namespace for your
interfaces. Please contact namespaces@smartclient.com for
assistance.

Version 6.0 65

mailto:namespaces@smartclient.com

8BExtending SmartClient SmartClient Quick Start

66 Version 6.5

New Form Controls

New form controls are typically implemented as custom “pickers” that the
user can pop up from a picker icon next to a form or grid value.

To create a new form control:

1. Create a subclass of TextItem or StaticTextItem.

2. Add a picker icon to instances of your control (see
FormItem.icons).

3. Build a custom picker based on any standard or custom
SmartClient components and services (see above).

4. Respond to end-user click events on that icon to show your picker
(see FormItem.iconClick or FormItemIcon.click) to show
your picker.

5. Update the value of the form control based on user interaction
with the picker (see FormItem.setValue()).

6. Hide the picker when appropriate.

Custom pickers are often implemented in SmartClient Dialog
components.

 examples/custom_components/CustomPicker contains

example code for YesNoMaybeItem, a form control that displays a
custom picker with Yes, No, and Maybe buttons. This example also
demonstrates the use of static (class) methods and properties in
SmartClient components.

10. Tips

Beginner Tips

1. Pay extra attention to commas in your JS code.

 Specifically in JS object literals, like the properties passed to
create(). Missing commas between properties, or an extra comma
after the last property, are among the most common syntax errors.

2. Use the Developer Console for dynamic testing.

 SmartClient eliminates the need to instrument your JS code for
quick tests. Simply open the Developer Console to inspect and interact
with components on-the-fly. The JS evaluator provides a quick means
to make direct method calls while your application is running.

3. Use SmartClient logging to debug your applications.

 At minimum, use Log.logWarn() to log debugging messages in
the background, instead of alert() calls that disrupt user experience
and application flow. For even more control, you can take advantage
of log scoping, priorities, and conditionals. See SmartClient Reference
– Concepts > Debugging

HTML and CSS Tips

1. Use SmartClient components and layouts instead of HTML
and CSS, whenever possible.

 The goal is to avoid browser-specific HTML and CSS code. The
implementations of HTML and CSS vary widely across modern web
browsers, even across different versions of the same browser.
SmartClient components buffer your code from these changes, so you
do not need to test continuously on all supported browsers.

Version 6.0 67

9BTips SmartClient Quick Start

2. Avoid FRAME and IFRAME elements whenever possible.

 Frames essentially embed another instance of the web browser
inside the current web page. That instance behaves more like an
independent browser window than an integrated page component.
SmartClient’s dynamic components and background communication
system allow you to perform fully integrated partial-page updates,
eliminating the need for frames in most cases. If you must use frames,
you should explicitly clear them with frame.document.write("")
when the parent page is unloaded, to avoid memory leaks in Internet
Explorer.

3. Manipulate SmartClient components only through their
published APIs.

 SmartClient uses HTML and CSS elements as the “pixels” for
rendering a complex user interface in the browser. It is technically
possible to access these elements directly from the browser DOM
(Document Object Model). However, these structures vary by browser
type, version, and mode, and they are constantly improved and
optimized in new releases of SmartClient. The only stable, supported
way to manipulate a SmartClient component is through its published
interfaces.

4. Develop and deploy in browser compatibility mode, not
“standards” mode.

 SmartClient components automatically detect and adapt to the
browser mode (as determined by DOCTYPE), providing consistent
layout and rendering behaviors in both standards/strict and
compatibility/quirks modes. However, the interpretation of
“standards mode” varies across browsers, and changes across different
versions of the same browser. If you develop in “standards mode”, the
behavior of your application may change as users perform regular
updates to their OS or browser. “Standards mode” in most web
browsers is not, as the name implies, a consistent standards-
compliant mode.

68 Version 6.5

SmartClient Quick Start 9BTips

Architecture Tips

1. Leverage the SmartClient Ajax architecture for optimal
performance, responsiveness, and scalability.

 The classic web application model, in which a new page is
rendered on the server for every client request, is very inefficient.
With SmartClient components and services, your web applications can
make background data and service requests while users continue to
interact with the front-end GUI. This “Asynchronous JavaScript and
XML” (Ajax) model can radically improve usability and performance
across the board, or specifically in your most critical workflows.

 In brief: Move the presentation workload to the client. The
SmartClient client-side engine handles:

• complex HTML rendering

• component layout

• view navigation

• read-only operations (filter, sort, find, etc) on cached data

 So user interruptions can be virtually eliminated, and server
round-trips minimized to those required for data/service calls and
secure business logic.

2. Structure your code for optimal client caching.

 Since SmartClient provides client-side component rendering and
page layout, it is possible to cache most of the structure and logic of
your presentation on the client, for even better performance.
Specifically: Avoid server-side templating of SmartClient JS or
SmartClient XML code files. Your goal should be a bootstrap page
with a block of templated JS variables, followed by a set of static,
cacheable JS or XML includes. Those included files will contain either:

• declarative SmartClient UI and DataSource descriptors

-or-

• client-side logic that references the initial dynamic/templated
variables from the bootstrap page, as well as dynamic
properties and data fetched via RPCs after the page has loaded

 For web applications that are deployed over slow WAN, dial-up, or
cellular links, you may want to integrate the optional Network
Performance module. This SmartClient module provides explicit
caching control, as well as server-side file packaging and compression
services, for optimal performance on slow networks.

Version 6.0 69

9BTips SmartClient Quick Start

70 Version 6.5

3. Load many components at once, and defer creating/drawing
each component until it must be shown to the end user.

 The average SmartClient component definition is 10 to 50 times
smaller than the corresponding static HTML. You can therefore load
hundreds of visual components, representing dozens of unique
application views, in the time and memory that are normally used for
a single HTML page.

 However, it does take time and memory to create and draw all of
those components on the client. For immediate responsiveness, you
will want to create and draw only the components required for the
initial view. Other pre-loaded components may be created and drawn
on-the-fly.

• To defer creating a component, wrap the create() call in a
JS function that you can call on demand. If you take this
approach, you can also destroy() components to free up
client resources, and later re-create them from your
constructor function.

• To defer drawing a component, set its autoDraw property to
false. Or call the global isc.setAutoDraw(false) to
disable automatic drawing for all subsequently created
components. To explicitly draw a component, call draw().
You can also clear() components to free up client resources,
and call draw() again later.

 For more information on architecting your applications for high-
performance, client-side view navigation, see SmartClient Reference
> Concepts > SmartClient Architecture.

End of Guide

Contacts

Isomorphic is deeply committed to the success of our customers. If you
have any questions, comments, or requests, please feel free to contact the
SmartClient product team:

 Web smartclient.com

 General info@smartclient.com
 feedback@smartclient.com

Evaluation Support forums.smartclient.com

 Licensing sales@smartclient.com

We welcome your feedback, and thank you for choosing SmartClient.

http://www.smartclient.com/
mailto:info@smartclient.com
mailto:feedback@smartclient.com
http://forums.smartclient.com/
mailto:sales@smartclient.com

	Rich Client
	Thin Client
	Open Architecture
	Proven Technology
	1. Overview
	Architecture
	Standard Capabilities
	Optional Modules
	SDK Components

	2. Installation
	Requirements
	Steps
	Browser Configuration (recommended)
	Server Configuration (optional)

	3. Exploring
	SmartClient Feature Explorer
	SmartClient Demo Application
	SmartClient Developer Console
	SmartClient Reference

	4. Coding
	Languages
	Headers
	Components
	Hello World

	5. Visual Components
	Component Documentation & Examples
	Identifying Components
	Manual Layout
	Hiding & Showing Components
	Handling Events

	6. Data Binding
	Databound Components
	Fields
	Form Controls
	DataSources
	DataSource Operations
	DataBound Component Operations
	Data Binding Summary

	7. Layout
	Component Layout
	Container Components
	Form Layout

	8. Data Integration
	Rapid Prototyping (path 1a)
	Java Server Integration (paths 1b, 1c)
	Service-Oriented Architecture (paths 2, 3, 4)
	WSDL Integration
	Generic RPC operations (advanced)

	9. Extending SmartClient
	Client-side architecture
	Customized Themes
	Customized Components
	New Components
	New Form Controls

	10. Tips
	Beginner Tips
	HTML and CSS Tips
	Architecture Tips

