
Making web applications work as well as desktop applications.

Isomorphic SmartClient
Widgets Guide

Version 5.2

SC01v4.0d03.05.2003

Contents copyright ©2000 - 2005 by Isomorphic Software, Inc., and its licensors.
All rights reserved by respective owners.

The information and technical data contained herein are licensed only pursuant to a license agreement that contains
use, duplication, disclosure and other restrictions; accordingly, it is “Unpublished-rights reserved under the copyright
laws of the United States” for purposes of the FARs.

Isomorphic Software, Inc.
109 Stevenson Street, Level 4
San Francisco, CA 94105-3475
U.S.A.

Web: www.isomorphic.com
Email: info@isomorphic.com

Notice of Proprietary Rights

The program and documentation are copyrighted by and proprietary to Isomorphic Software, Inc. and its licensors.
Isomorphic Software, Inc. and its licensors retain title and ownership of all copies of the program and documentation.
Except as expressly licensed by Isomorphic Software, Inc. or as otherwise agreed to by Isomorphic Software, Inc. in
writing, you may not use, copy, disseminate, distribute, modify, disassemble, decompile, or otherwise reverse
engineer, sell, lease, sublicense, rent, give, lend, or in any way transfer, by any means or in any medium, the program
or this documentation. You agree to hold the program and documentation in confidence and to take all reasonable
steps to prevent its unauthorized disclosure.

1. These documents may be used for informational purposes only.
2. Any copy of this document or portion thereof must include the copyright notice.
3. Commercial reproduction of any kind is prohibited without the express written consent of Isomorphic Software,

Inc.
4. No part of this publication may be stored in a database or retrieval system without prior written consent of the

publisher.

Trademarks and Service Marks

Isomorphic Software and all Isomorphic-based trademarks and logos that appear herein are trademarks or registered
trademarks of Isomorphic Software, Inc. All other product or company names that appear herein may be claimed as
trademarks or registered trademarks by their respective manufacturers or owners.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.

All other names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

THE INFORMATION CONTAINED HEREIN IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED,
EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

C O N T E N T S
Preface ... 1
Audience ... 2
Prerequisites ... 2
How to use this guide ... 2

Summary of chapter contents .. 3
What this guide does not cover .. 4

Resources ... 4
SmartClient Online Reference ... 4
Sample applications ... 4
Updates to documentation ... 5
Related readings ... 5

Icons and conventions used in this guide .. 5
Identifier icons ... 5
Font conventions .. 6

1. Widgets Overview .. 7
Why use widgets? ... 8
Creating widget instances .. 9

JavaScript vs. XML ... 11
Including a separate XML file ... 12

Manipulating widget instances ... 13
Referring to widget instances ... 14
Widget containment and attachment—children and peers 15

Nesting children within a parent widget declaration 18
Isomorphic SmartClient Widgets Guide iii

Table of Contents
Example: Widget containment and attachment 19
Widget contents .. 20
JavaScript debugging .. 21

Using the log system statically and in class instances 23
Setting logging priorities for categories and classes 25

2. Drawing Widgets .. 27
Specifying initial position and size .. 28
Drawing .. 28

Drawing-related methods .. 29
Controlling position and size ... 30

Example: Dynamic positioning and sizing 32
Showing and hiding .. 34

Opacity .. 35
Layering .. 35

Example: Dynamic layering ... 36
Clipping and scrolling .. 36

Example: Widget overflow (clipping and scrolling) 38
Other visual properties ... 39

3. Handling Events .. 41
The ISC event model .. 42

Example: Event propagation ... 43
Handling Page events .. 44
Registering keypress events ... 46

Example: Keypress Handling .. 47
Special keys .. 48

Handling widget events .. 48
Enabling and disabling widgets .. 51
Default widget event handlers ... 52

Mouse events .. 53
Getting event details ... 54

Example: Getting event details ... 55
Drag-and-drop operations ... 56

Dragging and events .. 57
Drag appearance ... 57

Setting the drag tracker .. 58
Drag repositioning ... 59

Example: Drag appearance .. 60
Drag resizing ... 61

Drag resizing from a sizer button .. 63
Example: Drag resizing .. 64

Custom drag-and-drop operations .. 65
Using the drag tracker with a custom drag .. 66

Drop operations ... 66
Checking for drop compatibility .. 68

Sequence of events in drag-and-drop operations 69
Drag repositioning with target dragAppearance 70
Drag resizing with outline dragAppearance 71
iv

Custom dragging with tracker dragAppearance 71

4. Images and Skins ... 73
Placing images in an application ... 74
ISC "special directories" ... 74
Using and customizing ISC skins .. 75

Skin directory structure .. 75
Using alternate skins included with the ISC framework 76

Example: ISC skin ... 77
Creating your own custom skins ... 77

Specifying image directories .. 78
Images in Canvas widgets .. 80

Example: Specifying HTML as a widget's contents 81
Example: Using a custom skin on a single class of widgets 81

Img widgets .. 82
Example: Img rollover ... 82

StretchImg widgets .. 83
The items property of a StretchImg widget ... 84
StretchImg widget image file names .. 85

Example: Image names using the default value for items 85

5. Labels, Buttons, and Bars ... 87
Label widgets .. 88
Button widgets .. 88

Example: Button selection ... 90
Scrollbar widgets ... 91

Example: Custom scrollbars .. 92
Progressbar widgets ... 94

Progressbar widget image file names .. 95
Progressbar widget setter method ... 95

Example: A progressbar widget ... 95

6. Forms ... 97
Specifying a form .. 98

Example: Form initialization ... 99
Specifying form items .. 100

Example: Form items .. 103
Controlling form layout ... 105

Example: Form layout .. 106
Form item annotations and styles ... 108

Example: Form item annotations .. 108
DynamicForm styles ... 110

Working with form item values .. 110
Validating form input .. 112

Custom validators ... 116
Example: Form item validation .. 116

Handling form item events ... 118
Isomorphic SmartClient Widgets Guide v

Table of Contents
7. ListGrids and DetailViewers ... 121
Working with lists ... 122
Initializing a listGrid or detailViewer ... 123

Example: ListGrid initialization ... 125
Example: DetailViewer initialization .. 127

Configuring listGrid layout and appearance ... 128
ListGrid styles ... 129

Configuring detailViewer layout and appearance .. 130
Adding and removing listGrid records ... 131
Sorting listGrid records ... 131
Selecting listGrid records .. 133
Dragging and dropping listGrid records ... 134
Editing listGrid fields .. 135

Example: Editable ListGrid initialization 136
Working with listGrid values .. 138
Handling listGrid record events .. 141

ListGrid record events ... 141
Event handling of record events ... 141

Event handler variables .. 141

8. TreeGrids ... 143
Specifying tree data ... 144

Example: Tree data ... 144
Initializing a treeGrid .. 146

Example: TreeGrid initialization .. 147
Configuring treeGrid appearance and behavior ... 149

Overriding standard treeGrid icons .. 150
Adding, moving, and removing tree nodes ... 151
Expanding and collapsing tree nodes ... 152
Dragging and dropping tree nodes ... 153
Handling treeGrid events .. 153

9. Menus, Toolbars, and Menubars ... 155
Menu widgets .. 156

Menu items .. 156
Menu properties .. 156

Example: Menu initialization ... 157
Configuring menu appearance .. 158
Defining menu actions ... 160
Implementing dynamic menus ... 161

Example: Visual properties menu .. 162
Toolbar widgets ... 163

Toolbar properties ... 164
Defining toolbar actions .. 165

Example: Visual properties toolbar .. 166
Menubar widgets ... 167

Menubar properties .. 167
Example: Visual properties menubar ... 168
vi

A. Widget Initialization Templates ... 171
JavaScript Widget Templates ... 173

Canvas ... 173
Label .. 174
Img ... 174
StretchImg ... 174
Button .. 175
Scrollbar .. 175
Progressbar .. 175
DynamicForm ... 175

Form items (all types) ... 176
ListGrid .. 178
DetailViewer .. 178
TreeGrid .. 179
Menu ... 180
Toolbar .. 181
Menubar .. 181

XML Widget Templates .. 182
Canvas ... 182
Label .. 183
Img ... 183
StretchImg ... 183
Button .. 184
Scrollbar .. 185
Progressbar .. 185
DynamicForm ... 185

Form items (all types) ... 185
ListGrid .. 187
DetailViewer ... 188
TreeGrid .. 189
Menu ... 190
Toolbar ... 190
Menubar .. 191

B. Isomorphic SmartClient Styles ... 193
General styles .. 193
Form styles .. 194
ListGrid styles .. 194
DetailViewer styles .. 195
Menu styles .. 195
Button styles .. 196

Index ... 197
Isomorphic SmartClient Widgets Guide vii

Table of Contents
viii

L I S T O F T A B L E S
Preface
Font conventions .. 6

1. Widgets Overview
Canvas class containment methods and properties 16
Canvas class attachment methods and properties ... 18
Canvas and Label contents properties and methods 21
Methods for logging messages ... 22

2. Drawing Widgets
Widget positioning and sizing properties .. 28
Widget drawing-related methods .. 30
Widget positioning and sizing setter methods .. 30
Widget positioning and sizing getter methods ... 31
Widget positioning and sizing utility methods .. 32
Widget visibility property values ... 34
Widget visibility methods .. 34
Widget opacity property values ... 35
Widget opacity method .. 35
Widget layering methods ... 36
Widget overflow values ... 37
Widget scrolling methods ... 37
Widget appearance properties ... 39
Widget appearance setter methods ... 40
Isomorphic SmartClient Widgets Guide ix

List of Tables
3. Handling Events
Global event handler methods ... 45
ISC Page events .. 45
Page methods for registering keypress events ... 47
String mappings for registering special keys ... 48
Widget enable and disable methods ... 51
Predefined widget event handlers .. 52
Mouse events .. 53
Click-mask methods ... 54
Event information methods .. 55
Widget drag-and-drop properties .. 56
The dragAppearance property values .. 58
Widget drag events ... 59
The resizeFrom property values ... 62
Minimum and maximum height and width properties 63
the dragResize property events ... 63
Drag events ... 65
Drop properties .. 67
Drop events .. 67
The dragType and dropTypes properties ... 68
Event sequence—Drag repositioning of a widget .. 70
Event sequence—Drag resizing of a widget .. 71
Event sequence—Custom dragging of a canDrag and canDrop widget 71

4. Images and Skins
Image directory methods for a page .. 79
Image directory properties/methods for a widget .. 80
Image-related Canvas widget instance methods ... 81
Img widget properties .. 82
Img widget setter methods ... 82
StretchImg widget properties .. 83
StretchImg widget setter method .. 84

5. Labels, Buttons, and Bars
Label widget properties .. 88
Button widget properties ... 88
.. Button widget methods 90
Scrollbar widget properties ... 91
Progressbar widget properties ... 94
Progressbar widget method ... 95

6. Forms
DynamicForm fundamental widget properties ... 98
DynamicForm data item types ... 100
DynamicForm button item types .. 101
DynamicForm display item types ... 101
Form item fundamental properties .. 101
Form layout properties ... 105
Form title/hint properties .. 109
x

Form item style properties .. 110
Form item value properties .. 111
Form item display-value mapping property .. 111
Form value getter and setter methods ... 111
Form submission and validation methods ... 113
Form item required property .. 114
Form item validator properties ... 114
DynamicForm validators .. 115
Form error properties and methods ... 117
Form item event handlers ... 118

7. ListGrids and DetailViewers
ListGrid and DetailViewer fundamental properties 123
ListGrid record object configuration properties ... 124
Fields array fundamental properties .. 124
Data and fields setter methods ... 125
ListGrid layout properties ... 128
ListGrid appearance properties .. 129
ListGrid style properties ... 130
DetailViewer layout properties ... 130
DetailViewer appearance properties ... 131
ListGrid sorting properties ... 132
ListGrid selectionType values ... 133
Selection methods available on ListGrid.selection 133
ListGrid drag-and-drop properties ... 135
ListGrid record drag-and-drop properties ... 135
ListGrid in-line editor properties .. 136
ListGrid field in-line editor properties ... 136
ListGrid field value properties .. 139

8. TreeGrids
TreeGrid node fundamental properties .. 144
TreeGrid fundamental properties ... 147
TreeGrid filtering properties ... 147
TreeGrid icon properties ... 149
Tree node manipulation methods ... 152

9. Menus, Toolbars, and Menubars
Menu item fundamental properties .. 156
Menu widget fundamental properties .. 156
Menu sizing properties .. 158
Menu icon properties .. 159
Menu images ... 159
Menu column properties .. 160
Menu event handlers ... 161
Menu shortcut key properties ... 161
Dynamic menu item properties .. 161
Menu item setter methods .. 162
Toolbar widget fundamental properties ... 164
Isomorphic SmartClient Widgets Guide xi

List of Tables
Toolbar button sizing and positioning properties .. 164
Toolbar button selection methods .. 165
Menubar widget fundamental properties ... 167
xii

Isomorphic SmartClient Wid
P R E F A C E
The Isomorphic SmartClient (ISC) presentation layer is the first web application
framework that spans across client and server, enabling live transactions and rich user
interactivity without page reloads. ISC supports an easy, declarative authoring style in
either XML or JavaScript, enabling the development of high-performance, rich web
applications and portals in a fraction of the time required with other technologies. The
ISC framework is also open and extensible on both client and server, allowing seamless
integration with existing applications and infrastructure.

This guide contains technical details on the user interface components, called widgets,
built into the Isomorphic SmartClient framework and how to manipulate instances of
these widgets to create an application interface with superior usability. It also discusses
how to customize images and styles to create a unique widget appearance.

In the Preface:

Topic Page

Audience 2

Prerequisites 2

How to use this guide 2

Resources 4

Icons and conventions used in this guide 5
gets Guide 1

Preface
Audience
The Isomorphic SmartClient Widgets Guide is written for web developers who want to
build user interfaces for applications within the Isomorphic SmartClient framework, and
customize or extend the framework for a specific business environment. It also may be
useful to web designers and producers who need to make decisions about front-end
usability and site navigation based on the widgets available in the Isomorphic
SmartClient system.

Prerequisites
Developers using the Isomorphic SmartClient framework should have a basic knowledge
of web page development, including:

• basic HTML and familiarity with XML,
• basic JavaScript and fundamental programming concepts, and
• web site organization and deployment.

Developers wishing to integrate the ISC framework with existing server systems should
also be adept at programming in Java, and have some familiarity with JavaServer Pages
(JSPs), servlets, and web servers.

How to use this guide
Use this guide to learn how to incorporate user interface widgets into your web
applications using the Isomorphic SmartClient framework. Widgets are implemented
using extensions and enhancements to the JavaScript language developed by Isomorphic
Software. These enhancements include:

• A true class-based object system to support both classes and instances, like the Java
language.

• A consistent cross-browser drawing system to provide a consistent set of properties
and methods for positioning, sizing, clipping, scrolling, and controlling other visual
properties of on-screen elements.

• A consistent cross-browser event-handling system to expose all of the standard
browser events, and provide extensive drag-and-drop functionality.

• Pre-defined GUI widget classes—from simple objects like buttons and scrollbars, to
complex elements like table viewers and dynamic forms—to ensure sophisticated,
interactive applications look and behave the same in any standard DHTML-enabled
web browser.

• An abstracted application framework to enable rapid development of data-centric
applications.

• Data type objects and extensions—including hierarchical tree objects, array list
searching and sorting extensions, and more—to provide better application flow and
navigation.

• Server communication objects to provide seamless integration of the browser-based
front end with back-end application servers and data sources.
2

How to use this guide
• Utility objects and methods to perform common tasks quickly and consistently.

This manual focuses on the object system, drawing widgets, handling events, and several
of the most common classes of widgets. For full reference documentation of all widgets
and all their public properties and methods, see the SmartClient Online Reference.

The server-side of the Isomorphic SmartClient framework is implemented in Java, and
includes validation, data translation, and dataset paging capabilities in addition to pre-
compiled standard data source operations for rapid development. For documentation on
the server framework, consult the SmartClient Online Reference. For additional
developer documentation covering custom widget development, data type extensions,
and utilities, please contact Isomorphic Software directly.

http://www.isomorphic.com/

Summary of chapter contents
This guide contains the following content:

• Chapter 1, "Widgets Overview," provides an overview of the ISC user interface
components, the widget class hierarchy, and the advantages to using ISC widgets in
building web applications.

• Chapter 2, "Drawing Widgets," details the basic properties common to all widgets in
the ISC framework including position, scrolling, sizing, background attributes,
visibility, layering, styles, clipping, padding, borders, and margins. These properties
are controlled by the Canvas widget superclass.

• Chapter 3, "Handling Events," explains the event handling capabilities of the ISC
system, and how to capture and respond to page events, mouse events, drag-and-drop
events, and keyboard events.

• Chapter 4, "Images and Skins," discusses how to place images within a ISC
application, the "special directories" that can be used to specify the location of images,
and how the appearance of widgets themselves can be customized through the use of
application "skins".

• Chapter 5, "Labels, Buttons, and Bars," details the properties and methods available
to use with ISC text labels, interactive style-based buttons, scrollbars, and
progressbars.

• Chapter 6, "Forms," demonstrates how to build forms by generating HTML, laying
out form elements, altering the styles and behavior of forms, getting and setting form
values, validating form input, and handling form events.

• Chapter 7, "ListGrids and DetailViewers," describes the two widget classes used to
display tabular data—ListGrid and DetailViewer— and how the two classes differ. It
also covers configuring layout and appearance, adding or removing records from a
list, sorting a list, selecting records from a list, dragging and dropping a record from
one list to another, and handling list events.

• Chapter 8, "TreeGrids," describes the TreeGrid widget class used to display
hierarchical data as folder and leaf nodes, and how to manipulate tree data by adding,
Isomorphic SmartClient Widgets Guide 3

http://www.isomorphic.com/

Preface
moving, and removing nodes, expanding and collapsing nodes, dragging and
dropping nodes, and handling tree events.

• Chapter 9, "Menus, Toolbars, and Menubars," describes the ISC classes used for
navigation of an application. The Menu class implements interactive menus with
icons, submenus, and shortcut keys. The Toolbar class is used to create a row or
column of buttons, each of which carries out a specific action when clicked.

What this guide does not cover
This guide does not describe the general software design process or the decisions involved
in executing that process. Organizing and determining application flow is covered only in
reference to the commonly-used design patterns included as application components
within the Isomorphic SmartClient framework.

This guide does not discuss the Java programming language or JavaScript language, nor
does it address any details of HTML or XML usage. While ISC-based applications may be
database-driven, this guide does not discuss database administration or development,
transaction symantics, or database features.

Resources
This section maps out a variety of documentation resources available to you.

SmartClient Online Reference
The SmartClient Online Reference contains documentation for all public ISC client and
server APIs, presented in a searchable, interactive HTML format. The Reference is
conveniently accessible from the Developer Console (see "JavaScript debugging" on
page 21), but is also available online at:

http://www.isomorphic.com/devcenter/docs/52/reference.html

Sample applications
Isomorphic provides complete code samples for client and server applications in the
samples directory of the Isomorphic SmartClient installation, or you can access client-
side samples on the Web at:

http://www.isomorphic.com/devcenter/examples/index.jsp

You must register to obtain a valid user name and password before accessing this
resource at:

http://www.isomorphic.com/developers/index.jsp
4

http://www.isomorphic.com/devcenter/docs/52/reference.html
http://www.isomorphic.com/devcenter/examples/index.jsp
http://www.isomorphic.com/developers/index.jsp

Icons and conventions used in this guide
Updates to documentation
Check for updates to the documentation on the Isomorphic SmartClient Developer Center
at:

http://www.isomorphic.com/devcenter/documentation/index.jsp

Related readings
If you are unfamiliar with the JavaScript language, or need additional information on the
Java language, Java Servlets, or JavaServer Pages, see the following Internet
publications:

• JavaScript standard (also known as ECMAScript)

http://www.ecma-international.org/publications/standards/Ecma-262.htm

• Java Programming Language

http://java.sun.com/

• JavaServer Pages (JSPs)

http://java.sun.com/products/jsp/index.html

• Java Servlets

http://java.sun.com/products/servlet/index.html

Icons and conventions used in this guide
This guide uses icons and font conventions to help you recognize different types of
information.

Identifier icons

The block icon denotes Isomorphic SmartClient-specific enhancements to
the JavaScript language as Isomorphic SmartClient Widget APIs.

The circle icon calls out the development concepts that are advanced topics.
Isomorphic SmartClient Widgets Guide 5

http://www.isomorphic.com/devcenter/documentation/index.jsp
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://java.sun.com/
http://java.sun.com/products/jsp/index.html
http://java.sun.com/products/servlet/index.html

Preface
Font conventions
This guide uses the typographic conventions shown in Table P.1 to indicate commands,
definitions, and keywords.

Table P.1: Font conventions

Information Type Font Context

Commands and keywords Georgia Bold Denotes the actions a user performs within an
Isomorphic SmartClient application or keywords.

Definitions and terms Georgia Italic Isomorphic SmartClient product terminology.

Java and JavaScript code Courier Java and JavaScript keywords, code samples,
paths, files, and directory names.

Coding concept emphasis Courier Bold Emphasizes pieces of code within a sample.

Code variables Courier Italics Indicates a variable that may take on different
values. Also used for Isomorphic SmartClient’s
settable properties.

Properties and keywords Courier Italics Isomorphic SmartClient properties and keywords.
6

C H A P T E

Isomorphic SmartClient Widgets Guide
R 1
Widgets Overview
Isomorphic SmartClient widgets are visual interface elements, implemented as
JavaScript objects, that you can use to build cross-browser graphical user interfaces.
Typical uses of widgets include:

• viewers that organize and present data visually,
• controls that accept data input from the user, via keyboard or mouse,
• navigation and command tools, and
• graphical design and decorative elements.

This chapter presents the basic widget classes and how widgets are manipulated within
the ISC system.

In this chapter:

Topic Page

Why use widgets? 8

Widget classes 8

Creating widget instances 9

Manipulating widget instances 13

Referring to widget instances 14

Widget containment and attachment—children and peers 15

Widget contents 20
7

1 -- Widgets Overview
Why use widgets?
To design a new user interface, you may pull together an assortment of JavaScript widgets
from different sources—a drop-down menu downloaded from a JavaScript website, a list
viewer adapted from a colleague's, an animated button of your own making, and so on.
These interface components were probably created independently of each other, and were
likely designed for specific applications, maybe even on specific browsers. Therefore, even
if your widget toolbox contains all of the elements you need, each element probably has its
own unique interface and scripts for performing functions that it has in common with the
others.

By contrast, all of the Isomorphic SmartClient (ISC) widgets share common drawing and
event models, and function consistently on all supported browsers. This sharing and
consistency make ISC widgets easier to learn, applications using them faster to build, and
scripts written with them smaller, faster, and easier to maintain. Isomorphic SmartClient
Widgets are supported in the client browser operating system combinations listed in
Table .

The ISC system hides much of the complexity of DHTML programming, and this manual
further omits many features of the system that are used to build the widgets. Still, if you're
familiar with DHTML it may help you to know the technical foundation of widgets:

• ISC widgets are implemented as JavaScript objects.

• ISC widgets are drawn by dynamically creating HTML elements via the Document
Object Model (DOM) interface.

An ISC widget is not the same as the HTML the ISC widget has drawn. All manipulation
of an ISC widget’s appearance must be done through the JavaScript object that represents
the widget. Directly manipulating the HTML created by an ISC widget will have
unpredictable behavior.

Client web browsers and operating systems supported by ISC

Widget classes

Widgets are built on top of the Isomorphic SmartClient class system. This system adds to
JavaScript support for true classes (abstract objects that define the properties of the
instances that you actually create and manipulate). The distinction between class-based
and prototype-based systems is a subtle one, best treated separately.

For purposes of using ISC widgets, what you need to know is that:

• each widget type is defined by a class,

Web Browser Software Operating System

Internet Explorer 5.5+ Windows

Netscape 7.1 Windows, MacOS

Mozilla 1.4+ Windows, MacOS, Linux

Firefox 1.0+ Windows, MacOS, Linux

Safari 1.2+ MacOS
8

Creating widget instances
• a widget class may be defined as a subclass of another widget class (the super-
class), and then inherits all the properties and methods of the superclass,

• to use a particular widget you must create an instance of that widget's class that
has its own set of properties and methods, and

• a class may include static properties and methods (typically used for constants
and utility functions, respectively) that are not copied to each instance of the class.

If you aren't already familiar with these concepts, read on. They will be described in terms
of practical usage below.

The Canvas widget is the superclass of all other widgets. As such, it provides properties
and methods common to all widgets, like the left and top properties that specify a widget's
position on the page. The ListGrid, StretchImg, and Toolbar classes are also superclasses,
each implementing functionality shared by one or more subclasses.

Creating widget instances
Widget classes are abstract objects. A widget class will not, for example, be drawn on the
screen or manipulated by an end user. Instead, you must create instances of a widget
class in JavaScript using the Class.create constructor method. When you create a new
canvas instance, it will automatically be drawn unless you set its autoDraw property to
false. By default, autoDraw is set to true. The ramifications of this are discussed in
detail in Chapter 2, "Drawing Widgets."

For example, the following would create a new canvas (note the little "c") instance from
the Canvas class (note the big "C", both here and in the script below), storing a reference
to the instance in a JavaScript global variable given by the ID property myWidget. The
widget’s ID property is optional if the widget will not need to be manipulated
programmatically. A unique ID will automatically be created upon instantiation for any
canvas where one is not provided. If you will be programmatically manipulating a canvas
instance, however, you should provide a unique ID. Be aware that unpredicable results
will occur if two canvases are assigned the same ID.

<SCRIPT>
Canvas.create({ID:"myWidget"});
</SCRIPT>

This isn't a very exciting example, since it doesn't have any contents to display! Jumping
ahead of ourselves just a bit, here's an example that you can actually see. Type in the
following script, and save it as an HTML file in the SDK, in the directory which contains
the isomorphic directory. Then launch the file within your web browser. The SRC
attribute should reflect the relative path to the ISC libraries from the locaton of the saved
file in your environment.

<HTML>

Note

An important convention in the ISC system is that class names are
always capitalized (e.g. 'the Button class'), while instance names
always begin in lowercase (e.g. 'a button instance'). This convention
applies both to code, and to the discussion of objects in this manual.
Isomorphic SmartClient Widgets Guide 9

1 -- Widgets Overview
<HEAD>
<SCRIPT SRC=isomorphic/system/Isomorphic_SmartClient.js></SCRIPT>

</HEAD>

<BODY>
<SCRIPT>
Canvas.create({

ID:"myFirstWidget",
contents:"Hello world!",
backgroundColor:"blue"

});
</SCRIPT>

</BODY>

</HTML>

In addition to creating a new widget instance, the above code initializes two of the
widget's properties. The create constructor method takes as a parameter an object,
expressed as a list of property:value pairs. Note these pairs are surrounded by curly
braces ('{' and '}') to define an object, not the square brackets ('[' and ']') that define an
array. The properties of this passed object are added to, or override the values of, the
default properties and values of the new instance.

For a more interactive example, use the following script to create a button widget:

Button.create({ID:"myButton"});

This script creates a default button widget—a 20-by-100-pixel gray area at the top-left
corner of the page, with the rollover and click-highlighting behavior of a standard GUI
button. But the default button has no title, and no action in response to a click. The
following script repositions and resizes the button, adds a title, and adds a click action.

Button.create({

Note

For brevity, examples from this point onward will omit the standard
HTML structure tags (<HTML>, <HEAD>, etc.), initialization <SCRIPT>
include tag, and surrounding <SCRIPT> tags.

Note

Curly braces, '{' and '}', in JavaScript indicate an object initializer, also
referred to as literal notation for creating an object. For example, the
following defines an object, where each property is an identifier and each
value is an expression whose value is assigned to property.

{property1:value1, property2:value2, ..., propertyN:valueN}

An object initializer can be assigned to a variable…
objectName = {property1:value1, ...}or may be used directly (e.g. as
a parameter to a function call). Properties in an object initializer may
themselves be associated with object initializers as follows.

{property1:value1, property2:{property2a:value2a, ...}, ...}

JavaScript object initializers are used frequently in the ISC system, so you
should familiarize yourself with this syntax.
10

Creating widget instances
ID:"myButton",
left:100,
top:100,
height:50,
title:"Say hello",
click:"alert('Hello')"

});

The above example actually initializes properties inherited from two different classes. The
left, top, height, and click properties are implemented in the Canvas class, while the
title property is implemented in the Button class. Because Button inherits all of the
properties of Canvas, we can initialize these properties simultaneously when creating a
new button instance.

JavaScript vs. XML
Widgets can be created using either JavaScript or XML in a very similar declarative
format. If you are familiar with JavaScript it is generally recommended that you use the
JavaScript format, since advanced usage of SmartClient such as creating custom
behaviors or creating new components currently requires JavaScript.

To use XML to declare your widgets, you must use a .jsp file with a taglib directive at
the top to pick up the Isomorphic SmartClient XML tags. XML declarations can then be
parsed by a servlet engine.

<%@ taglib uri="isomorphic" prefix="isomorphic" %>

JavaScript declarations can be done within a .html file and do not need to be parsed by a
server.

In JavaScript, property:value pairs are separated by colons, and followed by a comma
for all but the last pair. Instantiation is performed by surrounding the declaration with
the create() method:

WidgetClass.create({property1:value1, property2:value2, ...})

In XML, property="value" pairs are separated by an equals sign, and followed by a
space. Widget declarations in XML must be surrounded by<isomorphic:XML> tags,
which cause the XML to be translated to JavaScript code that creates SmartClient
widgets, as follows:

<isomorphic:XML>

Warning

The commas delimiting property:value pairs are a very common
area for syntax errors, especially if you've commented out some of the
properties in your script. Ensure that all property:value pairs are
separated by commas, but that the last pair is not followed by a
comma. For example, if you were to comment out the click property
above, you would need to remove the comma following the title
property to avoid an execution error, "Expected identifier or
string." in IE.

Omitting a comma in a list of property value pairs results in an error
with both browsers, "Expected '}'.", because without a comma,
JavaScript expects a close to the object definition. Also, ensure that
each property-value pair is separated by a colon.
Isomorphic SmartClient Widgets Guide 11

1 -- Widgets Overview
<WidgetClass property1="value1" property2="value2" .../>
</isomorphic:XML>

Array-valued properties are created in JavaScript using the square brackets '[' and ']'. For
example, the StretchImg class uses an array specifying items. In JavaScript this appears
as:

items:[
{name:"start", width:"capSize", height:"capSize"},
{name:"stretch", width:"*", height:"*"},
{name:"end", width:"capSize", height:"capSize"}

],

In XML, inner tags are used to declare an array. The same items array declared above in
JavaScript would appear as follows in XML:

<items>
<item name="start" width="capSize" height="capSize"/>
<item name="stretch" width="*" height="*"/>
<item name="end" width="capSize" height="capSize"/>

</items>

To illustrate the main differences, Figure 1.1 compares a JavaScript and XML declaration
side-by-side using the simple myFirstWidget example.

Figure 1.1: JavaScript and XML declaration differences

Including a separate XML file
The XML declaration could also be done in a separate file and included in the .jsp loader
by using <isomorphicXML> tags (without the colon) in the included file, and using the
filename property to include the file within the .jsp file using the <isomorphic:XML>
tag (with the colon).

<HTML>

<HEAD>
<SCRIPT SRC=../isomorphic/system/
Isomorphic_SmartClient.js></SCRIPT>

</HEAD>

<BODY>
<SCRIPT>

Canvas.create({
ID:"myFirstWidget",
contents:"Hello world!",
backgroundColor:"blue"

});
</SCRIPT>

</BODY>

</HTML>

<%@ taglib uri="isomorphic"
prefix="isomorphic" %>

<HEAD>
<SCRIPT SRC=../isomorphic/system/
Isomorphic_SmartClient.js></SCRIPT>

</HEAD>

<BODY>
<SCRIPT>

<isomorphic:XML>
<Canvas

ID="myFirstWidget"
contents="Hello world!"
backgroundColor="blue"

/>
</isomorphic:XML>

</SCRIPT>
</BODY>

JavaScript Declaration
myFirstWidget.html

XML Declaration
myFirstWidget.jsp
12

Manipulating widget instances
For example, suppose the following myFirstWidget.xml.txt file were used to define the
myFirstWidget canvas instance.

<!-- myFirstWidget.xml.txt file -->
<isomorphicXML>

<Canvas
ID="myFirstWidget"
contents="Hello blue world!"
backgroundColor="blue"

/>
<Canvas

ID="mySecondWidget"
contents="Hello red world!"
backgroundColor="red"

/>
</isomorphicXML>

This myFirstWidget.xml.txt file would then be included in the myFirstWidget.jsp
file as follows using the <isomorphic:XML> tag (with the colon).

<!-- myFirstWidget.jsp loader file -->
<%@ taglib uri="isomorphic" prefix="isomorphic" %>

<HEAD>
<SCRIPT SRC=../isomorphic/system/Isomorphic_SmartClient.js></SCRIPT>

</HEAD>

<BODY>
<SCRIPT>

<isomorphic:XML filename="myFirstWidget.xml.txt" />
</SCRIPT>

</BODY>

Note that JavaScript code can be interleaved with XML in both .jsps and separate .xml
files.

JavaScript and XML templates including all widget properties available for initialization,
along with their default values, are provided in Appendix A, "Widget Initialization
Templates." Each widget property and its usage will be illustrated in the appropriate
functional section of this guide.

Manipulating widget instances
Widget instances can be manipulated using JavaScript in the same way that you would
manipulate any other JavaScript objects-through properties and methods. These are
accessed by standard dot-notation:

object.property

or

object.method()

Reference

For clarity, only the JavaScript declarations are used in the source
code examples throughout the remainder of this guide. Refer to
Appendix A, "Widget Initialization Templates" for the XML equivalent
structure for each widget class type.
Isomorphic SmartClient Widgets Guide 13

1 -- Widgets Overview
A method that neither takes parameters nor returns a value is called by the simplest
possible syntax:

widgetInstance.method();

Some widget methods do take parameters and/or return a value; their calling syntax is
the same as that of any similar JavaScript function. For example:

variable = widgetInstance.method(parameter1, parameter2, ...);

Some methods have optional parameters, indicated in this manual by square brackets.
For example, both parameters of the moveTo method are optional, so it is documented as:

moveTo([x], [y])

To omit an optional parameter that is not the last parameter in a method call, you must
pass the value null for that parameter. For example, the following call moves myWidget
to the top of the screen without changing its horizontal position:

myWidget.moveTo(null, 0)

Manipulating widget properties is a trickier propostion. All of a widget's properties that
are available for initialization in the create constructor method are technically accessible
via standard JavaScript dot notation, but only some of them should be accessed directly.
Many widget properties should never be accessed after initialization, while others have
corresponding 'setter' and/or 'getter' methods that can be called to access them indirectly.
For example, the left property initialized in the previous example is never accessed
directly; the getLeft and setLeft methods are called instead. The following script
demonstrates these methods; it moves the button 10 pixels to the right by setting its left
coordinate:

myButton.setLeft(myButton.getLeft() + 10);

The chapters that follow show the correct mechanism (property or method) for each
operation that you can perform with a widget.

Referring to widget instances
There are three ways to refer to widget instances, all of which are demonstrated in bold in
the following script:

Canvas.create({
ID:"myWidget",
backgroundColor:"khaki",
contents:"catch me!",
click:"this.setLeft(0)"

});
Page.setEvent("idle", myWidget.getID()+".moveBy(5,0)");

This example draws a simple square widget that moves from left to right across the top of
the page; clicking on the widget returns it to the left side of the page. The script refers to
this widget instance via:

Warning

Assume that a property cannot be directly accessed or set after
initialization unless the ISC documentation explicitly states otherwise.
14

Widget containment and attachment—children and peers
1. A variable that holds a reference to the instance.

The Canvas.create constructor method returns a reference to the new widget
instance, which is stored in the variable myWidget in this example. This variable is
then used to call the widget's getID method.

Most of the examples in this manual, and most of the scripts that you write, will refer-
ence widgets through variables in this manner. A variable storing a widget reference
could be local or global, and its value could be passed as a function parameter or
assigned to another variable.

2. The 'this' keyword.

The 'this' keyword is a JavaScript keyword that refers to the object containing the
current method. If you build or extend widget classes, you'll make frequent use of
'this' when writing new methods. If you're using existing widgets, you'll probably use
'this' only in event handlers, like the 'click' event handler above. See "Handling
widget events" on page 48 for more information on widget event handlers.

3. The instance's global ID.

When a widget instance is created, it is assigned a unique global identifier that can be
used to access the instance by name. The getID method returns this ID for a particu-
lar instance. Global IDs are essential when you need to embed a widget reference in a
string, usually a string that will be evaluated in the future and/or in another object,
where you may not have access to a variable or parameter holding the widget's refer-
ence.

Event handlers are usually specified as strings of script, and are the most frequent
users of global ID references. The script above embeds the new widget instance's ID in
a handler for the global 'idle' event. See "Handling Page events" on page 44 for more
information on global event handlers.

Widget containment and attachment—children and peers
Widgets can be nested in a containment hierarchy, in which each widget may contain
other widget, which may contain other widgets, and so on. The child widgets nested inside
a parent widget inherit a number of properties from the parent, including their drawing
context (i.e., positioning origin), stacking-order container, and various style attributes.
Child widgets may also be clipped by the rectangle of their parent layer, depending on the
parent's attribute settings.

ISC widgets also have the following behaviors with respect to their parents and/or
children:

• Child widgets draw and redraw automatically when their parent is drawn or redrawn.

Note

As stated briefly in "Creating widget instances" above, you do not
need to explicitly assign an ID for a widget unless it will be
manipulated programmatically. For example, if you have a button
that moves another widget, the button doesn’t need an ID, but the
widget that will be moved does.
Isomorphic SmartClient Widgets Guide 15

1 -- Widgets Overview
• Child widgets are cleared from memory automatically when their parent is cleared
from memory.

• Events targeting child widgets "bubble" up through the widget containment
hierarchy.

• A consistent set of methods and properties manipulates the widget containment
hierarchy in all supported browsers.

Table 1.1 lists containment-related methods and properties implemented in the Canvas
class.

Table 1.1: Canvas class containment methods and properties

For example, after executing the following script:

Canvas.create({ID:"A"});
Canvas.create({ID:"B", autoDraw:false});
Canvas.create({ID:"C", autoDraw:false});

A.addChild(B,"Bob");
B.addChild(C,"Chris");

the following statements would all evaluate to true:

A.parentElement == null
B.parentElement == A
C.parentElement == B

A.topElement == null
B.topElement == A

Method / Property Action/Description

addChild(childObject, [childName]) Adds childObject as a child of this widget, set up a named object
reference (i.e., this.childName) to the new widget if childName
is provided, and draw the child if this widget has been drawn
already.

parentElement Object reference to this widget's immediate parent, if any.

topElement Object reference to the top-most (i.e., not a child of any other
widget) widget, if any, in this widget's containment hierarchy.

children Array of object references to all widgets that are immediate children
of this widget.

getParentElements() Returns an array of object references to all ancestors of this widget
in the containment hierarchy, starting with this.parentElement
and ending with this.topElement.

contains(childObject) Returns true if childObject is a descendant of this widget (i.e.,
exists below this widget in the containment hierarchy); and false
otherwise.

autoDraw Default: true
If set to true, this canvas will draw itself immediately after it is
created. You should set this property to false for any canvases
that you intend to add as children of other canvases, or they will
draw twice!
16

Widget containment and attachment—children and peers
C.topElement == A

A.children == [B]
B.children == [C]
C.children == null

A.getParentElements() == []
B.getParentElements() == [A]
C.getParentElements() == [B,A]

A.contains(B)
A.contains(C)
B.contains(C)

A.Bob == B
B.Chris == C

While the addChild method is available to all of the widget classes, it is typically used by
Canvas widgets or other specialized widgets like the ListGrid, which manage their own
children. Whenever a widget is redrawn, it draws its own contents only if it has no
children. So, it doesn't make sense to add children to a widget that has dynamic content.
A Canvas widget can serve as a simple shell to contain and position child widgets.

The ISC system also provides a mechanism for "attaching" widgets to other widgets
without actually nesting them. Any widget can have a number of peer widgets associated
with it. When this master widget is:

• moved,
• resized,
• enabled or disabled,
• shown or hidden,
• focused or blurred, or
• cleared from memory,

any peers attached to the widget will be similarly affected.

Since peer widgets are not actually nested inside their master widget, they are never
clipped by the master widget (unlike children, which may be clipped by their parents).
Common uses of peers, therefore, are as borders or other graphic design elements
accompanying a widget. Peers are also used as interactive parts of complex widgets (e.g.
the "thumb" of the scrollbar widget).

The attachment related methods and properties described in Table 1.3 are common to all
widgets. These methods and properties are implemented in the Canvas class.

Warning

As shown in the initialization script above, each canvas that is created
to be added as child to another canvas must have its autoDraw
property set to false, or the child canvas will draw twice with
unpredictable results! The autoDraw property is set to true by default.
Isomorphic SmartClient Widgets Guide 17

1 -- Widgets Overview
Table 1.2: Canvas class attachment methods and properties

While a peer widget is not contained by its 'master' widget as a child, it is contained by the
master widget's parent. If you add a peer to a master widget that has a parent, the peer
will become a child of that parent as well. Similarly, if you add a master widget to a new
parent, it will carry all of its peers over to that parent as children. These effects are
demonstrated visually in the "Example: Widget containment and attachment" which
will be introduced in the following section.

Nesting children within a parent widget declaration
The previous example, repeated below for comparison purposes, has an equivalent form
that is accomplished by nesting children within the parent widget declaration. Note that
the widget class to use for instantiation is given by the widget class upon which the
create method is called.

// Children are instantiated separately from their parents.
// The autoDraw property must be set to false.

Canvas.create({ID:"A"});
Canvas.create({ID:"B", autoDraw:false});
Canvas.create({ID:"C", autoDraw:false});

A.addChild(B,"Bob");
B.addChild(C,"Chris");

Nesting the children in the parent declaration is equivalent to the above declaration
except, note that in this case, the autoDraw property does not need to be set to false
because the children are completely controlled by the parent and will only be drawn when
the parent is drawn (at instantiation time) or redrawn.

Method / Property Action/Description

addPeer(peerObject, [peerName]) Adds peerObject as a peer of this widget (also making it a child of
this widget's parent, if any), set up a named object reference (i.e.,
this.peerName) to the new widget if peerName is provided, and
draw the peer if this widget has been drawn already.

masterElement Object reference to this widget's ’master' (the widget to which it was
added as a peer), if any.

peers Array of object references to all widgets that are peers of this widget.

Note

Children and peers are declared in essentially the same way. Peers
can be nested within their master widget’s peers array using the
constructor property just as children can be nested in their parent
widget’s children array.
18

Widget containment and attachment—children and peers
// Nesting children within a parent declaration so that children will be
// instantiated with their parent class.
// The constructor property must be set for all children to declare their
// widget class types.

Canvas.create({
ID:"A",
children:[

Canvas.create({
ID:"B",
children:[

Canvas.create({
ID:"C"

})
]

})
]

});

Example: Widget containment and attachment
The example file widget_attachment.html (shown in Figure 1.2) provides a visual
demonstration of widget containment and attachment.

Figure 1.2: Example of widget containment and attachment

This page presents seven page-level, mouse-draggable Canvas widgets, and a set of
buttons below them that manipulate their containment and attachment relationships via
the addChild and addPeer methods. Specifically:

• Widgets A1 or B1 can be added as children to parents P1 or P2, or as peers to master
M1

• Widgets A2 or B2 can be added as peers to masters A1, B1, or M1
Isomorphic SmartClient Widgets Guide 19

1 -- Widgets Overview
If you click and drag any of the colored widgets (excluding the buttons), you'll see that
they all move independently at first. None of them are attached to children or peers. You
can click on the buttons in any order, but you should try the following sequence first:

1. Click the first button in the first row to make A1 a child of P1. Drag A1 to see that the
widget is clipped by its parent. Drag P1 to see that A1 moves as well.

2. Click the last button in the first row to make B2 a peer of B1. Drag B1 to see that B2
moves as well.

3. Click the second button in the first row to make B1 a child of P2. Notice that B2, as
B1's peer, becomes a child of P2 as well. Drag B1, B2, and P2 to see the effect of the
parent/child and master/peer relationships on widget positioning and clipping.

4. Click the third button in the first row to make A2 a peer of A1. Notice that A2 becomes
a child of P1 as well. Drag A1, A2, and P1 to see the effect of the parent/child and mas-
ter/peer relationships on widget positioning and clipping.

Experiment with different combinations and sequences of addChild and addPeer
method calls until you're comfortable with these concepts. To reset the example to its
starting point, press the Reload button in your web browser. If you find that a widget
disappears when added as a child of P1 or P2, click on the appropriate button in the
bottom row to bring it back to the page level as a peer of M1. If the widget is more than
200 pixels from the top and/or left of the page, it will lie outside the display area of P1 or
P2 (each of which are 200 pixels square) when added as a child (remember that a child
gets its positioning origin from its parent!). Move the widget closer to the top-left corner
of the page, then try adding it as a child of P1 or P2 again.

Hit the Reload button on your browser to reset this example.

Widget contents
In the "hello world" example earlier in this chapter, a simple canvas widget containing the
text "Hello world!" was created. That example initialized the contents property of the
widget. This property can be changed thereafter using the setContents(newContents)
setter method. The Canvas and Label classes are the only widget classes that directly
display the value of their contents property; other widget classes generate their contents
based on other properties and/or data.

Note

This example only demonstrates the effects of parent/child and
master/peer relationships on widget positioning and clipping. Widget
containment and attachment have a number of other effects,
including the "bubbling" of events from children to their parents. These
effects will be discussed in subsequent chapters.
20

JavaScript debugging
Table 1.3: Canvas and Label contents properties and methods

As mentioned in the earlier discussion of widget containment, a widget will redraw its
own contents only if it has no children. You can initialize the contents of a parent widget
before it is drawn for the first time, but you cannot change these contents afterwards. In
general, you should use only Canvas widgets with empty contents as parents. Their
children can display whatever dynamic content you want.

If you need to embed images in a canvas widget's contents, there are several methods and
properties for referencing, creating, and changing images that will make your job easier.
Refer to Chapter 4, "Images and Skins," for details.

JavaScript debugging
In any page in which ISC has been loaded, you have access to the Developer Console,
which can be opened by entering the following URL into your browser from the running
application:

javascript:isc.showLog()

The Developer Console contains a "Results" pane that displays a list of diagnostic
messages logged by the SmartClient framework. You can enable and disable diagnostic
messages for specific subsystems, and you can also log your own messages. Because
important diagnostic messages may be logged at any time, you should have the Developer
Console open whenever you are working with SmartClient.

Log messages contain a timestamp, priority level, category or class of object, and object
ID.

To log messages of your own, you can call one of the logging methods listed below on any
widget object instance, or on the Log class itself.

Property / Method Description/Action

contents The contents of a canvas or label widget. Any HTML string is acceptable.

setContents(newContents) Changes the contents of a widget to newContents, an HTML string.

11:59:25:806:INFO:Page:Page loading complete.

timestamp priority level category or class message
Isomorphic SmartClient Widgets Guide 21

1 -- Widgets Overview
Table 1.4: Methods for logging messages

Each logging category or class may have a default logging priority level that denotes the
minimum level before messages are sent to the log. In other words, if the priority of a
logged message is lower than the level of its encompassing category or class, the message
will not appear in the log. This allows you to see only the debug messages relevant to the
issue you are working on.

You can set all priority defaults to the levels of your choosing. See the following section on
"Setting logging priorities for categories and classes" for more information.

Method Description

logMessage([priority],
message, [category])

Writes a message to the log given by one of the following priority constants
(from highest priority to lowest):
• Log.FATAL:1—the application should probably abort
• Log.ERROR:2—actions within the application may be unpredictable
• Log.WARN:3—something that requires programmer attention
• Log.INFO:4—(default) something that is merely additional information

for the programmer
• Log.DEBUG:5—detailed non-vital information for debugging purposes
If the optional priority parameter is not provided, the message will be
assigned the default .The optional category parameter allows the
programmer to classify different log messages or track what class logged the
message. If the category parameter is not specified, the the class of the
object on which the log method was called will be recorded in the log window
instead.

logFatal(message, [category]) Writes a Log.FATAL priority message to the log.

logError(message, [category]) Writes a Log.ERROR priority message to the log.

logWarn(message, [category]) Writes a Log.WARN priority message to the log.

logInfo(message, [category]) Writes a Log.INFO priority message to the log.

logDebug(message, [category]) Writes a Log.DEBUG priority message to the log.

logIsEnabledFor(priority,
[category])

Returns true if logging is enabled for the specified priority and
category (if supplied), and false otherwise.

logIsDebugEnabled([category]) Returns true if logging is enabled for the the Log.DEBUG priority and
category (if supplied), and false otherwise.

logIsInfoEnabled([category]) Returns true if logging is enabled for the the Log.INFO priority and
category (if supplied), and false otherwise.

Warning

Never use the native alert function for diagnostic messages. Among
other issues, alert can affect timing, masking or altering the
behavior you are trying to debug. SmartClient’s logging system
doesn’t suffer from these problems and provides much more control
and flexibility.
22

JavaScript debugging
The Isomorphic SmartClient framework ships with a defaultPriority property set to
Log.INFO. This default priority will be applied to a message if no value is given for the
priority parameter, and it will also be applied to the category unless the category is
explicitly set.

If the priority of the message being sent to the log window is Log.ERROR or Log.FATAL,
the error message will also be displayed in a JavaScript alert and a stack trace will be
added to the message. This stackTracePriority can also be set as you choose.

For example, consider the following canvasExample instance. To track widget
instantiation and redraw within the canvasExample object, the logInfo method is called
to send informational messages to the log window:

. . .
<SCRIPT>
Canvas.create({

ID:"canvasExample",
left:10,
top:10,
width:100,
height:30,
backgroundColor:"lightBlue",
contents:"Hello World!"

});
canvasExample.logInfo("Canvas widget object instantiated!");

var width = canvasExample.getWidth();
var height = canvasExample.getHeight();
canvasExample.setContents("Width: " + width + "
Height: " + height);
canvasExample.redraw();

canvasExample.logInfo("Width/Height contents set and canvas redrawn!",
"redraw");

</SCRIPT>
. . .

Using the log system statically and in class instances
The log system can be used statically by calling one of the methods in Table 1.4 on the Log
class:

Warning

If you log a message to a category without explicitly defining the
category’s priority, all Log.DEBUG messages logged within that
category will be suppressed from the log. The ISC default assigns a
priority of Log.INFO to all categories unless you explicitly set them
otherwise.

Note

Stack traces are currently not available in Mozilla and Netscape 7
browsers.
Isomorphic SmartClient Widgets Guide 23

1 -- Widgets Overview
Log.logInfo("Log message.");

You can also log within the scope of an entire class of widgets, or use the log system in
class instances by calling methods using the this keyword. For example, suppose an
information message is sent to the log window whenever a user clicks on the
canvasExample widget.

. . .
<SCRIPT>
Canvas.create({

ID:"canvasExample",
left:10,
top:10,
width:100,
height:30,
backgroundColor:"lightBlue",
contents:"Hello World!",
click:"this.logInfo('Ouch! Quit clicking on me!');"

});

Log.logInfo("This message is being logged in the global scope.");
Canvas.logInfo("This message to the Canvas scope may also be appropriate.");
. . .

Note

All the methods given in Table 1.4 are inherited by all classes and
widgets. Therefore you can call these methods on any class or defined
object. As a rule of thumb, call methods on the this keyword from
within a class instance method, and on the Log singleton class from a
global method or where the scope is unclear.
24

JavaScript debugging
Setting logging priorities for categories and classes
The "Preferences" pane within the Developer Console can be used to dynamically change
the default level of logging for a category or class. The Preferences pane contains a list of
categories and widgets which have useful debugging information. Hover over any
category name to see a short description of the kind of information that is logged in that
category.

Keep in mind that if you set any category to a level of Log.DEBUG, you may be getting
more messages in your log window than you intended! It is best to define your own
categories for use with the Log.DEBUG priority to avoid getting messages that you may not
want or need in debugging your own code.

If you are going to build a log message by compiling information from a bunch of objects
into a string, use the logIsEnabledFor method or an appropriate derivative to ensure
that the message won’t be suppressed from the log prior to making the call, thus saving
execution time. For example, suppose a function that encapsulates the mouse movement
data is compiled when a user clicks on the canvasExample widget only when the Canvas
class is set to Log.DEBUG priority:

. . .
<SCRIPT>
Canvas.create({

ID:"canvasExample",
left:10,
top:10,
width:100,
height:30,
backgroundColor:"lightBlue",
contents:"Hello World!"
click:"if (this.logIsDebugEnabled()){this.logInfo(getMouseMoveReport());}"

});
. . .
Isomorphic SmartClient Widgets Guide 25

1 -- Widgets Overview
26

C H A P T E

Isomorphic SmartClient Widgets Guide
R 2
Drawing Widgets
Widgets are visual interface elements, and as such have a common set of characteristics
related to drawing and visual appearance. The Canvas superclass provides the properties
and methods used by all widgets to control: position, scrolling, size, background
attributes, visibility, layering, cascading style sheet (CSS) classes (styles), clipping,
padding, borders, and margins.

This chapter details the process of using the Canvas superclass to control the drawing
properties of all ISC widgets.

In this chapter:

Topic Page

Specifying initial position and size 28

Drawing 28

Controlling position and size 30

Showing and hiding 34

Layering 35

Clipping and scrolling 36

Other visual properties 39
27

2 -- Drawing Widgets
Specifying initial position and size
When you call the create method to create a new instance of a widget, you can specify the
widget's initial position and size with the properties described in Table 2.1.

Table 2.1: Widget positioning and sizing properties

For example:

Canvas.create({
ID:"myWidget",
left:200,
top:100,
width:50,
height:50,
backgroundColor:"khaki"

});

In a real application, widget positioning and sizing should be managed by Layouts. For
usage information on Layouts, consult the SmartClient Online Reference. If you want to
embed widgets in an otherwise standard HTML page, use relative positioning. This allows
you to immediately integrate ISC widgets into existing sites.

Drawing
A call to the create method will, by default, draw the new widget. If, however, you set the
widget’s autoDraw property to false, you need to explicitly call the draw method for it to
be displayed.

Property Value Default

position absolute or relative, corresponding to the "absolute"
(with respect to parent) or "relative" (with respect to main
page flow) values for the CSS position attribute. You will
almost always use absolute.

"absolute"

left Number of pixels the left side of the widget is offset to the
right from its default drawing context (either its parent's top-
left corner, or the document flow, depending on the value of
the position property).

0

top Number of pixels the top of the widget is offset down from its
default drawing context (either its parent's top-left corner, or
the document flow, depending on the value of the position
property).

0

width Number of pixels for the widget's horizontal dimension. 100

height Number of pixels for the widget's vertical dimension. 100

Note

The backgroundColor property is covered "Other visual properties" on
page 39. It is included here so that if you experiment with this code
snippet, the canvas will appear in a different color than the browser
page background.
28

Drawing
Canvas.create({
ID:"myWidget",
contents:"Aloha!",
autoDraw:false

});
myWidget.draw();

In most cases, you will simply allow the widget to be drawn automatically. However, the
draw method can be called by a script at any time. For example, a user action such as
pressing a button could call the draw method to display some new widget. In some
situations, you may want to draw a widget only when the page is fully loaded. To defer
drawing in this case, use the following syntax:

Page.setEvent("load", "myWidget.draw()");

The Page.setEvent mechanism is explained in "Handling Page events" on page 44.

The draw method is also called as a side effect of several other widget methods:

• The show method draws the widget being shown if it is not already drawn.

• The addChild method draws the new child if its parent is already drawn.

• The addPeer method draws the new peer if its master is already drawn.

Drawing-related methods
To determine whether an existing widget has been drawn, call the isDrawn method. For
example, the following script will draw widget2 only if widget1 has already been drawn:

if (widget1.isDrawn()) widget2.draw();

If the data behind a widget object changes, the widget may need to be redrawn. There are
two methods you can use to initiate a redraw action.

• The redraw() method will redraw the widget immediately.

• The markForRedraw() method marks the widget object as "dirty" so that it will be
added to a queue for redraw. After an infinitesimal time delay, all widget instances
added to this queue will be redrawn in the order they were added. This allows multiple
properties to be set before a widget is redrawn on the page, thus improving
performance since the widget will not needlessly redraw multiple times.

The drawing-related methods for widgets are summarized in Table 2.2.

Warning

Widgets that have relative positioning should be drawn before page
load. Otherwise, they will be treated like widgets with absolute
positioning. See "Specifying initial position and size" on page 28 for
information on positioning and sizing of widgets.
Isomorphic SmartClient Widgets Guide 29

2 -- Drawing Widgets
Table 2.2: Widget drawing-related methods

Controlling position and size
Once you have created and initialized a new widget with the create method, you should
never directly set the properties controlling position and size of the widget. Instead, call
the setter methods described in Table 2.3. Using these methods ensures that the widget
will be redrawn correctly, along with any associated widgets (children or peers).

Table 2.3: Widget positioning and sizing setter methods

Method Action

draw() Draws the widget on the page, if the autoDraw property has been set to false.

isDrawn() Returns the boolean true, if the widget has been drawn, and false otherwise.

redraw() Redraws the widget immediately with its current property values.

markForRedraw() Marks the widget as "dirty" so that it will be added to a queue for redraw. Once a small lag
time has elapsed, each widget added to the queue is then redrawn with its current property
values.

Note

The parameters of these methods are all expressed in pixel units,
relative to the widget's drawing context (page, parent, or in-line
position).

Method Action

setRect([left], [top],
[width], [height])

Moves the widget so that its top-left corner is at the specified top-left
coordinates, and resize it to the specified width and height. The setRect
method will also accept a single parameter as an object array with left,
top, width, and height given as properties.

setLeft(left) Moves the widget so that its left side is at the specified coordinate.

setTop(top) Moves the widget so that its top side is at the specified coordinate.

setWidth(width) Resizes the widget horizontally to the specified width (moves the right side
of the widget). The width parameter can be expressed as a percentage of
viewport size, or as the number of pixels.

setHeight(height) Resizes the widget vertically to the specified height (moves the bottom
side of the widget). The height parameter can be expressed as a
percentage of viewport size, or as the number of pixels.

setRight(right) Resizes the widget horizontally to position its right side at the specified
coordinate.

setBottom(bottom) Resizes the widget vertically to position its bottom side at the specified
coordinate.

moveBy([deltaX], [deltaY]) Moves the widget deltaX pixels to the right and deltaY pixels down.
Passes negative numbers to move up and/or to the left.
30

Controlling position and size
Setting the left or top coordinate moves a widget, while setting the bottom or right
coordinate resizes the widget. To resize a widget from its left or top side, you must set the
widget's new width or height in addition to its new left or top coordinate. These two
operations may be performed separately, or simultaneously via the setRect method.
Both approaches are demonstrated in the "Example: Dynamic positioning and sizing" on
page 32.

The Isomorphic SmartClient widgets also provide a collection of 'getter' methods for
accessing information about their positions and sizes (in pixel units). These methods are
described in Table 2.4.

Table 2.4: Widget positioning and sizing getter methods

moveTo([x], [y]) Moves the widget so that its top-left corner is at the specified x, y
coordinates. The moveTo method will also accept a single parameter as an
object array with x and y given as properties.

resizeBy([deltaX], [deltaY]) Resizes the widget, adding deltaX to its width and deltaY to its height
(moves the right and/or bottom sides of the widget).

resizeTo([width], [height]) Resizes the widget to the specified width and height (moves the right
and/or bottom sides of the widget). The width and height parameters can
be expressed as a percentage of viewport size, or as the number of pixels.

Tip

If you need to set both left and top coordinates simultaneously, you
should use one moveTo or setRect method call rather than two
separate method calls to setLeft and setTop. Similarly, separate
calls to setWidth and setHeight should be combined into a single
method call to resizeTo or setRect.

Method Action

getLeft() Returns the left coordinate of the widget, relative to its drawing context.

getTop() Returns the top coordinate of the widget, relative to its drawing context.

getWidth() Returns the width of the widget.

getHeight() Returns the height of the widget.

getVisibleWidth() Returns the visible width of a clipped widget (see "Clipping and
scrolling" on page 36). If a widget is not clipped, getVisibleWidth()
returns the full width.

getVisibleHeight() Returns the visible height of a clipped widget (see "Clipping and
scrolling" on page 36). If a widget is not clipped, getVisibleHeight()
returns the full height.

getRight() Returns the right coordinate of the widget, relative to its drawing context.

getBottom() Returns the bottom coordinate of the widget, relative to its drawing context.

Method Action
Isomorphic SmartClient Widgets Guide 31

2 -- Drawing Widgets
The getPageLeft and getPageTop methods are useful when you need to work with
global coordinates (e.g. determining the position of the mouse pointer).

Two related utility methods are provided for your convenience. These methods are
described in Table 2.5.

Table 2.5: Widget positioning and sizing utility methods

Example: Dynamic positioning and sizing
The example file widget_position_size.html (shown in Figure 2.1) uses the setter and
getter methods above to demonstrate dynamic positioning and sizing of a widget.

getPageLeft() Returns the global left coordinate of the widget on the page.

getPageTop() Returns the global top coordinate of the widget on the page.

Method Action

containsPoint(x, y) Returns true if this widget's rectangle, in global (page) coordinates,
contains the point (x,y). Note that this method uses
getVisibleWidth() and getVisibleHeight(). See "Clipping and
scrolling" on page 36.

intersectsRect(left, top,
width, height)

Returns true if the rectangle of this widget intersects with the rectangle
coordinates passed in, and false otherwise.

intersects(otherWidget) Returns true if the rectangles of this widget and otherWidget overlap.
Also returns true if otherWidget is a child of this widget, regardless of
whether the two overlap.

Method Action
32

Controlling position and size
Figure 2.1: Example of dynamic postioning and sizing

Click and hold on the Move, Grow, or Shrink buttons on any side of the image to move,
grow, or shrink the widget in/from that direction.

The methods listed in this section allow for more than one approach to any positioning or
sizing operation. For each operation in this example, the file provides two different scripts
that could achieve the same result. The first script (which is commented out) uses simple
get and set methods only, while the second script uses the more efficient moveBy and
resizeBy methods. For example, the Move button to the right of the widget could
execute either of the following scripts (and actually executes the second one):

widget.setLeft(widget.getLeft()+20)

or

widget.moveBy(20,0)

Grow and shrink operations from the top or left sides of the widget are slightly more
complicated, since the widget must be both resized and repositioned. For example, the
Grow button above the widget could execute either of the following scripts:

widget.setRect(null, widget.getTop()-20, null, widget.getHeight()+20);

or

widget.moveBy(0,-20);
widget.resizeBy(0,20);
Isomorphic SmartClient Widgets Guide 33

2 -- Drawing Widgets
Shrink operations also contain some simple logic to prevent the widget from being further
shrunk or repositioned when its width or height is already zero. For example, the Shrink
button to the left of the image could execute either of the following scripts:

widget.setRect(widget.getWidth() > 0 ? widget.getLeft()+20 : null,
null, Math.max(widget.getWidth()-20,0), null);

or

widget.moveBy(widget.getWidth() > 0 ? 20 : 0, 0);
widget.setWidth(Math.max(widget.getWidth()-20,0));

More complex logic to prevent the widget from being grown or moved outside of a defined
area can be accomplished using the same methods described above.

Showing and hiding
All widgets have a visibility property, corresponding to the cascading style sheet (CSS)
visibility attribute, that can be initialized to one of the values listed in Table 2.6.

Table 2.6: Widget visibility property values

Like most widget properties, visibility should not be directly accessed after initialization.
Methods to control widget visibility are listed in Table 2.7.

Table 2.7: Widget visibility methods

To show or hide a widget, use the first two methods above. To determine whether a widget
is visible, call the isVisible method. For example, the following script will move
myWidget only if it is visible:

Value Effect

"inherit" (Default) The widget's visibility matches that of its parent. This corresponds to the
'inherit' value of the CSS visibility attribute. This generally means the widget will
be visible.

"visible" The widget is always visible, even when its parent is hidden. Corresponds to the
'visible' value of the CSS visibility attribute.

"hidden" The widget is always hidden, even when its parent is visible. Corresponds to the
'hidden' value of the CSS visibility attribute.

Method Action

show() Sets the widget's CSS visibility attribute to "inherit". If the widget has not yet
been drawn, this method calls the draw method as well.

hide() Sets the widget's CSS visibility attribute to "hidden".

isVisible() Returns true if the widget's CSS visibility attribute is set to "visible" and
false if the value of this attribute is "hidden". If the visibility value is set to
"inherit" and the widget's parent is visible, isVisible() returns true.
Conversely, if the visibility value is set to "inherit" and the widget's parent is
not visible, it returns false.
34

Layering
if (myWidget.isVisible()) myWidget.moveTo(0,200);

Opacity
All widgets also have an opacity property that allows you to draw a widget so that it
appears partly transparent. This property will only work with Internet Explorer web
browsers on Windows operating systems and should be used with discretion. Calculating
opacity is a processor-intensive task that may be time consuming for some systems to
render. Be aware that even with the opacity property set to its maximum (fully opaque),
a widget may still exhibit a slower draw response. For this reason, the opacity property is
set to null by default, so that it will be ignored by the system and ensure the fastest draw
times where photo-realistic transparency is not required. Possible values for the opacity
property are summarized in Table 2.8.

Table 2.8: Widget opacity property values

Like most widget properties, opacity should not be directly accessed after initialization.
The method used to set widget opacity is listed in Table 2.7.

Table 2.9: Widget opacity method

Layering
The layering, or stacking order, of widgets is typically determined by the order in which
they are drawn. Widgets drawn earlier are 'behind' widgets in the same parent that are
drawn later. If sibling widgets overlap, the widget drawn later is in front. This concept is
often called "z-ordering." Widgets contained in different parents cannot be interleaved.

Widget layering methods allow you to change the default layering of a widget within its
parent. These methods are described in Table 2.10.

Value Effect (IE only)

0 (min) to 100 (max) Default: null
Renders the widget to be partly transparent. A widget’s opacity
property may be set to any number between 0 (transparent) to 100
(opaque).

Method Action

setOpacity(newOpacity) Sets the opacity for the widget to the newOpacity value. This newOpacity
value must be within the range of 0 (transparent) to 100 (opaque).
Isomorphic SmartClient Widgets Guide 35

2 -- Drawing Widgets
Table 2.10: Widget layering methods

Example: Dynamic layering
The example file widget_layering.html (shown in Figure 2.2) uses the methods above
to demonstrate dynamic layering of a widget.

Figure 2.2: Example of dynamic layering

This example draws four overlapping Canvas widgets, the last of which, widget (drag me),
is mouse-draggable. Dragging this or any other draggable widget automatically brings it
to the top layer. This draggable widget can then be dynamically relayered by clicking on
the buttons to the right. Note that the buttons are also drawn in the stacking order, so the
draggable widget can be moved above or below them as well.

Clipping and scrolling
Widget clipping and scrollbars are controlled by the overflow property, which is
initialized when a widget instance is created and set to one of the overflow values listed in
Table 2.11.

Method Action

bringToFront() Puts this widget at the top of the stacking order, so it appears in front of all
other widgets in the same parent.

sendToBack() Puts this widget at the bottom of the stacking order, so it appears behind
all other widgets in the same parent.

moveAbove(otherWidget) Puts this widget just above otherWidget in the stacking order, so it
appears in front of otherWidget.

moveBelow(otherWidget) Puts this widget just behind otherWidget in the stacking order, so it
appears behind otherWidget.
36

Clipping and scrolling
Table 2.11: Widget overflow values

When a widget is clipped, only a portion of its content is displayed. The methods
described in Table 2.12 let you determine the size of the complete contents, and scroll the
contents to display a different portion (regardless of whether scrollbars are shown).

Table 2.12: Widget scrolling methods

Value Effect

"visible" (Default) Content that extends beyond the widget's width or height is
displayed.

"hidden" Content that extends beyond the widget's width or height is clipped
(hidden).

"auto" Horizontal and/or vertical scrollbars are displayed only if necessary.
Content that extends beyond the remaining visible area is clipped.

"clip-h" Content that extends beyond the widget's width is clipped. All vertical
content is displayed.

"clip-v" Content that extends beyond the widget's height is clipped. All horizontal
content is displayed.

"scroll" Horizontal and vertical scrollbars are always drawn inside the widget.
Content that extends beyond the remaining visible area is clipped, and can
be accessed via scrolling.

"ignore" Clipping is ignored by the ISC system. This setting may be used for
improved performance, with frequently-drawn widgets whose dimensions
always agree exactly with the size of their contents.

Note

Note that the overflow property does not correspond directly to the
CSS overflow attribute. It extends the standard CSS overflow effects,
and makes them consistent across browsers.

Method Action

getScrollWidth() Returns the scrollable width of the widget's contents, including children,
ignoring clipping.

getScrollHeight() Returns the scrollable height of the widget's contents, including children,
ignoring clipping.

getVisibleWidth() Returns the clipped width of the widget's contents.

getVisibleHeight() Returns the clipped height of the widget's contents.

scrollTo([left], [top]) Scrolls the content of the widget so that the origin (top-left corner) of the
content is left pixels to the left and top pixels above the widget's top-left
corner (but still clipped by the widget's dimensions).
Isomorphic SmartClient Widgets Guide 37

2 -- Drawing Widgets
Example: Widget overflow (clipping and scrolling)
The example file canvas_clip_scroll.html (shown in Figure 2.3) uses the overflow
property and scrollTo method to demonstrate widget clipping and scrolling.

Figure 2.3: Example of widget overflow (clipping and scrolling)

This example draws six Canvas widgets, each containing a 200-by-200-pixel image.
Except for the last widget, they are all initialized with the default dimensions of 100-by-
100 pixels. Each widget demonstrates the effect of a different overflow value when the
size of the contents exceed the size of the widget.

The five buttons below the widget with overflow:hidden (named "hiddenCanvas" in the
code) call the scrollTo method to shift the contents in that widget. For example, the BL
button shifts the contents to display the bottom-left corner by calling:

hiddenCanvas.scrollTo(0,100)

The widget with overflow:auto is initialized with a width of 216 pixels, to demonstrate
the difference between the scroll and auto settings. A width of 216 pixels
accommodates both the 200-pixel-wide image, and the 16-pixel-wide vertical scrollbar,
so no horizontal scrollbar is necessary. Since scrollbars are only drawn when necessary if
overflow is set to auto, only a vertical scrollbar is drawn in this case.
38

Other visual properties
Other visual properties
The Canvas class provides a handful of other properties to control various apearance
attributes of widgets. Table 2.13 lists properties you can initialize when creating a new
widget instance.

Table 2.13: Widget appearance properties

Note

Scrollbars are drawn inside the boundaries of a widget, so you may
need to take their width of 16 pixels into account when sizing a
widget. When you are using the auto setting for overflow, you should
also keep in mind that the appearance of a scrollbar for one
dimension will reduce the viewable area of a widget in the other
dimension, possibly causing the other scrollbar to appear. This would
be the case if the width of the last widget were less than 216 pixels.

If you are using Windows XP, scrollbars have a width of 17 pixels, so for
the Windows XP case, the width would need to be set to 217 pixels to
prevent the horizontal scrollbar from appearing. This is reflected in the
source code for the example.

Property Value Default

className The CSS class applied to this widget as a whole. "normal"

backgroundColor The background color for this widget. It corresponds to
the CSS background-color attribute. You can set this
property to an RGB value (e.g. #22AAFF) or a named
color (e.g. red) from a list of browser supported color
names.

null

backgroundImage The background image file for this widget. See
"Specifying image directories" on page 78 for details on
referencing image files. It corresponds to the CSS
background-image attribute. The filename is
automatically prepended with Page.imgDir and
widget.imgDir.

null

backgroundRepeat Specifies how the background image should be tiled if
this widget is larger than the image. It corresponds to
the CSS background-repeat attribute and is given as
one of the following four values.
• repeat
• no-repeat
• repeat-x
• repeat-y

"repeat"

margin The thickness, in pixels, of the transparent space
outside the borders of this widget, buffering it from other
in-line content. It corresponds to the CSS margin
attribute.

0

padding The thickness, in pixels, of the space between this
widget's content and its borders. It corresponds to the
CSS padding attribute.

0

Isomorphic SmartClient Widgets Guide 39

2 -- Drawing Widgets
Several appearance properties from Table 2.13 have corresponding setter methods. These
methods are described in Table 2.14.

Table 2.14: Widget appearance setter methods

The other appearance-related properties should be set during initialization only.

border CSS border width, border style, and/or color, to apply to
all four borders of this widget. It corresponds to the
CSS border attribute.

null

cursor Specifies the cursor image to display when the mouse
pointer is over this widget. It corresponds to the CSS
cursor attribute and is given as one of the following five
values:
• default (arrow cursor)
• wait
• hand
• move
• help
• text
• crosshair

"default"

Warning

These properties may be overridden by different widget classes as
necessary to implement class-specific functionality. Use them with
caution for widget classes other than Canvas.

Method Action

setBackgroundColor(color) Sets the background color for this widget to color.

setBackgroundImage(imageURL) Sets the background to an image file given by the imageURL. This URL
should be given as a string relative to the image directory for the page
(./images by default). See Chapter 4, "Images in Canvas widgets" on
page 80 for more information on referencing image files

setClassName(CSSclass) Sets the CSS class for this widget to CSSclass.

setCursor(cursor) Sets the cursor for this widget to cursor (see the cursor property in
Table 2.13 for possible values).

Property Value Default
40

C H A P T E

Isomorphic SmartClient Widgets Guide
R 3
Handling Events
As the building blocks of interactive applications, Isomorphic SmartClient widgets can
respond to events generated by their environment or a user. The ISC event model enables
consistent handling of:

• page events (e.g., page loaded),
• mouse events (e.g., mouse button clicked),
• drag-and-drop events (e.g., dragging started), and
• keyboard events (e.g., key pressed).

This chapter describes the Isomorphic SmartClient event-handling architecture and
presents how to handle events within ISC applications.

In this chapter:

Topic Page

The ISC event model 42

Handling Page events 44

Handling widget events 48

Mouse events 53

Getting event details 54

Drag-and-drop operations 56
41

3 -- Handling Events
The ISC event model
The ISC system provides a predictable cross-browser event-handling mechanism for ISC
widgets. Events can be handled both at the page level (i.e., globally), and at the level of
individual widgets.

With the exception of a few page-specific events ('load', 'unload', 'idle' and 'resize'),
events are processed in the following sequence:

1. The event is sent to any global (page-level) event handlers. These handlers can cancel
further propagation of the event by returning false.

2. If the event occurred on a form element or a link, it is passed on to the browser so that
the element will perform its default action. No widget receives the event.

3. If the event occurred on an enabled widget (but not on a form element or link inside
the widget), it is sent to that widget's event handler, if any. This handler can cancel
further propagation of the event by returning false.

4. The event is "bubbled" up to the widget's parent in the containment hierarchy, if any.
Again, the parent's handler for the event can cancel further propagation by returning
false. This step is repeated, with the event "bubbling" up through the containment
hierarchy, until a top-level widget is reached or the event is explicitly canceled.

In brief, the ISC event model offers the best features of browser event models:

• Page-first event handling allows you to reliably process or cancel any event before it
affects the objects on the page.

• Event "bubbling" ensures that parent widgets receive events sent to their children,
and allows you to create generalized parent-level handlers rather than duplicating
code in each child.

Note

Canceling propagation of an event may cancel its side effects as
well, including the generation of other events. For example, if a global
mouseDown handler returns false, drag-and-drop events will not be
generated. Specific effects are discussed in the descriptions of the
various events in the following sections.

Note

 Isomorphic SmartClient libraries will not interfere with native event
handling when events occur outside of a target widget. You can
therefore have HTML that is not ISC-based on the same page as
widget objects that will react to native events as you would expect.
42

The ISC event model
Example: Event propagation
The example file event_propagation.html (shown in Figure 3.1) demonstrates this flow
for the 'click' event.

Figure 3.1: Example of event propagation

In this example, three nested widgets, top, parent, and target, all have click handlers
assigned to them. Each widget's handler displays a confirmation dialog, and returns the
value from that dialog (true for OK, false for Cancel). For example, the script for
target's click handler is:

return confirm('target received click event. Continue?')

The page also has a global click handler that reports the event in the window status bar
at the bottom left of the browser window:

return confirm('Page received click event. Continue?')

Click on target, and click OK in each of the confirmation dialogs to send a 'click' event
through the system. Figure 3.2 depicts the propagation of this 'click' event through the
containment hierarchy. Dashed arrows represent the path of the 'click' event, while
dashed boxes represent the event handlers that execute in response.

If you click Cancel in any of the confirmation dialogs, the handler that called it will
return false, thereby canceling event propagation. Note that the event can be canceled
by any of its handlers, at the page level as well as in the widgets.

Note

The source code for this example packaged with the Isomorphic
SmartClient SDK shows both children declaration methods. See
"Nesting children within a parent widget declaration" on page 18 for
more information.
Isomorphic SmartClient Widgets Guide 43

3 -- Handling Events
Figure 3.2: Click event propagation

Handling Page events
Global (a.k.a. "page-level") event handlers can be set and cleared using two methods of
the Page object. The Page object is a special non-widget ISC class that provides various
static properties and methods related to the current page as a whole. There are two
methods for manipulating global event handlers, described in Table 3.1.
44

Handling Page events
Table 3.1: Global event handler methods

The handler parameter of the Page.setEvent method can be either a function, or a string
of script to evaluate. Both approaches are shown later in this section. Note that multiple
global handlers may be assigned to a single event. The Page.setEvent method adds a
new handler without removing any existing handlers for that event. If you want to clear a
global handler, you must do so explicitly by calling the Page.clearEvent method.

Any event in the ISC system may have global handlers assigned to it. For the mouse
events and drag-and-drop events discussed below, global handlers provide a mechanism
for processing and/or canceling an event before it is sent to its target. For page events,
global handlers are the only handlers that can respond to the event.
Table 3.2 lists the page events currently supported in the ISC system.

Table 3.2: ISC Page events

For example, the following script (which appeared in "Specifying initial position and
size" on page 28 earlier) draws a widget after the page has been fully loaded:

Page.setEvent("load", "myWidget.draw()");

If you intend to remove a global event handler at some point, you must keep track of the
event's ID. For example:

var myEventID = Page.setEvent("idle", myAction);

Method Action

Page.setEvent(eventName,
handler, [Page.FIRE_ONCE])

Sets handler (either a string to evaluate or a reference to a function) as a
global handler for the eventName event. If the Page.FIRE_ONCE
constant is provided as an optional third parameter, this handler will be
automatically removed after executing once. Returns a unique ID and
eventID for this handler, which can be used later in a call to the
Page.clearEvent method.

Page.clearEvent(eventName,
[eventID])

Clears the global handler with ID eventID, for the eventName event. If no
eventID is specified, the method will clear all global handlers for the
eventName event.

Event Description

load Executed when the page has finished loading. It corresponds to the
browser 'load' event normally handled by window.onload.

unload Executed when the page is exited or unloaded. It corresponds to the
browser 'unload' event normally handled by window.onunload.

idle Executed repeatedly (every 10 ms by default) when the system is idle (i.e.,
not busy running other scripts) after the page is loaded.

resize Executed when the browser window is resized by the user. It corresponds
to the browser 'resize' event normally handled by window.onresize.

showContextMenu Executed when the right mouse button is clicked. Canceling this event
globally (by returning false) suppresses the default widget behavior of
showing a context menu. See "Mouse events" on page 53 for details.
Isomorphic SmartClient Widgets Guide 45

3 -- Handling Events
The event's ID can then be passed to the Page.clearEvent method later:

Page.clearEvent("idle", myEventID);

Alternatively, if you want to remove the handler after it executes just once, you can use
the optional Page.FIRE_ONCE parameter in the call to the Page.setEvent method. For
example, to execute myAction just once, on the next 'idle' event:

Page.setEvent("idle", myAction, Page.FIRE_ONCE);

As mentioned above, global handlers can also be set for any of the mouse or drag-and-
drop events. "Example: Event propagation" on page 43 sets a global handler for the
'click' event as follows:

Page.setEvent("click", "return confirm('Page received click event.
Continue?')");

The "Example: Getting event details" on page 55 demonstrates global handling of all
possible events.

Registering keypress events
If you want a widget on the page to respond to a keypress event, the Page object can be
used to register the key and designate an action to perform when the key is pressed. The
Page object has two methods for registering keypress events, summarized in Table 3.3.

Warning

Always use the Page.setEvent method to assign document-level
event handlers. When the ISC event-handling system is initialized,
handlers previously assigned to many document-level events are
replaced by the system's handlers. Specifically, the following handlers
are overwritten if they have been set previously via scripting or BODY
tag attributes:

Never set these event handlers directly, as doing so will disable the ISC
system's processing of these events.

• window.onload
• window.onunload
• document.onresize
• window.onresize
• document.onscroll
• document.onmouseover
• document.onmouseout
• document.onclick
• document.ondblclick
• document.oncontextmenu
• document.onmousedown
• document.onmousemove
• document.onmouseup
• document.ondragstart
• window.ondragstart
• document.onkeydown
• document.onkeypress
• document.onkeyup
• document.onselectstart
• window.onselectstart
46

Registering keypress events
Table 3.3: Page methods for registering keypress events

Example: Keypress Handling
The example file keypress_handling.html (shown in Figure 3.4) demonstrates how
keys can be registered to invoke actions on a target widget using the registerKey
method.

Figure 3.3: Example of registering and handling keypress events

In this example, four keys are registered to move the image 20 pixels at a time. Press on
the "i" key to move the image up, the "j" key to move the image left, the "k" key to move
the image down, and the "l" key to move the image to the right.

This is accomplished by registering these four keys and calling the moveTo method on the
target object as follows.

Canvas.create({
ID:"widget",
left:200,
top:200,
width:100,
height:100,
backgroundImage:"yinyang_small.gif"

});

Method Action

Page.registerKey(key, action,
target)

Registers when an alphanumeric or "special" key is pressed. An
alphanumeric key parameter can be provided as a character or ASCII
number. The key parameter for special keys (e.g. alt, meta, function, and
arrow keys) should be provided as one of the strings given in Table 3.4.
The target parameter is given as the object(s) to notify when the key is
pressed. (More than one object can be notified.) The action parameter
provides the script to be evaluated when the key is pressed. This action
is typically a method called on the target object:
"target.methodName(params)".

Note: To register a double quote, pass it contained in single quotes as the
key parameter or escape the double quote with a backslash.

Page.unregisterKey(key, target) Unregisters a registered key and stops notifying the specified target.
Isomorphic SmartClient Widgets Guide 47

3 -- Handling Events
Page.registerKey("i", widget, "target.moveBy(0,-20)");
Page.registerKey("j", widget, "target.moveBy(-20,0)");
Page.registerKey("k", widget, "target.moveBy(0,20)");
Page.registerKey("l", widget, "target.moveBy(20,0)");

Special keys
Special keys refer to the non-alphanumeric keys such as the Alt, Ctrl, function, and
arrow keys on a keyboard. To register these keys, you must call the Page.registerKey
method and pass the appropriate name for the key given in Table 3.4.

Table 3.4: String mappings for registering special keys

Suppose the example above used the arrow keys on the keyboard to move the widget
target object around instead. To do this, the registerKey method would be called as
follows:

Page.registerKey("Arrow_Up", widget, "target.moveBy(0,-20)");
Page.registerKey("Arrow_Left", widget, "target.moveBy(-20,0)");
Page.registerKey("Arrow_Down", widget, "target.moveBy(0,20)");
Page.registerKey("Arrow_Right", widget, "target.moveBy(20,0)");

Handling widget events
An individual widget can respond to mouse or drag-and-drop events that target the
widget directly, or that bubble up from a contained child widget, with its own event
handlers. Widget event handlers can be set or cleared like other widget methods, either in
the create method initialization block, or via standard dot notation.

For example, in this script from "Creating widget instances" on page 9, a button's click
handler was set during initialization:

Special Key Names (case-sensitive)

"Tab" "Arrow_Left" "f1"

"Enter" "Arrow_Up" "f2"

"Shift" "Arrow_Right" "f3"

"Ctrl" "Arrow_Down" "f4"

"Alt" "Insert" "f5"

"Pause_Break" "Delete" "f6"

"Caps_Lock" "Meta_Left" "f7"

"Escape" "Meta_Right" "f8"

"Page_Up" "Num_Lock" "f9"

"Page_Down" "Scroll_Lock" "f10"

"End" "f11"

"Home" "f12"
48

Handling widget events
Button.create({
ID:"myButton",
left:100,
top:100,
height:20,
title:"Say hello",
click:"alert('Hello')"

});

A widget event handler can also be set after initialization. For example:

myButton.click = "alert('Goodbye')";

To clear a widget event handler, delete it:

delete myButton.click;

Like a global event handler, a widget event handler can be set either to a function, or to a
string of script that will be automatically converted to a function. The best approach for a
specific handler depends on a balance of coding flexibility, readability, and
maintainability. Strings allow for deferred evaluation and dynamic construction of
handlers (via concatenation), but may cause you some grief when your code contains
quoted items (hence the alternation of double and single quotes in the examples above).
Functions may be easier to read if your script editor highlights script syntax, but when set
as handlers they only take parameters in a fixed order. The following four handlers differ
in readability, flexibility, and maintainability, but all achieve the same result:

widget1.click = "alert('Hello')";
widget2.click = function(){alert('Hello')};
widget3.click = "sayHello()";
widget4.click = sayHello;

function sayHello() {
alert('Hello');

}

The third handler above uses the best general approach for non-trivial handlers, setting
the handler to a string of code that simply makes a function call. This allows reuse of the
same function for multiple events, without restricting your ability to pass parameters to
the function.

Keep in mind, however, that when you have a string to be evaluated that contains an
internal string, any escape characters will be interpreted as part of the string itself—even
if the escape character is contained within the internal string. For example, suppose you
want a JavaScript alert to break to a new line.

myWidget.click = "alert('Are you sure?\nClick OK to continue.')";

The above statement will be interpreted as:

alert('Are you sure?
Click OK to continue.')

Note

The name for a widget event handler is the same as the name of the
actual event. The ISC event system does not use an "on"-prefixed
event name (as in native JavaScript, e.g. 'onClick') for event
handlers.
Isomorphic SmartClient Widgets Guide 49

3 -- Handling Events
This results in an 'unterminated string constant' error. In cases like these, you need to
escape the backslash for the interpreter to do what you intended.

myWidget.click = "alert('Are you sure?\\nClick OK to continue.')";

Since handlers are actually methods of a widget instance, you can refer to a widget in any
of its handlers with the this keyword. To refer to a different widget in a handler script
string, you should call that widget's getID method to get its global identifier. See
"Referring to widget instances" on page 14 for details. For example:

hideMe.click = "this.hide()";
hideOther.click = widgetName.getID()+".hide()";

A widget handler that returns a false value will cancel further propagation of an event
(i.e., bubbling of the event to the widget's parent). For example, this script sets a handler
that stops the 'click' event from bubbling beyond myWidget:

myWidget.click = "alert('The click stops here.'); return false"

Warning

When you use a JavaScript statement to evaluate a string of script,
the script must return a value as the result. Otherwise the ISC system
will detect that there is no specified return value given in the script
and will attempt to return the evaluated expression itself. In other
words, suppose you use something like the following in your script:

This will fail because the ISC system will attempt to turn this string into a
function by adding the 'return' keyword at the beginning. The
statement then becomes: "return if (... ", which ultimately
generates a syntax error. To avoid this pitfall, you should specify a
return value wherever you will be using a JavaScript statement like the
if statement given above. The following statement would succeed:

You may also use the code below to achieve a valid return value
depending upon what your function statement itself returns.

myWidget.click = "if (testVariable == true)
alert('true');"

myWidget.click = "if (testVariable == true)
alert('true'); return true"

myWidget.click = "if (testVariable == true)
return myFunction()"
50

Handling widget events
Enabling and disabling widgets
The enabled property enables or disables a widget when it is initially instantiated. You
can, however, also enable or disable widgets based on events. To do this, use the enabled
and disabled methods described in Table 3.5. The enabled property should not be
directly accessed after initialization.

Table 3.5: Widget enable and disable methods

For example, the following button would be disabled after receiving a 'click' event:

Button.create({
ID:"myButton",
title:"Disable me",
click:"this.disable()"

});

Tip

It's a good habit to always cancel event propagation in your widget
event handlers, unless you specifically want an event to continue
bubbling after the handler executes. Most of the examples in this
manual omit this step for brevity; however, canceling event
propagation improves performance and avoids potential conflicts in
parent elements that expect to receive the same event directly.
Return false from your widget event handlers (except
mouseStillDown and dragStart, for reasons described later) to stop
a handled event.

You should also stop propagation of related events. For example, if a
widget handles dragStart but not dragStop, it usually makes sense
to stop dragStop here too. If you're implementing one handler on the
widget, chances are it will be receiving related events, so just
implement and stop the whole block of them. An event can be
stopped even earlier, before any widget event handlers are
executed, if the target widget is disabled. All widgets have an
enabled property, with a default value of true, that can be initialized
to false in the create method call. For example:

Method Action

enable() Sets the widget's enabled property, and the enabled properties of any
peers of the widget, to true.

disable() Sets the widget's enabled property, and the enabled properties of any
peers of the widget, to false.

isEnabled() Returns true if the widget and all widgets above it in the containment
hierarchy are enabled (i.e., enabled==true); returns false otherwise.

myButton = Button.create({ID:"myButton", title:"Say
hello", click:"alert('Hello')", enabled:false});
Isomorphic SmartClient Widgets Guide 51

3 -- Handling Events
The visual appearance of some widgets (like the button in the example above) is affected
by their enabled/disabled state. Refer to the chapter for each respective widget class for
details on its behavior.

Default widget event handlers
Many of the predefined widget classes in the ISC system implement event handlers to
provide their default functionality. Table 3.6 shows which classes implement which
handlers by default.

Table 3.6: Predefined widget event handlers

Note

A widget is only considered enabled if it is individually enabled and all
parents above it in the containment hierarchy are enabled. This allows
you to enable or disable all components of a complex nested widget
by enabling or disabling the top-level parent only.

Class(es) Implements

Button • mouseDown
• mouseUp
• mouseOver
• mouseOut

Scrollbar • mouseDown
• mouseStillDown
• mouseUp
• mouseOver
• mouseOut

ListGrid
Menu
TreeGrid

• mouseDown
• mouseUp
• mouseMove
• mouseOut
• click
• doubleClick
• dragStart
• dragMove
• dragOut
• dragUp

Warning

You should never set these handlers for instances of these classes, as
doing so will disable the predefined behavior of the affected widget.
52

Mouse events
Mouse events
The mouse events listed in Table 3.7 are generated by user interaction via the mouse.

Table 3.7: Mouse events

Following a mouseDown event, the mouseOver, mouseMove, mouseOut, mouseUp, click
and doubleClick events are only sent to the mouseDown target and only if the mouse is
over the mouseDown target.

The "Example: Getting event details" on page 55 demonstrates both global and widget-
level handling of all the mouse events listed above.

For performance reasons, the mouseStillDown event is sent only to widgets. All of the
other mouse events, however, may be handled by both widget event handlers and global
event handlers. Several of these events have cancellation side effects:

• If the mouseDown event is canceled by a native handler, widget handler, or page event
handler, dragging (see "Drag-and-drop operations" on page 56) will not be initiated
and mouseStillDown events will not be sent.

• If the mouseStillDown event is canceled by a widget event handler returning false,
the repeated sending of this event will be terminated; mouseStillDown will not be
sent again until triggered by another mouse-button press. To cancel bubbling of a
single mouseStillDown event without canceling the repeated sending of the event,
return EventHandler.STOP_BUBBLING or execute EventHandler.stopBubbling()
from a widget's mouseStillDown handler.

The sequence of events generated by a double-click is mouseDown, mouseUp, click,
mouseUp, doubleClick. If you need to handle both the doubleClick event and one or
more of the mouseDown, mouseUp, click, and mouseMove events in the same widget, you
should script your handlers with this event sequence in mind.

Event Description

mouseOver Executed when the mouse enters this object.

mouseMove Executed when the mouse moves within this object.

mouseOut Executed when the mouse leaves this object.

mouseDown Executed when the left mouse button is pressed in this object.

mouseStillDown Executed repeatedly (every 100 ms by default) when the system is idle—i.e. not busy
running other scripts—and the left mouse button is held down after having been pressed in
the object. This event is not native to JavaScript, but is provided by the ISC system.

mouseUp Executed when the left mouse button is released in this object.

showContextMenu Executed when the right mouse button is released in this object.If a context menu is
defined for the widget, it will automatically show. See also "Handling Page events" on page
44.

click Executed when the left mouse button is clicked (both pressed and released) in this object.

doubleClick Executed when the left mouse button is clicked twice in rapid succession (within 250 ms,
by default) in this object.
Isomorphic SmartClient Widgets Guide 53

3 -- Handling Events
In some situations, you may want to temporarily disable mouse events for all widgets, or
for all widgets except a few that should be the focus of user interaction. For example, you
may have a widget that displays a custom dialog box (with child widgets for buttons, etc.),
and you want to accept mouse events only in this widget whenever it is displayed.
Disabling (and later re-enabling) every other widget on the page could be a large, error-
prone task; however, there's an easier way. SmartClient provides a "click mask" to capture
all mouse events on the page. The click mask blocks all mouse events for everything on
the page except a list of "unmasked" targets. When a mouseDown event occurs anywhere
on the page outside of these unmasked targets, the user-specified "clickAction" fires. This
action can, if necessary, cancel the mouseDown event.

Methods to show and hide the click mask are available on every Canvas instance, and are
detailed in Table 3.8.

Table 3.8: Click-mask methods

Getting event details
When an event such as mouseDown occurs, the browser creates an event object that
encapsulates properties of this event, such as the mouse location, which mouse button
was pressed, etc. Unfortunately, browsers don't agree on the names for these event
properties, making cross-browser event coding difficult.

In the ISC event system, these differences have been abstracted for you. When a ISC event
handler is fired, it automatically extracts relevant properties of the event, and allows you
to access these properties uniformly on both browsers. Instead of passing an event to your
event handler, you call static methods on the EventHandler class that return properties of
the last event seen by the system. These methods are described in Table 3.9.

Note

Repeated double-clicking results in the following event sequence:
click -> doubleClick -> click -> doubleClick -> click
etc.

Method Action

canvas.showClickMask ([clickAction],
[autoHide], [unmaskedTargets])

Shows the click mask. The clickAction parameter is
an optional function or string of code that will be executed
when a click occurs on the click mask. If the optional
autoHide parameter is true, a click on the click mask
will hide it (after executing any clickAction).
Unmasked targets is a widget or Array of widgets that
should not be masked

canvas.hideClickMask() Hides the click mask.
54

Getting event details
Table 3.9: Event information methods

Example: Getting event details
The example file event_details.html (shown in Figure 3.4) demonstrates all of the
event info methods above.

Figure 3.4: Example of getting event details

This example draws three simple widgets, containing handlers for mouseDown (red
widget), mouseUp (blue widget), and mouseMove (green widget). Each of these handlers
executes the following script:

Method Action

EventHandler.getX() Returns the global X (horizontal) coordinate of the last event. This uses
the same coordinate system as widget.getPageLeft().

EventHandler.getY() Returns the global Y (vertical) coordinate of the last event. This uses the
same coordinate system as widget.getPageTop().

EventHandler.leftButtonDown() Returns true if the left mouse button (or only mouse button, on
Macintosh) was pressed during the last event.

EventHandler.rightButtonDown() Returns true if the right mouse button (or mouse button plus Ctrl key,
on Macintosh) was pressed during the last event.

EventHandler.shiftKeyDown() Returns true if the Shift key was pressed during the last event.

EventHandler.ctrlKeyDown() Returns true if the Ctrl key was pressed during the last event.

EventHandler.altKeyDown() Returns true if the Alt key was pressed during the last event.

widget.containsEvent() Returns true if the last event's coordinates were within the rectangle of
widget (regardless of the widget's position in the stacking order).

widget.getOffsetX() Returns the value of the X coordinate where the event occurred relative
to the widget’s (0,0) drawn coordinate (top-left corner).

widget.getOffsetY() Returns the value of the Y coordinate where the event occurred relative
to the widget’s (0,0) drawn coordinate (top-left corner).
Isomorphic SmartClient Widgets Guide 55

3 -- Handling Events
showEventInfo(this)

The showEventInfo function constructs a string describing the event, based on the
return values of the event info methods, and displays this string in the window status
area:

function showEventInfo(obj) {
var result = "Global: " + EventHandler.getX() + "," + EventHandler.getY();
result += " Local: " + obj.getOffsetX() + "," + obj.getOffsetY();
if (EventHandler.rightButtonDown()) result += "(Right Button)";
if (EventHandler.leftButtonDown()) result += "(Left Button)";
if (EventHandler.shiftKeyDown()) result += "(Shift)";
if (EventHandler.ctrlKeyDown()) result += "(Ctrl)";
if (EventHandler.altKeyDown()) result += "(Alt)";
if (EventHandler.metaKeyDown()) result += "(Meta)";
if (redWidget.containsEvent()) result += "(red widget contains event");
if (blueWidget.containsEvent()) result += "(blue widget contains event");
if (greenWidget.containsEvent()) result += "(green widget contains event");
window.status = result;

}

As you click on the red or blue widgets, or move the mouse over the green widget, the
window status area will update to indicate the details of the relevant event. Keep in mind
that more than one widget can "contain" the event. The containsEvent method does not
consider layering, nor whether the widget was the target of the event.

Drag-and-drop operations
The ISC event system provides an easy mechanism for implementation of drag-and-drop
operations. All widgets have drag-and-drop properties that can be set during
initialization. Table 3.10 lists these properties.

Table 3.10: Widget drag-and-drop properties

Property Description Default

canDragReposition Indicates whether this widget can be moved by a
user of your application by simply dragging with the
mouse.

false

canDragResize Indicates whether this widget can be resized by
dragging on the edges and/or corners of the widget
with the mouse.

false

canDrag Indicates whether this widget can initiate custom
drag-and-drop operations (other than reposition or
resize).

false

canDrop Indicates that this object can be dropped on top of
other widgets. Only valid if canDrag or
canDragReposition is true.

false

canAcceptDrop Indicates that this object can receive dropped
widgets (i.e other widgets can be dropped on top of
it.)

false
56

Drag-and-drop operations
Dragging and events
For all three dragging styles, dragging is initiated when the mouse goes down in a widget
and then, before the mouse button is released, is moved five pixels away in any direction
from its original location. If the mouse button goes down and up on a draggable widget
without moving at least five pixels, no dragging operations will be generated. This means
that you can script normal mouse events, for example, mouseDown or click, on a
draggable widget, and the system will fire the appropriate messages based on whether the
user actually starts dragging.

One thing to note about the ISC event model is that dragging events take precedence over
normal mouse events. If we are in a dragging situation, normal mouse events such as
mouseMove or mouseUp will be suppressed, in favor of specific messages such as dragMove
or dragStop. This simplifies your event handling code, as you can code for normal and
dragging mouse events completely separately. See "Sequence of events in drag-and-drop
operations" on page 69 for more information.

During drag operations, you can use the standard EventHandler event details methods
(see "Getting event details" on page 54) to get the location of the mouse, whether the shift
key is down, etc. You can use the property EventHandler.dragTarget (referred to as
"the drag target" below) to get a pointer to the widget that is being dragged. The
droppable object under the mouse (if there is one) can be accessed as
EventHandler.dropTarget (referred to as "the drop target", below).

See the following sections "Drag repositioning," "Drag resizing," and "Custom drag-
and-drop operations" for details on the events actually generated in each case.

Drag appearance
The ISC system provides default behavior for showing where the mouse is during a drag-
and-drop operation through an object's dragAppearance value. Values for
dragAppearance are listed in Table 3.11.

dragAppearance Visual appearance to show when the object is being
dragged, as described in Table 3.11.

"outline"

dragTarget A different widget that should be actually dragged
when dragging initiates on this widget. One example
of this is to have a child widget that drags its parent,
as with a drag box. Because the parent
automatically repositions its children, setting the
drag target of the child to the parent and then
dragging the child will result in both widgets being
moved.

null

Property Description Default
Isomorphic SmartClient Widgets Guide 57

3 -- Handling Events
Table 3.11: The dragAppearance property values

Event sequences for various drag-and-drop operations with different dragAppearance
settings are provided in "Sequence of events in drag-and-drop operations" on page 69.

Setting the drag tracker
If your drag operation has a dragAppearance of tracker, your widget can implement a
setDragTracker method to customize the appearance of the drag tracker. The drag
tracker will generally be an image, but you can use any legal HTML string for your
tracker. The tracker will expand to show the entire HTML you define for your tracker
image.

Call the EventHandler.setDragTracker method to set the tracker:

EventHandler.setDragTracker(contents, [width], [height], [offsetX],
[offsetY]);

For example, to set the drag tracker to a 20-by-20 pixel image, do the following:

myWidget.setDragTracker = function () {
EventHandler.setDragTracker(this.imgHTML("yinyang.gif",20,20));

}

You do not have to explicitly set the width and height of the tracker in the
EventHandler.setDragTracker method. It will default to a size of 20-by-20 pixels
because this is the size you set for the image. If you're setting the tracker to a block of text
or other HTML, you may want to set an explicit size, like so:

myWidget.setDragTracker = function () {
var contents = "Some text for the drag tracker";
EventHandler.setDragTracker(contents, 50, 10));

}

This will create the text in a 50-pixel wide block; the height will be at least 10 pixels, but
may be taller if required to show all of the specified text.

Value Description

"tracker" A "drag tracker" object is automatically shown and moved around with the
mouse. This is generally set to an icon that represents what is being
dragged. The default tracker is a 10-pixel black square, but you can
customize this icon; see "Setting the drag tracker" on page 58 for details.
This dragAppearance is not recommended for use with drag resizing or
drag moving.

"outline" An outline the size of the target object is moved, resized, etc. with the
mouse. This is recommended for drag resizing, especially for objects that
take a significant amount of time to draw.

"target" The target object is actually moved, resized, etc. in real time. This is
recommended for drag repositioning, but not for drag resizing of complex
objects.

"none" No default drag appearance is indicated. Your custom dragging routines
should implement some behavior that indicates that the user is in a
dragging situation, and where the mouse is.
58

Drag-and-drop operations
Both offsetX and offsetY are optional parameters that can be set to specify how far to
offset the drag tracker from the mouse pointer. If not specified, a default of -10 is used for
each, so the tracker appears 10 pixels below and 10 pixels to the right of the mouse
pointer.

Drag repositioning
One of the most common dragging operations performed in applications is simply
allowing the user to move a widget around with the mouse. In the ISC event system, to set
this interaction up you only have to set widget.canDragReposition to true. A widget
with this property set will automatically display a move cursor when the mouse passes
over it and, when clicked and dragged, will be repositioned with the mouse until the
mouse button is released. The appearance as the object is moved with the mouse is
controlled by the dragAppearance property, detailed previously.

Drag repositioning is compatible with drag resizing, allowing you to have a widget that
can be both moved and resized. Drag repositioning and custom drag-and-drop operations
are not compatible, though. If an object has both canDragReposition == true and
canDrag == true, drag repositioning will take precedence and the custom dragging code
will be ignored.

As the widget is dragged around with the mouse, the drag events listed in Table 3.12 fire.

Table 3.12: Widget drag events

Note

As the cursor is passed over a widget that is drag-repositionable, the
cursor will automatically change to the move cursor shown below.

To turn this default behavior off, set the
canvas.dragRepositionCursor to null, or set it to another cursor as
desired. See cursor in Table 2.13 on page 39 for a list of available
cursors.

Event Description

dragRepositionStart Executed when dragging first starts. You can create a handler for this
event to set things up for the drag reposition. Returning false from this
event handler will cancel the drag reposition action.

dragRepositionMove Executed every time the mouse moves while drag-repositioning. If your
dragRepositionMove handler does not return false, the widget or
outline will automatically be moved as appropriate whenever the mouse
moves.

dragRepositionStop Executed when the mouse button is released at the end of the drag. Your
widget can use this opportunity to fire custom code based upon where the
mouse button was released, etc. Returning true from this handler will
cause the drag target to be left in its (or the outline's) current location.
Returning false from this handler will cause the object to snap back to its
original location.

Isomorphic SmartClient Widgets Guide 59

3 -- Handling Events
Example: Drag appearance
The example file widget_drag_appearance.html (shown in Figure 3.5) shows the
different appearances that can be set for draggable widgets when dragged.

Figure 3.5: Example of drag appearance

Each draggable widget demonstrates a different dragAppearance setting.

All four draggable widgets can be dropped on the drop zone (blue square). Selecting the
dropOver on widget intersection checkbox causes the drop event behavior—the
display of a dialog box—to commence upon intersection of the dragged widget with the
drop zone. Otherwise, the drop event only occurs once the mouse is over the drop zone
while a widget is being dragged. See "Drop operations" on page 66 for more information.
All widgets have canDragReposition set to true.

Note

You do not need to implement any special behavior in any of these
events for a normal drag reposition operation.
60

Drag-and-drop operations
• The top-left (purple) widget has dragAppearance set to "target". This causes the
widget itself to move when dragged.

• The top-right (gold) widget has dragAppearance set to "outline". When dragged, an
outline of the widget moves with the mouse.

• The bottom-left (green) widget has dragAppearance set to "tracker". When
dragged, a tracker appears that moves with the mouse to indicate dragging. The
tracker is set with the following line of code:

setDragTracker:"EventHandler.setDragTracker(this.imgHTML('yinyang_icon.gif',
20, 20))"

• The bottom-right widgets are parent (orange) and child (purple). The parent widget
has a dragAppearance set to "outline", and canDrop set to true. However, no
canDrag, canDragReposition, or canDragResize properties are set. The child
widget, on the other hand, has canDragReposition set to true, and sets its parent as
a dragTarget. Attempting to drag the parent widget alone has no effect. Dragging the
child widget, however, drags the parent widget. The parent widget's dragAppearance,
drag event handlers, and other drag-and-drop properties are used in the drag
operation. When the drag sequence ends, the parent is redrawn at the new location,
and the child is moved with the parent.

Drag resizing
Another common drag-and-drop operation is allowing the user to resize a widget with the
mouse. The ISC event system allows you to accomplish this by setting a single widget
property, canDragResize to true. When the user presses and holds the left mouse
button in the side and/or corner of a drag resizable widget, the widget will automatically
grow or shrink as they move their mouse, until the mouse button is released. Sides and
edges are by default defined as the outer five pixels of a widget.

The default implementation is that a drag-resizable widget can be dragged from any
corner or edge, and that the edge or corner clicked upon will dictate how the object
resizes. For example, a drag resize beginning in the top edge of the widget will resize the
widget from the top, increasing its height. A drag-resize from the bottom right corner will
resize both the bottom and right sides of the widget simultaneously.
Isomorphic SmartClient Widgets Guide 61

3 -- Handling Events
If you want to only allow resizing in certain edges or corners, you can do this by setting
the widget.resizeFrom property. The default value of null indicates that the widget is
resizable from any corner or edge. To restrict resizing to only certain corners, set
resizeFrom to an array of any of the values listed in Table 3.13.

Table 3.13: The resizeFrom property values

So, for example, to make a widget resizable from only the bottom and right sides and
intersecting corner, set the following:

Canvas.create({
ID:"myWidget",
. . .
canDragResize:true,
resizeFrom:["B","BR","R"],
. . .

});

As the user passes the mouse over a widget that is drag-resizable, the cursor will change to
an arrow that indicates the direction that the resize will happen. To turn this feature off,
set the canvas.edgeCursorMap property to null. This cursor change will only appear in
edges or corners of the object that the widget can be resized from.

You can also constrain the width and/or height of a drag-resizable object by setting the
properties described in Table 3.14.

Value Description

T Top edge

B Bottom edge

L Left edge

R Right edge

TL Top-left corner

TR Top-right corner

BL Bottom-left corner

BR Bottom-right corner

Note
Values in the resizeFrom array may be set in any order.
62

Drag-and-drop operations
Table 3.14: Minimum and maximum height and width properties

If the current mouse position during a drag resize would make the widget larger than its
stated maximums, or smaller than its stated minimums, the size of the widget will be
constrained as appropriate.

As the widget is dragged around with the mouse, the dragResize events detailed in Table
3.15 are generated.

Table 3.15: the dragResize property events

Drag resizing from a sizer button
A widget can be resized from a child widget. The child widget must have canDragResize
set to true, and must specify the parent as the dragTarget. The child also should set a
getEventEdge property to a function that returns which corner or side the child should
be considered as resizing. For example, a child widget in the bottom right corner of the
parent it resizes should have the following property:

getEventEdge:function(){return "BR"}

Property Description Default

minWidth Minimum width, in pixels, for drag resizing. 10

maxWidth Maximum width, in pixels, for drag resizing. 10000

minHeight Minimum height, in pixels, for drag resizing. 10

maxHeight Maximum height, in pixels, for drag resizing. 10000

Event Generated Description

dragResizeStart Executed when drag-resizing first starts. You can set an event handler to set things
up for the drag reposition. Returning false from this event handler will cancel the
drag resize action entirely.

dragResizeMove Executed every time the mouse moves while drag-resizing. If your
dragRepositionMove handler does not return false, the widget or outline will
automatically be resized as appropriate whenever the mouse moves.

dragResizeStop Executed when the mouse button is released at the end of the drag. Your widget can
use this opportunity to fire custom code based upon where the mouse button was
released, etc. Returning true from this handler will cause the drag target to remain
at its (or the outline's) current size. Returning false from this handler will cause the
object to "snap back" to its original size.

Note

A widget that is currently being drag-resized will not participate in
'drop' events, even if its canDrop property is true. To drop a widget
that is drag-resizable and either drag-repositionable or has custom
drag behavior, the user must drag from the center of the widget, not
from the edge.
Isomorphic SmartClient Widgets Guide 63

3 -- Handling Events
This causes the entire child widget to act as a bottom-right corner of a resizable widget
normally would, dictating the cursor appearance and resizing directions allowed.

The parent widget should include an implementation of layoutChildren() that places
the resizer widget at the parent’s lower right corner. Otherwise, the resizer widget will not
be moved or resized with the parent.

Example: Drag resizing
The example file widget_drag_resize.html (shown in Figure 3.6) demonstrates
different drag resizing options.

Figure 3.6: Example of drag resizing

• The top-left widget sets dragAppearance to "target". Therefore, as the widget is
resized, the widget itself is shown changing size. This widget does not specify corners
and sides for its resizeFrom property. Therefore, the widget is resizable from all
corners and sides.

• The top-right widget also does not specify corners and sides for resizeFrom. The
dragAppearance of this widget is set to outline. As this widget is resized, an outline
of the widget shows the size change. When the mouse is released, the widget is drawn
in the space occupied by the outline.

• The bottom-left widget does not specify a dragAppearance. By default, outline is
used. The resizeFrom property of this widget is set to ["L","R"], allowing the
widget to only be resized from the left and right sides.
64

Drag-and-drop operations
• The bottom-right widget is resized by a child widget. The parent sets the
dragAppearance, which in this case is outline. The child sets canDragResize to
true and dragTarget to be the parent widget. The parent must also set a property
resizeChildrenBy to a function. This function is evaluated to determine the location
and size of child widgets upon a resize event. This function usually determines the size
and position of the child widgets relative to the parent widget's new size. In this case,
the child widget is moved to the same corner and kept the same size. Therefore, it uses
the moveTo method to set the left and top coordinates of the child widget relative to
the width and height of the parent widget, as follows:

resizeChildrenBy:function() {
var resizeBox = this.children[0];
this.children[0].moveTo(this.getWidth()-resizeBox.getVisibleWidth(),

this.getHeight()-resizeBox.getVisibleHeight())
}

See "Controlling position and size" on page 30 for positioning and sizing properties and
methods.

The child widget uses a function to specify a value for getEventEdge:

getEventEdge:function(){return "BR"}

This sets the entire child widget to have the resize properties associated with a bottom-
right corner. The cursor over the entire child widget changes, and the resizing of the
parent occurs as if the bottom right corner of the parent were resizable.

Custom drag-and-drop operations
If you want to perform a drag-and-drop operation other than simply moving or resizing a
widget, you must code your own custom drag-and-drop logic. This is fairly easy, and
mainly involves writing handlers for the drag events generated, described in Table 3.16.

Table 3.16: Drag events

Event Generated Description

dragStart Executed when dragging first starts. Your widget can use this opportunity to set
things up for the drag, such as setting the drag tracker (see "Setting the drag
tracker" on page 58), or showing an outline around your widget to indicate that it is
being dragged (see "Drag appearance" on page 57). Returning false from this
event handler will cancel the drag action entirely.

dragMove Executed every time the mouse moves while dragging. Returning false from this
event handler will cancel the drag action entirely.

dragStop Executed when the mouse button is released at the end of the drag. Your widget can
use this opportunity to fire code based on the last location of the drag or reset any
visual state that was sent. Returning false from this event handler will cancel the
drag action entirely.
Isomorphic SmartClient Widgets Guide 65

3 -- Handling Events
Using the drag tracker with a custom drag
A common pattern is to use the drag tracker with custom drag-and-drop interactions, to
indicate what is being dragged. To do this, set the following widget properties:

Canvas.create({
ID:"myWidget",
. . .
canDrag:true,
dragAppearance:"tracker",
. . .

});

Then set the drag tracker in your dragStart handler, as detailed in "Setting the drag
tracker" on page 58.

Drop operations
Drop operations are what your operating system does when you move files onto folders in
the Explorer (Windows) or Finder (Macintosh) window. We define "dropping" to be
the movement and subsequent release of a 'draggable' widget over a drop target. What
your application does as the result of a drop requires custom code, but the mechanics of
figuring out where the drop occurred are handled for you by the ISC event system.

There are two parts to every successful drop operation, the draggable widget (where the
event begins) and the droppable widget (the widget being dropped on to). Use the drop
properties detailed in Table 3.17 to set up these widgets.

Note

You do not need to write logic on dragMove to move the drag tracker;
it will be done for you automatically as a result of choosing the
"tracker" dragAppearance.
66

Drag-and-drop operations
Table 3.17: Drop properties

In addition to the events sent to the draggable (or drag-repositionable) object mentioned
above, the drop events described in Table 3.18 will be executed to any compatible
droppable object under the mouse, if one exists.

Table 3.18: Drop events

Property Set to... Description

canDrop true Set on: draggable widget
Indicates that this widget can be dropped on top of
other widgets. You must either have canDrag:true or
canDragReposition:true to make this widget start
the drag-and-drop sequence. You can have a
draggable widget that is not droppable, such as the
thumb of a scrollbar. You can also have widgets that
are canDragReposition:true and
canDrop:true, such as a file on the desktop of your
OS file management interface. These files can be
repositioned around the screen, and can also be
dropped on a folder to move them into that folder.

Note: The same object may be canDrag:true and
canDrop:true. An example of this usage is a list of
folders and files where you can drag from one part of
the list into another part.

dragIntersectStyle "mouse" or "rect" Set on: draggable widget
Indicates how the system will test for droppable targets.
The mouse value indicates to look for drop targets that
are under the current mouse cursor position.The rect
value indicates to look for drop targets by intersection
of the entire rect of the drag target with the droppable
target.

canAcceptDrop true Set on: droppable widget
Indicates that this widget can accept other objects
dropped upon them. Only widgets with
canAcceptDrop:true will be considered by the ISC
event system as legal drop candidates.

Event Description

dropOver Executed when the compatible dragged object is first moved over this drop target. Your
implementation can use this to show a custom visual indication that the object can be
dropped here.

dropMove Executed whenever the compatible dragged object is moved over this drop target. You
can use this to show a custom visual indication of where the drop would occur within the
widget.
Isomorphic SmartClient Widgets Guide 67

3 -- Handling Events
Checking for drop compatibility
The default behavior of the system is that anything draggable can be dropped on anything
else that is droppable. However, in your application, you may have multiple draggable
things on your page of different, incompatible types, or in a particular widget you may
have some parts of the widget which can be dropped on and some others which cannot
accept drops. For example, in a treeGrid, you can drop a file on a folder, but not on
another file.

There are two methods for restricting what can be dropped within your application:

• dragType/dropTypes, and
• the willAcceptDrop method.

DragType and DropTypes
You may have different containers that will be dragged from, and other containers that
will be dropped onto. Some of the drop containers may be able to accept anything that is
dropped on them (think of a trash can), while other drop containers may only accept
certain things to be dropped on them. This can be easily accomplished with the dragType
and dropTypes properties described in Table 3.19.

Table 3.19: The dragType and dropTypes properties

Set the dragType of your draggable widget to a string that represents what kind of object
can be dragged from the widget. For example, in an e-mail application, the list of
messages may have a dragType of "message". The choice of "message" is completely
arbitrary, and should be something that makes sense in the context of your application.

dropOut Executed when the dragged object is moved out of the rectangle of this drop target. If you
have set a visual indication in dropOver or dropMove, you should reset it to its normal
state in dropOut.

drop Executed when the mouse button is released over a compatible drop target at the end of
a drag sequence. Your widget should implement whatever it wants to do when receiving a
drop here. For example, in a file moving interface, a drop might mean that you should
move or copy the dragged file into the folder it was dropped on, or dropping something in
a trash can might mean to clear it from the screen.

Property Set to... Set on... Description

dragType string draggable widget The "type" of thing that can be dragged from this
widget. If specified, this will be matched up with the
dropTypes of droppable widgets as detailed below.

dropTypes string or string[] droppable widget The "type" of thing(s) that can be dropped on this
widget. Can be a string or an array of strings
(indicating multiple types). Leave this with the value
null to indicate that this widget can accept
anything dropped on it from the page.

Event Description
68

Drag-and-drop operations
To restrict what can be dropped in a widget, set its dropTypes to the string or array of
strings that represent the dragType that you want the widget to accept. So a list of e-mail
folders in our e-mail application might be set as follows:

. . .
dropTypes : ["message", "folder"],
. . .

This indicates that both "messages" and "folders" can be dropped onto this widget.

When the ISC event system is determining which element should receive a drop event
during a drag operation, it will automatically compare the dragType of the drag target
and the dropTypes of potential drop targets to see if they match. If they are not
compatible (i.e. the dropTypes does not contain the dragType), the dragged object would
not be a candidate for a drop, regardless of its canDrop setting.

The willAcceptDrop method
Sometimes you need finer-grained control of whether something can be dropped in a
particular part of your droppable object. For example, think of two lists of folders and
files, where items can be moved back and forth between the lists through dragging and
dropping. You can drag a file from one list onto a folder in the other list, but it cannot be
dropped on a file on the other list.

For finer-grained control of droppability, implement a willAcceptDrop method in your
droppable canvas. This can perform any custom check you like, and should return true if
a drop at this location is acceptable, or false if not. In the file movement example above,
as the mouse is moved a method would determine which item the mouse is over,
returning true if over a folder and false if over a file.

The default dragType and dropTypes implementation is done via a willAcceptDrop
handler implemented in the base Canvas class. If you override the willAcceptDrop
handler in your custom class or object, you can use the default dragType and dropTypes
behavior as an initial by calling the superclass implementation:

myCustomCanvas.addMethods({
. . .
willAcceptDrop : function () {

if (!this.Super("willAcceptDrop", arguments)) return false;
// custom drop test code here
. . .

},
. . .

});

Sequence of events in drag-and-drop operations
Table 3.20, Table 3.21, and Table 3.22 show the sequence of various drag-and-drop
events for widgets with differing dragAppearance settings.

These sequences omit the dragOut event that would be sent to a drop target if the user
moves the mouse off that widget while the mouse is still down. A dropOut message is sent
to the drop target if the mouse is released over it. This is so the logic that sets the visual
appearance of the drop target on dropOver will get a dropOut message to reset the
appearance.
Isomorphic SmartClient Widgets Guide 69

3 -- Handling Events
The usual mouse events (mouseOver, mouseMove, mouseOut, mouseUp, click,
doubleClick) are not sent during a drag-and-drop interaction. The mouseStillDown
event will be sent if a widget has both canDrag or canDragReposition set to true and a
mouseStillDown handler. Also, keep in mind that the mouseOver and mouseOut events at
the end of a drag-and-drop interaction are not necessarily sent to the drop target. They
could be sent to another widget that did not receive any drag events because its
canAcceptDrop property is false.

Drag repositioning with target dragAppearance
The events in Table 3.20 are both repositionable and droppable with dragAppearance set
to "target".

Table 3.20: Event sequence—Drag repositioning of a widget

Action Event --> Sent to

1: User presses left mouse button in
canDragReposition target.

mouseDown --> dragTarget

2: User moves mouse within the drag target. mouseMove --> dragTarget

3: User keeps moving mouse more than 5 pixels since
mouseDown.

mouseOut --> dragTarget
dragRepositionStart --> dragTarget

4: User moves mouse within the browser window. dragRepositionMove --> dragTarget
Drag target is automatically moved to follow the
mouse.

5: User moves mouse onto a compatible drop target. dragRepositionMove --> dragTarget
Drag target is automatically moved.
dropOver --> dropTarget

6: User moves mouse within the drop target. dragRepositionMove --> dragTarget
Drag target is automatically moved.
dropMove --> dropTarget

7: User releases mouse button. dropOut --> dropTarget
drop --> dropTarget
dragRepositionStop --> dragTarget
mouseOver --> Object under the mouse
70

Drag-and-drop operations
Drag resizing with outline dragAppearance

Table 3.21: Event sequence—Drag resizing of a widget

Custom dragging with tracker dragAppearance

Table 3.22: Event sequence—Custom dragging of a canDrag and canDrop widget

Action Event --> Sent to

1: User presses left mouse button in corner or side (set in
resizeFrom array) of canDragResize target.

mouseDown --> dragTarget

2: User moves mouse within the drag target. mouseMove --> dragTarget

3: User keeps moving mouse more than 5 pixels since
mouseDown.

mouseOut --> dragTarget
dragResizeStart --> dragTarget

4: User moves mouse while button is still down. dragResizeMove --> dragTarget
Outline is automatically resized.

5: User releases mouse button. dragResizeStop --> dragTarget
mouseOver --> Object under the mouse

Action Event --> Sent to

1: User presses left mouse button in
canDragReposition target.

mouseDown --> dragTarget

2: User moves mouse within the drag target. mouseMove --> dragTarget

3: User moves mouse more than 5 pixels since
mouseDown.

mouseOut --> dragTarget
dragStart --> dragTarget
setDragTracker --> dragTarget

4: User moves mouse off drag target or elsewhere on the
screen.

dragMove --> dragTarget
Tracker is automatically moved to follow the
mouse.

5: User moves mouse onto a compatible drop target. dragMove --> dragTarget
Tracker is automatically moved.
dropOver --> dropTarget

6: User moves mouse within the drop target. dragMove --> dragTarget
Tracker is automatically moved.
dropMove --> dropTarget

7: User releases mouse button. dropOut --> dropTarget
drop --> dropTarget
dragStop --> dragTarget
mouseOver --> Object under the mouse
Isomorphic SmartClient Widgets Guide 71

3 -- Handling Events
72

C H A P T E

Isomorphic SmartClient Widgets Guide
R 4
Images and Skins
The Isomorphic SmartClient framework provides a variety of ways to place images within
an application’s widgets and customize the appearance of the widgets themselves within
an application. For convenience and portability, the ISC system also provides some
"special directories" that can be used in specifying relative paths to images you use.

This chapter details how to work with images within the ISC framework to achieve the
desired application appearance and explains how files should be organized within your
applications.

In this chapter:

Topic Page

Placing images in an application 74

ISC "special directories" 74

Using and customizing ISC skins 75

Specifying image directories 78

Images in Canvas widgets 80

Img widgets 82

StretchImg widgets 83
73

4 -- Images and Skins
Placing images in an application
The ISC system provides several ways to place your own images in an application to
achieve the desired application operation and appearance.

• Specifying images on a page: You can specify an image directory to load your images
and styles for an entire page.

• Specifying images within a Canvas widget: You can embed images in the contents of
a widget by calling a method to generate the HTML for the image. This method can be
called for any widget because it is inherited from the Canvas widget superclass. For
more information, see"Widget contents" on page 20. If you want to customize your
application by setting a backgroundImage for a Canvas widget, see "Other visual
properties" on page 39 or peruse the widget_position_size.html example for
details.

• Using the Img and StretchImg widgets: The Img and StretchImg widgets can be used
to display a single image or a list of multiple images. The image to display on a page is
set using the properties of these simple widgets. See "Img widgets," and "StretchImg
widgets" later in this chapter for more information. Widgets that use images in their
display will typically allow you to set properties to pick up custom images for them.

The ISC system also allows you to customize the appearance of widgets themselves.

• Using skins to specify widget images and styles: The Isomorphic SmartClient
framework includes a set of standard "skins" to choose a familiar "look and feel" or
use as a basis for creating your own custom appearance. Each skin includes both
images and a cascading style sheet (CSS) to achieve a familiar and consistent view.

ISC "special directories"
The ISC framework is organized with respect to the isomorphic directory where you
installed ISC, and your applications directory where your ISC applications will be stored.
You should keep your application code and customizations separate from the ISC files to
make upgrading easy without running the risk of clobbering any of your own work.

The ISC system will assume images and styles are located in specific places relative to
your application files unless you specify alternate locations for them. Four "special
directories" are available for your use in specifying relative paths to images in your
environment.

• [ISOMORPHIC] Special Directory: The [ISOMORPHIC] "special directory" refers
to the isomorphic directory at the top-level of the SDK package.
74

Using and customizing ISC skins
• [ISOMORPHIC_CLIENT] Special Directory: The [ISOMORPHIC_CLIENT]
"special directory" specifies the location of the ISC libraries, in other words, the
directory where the Isomorphic_SmartClient.js file lives. The
[ISOMORPHIC_CLIENT] "special directory" variable is resolved to [ISOMORPHIC]/
system/.

The [ISOMORPHIC_CLIENT] "special directory" is useful for specifying relative paths
to the ISC libraries and system files used by your pages. The files in this directory may
be updated as new versions of Isomorphic SmartClient become available. You should
not put any of your own files or images in this directory.

• [APP] Special Directory: The location of your application files is given by the
[APP] "special directory". This is assumed to be one level above the bootstrap file that
launches the application, typically in a directory under webroot named after your
application. Putting your application files outside of the isomorphic directory makes
upgrades easier because it can then be replaced when a newer version becomes
available.

By default, the page will assume that the application's image files are located in
[APP]/images/. To change the page's application image directory property, use the
setAppImgDir method. For example, if you want to specify that all your images are in
the myImages directory for a page in your application, call
Page.setAppImgDir("[APP]/myImages/"). See "Specifying image directories,"
Table 4.1 on page 79 for details.

• [SKIN] Special Directory: The location of images and styles for use with widgets is
given by the [SKIN] "special directory". This directory is used to specify which images
should be loaded for use with standard widgets. See "Using and customizing ISC
skins" on page 75 for more information.

Using and customizing ISC skins
A ISC "skin" comprises a set of images and styles to change the appearance of widgets
without changing their underlying functionality. The ISC framework ships with standard
skins you can use to create a familiar user interface style or you can create your own
custom skin with your own images and styles.

Skin directory structure
Each ISC skin has the directory structure given in Figure 4.1.

Warning

If your [APP] "special directory" is located somewhere other than ../
relative to the isomorphic directory, you must specify this relative
location to ensure that the ISC libraries and styles can be located. This
is done using the Page.setIsomorphicDir(path) method near the
top of the page in your application bootstrap file. See "Specifying
image directories" on page 78 for more information.
Isomorphic SmartClient Widgets Guide 75

4 -- Images and Skins
Figure 4.1: ISC skin directory structure

This structure allows all system-defined widget images to be cleanly separated out so that
you can easily load them within an application as necessary, thereby changing the "look
and feel" of an application's widgets from a single location.

Using alternate skins included with the ISC framework
To change Isomorphic SmartClient skins place the skin to load between <SCRIPT> tags at
the top of your ISC page. You must load the Isomorphic_SmartClient.js file first, and
then load the skin to use with the page. The standard skin is loaded in all the widget
samples to give them a Microsoft Windows appearance.

<HTML>
<HEAD>
<SCRIPT SRC=../../isomorphic/system/Isomorphic_SmartClient.js></SCRIPT>
<SCRIPT SRC=../../isomorphic/skins/standard/load_skin.js></SCRIPT>

If, instead, you wanted to use the ISC skin with your widgets, you'd simply load it by
referencing the load_skin.js script within the SmartClient skin directory instead of
the standard skin directory at the top of the page. In this case, you would load the
Isomorphic SmartClient libraries and skins relative to your applications directory.

<HTML>
<HEAD>
<SCRIPT SRC=../isomorphic/system/Isomorphic_SmartClient.js></SCRIPT>
<SCRIPT SRC=../isomorphic/skins/SmartClient/load_skin.js></SCRIPT>

Note

In all the widget samples, the Isomorphic SmartClient libraries and
standard skin are loaded relative to the examples directory. These
paths will vary based on the location of your own applications.

[SKIN] The skin directory to use,
(relative to the [ISOMORPHIC] or [APP] directory).

skinName/ Directory for a particular skin
load_skin.js JavaScript file used for loading the skin within a page
skin_styles.css Cascading style sheet to define styles for this skin
unsupported_browser.html File to load if this browser is not supported
images/ Directory containing images used by this skin

blank.gif 1-pixel square white image used for spacing
black.gif 1-pixel square black image used for separators
grid.gif An image that can be tiled for creating a grid background
common/ Directory containing images used by various widgets
Dialog/ Directory containing images used by the Dialog widget
ListGrid/ Directory containing images used by the ListGrid widget
Menu/ Directory containing images used by the Menu widget
Progressbar/ Directory containing images used by the Progressbar widget
Scrollbar/ Directory containing images used by the Scrollbar widget
TreeGrid/ Directory containing images used by the TreeGrid widget
76

Using and customizing ISC skins
Example: ISC skin
The example file skin_custom.html (shown in Figure 4.2) uses the SmartClient skin
instead of the standard skin.

Figure 4.2: Example of the SmartClient skin

Creating your own custom skins
If none of the skins that shipped with Isomorphic SmartClient adequately matches the
desired "look and feel" for your application, you can create a custom skin. This custom
skin can be applied to all widgets within your ISC application so that they retain a unified
appearance exactly matching the color scheme, font styles, and widget attributes you'd
like to see. You should use one of the standard styles shipped with the SmartClient
framework as a basis for your custom skin, so that you can achieve the desired appearance
with the bare minimum of image changes. To create your own custom skin:

1. Copy one of the standard skins from the [ISOMORPHIC_CLIENT]/skins directory and
paste it within your [APP]/skins directory. Then rename it.

2. Open the load_skin.js file, and change the Page.setSkinDir to your application
directory (where you moved the skin) and the new name of your skin. The path pro-
vided here must be relative to your application file or the [ISOMORPHIC_CLIENT]
directory. If you move a skin, you must change the value passed to the setSkinDir
method accordingly.

Page.setSkinDir("[APP]/skins/mySkin/");

3. Customize the cascading style sheet (CSS) classes for your new skin as you see fit. This
allows you to change fonts, sizes, and colors for the widgets in your application and
may be all you need to achieve the look you want.
Isomorphic SmartClient Widgets Guide 77

4 -- Images and Skins
4. Each skin should contain an unsupported_browser.html file. This file automatically
loads when users try to access your application using an unsupported browser and
directs them to where they can obtain a supported browser. You may want to custom-
ize this page to match the rest of your site from within your custom skin. The
unsupported_browser.html file is loaded with the following method call in
load_skin.js.

Page.checkBrowserAndRedirect("[SKIN]/unsupported_browser.html");

5. Replace existing icons and images for your new skin with custom ones. Since you are
loading the skin from the page level, you should retain the existing names for the
images in your new skin. This will ensure that all the widgets will pick up the images
from your new skin using their default property settings.

6. Load your custom skin within any application files you create relative to your applica-
tions directory as appropriate.

<HTML>
<HEAD>
<SCRIPT SRC=../isomorphic/system/Isomorphic_SmartClient.js></SCRIPT>
<SCRIPT SRC=./skins/mySkin/load_skin.js></SCRIPT>

Specifying image directories
Specifying the skin to use, if the default is not acceptable, will only tell the ISC system
what images and styles to use with widgets in your application. You must still specify
where the images specific to your application reside using the methods given in Table 4.1.
The widget image properties in Table 4.2 can alternatively be used to place a specific
image into a widget as its contents. Whenever possible, you should avoid embedding
directory paths directly in the image src filenames in order to make it easier to change
your application to use different image paths.

Reference

See Appendix B, "Isomorphic SmartClient Styles," for a description of
each of the CSS classes (styles) in the skin_styles.css file.
78

Specifying image directories
Table 4.1: Image directory methods for a page

If your application directory is not in the default location relative to your isomorphic
directory, you must specify the relative location to ensure that the ISC libraries and styles
can be located. This is done using the Page.setIsomorphicDir(path) method near the
top of the page in your application file as follows.

<HTML>
<HEAD>
<!-- Load the ISC libraries relative to the application file -->
<SCRIPT SRC=../../isomorphic/system/Isomorphic_SmartClient.js></SCRIPT>

<!-- Specify the relative location of "isomorphic" as the IsomorphicDir -->
<SCRIPT>Page.setIsomorphicDir("../../isomorphic");</SCRIPT>

<!-- Specify the relative location of the skin to load for the application -->
<SCRIPT SRC=../../isomorphic/skins/mySkin/load_skin.js></SCRIPT>

Method Description

Page.setAppDir(path) Default: The same directory as the invoked page.
Sets the root directory for application-specific files. This defines a new
value for the [APP] special directory. Other URLs you define using this
special directory keyword will be resolved to their absolute paths.

Note: The value for the application image directory property
will be changed automatically based on the value you set for the
application directory using this method. Therefore, if you have
images stored in an images directory within your application
directory, the application image directory will be set
correctly, and you do not need to call the setAppImgDir method.

Page.setAppImgDir(path) Default: "[APP]/images/"
Sets the image directory for all application-specific images. You only
need to call this method if the images are not in the expected location.

Page.setIsomorphicDir(path) Default: "../isomorphic/"
(relative to the application directory property)

Sets the root directory for isomorphic-supplied files. This defines a new
value for the [ISOMORPHIC] special directory. Other URLs you define
using this special directory keyword will be resolved to their absolute
paths.

Page.setIsomorphicClientDir(path) Default: "[ISOMORPHIC]/system/"
Sets the root directory for Isomorphic-supplied files. This defines a new
value for the [ISOMORPHIC_CLIENT] special directory. Other URLs
you define using this special directory keyword will be resolved to their
absolute paths.

Page.setSkinDir(path) Default: "[ISOMORPHIC]/skins/standard/"
Sets the root directory for skin files. This defines a new value for the
[SKIN] special directory. Other URLs you define using this special
directory keyword will be resolved to their absolute paths.
Isomorphic SmartClient Widgets Guide 79

4 -- Images and Skins
You can use the Page methods to set image directories in conjunction with widget
properties to specify a path to custom images specific to that widget.

Table 4.2: Image directory properties/methods for a widget

For example, the following script:

Page.setAppImgDir("[APP]/myImages");
Canvas.create({

ID:"myWidget",
appImgDir:"myWidget/",
backgroundImage:"bg.gif"

});

tells myWidget to use myImages/myWidget/bg.gif as its background image.

Images in Canvas widgets
If you are writing a custom Canvas subclass that incorporates images that you need to
swap dynamically, you can use the following methods to generate the HTML for the
image and swap its media.

Note

You can specify an image directory as a relative or absolute path. If
the path parameter you specify begins with a /, http://, https://,
or file://, the path will be assumed to be absolute. If you use a
"special directory" variable like [APP], [ISOMORPHIC],
[ISOMORPHIC_CLIENT], or [SKIN], or begin the path with a directory
name, it will be assumed to be relative.

Property Description

widget.appImgDir Default: ""
The default subdirectory used for application-specific images that are
contents of this specific widget. This value is local to Page.appImgDir.

widget.skinImgDir Default: "images/"
The default subdirectory used for all skin images defined by this particular
widget class. This value is local to Page.skinImgDir.

Warning

Calling the Page.setAppImgDir method (or setting
widget.appImgDir) will not automatically update images that have
already been embedded in the page's HTML. You may redraw
individual widgets to regenerate their HTML using the new image
directory, or you could simply reload the page and set the
appropriate image directory before any widgets containing images
are drawn.
80

Images in Canvas widgets
Table 4.3: Image-related Canvas widget instance methods

Example: Specifying HTML as a widget's contents
The canvas_clip_scroll.html example (shown in Figure 2.3 on page 38) set the
contents property of several widgets to:

An alternate approach is to defer setting contents until after initialization, and then do so
by calling the setContents method with the getImgHTML method as follows:

widget.setContents(widget.imgHTML('yinyang.gif', 200, 200, 'yinyang'));

This approach ensures that the application and widget image directories are used, and
allows you to subsequently change any widget's 'yinyang' image as follows:

widget.setImage('yinyang', newURL)

Example: Using a custom skin on a single class of widgets
If you want to use a particular skin for a single widget, regardless of what skins are used
by all other widgets, you can specify the special skin directory to use with the
setSkinImgDir method. For example, the following code specifies that a Macintosh style
skin be used with the scrollbar widget. See the scrollbar_custom.html example code
for more details.

Scrollbar.setSkinImgDir("[APP]/images/MacScrollbars/");

Method Action

widget.imgHTML(src, [width],
[height], [name], [options],
[imgDir])

Generates the HTML for an image unique to this Canvas.

The full URL for the image will be formed according to the rules
documented for canvas.getImgURL()

The created image will have an identifier unique to this Canvas, and
subsequent calls to getImage() and setImage() with the name passed to
this function will act on the image object produced by the HTML returned
from this call.

widget.getImgURL(src, [imgDir]) Returns the relative URL for an image to be drawn in this canvas.

If the passed URL begins with the special prefix "[SKIN]", it will have the
widget.skinImgDir and Page.skinImgDir prepended. Otherwise the image
is assumed to be application-specific, and will have the widget.appImgDir
and Page.appImgDir automatically prepended.

widget.getImage(identifier) Returns the DHTML image object specified by identifier.

The image element must have been created from HTML generated by
calling widget.imgHTML() on this particular Canvas.

widget.setImage(identifier,
URL, [imgDir])

Sets the URL of the DHTML image object specified by identifier to a
new URL. The URL will automatically be prepended with
Page.appImgDir and widget.appImgDir.

The image element must have been created from HTML generated by
calling widget.imgHTML() on this particular Canvas.
Isomorphic SmartClient Widgets Guide 81

4 -- Images and Skins
Img widgets
The Img class implements a simple widget that displays a single image. Settable Img
widget properties are listed in Table 4.4 (not including those inherited from the Canvas
class).

Table 4.4: Img widget properties

Img widgets also provide two setter methods for the above properties. These setter
methods are described in Table 4.5.

Table 4.5: Img widget setter methods

Example: Img rollover
The state property provides an easy mechanism for displaying different variants of an
image. The example file img_rollover.html (shown in Figure 4.3) uses the setState
method to implement a simple rollover interaction.

Note

The setSkinImgDir method is being called on the Scrollbar widget
class. Therefore, this skin will be applied to all scrollbars.

Property Value Default

src The base filename for the image. Page.imgDir and
this.imgDir are prepended to this name to form the full
URL.

"blank.gif"

state A string representing a distinct state of this widget. If state
is provided, the base filename is modified by inserting
"_state" before the file extension.

""

imageType Indicates whether the image should be tiled/cropped,
stretched, or centered when the size of this widget does not
match the size of the image. The following values can be
set for this property:
• tile—Tile the image.
• stretch—Stretch the image to fit.
• center—Center the image on the widget.

"stretch"

Method Action

setSrc(src) Set src to src, and update the displayed image.

setState(state) Set state to state, and update the displayed image.
82

StretchImg widgets
Figure 4.3: Example of Img rollover

The script for this rollover interaction follows:

var img = Img.create({
left:100,
top:100,
width:200,
height:200,
src:"yinyang.gif",
mouseOver:"this.setState('inverted')",
mouseOut:"this.setState('')"

});
img.draw();

When the mouse moves over the widget in this example, the state name 'inverted' is
inserted into the base filename, and the image in 'yinyang_inverted.gif' is displayed
(as shown above in Figure 4.3). When the mouse moves out of the widget, state is set to an
empty string and the image in the unmodified base filename ('yinyang.gif') is
displayed.

StretchImg widgets
The StretchImg class implements a widget type that displays a list of multiple images.
Settable StretchImg widget properties (not including those inherited from the Canvas
class) are listed in Table 4.6.

Table 4.6: StretchImg widget properties

Property Value Default

vertical Indicates whether the list of images is drawn vertically from
top to bottom (true), or horizontally from left to right
(false).

true

src The base filename for the images. Page.imgDir and
this.imgDir are prepended to this name to form the full
URL.

"blank.gif"

Mouse rolling over the imageMouse out of the image
Isomorphic SmartClient Widgets Guide 83

4 -- Images and Skins
StretchImg widgets also provide a single setter method, described in Table 4.7.

Table 4.7: StretchImg widget setter method

The items property of a StretchImg widget
The items property of a stretchImg should be set to a list of objects of the format:

items:[
{height:"capSize", name:"start", width:"capSize"},
{height:"*", name:"stretch", width:"*"},
{height:"capSize", name:"end", width:"capSize"}

]

Where:

• The name property is the name of the image; the image's filename is generated by
inserting '_name' before the file extension in the base filename.

• The height and width properties specify the size of the image as either: an absolute
number of pixels, a named property of this widget that specifies an absolute number
of pixels, a percentage of the remaining space (e.g. '60%'), or '*' (the default value) to
allocate an equal portion of the remaining space. If the images are drawn vertically,
the height property is used, and if the images are drawn horizontally, the width
property is used.

• The optional state property (not shown above) overrides any state specified for the
widget as a whole.

items The list of images to display; an array of objects specifying
the image names, sizes, and states. See below for details.

varies (see below)

capSize If the default items are used, capSize is the size in pixels
of the first and last images in this stretchImg.

2

state A string representing a distinct state of this widget. If state is
provided, the image filenames are modified by inserting
"_state" between the base filename and the image name.

""

imageType Indicates whether the image should be tiled/cropped,
stretched, or centered when the size of this widget does not
match the size of the image. The following values can be
set for this property:
• tile—Tile the image.
• stretch—Stretch the image to fit.
• center—Center the image on the widget.

"stretch"

Method Action

setState(statename, [itemName]) Set the specified image's state to stateName and update the displayed
image, or set the state for all images to stateName and update the
displayed images if itemName is not provided.

Property Value Default
84

StretchImg widgets
StretchImg widget image file names
The image files for a stretchImg should therefore be named in the following format:

srcBase_name.srcExt
or

srcBase_state_name.srcExt

Where:

• The srcBase is given as the part of src before the dot.

• The state property is the state name, specified either for the entire stretchImg, or
for an individual image in the items array.

• The name property is the image name, specified in the items array.

• The srcExt is given as the file extension that follows the dot in src.

Example: Image names using the default value for items
The default value for items is:

items:[
{height:"capSize", name:"start", width:"capSize"},
{height:"*", name:"stretch", width:"*"},
{height:"capSize", name:"end", width:"capSize"}

]

Consider the following example widget:

StretchImg.create({
ID:"stretchImg",
src:"myStretch.gif",
state:"on"

});

This example would use the image files named:

myStretch_on_start.gif
myStretch_on_stretch.gif
myStretch_on_end.gif

Note

If you need to use the same image more than once in a stretchImg,
you can specify more than one item with the same name in the items
array. However, you should be aware that the setState method will
only set the state of the first item in the array with the specified
itemName (if not empty). If this poses a problem, you'll need to create
duplicate image files with different names.
Isomorphic SmartClient Widgets Guide 85

4 -- Images and Skins
86

C H A P T E

Isomorphic SmartClient Widgets Guide
R 5
Labels, Buttons, and Bars
The four most basic user interface widget types supported by the Isomorphic SmartClient
framework are: labels, buttons, scrollbars, and progressbars.

• The Label widget class is used to display a text label.
• The Button widget class is used to display interactive, style-based buttons.
• The Scrollbar widget class is used to display cross-platform image-based scroll-

bars that control the scrolling of content in other widgets.
• The Progressbar widget class is used to display graphical bars where the length

represents percentages, typically, of task completion.

This chapter discusses each of these basic widgets with their settable properties and
methods, and presents how to specify them within your own ISC applications.

In this chapter:

Topic Page

Label widgets 88

Button widgets 88

Scrollbar widgets 91

Progressbar widgets 94
87

5 -- Labels, Buttons, and Bars
Label widgets
The Label class implements a simple widget type that displays a text label. Label widgets
have the properties given in Table 5.1, in addition to those inherited from the Canvas
class.

Table 5.1: Label widget properties

Use the contents property to set the HTML-formatted text for a label as shown in the
following code:

Label.create({
ID:"myLabel",
left:50,
top:75,
height:50,
contents:"This label is centered",
align:"center",
border:"groove blue 4px",
backgroundColor:"lightgrey"

});

Button widgets
The Button class implements interactive, style-based button widgets. Button widgets
provide the properties listed in Table 5.2 in addition to those inherited from the Canvas
class.

Table 5.2: Button widget properties

Property Value Default

align Horizontal alignment of label text. The possible values are:
• left
• center
• right

"left"

valign Vertical alignment of label text. The possible values are:
• top
• center
• bottom

"center"

Property Value Default

title The text title to display in this button. "Untitled Button"

wrap A boolean indicating whether the button's title should word-
wrap, if necessary.

false

selected A boolean indicating the selection state of this button;
affects button appearance.

false
88

Button widgets
In addition to these new properties, the Button class overrides the following inherited
properties to set different default values:

height:25
cursor:"hand"
overflow:"hidden"

The visual style of a button is defined by the CSS classes whose base names are set in
baseStyle. For the default settings of these properties, the following eight CSS classes
are defined:

• button
• buttonOver
• buttonDown
• buttonDisabled
• buttonSelected
• buttonSelectedOver
• buttonSelectedDown
• buttonSelectedDisabled

A button's actionType property specifies its selection behavior as follows:

• button

The button ignores selection state. It is drawn in the default deselected styles after any
click.

• checkbox

The button toggles its selection state. It is drawn in the selected style after being
clicked when deselected, and in the deselected styles after being clicked when
selected.

actionType Specifies this button's selection behavior when clicked.
Possible values are:
• button
• checkbox
• radio

"button"

showRollOver A boolean indicating whether this button should change its
appearance when the mouse rolls over the button while
up.

true

showDown A boolean indicating whether this button should change its
appearance when the mouse is pressed while over the
button.

true

align Horizontal alignment of this button's title. See the Label
widget properties above for possible values.

"center"

valign Vertical alignment of this button's title. See the Label
widget properties above for possible values.

"center"

baseStyle The base name for the CSS class applied to this button
when deselected. Appended with "Over", "Down",
"Disabled", "Selected", "SelectedOver",
"SelectedDown" or "SelectedDisabled" when the
button is in one of those states. See below for details.

"button"

Property Value Default
Isomorphic SmartClient Widgets Guide 89

5 -- Labels, Buttons, and Bars
• radio

The button is always selected when clicked. It is drawn in the selected styles after any
click.

Selection state is reflected in the visual style applied to the button. A button's selection
state can also be set or checked via the methods listed in Table 5.3.

Table 5.3: Button widget methods

Example: Button selection
The example file button_selection.html (shown in Figure 5.1) demonstrates the three
button actionType settings, and the effects of selecting and disabling buttons.

Figure 5.1: Example of button selection

This example draws three rows of Button widgets:

• The buttons in the first row have actionType:"button", and the second button is
disabled (enabled:false).

• The buttons in the second row have actionType:"checkbox", the first and third
buttons are selected (selected:true), and the third button is disabled
(enabled:false).

• The buttons in the third row have actionType:"radio", and the first button is
selected (selected:true).

All of the buttons have click handlers that call showClicked(this.title) to display
their titles in the window status bar when clicked. The buttons in the third row also
execute the following script when clicked:

if (selectedButton != this) {

Method Action

select() Sets selected to true, and displays the button in the appropriate selected style.

deselect() Sets selected to false, and displays the button in the appropriate selected style.

isSelected() Returns the value of the selected property.
90

Scrollbar widgets
selectedButton.deselect();
selectedButton=this

};

This script implements the mutual exclusivity expected of radio buttons in a group. This
behavior is not built into the Button class, as it requires a higher-level container to keep
track of which button is currently selected. That task falls instead to the selectedButton
variable defined at the end of this example:

var selectedButton = rb1;

Mutual exclusivity of radio buttons is implemented in the Toolbar class, and is supported
by native (non-widget) radio buttons in forms. Refer to Chapter 6 for more information
on forms, and Chapter 9 for details on the Toolbar class.

Scrollbar widgets
The Scrollbar class extends the StretchImg class to implement cross-platform, image-
based scrollbars that control the scrolling of content in other widgets. Widgets with an
overflow setting of scroll or auto will create Scrollbar widgets automatically when
required. See "Clipping and scrolling" on page 36 for details. Some browsers provide
scriptable native scrollbars, so Scrollbar widgets are not created by default on those
platforms. However, you may want to manually create Scrollbar widgets in order to
customize and control:

• Size— Making the scrollbars narrower or wider than 16 pixels, or longer or shorter
than the scrolled widget,

• Positioning— Placing the scrollbars outside of the scrolled widget's rectangle,
and/or on different sides of the scrolled widget,

• Images— Specifying custom graphics for the arrows, tracks, and thumbs of differ-
ent scrollbars, and

• Enabled state— Enabling or disabling scrollbars as you require.

Scrollbar widgets provide the properties listed in Table 5.4 in addition to those inherited
from the Canvas and StretchImg classes:

Table 5.4: Scrollbar widget properties

Property Value Default

btnsize The size of the square buttons (arrows) at the ends of this
scrollbar. This overrides the width of a vertical scrollbar or the
height of a horizontal scrollbar to set the scrollbar's thickness.

16

showCorner If true, displays a corner piece at the bottom end of a vertical
scrollbar, or the right end of a horizontal scrollbar. This is
typically set only when both horizontal and vertical scrollbars
are displayed and abut the same corner.

false

scrollTarget The widget whose contents should be scrolled by this
scrollbar. The scrollbar thumb is sized according to the amount
of visible vs. scrollable content in this widget.

null
Isomorphic SmartClient Widgets Guide 91

5 -- Labels, Buttons, and Bars
The vertical property inherited from StretchImg determines whether a scrollbar is
vertical or horizontal.

The standard images for all widgets, by default, reside within the Isomorphic skin
directory loaded with the application, [ISOMPORPHIC]/skins/standard/. The Scrollbar
widget's skinImgDir property specifies the subdirectory—images/Scrollbar/—within
the skin root for images specific to Scrollbar widgets. These directories can be changed to
pick up custom images by using the Scrollbar.setSkinImgDir method. See "Using and
customizing ISC skins" on page 75 for more information.

Example: Custom scrollbars
The example file scrollbar_custom.html (shown in Figure 5.2) demonstrates the
manual creation and control of customized Scrollbar widgets.

autoEnable If true, this scrollbar will automatically enable when the
scrollTarget is scrollable (i.e., when the contents of the
scrollTarget exceed its clip size in the direction relevant to
this scrollbar), and automatically disable when the
scrollTarget is not scrollable. Set this property to false
for full manual control over a scrollbar's enabled state.

true

thumbMinSize The minimum pixel size of the draggable thumb regardless of
how large the scrolling region becomes.

12

allowThumbStateDown If true, the thumb’s appearance changes when it’s clicked on. false

thumbResizeThreshold The percentage that the thumb’s size has to change before it
is resized.

0.1 (10%)

Note

If you change the size of the images to be used by Scrollbar widgets,
you will need to change btnSize (default: 16) and capsize (default:
2) properties for them to match your new image sizes. The btnSize
specifies the width of the scrollbar and the capsize property,
inherited from the StretchImg widget class, specifies the size in pixels of
the edges of the scroll thumb.

Property Value Default
92

Scrollbar widgets
Figure 5.2: Example of custom scrollbars

This example creates a 100-by-100-pixel Canvas widget containing a 200-by-200-pixel
image, with overflow:"hidden" so the image will be clipped to the widget's area. The
example also creates two scrollbars, both with scrollTarget set to the scrollable Canvas
widget, as follows:

Scrollbar.setSkinImgDir("[APP]images/MacScrollBars/");

Canvas.create({
ID:"scrolledWidget",
left:150,
top:225,
width:100,
height:100,
contents:Canvas.imgHTML("yinyang.gif", 200, 200),
overflow:"hidden"

});

var scrollbarWidth = 32;

Scrollbar.create({
ID:"hscrollbar",
left:16,
top:41,
width:400,
vertical:false,

Thumbs
Isomorphic SmartClient Widgets Guide 93

5 -- Labels, Buttons, and Bars
btnSize:scrollbarWidth,
showCorner:true,
imageType:"stretch",
scrollTarget:scrolledWidget,
autoEnable:false

});

Scrollbar.create({
ID:"vscrollbar",
left:hscrollbar.left + hscrollbar.width - scrollbarWidth,
top:hscrollbar.top + scrollbarWidth - 2,
height:400,
btnSize:scrollbarWidth,
imageType:"stretch",
scrollTarget:scrolledWidget,
autoEnable:false

});

These scrollbars demonstrate the following visible customizations:

• The horizontal scrollbar is positioned roughly 200 pixels above the scrollable widget,
and displays a corner piece.

• The vertical scrollbar is positioned roughly 150 pixels to the right of the scrollable
widget.

• Both scrollbars are double the normal thickness (32 pixels, instead of 16).

• The scrollbars use images from a different skin directory—[APP]images/
MacScrollBars/.

Below the scrollable widget, two buttons implement click handlers that enable and
disable the scrollbars:

click:"hscrollbar.enable();vscrollbar.enable()"

click:"hscrollbar.disable();vscrollbar.disable()"

Progressbar widgets
The Progressbar class extends the StretchImg class to implement image-based progress
bars (graphical bars whose lengths represent percentages, typically of task completion).
Progressbar widgets provide the properties given in Table 5.5 in addition to those
inherited from the Canvas and StretchImg classes.

Table 5.5: Progressbar widget properties

Property Value Default

percentDone Number from 0 to 100, inclusive, for the percentage to
be displayed graphically in this progressbar.

0

94

Progressbar widgets
Progressbar widget image file names
The default image file names for Progressbar images are the following:

• progressbar_h_start.gif
• progressbar_h_stretch.gif
• progressbar_h_end.gif
• progressbar_h_empty_start.gif
• progressbar_h_empty_stretch.gif
• progressbar_h_empty_end.gif

Vertical Progressbar widgets use _v_ in place of _h_ in the file names above.

The items array must contain exactly six objects, in the order specified above. You can
change the size property of these objects to accommodate your custom images, but any
other changes to this array are not recommended. Sizes for the second and fourth objects
in the array (the two "stretch" images) are not actually used. These images are sized based
on the percentDone property of the progressbar.

Progressbar widget setter method
Progressbar widgets also provide a single setter method, described in Table 5.6.

Table 5.6: Progressbar widget method

Example: A progressbar widget
The example file progressbar.html (shown in Figure 5.3) demonstrates the creation
and updating of a Progressbar widget.

Figure 5.3: Example of a progressbar widget

This example creates a single progressbar as follows:

breadth Thickness of the progressbar in pixels. This is
effectively width for a vertical progressbar, or height for
a horizontal progressbar.

20

length Length of the progressbar in pixels. This is effectively
height for a vertical progressbar, or width for a
horizontal progressbar.

100

Method Action

setPercentDone(percentage) Sets percentDone to percentage, and redraws this progressbar to
show the new percentage graphically.

Property Value Default
Isomorphic SmartClient Widgets Guide 95

5 -- Labels, Buttons, and Bars
Progressbar.create({
ID:"pb",
left:20,
top:20,
length:200,
percentDone:50,

});

A global handler for the 'mouseMove' event sets the percentage of the progressbar to the
x-coordinate of the mouse on the page:

Page.setEvent("mouseMove", "pb.setPercentDone(Math.round(100*(pb.getOffsetX()/
pb.getWidth())))");

When the mouse is moved to the left side of the browser window with respect to the
progressbar, percentDone will be 0 and the progressbar will be empty. When the
mouse is then moved to the right with respect to the progressbar, percentDone will be
100 and the progressbar will be full.

Note

The percentDone property will not exceed 100, even if a higher value
is passed to the setPercentDone method.
96

C H A P T E

Isomorphic SmartClient Widgets Guide
R 6
Forms
The Isomorphic SmartClient system includes a class of widgets for generating and
manipulating forms on web pages. The DynamicForm widget class provides a logical
representation of an HTML form, using a collection of form item objects to handle:

• generating form HTML,
• laying out form elements,
• getting and setting form element values, and
• validating user input before submitting a form.

This allows the developer to focus on the logic and structure of forms and data rather than
the appearance and functionality of the forms themselves. This chapter covers how to
create forms within the ISC system.

In this chapter:

Topic Page

Specifying a form 98

Specifying form items 100

Controlling form layout 105

Form item annotations and styles 108

Working with form item values 110

Validating form input 112

Handling form item events 118
97

6 -- Forms
Specifying a form
DynamicForm widgets provide fundamental properties for specifying a form, as
described in Table 6.1.

Table 6.1: DynamicForm fundamental widget properties

Note

The terms item and element in this chapter have precise meanings,
referring to two different types of objects. A form item is a JavaScript
object that defines and manipulates an HTML form element (field,
button, etc.). Items provide the properties and methods that you use
to create and work with form elements. You do not typically access
form elements directly when using DynamicForm widgets.

The term form is used in this chapter to refer both to DynamicForm
widgets and to the HTML forms they generate, depending on context.

Property Value Default

items An array of form-item objects, defining the elements of the
form. See "Specifying form items" on page 100 for details.

[]

values A property list of itemName:value pairs, specifying the
current set of values for the form elements. See "Working with
form item values" on page 110 for more information.

{}

errors A property list of itemName:errorMessage pairs, specifying
the set of error messages displayed with the corresponding
form elements. Each errorMessage may be either a single
string or an array of strings. See "Validating form input" on
page 112 for more information.

{}

action The URL to which the form will submit its values. "#"

target The name of a window or frame that will receive the results
returned by the form's action. The default null indicates to
use the current frame.

null

method The mechanism by which form data is sent to the action URL:
• post for HTTP POST
• get for HTTP GET

"post"

Reference

Refer to Appendix A, "Widget Initialization Templates," for a
DynamicForm initialization template that includes all DynamicForm
properties available for initialization. The template includes properties
documented in this chapter and relevant properties inherited from the
Canvas class.
98

Specifying a form
Example: Form initialization
The example file dynamicForm_init.html (shown in Figure 6.1) creates and draws a
simple form.

Figure 6.1: Example of form initialization

The following script creates this form:

var formItems = [
{name:"commonName", title:"Animal", type:"text"},
{name:"scientificName", title:"Scientific Name", type:"text"},
{name:"diet", title:"Diet", type:"text"},
{name:"lifeSpan", title:"Life Span", type:"text"},
{name:"status", title:"Endangered Species Status", type:"text"},
{title:"Submit Form", type:"submit"}

],

formValues = {
commonName:"Nurse Shark",
scientificName:"Ginglymostoma cirratum"

},

formErrors = {
commonName:"error 1"

}
;
DynamicForm.create({

ID:"simpleForm"
left:20,
top:45,
items:formItems,
values:formValues,
errors:formErrors

});

Tip

Since the items, values, and errors properties often contain many
values, you may want to set them to variables whose values are
defined outside of the form initialization block. This will improve the
readability of your code, especially if you generate these properties
with server-side programming. "Example: Form initialization" below
takes this external-variable approach.
Isomorphic SmartClient Widgets Guide 99

6 -- Forms
This form contains six elements, five TEXT elements and one SUBMIT element, that are
defined by the object initializers in the formItems array (and therefore in
simpleForm.items, which is initialized to this array). The following section on
"Specifying form items" discusses the various types of items that may be specified in a
DynamicForm widget.

The formValues and formErrors property lists initialize simpleForm.values and
simpleForm.errors, respectively. The property names in these lists correspond to the
values of the name property (i.e., 'field1' and 'field2') for the corresponding items in
the formItems array.

Specifying form items
DynamicForm widgets provide a default set of items that fall into three general
categories: data items, button items, and display items. Table 6.2, Table 6.3, and
Table 6.4 list all of the supported form-item types, grouped by these categories.

Table 6.2: DynamicForm data item types

Form Item Description HTML Form Element(s)

text A single-line text input field. <INPUT TYPE="TEXT">

password A single-line text input field that displays input characters
as asterisks or dots to conceal the input value.

<INPUT TYPE="PASSWORD">

upload A single-line text input field for entering the path to a file,
accompanied by a Browse button for selecting a file via
standard file dialog boxes.

Note: You can not set a defaultValue or
defaultDynamicValue for an upload field. If set, these
properties are ignored.

<INPUT TYPE="FILE">

textArea A multi-line, scrollable text input field. Using the all lower
case textarea is also accepted.

<TEXTAREA>

checkbox A toggle switch input, with a "hot" label that selects/
deselects the checkbox when clicked.

Note: If a checkbox is used with a valueMap, checked will
equate to "true", and unchecked to "false".

<INPUT TYPE="CHECKBOX">

radioGroup A set of mutually exclusive radio buttons, each with a "hot"
label that selects the button when clicked.

<INPUT TYPE="RADIO">
(multiple elements)

select A selection list input. <SELECT>

selectOther A selection list input with an Other... option, which brings
up a prompt that can be used to enter a different value.

<SELECT>

date A group of selection lists for specifying a day, month, and
year.

<SELECT> (three elements) and
<INPUT TYPE="HIDDEN">
100

Specifying form items
Table 6.3: DynamicForm button item types

Table 6.4: DynamicForm display item types

Each item is defined by an object in the dynamicForm.items array. In the "Example:
Form initialization" above, a textfield item was defined with the following object
initializer:

{name:"field1", title:"field 1", type:"text"}

The properties of each form item control its behavior, layout, appearance, validation, and
other characteristices. The fundamental properties of a form item are described in Table
6.5.

Table 6.5: Form item fundamental properties

time An input field that accepts and displays a value formatted
as a time.

<INPUT TYPE="TEXT">

hidden An invisible field. <INPUT TYPE="HIDDEN">

Form Item Description HTML Form Element(s)

button An arbitrary button. <INPUT TYPE="BUTTON">

submit A button that attempts to submit the form when clicked. <INPUT TYPE="SUBMIT">

reset A button that resets the form values when clicked. See
the resetValues method in Table 6.11 on page 111.

<INPUT TYPE="RESET">

toolbar A set of button items displayed in a single row, with
configurable spacing.

Any combination of the above
elements.

Form Item Description

staticText A static piece of text with a title. Used for showing an unchangeable value, such as a key.

blurb A static piece of text with no title. Used for descriptive text.

header A static piece of text displayed in a header style.

rowSpacer A vertical spacer to separate form elements.

spacer A blank cell of specified height and width.

Property Description Default

name The name of the item, used both in scripts (e.g.
form.values.itemName) and as the field name when form data is
submitted.

null

title The text of the item's title, if it has one. See "Form item annotations and
styles" on page 108 for more information.

null

Form Item Description HTML Form Element(s)
Isomorphic SmartClient Widgets Guide 101

6 -- Forms
DynamicForm items support many more properties, which are discussed in subsequent
sections of this chapter.

defaultValue The default value for the item, if none is provided in the
dynamicForm.values property list. See "Working with form item
values" on page 110 for more information.

Note: You can not set a defaultValue or defaultDynamicValue
for an upload field. If set, these properties are ignored.

null

defaultDynamicValue A default value for the item, determined dynamically.Set
defaultDynamicValue to a string of script to evaluate for the item's
value, if form.values[itemName] is not defined. In this script, you
can use:
• 'form' as a reference to the DynamicForm widget, and
• 'item' as a reference to the form item object.

null

type The type of the item; one of the types listed in the first columns of the
tables above.

text

prompt Displays an instructional prompt in the status bar (all browsers) and a
tool tip when a mouse moves over a form item.

Varies based on
the form item.

valueMap (For select, selectOther, and radioGroup items only) An array
or property list (or an expression that evaluates to an array or property
list) that specifies the possible values for the item. If an array, the value
for each option is used both internally and for display. If a property list,
the property names are the actual internal values while the property
values are displayed in the form. See "Working with form item
values" on page 110 for more information.

null

redrawOnChange Items with redrawOnChange set to true will cause the entire form to
be redrawn when their contents are changed. This is useful if any items
have a showIf property. See "Controlling form layout" on page 105.

false

validateOnChange Items with validateOnChange set to true will undergo any
validation checks set for them once a change is made to their form
element contents and the focus is removed. See "Validating form
input" on page 112 for details on validation.

false

Reference

Appendix A, "Widget Initialization Templates," includes basic
initialization templates for all item types, covering the most commonly-
used properties for each type. Appendix A also includes a generic
item-initialization template, covering all item properties except for a
handful of type-specific properties.

Warning

Since item names are used as data field names when a form is
submitted, you must specify a name for every data item in a form you
wish to submit. Item names must also be unique within a form, to avoid
conflicts when referring to items or data fields by name. Names for
button and display items are optional.

Property Description Default
102

Specifying form items
Form-item properties are typically set during initialization only. However, since items are
JavaScript objects, you can access their properties and methods as you would those of any
other object. The dynamicForm.getItem method returns a reference to an item that you
can use in your scripts:

form.getItem(name)

For example, in the "Example: Form initialization," you could access the title of the first
textfield item (named 'field1') with the following script:

simpleForm.getItem('field1').title

If you're working in the opposite direction (i.e. if you already have a reference to an item
object and need to access the dynamicForm in which it is used), you can use the item's
form property:

item.form

For example:

item.form.getValues(property)

Example: Form items
The example file dynamicForm_item_types.html (shown in Figure 6.2) creates and
draws a form containing one of each data, button, and display item types listed above in
Table 6.2, Table 6.3, and Table 6.4.

Tip

The getValues method simply returns the current value in the form,
but there is no guarantee that what has been entered is valid. To
ensure valid data, you should call the form.validate() method prior
to the call to form.getValues(), and then only proceed if
form.validate() returns true.
Isomorphic SmartClient Widgets Guide 103

6 -- Forms
Figure 6.2: Example of form items

Every item in this form that takes a value (i.e., every data item and every display item
except the separator) is given a unique name. The default value for each of these items is
set in its object initializer with the defaultValue property.

Tip

Since all of these items are named, their values (see exception below)
could instead be initialized by setting the form's values property to the
following object literal:

{item1:"header value",
item2:"text value",
item3:"label value",
item4:"textfield value",
item5:"password value",
item7:"textarea value",
item8:true,
item9:"a",
item10:"b",
item11:"c",
item12:"d",
item13:new Date(1971, 9, 25),
item14:"hidden value"}

You cannot initialize a value for upload fields. For this reason, there is
no value set for item6, the upload field, above.
104

Controlling form layout
This example also demonstrates the use of arrays and property lists to specify the options
of radioGroup, select, and selectOther items. The options of the radioGroup item
and the first select item are initialized to an array of values that are used both internally
and for display:

["a", "b", "c", "d"]

The options of the second select item and the selectOther item are initialized to a
property list with different internal/display values (valueMap):

{a:"option a", b:"option b", c:"option c", d:"option d"}

Controlling form layout
A DynamicForm widget generates its associated HTML form in an invisible grid of rows
and columns. Each visible form item is positioned and sized in this grid. You can control
the layout of form items with the properties described in Table 6.6.

Table 6.6: Form layout properties

Property Description Default

form.width Width in pixels of the entire form. 100

form.numCols The number of columns of titles and items in this form's layout grid.
A title and corresponding item each have their own column, so to
display two form elements (each having a title and item), you would
set this property to 4.

2

form.colWidths An array of widths for the columns of items in this form's layout
grid. If specified, these widths should sum to the total width of the
form (form.width). If not specified, the width of this form will be
divided equally between its columns.

Acceptable values for form.colWidths include:
• a number (e.g. 100)—The number of pixel widths to allocate to a

column.
• a percent (e.g. 20%)—The percentage of the total form.width

to allocate to a column.
• "*" (all)—Allocate remaining width (form.width minus all

specified column widths). Multiple columns can use "*", in
which case remaining width is divided between all columns
marked "*".

null

form.cellPadding The amount of empty space, in pixels, surrounding each form item
within its cell in the layout grid.

2

form.cellBorder Width of border for the table that form is drawn in. This is primarily
used for debugging form layout.

0

item.visible Indicates whether this item should be included in the form. If
false, the item will not be displayed and will not be included when
the form is submitted. To include an invisible data field, use the
hidden item type instead.

true
Isomorphic SmartClient Widgets Guide 105

6 -- Forms
Example: Form layout
The example file dynamicForm_layout.html (shown in Figure 6.3) uses many of the
properties listed above to generate the form.

item.showIf A string of script that, if provided, is evaluated to conditionally
determine the value of this item's visible property when the form
is drawn or redrawn. In this script, you can use:
• 'form' as a reference to the dynamicForm widget, and
• 'item' as a reference to the form item object.

null

item.width1 The width of this item.

Acceptable values for item.width include:
• a number (e.g. 100)—The number of pixel widths to allocate to a

column,
• a percent (e.g. "20%")—The percentage of the total
item.width to allocate to a column, and

• "*" (all)—Allocate remaining width (item.width minus all
specified column widths). Multiple columns can use "*", in
which case remaining width is divided between all columns
marked "*".

"*"

item.height1 The height of this item in pixels. 20

item.align The horizontal alignment of this item within its cell in the form
layout grid.

"left"

item.colSpan The number of columns this item should occupy in the form layout
grid, or '*' if the item should occupy all remaining columns in its
row. Keep in mind that each title has a column as well as each
item.

2

item.rowSpan The number of rows this item should occupy in the form layout
grid."*" is not currently supported for item.rowSpan.

1

item.startRow Indicates whether this item should always start a new row in the
form layout grid.

false

item.endRow Indicates whether this item should always be the last in its row in
the form layout grid.

false

Note

If the actual width of a form element is greater than the width of its
column(s) in the form layout, other columns may be compressed and/
or the overall width of the form may be expanded to accommodate
the element.

Property Description Default
106

Controlling form layout
Figure 6.3: Example of form layout

The form items in this example are defined by the following object list:

var formItems = [
{name:"item1", title:"field 1", width:100, height:50, rowSpan:2,

type:"textarea"},
{name:"item2", title:"field 2", width:80},
{name:"item3", title:"field 3", width:80, align:"right"},
{name:"item4", title:"field 4", width:308, colSpan:4},
{name:"item5", title:"field 5", width:100, endRow:true},
{name:"item6", title:"field 6", width:100},
{name:"item7", title:"field 7", width:100, startRow:true},
{name:"item8", title:"field 8", width:100}

]

Isomorphic SmartClient Widgets Guide 107

6 -- Forms
The form itself is initialized as follows:

DynamicForm.create({
ID:"layoutForm",
width:400,
numCols:4,
items:formItems,
values:formValues

});

Form item annotations and styles
Form items support three different kinds of annotations (pieces of text accompanying a
form element):

• a title, specified by the title property discussed earlier in this chapter,
• a hint, specified by the hint property, that can provide instructions or explanation

of a form element to the user, and
• an error, either assigned by the DynamicForm widget's built-in validation mecha-

nisms (see "Validating form input" on page 112), or explicitly set in the errors
array by client-side scripting or server-side logic.

Example: Form item annotations
The example file dynamicForm_annotations.html (shown in Figure 6.4) presents the
default layout and style of these annotations.

Figure 6.4: Example of form item annotations

Item errors are typically set in the course of validating form data, so most of the
properties and methods affecting errors are discussed in "Validating form input" on page
108

Form item annotations and styles
112. Item titles and hints, however, are configured explicitly with the properties listed in
Table 6.7.

Table 6.7: Form title/hint properties

Property Description Default

item.title The text of this item's title (as listed in Table 6.5). null

item.hint The text of this item's hint. null

item.showTitle Indicates whether this item's title should be displayed. true

item.showHint Indicates whether this item's hint should be displayed. true

item.titleAlign The alignment of this item's title within its cell in the form
layout.

Acceptable values for item.titleAlign include:
• left
• center
• right

"right"

item.titleOrientation The positioning of this item's title relative to its form
element.

Acceptable values for item.titleOrientation
include:
• left
• right
• top

"left"

form.titleWidth The width in pixels allocated to the title of every item in
this form.

100

form.titlePrefix The string prepended to the title of every item in this form. ""

form.rightTitlePrefix The string prepended to the title of every item in this form
if the titleOrientation property is set to "right".

": "

form.titleSuffix The string appended to the title of every item in this form. " :"

form.rightTitleSuffix The string appended to the title of every item in this form
if the titleOrientation property is set to "right".

""

form.highlightRequiredFields Indicates whether the titles of required items in this form
should use the special prefix and suffix specified by the
next two properties, instead of the standard prefix and
suffix. See "Validating form input" on page 112 for details.

true

form.requiredTitlePrefix The string prepended to the title of every required item in
this form if highlightRequiredFields is true.

""

form.requiredRightTitlePrefix The string prepended to the title of every required item in
this form if highlightRequiredFields is true and
the titleOrientation property is set to "right".

": "
Isomorphic SmartClient Widgets Guide 109

6 -- Forms
DynamicForm styles
The properties listed in Table 6.8 set the cascading style sheet (CSS) class names used to
specify styles of DynamicForm widgets. These properties name the CSS class in the
skin_styles.css style sheet to use for a part of the form. Generally, you will not need to
change these properties. To change a style, modify the CSS class description in the
skin_styles.css file for the skin you’re loading with your application.

Sometimes, however, you may want to create multiple forms with their own styles. In that
case, you can set new CSS classes using the properties described in Table 6.8.

Table 6.8: Form item style properties

Working with form item values
When you create a DynamicForm widget, you can specify an initial set of values for its
items by setting the form's values property (as demonstrated by "Example: Form
items" on page 103). You can also set default or dynamic values for each item with the
item properties described in Table 6.9.

form.requiredTitleSuffix The string appended to the title of every required item in
this form if highlightRequiredFields is true.

" :"

form.requiredRightTitleSuffix The string appended to the title of every required item in
this form if highlightRequiredFields is true and
the titleOrientation property is set to "right".

""

Warning

You must create a new CSS class in skin_styles.css if you change
the value of any of these properties. The new CSS class name must
match the value of the corresponding DynamicForm style property.

Property Description Value

cellClassName The CSS class applied to the item's form element if there are
no errors for the item.

"formCell"

errorCellClassName The CSS class applied to the item's form element if there is an
error for the item.

"formError"

titleClassName The CSS class applied to the item's title if there are no errors
for the item.

"formTitle"

titleErrorClassName The CSS class applied to the item's title if there is an error for
the item.

"formTitleError"

hintClassName The CSS class applied to the item's hint text. "formHint"

Property Description Default
110

Working with form item values
Table 6.9: Form item value properties

The value for each form item is therefore determined in the following order:

• form.values, if a value for the item is listed; otherwise,
• item.defaultDynamicValue, if defined; otherwise,
• item.defaultValue.

The resulting value may furthermore be mapped to a different display value. The
radioGroup, select, and selectOther items support display-value mapping via their
valueMap property, as demonstrated in "Example: Form items" on page 103. Other form
items (except for date items) support display-value mapping using the valueMap property
detailed in Table 6.10.

Table 6.10: Form item display-value mapping property

Form items automatically apply their valueMap, if defined, to:

• translate internal values into display values, and
• translate user-input values into internal values.

To access and manipulate the current values in the displayed form elements, use the
getter and setter methods described in Table 6.11.

Table 6.11: Form value getter and setter methods

Property Description

defaultValue The default value for the item, if neither form.values[itemName] nor
item.defaultDynamicValue is defined.

defaultDynamicValue A string of script to evaluate for the item's value, if form.values[itemName] is not
defined. In this script, you can use:
• 'form' as a reference to the dynamicForm widget, and
• 'item' as a reference to the form item object.

Warning

You cannot set a defaultValue or defaultDynamicValue for an
upload field. If set, these properties are ignored. Redrawing
dynamicForms with upload field items will cause the form to lose the
value entered for the upload field.

Property Description

valueMap A property list specifying a mapping of internal values (the property names) to display or
input values (the property values) for the item.

Property Description

item.getValue() Returns the current value of the form element associated with this item.

form.getValue(itemName) Shorthand for form.getItem(itemName).getValue().
Isomorphic SmartClient Widgets Guide 111

6 -- Forms
Validating form input
Before a form is submitted, the DynamicForm widget automatically validates the form's
values according to criteria that you can specify for each form item. This client-side
validation can catch many common input errors before data is sent to the server, thereby
improving the responsiveness of your application, and simplifying your server-side
programming.

In a typical form, the user clicks on a submit item (button) to attempt form submission.
The DynamicForm widget automatically validates the form's values and either:

• submits the form to the specified action URL, using the specified method, if there
are no validation errors, or

• redraws the form with error messages displayed for any items whose values
caused validation errors.

You can also explicitly trigger form submission and/or validation in your scripts with the
two form methods described in Table 6.12.

item.setValue(value) Sets the value of the form element associated with this item to value.

form.setValue(itemName, value) Shorthand for form.getItem(itemName).setValue(value).

form.getValues() Returns form.values.

Note: The form.values list is a direct pointer to the values.
Manipulating these values and redrawing the form will update element
values seen by the user.

form.setValues([values]) Sets form.values to values, if provided, then set the values of all form
elements to the values of their items determined as discussed above from
values, or from defaultDynamicValue, or from defaultValue in
that order.This method also calls form.rememberValues() to store
form.values before they are changed to values.

form.rememberValues() Stores current form.values. A later call to form.resetValues() will
reset form.values to the remembered values.

form.resetValues() Resets form.values to last time form.setValues() or
form.rememberValues() was called. If neither of those methods has
been called, form.resetValues() will reset form.values using any
defaultDynamicValue or defaultValue set, or to null, if no value
is set for a field initially.

form.valuesHaveChanged() Compares the current set of form values with the values stored by the call
to the form.rememberValues() method. Returns true if the values
have changed and false otherwise.

Property Description
112

Validating form input
Table 6.12: Form submission and validation methods

Figure 6.5 illustrates a common user interaction flow with a dynamic form.

Figure 6.5: Form input user interaction

The most common validation of form input is to ensure that a required field is not empty
when the form is submitted. You can specify whether a form item is required using the
item property listed in Table 6.13.

Property Description

submitForm() Calls form.validate() to validate the form's values, and submits the form if there are
no validation errors. Returns true if validation succeeds, or false if validation fails.

validate() Validates the form without submitting it, and redraws the form to display error messages if
there are any validation errors. Returns true if validation succeeds, or false if
validation fails.

User requests form
page.

User enters new
values into the form

and submits it.

DynamicForm object created with
items set to default values given
by form.values array, or per
item given by
item.dynamicValue or
item.defaultValue.DynamicForm loaded

with appropriate
values.

The ISC System calls
form.validate() to ensure
that the values entered are
valid.

If the data is not valid the errors
given in the form.errors
array are reloaded into the form
and displayed to the user.

If the data is valid the
JavaScript method is called
which may, in turn, call
form.getValues() or
item.getValue() to retrieve
the data entered and commit
it..

Page loaded to indicate
success or failure of

process to store data.

Data not valid!

Button click property
calls a JavaScript method

create()
method called

Data valid.
Form values

saved.

Step 1:

Step 2:

Step 3:

Step 4:
Isomorphic SmartClient Widgets Guide 113

6 -- Forms
Table 6.13: Form item required property

The title of a required item is drawn in bold text by default, to provide a visual cue to users
filling out the form. See "Form item annotations and styles" on page 108 for the
properties that affect this behavior and style.

If a required field is empty when the form is validated, the following error message will be
displayed for that item:

Required field itemTitle not entered.

All other types of input validation are specified by validators (objects that provide the
criteria for specialized validation methods). You can specify one or more validators for
each item in its validators property. For example, the following item has an
'isInteger' validator, ensuring that the value of the 'Age' field will be a whole number:

{name:"age", title:"Age",
validators: {type:"isInteger", errorMessage:"Age must be a number."}

}

The validators property may be set to a single validator object (as above), or to an array
of validator objects. Every validator object supports the properties described in Table
6.14.

Table 6.14: Form item validator properties

Property Description Default

required Indicates whether the item requires a non-empty value. false

Property Description

type The type of the validator, determining which validation method will be executed. See
Table 6.15 for a complete list.

errorMessage The error message to display with an item if this validator fails (i.e., its validation method
returns false). If errorMessage is not specified and this validator fails, the default
error message specified by form.unknownErrorMessage will be displayed.

stopIfFalse Indicates whether validation of the current item should terminate if this validator fails. If
stopIfFalse is true and this validator fails, any validators following it in the validators
array will be skipped. By default, all validators for an item are tested.

suggestedValue A suggested value to return if the field fails this validator. Some validators automatically
return suggested values (see Table 6.15). For example, the integerRange validator
can be evaluated with respect to minimum and/or maximum values, set as min and/or
max parameters. If a user submits a value greater than the max parameter, validation
fails, and the max parameter value is returned as a suggested value. The specified error
message is displayed, and the field value is set to the suggested value. Suggested
values can also be set manually by including the suggestedValue parameter. This
value will be returned if the field fails validation, regardless of any automatically
generated suggested value.

clientOnly Set this property to true to perform the validation check on the client only.
114

Validating form input
Each validator may also support other properties specific to its type. The DynamicForm
class provides a default set of validators with the types and properties detailed in Table
6.15.

Table 6.15: DynamicForm validators

Type Properties Description

requiredIf expression Fails if expression is true and the item's value is empty.

isBoolean None Succeeds if the item's value is true, false, "true", or
"false".

isInteger None Succeeds if the item's value is an integer.

integerRange min, max Succeeds if the item's value is an integer between min and
max, inclusive. If the item's value is less than min or greater
than max, it is set to a suggested value of min or max (but still
fails and displays an error). Returns true for an empty value.

lengthRange min, max Succeeds if the string length of the item's value is between min
and max, inclusive.

matchesField fieldName Succeeds if the item's value exactly matches the value of the
item named fieldName. This validator is useful for matching
password fields, etc.

isOneOf list Succeeds if the item's value exactly matches any item in the
list array.

contains substring Succeeds if the item's value contains substring.

doesntContain substring Succeeds if the item's value does not contain substring.

substringCount substring, operator,
count

Succeeds if comparing the number of occurrences of
substring in the item's value to the specified count, using the
specified comparison operator (==, !=, <, <=, >, or >=), returns
true. For example, the following validator succeeds if the
item's value contains three or fewer commas.

{type:"substringCount", substring:",",
operator:"<=", count:"3"}

regexp expression Succeeds if the regular expression in expression matches a
pattern in the item's value. Refer to a JavaScript language
reference guide for more information on regular expressions.

mask mask, transformTo Succeeds if the regular expression in mask matches a pattern in
the item's value; and replaces this pattern using the string or
lambda expression in transformTo, if specified. Refer to
documentation for the JavaScript string.replace method for
more information.

Note

With the exception of 'requiredIf', all of these validators will succeed
if an item's value is empty. This allows you to specify the allowable type
and/or format for the data if entered, without actually requiring data
to be entered. To make a field mandatory, you must also set the item's
required property or include a 'requiredIf' validator for the item.
Isomorphic SmartClient Widgets Guide 115

6 -- Forms
Custom validators
To create a custom validator, specify a condition property rather than the validator type.
Set the value of the condition property to the JavaScript function or string that needs to
be evaluated to determine if the data entered is valid. Strings are automatically evaluated
by the system when the validator runs. If the string evaluates to true, the field value
passes the custom validator.

The following custom validator brings up a confirmation dialog box asking the user to
accept or reject the value they entered for the field. If a user clicks OK in the dialog box,
JavaScript returns true and the validator succeeds.

In this example, the + symbols are used to concatenate the current value of the field
entered by the user into the 'Accept the value ' string literal and then adds the other ' for
custom field?' string literal onto the end of the message. If the value entered into the form
is 50, the message that will appear in the dialog for this custom validator is:

Accept the value 50 for the custom field?

Example: Form item validation
The example file dynamicForm_validators.html (shown in Figure 6.6) provides a
simple example for each of these validators.
116

Validating form input
Figure 6.6: Example of form item validation

If there are any errors during form validation, the error messages are saved in the
form.errors property. After validation, the form is redrawn to display these errors. The
form properties and methods described in Table 6.16 give you explicit control over the
form error messages.

Table 6.16: Form error properties and methods

Property / Method Description

errors As given in Table 6.1, the value of the errors property can be set by server-
side programming to reflect the results of server-side validation.

unknownErrorMessage Default: "Unspecified error"
The error message for a failed validator that does not specify its own
errorMessage.

setErrors(errors) Sets form.errors to errors. You must call form.redraw() to display the
new error messages.
Isomorphic SmartClient Widgets Guide 117

6 -- Forms
Handling form item events
When a user interacts with a form (e.g. typing text into fields, clicking buttons, selecting
options in lists, etc.), the form generates events to which your scripts can respond. Form
events are handled separately from the system events discussed in Chapter 3, "Handling
Events," but are nevertheless handled in a similar manner.

All data and button items provide handler properties, allowing you to execute scripts in
response to form events. The available event handlers are listed in Table 6.17.

Table 6.17: Form item event handlers

Like a system event handler, a form event handler can be specified either as a function to
execute, or as a string of script to evaluate.

• Focus and blur handlers are passed a single parameter containing the current value of
the element. In an evaluated handler, this parameter is named 'value'.

• Change handlers are passed three parameters, changedItemID, value, and
oldValue.

• The keyPress handlers are passed four parameters containing the current value of
the element, the numerical code for the key that was pressed, the numerical code for
the typed character, and the string representation of the typed character. In an
evaluated handler, these parameters are named 'value', 'keyNum', 'charCode', and
'charValue'.

Form events may be used as triggers for implementing adaptive forms (i.e. forms that
change their items, values, options, and other characteristics in response to partial input).
For example, you might want a select item in a form to display a different set of options
for each selected option in a group of radio buttons (in the same form). A change handler

setError(itemName, error) Sets error message(s) for the specified itemName to the error string or array
of strings. You must call form.redraw() to display the new error message(s).

clearErrors() Clears all errors. You must call form.redraw() to clear any displayed error
messages.

Event Handler Description

focus Executed when a data item gets the input focus (i.e., a user clicks on or tabs to the item's
element, or a script sets the input focus to the item's element).

blur Executed when a data item loses the input focus.

change Executed when the value of a data item's element is changed. For text, password,
upload, or textarea items, change is only executed after the item's element loses the
input focus.

keyPress Executed when a key is pressed in a text, password, upload, or textarea item.

click Executed when a button, submit, or reset item (either alone, or inside a Toolbar
item) is clicked.

Property / Method Description
118

Handling form item events
in the radioGroup item could look up or calculate a new set of options for the select item,
and set them via the setOptions method, whenever the user selects a different radio
button.

Adaptive form behavior can often be implemented using dynamic item properties (e.g.
properties that can be specified as strings of script to evaluate on-the-fly). The following
dynamic properties, discussed previously in this chapter, are all recalculated whenever
the form is redrawn:

• defaultDynamicValue,
• options,
• showIf, and
• requiredIf.

If adaptive behavior is implemented using these properties, all the triggering event needs
to do is redraw the form. This scenario is common enough that form data items provide a
property to automatically redraw the form when an element's value is changed:

item.redrawOnChange

If item.redrawOnChange is true, the form is redrawn whenever the value of this item's
element is changed. This redraw occurs after the item's change handler, if any, is
executed.

Setting the validateOnChange property to true for an item causes any validation
check(s) to be executed once the form item's contents have been changed and the form
item has lost focus.
Isomorphic SmartClient Widgets Guide 119

6 -- Forms
120

C H A P T E

Isomorphic SmartClient Widgets Guide
R 7
ListGrids and
DetailViewers
The Isomorphic SmartClient system provides two widget classes for displaying data in
tables: ListGrid and DetailViewer. ListGrids display data horizontally. Field headings are
given at the top of each column and all records are then displayed horizontally, one per
row. DetailViewer widgets instead display data in vertical blocks. In this case, field
headings are given at the beginning of each row, with the corresponding records
displayed vertically, one per column. Typically, DetailViewers are used to display details
about a selected set of records, whereas ListGrids are used to display summary lists of
records returned by a query. This chapter covers how to create tables for data display
within the ISC system, and how to sort and manipulate the data within these tables.

In this chapter:

Topic Page

Working with lists 122

Initializing a listGrid or detailViewer 123

Adding and removing listGrid records 131

Sorting listGrid records 131

Selecting listGrid records 133

Dragging and dropping listGrid records 134

Editing listGrid fields 135

Working with listGrid values 138

Handling listGrid record events 141
121

7 -- ListGrids and DetailViewers
Working with lists
If your applications involve any significant amount of data, you'll probably need to
manipulate or present information in a tabular format at some point. Tabular data is
organized into records and fields.

In JavaScript, tabular data is best expressed as an array of objects, where each object in
the array represents a record and each named property of the objects represents a field.
For example, the following array specifies four record objects with three field properties:

var fruits = [
{type:"apple", color:"green", quantity:5},
{type:"banana", color:"yellow", quantity:12},
{type:"cherry", color:"red", quantity:50},
{type:"durian", color:"yellow-green", quantity:3}

]

The ISC system provides several tools for working with tabular data in this format,
including:

• array-object extensions for adding, removing, searching, and sorting rows,
• the ListGrid widget class for visually presenting tabular data horizontally as

shown in Figure 7.1 below,
• the DetailViewer widget class for visually presenting tabular data vertically in

blocks as shown in Figure 7.1 below, and
• the Selection class for maintaining and manipulating a selected set of rows.

This chapter focuses on the presentation and manipulation of tabular data using ListGrid
and DetailViewer widgets. Many of the array-object extensions and Selection class
features are discussed, but these objects are not covered exhaustively.

Figure 7.1: A ListGrid compared to a DetailViewer

A DetailViewer displays record details vertically.A ListGrid displays summary data in a list.

ListGrid DetailViewer
122

Initializing a listGrid or detailViewer
Initializing a listGrid or detailViewer
There are three general steps to initializing a ListGrid or DetailViewer widget:

1. Specify record objects in the data array.

2. Specify field objects and their properties in the fields array.

3. Configure properties of the listGrid or detailViewer itself.

ListGrid and DetailViewer widgets have two fundamental properties that must be
initialized. These properties are described in Table 7.1.

Table 7.1: ListGrid and DetailViewer fundamental properties

Each record object in the data array specifies a set of fieldName:fieldValue pairs. The
fieldNames correspond to a name value of a field object. In the following script, the data
from the fruits example above is specified for a data array of a listGrid or detailViewer.

data:[
{type:"apple", color:"green", quantity:5},
{type:"banana", color:"yellow", quantity:12},
{type:"cherry", color:"red", quantity:50},
{type:"durian", color:"yellow-green", quantity:3}

]

The order of the fields (properties) in each record object is irrelevant, but the order of the
record objects themselves in the data array is the order in which the records will be
displayed. In a sortable listGrid, the order of records can be changed by user interaction.
See "Sorting listGrid records" on page 131 for details. DetailViewer widgets cannot be
sorted.

Property Description Default

viewer.data An array of record objects, specifying data. In listGrids, the data array
specifies rows.In detailViewers, the data array specifies columns.

ListGrids automatically observe changes to the data array and update
accordingly. See "ListGrid styles" on page 129 for details. DetailViewers
do not observe changes to the data array.

null

viewer.fields An array of field objects, specifying the order, layout, dynamic
calculation, and sorting behavior of each field in the listGrid object. With
listGrids, the fields array specifies columns. With detailViewers, the
fields array specifies rows.

null

Reference

Refer to Appendix A, "Widget Initialization Templates," for ListGrid and
DetailViewer initialization templates that include all list, column, and
row properties available for initialization. These properties include
those documented elsewhere in this chapter and relevant properties
inherited from the Canvas class.
Isomorphic SmartClient Widgets Guide 123

7 -- ListGrids and DetailViewers
ListGrid record objects may also specify two optional non-data configuration properties,
listed in Table 7.2.

Table 7.2: ListGrid record object configuration properties

1 Properties listed in this table are not available for detailViewers.

Each field object in a fields array has two fundamental properties, listed in Table 7.3.

Table 7.3: Fields array fundamental properties

Continuing the fruits example above, a basic fields specification is:

fields:[
{name:"type", title:"Fruit"},
{name:"color", title:"Color"},
{name:"quantity", title:"Quantity"}

]

The order of field objects in the fields array determines the order in which the fields will
appear. In a listGrid, fields appear as columns. The order of fields in the fields array is
the order in which columns will appear from left to right. In a detailViewer, fields appear
as rows. The order of fields in the fields array is the order in which rows will appear
from top to bottom within a block.

In this example, every record object property (type, color, quantity) in the data array has
a corresponding field object in the fields array, and vice versa. This is typical, but not
required. A record object may contain properties that are not displayed (and so have no
corresponding field objects in the fields array), while a field object may generate
dynamic values that are not associated with any record object in the data array. If a
record does not have a named property value declared, an empty cell value will be
displayed. See "Working with listGrid values" on page 138 for details.

Record and field objects may have additional properties set to control other behaviors, as
described in later sections of this chapter.

Property1 Description Default

record.enabled Affects the visual style and interactivity of the record. If
record.enabled is false, the record (row in a listGrid) will
not highlight when the mouse moves over it, nor will it respond
to mouse clicks.

true

record.isSeparator Defines a horizontal separator in the listGrid object. Typically
this is specified as the only property of a record object, since a
record with isSeparator:true will not display any values.

false

Property Description

field.name The name of this field, corresponding to one of the property names used in the data
array.

field.title A title for this field, to display in the header of the listGrid or detailViewer object.
124

Initializing a listGrid or detailViewer
The data and fields properties of a listGrid or detailViewer may be set to different
arrays after initialization using the setter methods given in Table 7.4.

Table 7.4: Data and fields setter methods

Example: ListGrid initialization
The example file listGrid_init.html (shown in Figure 7.2) creates and draws a list.

Figure 7.2: Example of ListGrid initialization

The following script defines the data and fields for the sample list and creates the
listGrid instance:

var animalData = [
{commonName:'Elephant (African)',scientificName:'Loxodonta

africana',diet:'Herbivore',lifeSpan:' 40-60 years',information:'The
African Elephant is the largest of all land animals and also has the

Method Action

setData(recordList) Set the data array to recordList.

setFields([fieldList], [fieldSizes]) Set the fields array and/or field widths to fieldList and
fieldSizes, respectively. If a fieldSizes array (of numbers
only) is not specified, the fields will be sized according to their
individual size properties.

Tip

Since the data and fields properties often contain many values, you
may want to set them to variables whose values are defined outside
of the initialization block. This will improve the readability of your code,
especially if you generate these properties with server-side
programming. The following examples take this external-variable
approach.
Isomorphic SmartClient Widgets Guide 125

7 -- ListGrids and DetailViewers
biggest brain of any land animal. Both males and females have ivory
tusks. Elephants are also wonderful swimmers. Man is the only real
enemy of the elephant. Man threatens the elephant by killing it for its
tusks and by destroying its habitat.',status:'Threatened'},

{commonName:'Alligator (American)',scientificName:'Alligator
mississippiensis',diet:'Carnivore',lifeSpan:'50 years',information:'In
the 16th century, Spanish explorers in what is now Florida encountered
a large formidable animal which they called "el largo" meaning "the
lizard". The name "el largo" gradually became pronounced
"alligator".',status:'Not Endangered'},

. . .
];

var animalFields = [
{name:"commonName", title:"Animal"},
{name:"scientificName", title:"Scientific Name"},
// Note: Fields not included in this list will not show up in the
// listGrid
//{name:"lifeSpan", title:"Life Span"},
//{name:"status",title:"Endangered Species Status"}
{name:"diet", title:"Diet"},
{name:"information", title:"Interesting Facts"}

],

ListGrid.create({
ID:"animalList",
data:animalData,
fields:animalFields,
canReorderRecords:true,
left:50,
top:75,
width:500,
height:300,
alternateRecordStyles:true

});

This example implements the three initialization steps given at the beginning of this
section as follows:

1. The listGrid's records (rows) are specified in the animalData array. This array con-
tains five record objects, each containing information about an animal in three field
properties ('species', 'color', and 'behavior').

2. The listGrid's fields (columns) are configured in the animalColumns array. The name
properties' values match the listGrid's data array field names.

3. The listGrid itself is configured in the call to the create method, setting its funda-
mental data and fields properties to the above arrays.

The width of the listGrid is divided equally amongst its columns. Click on the column
headers to see the default listGrid sorting behavior. See "Sorting listGrid records" on
page 131 for information about sorting listGrid records. Click, Shift-click, and Ctrl-
click on the listGrid rows to see the default listGrid selection behavior. See "Selecting
listGrid records" on page 133 for details on selecting listGrid rows.
126

Initializing a listGrid or detailViewer
Example: DetailViewer initialization
The example file detailViewer_init.html (shown in Figure 7.3) creates and draws a
small detailViewer. This example uses the same data set as the listGrid example above.

Figure 7.3: Example of DetailViewer initialization

The following script defines the data and fields for the sample detailViewer and creates
the detailViewer instance:

var animalData = [
{commonName:'Elephant (African)',scientificName:'Loxodonta

africana',diet:'Herbivore',lifeSpan:' 40-60 years',information:'The
African Elephant is the largest of all land animals and also has the
biggest brain of any land animal. Both males and females have ivory
tusks. Elephants are also wonderful swimmers. Man is the only real
enemy of the elephant. Man threatens the elephant by killing it for its
tusks and by destroying its habitat.',status:'Threatened'},

{commonName:'Alligator (American)',scientificName:'Alligator
mississippiensis',diet:'Carnivore',lifeSpan:'50 years',information:'In
the 16th century, Spanish explorers in what is now Florida encountered
a large formidable animal which they called "el largo" meaning "the
lizard". The name "el largo" gradually became pronounced
"alligator".',status:'Not Endangered'},

{commonName:'Anteater',scientificName:'Myrmecophaga
tridactyla',diet:'Ground dwelling ants/termites',lifeSpan:'25
years',information:'Anteaters can eat up to 35,000 ants daily. Tongue
is around 2 feet long and is not sticky but rather covered with saliva.
They have very strong sharp claws used for digging up anthills and
termite mounds.',status:'Not Endangered'},

Two records per block
recordsPerBlock:2

Block separator
blockSeparator:"

"

Block
Isomorphic SmartClient Widgets Guide 127

7 -- ListGrids and DetailViewers
{commonName:'Camel (Arabian Dromedary)',scientificName:'Camelus
dromedarius',diet:'Herbivore',lifeSpan:'20-50 years',information:'Can
eat any vegetation including thorns. Has one hump for fat storage. Is
well known as a beast of burden.',status:'Not Endangered'}

],

animalFields = [
{name:"commonName", type:"text", title:"Animal"},
{name:"scientificName", type:"text", title:"Scientific Name"},
{name:"diet", type:"text", title:"Diet"},
{name:"lifeSpan", type:"text", title:"Average Life Span"},
{name:"information", type:"text", title:"Interesting Information"}

],

DetailViewer.create({
ID:"animalDetail",
data:animalData,
fields:animalFields,
left:20,
top:45,
width:500

});

The only difference in the basic initialization of a detailViewer and a listGrid is the widget
class specified in the create initializer. Beyond basic initialization, numerous properties
can be set to affect the appearance and other behaviors of listGrids and detailViewers.
These properties are covered in "Configuring listGrid layout and appearance" and
"Configuring detailViewer layout and appearance," respectively, for each widget class.

Configuring listGrid layout and appearance
ListGrid widgets and field objects provide a range of properties that affect a listGrid's
appearance, including the listGrid's layout and styles.

The ListGrid and field object properties presented in Table 7.5 affect the layout of a
listGrid.

Table 7.5: ListGrid layout properties

Property Description Default

field.width The width of this field (column), specified as either an
absolute number of pixels, a percentage of the remaining
space, or '*' , the default value, to allocate an equal portion
of the remaining space. Field widths may also be set by
passing an array of numbers (absolute pixel sizes only) as
the second parameter to the listGrid.setFields
method. See Table 7.4.

"*"

field.align The horizontal alignment of values in this field's column:
• left,
• center, or
• right.

null (left aligned)
128

Configuring listGrid layout and appearance
The ListGrid properties described in Table 7.6 affect the appearance of a listGrid.

Table 7.6: ListGrid appearance properties

ListGrid styles
The properties listed in Table 7.7 set the CSS class names used to specify styles of ListGrid
widgets. These properties name the CSS class in the skin_styles.css cascading style
sheet to use for a part of the listGrid. Generally, you will not need to change these
properties. To change a style, modify the CSS class description in skin_styles.css for

field.cellAlign The alignment of the header text and cell values within a
cell:
• left,
• center, or
• right.

null (left aligned)

listGrid.rowHeight The height of each record's row in this listGrid, in pixels. 20

listGrid.cellSpacing The amount of empty space, in pixels, between each cell in
this listGrid.

0

listGrid.cellPadding The amount of empty space, in pixels, surrounding each
listGrid value in its cell.

2

listGrid.headerHeight The height of this listGrid's header, in pixels. 20

Property Description Default

field.showIf A string of script that, if provided, is
evaluated to conditionally determine the
value of this field’s visible property
when the listGrid is drawn or redrawn or a
direct call has been made to the
setFields method.

null

listGrid.showEmptyMessage Indicates whether the text of the
emptyMessage property should be
displayed if the listGrid has an empty
data array—in other words, no records to
show.

true

listGrid.emptyMessage The string to display in the body of a
listGrid with an empty data array, if
showEmptyMessage is true.

"No items to show."

listGrid.alternateRecordStyles Indicates whether listGrid records should
be drawn in alternating styles, typically to
apply different background colors, for
easier reading across records.

false

listGrid.alternateRecordFrequency The number of consecutive records to
draw in the same style before alternating,
when alternateRowStyles is true.

1

Property Description Default
Isomorphic SmartClient Widgets Guide 129

7 -- ListGrids and DetailViewers
the skin being loaded with your application. See "Using and customizing ISC skins" on
page 75 for more information on skins.

Sometimes, however, you may want to create multiple listGrids with their own styles. In
that case, you can set new CSS classes using the properties described in Table 7.7.

Table 7.7: ListGrid style properties

Configuring detailViewer layout and appearance
DetailViewer widgets provide properties that affect appearance, including the layout and
styles. The properties presented in Table 7.8 control the layout of a detailViewer.

Table 7.8: DetailViewer layout properties

Warning

You must create a new CSS class in the skin_styles.css for the skin
you’re using if you change the value of any of these properties. The
new CSS class name must furthermore match the value of the
corresponding listGrid style property.

Property Description Default

baseStyle The base name for the CSS class applied to cells in the
listGrid. This style is appended with
alternateColorStyleSuffix and/or "Over",
"Selected", or "Disabled" as appropriate.

"cell"

emptyMessageStyle The CSS class applied to the emptyMessage string if
displayed.

"normal"

Reference

All listGrid style properties are presented in Appendix B, "Isomorphic
SmartClient Styles."

Property Description Default

recordsPerBlock The number of records to display in a block. A block is a
horizontal row on a page containing one or more records, as
specified by the value of recordsPerBlock. The height of a
block is equal to the height of a single record. The default setting
of 1 causes each record to appear by itself in a vertical row.
Setting recordsPerBlock == 2 would cause records to appear
side by side in groups of two.

1

blockSeparator A string (HTML acceptable) that will be written to a page to
separate blocks.

"

"

cellPadding The amount of empty space, in pixels, surrounding each
detailViewer value in its cell.

2

130

Adding and removing listGrid records
The DetailViewer property described in Table 7.9 controls the appearance of a
detailViewer when there are no records in the data array to display.

Table 7.9: DetailViewer appearance properties

Adding and removing listGrid records
ListGrid widgets automatically "observe" their data arrays for changes caused by the
following extended array methods:

• add(record)
• addList(recordList)
• addAt(record, position)
• addListAt(recordList, position)
• removeAt(position)
• remove(record)
• removeList(recordList)

To ensure that your listGrids update automatically when their data arrays change, you
should use these methods instead of the standard JavaScript array methods—concat,
push, pop, shift, unshift, splice, etc.—to add or remove records in the data array.
DetailViewer widgets do not observe their data arrays for changes caused by the above
methods.

Sorting listGrid records
ListGrid widgets provide interactive sorting behavior by default. Clicking on a field's
column header in a listGrid sorts the listGrid by that field's values. Clicking again on the
header of a sorted column reverses the direction of sorting. Columns in a listGrid are
specified by field objects in the fields array. DetailViewer widgets do not provide
sorting behavior.

You can customize a listGrid's sorting behavior with the listGrid and field properties
presented in Table 7.10.

Property Description Default

emptyMessage The string to display in the body of a detailViewer with no
records.

"No items to display."

Note

A listGrid will update automatically if entire records are added,
removed, or replaced using the methods given above. It will not
update automatically if individual values of existing records are
changed. To update a listGrid after changing values in existing
records, call listGrid.markForRedraw() to redraw the widget. See
"Drawing" on page 28 for more information on drawing-related
methods.
Isomorphic SmartClient Widgets Guide 131

7 -- ListGrids and DetailViewers
Table 7.10: ListGrid sorting properties

You can also sort a listGrid explicitly by calling its sort method:

listGrid.sort([sortCol],[sortDirection])

In this code sample, sortCol and sortDirection are optional parameters specifying
new values for listGrid.sortCol and listGrid.sortDirection. If neither sortCol
nor listGrid.sortCol is defined, listGrid.sortCol will be set to the first sortable
column in this listGrid.

Property Description Default

listGrid.canSort Enables or disables interactive sorting behavior for this
listGrid. Does not affect sorting by direct calls to the sort
method described below.

true

listGrid.sortFieldNum Specifies the number of the field by which this listGrid is
currently sorted. Column numbers start at 0 for the left-
most column.

null

listGrid.sortDirection Specifies the current sorting direction of this listGrid. If set
to ascending, the lowest value in the sorted column is at
the top of the listGrid. If set to descending, the highest
value in the sorted column is at the top of the listGrid.

"ascending"

field.canSort Enables or disables sorting by this column. If false,
neither interactive nor scripted (via the sort method)
instructions will sort the listGrid by this column.

true

field.sortDirection Specifies the default sorting direction for this column. If
set to ascending, the lowest value in the column is at
the top of the listGrid. If set to descending, the highest
value in the column is at the top of the listGrid. If not
specified, the current value of
listGrid.sortDirection is used instead.

null

field.sortNormalizer An optional function to normalize listGrid values for
sorting. If provided, this function should take
(recordObject, fieldName) parameters and return a
normalized value to use for sorting comparisons.

null

listGrid.showSortArrow Indicates whether a sorting arrow should appear for the
listGrid, and its location. Acceptable values are:
• none—No sort arrow.
• corner—Sort arrow appears in the top right corner of

the listGrid.
• field—Sort arrow appears in the column header of

the column specified by listGrid.sortCol.
• both—Sort arrows appear as if both corner and

column are set.

Clicking the sort arrow reverses the direction of sorting for
the current sort column (if any), or sorts the listGrid by its
first sortable column. The arrow image on the
button indicates the current direction of sorting.

"both"
132

Selecting listGrid records
Selecting listGrid records
When a listGrid is created, it automatically creates a Selection object to maintain and
manipulate its set of selected records. ListGrid records appear as rows. A listGrid's
clickable-selection behavior is defined by the selectionType property:

listGrid.selectionType

The selectionType property can be set to one of four possible constants in the Selection
class, given in Table 7.11.

Table 7.11: ListGrid selectionType values

Clicking on a disabled record (i.e. one in which record.enabled is false) does not
change the selection, regardless of the selection type.

The Selection object associated with a listGrid can be accessed with the listGrid's selection
property:

listGrid.selection

This object provides a number of methods that manipulate the current set of selected
records. These methods are described below.

Table 7.12: Selection methods available on ListGrid.selection

Value Behavior

"none" Clicking on a record (row) has no effect.

"single" Clicking on an enabled record selects that record and deselects any other record.

"simple" Clicking on an enabled record toggles the selection state of that record, without affecting
other records in the selection.

"multiple" Default: Clicking on an enabled record with no modifier key pressed selects that record
only, as with the single style above.

If the Alt, Ctrl, or Meta key is pressed, the selection of state of the record is toggled, as
with the simple style above. If the Shift key is pressed, the selection expands or
contracts to include a continuous range of records. This range is bounded...
• from the first record of the current selection to the clicked record, if the clicked record is

after the first record in the current selection, or,
• from the clicked record to the last record in the current selection, if the clicked record is

before the first record in the current selection.

Method Action

getSelection() Returns an array of selected record objects.

getSelectedRecord() Returns the first selected record object.

anySelected() Returns true if any record in the listGrid is selected; and
false otherwise.

multipleSelected() Returns true if more than one record is selected, false
otherwise.
Isomorphic SmartClient Widgets Guide 133

7 -- ListGrids and DetailViewers
ListGrids automatically update their visible selections to reflect any changes made by
calls to the methods above. For example, the following script selects (and therefore
highlights) all records in a listGrid:

listGrid.selection.selectAll()

The array returned by the getSelection method may be manipulated by any of the
extended array methods (see "ListGrid styles" on page 129), or passed as a parameter
wherever an array is appropriate. For example, this script removes all selected records
from a listGrid:

listGrid.data.removeList(listGrid.selection.getSelection())

Dragging and dropping listGrid records
ListGrid widgets support two kinds of drag-and-drop behavior:

• drag-and-drop reordering of records within a listGrid, and
• drag-and-drop of records between different listGrids.

ListGrid-record drag-and-drop is initiated by clicking on a record and dragging while the
mouse button is held down. If dragging is enabled for the listGrid as a whole, and for each
record in the current selection, all records in the current selection will be dragged. While
these listGrid records are being dragged, a small "list" icon is attached to the mouse
cursor. If this icon appears as a black square, the image can't be found. If the icon is not

isSelected(record) Returns true if the specified record object is selected; and
false otherwise.

select(record) Selects the specified record object.

deselect(record) Deselects the specified record object.

selectSingle(record) Selects the specified record object and deselects any other
records that were selected.

selectList(recordList) Selects all record objects in the recordList array.

deselectList(recordList) Deselects all record objects in the recordList array.

selectAll() Selects all records in the listGrid.

deselectAll() Deselects all records in the listGrid.

selectItem(recordNum) Selects the record in the listGrid at index recordNum
(starting with 0).

deselectItem(recordNum) Deselects the record in the listGrid at index recordNum
(starting with 0).

selectRange(fromRecordNum, toRecordNum) Selects all records in the listGrid from index
fromRecordNum to index toRecordNum, not including the
record at index toRecordNum.

deselectRange(fromRecordNum, toRecordNum) Deselects all records in the listGrid from index
fromRecordNum to index toRecordNum, not including the
record at index toRecordNum.

Method Action
134

Editing listGrid fields
displayed at all, no records are being dragged. The selected records will be dragged only
if:

• the listGrid's canReorderRecords or canDragRecordsOut property is true,
• no record in the current selection has a canDrag property set to false, or
• dragging is initiated from an enabled (enabled != false), non-separator

(isSeparator != true) record.

As the cursor moves over a listGrid that can accept dragged records, an insertion line is
displayed to indicate the position at which the records will be inserted if they are dropped.
If this line does not appear, the records cannot be dropped.

The ListGrid properties listed in Table 7.13 control the overall drag-and-drop behavior of
a listGrid.

Table 7.13: ListGrid drag-and-drop properties

For more control, each record (row) in a listGrid also supports two drag-and-drop
properties, described in Table 7.14.

Table 7.14: ListGrid record drag-and-drop properties

Editing listGrid fields
ListGrid widgets support in-line editing of values for individual fields in a record. If
enabled, editing is initiated by double-clicking on a field. This changes the static field to a
form field to allow user input according to the field’s type—text fields will change to text
input boxes, and selection fields to drop-down menus. (Other form item types are given
inTable 6.2 on page 100.)

When the user completes editing and presses the Enter key, or clicks outside of the input
area, validation on the field is performed. If validation succeeds, the new value is shown

Property Description Default

canReorderRecords Indicates whether records can be reordered by dragging
within this listGrid.

false

canDragRecordsOut Indicates whether records can be dragged from this listGrid to
other listGrids.

false

canAcceptDroppedRecords Indicates whether this listGrid will accept records dragged
and dropped from other listGrids.

false

Property Description Default

record.canDrag If false, this record cannot be dragged. If canDrag is
false for any record in the current selection, none of the
records will be dragged.

null

record.canAcceptDrop If false, other records cannot be dropped on (i.e., inserted
immediately before) this record.

null
Isomorphic SmartClient Widgets Guide 135

7 -- ListGrids and DetailViewers
for that field. If not, the original value is restored. In both cases the editing mode ceases to
show the field as a static value until it receives another 'double-click' event.

Table 7.15: ListGrid in-line editor properties

In-line editing is turned on by setting the canEdit property for the listGrid to true. This
allows all fields to be edited by default. You can turn off editing for individual fields by
setting the canEdit property to false on the field level.

Table 7.16: ListGrid field in-line editor properties

Example: Editable ListGrid initialization
The example file editableListGrid_init.html (shown in Figure 7.4) creates and draws
a listGrid exactly like the one shown previously, only this version supports in-line editing.
This example uses a subset of the data for listGrid example above.

Property Description Default

canEdit If set to true, users will be able to interactively edit the values for
fields of this listGrid in-line. Editing can be turned off for any
individual fields by setting canEdit to false as a field property.

null

Warning

ListGrid editing requires functionality provided by the DynamicForm
widget. Therefore, if your license with Isomorphic Software does not
include the DynamicForm package, you will not be able to use
editable ListGrid capabilities.

Property Description Default

field.canEdit If the canEdit property is set to true for the listGrid as a
whole, setting this property to false for the field will
prevent it from being edited in-line. If the canEdit property
is not set or is set to false for the listGrid, this property will
be ignored for the field.

null

field.editorType FormItem type to use to edit this field. [varies by field.type]
136

Editing listGrid fields
Figure 7.4: Example of editable ListGrid initialization
Isomorphic SmartClient Widgets Guide 137

7 -- ListGrids and DetailViewers
The following script defines the fields for the editable list and creates the listGrid
instance (the changes from the last example are shown in bold):

// Data to be displayed
. . .

var animalFields = [
{name:"commonName", title:"Animal"},
{name:"scientificName", title:"Sci. Name (not editable)", canEdit:false,

width:150},
{name:"diet", title:"Diet", valueMap:{O:"Omnivore", C:"Carnivore",

H:"Herbivore",I:"Insectivore",P:"Pescivore"}},
{name:"information", title:"Interesting Facts", editorType:"textArea"}

];

ListGrid.newInstance({
ID:"animalList",
canEdit:true,
data:animalData,
fields:animalFields,
canReorderRecords:true,
left:50,
top:75,
width:500,
height:300,
alternateRecordStyles:true

});

The big change in this example is that the canEdit property has been set to true for the
listGrid. This makes all text fields editable. Field properties are used to override the
values given for the listGrid as a whole.

• The scientificName field sets canEdit to false to prevent it from being over-
written.

• The diet field uses a valueMap so that the editing is done through a drop-down
menu of only valid choices.

• The information field is a long text area field, so it overrides the default editor
with the "textArea" value.

Working with listGrid values
The values in a listGrid come from the record objects in the listGrid's data array, but you
can process these values or even generate entirely new values for display. The value
displayed in any cell in a listGrid is determined by the following sequence:

1. The raw value for the cell is taken from the appropriate field (property) of the appro-
priate record object in the listGrid's data array.

2. If field.getCellValue is defined for the cell's column, it is an expression evaluated
or function called with the raw value whereby the result is used as the cell's value.

3. If field.valueMap is defined, the cell's value is used as a key to look up a different
display value in the map.
138

Working with listGrid values
4. If the cell's display value is empty and field.emptyCellValue is defined, that value
is displayed.

5. If the cell's display value is empty and field.emptyCellValue is not defined,
listGrid.emptyCellValue is displayed.

The three field object properties used in this sequence are explained in Table 7.17.

Table 7.17: ListGrid field value properties

The above sequence is executed for each cell whenever a listGrid is drawn.

To illustrate the use of the field value properties given in Table 7.17, consider a simple
office supply catalog where a listGrid shows three fields: the office supply product, the
quantity in stock, and a shopping cart icon as shown in Figure 7.5.

Figure 7.5: Example of listGrid field value properties

Property Description

formatCellValue An expression or function evaluated/called to generate the cell values for the field
(column). If defined as an expression, the following variables are available:

• value-value stored in the record for this field
• record—the current record object
• rowNum—the row number in the current set of displayed records (e.g., 0 for the first

displayed record)
• colNum—the column number in the current set of displayed columns
• grid-the ListGrid object

If defined as a function, the order of the parameters is as given above, eg
formatCellValue(value, record, rowNum, colNum, grid)

Since formatCellValue is a field property, you can use the this keyword in the
function body to refer to the current field object if necessary.

valueMap A property list (or an expression that evaluates to a property list) specifying a mapping of
internal values to display values for the field (column).

emptyCellValue Default: " "
The value to display for a cell whose value is null or the empty string ("") even after
applying getCellValue and valueMap.
Isomorphic SmartClient Widgets Guide 139

7 -- ListGrids and DetailViewers
function showCartValue(value) {
if (value > 0)

return "yes";
else

return "no";
}

function addToCart(record) {
if (record.qty > 0) {

alert(record.itemName + " added to cart.");
record.qty = record.qty - 1;
itemList.redraw();

}
}

ListGrid.create({
ID:"itemList",
height:200,
left:5,
top:5,
width:300,
cellHeight:23,
selectionType:"single",
sortFieldNum:0,
cellPadding:3,
data:[

{itemName:"Pack of Pens", qty:10, enabled:true},
{itemName:"Pack of Pencils", qty:8, enabled:true},
{itemName:"Chair", qty:2, enabled:true},
{itemName:"Keyboard", qty:0, enabled:true},
{itemName:"Monitor", qty:1, enabled:true}

],
fields:[

{name:"itemName", title:"Product", sortDirection:"descending",
width:"100%"},

{name:"qty", title:"Quantity", canSort:false, align:"center",
width:"100"},

{name:"showCart", title:"", canSort:false, width:"23", align:"center",
formatCellValue:"showCartValue(record.qty)",
valueMap:{"yes":"", "no":""},
recordClick:"addToCart(record)"

}
]

});

The valueMap maps the string "yes" to the shopping cart image, cart.gif, and the
getCellValue property is used to determine if the cart should be shown or not. As given
by the showCartValue function, if the product quantity is zero, the cart is not shown.
Note that because the value "no" is mapped to an empty string, the cell will pick up the
emptyCellValue property and display nothing.

When the user clicks on the cart field, the addToCart function is called. This function
shows a JavaScript alert, and decreases the product quantity by one in the list. If the
quantity is already zero, then it does nothing. When an item decreases to a quantity of
zero, the cart disappears. See the following section on "Handling listGrid record events"
for more information.
140

Handling listGrid record events
Handling listGrid record events
ListGrid widgets handle all of the standard mouse and drag-and-drop events to
implement highlighting, selection, sorting, and other behaviors. SeeTable 3.6 on page 52
for a complete list of mouse events. You should not set your own handlers in a listGrid for
these events, as doing so would disable the listGrid's built-in behavior.

ListGrid record events
However, ListGrid widgets generate two additional events for which you can set handlers:

• recordClick—executed when the listGrid receives a 'click' event on an enabled,
non-separator record, and

• recordDoubleClick—executed when the listGrid receives a 'doubleClick' event
on an enabled, non-separator record.

Event handling of record events
These listGrid-record events are handled separately from the system events discussed in
Chapter 3, "Handling Events." They are not handled globally, nor "bubbled up" through
parent widgets. Instead, they are handled by:

• field-level handlers (field.recordClick and field.recordDoubleClick), if
defined for the field (column) in which the event occurred, and otherwise,

• listGrid-level handlers (listGrid.recordClick and
listGrid.recordDoubleClick), if defined.

Event handler variables
In either case, a record event handler can be specified either as a function to execute, or as
a string of script to evaluate. If the handler is defined as a string of script, the following
variables may be used in the script:

• record—the current record object,
• recordNum—the number of the record in the current set of displayed records (e.g.,

0 for the first displayed record),
• fieldNum—the number of the field in the listGrid.fields array,
• value—the display value of the cell, as returned from listGrid.getCellValue

method, and
• rawValue—the raw value of the cell, from the appropriate field in the current

record object.
• viewer-the ListGrid itself

If the handler is defined as a function, most of these variables are passed as parameters to
the recordClick event in the following order when the function is called:

recordClick(viewer, record, recordNum, fieldNum, value, rawValue)
Isomorphic SmartClient Widgets Guide 141

7 -- ListGrids and DetailViewers
142

C H A P T E

Isomorphic SmartClient Widgets Guide
R 8
TreeGrids
Some types of information are best organized and browsed hierarchically. For example,
files on your computer are organized into a hierarchy of folders or directories for easier
management. The Isomorphic SmartClient system supports hierarchical data—also
referred to as tree data due to its "branching" organization—with:

• the Tree class, which manipulates hierarchical data sets, and
• the TreeGrid widget class, which extends the ListGrid class to visually present tree

data in an expandable/collapsible format.

This chapter focuses on the presentation and manipulation of hierarchical data using
TreeGrid widgets (and the specialized TreeGrid subclasses).

In this chapter:

Topic Page

Specifying tree data 144

Initializing a treeGrid 146

Configuring treeGrid appearance and behavior 149

Adding, moving, and removing tree nodes 151

Expanding and collapsing tree nodes 152

Dragging and dropping tree nodes 153

Handling treeGrid events 153
143

8 -- TreeGrids
Specifying tree data
Tree data, like tabular data, is expressed as a collection of JavaScript objects. An object in
a tree is called a node, and is one of two types:

• a folder node, which contains other nodes, or
• a leaf node, which does not contain other nodes.

Each node object has three fundamental properties, as described in Table 8.1.

Table 8.1: TreeGrid node fundamental properties

A tree is defined by a single folder node, called the root, that contains all other nodes.

Data in a treeGrid is sorted initially using the same properties that apply to ListGrid
widgets. TreeGrid sorting is case insensitive.

Example: Tree data
The following list represents possible items in a small inventory of a zoo:

• Bottlenose Dolphin
• Giant Pacific Octopus
• Freshwater Stingray
• Cuban Ground Iguana
• Desert Iguana
• Marbled Salamander
• Indian Rock Python
• Howler Monkey
• Orangutan
• Guinea Baboon
• Lion

Property Description

name The name of the node, used internally to construct its path in the tree, and used as the
node's display name if the node does not define a title. The name of a folder node must
end in the path delimiter ("/" by default) to distinguish them from leaves.

title The display name of the node. If title is not specified, the node's name will be stripped of
any trailing path delimiter and used as the display name instead.

children An array of other node objects (folders and/or leaves) that are contained by this node.
Only folder nodes may specify a children property.

Reference

Since the TreeGrid extends the ListGrid class, you should read Chapter
7, "ListGrids and DetailViewers," to familiarize yourself with ListGrid
features before working with treeGrids.

The Tree class, a subclass of TreeGrid, is discussed in this chapter, but is
not covered exhaustively. For more information on the methods
provided by the Tree class, see Appendix D, "Tree Methods."
144

Specifying tree data
Even with a list this small, hierarchical organization can provide a better "big picture" of
what's available, making it easier to search for a specific thing. In this example, animals
are sorted into the various areas of the zoo where they live:

Aquarium
Saltwater

Bottlenose Dolphin
Giant Pacific Octopus

Freshwater
Freshwater Stingray

Reptile House
Lizard House

Cuban Ground Iguana
Desert Iguana
Marbled Salamander

Snake House
Indian Rock Python

Monkey House
Howler Monkey
Orangutan
Guinea Baboon

Lion Enclosure
Lion

Each animal from the original list is a leaf node in this tree, grouped under one of the new
folder nodes. The topmost folder node (Zoo) is the root of the tree. We can represent this
tree in JavaScript as follows:

Tree.create({
ID:"animalTree",
root: {name:"Zoo/", children:[

{name:"Aquarium/", children:[
{name:"Salt Water/", children:[

{name:"Bottlenose Dolphin", quantity:5, scientificName:'Tursiops
truncatus'},

{name:"Giant Pacific Octopus", quantity:1, scientificName:'Octopus
dofleini'}

]},
{name:"Fresh Water/", children:[

{name:"Freshwater Stingray", quantity:7,
scientificName:'Potamotrygen motoro'}

]}
]},

{name:"Reptile House/", children:[
{name:"Lizard House/", children:[

{name:"Cuban Ground Iguana", quantity:29, scientificName:'Cyclura
nubila nubila'},

{name:"Desert Iguana", quantity:14, scientificName:'Dipsosaurus
dorsalis'},

{name:"Marbled Salamander", quantity:6, scientificName:'Ambystoma
opacum'}

]},
{name:"Snake House/", children:[

{name:"Indian Rock Python", quantity:1, scientificName:'Python
molurus molurus'}

]}
]},
Isomorphic SmartClient Widgets Guide 145

8 -- TreeGrids
{name:"Monkey House/", children:[
{name:"Howler Monkey", quantity:15, scientificName:'Alouatta spp.'},
{name:"Orangutan", quantity:7, scientificName:'Pongo pygmaeus'},
{name:"Guinea Baboon", quantity:3, scientificName:'Papio papio'}

]},

{name:"Lion Enclosure/", children:[
{name:"Lion", quantity:12, scientificName:'Panthera leo'}

]}
]}

});

The Tree object class provides methods that manipulate tree data in this format, allowing
you to:

• add, move, remove, and rename nodes,
• query and traverse the structure of a tree,
• load and unload nodes,
• open and close folders,
• query and traverse open nodes, and
• sort open nodes.

To create a new Tree object, use the create method and initialize the object's root
property to a node object that contains all of the nodes in the tree:

Tree.create({
ID:"animalTree",
root: {name:"Zoo/", children:[

. . .
]}

});

You can then access and manipulate the data by calling methods of this object. See
"Adding, moving, and removing tree nodes" on page 151 for details.

Initializing a treeGrid
The TreeGrid widget class provides an interactive, graphical interface to a Tree data
object. A treeGrid displays all of the open nodes in a tree—all nodes whose paths from the
root contain only open folder nodes—one per row. Users can then open and close these
nodes.

The first column in the treeGrid displays the titles or names of the open nodes, with:

• indentation to indicate each node's level in the hierarchy, and
• an icon to indicate whether each node is a leaf, a closed folder, or an open folder.

Users can click on the icon to open or close the node. TreeGrids have the same two
fundamental properties as ListGrid and DetailViewer classes. These properties are listed
in Table 8.2.
146

Initializing a treeGrid
Table 8.2: TreeGrid fundamental properties

TreeGrids support the same setter methods for these properties as ListGrid widgets. See
Table 7.4 on page 125 for details.

By default, a treeGrid draws a single column containing the titles/names of all open
nodes, with appropriate indentation and icons. You can define additional data columns,
and generate field values dynamically, as you would for a listGrid. Refer to "Initializing a
listGrid or detailViewer" on page 123, and "Working with listGrid values" on page 138
for details.

Three additional TreeGrid properties, described in Table 8.3, control high-level filtering
of the type and order of nodes displayed in the widget.

Table 8.3: TreeGrid filtering properties

Example: TreeGrid initialization
The example file treeGrid_init.html (shown in Figure 8.1) creates a treeGrid to display
the animalViewer object given in the "Example: Tree data" above:

Property Description Default

data A tree object (i.e., an instance of the Tree class) specifying the
tree data. The treeGrid automatically observes changes to data
and updates accordingly.

[]

fields An array of field objects, specifying the order, layout, dynamic
calculation, and sorting behavior of each field in the treeGrid.

By default, the first field definition given for a treeGrid will be
used as the tree field. If you want to control which field
becomes the tree field, you can set the treeField property to
true inside any field definition.

null

Property Description Default

displayNodeType Specifies the type of nodes displayed in the treeGrid.
Set to one of the following values:
• null—Both folders and leaves
• folders—Folders only
• leaves—Leaves only

null

showRoot Specifies whether the root node should be displayed in
the treeGrid.

false

separateFolders Specifies whether folders and leaves should be
segregated in the treeGrid display. With
separateFolders:true and
sortDirection:descending, folders are displayed
before their sibling leaves; with
sortDirection:ascending, leaves are displayed
before their sibling folders.

false
Isomorphic SmartClient Widgets Guide 147

8 -- TreeGrids
Figure 8.1: Example of TreeGrid initialization

This example adds a quantity property to each leaf node in animalViewer, and defines
an additional column object to display this property:

var animalFields = [
TreeGrid.TREE_FIELD,
{name:"quantity", title:"Number", size:50}

];

The treeGrid itself is initialized with the following script:

TreeGrid.create({
ID:"animalViewer",
data:animalTree,
fields:animalFields,
left:50,
top:50,
width:300,
height:250,
canDragRecordsOut:true,
canAcceptDroppedRecords:true

});
148

Configuring treeGrid appearance and behavior
Configuring treeGrid appearance and behavior
TreeGrid widgets inherit much of their appearance and behavior, including layout, styles,
selection, and sorting, from the ListGrid class.

The layout and styles of a treeGrid are specified with the same widget and column
properties as a listGrid. Refer to "Configuring listGrid layout and appearance" on page
128 for details. TreeGrid widgets also support several widget and node properties for
specifying the icons displayed alongside each node's title, as detailed in Table 8.4.

Table 8.4: TreeGrid icon properties

1 All standard images and icons used by treeGrids are given relative to their skin root (e.g. [ISOMORPHIC]/skins/
standard/images/TreeGrid). This is given as part of the path in the default values by the special directory
variable [SKIN].

Property Description Default1

fileImage The filename of the default icon for all leaf nodes in
this treeGrid. Use the node.icon property (null
by default) to specify a custom image for an
individual node.

"[SKIN]/file.gif"

folderClosedImage The filename of the default icon for all closed folder
nodes in this treeGrid. Use the node.icon
property (null by default) to specify a custom
image for an individual folder node. The same
custom image will be used for both the open and
closed folder images.

"[SKIN]/folder_closed.gif"

folderOpenImage The filename of the default icon for all open folder
nodes in this treeGrid.

"[SKIN]/folder_open.gif"

folderDropImage The filename of the icon displayed for a folder node
that will accept drag-and-drop data when the
mouse is released. See "Dragging and dropping
tree nodes" on page 153 for details.

"[SKIN]/folder_drop.gif"

manyItemsImage The filename of the icon displayed for multiple files
and/or folders.

"[SKIN]/folder_file.gif"

arrowOpenImage The filename of the icon displayed next to an open
folder node.

"[SKIN]/arrow_open.gif"

arrowClosedImage The filename of the icon displayed next to a closed
folder node.

"[SKIN]/arrow_closed.gif"

arrowOpeningImage The filename of the icon displayed next to a folder
node while it is opening.

"[SKIN]/arrow_opening.gif"

iconSize The standard size (same height and width, in
pixels) of node icons in this treeGrid.

16

indentSize The amount of indentation (in pixels) to add to a
node's icon/title for each level down in this tree's
hierarchy.

16
Isomorphic SmartClient Widgets Guide 149

8 -- TreeGrids
Overriding standard treeGrid icons
To customize the file image for a treeGrid, set the fileImage property to the filename of
the custom image. This image is assumed to be in an images directory relative to the
HTML file where the treeGrid is defined (./images/image.gif).

TreeGrid.create({
ID:"animalViewer",
data:animalTree,
fields:animalFields,
left:50,
top:50,
width:300,
height:250,
canDragRecordsOut:true,
canAcceptDroppedRecords:true,
fileImage:'animal_image.gif'

});

Reference

TreeGrid widgets inherit the interactive sorting and selection
behaviors, and all related properties and methods, of the ListGrid
class. Refer to "Sorting listGrid records" on page 131 and "Selecting
listGrid records" on page 133, for details.

Refer to Appendix A, "Widget Initialization Templates," for TreeGrid
initialization templates that include all TreeGrid, column, and node
properties available for initialization, including properties documented
elsewhere in this chapter and relevant properties inherited from the
Canvas and ListGrid classes.
150

Adding, moving, and removing tree nodes
To customize the icon for individual treeGrid nodes, set the node's icon property to the
filename of the custom image. Again, this is assumed to be within an images directory
relative to the HTML file where the treeGrid is defined.

Tree.create({
ID:"animalTree",
root: {name:"Zoo/", children:[

{name:"Aquarium/", children:[
{name:"Salt Water/", children:[

{name:"Bottlenose Dolphin", quantity:5,
scientificName:'Tursiops truncatus', icon:'dolphin.gif'},

{name:"Giant Pacific Octopus", quantity:1,
scientificName:'Octopus dofleini', icon:'octopus.gif'}

]},
. . .

]}
. . .

]}
})

To customize the look of all treeGrids within your application, create a new custom skin.
Then replace the images in the images/TreeGrid directory of the new skin with your own
custom images, and load the new skin with the page. For more information on creating
custom skins, see "Using and customizing ISC skins" on page 75.

Adding, moving, and removing tree nodes
TreeGrid widgets automatically "observe" their tree data for changes and redraw
accordingly. To add, move, or remove nodes in a tree, call the following methods of the
tree data object (treeGrid.data):

• add(node, parent)
• addList(nodeList, parent)
• move(node, newParent)
• moveList(nodeList, newParent)
• remove(node)
• removeList(nodeList)

The node, parent, and newParent parameters are references to tree node objects, and
nodeList is an array of references to tree node objects.

The treeviewer_init.html example (shown in Figure 8.1 on page 148) contains a
button to add a nurse shark to the data set. This button's 'click' property is set to the tree
method below:

animalTree.add({name:'Nurse Shark', quantity:1, scientificName:'Ginglymostoma
cirratum'}, saltWaterTank)

The data of the node is specified as an object literal, followed by the parent folder in which
to add the node. If you have a string representing the path to a node (from the root), you
can get the node's object reference with the find(path) method. For example, the parent
folder in this case is set by the variable saltWaterTank, which is defined earlier in the
code as:

var saltWaterTank = animalTree.find("Zoo/Aquarium/Salt Water/");
Isomorphic SmartClient Widgets Guide 151

8 -- TreeGrids
The treeviewer_init.html example also contains a button to remove an orangutan
from the tree data set. This button's 'click' property is set to the tree method below:

animalTree.remove(orangutanNode)

 Similarly to above, orangutanNode is defined earlier in the code as:

var orangutanNode = animalTree.find("Zoo/Monkey House/Orangutan");

The paths set by this and the previous variable could instead be put directly into the tree
method argument. Variables are used here for readability in the code.

Nodes may also be moved within or between treeGrids by drag-and-drop interactions. See
"Dragging and dropping tree nodes" on page 153 for details.

Expanding and collapsing tree nodes
One reason to organize and present data in a tree is to allow filtering of the displayed data
by expanding and collapsing the folders in a treeGrid. By default, all folders in a tree are
closed (and therefore collapsed in the treeGrid display). You can open and close folders
interactively with a treeGrid, or programmatically with methods of the tree data object.

To interactively toggle the open state of a folder in a treeGrid, either:

• click in the folder's row before its title—in the indented area or on the folder's icon,
or

• double-click anywhere in the folder's row.

To manipulate the open state of folders programmatically, call the methods of the tree
data object (treeGrid.data) described in Table 8.5.

Table 8.5: Tree node manipulation methods

These methods may be called on a tree object at any time, regardless of whether the tree is
assigned to a treeGrid widget. If the tree is assigned to a treeGrid widget that is already
drawn, the treeGrid will automatically redraw to reflect changes to the visible hierarchy.

Method Description

isOpen(node) Returns true if the specified node is open.

openFolder(node) Opens the specified node.

closeFolder(node) Closes the specified node.

toggleFolder(node) Changes the state of the node from opened to closed or vice versa.

openAll(node) Opens all folders within and including the specified node. If no node is specified, all
nodes will be opened.

closeAll(node) Closes all folders within and including the specified node. If no node is specified, all
nodes will be closed. If the root node is not visible, it will not be closed; only the
subfolders of the root node will close. If the root node is visible, the root node will be
closed along with its subfolders.
152

Dragging and dropping tree nodes
Dragging and dropping tree nodes
Like listGrids, treeGrids support drag-and-drop of data both within a widget, and
between widgets. The same drag-and-drop properties apply to treeGrids and their nodes
as to listGrids and their rows. Refer to "Dragging and dropping listGrid records" on
page 134 for details.

Dragging nodes in a treeGrid has a different effect than dragging rows in a listGrid. In a
listGrid, rows can be reordered by dragging. In a treeGrid, nodes can be dragged to
different folders in the hierarchy, but not to specific positions relative to their siblings.
TreeGrids therefore do not display an insertion line during dragging. When a node or
nodes are dragged over a folder that can accept them—a folder that is not one of, or a
descendant of, one of the nodes being dragged—that folder's icon changes to the
treeGrid.folderDropImage image. Nodes that are dropped on a folder are inserted in
the current sorting order, or at the bottom of the folder if unsorted.

Handling treeGrid events
Like listGrids, treeGrids handle the standard mouse and drag-and-drop events to
implement their standard behaviors; you should not set your own handlers for these
events. TreeGrids also handle the widget-level recordDoubleClick psuedo-event to
expand/collapse folders automatically, and to call an openLeaf handler for double-
clicked leaf nodes. In brief, you can implement the following handlers for treeGrid events:

• treeGrid.recordClick

• field.recordClick

• field.recordDoubleClick

• treeGrid.openFolder

• treeGrid.openLeaf

The first three of these handlers are inherited from the ListGrid class. "Handling listGrid
record events" on page 141, for details of their usage and parameters. The row variable/
parameter in this case refers to the relevant node object in the tree's data.

The last two of these handlers, openFolder and openLeaf, are specific to the TreeGrid
class. These handlers must be specified as a function, whose single parameter is a
reference to the relevant leaf or folder node in the tree's data. This handler might be used

Reference

For more information on these and other tree methods, refer to the
Tree class in the Isomorphic SmartClient Object Reference and
Appendix D, "Tree Methods."

Warning

The TreeGrid and ListGrid classes support drag-and-drop reordering of
data on the client-side only. Custom server code is required to move
data on the server.
Isomorphic SmartClient Widgets Guide 153

8 -- TreeGrids
to display more information about a node, for example. Or, you might want to track which
folder or leaf was double-clicked by overridding the openFolder or openLeaf method
and calling its superclass method as follows:

myTreeGrid.openFolder = function (node) {
this.Super("openFolder", arguments);
alert("The node that was opened was " + node.title);

}

154

C H A P T E

Isomorphic SmartClient Widgets Guide
R 9
Menus, Toolbars, and
Menubars
In addition to the simple building-block widgets and the complex data-driven widgets,
the Isomorphic SmartClient system provides two widget classes for command and/or
navigation tools. The Menu and Toolbar classes are covered in this chapter.

• The Menu class implements interactive menu widgets, with optional icons, submenus,
and shortcut keys. You can assign an action to each menu item, to be executed when
the user selects that item. A menu can be displayed with a clickable header (as in a
standard menu bar), or as a headerless context menu or submenu.

• The Toolbar class creates a row or column of buttons as child widgets, each of which
may carry an action to execute when clicked. Toolbars automatically size and position
their buttons to fit the allocated space, and automatically handle the mutual
exclusivity of radio buttons.

• The Menubar class creates a row or column of menus as child widgets, essentially
combining the features of the Toolbar and Menu classes.

In this chapter:

Topic Page

Menu widgets 156

Toolbar widgets 163

Menubar widgets 167
155

9 -- Menus, Toolbars, and Menubars
Menu widgets
The Menu class is a subclass of the ListGrid class, but its default functionality is
sufficiently different that you should usually treat it as a standalone class. There are two
general steps to initializing a Menu widget:

1. Specify the menu's items.

2. Configure properties of the menu itself.

Menu items
Menu items, like list rows, are specified in the widget's data property. Each menu item
has the fundamental properties described in Table 9.1.

Table 9.1: Menu item fundamental properties

Menu properties
A menu widget itself has the fundamental properties listed in Table 9.2.

Table 9.2: Menu widget fundamental properties

Property Description

item.title The text displayed for the menu item.

item.submenu An object reference to another menu widget, to display as a submenu when the menu
item is selected.

item.isSeparator If true, defines a horizontal separator in the menu. Typically specified as the only
property of a menu item, since a menu item with isSeparator:true will not display a
title or respond to mouse events.

item.enabled Affects the visual style and interactivity of the menu item. If item.enabled is false, the
menu item will not respond to mouse rollovers or clicks.

Property Description

menu.title The text displayed in the menu's clickable header, accompanied by a small down-arrow
image. If menu.title is not specified or if menu.headerHeight is 0, the menu will not
display a header.

menu.data An array of menu item objects. See Table 9.1 for fundamental properties that can be
specified for each menu item, and "Example: Menu initialization" for how menu items are
given in the data array.
156

Menu widgets
When a menu is shown, it activates the "click mask", an event handler that captures all
mouse events outside of the menu. See "Mouse events" on page 53 for details. Clicking
anywhere on the page outside of the menu will hide the menu (and deactivate the click
mask).

Menu items, like form items, are usually specified outside of the widget initialization
block for code readability and maintenance.

Example: Menu initialization
The example file menu_init.html (shown in Figure 9.1) creates a simple File menu that
lists several standard file operations, including a Recent Files submenu.

Figure 9.1: Example of menu initialization

The top-level menu is defined and drawn with the following script:

var fileMenuItems = [
{title:"New..."},
{isSeparator:true},
{title:"Open..."},
{title:"Recent Files", submenu:recentMenu},
{isSeparator:true},
{title:"Save..."},
{title:"Save As..."},

Warning

Neither submenus nor context menus should display a header. Do not
specify a title for a menu widget that will be used as a submenu or
context menu.

Reference

Refer to Appendix A, "Widget Initialization Templates," for Menu
initialization templates that include all available menu and menu item
properties available, including properties documented elsewhere in
this chapter and relevant properties inherited from the Canvas and
ListGrid classes.
Isomorphic SmartClient Widgets Guide 157

9 -- Menus, Toolbars, and Menubars
{isSeparator:true},
{title:"Exit"}

],

Menu.create({
ID:"fileMenu",
left:50,
top:50,
width:100,
data:fileMenuItems,
title:"File"

});

The Recent Files menu item specifies a submenu. The submenu widget must be defined
before the menu item in which it will appear. The following script defines the submenu
for this example:

var recentMenuItems = [
{title:"File 1"},
{title:"File 2"},
{title:"File 3"}

],

Menu.create({
ID:"recentMenu",
width:100,
data:recentMenuItems

});

A title for the submenu widget is not specified because only the menu items should be
displayed when a submenu is shown.

Configuring menu appearance
Menu widgets and menu item objects provide a range of properties that affect a menu's
appearance, including the menu's layout and icons.

Menus provide the sizing properties described in Table 9.3.

Table 9.3: Menu sizing properties

Warning
Submenus must be defined before the menus that contain them.

Property Description Default

width The width of the menu. 150

menuButtonHeight The height of the menu button. 22

menuButtonWidth The width of the menu button.The value of width will be used
unless menuButtonWidth is explicitly set.

null
158

Menu widgets
Each item in a menu may display either a checkmark icon or a custom icon to the left of its
title. The menu and menu item properties given in Table 9.4 specify the display of these
images.

Table 9.4: Menu icon properties

Menus make use of six standard images, described in Table 9.5.

Table 9.5: Menu images

showMenuBelow If true, the menu will appear above the menu button instead of
below it.

false

cellHeight The height of each item in the menu, in pixels. 20

Property Description Default

item.checked If true, this item displays a standard checkmark image to the left
of its title.

null

item.icon The base filename for this item's custom icon. If item.icon and
item.checked are both specified, only the custom icon will be
displayed. The path to the loaded skin directory and the
skinImgDir are prepended to this filename to form the full URL.

null

item.iconWidth The width applied to this item's icon, if item.icon is specified. 16

item.iconHeight The height applied to this item's icon, if item.icon is specified. 16

menu.iconWidth The default width applied to custom icons in this menu. This is
used whenever item.iconWidth is not specified.

16

menu.iconHeight The default height applied to custom icons in this menu. This is
used whenever item.iconHeight is not specified.

16

Image Image Name Description

menu_button.gif Down-arrow image displayed at the far right of a menu header, if
any.

menu_button_disabled.gif Down-arrow image displayed at the far right of a disabled menu
header, if any.

submenu.gif Right-arrow image displayed at the far right of a menu item with a
submenu.

submenu_disabled.gif Right-arrow image displayed at the far right of a menu item with a
disabled submenu.

check.gif Checkmark image displayed at the far left of menu items with
checked:true.

check_disabled.gif Checkmark image displayed at the far left of disabled menu items
with checked:true.

Property Description Default
Isomorphic SmartClient Widgets Guide 159

9 -- Menus, Toolbars, and Menubars
These images must be located in the subdirectory specified by the loaded skin image
directory (default: "[ISOMORPHIC]/skins/standard") appended with
menu.skinImgDir (default: "images/Menu/").

Each menu item may display up to four parts. Each of these parts corresponds to a
column in the menu. This is one case where it's useful to think about the Menu class as a
subclass of the ListGrid. The contents of these columns, in left-to-right order, are:

• checkmark or custom icon,
• title,
• shortcut key (60 pixels), and
• submenu arrow icon (20 pixels).

You should not need to set these, since columns are defined and drawn automatically
based on the initial settings of the menu's items. However, if you want to explicitly hide or
show the icon, key, or submenu columns, you can do so by initializing the menu column
properties listed in Table 9.6.

Table 9.6: Menu column properties

Defining menu actions
When a user selects an item in a menu, the menu generates an event to which your scripts
can respond. Menu events are handled separately from the system events discussed in
Chapter 3, "Handling Events," , but are nevertheless handled in a similar manner. You
can assign actions to individual menu items, or to the menu widget as a whole, by setting
the event handler properties described in Table 9.7.

Property Description Default

showIcons A boolean, indicating whether the checkmark/custom icon column
should be displayed. If showIcons is not set, the menu will show the
icon column only if one of its items specifies an icon, checked,
checkIf, or dynamicIcon property.

null

showKeys A boolean, indicating whether the shortcut key column should be
displayed. If showKeys is not set, the menu will show the key column
only if one of its items specifies a keys property. If showKeys is
false, the keys will not be displayed, but will still function.

null

showSubmenus A boolean, indicating whether the submenu indicator column should
be displayed. If showSubmenus is not set, the menu will show the
indicator column only if one of its items specifies a submenu property.
If showSubmenus is false, the submenu arrows will not be
displayed, but submenus will still appear on rollover.

null
160

Menu widgets
Table 9.7: Menu event handlers

You can also assign one or more shortcut keys to each menu item, allowing the user to
execute that item's action without opening the menu. Pressing an item's shortcut key has
the same effect as clicking on the item. The relevant click or itemClick handler is
executed in both cases. The properties listed in Table 9.8 specify and control a menu's
shortcut keys.

Table 9.8: Menu shortcut key properties

Implementing dynamic menus
It's often useful to change a menu "on the fly" to reflect the current context. For example,
you might want to enable a particular menu item only when a user has selected one or
more rows of a list.

Each menu item provides the four properties described in Table 9.9 as dynamic
alternatives to its enabled, checked, title, and icon properties.

Table 9.9: Dynamic menu item properties

Property Description

item.click A function (or string of script that is automatically converted to a function) to execute
when this menu item is clicked by the user. The click function is passed a target
parameter that refers to either the menu widget or to menu.target if specified.

menu.itemClick A function to execute when a menu item with no click handler is clicked by the user. The
itemClick method is passed an item parameter that is a reference to the clicked menu
item.

Property Description

menu.useKeys A boolean indicating whether this menu should use shortcut keys. Set useKeys to
false in a menu's initialization block to explicitly disable shortcut keys.

item.keys A single-character string, a character code, or an array of single-character strings or
codes, specifying the shortcut key(s) for this item.

item.keyTitle A string to display in the shortcut-key column for this item. If item.keyTitle is not
specified, the first value in item.keys will be used by default.

Property Description

item.enableIf A string of script that is evaluated to a boolean value for the item's enabled property
whenever the menu is shown or a shortcut key is pressed.

item.checkIf A string of script that is evaluated to a boolean value for the item's checked property
whenever the menu is shown or a shortcut key is pressed.
Isomorphic SmartClient Widgets Guide 161

9 -- Menus, Toolbars, and Menubars
Menu widgets also provide the setter methods detailed in Table 9.10 for directly setting
these item properties "on the fly."

Table 9.10: Menu item setter methods

Example: Visual properties menu
The example file menu_features.html (shown in Figure 9.2) uses many of the features
described in the previous sections of this chapter to implement a menu that controls the
visual properties of another widget:

Figure 9.2: Example of a visual properties menu

The following script creates the top-level menu in this example:

var menuItems = [
{title:"Visible",

checkIf:"widget.isVisible()",
click:"widget.isVisible() ? widget.hide() : widget.show()",
keys:["V","v"]},

item.dynamicTitle A string of script that is evaluated to a string value for the item's title property
whenever the menu is shown or a shortcut key is pressed.

item.dynamicIcon A string of script that is evaluated to a string value for the item's icon property whenever
the menu is shown or a shortcut key is pressed.

Method Action

menu.setItemEnabled(item, newState) Sets the enabled property of the menu item to a newState
boolean value. Returns true if this changes the value of the
enabled property.

menu.setItemChecked(item, newState) Sets the checked property of the menu item to a newState
boolean value. Returns true if this changes the value of the
checked property.

menu.setItemTitle(item, newTitle) Sets the title property of the menu item to a newTitle string
value. Returns true if this changes the value of the title property.

menu.setItemIcon(item, newIcon) Sets the icon property of the menu item to a newIcon image.
Returns true if this changes the value of the icon property.

Property Description
162

Toolbar widgets
{isSeparator:true},
{title:"Size",

enableIf:"widget.isVisible()",
submenu:sizeMenu},

{title:"Move",
enableIf:"widget.isVisible()",
submenu:moveMenu},

{isSeparator:true},
{title:"Reset",

click:"widget.setRect(300,50,100,100); widget.show()",
icon:"yinyang_icon.gif",
iconWidth:20,
iconHeight:20,
keys:" ",
keyTitle:"space"}

],

Menu.create({
ID:"mainMenu",
data:menuItems,
left:50,
top:50,
width:150,
title:"Widget"

});

// Set the new menu to also work as a context menu
widget.contextMenu = mainMenu;

The checkIf and enableIf properties dynamically check/uncheck and enable/disable
menu items without additional scripting. The checkIf property is also used in the menu
items for the sizeMenu submenu.

An array value for the keys property of the Visible menu item allows the user to type
either an uppercase or a lowercase shortcut key for this item. The first string in the array
is displayed in the menu, since no keyTitle is specified. For the Reset menu item,
keyTitle allows a visible name for a spacebar shortcut key.

The menu is set to be the widget context menu so that right-clicking on the widget (in this
case the image) will bring up the menu as a context menu. To define a context menu, the
widget.contextMenu property must be set to a pre-defined menu. You must set it to a
variable that defines the context menu. You cannot set widget.contextMenu to a script.

To show a context menu, you do not need to set the showContextMenu event handler for
the widget. If a context menu is defined for a widget, it will automatically show when a
user right-clicks on it.

Toolbar widgets
Like the Menu class, the Toolbar class implements a widget that presents a graphical
interface for selecting from a set of actions. Toolbars present these actions as a set of
buttons, arranged in a row or column.
Isomorphic SmartClient Widgets Guide 163

9 -- Menus, Toolbars, and Menubars
Toolbar properties
A toolbar widget has the fundamental properties described in Table 9.11.

Table 9.11: Toolbar widget fundamental properties

The button-object initializers set in a toolbar's buttons property may contain any
standard button properties, including title, selected, enabled, actionType, and
click. See "Button widgets" on page 88 for more information. To set button properties
for all buttons, include those properties in the toolbar's buttonDefaults. To set button
properties for individual buttons, include those properties in the desired button's object
initializer.

Since the toolbar handles sizing and positioning of its buttons, you do not need to set the
left or top properties for each button. If they are provided, these properties will be
ignored. Instead, each button-object initializer supports the toolbar-specific properties
listed in Table 9.12.

Table 9.12: Toolbar button sizing and positioning properties

You can mix different button types (standard, checkbox, and radio) in the same toolbar.

Property Description

buttons An array of button object initializers. See "Button widget properties" on page 88 for
standard button properties, and Table 9.12 for additional properties and exceptions.

vertical Default: false
Indicates whether the buttons are drawn horizontally from left to right—false, or
vertically from top to bottom—true.

buttonDefaults Settings to apply to all buttons of a toolbar. Properties that can be applied to button
objects can be applied to all buttons of a toolbar by specifying them in
buttonDefaults using the following syntax:

buttonDefaults:{property:value, ...}
See "Button widgets" on page 88 for more information on these button properties.

Property Description

button.width Default: "*"
Specifies the width of this button. The width property may be set to one of the
following:
• an absolute number of pixels,
• a named property of the toolbar that specifies an absolute number of pixels,
• a percentage of the remaining space (e.g. '60%'), or
• "*" to allocate an equal portion of the remaining space.

button.height Specifies the height of this button.

button.extraSpace Specifies an optional amount of extra space, in pixels, to separate this button
from the next button in the toolbar.
164

Toolbar widgets
Defining toolbar actions
When a toolbar is created, it creates a child widget for each object initializer in the buttons
list. Since each toolbar button is itself a widget, you can access its properties and methods
directly. Since the toolbar has created the buttons, though, you'll need to get each button's
object reference from the toolbar, by calling:

toolbar.getButton(buttonNum)

where buttonNum is the index of the button's object initializer in toolbar.buttons.

Toolbars observe any changes to the selected state of their buttons, and automatically
deselect radio buttons as appropriate to enforce mutual exclusivity. All radio buttons in a
toolbar are mutually exclusive. To create more than one group of toolbar radio buttons
you must create multiple toolbars.

You can select or deselect toolbar buttons directly with the button.select and
button.deselect methods, or by using the toolbar methods listed in Table 9.13.

Table 9.13: Toolbar button selection methods

To respond to user actions in a toolbar, you can define a standard 'click' handler in each
button's object initializer. As a standard system event, click will "bubble up" from a
button widget to the toolbar widget by default. If a 'click' event is not specified for a
button, the itemClick handler will be used instead, if it has been defined. If you want to
handle toolbar-button clicks at the toolbar level, without having to determine exactly
where the clicks occurred, do not define a 'click' handler for the relevant button(s).
Instead, define an itemClick handler for the toolbar:

toolbar.itemClick(item, itemNum);

where the handler parameters are:

• item—a reference to the clicked button widget, and
• itemNum—the index of the clicked button's initializer in toolbar.buttons start-

ing with 0.

Method Description

selectButton(buttonNum) Selects the button that was defined by the object at index buttonNum in
toolbar.buttons.

deselectButton(buttonNum) Deselects the button that was defined by the object at index buttonNum in
toolbar.buttons.

Note

A toolbar's itemClick handler will not be executed if you have
specified a click handler for the clicked button.
Isomorphic SmartClient Widgets Guide 165

9 -- Menus, Toolbars, and Menubars
Example: Visual properties toolbar
The example file toolbar_features.html (shown in Figure 9.3) implements a toolbar
that provides the same functions as the menu in the menu_features.html example
(shown in Figure 9.2 on page 162):

Figure 9.3: Example of a visual properties toolbar

The following script creates the toolbar in this example:

Toolbar.create({
ID:"toolbar",
left:50,
top:50,
width:600,
membersMargin:2,
buttons:[

{title:"Visible",
actionType:"checkbox",
selected:true,
click:"widget.isVisible() ? widget.hide() : widget.show()",

// Note: both 'click' and 'doubleClick' events are defined here - double
// clicking will execute the click event handler once, and the doubleClick
// event handler once. The state of the checkbox button (checked vs
// unchecked) will be changed twice - once on each mouseUp event.

doubleclick:"widget.isVisible() ? widget.hide() : widget.show()",
extraSpace:10},

{title:"Small",
actionType:"radio",
click:"widget.setWidth(50);widget.setHeight(50)"},

{title:"Medium",
actionType:"radio",
selected:true,
click:"widget.setWidth(100);widget.setHeight(100)"},

{title:"Large",
actionType:"radio",
click:"widget.setWidth(200);widget.setHeight(200)",
extraSpace:10},
166

Menubar widgets
{title:"Up",
click:"widget.moveBy(0,-20)"},

{title:"Right",
click:"widget.moveBy(20,0)"},

{title:"Down",
click:"widget.moveBy(0,20)"},

{title:"Left",
click:"widget.moveBy(-20,0)", extraSpace:10},

{title:"Reset",
click:"widget.setRect(250,180,100,100);
widget.show();
this.parentElement.selectButton(0);
this.parentElement.selectButton(2)",
size:100}

]
});

In this example, the object initializers for the toolbar buttons are embedded in the
toolbar's initialization block. You may prefer to define the list of button initializers in a
separate variable, depending on the complexity of your toolbar widget.

Most of the button properties set in this example are standard toolbar button properties:
title, actionType, selected, and click. Only the Reset button specifies a size
property. All other buttons are sized equally to fill the remaining space. The Visible,
Large, and Left buttons each specify an extraSpace property to separate buttons into
functional groups.

The this.parentElement is used in the Reset button's click handler. Since
selectButton is a Toolbar method, it cannot be called directly by a button object.
However, since Toolbar buttons are created as children of the toolbar widget, they can
refer to the toolbar via the parentElement property. This syntax can be used within any
Toolbar button's click handler to access the toolbar's properties and methods.

Menubar widgets
The Menubar class implements a widget that allows menus to be grouped into a toolbar.
It is a subclass of the Toolbar class but, instead of having an array of buttons, the
Menubar class has an array of menus. Menubars combine the features of both toolbars
and menus to allow users to select actions from drop-down menu buttons arranged in a
row or column.

Menubar properties
A menubar widget inherits all its fundamental properties from the Toolbar class except
the menus property described in Table 9.14.

Table 9.14: Menubar widget fundamental properties

Property Description

menus An array of menu object initializers or instantiated menu objects. See "Menu widget
fundamental properties" on page 156 for fundamental menu properties and other
properties given in this chapter.
Isomorphic SmartClient Widgets Guide 167

9 -- Menus, Toolbars, and Menubars
The menu-object initializers set for a menubar's menus property may contain any
standard menu properties and will have actions defined just as they were for menus. See
"Menu widgets" on page 156 for more information.

Create menu objects with the autoDraw property set to false before specifying them in
the menubar menus property. When the menubar itself is initialized and drawn, the
menus themselves will be drawn accordingly.

Since the menubar automatically handles positioning of its menus, you do not need to set
positioning properties for each individual menu. If they are provided, these properties
will be ignored. Menus can, however, be sized using the menu sizing properties listed in
Table 9.3. Use the menubar sizing and positioning properties to set the location and width
of the menubar on the page.

Example: Visual properties menubar
The example file menubar_features.html (shown in Figure 9.4) implements a menubar
that provides the same functions as the menu in the toolbar_features.html and
menu_features.html examples presented previously:

Figure 9.4: Example of a visual properties menubar

Tip

If you want to extend the width of the menubar set its
backgroundColor property to match the default color of each menu
button—"#CCCCCC", by default.
168

Menubar widgets
The following script creates the menubar in this example. For simplicity, the data arrays
for the individual menus themselves have been omitted. Notice that the menus are
created with autoDraw:false to prevent them from drawing separately from the
menubar.

Menu.create({
ID:"imageMenu",
autoDraw:false,
cellHeight:18,
menuButtonWidth:60,
data:[

. . .
],
title:"Image"

});

Menu.create({
ID:"sizeMenu",
autoDraw:false,
cellHeight:18,
menuButtonWidth:60,
data: [

. . .
],
title:"Size"

});

Menu.create({
ID:"positionMenu",
autoDraw:false,
cellHeight:18,
menuButtonWidth:60,
data:[

. . .
],
title:"Position"

});

Menubar.create({
ID:"menuBar",
top:75,
left:50,
width:500,
backgroundColor:"#CCCCCC",
menus:[imageMenu, sizeMenu, positionMenu]

});

In this example, a white canvas visually displays a bounding box. The menubar is created
with a width equal to the canvas and a backgroundColor that is the same color as the
menu buttons.

The click methods for the menu items in the Position menu are defined so that the
yinyang_icon.gif image is not allowed to move outside of the bounding box. Also, the
click methods for the menu items in the Size menu have been changed so that the the
yinyang_icon.gif image is returned to the center of the bounding box when it is
resized.
Isomorphic SmartClient Widgets Guide 169

9 -- Menus, Toolbars, and Menubars
Otherwise all menu items for this example have been defined exactly as they were for the
"Example: Visual properties menu" on page 162. The menubar simply provides an
anchor for holding several menus so that the submenus in the previous menu example
could be eliminated.
170

A P P E N D I

Isomorphic SmartClient Widgets Guide
X A
Widget Initialization
Templates
The following scripts are provided as a starting point for the creation of your own widget
initialization templates—in other words, code fragments that you can configure as macros
(aka "snippets", "clips", etc.) in your web-page editor of choice. Once you've set up your
own templates, inserting a complex element like a treeGrid into a web page could be as
simple as pressing a shortcut key!

These scripts include the most commonly used properties specific to a widget class, along
with their default values. Since the default values are provided, using one of these scripts
is equivalent to calling the create method with no arguments at all.

For convenience, the positioning and sizing properties (left, top, width, height) of the
Canvas superclass are also reproduced in every other class's initialization script. Many of
the other Canvas properties may be initialized for its subclasses, but some properties are
overridden by the subclass and therefore should not be changed. The Canvas properties
that you would be most likely to add to a subclass's initialization scripts are generally the
ones for which it is safe to do so, but you should test your scripts to be sure.

Widget templates are presented in JavaScript declarative format first, followed by XML
declarative format.
171

Appendix A -- Widget Initialization Templates
To configure your own initialization templates:

1. Remove the property:value pairs (or property="value" pairs if you’re using XML)
for any properties whose values you never intend to change.

2. Edit the default values of the remaining properties to suit your requirements.

3. Save the template in the appropriate macro mechanism in your editor. You may want
to create multiple templates/macros for different uses of the same widget.

If possible, configure your macros to automatically place the text-insertion point where
the new widget's name should be, so you can immediately name the new instance. All
variable names in these scripts are shown in italics, as a reminder that they must be
changed. In Internet Explorer, an "Expected Identifier" error will be raised if you neglect
to replace one of these bracketed names.

Warning

If you remove the last property:value pair in the JavaScript
declarative format, remember to remove the comma following the
new last pair!
172

JavaScript Widget Templates
JavaScript Widget Templates
The following templates include all the properties and default values in the JavaScript
declarative format.

Canvas
Canvas.create({

ID:"canvasName",
backgroundColor:"gray",
className:"normal",
appImgDir:"",
backgroundImage:"",
backgroundRepeat:"repeat",
border:"",
canAcceptDrop:false,
canDrag:false,
canDragReposition:false,
canDragResize:false,
canDrop:false,
cursor:"default",
dragAppearance:"outline",
dragIntersectStyle:"mouse",
dragRepositionCursor:"move",
height:100,
left:0,
margin:0,
overflow:"visible",
padding:0,
position:"absolute",
top:0,
visibility:"inherit",
width:100,
contents:"Canvas contents",
contextMenu:Menu.create({

constructor:"Menu",
ID:"contextMenu",
data:[

{title:"Context Menu Item"}
]

})
});
Isomorphic SmartClient Widgets Guide 173

Appendix A -- Widget Initialization Templates
Label
Label.create({

ID:"labelName",
backgroundColor:"gray",
className:"normal",
align:"left",
backgroundImage:"blank.gif",
height:100,
left:0,
top:0,
valign:"center",
width:100,
padding:0,
wrap:true,
contents:"Label contents"

});

Img
Img.create({

ID:"imgName",
appImgDir:"",
canDragReposition:true,
height:100,
left:0,
src:"blank.gif",
state:"",
top:0,
width:100

});

StretchImg
StretchImg.create({

ID:"stretchImgName",
appImgDir:"",
capSize:2,
height:100,
imageType:"tile",
left:0,
src:"blank.gif",
state:"",
top:0,
vertical:true,
width:100,
items:[

{height:"capSize", name:"start", width:"capSize"},
{height:"*", name:"stretch", width:"*"},
{height:"capSize", name:"end", width:"capSize"}

]
});
174

JavaScript Widget Templates
Button
Button.create({

ID:"buttonName",
actionType:"button",
align:"center",
borderSize:1,
canDrag:false,
canDrop:false,
dragAppearance:"outline",
enabled:true,
height:20,
left:0,
selected:false,
showDown:true,
showRollOver:true,
title:"Untitled Button",
top:0,
valign:"center",
width:100,
wrap:false

});

Scrollbar
Scrollbar.create({

ID:"scrollbarName",
scrollTarget:"",
autoEnable:true,
height:100,
left:0,
showCorner:false,
top:0,
vertical:true,
width:100

});

Progressbar
Progressbar.create({

ID:"progressbarName",
height:12,
left:0,
percentDone:50,
top:0,
width:100

});

DynamicForm
DynamicForm.create({

ID:"dynamicFormName",
target:"",
values:{field1:"field1 value", field2:"field2 value"},
errors:{field1:"field1 error", field2:"field2 error"},
action:"#",
height:100,
left:0,
Isomorphic SmartClient Widgets Guide 175

Appendix A -- Widget Initialization Templates
method:"post",
top:0,
width:400,

// See Form Item templates for various item types
items:[

{title:"field1 title", type:"text", name:"field1"},
{title:"field2 title", type:"text", name:"field2"},
{title:"Submit Form", type:"submit"}

]
});

Form items (all types)
DynamicForm.create({

ID:"dynamicFormName",
values:{field1:"field1 value", field2:"field2 value"},
errors:{field1:"field1 error", field2:"field2 error"},

// data items
items:[

{defaultValue:"value", length:"10", title:"TextTitle", type:"text",
name:"itemName", required:false, showTitle:true, width:150},

{defaultValue:"value", length:"6", title:"PasswordTitle",
type:"password", name:"itemName", required:false, showTitle:true,
width:150},

{title:"UploadTitle", type:"upload", name:"itemName", required:false,
showTitle:true, width:150},

{defaultValue:"value", title:"TextAreaTitle", type:"textArea",
height:100, name:"itemName", required:false, width:150},

{defaultValue:"false", title:"CheckboxTitle", type:"checkbox",
name:"itemName"},

{defaultValue:"false", title:"RadioTitle", type:"radio",
name:"itemName"},

{defaultValue:"false", itemHeight:"20", title:"RadioGroupTitle",
type:"radioGroup", vertical:"true", name:"itemName", required:false,
valueMap:{value2:"Value 2", value1:"Value 1"}

},
{defaultValue:"value", multiple:"false", title:"SelectTitle",

type:"select", name:"itemName", required:false,
valueMap:{value2:"Value 2", value1:"Value 1"}

},
{defaultValue:"value", title:"SelectOtherTitle", type:"selectOther",

name:"itemName", required:false,
valueMap:{value2:"Value 2", value1:"Value 1"}

},
{defaultValue:"2002-06-04", endDay:"31", endMonth:"12", endYear:"2010",

startDay:"1", startMonth:"1",startYear:"1970", title:"DateTitle",
type:"date", name:"itemName", required:false},

{defaultValue:"13:30:00", show24HourTime:"true", showSeconds:"false",
title:"TimeTitle", type:"time", name:"itemName", required:false,
width:100},

{defaultValue:"value", type:"hidden", name:"itemName", required:false},

// button items
{click:"alert(1)", title:"ButtonTitle", type:"button"},
{title:"SubmitTitle", type:"submit"},
{title:"ResetTitle", type:"reset"},
{cellSpacing:"20", type:"toolbar",
176

JavaScript Widget Templates
buttons:[
{type:"button", click:"alert('Button 1')", title:"Button 1 Title"},
{type:"button", click:"alert('Button 2')", title:"Button 2 Title"}

]
},

// display items
{defaultValue:"value", outputAsHTML:"false", title:"StaticTextTitle",

type:"staticText", wrap:"true", name:"itemName"},
{defaultValue:"displayText", outputAsHTML:"false", type:"blurb",

name:"itemName"},
{defaultValue:"headerText", outputAsHTML:"false", type:"header",

name:"itemName"},
{type:"rowSpacer", height:20},
{type:"spacer", height:20, width:20}

]
});
Isomorphic SmartClient Widgets Guide 177

Appendix A -- Widget Initialization Templates
ListGrid
ListGrid.create({

ID:"listGridName",
canSort:true,
height:300,
left:0,
top:0,
width:300,
data:[

{col1:"value 1,1", col2:"value 1,2", enabled:true},
{col1:"value 2,1", col2:"value 2,2", enabled:true},
{col1:"value 3,1", col2:"value 3,2", enabled:true},
{col1:"value 4,1", col2:"value 4,2", enabled:true},
{col1:"value 5", col2:"value 5", isSeparator:true},
{col1:"value 6,1", col2:"value 6,2", enabled:false},
{col1:"value 7,1", col2:"value 7,2", enabled:false}

],
fields:[

{sortDirection:"descending", name:"col1", title:"Field 1", width:"50%"},
{align:"right", name:"col2", title:"Field 2", width:"50%"}

]
});

DetailViewer
DetailViewer.create({

ID:"detailViewerName",
data:[

{col2:"value 1,2", col1:"value 1,1"},
{col2:"value 2,2", col1:"value 2,1"}

],
cellPadding:3,
height:300,
left:0,
recordsPerBlock:1,
showBorder:true,
top:0,
width:300,
fields:[

{name:"col1", title:"Field 1"},
{name:"col2", title:"Field 2"}

]
});
178

JavaScript Widget Templates
TreeGrid
TreeGrid.create({

ID:"treeGridName",
height:300,
left:0,
separateFolders:false,
showRoot:false,
sortDirection:false,
top:0,
treeFieldTitle:"Name",
width:300,
fields:[

TreeGrid.TREE_FIELD,
{name:"value", title:"Value"}

],
data:Tree.create({

constructor:"Tree",
root:{

name:"Root/",
children:[

{
name:"Child 1/",
children:[

{name:"Leaf 1,1", value:"Leaf 1,1 value"}
]

}
]

}
})

});

Note

You do not need to include the TreeGrid.TREE_FIELD constant to
initialize a treeGrid, since the first field definition given will be used as
the tree field by default. It is included in the template above for
backward compatibility.
Isomorphic SmartClient Widgets Guide 179

Appendix A -- Widget Initialization Templates
Menu
Menu.create({

ID:"menuName",
title:"Untitled Menu",
height:20,
left:0,
top:0,
useKeys:true,
width:100,
data:[

{
checkIf:"true",
click:"alert('Any function here.')",
keyTitle:"I",
keys:["I","i"],
title:"itemTitle"

},
{

keyTitle:"J",
keys:["J","j"],
enabled:false,
title:"itemTitle2"

},
{isSeparator:true},
{

click:"alert()",
title:"itemTitle3",
submenu:Menu.create({

constructor:"Menu",
data:[

{
checkIf:"true",
click:"alert('Any function here.')",
keyTitle:"K",
keys:["K","k"],
title:"subItemTitle"

}
]

})
}

]
});
180

JavaScript Widget Templates
Toolbar
Toolbar.create({

ID:"toolbarName",
left:0,
top:0,
height:20,
width:100,
membersMargin:0,
vertical:false,
buttonDefaults:{height:30, width:50},
buttons:[

{click:"alert('Button 1')", title:"Button 1"},
{click:"alert('Button 2')", title:"Button 2"},
{click:"alert('Button 3')", title:"Button 3"}

]
});

Menubar
Menubar.create({

ID:"menubarName",
left:0,
top:0,
width:100,
membersMargin:0,
vertical:false,
menus:[menu1, menu2, menu3]

});
Isomorphic SmartClient Widgets Guide 181

Appendix A -- Widget Initialization Templates
XML Widget Templates
The following templates include all the properties and default values in the XML
declarative format.

Canvas
<Canvas

ID="canvasName"
left="0"
top="0"
width="100"
height="100"
position="absolute"
visibility="inherit"
overflow="visible"
appImgDir=""
className="normal"
backgroundColor="gray"
backgroundImage=""
backgroundRepeat="repeat"
margin="0"
padding="0"
border=""
cursor="default"

canDrag="false"
dragIntersectStyle="mouse"
canDragReposition="false"
dragRepositionCursor="move"
canDragResize="false"
dragAppearance="outline"
canDrop="false"
canAcceptDrop="false" >

<contents>Canvas contents</contents>
<contextMenu>

<Menu ID="contextMenu" >
<data>

<item title="Context Menu Item"/>
</data>

</Menu>
</contextMenu>

</Canvas>
182

XML Widget Templates
Label
<Label

ID="labelName"
left="0"
top="0"
width="100"
height="100"

className="normal"
align="left"
valign="center"
padding="0"
wrap="true"
backgroundColor="gray"
backgroundImage="blank.gif" >

<contents>Label contents</contents>
</Label>

Img
<Img

ID="imgName"
left="0"
top="0"
width="100"
height="100"

src="blank.gif"
appImgDir=""

state=""
canDragReposition="true"

/>

StretchImg
<StretchImg

ID="stretchImgName"
left="0"
top="0"
width="100"
height="100"

src="blank.gif"
appImgDir=""
imageType="tile"

vertical="true"
capSize="2"
state="" >

<items>
<item name="start" width="capSize" height="capSize"/>
<item name="stretch" width="*" height="*"/>
<item name="end" width="capSize" height="capSize"/>

</items>
Isomorphic SmartClient Widgets Guide 183

Appendix A -- Widget Initialization Templates
</StretchImg>

Button
<Button

ID="buttonName"
left="0"
top="0"
width="100"
height="20"

title="Untitled Button"

wrap="false"
selected="false"
actionType="button"
showRollOver="true"
showDown="true"
align="center"
valign="center"
borderSize="1"
enabled="true"

canDrag="false"
dragAppearance="outline"
canDrop="false"

>
</Button>
184

XML Widget Templates
Scrollbar
<Scrollbar

ID="scrollbarName"
left="0"
top="0"
width="100"
height="100"

vertical="true"
showCorner="false"
autoEnable="true"
scrollTarget=""

/>

Progressbar
<Progressbar

ID="progressbarName"
left="0"
top="0"
width="100"
height="12"
percentDone="50"

/>

DynamicForm
<DynamicForm

ID="dynamicFormName"
action="#"
target=""
method="post"

left="0"
top="0"
width="400"
height="100" >

<!-- See Form Item templates for various item types -->
<items>

<item type="text" name="field1" title="field1 title"/>
<item type="text" name="field2" title="field2 title"/>
<item type="submit" title="Submit Form" />

</items>
<values field1="field1 value" field2="field2 value"/>
<errors field1="field1 error" field2="field2 error"/>

</DynamicForm>

Form items (all types)
<DynamicForm

ID="dynamicFormName" >

<items>
<!-- data items -->
<item type="text" name="itemName" title="TextTitle" defaultValue="value"

showTitle="true" width="150" required="false" length="10"/>
<item type="password" name="itemName" title="PasswordTitle"
Isomorphic SmartClient Widgets Guide 185

Appendix A -- Widget Initialization Templates
defaultValue="value" showTitle="true" width="150" required="false"
length="6" />

<item type="upload" name="itemName" title="UploadTitle" showTitle="true"
width="150" required="false"/>

<item type="textArea" name="itemName" title="TextAreaTitle"
defaultValue="value" width="150" height="100" required="false"/>

<item type="checkbox" name="itemName" title="CheckboxTitle"
defaultValue="false"/>

<item type="radio" name="itemName" title="RadioTitle"
defaultValue="false"/>

<item type="radioGroup" name="itemName" title="RadioGroupTitle"
itemHeight="20" vertical="true" defaultValue="false" required="false">
<valueMap>

<value ID="value1">Value 1</value>
<value ID="value2">Value 2</value>

</valueMap>
</item>
<item type="select" name="itemName" title="SelectTitle" multiple="false"

defaultValue="value" required="false">
<valueMap>

<value ID="value1">Value 1</value>
<value ID="value2">Value 2</value>

</valueMap>
</item>
<item type="selectOther" name="itemName" title="SelectOtherTitle"

defaultValue="value" required="false">
<valueMap>

<value ID="value1">Value 1</value>
<value ID="value2">Value 2</value>

</valueMap>
</item>
<item type="date" name="itemName" title="DateTitle"

defaultValue="2002-06-04" required="false" startDay="1" endDay="31"
startMonth="1" endMonth="12" startYear="1970" endYear="2010" />

<item type="time" name="itemName" title="TimeTitle"
defaultValue="13:30:00" width="100" required="false"
showSeconds="false" show24HourTime="true" />

<item type="hidden" name="itemName" defaultValue="value"
required="false" />

<!-- button items -->
<item type="button" title="ButtonTitle" click="alert(1)"/>
<item type="submit" title="SubmitTitle"/>
<item type="reset" title="ResetTitle"/>
<item type="toolbar" cellSpacing="20">

<buttons>
<item type="button" title="Button 1 Title"

click="alert('Button 1')"/>
<item type="button" title="Button 2 Title"

click="alert('Button 2')"/>
</buttons>

</item>

<!-- display items -->
<item type="staticText" name="itemName" title="StaticTextTitle"

wrap="true" defaultValue="value" outputAsHTML="false"/>
<item type="blurb" name="itemName" defaultValue="displayText"

outputAsHTML="false"/>
<item type="header" name="itemName" defaultValue="headerText"
186

XML Widget Templates
outputAsHTML="false"/>
<item type="rowSpacer"height="20"/>
<item type="spacer" width="20" height="20"/>

</items>

<values field1="field1 value" field2="field2 value"/>
<errors field1="field1 error" field2="field2 error"/>

</DynamicForm>

ListGrid
<ListGrid

ID="listGridName"
left="0"
top="0"
width="300"
height="300"
canSort="true" >

<data>
<obj col1="value 1,1" col2="value 1,2" enabled="true"/>
<obj col1="value 2,1" col2="value 2,2" enabled="true"/>
<obj col1="value 3,1" col2="value 3,2" enabled="true"/>
<obj col1="value 4,1" col2="value 4,2" enabled="true"/>
<obj col1="value 5" col2="value 5" isSeparator="true"/>
<obj col1="value 6,1" col2="value 6,2" enabled="false"/>
<obj col1="value 7,1" col2="value 7,2" enabled="false"/>

</data>

<fields>
<field name="col1" title="Field 1" width="50%"

sortDirection="descending"/>
<field name="col2" title="Field 2" width="50%" align="right"/>

</fields>
</ListGrid>
Isomorphic SmartClient Widgets Guide 187

Appendix A -- Widget Initialization Templates
DetailViewer
<DetailViewer

ID="detailViewerName"
left="0"
top="0"
width="300"
height="300"

recordsPerBlock="1"
showBorder="true"
cellPadding="3" >

<data>
<obj col1="value 1,1" col2="value 1,2"/>
<obj col1="value 2,1" col2="value 2,2"/>

</data>

<fields>
<field name="col1" title="Field 1"/>
<field name="col2" title="Field 2"/>

</fields>
</DetailViewer>
188

XML Widget Templates
TreeGrid
<TreeGrid

ID="treeGridName"
left="0"
top="0"
width="300"
height="300"

treeFieldTitle="Name"
showRoot="false"
separateFolders="false"
sortDirection="descending" >

<fields>
<JS>TreeGrid.TREE_FIELD</JS>
<field name="value" title="Value"/>

</fields>

<data>
<Tree>

<root name="Root/">
<children>

<obj name="Child 1/">
<children>

<obj name="Leaf 1,1" value="Leaf 1,1 value"/>
</children>

</obj>
</children>

</root>
</Tree>

</data>
</TreeGrid>

Note

You do not need to include the TreeGrid.TREE_FIELD constant to
initialize a treeGrid, since the first field definition given will be used as
the tree field by default. It is included in the template above for
backward compatibility.
Isomorphic SmartClient Widgets Guide 189

Appendix A -- Widget Initialization Templates
Menu
<Menu

ID="menuName"
left="0"
top="0"
width="150"
height="20"

title="Untitled Menu"
useKeys="true" >

<data>
<item title="itemTitle" checkIf="true" click="alert('Any function

here.')" keyTitle="I">
<keys>I</keys>
<keys>i</keys>

</item>
<item title="itemTitle2" enabled="false" keyTitle="J">

<keys>J</keys>
<keys>j</keys>

</item>
<item isSeparator="true"/>
<item title="itemTitle3" click="alert()">

<submenu>
<Menu>

<data>
<item title="subItemTitle" checkIf="true" click="alert('Any

function here.')" keyTitle="K">
<keys>K</keys>
<keys>k</keys>

</item>
</data>

</Menu>
</submenu>

</item>
</data>

</Menu>

Toolbar
<Toolbar

ID="toolbarName"
left="0"
top="0"
width="100"
height="20"

membersMargin="0"
vertical="false" >

<buttonDefaults width="50" height="30"/>
<buttons>

<Button title="Button 1" click="alert('Button 1')"/>
<Button title="Button 2" click="alert('Button 2')"/>
<Button title="Button 3" click="alert('Button 3')"/>

</buttons>
</Toolbar>
190

XML Widget Templates
Menubar
<Menubar

ID="menubarName"
left="0"
top="0"
width="100"

membersMargin="0"
vertical="false"

<menus>
<menu>menu1</menu>
<menu>menu2</menu>
<menu>menu3</menu>

</menus>
</Menubar>
Isomorphic SmartClient Widgets Guide 191

A P P E N D I

Isomorphic SmartClient Widgets Guide
X B
Isomorphic SmartClient
Styles
Isomorphic SmartClient uses a cascading style sheet (CSS) in each skin to reference
widget styles. The following table describes the CSS classes used in skin_styles.css.

General styles

CSS Class (style) Description

normal Text that has no other style specified for it.

pageHeader Page header that appears above component items.

printPageHeader Style applied when the page header is printed as part of a report.
193

Appendix B -- Isomorphic SmartClient Styles
Form styles

ListGrid styles

CSS Class (style) Description

formRow Rows of a form (which can contain multiple columns). This CSS class generally only
specifies background color. Other attributes could be specified, but since each row
contains form cells, it is better to set the style for text to the formCell CSS class.

labelAnchor Style of clickable text next to checkboxes.

formCell Form element—in other words, style in which to display inputted data.

formTitle Title that appears next to a form element.

formError Text that appears above a form element after validation attempt results in error(s).

formTitleError Title that appears next to a form element after validation attempt results in error(s).

formHint Instructive text that appears to the right of the form element.

staticTextItem Non-editable text element of a form.

textItem Text for form elements.

selectItem Text for options in a select box.

buttonItem Form buttons.

headerItem Header that appears above a form.

CSS Class (style) Description

cell Standard listGrid cell.

cellOver A listGrid cell on mouseOver.

cellSelected A listGrid cell when selected.

cellSelectedOver A listGrid cell when selected and mouse is over.

cellDisabled A listGrid cell with enabled:false.

cellDark Alternate cell style—visible if alternateRowStyles:true.

cellOverDark Alternate cell on mouseOver.

cellSelectedDark Alternate cell when selected.

cellSelectedOverDark Alternate cell when selected on mouseOver.

cellDisabledDark Alternate cell with enabled:false.

listTable Settings for the listGrid table.

printHeader Style for printing listGrid headers.

printCell Style for printing listGrid cells.
194

DetailViewer styles
DetailViewer styles

Menu styles

CSS Class (style) Description

detailLabel Field name in a detailViewer. The field name appears to the left of the record(s).

detail Record in a detailViewer.

detailHeader Header that appears above a detailViewer.

CSS Class (style) Description

menu Menu item.

menuSelected Selected menu item.

menuOver Menu item on mouseOver.

menuSelectedOver Selected menu item on mouseOver.

menuDisabled Menu item with enabled:false.

menuTable Table that menu is drawn in.

menuButtonText Text in menu buttons.

menuButton Menu button appearance.

menuButtonOver Menu button on mouseOver.

menuButtonDown Menu button on mouseDown.

menuButtonSelected Menu button when selected.

menuButtonSelectedDown Selected menu button on mouseDown.

menuButtonSelectedOver Selected menu button on mouseOver.

menuButtonDisabled Disabled menu button.
Isomorphic SmartClient Widgets Guide 195

Appendix B -- Isomorphic SmartClient Styles
Button styles

CSS Class (style) Description

button Unselected, enabled button.

buttonOver Unselected enabled button on mouseOver.

buttonDown Button receiving a click event.

buttonSelected Selected and enabled button.

buttonSelectedDown Selected button receiving a click event.

buttonSelectedOver Selected button on mouseOver.

buttonSelectedDisabled Selected and disabled button.

buttonDisabled Button with enabled:false.
196

I N D E X
A
Accessing ’static’ properties and methods 15
Accessing widget properties directly 14
Accessing widget properties indirectly 14
addChild method 16, 17, 19, 29
addPeer method 18, 19, 29
Attachment 15–20

Methods 17, 18
addPeer 18

Properties 17, 18
masterElement 18
peers 18

Audience 2
autoDraw property 16, 18, 28

B
backgroundColor property 39
backgroundImage property 39
backgroundRepeat property 39
border property 40
bringToFront method 36
Button widget class 11

C
Canvas widget class 9, 11, 17

Containment-related methods and
properties 16

contents property 20, 21
setContents method 21
Visual properties 39

children property 16
Class-based system vs. prototype-based

system 8
className property 39
clearEvent method 45
Click event propagation 44
Clipping and Scrolling

Properties
overflow 36

Clipping and scrolling 36
Methods 37

getClipHeight 37
getClipWidth 37
getScrollHeight 37
getScrollWidth 37
scrollTo 37

Commas
Delimiters 11
Omitting 11

Containment 15–20
Methods 16

addChild 16
contains 16
getParentElements 16

Nesting children within a parent widget
declaration 18
Isomorphic SmartClient Widgets Guide 197

Index
Properties 16
autoDraw 16, 18
children 16
parentElement 16
topElement 16

Containment hierarchy 15
Drawing 15
Events 16
Memory management 16
Methods and properties 16

contains method 16, 32
contents method 21
contents property 21
create constructor method 9, 10
Creating widget instances 9–??
Curly braces usage 10
cursor property 40

D
Declarations

JavaScript vs. XML 11
Nesting children 18

Default button widget 10
Design process 4
Documentation

Audience 2
How to use this guide 2
Icons and Conventions 5
Icons and conventions

Font conventions 6
Identifier icons 5

Prerequisites 2
Related readings 5
Resources 4
Sample applications 4
Summary of chapter contents 3
Updates 5
What this guide does not cover 4

Dot notation 13, 48
Drawing widgets 28
draw method 29

E
Event handlers

Global 15
Global ’idle’ event 15

Event handling 44–??
Event model 42–??

Bubbling of events 42
Page-first handling 42

Events 42–71
Global event handlers 44
Handling 44–??

Global events 45
Methods 45
Predefined 52

Handling page events 44
Handling widget events 48

Page 45
idle 45
load 45
resize 45
showContextMenu 45
unload 45

Page-specific 42
Processing sequence 42
Propagation 42

Click events 44
Examples

Default button widget 10
Dynamic Layering 36
Dynamic positioning and sizing 32
Event propagation 43
Widget containment and attachment 19
Widget overflow (clipping and

scrolling) 38

G
getBottom method 31
getClipHeight method 31, 37
getClipWidth method 31, 37
getHeight method 31
getID method 15, 50
getLeft method 31
getPageLeft method 32
getPageTop method 32
getParentElement method 16
getRight method 31
getScrollHeight method 37
getScrollWidth method 37
getTop method 31
getWidth method 31
Global ’idle’ event 15
Global event handlers 44

Methods 45
clearEvent 45
setEvent 45

Removing 45
Setting 45, 46

Global ID references 15

H
height property 28
hide method 34
Hiding 34
HTML usage 4

I
ID property 9
Instantiation 11

Manipulating widget instances 13
Referring to widget instances 14

intersects method 32
isDrawn method 29
isVisible method 34
198

J
Java programming language 4

Related readings 5
JavaScript

Properties and methods 13
Related readings 5

JavaScript declarative format 11
JavaScript enhancements 2

Abstacted application framework 2
Cross-browser drawing system 2
Cross-browser event-handling system 2
Data type objects and extensions 2
GUI widget classes 2
Server communication objects 2
True class-based object system 2
Utility objects and methods 3

JavaScript language 4
JavaServer Pages

Related readings 5
Java Servlets

Related readings 5
JSPs

Related readings 5

K
Keywords

this 15

L
Label widget class

contents property 21
setContents method 21

Layer-containment 15
Layering 35

Methods 36
bringToFront 36
moveAbove 36
moveBelow 36
sendToBack 36

Z-ordering 35
left property 28
ListViewer widget class 9, 17
Literal notation 10

M
Manipulating properties of widgets 14
Manipulating widget instances 13
margin property 39
masterElement property 18
Methods

addChild 16, 17, 19
addChild method 29
addPeer 18, 19
addPeer method 29
Attachment-related 17
bringToFront 36

clearEvent 45
Containment-related 16
contains 16, 32
contents 21
create 9, 10
disabled

disabled method 51
draw 29
enabled

enabled method 51
getBottom 31
getClipHeight 31, 37
getClipWidth 31, 37
getHeight 31
getID 15, 50
getLeft 31
getPageLeft 32
getPageTop 32
getParentElements 16
getRight 31
getScrollHeight 37
getScrollWidth 37
Getter and setter 14
getTop 31
getWidth 31
hide 34
intersects 32
isDrawn 29
isEnabled

isEnabled method 51
isVisible 34
moveAbove 36
moveBelow 36
moveBy 30
moveTo 14, 31
newInstance method 11
Optional parameters 14
Parameters 14
resizeBy 31
resizeTo 31
scrollTo 37
sendToBack 36
setBackgroundColor 40
setBackgroundImage 40
setBottom 30
setClassName 40
setCursor 40
setEvent 45
setHeight 30
setLeft 30
setOpacity 35
setRect 30
setRight 30
setTop 30
setWidth 30
show 29, 34
Static 9, 15
Visual 40
Isomorphic SmartClient Widgets Guide 199

Index
moveAbove method 36
moveBelow method 36
moveBy method 30
moveTo method 14, 31

N
Naming conventions

Instances of widgets 9
Widget classes 9

O
Object initializer 10
opacity property 35
overflow property 36

Values 37

P
padding property 39
Page object 44
parentElement property 16
peers property 18
Positioning and sizing 30, 34

Methods 30, 31
contains 32
getBottom 31
getClipHeight 31
getClipWidth 31
getHeight 31
getLeft 31
getPageLeft 32
getPageTop 32
getRight 31
getTop 31
getWidth 31
intersects 32
moveBy 30
moveTo 31
resizeBy 31
resizeTo 31
setBottom 30
setHeight 30
setLeft 30
setRect 30
setRight 30
setTop 30
setWidth 30

Properties 28
height 28
left 28
position 28
top 28
width 28

position property 28
Prerequisites 2
Properties

Accessing directly 14
Accessing indirectly 14

Attachment-related 17
autoDraw 16, 18, 28
backgroundColor 39
backgroundImage 39
backgroundRepeat 39
border 40
children 16
className 39
Containment-related 16
contents 21
cursor 40
enabled

enabled property 51
Getter and setter methods 14
height 28
ID property 9
left 28
margin 39
masterElement 18
opacity 35
overflow 36
padding 39
parentElement 16
peers 18
position 28
Static 9, 15
top 28
topElement 16
visibility 34
Visual 39
width 28

R
Referring to widget instances 14

By a variable that holds a reference 15
By the ’this’ keyword 15
By the global ID 15

Related readings 5
Java programming language 5
JavaScript 5
JavaServer Pages 5
Java Servlets 5
JSPs 5

resizeBy method 31
resizeTo method 31

S
Scrolling 36

Methods 37
getClipHeight 37
getClipWidth 37
getScrollHeight 37
getScrollWidth 37
scrollTo 37

scrollTo method 37
sendToBack method 36
setBackgroundColor method 40
setBackgroundImage method 40
200

setBottom method 30
setClassName method 40
setCursor method 40
setEvent method 45
setHeight method 30
setLeft method 30
setOpacity method 35
setRect method 30
setRight method 30
setTop method 30
setWidth method 30
Showing and Hiding 34

Methods 34, 35
hide 34
isVisible 34
setOpacity 35
show 34

Properties
opacity 35
visibility 34

show method 29, 34
Sizing 28, 30, 34

Methods 30, 31
Properties 28

Square brackets 14
Square brackets usage 10
Static methods 9
Static properties 9
Superclasses

Canvas 9, 11, 17
ListViewer 9

T
this keyword 15, 50
topElement property 16
top property 28

V
visibility property 34

Values 34
Visual Methods

setBackgroundColor 40
setBackgroundImage 40
setClassName 40
setCursor 40

Visual methods 40
Visual properties 39

backgroundColor 39
backgroundImage 39
backgroundRepeat 39
border 40
cursor 40
margin 39
padding 39
position 39

W

Widget classes
Button 11
Canvas 9, 11, 16, 17, 20
Label 20
ListViewer 9, 17

Widget event handlers 48
cancelling propagation 50
Methods 51

disabled 51
enabled 51
isEnabled 51

Predefined 52
Properties

enabled 51
Widgets

Accessing ’static’ properties and
methods 15

Attaching to other widgets 17
Children and peers 15

Nesting children 18
Class naming conventions 9
Clipping 17
Clipping and scrolling 36
Containment and attachment 15
Contents 20
Controlling position and size 30, 34
Creating 9–13
Drawing 28

addChild method 29
draw method 29
isDrawn method 29
show method 29

Handling events 48
Inheritance 9
Instance naming conventions 9
Layering 35
Manipulating instances of 13
Manipulating properties 14
Master 17
Peer 17
Positioning and sizing 28
Referring to instances of 14
Showing and Hiding 34
Technical foundation 8
Visual properties 39
Web browsers supported 8
Why use 8

width property 28

X
XML declarative format 11

Arrays 12
XML usage 4

Z
Z-ordering 35
Isomorphic SmartClient Widgets Guide 201

Index
202

	Isomorphic SmartClient Widgets Guide
	Preface
	Audience
	Prerequisites
	How to use this guide
	Summary of chapter contents
	What this guide does not cover

	Resources
	SmartClient Online Reference
	Sample applications
	Updates to documentation
	Related readings

	Icons and conventions used in this guide
	Identifier icons
	Font conventions

	Widgets Overview
	Why use widgets?
	Creating widget instances
	JavaScript vs. XML

	Manipulating widget instances
	Referring to widget instances
	Widget containment and attachment-children and peers
	Nesting children within a parent widget declaration

	Widget contents
	JavaScript debugging
	Using the log system statically and in class instances
	Setting logging priorities for categories and classes

	Drawing Widgets
	Specifying initial position and size
	Drawing
	Drawing-related methods

	Controlling position and size
	Showing and hiding
	Opacity

	Layering
	Clipping and scrolling
	Other visual properties

	Handling Events
	The ISC event model
	Handling Page events
	Registering keypress events
	Special keys

	Handling widget events
	Enabling and disabling widgets
	Default widget event handlers

	Mouse events
	Getting event details
	Drag-and-drop operations
	Dragging and events
	Drag appearance
	Drag repositioning
	Drag resizing
	Custom drag-and-drop operations
	Drop operations
	Sequence of events in drag-and-drop operations

	Images and Skins
	Placing images in an application
	ISC "special directories"
	Using and customizing ISC skins
	Skin directory structure
	Using alternate skins included with the ISC framework
	Creating your own custom skins

	Specifying image directories
	Images in Canvas widgets
	Img widgets
	StretchImg widgets
	The items property of a StretchImg widget
	StretchImg widget image file names

	Labels, Buttons, and Bars
	Label widgets
	Button widgets
	Scrollbar widgets
	Progressbar widgets
	Progressbar widget image file names
	Progressbar widget setter method

	Forms
	Specifying a form
	Specifying form items
	Controlling form layout
	Form item annotations and styles
	DynamicForm styles

	Working with form item values
	Validating form input
	Custom validators

	Handling form item events

	ListGrids and DetailViewers
	Working with lists
	Initializing a listGrid or detailViewer
	Configuring listGrid layout and appearance
	ListGrid styles

	Configuring detailViewer layout and appearance
	Adding and removing listGrid records
	Sorting listGrid records
	Selecting listGrid records
	Dragging and dropping listGrid records
	Editing listGrid fields
	Working with listGrid values
	Handling listGrid record events
	ListGrid record events
	Event handling of record events

	TreeGrids
	Specifying tree data
	Initializing a treeGrid
	Configuring treeGrid appearance and behavior
	Overriding standard treeGrid icons

	Adding, moving, and removing tree nodes
	Expanding and collapsing tree nodes
	Dragging and dropping tree nodes
	Handling treeGrid events

	Menus, Toolbars, and Menubars
	Menu widgets
	Menu items
	Menu properties
	Configuring menu appearance
	Defining menu actions
	Implementing dynamic menus

	Toolbar widgets
	Toolbar properties
	Defining toolbar actions

	Menubar widgets
	Menubar properties

	Widget Initialization Templates
	JavaScript Widget Templates
	Canvas
	Label
	Img
	StretchImg
	Button
	Scrollbar
	Progressbar
	DynamicForm
	ListGrid
	DetailViewer
	TreeGrid
	Menu
	Toolbar
	Menubar

	XML Widget Templates
	Canvas
	Label
	Img
	StretchImg
	Button
	Scrollbar
	Progressbar
	DynamicForm
	ListGrid
	DetailViewer
	TreeGrid
	Menu
	Toolbar
	Menubar

	Isomorphic SmartClient Styles
	General styles
	Form styles
	ListGrid styles
	DetailViewer styles
	Menu styles
	Button styles

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

