

ibm.com/redbooks

Patterns: Implementing
Self-Service
in an SOA Environment

Carla Sadtler
Anup Aggarwal
Diego Cotignola

Sandy Grewal
Peter Hood

Shashi Shrimali
Fernando Teixeira

Integrate Web applications with the
enterprise tier

Explore Web services, J2EE
Connectors, and JMS solutions

Use SOA and ESB
technology

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: Implementing Self-Service in an SOA
Environment

January 2006

International Technical Support Organization

SG24-6680-01

© Copyright International Business Machines Corporation 2005, 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (January 2006)

This edition applies to WebSphere Application Server V6.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xv
Comments welcome. xv

Summary of changes . xvii
January 2006, Second Edition . xvii

Chapter 1. Patterns for e-business . 1
1.1 The Patterns for e-business layered asset model . 2
1.2 How to use the Patterns for e-business . 4

1.2.1 Selecting a Business, Integration, Composite pattern,
or a Custom design. 4

1.2.2 Selecting Application patterns. 9
1.2.3 Review Runtime patterns . 11
1.2.4 Reviewing Product mappings . 13
1.2.5 Reviewing guidelines and related links . 14

1.3 Summary . 15

Chapter 2. Self-Service business pattern . 17
2.1 Self-service applications . 18
2.2 Self-Service application patterns. 18
2.3 Application pattern used in this book. 22

Chapter 3. SOA and the Enterprise Service Bus . 23
3.1 Overview of SOA. 24

3.1.1 Definition of a service . 27
3.1.2 Web services and SOA . 31
3.1.3 Messaging and SOA . 33
3.1.4 The advantages of SOA . 35
3.1.5 SOA summary. 36

3.2 Overview of the Enterprise Service Bus . 36
3.2.1 SOA infrastructure requirements. 37
3.2.2 Definition of an ESB . 38
3.2.3 Enterprise requirements for an ESB . 40
3.2.4 Minimum ESB capabilities. 43
© Copyright IBM Corp. 2005, 2006. All rights reserved. iii

3.2.5 ESB and Web services technologies . 45
3.2.6 Extended ESB capabilities . 46
3.2.7 The ESB and other SOA components . 51

Chapter 4. Runtime patterns . 53
4.1 An introduction to the node types . 54

4.1.1 Why use an enterprise service bus? . 57
4.2 Runtime patterns for Directly Integrated Single Channel 60

4.2.1 Generic Runtime pattern for Directly Integrated Single Channel . . . 60
4.2.2 SOA profile for Directly Integrated Single Channel 61

4.3 Runtime patterns for Router . 62
4.3.1 Generic Runtime pattern for Router . 63
4.3.2 SOA profile for Router. 64

4.4 Runtime patterns for Decomposition . 65
4.4.1 Generic Runtime pattern for Decomposition 65
4.4.2 SOA profile for Decomposition . 67

Chapter 5. Product mappings and product overview 69
5.1 Product mapping . 70
5.2 IBM WebSphere Application Server . 73

5.2.1 WebSphere Application Server V6 for distributed platforms 74
5.2.2 Service integration . 76
5.2.3 ESB capabilities . 80

5.3 IBM Rational Software Development Platform . 84
5.3.1 Workbench . 86

5.4 Rational Application Developer . 89
5.4.1 Web development . 89
5.4.2 EJB development . 91
5.4.3 Web services support . 92
5.4.4 Connector support. 94
5.4.5 Test environment . 94
5.4.6 Team development . 95

5.5 Rational Software Architect . 95
5.5.1 Rational Unified Process guidance . 95
5.5.2 Model-driven development . 95
5.5.3 Modeling . 97
5.5.4 Asset-based development. 98

5.6 For more information . 100

Chapter 6. Technology options . 101
6.1 The big picture. 102
6.2 Client technologies . 102

6.2.1 Web-based clients. 104
6.2.2 Mobile clients . 111
iv Patterns: Implementing Self-Service in an SOA Environment

6.3 Web application server . 113
6.3.1 Java servlets . 115
6.3.2 JavaServer Pages (JSPs) . 116
6.3.3 JavaServer Faces . 116
6.3.4 Struts. 117
6.3.5 Service Data Objects . 118
6.3.6 Portal applications. 119
6.3.7 JavaBeans . 120
6.3.8 XML. 120
6.3.9 Enterprise JavaBeans . 124
6.3.10 Additional enterprise Java APIs . 127

6.4 Integration technologies . 128
6.4.1 Web services. 128
6.4.2 J2EE Connector Architecture . 132
6.4.3 Java Message Service . 133
6.4.4 Enterprise Service Bus . 135
6.4.5 Others . 136

6.5 Where to find more information . 137

Chapter 7. Application and system design guidelines 139
7.1 e-business application design considerations . 140
7.2 Application structure . 141

7.2.1 Model-View-Controller design pattern. 141
7.2.2 Result bean design pattern . 148
7.2.3 View bean design pattern . 149
7.2.4 Formatter beans design pattern . 151
7.2.5 Command bean design pattern. 152
7.2.6 Frameworks . 153
7.2.7 WebSphere command framework with EJBs 158
7.2.8 Best practices for EJBs . 162

7.3 Design guidelines for Web services . 163
7.3.1 Web services architecture. 164
7.3.2 Web services design considerations. 168
7.3.3 The key challenges in Web services. 178
7.3.4 Best practices for Web services . 182

7.4 Design guidelines for J2EE Connector Architecture 187
7.4.1 Components of J2EE Connector Architecture 187
7.4.2 Managed and non-managed environments 189
7.4.3 Outbound and inbound communication . 190
7.4.4 WebSphere Application Server and JCA . 191
7.4.5 Common Connector Interface . 192
7.4.6 CICS resource adapters . 195
7.4.7 Selecting a CICS resource adapter. 196
 Contents v

7.4.8 CICS ECI design considerations. 197
7.4.9 Best practices for J2EE Connector Architecture 197

7.5 Design guidelines for JMS. 198
7.5.1 Message models . 199
7.5.2 JMS messages . 202
7.5.3 Message-driven beans . 203
7.5.4 Managing JMS objects . 208
7.5.5 JMS and JNDI . 209
7.5.6 Choosing a JMS provider . 210
7.5.7 WebSphere default messaging provider design considerations . . . 211
7.5.8 WebSphere MQ design considerations. 214
7.5.9 For more information. 219

7.6 Design guidelines for the ESB. 219
7.6.1 Service integration bus . 219
7.6.2 Mediations. 222
7.6.3 Working with messages in mediations . 224

Chapter 8. Business scenario and design . 229
8.1 ITSOMart overview . 230

8.1.1 Business goals . 230
8.2 Customer registration scenario . 230

8.2.1 Actors . 231
8.2.2 Use case . 231
8.2.3 Self-Service pattern selection . 232

8.3 Customer registration application design . 233
8.3.1 Activity diagram. 233
8.3.2 Sequence diagram . 234
8.3.3 Technology and product selection . 236

Chapter 9. JSF front-end scenario. 239
9.1 Architectural overview . 240
9.2 System design overview . 241

9.2.1 Design considerations. 241
9.2.2 Component model. 243
9.2.3 Object model . 246

9.3 Low level design . 253
9.3.1 ITSOMart Web diagram . 253
9.3.2 JSF managed bean design . 257
9.3.3 JSF input validation. 259
9.3.4 Error handling . 260
9.3.5 Back-end interface . 262

9.4 Application development guidelines . 262
9.4.1 Rational Software Architect development environment 263
vi Patterns: Implementing Self-Service in an SOA Environment

9.4.2 Web page templates . 264
9.4.3 Designing screens using the Page Designer 267
9.4.4 Binding UI components to managed beans 268
9.4.5 Implementing page navigation . 275
9.4.6 Implementing input validation . 280
9.4.7 Debugging applications in Rational Software Architect. 283

9.5 Runtime guidelines . 288
9.5.1 The web-config.xml configuration file . 288

9.6 System management . 289
9.7 For more information . 289

Chapter 10. Web services scenario . 291
10.1 Architectural overview model . 292
10.2 System design overview . 294

10.2.1 Component model. 295
10.2.2 Object model . 296

10.3 Applying the design guidelines . 301
10.4 Development guidelines for Web services . 302
10.5 Application development using Web services . 304

10.5.1 Implementation approach . 304
10.5.2 Creating a Web service from a session bean 305
10.5.3 Testing with the Web Services Explorer . 314
10.5.4 Creating Web service clients. 316

10.6 Creating the mediations . 323
10.6.1 Create the router mediation . 324
10.6.2 Create the Aggregator mediation . 328
10.6.3 Extending the mediations . 331

10.7 Runtime guidelines for Web services . 331
10.7.1 Web services support in WebSphere Application Server V6 331
10.7.2 Configuration tasks . 334
10.7.3 Create an endpoint listener . 335
10.7.4 Create the outbound services . 337
10.7.5 Create the inbound services . 340
10.7.6 Generate and export new WSDL for the services. 343
10.7.7 Update the Web service clients to use the bus 344
10.7.8 Configure the router mediation . 350
10.7.9 Configure the aggregator mediation . 351

10.8 System management for Web services. 353
10.8.1 Security considerations for Web services 354
10.8.2 Web Services Gateway. 358

10.9 More information . 359

Chapter 11. JMS scenario. 361
 Contents vii

11.1 Architectural overview model . 362
11.2 System design overview . 363

11.2.1 Component model. 363
11.2.2 Object model . 364

11.3 Applying the design guidelines . 365
11.3.1 Point-to-point messaging model . 365
11.3.2 JMS resource lookups using JNDI . 365
11.3.3 Message selectors . 367
11.3.4 Message time-to-live . 368
11.3.5 Persistent versus non-persistent messages 369
11.3.6 Mediation. 369

11.4 Development guidelines for JMS. 369
11.4.1 JMS development . 369
11.4.2 Creating a JMS client application . 370
11.4.3 Creating a message-driven bean . 370
11.4.4 Creating a mediation . 373

11.5 Runtime configuration for JMS . 377
11.5.1 Create a queue destination . 377
11.5.2 Create the JMS connection factory . 378
11.5.3 Create JMS queue . 379
11.5.4 Create JMS activation specification . 379
11.5.5 Mediation configuration . 380
11.5.6 Test the application . 383

11.6 System management for JMS . 384
11.6.1 JMS performance issues. 384
11.6.2 Performance monitoring for mediations . 384
11.6.3 Security considerations . 386

Chapter 12. J2EE Connector Architecture scenario 389
12.1 Architectural overview model . 390
12.2 System design overview . 391

12.2.1 Component model. 392
12.2.2 Object model . 394

12.3 Applying the design guidelines . 397
12.3.1 Creating the input and output record . 398
12.3.2 Data conversion . 401
12.3.3 Connection management . 403
12.3.4 Executing the enterprise application . 406
12.3.5 Transaction management . 407
12.3.6 Security . 407

12.4 Development guidelines for JCA . 407
12.4.1 The CICS enterprise application . 408
12.4.2 Create a JCA application to access the enterprise application . . . 409
viii Patterns: Implementing Self-Service in an SOA Environment

12.4.3 Create the EJB Web service client . 426
12.4.4 Integrate the JCA service client with Processor 431

12.5 Runtime guidelines for JCA applications. 433
12.5.1 CICS Transaction Gateway. 433
12.5.2 WebSphere Application Server V6 configuration 435
12.5.3 Configure the bus for the Web service . 438
12.5.4 Setting up the CICS application . 440

12.6 System management guidelines for JCA . 441
12.6.1 Logging and tracing. 441
12.6.2 Performance monitoring and tuning . 442
12.6.3 Scalability and availability considerations 444
12.6.4 Security considerations . 448

12.7 For more information . 452

Appendix A. Sample application install summary 453
Description of application files . 454
Import the source files to the workbench . 455
Runtime preparation. 456
Configuring the data source and creating the database. 457

Using a DB2 database . 458
Using a Cloudscape database . 462

Create a service integration bus. 463
Install Web services support for the bus . 464

Install the SDO Repository application . 464
Install the resource adapter. 465
Install the SIBWS application . 466
Install the SOAP over HTTP endpoint listener application 467

Configure the bus for JMS messaging . 468
Create the queue destinations . 468
Configure the JMS connection factories . 468
Create the JMS queues . 469
Create the JMS activation specifications . 470

CreditCheck application . 472
JCAModule CRM application . 474
Mail service application . 474

Install the applications. 475
Configure the mediation . 476

DeliverySystem application . 478
Processor application . 480
Access the application . 482
Common errors: . 482

Appendix B. Additional material . 485
 Contents ix

Locating the Web material . 485
Using the Web material . 485

System requirements for downloading the Web material 486
How to use the Web material . 486

Related publications . 487
IBM Redbooks . 487
Other publications . 488
Online resources . 488
How to get IBM Redbooks . 491
Help from IBM . 492

Index . 493
x Patterns: Implementing Self-Service in an SOA Environment

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005, 2006. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
ClearCase®
Cloudscape™
DB2®
developerWorks®
e-business on demand™
Eserver®
Eserver®
IBM®

IMS™
MQSeries®
MVS™
OS/390®
RACF®
Rational Rose®
Rational Unified Process®
Rational®
Redbooks (logo) ™
Redbooks™

RequisitePro®
RUP®
Tivoli®
WebSphere®
XDE™
z/OS®
zSeries®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, HotJava, Java, Java Naming and Directory Interface, Javadoc, JavaBeans,
JavaMail, JavaScript, JavaServer, JavaServer Pages, JDBC, JDK, JSP, JVM, J2EE, J2ME, J2SE, Solaris,
Sun, Sun Microsystems, Sun ONE, and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

JScript, Microsoft, Visio, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xii Patterns: Implementing Self-Service in an SOA Environment

Preface

The Patterns for e-business are a group of proven, reusable assets that can be
used to increase the speed of developing and deploying Web applications. This
IBM® Redbook focuses on the use of service-oriented architecture and the
enterprise service bus to build solutions that help organizations achieve rapid,
flexible integration of IT systems.

It includes the Self-Service::Directly Integrated Single Channel pattern for
implementing point-to-point connections with back-end applications, the
Self-Service::Router pattern for implementing intelligent routing among multiple
back-end applications, and the Self-Service::Decomposition pattern for
decomposing a request into multiple requests and recomposing the results into a
single response.

This IBM Redbook teaches you by example how to design and build sample
solutions using WebSphere® Application Server V6 with Web services, J2EE™
Connectors and IBM CICS®, and JMS using the WebSphere Application Server
default messaging provider. WebSphere Application Server service integration
technology is used to implement enterprise service bus functionality.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Carla Sadtler is a certified IT Specialist at the ITSO, Raleigh Center. She writes
extensively about the WebSphere and Patterns for e-business areas. Before
joining the ITSO in 1985, Carla worked in the Raleigh branch office as a Program
Support Representative. She holds a degree in mathematics from the University
of North Carolina at Greensboro.

Anup Aggarwal is a Staff Software Engineer with the WebSphere Application
Server System Verification Test team in Research Triangle Park, Durham, North
Carolina. He has five years of experience in designing, developing and
simulating customer-like end-to-end J2EE applications to test WebSphere
Application Server. His areas of expertise include WebSphere Application
Server, J2EE technologies, tooling such as WebSphere Studio and Rational®
Developer, and databases such as DB2®, Oracle and Sybase. He is currently
the Transaction Management Strategist for SVT and has responsibility for
coordinating test efforts on JCA, JTA and adapters across the WebSphere
© Copyright IBM Corp. 2005, 2006. All rights reserved. xiii

Quality Center of Competence Organization. He holds a Bachelor of Science
degree in Electronics and Communication Engineering from the CR State
University, India, and a Master of Science degree in Computer Engineering from
Wright State University of Dayton, Ohio.

Diego Cotignola Diego Cotignola is an IT Architect in Uruguay. He joined IBM in
1999, focusing on e-business application development, in particular Java™ and
J2EE, WebSphere Application Server, and WebSphere MQ. He became a
specialist in WebSphere and in its related technologies. Currently, he is also
working as an IT Architect in EAI solutions using WebSphere Business
Integration software.

Sandy Grewal is a Staff Software Developer at the IBM Toronto Lab. He has
extensive experience with J2EE and Web technologies. His area of expertise
includes J2EE object-oriented design and architecture, and data modeling. His
interests include software development methodologies, application design and
architecture, data modelling and design patterns. He has a masters degree in
economics from the University of Economics in Wroclaw, Poland.

Peter Hood is a IT Specialist in Australia. He has seven years of experience in
IBM A/NZ Global Services working as an IT Specialist. He has experience in a
number of technologies, ranging from IBM WebSphere and Microsoft® .NET to
general Internet based technology. He has utilized a number of different
architectures ranging from high-performance n-tier web applications to more
traditional client-server models. As a result of his experience, Peter has been
involved in consulting and assisting a number of troubled projects in both short
and long term secondments. He works in teams ranging from several people of
similar skills to large multi-disciplinary teams with a range of backgrounds and
skill-sets. Peter has been involved in the design of many Internet-based
applications and been lead developer in many of these. He holds a bachelor
degree in computer science from Melbourne University and also a masters
degree in Internet and Web computing from the Royal Institute of Technology.

Shashi Shrimali is an Associate IT Architect in the AMS Organization, IBM
Global Services India. He is a member of the Centre of Competence,
Architecture & AMS Research within AMS. He is also a core team member for
IGS India, SOA and Web Services community. He has over six years of IT
experience mainly in the telecommunications sector. His area of expertise
includes J2EE technologies, OOAD & Design Patterns, Web services,
application architecture, and Service Oriented Architecture. He has conducted
training in the areas of SOA, Web services and enterprise service bus
technology.

Fernando Teixeira is a Certified IT Architect in the Application Services
Organization, IBM Global Services, US. He has 16 years of IT experience,
including lead technical roles in the telecommunications and financial industries.
xiv Patterns: Implementing Self-Service in an SOA Environment

His areas of expertise include application architecture, object-oriented design,
J2EE technologies, and Web application design. He holds a Bachelor of Science
degree in Computer Science and Math from the University of Wisconsin, and an
Master of Science in Computer Science from the University of Pennsylvania.

Thanks to the following people for their contributions to this project:

Martin Keen
International Technical Support Organization, Raleigh Center

Jonathan Adams
Paul Verschueren
Patterns for e-business leadership and architecture, IBM UK

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xvi Patterns: Implementing Self-Service in an SOA Environment

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-6680-01
for Patterns: Implementing Self-Service in an SOA Environment
as created or updated on February 20, 2006.

January 2006, Second Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� The Self-Service Router and Decomposition application patterns have been

added to the text and to the ITSOMart sample. The new patterns are
illustrated using Web services.
© Copyright IBM Corp. 2005, 2006. All rights reserved. xvii

xviii Patterns: Implementing Self-Service in an SOA Environment

Chapter 1. Patterns for e-business

The role of the IT architect is to evaluate business problems and build solutions
to solve them. The architect begins by gathering input about the problem,
developing an outline of the desired solution, and considering any special
requirements that need to be factored into that solution. The architect then takes
this input and designs the solution, which can include one or more computer
applications that address the business problems by supplying the necessary
business functions.

To improve the process over time, we need to capture and reuse the experience
of the IT architects in such a way that future engagements can be made simpler
and faster. We do this by capturing knowledge gained from each engagement
and using it to build a repository of assets. IT architects can then build future
solutions based on these proven assets. Reusing proven assets saves time,
money, and effort and helps ensure delivery of a solid, properly architected
solution.

The IBM Patterns for e-business help facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven to be successful. The information captured by them is
assumed to fit the majority, or 80/20, situation. The IBM Patterns for e-business
are further augmented with guidelines and related links for their better use.

1

© Copyright IBM Corp. 2005, 2006. All rights reserved. 1

1.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last and include:

� Business patterns identify the interaction between users, businesses, and
data.

� Integration patterns tie multiple Business patterns together when a solution
cannot be provided based on a single Business pattern.

� Composite patterns represent commonly occurring combinations of Business
patterns and Integration patterns.

� Application patterns provide a conceptual layout that describe how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns define the logical middleware structure that supports an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings identify proven and tested software implementations for
each Runtime pattern.

� Best-practice guidelines discuss design, development, deployment, and
management of e-business applications.

Figure 1-1 on page 3 shows these assets and their relationships to each other.
2 Patterns: Implementing Self-Service in an SOA Environment

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The layers of patterns, along with their associated links and guidelines, allow the
architect to start with a problem and a vision for the solution and then find a
pattern that fits that vision. Then, by drilling down using the patterns process, the
architect can further define the additional functional pieces that the application
need to succeed. Finally, the architect can build the application using coding
techniques that are outlined in the associated guidelines.

The Patterns Web site provides an easy way of navigating through the layered
Patterns assets to determine the most appropriate assets for a particular
engagement.

For easy reference, see the Patterns for e-business Web site:

http://www.ibm.com/developerWorks/patterns/

Best-Practice Guidelines
Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
 Chapter 1. Patterns for e-business 3

http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business
As described in the previous section, the Patterns for e-business have a layered
structure where each layer builds detail on the last. At the highest layer are
Business patterns. These describe the entities involved in the e-business
solution.

Composite patterns appear in the hierarchy shown in Figure 1-1 on page 3 above
the Business patterns. However, Composite patterns are made up of a number of
individual Business patterns and at least one Integration pattern. This section
discusses how to use the layered structure of Patterns for e-business assets.

1.2.1 Selecting a Business, Integration, Composite pattern,
or a Custom design

When faced with the challenge of designing a solution for a business problem,
the first step is to get a high-level view of the goals that you want to achieve. You
need to describe a proposed business scenario and match each element to an
appropriate IBM Pattern for e-business. You might find, for example, that the
total solution requires multiple Business and Integration patterns or that it fits into
a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of
time and money spent on call centers that handle customer inquiries. By allowing
customers to view their policy information and request changes online, the
company can cut back significantly on the resources that are spent handling this
type of request by phone. The objective allows policy holders to view policy
information that is stored in existing databases.

The Self-Service business pattern fits this scenario perfectly. You can use it in
situations where users need direct access to business applications and data.
The following sections discuss the available Business patterns.
4 Patterns: Implementing Self-Service in an SOA Environment

Business patterns
A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.

Four primary Business patterns are explained in Table 1-1.

Table 1-1 The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but the
reality is that things can often be more complicated. The patterns assume that
most problems, when broken down into their basic components, will fit more than
one of these patterns. When a problem requires multiple Business patterns, you
can use Integration patterns.

Business Patterns Description Examples

Self-Service
(user-to-business)

Applications where users
interact with a business
with the Internet or
intranet.

Simple Web applications

Information Aggregation
(user-to-data)

Applications where users
can extract useful
information from large
volumes of data, text,
images, and so forth.

Business intelligence,
knowledge management,
and Web crawlers

Collaboration
(user-to-user)

Applications where the
Internet supports
collaborative work
between users

Community, chat,
videoconferencing, e-mail,
and so forth

Extended Enterprise
(business-to-business)

Applications that link two or
more business processes
across separate
enterprises.

EDI, supply chain
management, and so forth
 Chapter 1. Patterns for e-business 5

Integration patterns
Integration patterns allow you to tie together multiple Business patterns to solve
a business problem. Table 1-2 describes the Integration patterns.

Table 1-2 Integration patterns

The Access Integration pattern maps to User Integration. The Application
Integration pattern is divided into two essentially different approaches:

� Process Integration is the integration of the functional flow of processing
between the applications.

� Data Integration is the integration of the information that is used by
applications.

You can combine the Business and Integration patterns to implement
installation-specific business solutions called a Custom design.

Custom design
Figure 1-2 illustrates the use of a Custom design to address a business problem.

Figure 1-2 Patterns representing a Custom design

Integration Patterns Description Examples

Access Integration Integration of a number of
services through a
common entry point

Portals

Application Integration Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers,
data propagators, and data
federation engines

A
cc

es
s

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

6 Patterns: Implementing Self-Service in an SOA Environment

If you do not use any of the Business or Integration patterns in a Custom design,
you can show the unused patterns as lighter blocks than those patterns that you
do use. For example, Figure 1-3 shows a Custom design that does not have a
Collaboration or an Extended Enterprise business pattern for a business
problem.

Figure 1-3 Custom design showing unused patterns

If a Custom design recurs many times across domains that have similar business
problems, then it can also be a Composite pattern. For example, the Custom
design in Figure 1-3 can also describe a Sell-Side Hub Composite pattern.

Composite patterns
Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. Table 1-3 on page 8 shows the identified
Composite patterns.

A
cc

es
s

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

 Chapter 1. Patterns for e-business 7

Table 1-3 Composite patterns

Composite Patterns Description Examples

Electronic Commerce User-to-online-buying • http://www.macys.com
• http://www.amazon.com

Portal Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized access
for its users.

• Enterprise intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses.

• Collaboration providers who
provide services such as e-mail or
instant messaging.

Account Access Provide customers with
around-the-clock account access to
their account information.

• Online brokerage trading
applications

• Telephone company account
manager functions

• Bank, credit card and insurance
company online applications

Trading Exchange Allows buyers and sellers to trade
goods and services on a public site.

• Buyer's side: interaction between
buyer's procurement system and
commerce functions of
e-Marketplace.

• Seller's side:- interaction between
the procurement functions of the
e-Marketplace and its suppliers.

Sell-Side Hub
(supplier)

The seller owns the e-Marketplace
and uses it as a vehicle to sell
goods and services on the Web.

http://www.carmax.com
(car purchase)

Buy-Side Hub
(purchaser)

The buyer of the goods owns the
e-Marketplace and uses it as a
vehicle to leverage the buying or
procurement budget in soliciting the
best deals for goods and services
from prospective sellers across the
Web.

http://www.wwre.org
(WorldWide Retail Exchange)
8 Patterns: Implementing Self-Service in an SOA Environment

The makeup of these patterns is variable in that there will be basic patterns
present for each type. However, you can extend the Composite to meet
additional criteria. For more information about Composite patterns, refer to
Patterns for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas
Koushik, Guru Vasudeva, and George Galambos (ISBN 1-931182-02-7).

1.2.2 Selecting Application patterns
After you identify the Business pattern, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern usually
has multiple possible Application patterns. An Application pattern might have
logical components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns break down the application into the most basic conceptual
components that identify the goal of the application. In our example, the
application falls into the Self-Service business pattern, and the goal is to build a
simple application that allows users to access back-end information. Figure 1-4
shows the Self-Service::Directly Integrated Single Channel application pattern,
which fulfills this requirement.

Figure 1-4 Self-Service::Directly Integrated Single Channel pattern

Presentation synchronous Web
Application

synch/
asynch Back-End

Application 1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or which cannot be changed

Read/Write data

Back-End
Application 2
 Chapter 1. Patterns for e-business 9

This Application pattern consists of a presentation tier that handles the request
and response to the user. The application tier represents the component that
handles access to the back-end applications and data. The multiple application
boxes on the right represent the back-end applications that contain the business
data. The type of communication is specified as synchronous (one request/one
response, then next request/response) or asynchronous (multiple requests and
responses intermixed).

Suppose that the situation is a little more complicated. Suppose that the
automobile policies and the homeowner policies are kept in two separate and
dissimilar databases. The user request actually needs data from multiple,
disparate back-end systems. In this case, there is a need to break the request
down into multiple requests (decompose the request) to be sent to the two
different back-end databases, then to gather the information that is sent back
from the requests, and put this information into the form of a response
(recompose). In this case, the Self-Service::Decomposition application pattern
(as shown in Figure 1-5) would be more appropriate.

Figure 1-5 Self-Service::Decomposition pattern

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

Presentation synchronous Decomp/
Recomp

synch/
asynch

Application node
containing new
or modified
components

Application node
containing existing
components with no need
for modification or which
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
 flow)

Back-End
Application 1

Back-End
Application 2
10 Patterns: Implementing Self-Service in an SOA Environment

1.2.3 Review Runtime patterns
You can refine the Application pattern further with more explicit functions. Each
function is associated with a runtime node. In reality, these functions, or nodes,
can exist on separate physical machines or can coexist on the same machine. In
the Runtime pattern the physical location of the function is not relevant. The
focus is on the logical nodes that are required and their placement in the overall
network structure.

As an example, assume that our client has determined that their solution fits into
the Self-Service business pattern and that the Directly Integrated Single Channel
pattern is the most descriptive of the situation. The next step is to determine the
Runtime pattern that is most appropriate for the situation.

They know that they will have users on the Internet what are accessing their
business data, Therefore, they require a measure of security. You can implement
security at various layers of the application, but the first line of defense is almost
always one or more firewalls that define who and what can cross the physical
network boundaries into the company network.

The client also needs to determine the functional nodes that are required to
implement the application and security measures. Figure 1-6 on page 12 shows
the Runtime pattern that is one option.
 Chapter 1. Patterns for e-business 11

Figure 1-6 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node fulfills in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. The
Application pattern handles both static and dynamic Web pages.

Application security is handled by the Web application server through the use of
a common central directory and security services node.

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. Figure 1-7 on
page 13 shows variation on this pattern. It splits the Web application server into
two functional nodes by separating the HTTP server function from the application
server. The HTTP server (Web server redirector) provides static Web pages and
redirects other requests to the application server. This pattern moves the
application server function behind the second firewall, adding further security.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Existing
Applications

and Data

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data
12 Patterns: Implementing Self-Service in an SOA Environment

Figure 1-7 Directly Integrated Single Channel application pattern::Runtime pattern

These are just two examples of the possible Runtime patterns that are available.
Each Application pattern will have one or more Runtime patterns defined. You
can modify these Runtime patterns to suit the client’s needs. For example, the
client might want to add a load-balancing function and multiple application
servers.

1.2.4 Reviewing Product mappings
The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The Patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The
Product mappings are oriented toward a particular platform. However, it is more
likely that the client will have a variety of platforms involved in the network. In this
case, you can mix and match product mappings.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

Application
Server

Directory and
Security
Services

Existing
Applications

and Data
 Chapter 1. Patterns for e-business 13

For example, you could implement the runtime variation in Figure 1-7 on page 13
using the product set that is depicted in Figure 1-8.

Figure 1-8 Directly Integrated Single Channel application pattern: Windows® 2000 Product mapping

1.2.5 Reviewing guidelines and related links
The Application patterns, Runtime patterns, and Product mappings can guide
you in defining the application requirements and the network layout. The actual
application development has not been addressed yet. The Patterns Web site
provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application, based on the following
guidelines:

� Design guidelines provide tips and techniques for designing the applications.

� Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

� System management guidelines address the day-to-day operational
concerns, including security, backup and recovery, application management,
and so forth.

� Performance guidelines give information about how to improve the
application and system performance.

Internal networkDemilitarized zone
O

ut
si

de
 w

or
ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l
Web Server
Redirector

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway
V5.0
IBM CICS Transaction Server
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3
14 Patterns: Implementing Self-Service in an SOA Environment

1.3 Summary
The IBM Patterns for e-business are a collected set of proven architectures. You
can use this repository of assets to facilitate the development of Web-based
applications. Patterns for e-business help you understand and analyze complex
business problems and break them down into smaller, more manageable
functions that you can then implement.
 Chapter 1. Patterns for e-business 15

16 Patterns: Implementing Self-Service in an SOA Environment

Chapter 2. Self-Service business
pattern

Businesses have traditionally invested a lot of resources into making information
available to customers, vendors, and employees. These resources took the form
of call centers, mailings, etc. They have also maintained information about their
customers in the form of customer profiles. Updates to these profiles were
handled over the phone or by mail.

The concept of self-service puts this information at the fingertips of the
customers through a user interface, whether that interface is a Web site, a
personal digital assistant (PDA), or some other client interface. An e-business
application makes the information accessible to the right audience in an
easy-to-access manner, thus reducing the need for human interaction and
increasing user satisfaction.

2

© Copyright IBM Corp. 2005, 2006. All rights reserved. 17

2.1 Self-service applications
Key elements of an application that provides self-service for a customer would
include clear navigational directions, extended search capabilities, and useful
links. A popular aspect is a direct link to the online representatives who can
answer questions and offer a human interface if needed.

The following situations are examples of self-service applications:

� An insurance company makes policy information available to users and
allows them to apply for a policy online.

� A mortgage company publishes information about its loan policies and load
rates online. Customers can view their current mortgage information, change
their payment options, or apply for a mortgage online.

� A bank allows customers to access their accounts and pay bills online.

� A well-known and respected group of technical writers makes its work
available online. The group recruits technical participants for its projects by
listing the upcoming projects online and allowing possible participants to
apply online.

� A company allows its employees to view current human resource policies
online. Employees can change their medical plan, tax withholding
information, stock purchase plan, and so on, online without having to call the
Human Resources office.

2.2 Self-Service application patterns
As you can see in Figure 2-1 on page 19, the Self-Service business pattern
covers a wide range of uses. Applications of this pattern can range from the very
simple function of allowing users to view data built explicitly for one purpose, to
taking requests from users, decomposing them into multiple requests to be sent
to multiple, disparate data sources, personalizing the information, and
recomposing it into a response for the user.

For this reason, there are currently seven defined Application patterns that fit this
range of functions. We summarize these for you here. More detailed information
can be found in Patterns for e-business: A Strategy for Reuse, by Jonathan
Adams, Srinivas Koushik, Guru Vasudeva, and George Galambos.
18 Patterns: Implementing Self-Service in an SOA Environment

Figure 2-1 Self-Service application patterns

The Self-Service application patterns are defined as follows:

1. Stand-alone Single Channel application pattern

This pattern provides for stand-alone applications that have no need for
integration with existing applications or data. It assumes one delivery
channel, most likely a Web client, although it could be something else. It
consists of a presentation tier that handles all aspects of the user interface,
and an application tier that contains the business logic to access data from a
local database. The communication between the two tiers is synchronous.
The presentation tier passes a request from the user to the business logic in
the Web application tier. The request is handled and a response is sent back
to the presentation tier for delivery to the user.

Application node containing new
or modified components

Application node containing
existing components with no need
for modification or which cannot be
changed

Read only dataRead / Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication flow)

1. Presentation
synch Application

3.
synch Host

Application
7.

CRM
LOB

synch/
asynch

synch Agent

ODS

2.
synch synch/

asynch

Web
Application

Back-end
Application

Back-end
Application

Presentation

Presentation

Presentation

synch
4. Presentation

Host
Application

5. synchRoutersynchPresentation

Presentation

Back-end
Application

Back-end
Application

6. Decompsynch synch/
asynch Presentation

Presentation

Back-end
Application

Back-end
Application

Back-end
Application

Back-end
Application
 Chapter 2. Self-Service business pattern 19

2. Directly Integrated Single Channel application pattern

This pattern provides point-to-point connectivity between the user and the
existing back-end applications. As with the Stand-alone Single Channel
application pattern, it assumes one delivery channel, and the user interface is
handled by the presentation tier. The business logic can reside in the Web
application tier and in the back-end application.

The Web application tier has access to local data that exists primarily as a
result of this application, for example, customer profile information or cached
data. It is also responsible for accessing one or more back-end applications.
The back-end applications contain business logic and are responsible for
accessing the existing back-end data. The communication between the
presentation tier and Web application tier is synchronous. The
communication between the Web application tier and the back-end can be
either synchronous or asynchronous, depending on the characteristics and
capabilities of the back-end application.

3. As-is Host application pattern

This pattern provides simple direct access to existing host applications. The
application is unchanged, but the user access is translated from green-screen
type access to Web browser-based access. This is very quickly implemented
but does nothing to change the appearance of the application to the user. The
business logic and presentation are both handled by the back-end host.
Because the interface is still host driven, this is more suited to an intranet
solution where employees are familiar with the application.

4. Customized Presentation to Host application pattern:

This is one step up from the As-is Host pattern. The back-end host application
remains unchanged, but a Web application now translates the presentation
from the back-end host application into a more user-friendly, graphical view.
The back-end host application is not aware of this translation.

5. Router application pattern

The Router application pattern provides intelligent routing from multiple
channels to multiple back-end applications using a hub-and-spoke
architecture. The interaction between the user and the back-end application is
a one-to-one relation, meaning the user interacts with applications one at a
time. The router maintains the connections to the back-end applications and
pools connections when appropriate, but there is no true integration of the
applications themselves. The router can use a read-only database, most
probably to look up routing information. The primary business logic still
resides in the back-end application tier.
20 Patterns: Implementing Self-Service in an SOA Environment

This pattern assumes that the users are accessing the applications from a
variety of client types such as Web browsers, voice response units (VRUs), or
kiosks. The Router application pattern provides a common interface for
accessing multiple back-end applications and acts as an intermediary
between them and the delivery channels. In doing this, the Router application
pattern can use elements of the Integration patterns.

6. Decomposition application pattern

The Decomposition application pattern expands on the Router application
pattern, providing all the features and functions of that pattern and adding
recomposition and decomposition capability. It provides the ability to take a
user request and decompose it into multiple requests to be routed to multiple
back-end applications. The responses are recomposed into a single response
for the user. This moves some of the business logic into the decomposition
tier, but the primary business logic still resides in the back-end application
tier.

From a service-oriented architecture (SOA) perspective, the decomposition
tier of this application pattern facilitates the invocation of business services
hosted by a number of back-end applications. In doing so, the Decomposition
application pattern fully leverages the integration capabilities described by the
Application Integration::Broker pattern.

If an interaction initiated by a user requires the execution of an end-to-end
business process or workflow where process and workflow rules are better
externalized, the Decomposition application pattern would leverage the
integration capabilities of more advanced process integration alternatives
such as the Application Integration::Serial Process or Serial Workflow and the
Application Integration::Parallel Process or Parallel Workflow. Since the end
result is the decomposition/recomposition capability discussed above, these
variations are not documented as Decomposition application pattern
variations, but rather may be captured as different runtime patterns where
applicable.

7. Agent application pattern:

The Agent application pattern structures an application design to provide a
unified customer-centric view that can be exploited for mass customization of
services, and for cross-selling purposes. The unified customer-centric view
across Lines of Businesses (LOB) in this case is either dynamically
developed or supported by an Operational Data Store (ODS) that collects
near real time data about the user from multiple systems.
 Chapter 2. Self-Service business pattern 21

2.3 Application pattern used in this book
The rest of this redbook discusses e-business solutions using the following
Application patterns:

� Directly Integrated Single Channel application pattern

� Router application pattern

� Decomposition application pattern
22 Patterns: Implementing Self-Service in an SOA Environment

Chapter 3. SOA and the Enterprise
Service Bus

This chapter provides an introduction to service-oriented architecture (SOA). It
also defines the Enterprise Service Bus (ESB) and describes the ESB in terms of
the role that it plays in the implementation of an SOA.

3

© Copyright IBM Corp. 2005, 2006. All rights reserved. 23

3.1 Overview of SOA
SOA defines integration architectures based on the concept of a service.
Applications collaborate by invoking each others services, and services are
composed into larger sequences to implement business processes.

The drive for SOA
The main driver for SOA is to define an architectural approach that assists in the
flexible integration of IT systems. Organizations spend a considerable amount of
time and money trying to achieve rapid, flexible integration of IT systems across
all elements of the business cycle. The drivers behind this objective include:

� Increasing the speed at which businesses can implement new products and
processes, can change existing ones, or can recombine them in new ways

� Reducing implementation and ownership costs of IT systems and the
integration between them

� Enabling flexible pricing models by outsourcing more fine-grained elements of
the business than were previously possible or by moving from fixed to
variable pricing, based on transaction volumes

� Simplifying the integration work that is required by mergers and acquisitions

� Achieving better IT use and return on investment

� Achieving implementation of business processes at a level that is
independent from the applications and platforms that are used to support the
processes

SOA prescribes a set of design principles and an architectural approach to
achieve this rapid, flexible integration.

Definition of SOA
SOA is an integration architecture approach that is based on the concept of a
service. The business and infrastructure functions that are required to build
distributed systems are provided as services that collectively, or individually,
deliver application functionality to either user applications or other services.

SOA specifies that within any given architecture, there should be a consistent
mechanism by which services communicate. That mechanism should be loosely
coupled and should support the use of explicit interfaces.

SOA brings the benefits of loose coupling and encapsulation to integration at an
enterprise level. It applies successful concepts that are proven by
Object-Oriented development, Component-Based Design, and Enterprise
24 Patterns: Implementing Self-Service in an SOA Environment

Application Integration technology to an architectural approach for IT system
integration.

Services are the building blocks to SOA. They provide the function out of which
you can build distributed systems. Services can be invoked independently by
either external or internal service consumers to process simple functions or can
be chained together to form more complex functionality and to quickly devise
new functionality.

By adopting an SOA approach and implementing it using supporting
technologies, you can build flexible systems that implement changing business
processes quickly and make extensive use of reusable components.

Figure 3-1 illustrates a company that wants to implement a new business
process to support customers who place orders from a Web site.

Figure 3-1 A service-oriented approach to building systems

The company already has existing retail, warehouse, and billing systems. It
would like to build the new process by reusing the functionality that is provided by
those systems, rather than having to write new applications or new interfaces to
the existing systems.

If the company has already adopted an SOA approach, it will have defined the
interfaces to its existing systems in terms of the functions or services that they
can offer to support the building of business processes. The defined interfaces
makes building the new Web front end to the system very simple. All the
company needs to do is to develop an application that makes calls to the
services to complete the new business process.

Business
Process

Bill
Customer

Defined
Services

Receive
Order

Service

Customer
Billing

Service

Fulfill
Order

Service

Restock
Service

IT
Systems

Web
Application

Retail
System

CRM
Warehouse

System

Receive
Order

Fulfill
Order Restock
 Chapter 3. SOA and the Enterprise Service Bus 25

The SOA approach means companies are able to build horizontal business
processes that integrate systems, people, and processes from across the
enterprise quickly and easily in response to changing business needs.

As shown in Figure 3-1 on page 25, the company can use existing systems to
implement new business processes that extend the use of the system beyond the
processes that they were originally written to support. The company can
maximize the previous IT investment by reusing existing IT systems without
having to invest extensively to build new interfaces to the systems.

On Demand Business and SOA
SOA plays a crucial role for companies who are trying to implement the IBM
vision of On Demand Business. The IBM vision of On Demand Business is to
enable customers to succeed in an environment with an unprecedented rate of
change.

In an on demand world, companies need to respond quickly and easily to any
customer requirement, opportunity, or threat. To succeed in this environment, a
company must be able to implement new processes quickly while leveraging
existing investment. From a business perspective, On Demand Business
provides a way for companies to realign their business and technology
environment to match the need for reusable business functionality. For a fuller
discussion about the On Demand Business vision from IBM and how it relates to
SOA refer to the second chapter of Patterns: Implementing an SOA Using an
Enterprise Service Bus, SG24-6346.

SOA can be an architectural enabler for On Demand Business. SOA touches on
the four key elements of On Demand Business. These elements are:

� Open standards

SOA provides a standard method of invoking services (business logic and
functionality) for disparate organizations to share across network boundaries.

� Integration

– SOA provides interfaces to wrap service endpoints for a
system-independent architecture that promotes cross-industry
communication and integrates end-to-end solutions both in and out of the
enterprise.

– SOA provides dynamic service discovery and binding, which means that
service integration can occur on demand.

– SOA provides an approach to integrate heterogeneous technologies
inside an enterprise.
26 Patterns: Implementing Self-Service in an SOA Environment

� Virtualization

A key principle of SOA is that consumers who invoke the services are
oblivious to implementation details, including location, platform, and if
appropriate to the business scenario, even the identity of the service provider.

� Automation

Technologies, such as grid technologies, can apply SOA principles to
implementing infrastructure services that provide an evolutionary approach to
increased automation.

3.1.1 Definition of a service
SOA is an architectural approach to defining integration architectures that are
based on services. Now, it is important to define what is meant by a service in
this context in order to fully describe SOA and to understand what you can
achieve by using it.

A service can be defined as any discrete function that can be offered to an
external consumer. The function can be an individual business function or a
collection of functions that together form a process.

There are many additional aspects to a service that must also be considered in
the definition of a service within an SOA. The most commonly agreed-on aspects
of a service are that:

� Services encapsulate a reusable business function.

� Services are defined by explicit, implementation-independent interfaces.

� Services are invoked through communication protocols that stress location
transparency and interoperability.

This book uses these commonly agreed upon aspects to define SOA.

Reusable function
Any business function can be a service. SOA often focusses on business
functions. However, many technical functions can also be exposed as services.
When defining function, there are several levels of granularity that you can
consider. Many descriptions of SOA refer to the use of large-grained services;
however, some powerful counter-examples of successful, reusable, fine-grained
services exist. For example, getBalance is a very useful service, but is not
large-grained.
 Chapter 3. SOA and the Enterprise Service Bus 27

More realistically, there are many useful levels of service granularity in most
SOAs. For example, all of the following are services that each have a different
granularity:

� Technical Function Services (for example auditEvent, checkUserPassword,
and checkUserAuthorization)

� Business Function Services (for example calculateDollarValueFromYen and
getStockPrice)

� Business Transaction Services (for example checkOrderAvailability and
createBillingRecord)

� Business Process Services (for example openAccount, createStockOrder,
reconcileAccount, and renewPolicy)

Some degree of choreography or aggregation is required between each
granularity level for them to be integrated in an SOA.

A service can be any business function. In an SOA, however, it is preferable that
the function is genuinely reusable. In an SOA, the service can be used and
reused by one or more systems that participate in the architecture. For example,
while the reuse of a Java logging API could be described as design time (when a
decision is made to reuse an available package and bind it into application code),
the intention of SOA is to achieve the reuse of services at:

� Runtime

Each service is deployed in one place and one place only and is invoked
remotely by anything that must use it. The advantage of this approach is that
changes to the service (for example, to the calculation algorithm or the
reference data it depends on) need only be applied in a single place.

� Deployment time

Each service is built once but redeployed locally to each system or set of
systems that must use it. The advantage of this approach is increased
flexibility to achieve performance targets or to customize the service (perhaps
according to geography).

The service definition should encapsulate the function well enough to make the
reuse possible. The encapsulation of functions as services and their definition
using interfaces enables the substitution of one service implementation for
another. For example, the same service might be provided by multiple providers
(such as a car insurance quote service, which might be provided by multiple
insurance companies) and individual service consumers might be routed to
individual service providers through some intermediary agent.
28 Patterns: Implementing Self-Service in an SOA Environment

Granularity in SOA
The concept of granularity is used to mean several things in SOA, each of which
is actually quite separate:

� Level of abstraction of services

Is the service a high-level business process, a lower-level business
sub-process or activity, or a very low-level technical function?

� Granularity of service operations

How many operations are in the service? One, a few, or many? What factors
determine which operations are collected together in a service?

� Granularity of service parameters

How are the input and output data of service operations expressed? SOA
prefers a small number of large, structured parameters rather than a small
number of primitive types.

Explicit implementation of independent interfaces
The use of explicit interfaces to define and encapsulate service function is of
particular importance in making services genuinely reusable. The interface
should encapsulate only those aspects of process and behavior that are used in
the interaction between the service consumer and the service provider. An
explicit interface definition, or contract, is used to bind a service consumer and a
service provider. It should specify only the mutual behavior that is required for
the interaction and nothing about the implementation of the consumer or the
provider.

By explicitly defining the interaction in this way, those aspects of either system
(for example, the platform on which they are based) that are not part of the
interaction are free to change without affecting the other system. This flexibility
allows either system to change implementation or identity freely.
 Chapter 3. SOA and the Enterprise Service Bus 29

Figure 3-2 illustrates the use of explicit interfaces to define and encapsulate
services function.

Figure 3-2 Service implementation in SOA

Communication protocols that stress location transparency
Companies have a variety of choices when deciding how to connect applications.
HTTP, HTTPS, JMS, CORBA, and SMTP are all examples of protocols that can
be used to connect applications. There are also many middleware products, for
example WebSphere MQ, that provide application-to-application connectivity.
Typically, even within a single company, a variety of techniques, products, and
protocols are used to address different integration requirements. This variety of
techniques can create problems when trying to extend the integration to connect
to applications that do not use the same protocols.

SOA does not specify that any specific protocol should be used to provide
access to a service. A key principle in SOA is that a service is not defined by the
communication protocol that it uses, but instead is protocol-independent so that
different protocols can be used to access the same service.

SYSTEM 1

Internal code
and process

Service definition of reusable
business function

SYSTEM 2

Internal code
and process

Code definition of reusable
business function

INTERFACE
30 Patterns: Implementing Self-Service in an SOA Environment

Ideally, a service should be defined only once, through a service interface, and
should have many implementations with different access protocols. This
definition increases the reusability of any service definition. Also, services should
be invoked, published, and discovered in a way that is abstracted away from the
actual implementation using a single, standards-based form of interface. Thus,
there is a complimentary nature between SOA and Web services.

3.1.2 Web services and SOA
An appropriate combination of both Web services technology and the SOA
approach addresses many of the issues of building an SOA-enabled
environment. That is not to say that Web services and SOA are intrinsically
linked, because they can be implemented separately. In fact, many significant
SOAs are proprietary or customized implementations that are based on
messaging and Enterprise Application Integration middleware and do not use
Web services technologies. Also, most existing Web services implementations
consist of point-to-point integrations that address a limited set of business
functions between a defined set of cooperating partners.

However, existing SOA implementations have demonstrated the benefits of
SOA, usually within a single enterprise, and the existing uses of Web services
have demonstrated the benefits of the Web services technologies in integrating
heterogeneous systems both within and among organizations. A custom
approach gives an organization the problem of supporting heterogenity; a
proprietary approach gives it to one IT vendor. Adopting a standards-based
approach, such as Web services, offers a solution to these issues.

There are logical links between Web services and SOA that suggest that they
are complimentary:

� Web services provide an open-standard and machine-readable model for
creating explicit, implementation-independent descriptions of service
interfaces.

� Web services provide communication mechanisms that are
location-transparent and interoperable.

� Web services are evolving, through Business Process Execution Language
for Web Services (BPEL4WS), document-style SOAP, Web services
Definition Language (WSDL), and emerging technologies (such as
WS-ResourceFramework), to support the technical implementation of
well-designed services that encapsulate and model reusable function in a
flexible manner.
 Chapter 3. SOA and the Enterprise Service Bus 31

Working together, Web services and SOA have the potential to address many of
the technical issues that enterprises face when trying to build an on demand
environment. For example:

� A multitude of technologies and platforms are used to support business
systems, all which need to be integrated into an SOA.

Web services are a set of open-standard technologies that are supported by
most of the IT industry and by the Web Services Interoperability (WS-I)
organization. Their basis is in simple, text-based, and open-standard
technologies such as XML and HTTP, and the fact that they can leverage
more sophisticated interoperable technologies, such as asynchronous
messaging, means that they can be supported in the vast majority of IT
environments. Increasing ubiquity and maturity of product support means that
implementing and integrating Web services will become increasingly efficient.

� Business process models are a mixture of people practices, application code,
and interactions among people and systems or systems and systems.

Although SOA is an approach to architecture that must be applied to systems
and integrations, it specifies a set of principles and techniques that encourage
the encapsulation and modeling of reusable business functions and
processes. Recent and emerging trends in Web services, such as BPEL4WS
and WS-ResourceFramework, will increasingly support the modeling
concepts of SOA. In this way, process management can be centralized rather
than being part of multiple applications.

� Changes to one system tend to imply ripples of change at many levels to
many other systems.

SOA specifies several principles and techniques for achieving the
encapsulation of service function and the loose coupling of service
interactions. These techniques minimize the cases where change to one part
of a system implies changes to other parts.

� In a true SOA, the integration solution should be able to invoke services
offered outside the enterprise by partners and should be extendable to
support future partners.

The Web services technologies have proven effective in many
business-to-business integrations, where their open standards basis and use of
simple, existing infrastructure and protocols makes them particularly effective.
Recent and emerging standards, such as WS-Security, add to the sophistication
of interaction that is possible when using Web services in this model.
32 Patterns: Implementing Self-Service in an SOA Environment

� There is no single data, business, or process model across, or beyond, the
enterprise.

Although they are not a magic solution to this issue, the SOA principles define
an approach that enables organizations to progressively expose functions
across their business as services and to combine those services into
processes. SOA encourages processes to be centrally managed and
explicitly defined and modelled. Over time, businesses that take this
approach will improve the consistency of their business and process models
and will leverage the use of business process modeling and automation
technology to more explicitly control and monitor their execution of processes.

� Not all integration technologies work as well across a wide area network or
the Internet as they do across a local area network.

The Web services technologies support multiple protocols, so they can use
the simplest protocols available, such as HTTP when that offers an
advantage, or leverage other infrastructures such as WebSphere MQ when
that is more appropriate.

For these reasons, SOA and Web services are often seen together as the future
direction for system integration. However, note that in Web services that WSDL
does not specify all that is implied by what SOA means by an interface. It does
not specify service levels, and it does not specify pre- and post- conditions.
BPEL4WS can do something equivalent but only for a subset of requirements,
for example in process models. All SOA projects have to make up this shortfall in
standard project documentation, custom service descriptions, or some other
means.

3.1.3 Messaging and SOA
SOAs that are based on reliable messaging and Enterprise Application
Integration middleware (for example WebSphere MQ and WebSphere Business
Integration Message Broker) support the principles of an SOA implementation
by:

� Decoupling the consumer’s view of a service from the actual implementation
of the service

� Decoupling technical aspects of service interactions

� Integrating and managing services in the enterprise

Decoupling the consumer’s view of a service from the actual implementation
greatly increases the flexibility of the architecture. It allows the substitution of one
service provider for another (for example because another provider offers the
same services for lower cost or with higher standards) without the consumer
being aware of the change, or needing to be altered to support it.
 Chapter 3. SOA and the Enterprise Service Bus 33

This decoupling is better achieved by having the consumers and providers
interact via an intermediary. Intermediaries publish services to consumers. The
consumer binds to the intermediary to access the service, with no direct coupling
to the actual provider of the service. The intermediary maps the request to the
location of the real service implementation.

Figure 3-3 shows requestor and provider connected using a messaging
infrastructure as intermediary.

Figure 3-3 Decoupling requestor and provider using messaging as intermediary

The SOA principles of granularity and modularity are primarily solved through the
proper structuring of the application. In contrast, the aspect of loose coupling is
greatly addressed by using messaging middleware.

Table 3-1 on page 34 shows an overview about the coupling aspects related to
the use of messaging middleware.

Table 3-1 Coupling aspects of messaging middleware

Coupling aspect Justification

Language independence The payload of a message can be passed
in a language independent manner. An
appropriate interface to the messaging
middleware needs to exist for requestor
and provider.

Transport protocol transparency The transport protocol used is
encapsulated by the interface of the
messaging infrastructure. A requestor
does not need to know if a provider is
connected using the same transport
protocol.

Location transparency For a service requestor or provider the
messaging infrastructure is just a
communication medium. A requestor does
not need to know the route a message
takes as long as it gets the result it
expects.
34 Patterns: Implementing Self-Service in an SOA Environment

3.1.4 The advantages of SOA
Use of SOA has the following advantages to achieving loosely coupled, flexible
integration of IT systems:

� Heterogeneous systems can be integrated because of
implementation-independent interfaces that describe services.

� The description of service interfaces in terms of a common business process
and data model minimizes any interdependencies to only what matters to the
business.

� The encapsulation of services with standard interfaces enables reuse and
flexibility. Each service is defined and implemented in only one place, so
changing it is straightforward.

There are benefits in development and maintenance costs, but flexibility is the
primary goal in SOA.

With clearly defined interfaces between all business systems, it is possible to
model and change the business process that are captured by them at a level
above individual systems. Thus, SOA is an enabler for process modelling and
automation at an enterprise scale.

Currently, and for some time to come, many of the technologies that are used to
implement SOAs are evolving rather than maturing and stablizing. Therefore,
individual SOA solutions must make carefully balanced decisions among
customized, proprietary, and open-standard technologies, which characteristics
and components of SOA to implement, and which areas of business function and
process to which to apply them. Of course, you should balance these decisions

Data format independence The payload of a message is passed in a
data format independent manner.

Platform independence Messaging infrastructure supports the
communication between different
platforms and even provides mapping
functionality between different data and
encoding formats.

Communication model transparency Messaging not only supports the
synchronous communication model but
also the asynchronous thus providing
enhanced flexibility in binding and
orchestrating services.

Coupling aspect Justification
 Chapter 3. SOA and the Enterprise Service Bus 35

between business benefits, technology maturity, and implementation or
maintenance efforts.

3.1.5 SOA summary
SOA and Web services enable new opportunities for more flexible, rapid, and
widespread integration in a model that is consistent with the exposure of
business function as services. SOA and Web services offer the choreography of
those services into processes that can be modeled, executed, and monitored
with features such as:

� SOA defines concepts and general techniques for designing, encapsulating,
and invoking reusable business functions through loosely bound service
interactions. Most of the techniques have been proven individually in previous
technologies or design styles. SOA unites them in an approach that is
intended to bring encapsulation and reuse to the enterprise level.

� Web services provide an emerging set of open-standard technologies that
can be combined with proven existing technologies to implement the
concepts and techniques of SOA.

� Industry support for Web services standards, interoperability among different
implementations of Web services, and the infrastructure technology that is
required to support an SOA give technology customers increasingly mature
and sophisticated technologies that are suitable for SOA implementation.

These techniques and technologies give you the tools that are required to
implement flexible SOAs and to evolve toward an on demand business model.
However, SOA is an architectural approach, not a technology or a product. In
order to implement an SOA, you must have the infrastructure to support the
architecture, such as an Enterprise Service Bus.

3.2 Overview of the Enterprise Service Bus
Successfully implementing an SOA requires applications and infrastructure that
can support the SOA principles. Applications can be enabled by creating service
interfaces to existing or new functions that are hosted by the applications. The
service interfaces should be accessed using an infrastructure that can route and
transport service requests to the correct service provider. As organizations
expose more and more functions as services, it is vitally important that this
infrastructure should support the management of SOA on an enterprise scale.
36 Patterns: Implementing Self-Service in an SOA Environment

3.2.1 SOA infrastructure requirements
The Enterprise Service Bus (ESB) is emerging as a middleware infrastructure
component that supports the implementation of SOA within an enterprise. The
need for an ESB can be seen by considering how it supports the concepts of
SOA implementation by:

� Decoupling the consumer’s view of a service from the implementation of a
service

� Decoupling technical aspects of service interactions

� Integrating and managing services in the enterprise

Decoupling the consumer’s view of a service from the actual implementation
greatly increases the flexibility of the architecture. It allows the substitution of one
service provider for another (for example, because another provider offers the
same services for lower cost or with higher standards) without the consumer
being aware of the change or without the need to alter the architecture to support
the substitution.

This decoupling is better achieved by having the consumers and providers
interact through an intermediary. Intermediaries publish services to consumers.
The consumer binds to the intermediary to access the service, with no direct
coupling to the actual provider of the service. The intermediary maps the request
to the location of the real service implementation.

In an SOA, services are described as being loosely coupled. However, at
implementation time, there is no way to loosely couple a service or any other
interaction between systems. The systems must have some common
understanding to conduct an interaction. Instead, to achieve the benefits of loose
coupling, consideration should be given to how to couple or decouple various
aspects of service interactions, such as the platform and language in which
services are implemented, the communication protocols used to invoke services,
the data formats used to exchange input and output data between service
consumers and providers.

Further decoupling can be achieved by handling some of the technical aspects of
transactions outside of applications. This could apply aspects of interactions
such as:

� How service interactions are secured

� How the integrity of business transactions and data are maintained, for
example through reliable messaging, the use of transaction monitors, or
compensation techniques

� How the invocation of alternative service providers is handled in the event
that the default provider is unavailable
 Chapter 3. SOA and the Enterprise Service Bus 37

These aspects imply a need for middleware to support an SOA implementation.
Some of the functions that might be provided by the middleware are:

� Map service requests from one protocol and address to another

� Transform data formats

� Support a variety of security and transactional models between service
consumers and service providers and recognize that consumers and
providers might support or require different models

� Aggregate or disaggregate service requests and responses

� Support communication protocols between multiple platforms with
appropriate qualities of service

� Provide messaging capabilities such as message correlation and
publish/subscribe, to support different messaging models such as events and
asynchronous request/response

This middleware support is the role of an ESB.

3.2.2 Definition of an ESB
An ESB provides an infrastructure that removes any direct connection between
service consumers and providers. Consumers connect to the bus and not the
provider that actually implements the service. This type of connection further
decouples the consumer from the provider. A bus also implements further value
add capabilities. For example, security and delivery assurance can be
implemented centrally within the bus instead of having this buried within the
applications.

Integrating and managing services in the enterprise outside of the actual
implementation of the services in this way helps to increase the flexibility and
manageability of SOA.

The primary driver for an ESB, however, is that it increases decoupling between
service consumers and providers. Protocols such as Web services define a
standard way of describing the interface to a service provider that allow some
level of decoupling because the actual implementation details are hidden.
However, the protocols imply a direct connection between the consumer and
provider.

Although it is relatively straight forward to build a direct link between a consumer
and provider, these links can lead to an interaction pattern that consists of
building multiple point-to-point links that perform specific interactions. With a
large number of interfaces, this quickly leads to the build up of a complex
spaghetti of links with multiple security and transaction models. Routing control is
distributed throughout the infrastructure, and probably no consistent approach to
38 Patterns: Implementing Self-Service in an SOA Environment

logging, monitoring, or systems management is implemented. This environment
is difficult to manage or maintain and inhibits change.

A common approach to reducing this complexity is to introduce a centralized
point through which interactions are routed, as shown in Figure 3-4.

Figure 3-4 Direct connection and central hub integration styles

Direct Connection

Hub and Spoke

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Hub:
ESB
 Chapter 3. SOA and the Enterprise Service Bus 39

A hub and spoke architecture is a common approach that is used in application
integration architectures. In a hub, the distribution rules are separated from
applications. The applications connect to the hub and not directly to any
application. This type of connection allows a single interaction from an
application to be distributed to multiple target applications without the consumer
being aware that multiple providers are involved in servicing the request. This
connection can reduce the proliferation of point-to-point connections.

Note that the benefit of reducing the number of connections only truly emerges if
the application interfaces and connections are genuinely reusable. For example,
consider the case where one application needs to send data to three other
applications. If this is implemented in a hub, the sending application must define
a link to the hub, and the hub must have links that are defined to the three
receiving applications, giving a total of four interfaces that need to be defined. If
the same scenario was implemented using multiple point-to-point links, the
sending application would need to define links to each of the three receiving
applications, giving a total of just three links. A hub only offers the benefit of
reduced links if another application also needs to send data to the receiving
applications and can make use of the same links as those that are already
defined for the first application. In this scenario, the new application only needs to
define a connection between itself and the hub, which can then send the data
correctly formatted to the receiving applications.

Hubs can be federated together to form what is logically a single entity that
provides a single point of control but is, in fact, a collection of physically
distributed components. This arrangement is commonly termed a bus. A bus
provides a consistent management and administration approach to a distributed
integration infrastructure.

3.2.3 Enterprise requirements for an ESB
Using a bus to implement an SOA has a number of advantages. In an SOA
services should, by definition, be reusable by a number of different consumers,
so that the benefits of reduced connections are achieved. In addition, the ESB:

� Supports high volumes of individual interactions.

� Supports more established integration styles, such as message-oriented and
event-driven integration, to extend the reach of the SOA. The ESB should
allow applications to be SOA enabled either directly or through the use of
adapters.

� Supports centralization of enterprise-level qualities of service and
manageability requirements into the hub.
40 Patterns: Implementing Self-Service in an SOA Environment

Figure 3-5 shows a high-level view of the ESB.

Figure 3-5 The Enterprise Service Bus

As discussed in 3.1, “Overview of SOA” on page 24, SOA applications are built
from services. Typically, a business service relies on many other services in its
implementation. The ESB is the component that provides access to the services
and so enables the building of SOA applications.

Mediation support
The ESB is more than just a transport layer. It must provide mediation support to
facilitate service interactions. An example of medation support would be to find
services that provide capabilities for which a consumer is asking or to take care
of interface mismatches between consumers and providers that are compatible
in terms of their capabilities. It must support a variety of ways to get on and off
the bus, such as adapter support for existing applications or business
connections, that enable external partners in business-to-business interaction
scenarios. To support these different ways to get on and off the bus, it must
support service interaction with a wide variety of service endpoints. It is likely that
each endpoint will have its own integration techniques, protocols, security
models and so on. This level of complexity should be hidden from service
consumers. They need to be offered a simpler model. In order to hide the
complexity from the consumers, the ESB is required to mediate between the
multiple interaction models that are understood by service providers and the
simplified view that is provided to consumers.
 Chapter 3. SOA and the Enterprise Service Bus 41

Protocol independence
As shown in Figure 3-5 on page 41, services can be offered by a variety of
sources. Without an ESB infrastructure, any service consumer that needs to
invoke a service needs to connect directly to a service provider using the
protocol, transport, and interaction pattern that is used by the provider. With an
ESB, the infrastructure shields the consumer from the details of how to connect
to the provider.

In an ESB, there is no direct connection between the consumer and provider.
Consumers access the ESB to invoke services, and the ESB acts as an
intermediary by passing the request to the provider using the appropriate
protocol, transport, and interaction pattern for the provider. This intermediary
connection enables the ESB to shield the consumer from the infrastructure
details of how to connect to the provider. The ESB should support several
integration mechanisms. These mechanisms can be described as invoking
services through specific addresses and protocols, even if, in some cases, the
address is the name of a CICS transaction and the protocol is a J2EE resource
adapter integrating with the CICS Transaction Gateway. By using the ESB, the
consumers are unaware of how the service is invoked on the provider.

Because the ESB removes the direct connection between service consumer and
providers, an ESB enables the substitution of one service implementation by
another with no effect to the consumers of that service. Thus, an ESB allows the
reach of an SOA to extend to non-SOA enabled service providers. It can also be
used to support migration of the non-SOA providers to using an SOA approach
without impacting the consumers of the service.

Support for multiple interaction patterns
To support fully the variety of interaction patterns (request/response,
publish/subscribe, and events) that are required in a comprehensive SOA, the
ESB must support in one infrastructure the following major styles of enterprise
integration:

� SOAs in which applications that communicate through reusable services with
well-defined, explicit interfaces

Service-oriented interactions leverage underlying messaging and
event-communication models.

� Message-driven architectures in which applications send messages through
the ESB to receiving applicationsEvent-driven architectures in which
applications generate and consume messages independently of one another

The ESB support the enterprise integration while providing additional capabilities
to mediate or transform service messages and interactions, enabling a wide
variety of behaviors and supporting the various models of coupling interaction.
42 Patterns: Implementing Self-Service in an SOA Environment

3.2.4 Minimum ESB capabilities
This section discusses the minimum capabilities an ESB must have to support
the requirements of an SOA enabling infrastructure component. Understanding
the minimum capabilities allows you to assess the suitability of individual
technologies or products for implementing an ESB by analyzing the functionality
that they offer to support the minimum ESB capabilities.

In discussions on ESB, the most commonly agreed upon elements for defining
an ESB are:

� The ESB is a logical architectural component that provides an integration
infrastructure consistent with the principles of SOA.

� The ESB can be implemented as a distributed, heterogeneous infrastructure.

� The ESB provides the means to manage the service infrastructure and the
capability to operate in a distributed, heterogeneous environment.

Table 3-2 on page 44 summarizes the minimum capabilities that an ESB should
have in order to provide an infrastructure consistent with these elements, and
thus consistent with the benefits of SOA. The sections that follow discuss these
capabilities in more detail.
 Chapter 3. SOA and the Enterprise Service Bus 43

Table 3-2 Minimum capabilities of an ESB

Communication
The ESB needs to supply a communication layer to support service interactions.
It should support communication through a variety of protocols. It should provide
underlying support for message and event-oriented middleware and integrate
with existing HTTP infrastructure and other enterprise application integration
(EAI) technologies. As a minimum capability, the ESB should support at least the
protocols that fit the requirements of a specific situation. The ESB should be able
to route between all these communication technologies through a consistent
naming and administration model.

Integration
The ESB should support linking to a variety of systems that do not directly
support service-style interactions so that a variety of services can be offered in a
heterogeneous environment. This includes existing systems, packaged
applications and other EAI technologies. Integration technologies might be
protocols (for example JDBC™, FTP, or EDI) or adapters such as the J2EE
Connector Architecture resource adapters or WebSphere Business Integration
Adapters. It also includes service client invocation through client APIs for various
languages (Java, C+, or C#) and platforms (J2EE or .Net), CORBA, and RMI.

Category Capabilities Reasons

Communications � Routing

� Addressing

� At least one messaging style
(request/response,
publish/subscribe)

� At least one transport protocol that
is or can be made widely available

Provides location transparency
and supports service substitution

Integration � Several integration styles or
adapters

� Protocol transformation

Supports integration in
heterogeneous environments
and supports service substitution

Service interaction � Service interface definition

� Service messaging model

� Substitution of service
implementation

Supports SOA principles,
separating application code from
specific service protocols and
implementations

Management Administration capability A point of control over service
addressing and naming
44 Patterns: Implementing Self-Service in an SOA Environment

Service interaction
The ESB needs to support SOA concepts for the use of interfaces and support
declaration service operations and quality of service requirements. The ESB
should also support service messaging models consistent with those interfaces,
and be capable of transmitting the required interaction context, such as security,
transaction or message correlation information.

Management
As with any other infrastructure component, the ESB needs to have
administration capabilities so that it can be managed and monitored to provide a
point of control over service addressing and naming. In addition, it should be
capable of integration into systems management software.

3.2.5 ESB and Web services technologies
Given the prominence of Web services technologies in current discussions of
SOA and the fact that many successful implementations of Web services
technologies exist, it is interesting to analyze what the use of basic Web services
technologies (WSDL and SOAP/HTTP) achieves against the minimum ESB
capabilities that are described in 3.2.4, “Minimum ESB capabilities” on page 43.
Using basic Web services technologies achieves:

� URL addressing and the existing HTTP and DNS infrastructure provide a bus
with routing services and location transparency.

� SOAP/HTTP supports the request/response messaging paradigm.

� The HTTP transport protocol is widely available.

� SOAP and WSDL are an open, implementation-independent messaging and
interfacing model.

Although the use of SOAP/HTTP and WSDL in this way has many advantages,
this scenario falls short of the minimum capabilities of the ESB in the following
ways:

� The scenario relies on the provision of interoperable SOAP/HTTP enablement
of each participating system. Because the Web services standards are
continuing to mature, there are many systems for which this will not be
feasible. An ESB should provide some form of support for alternative
integration techniques.

� Control over service addressing and routing is dispersed between client
invocation code, adapter configurations, and the DNS infrastructure. There is
no single point of infrastructure control. In other words, this is a point-to-point
integration style.
 Chapter 3. SOA and the Enterprise Service Bus 45

Vitally, there is no capability to substitute one implementation of a service
provider for another without changing the service consumers. Clients and
provider code tend to be bound to service invocations over specific protocols and
to specific addresses.

In conclusion, the use of basic Web services technologies on their own is not
sufficient to build an ESB. This technology only supports a subset of the
minimum capabilities that an ESB needs to provide. Support of the Web services
technologies is highly desirable within the ESB, as is support for other
technologies that are required in combination to fully implement an ESB
infrastructure.

3.2.6 Extended ESB capabilities
The minimum capabilities described in 3.2.4, “Minimum ESB capabilities” on
page 43 can help assess the suitability of individual technologies or products for
implementing an ESB. However, checking your avialable technologies against
these minimum capabilities will establish only those technologies that are
candidates. The detailed requirements of any particular scenario drive additional
ESB capabilities that can then be used to select specific, appropriate products.

In particular, the following types of requirements are likely to lead to the use of
more sophisticated technologies, either now or over time:

� Non-functional requirements such quality of service demands and
service-level capabilities

� Higher-level SOA concepts, such as a service directory, and transformations

� Advanced management capabilities, such as system management, and
autonomic and intelligent capabilities

� Truly heterogeneous operation across multiple networks, multiple protocols,
and multiple domains of disparate ownership

Figure 3-6 on page 47 shows the vision of the IBM On Demand Operating
Environment based on SOA.
46 Patterns: Implementing Self-Service in an SOA Environment

Figure 3-6 On Demand Operating Environment architecture

Figure 3-6 shows the capabilities that the ESB requires to facilitate the
interactions between the levels in the On Demand Operating Environment. These
capabilities include service level, service interface, quality of service, intelligence,
communication, security, message management, modeling,
management/automation, and integration capabilities.

If we consider the requirements for an ESB in light of both the minimum
requirements described in 3.2.4, “Minimum ESB capabilities” on page 43 and the
IBM On Demand Operating Environment requirements, then several additional
capability requirements can be identified, as shown in Table 3-3 on page 48.
Note that many situations not in the On Demand Operating Environment can also
require some of these capabilities in addition to the minimum requirements.

Service Level Automation and Orchestration

Integration Services
Information
Management

Services

Common
Services

Business
Function
Services

Business
Process

Choreography
Services

User
Access
Services

Security Message Processing Modeling

Integration Mgmt & Autonomic Service Level Intelligence Communication

Enterprise Service Bus

Utility Business Services

Resource Virtualization

Infrastructure Services

Business
Performance
Management

Business
Service

Business
Service

U
S
E
R

B
U
S
I
N
E
S
S

Business
Services

Quality of ServiceService Interaction

User
Interaction
Services
 Chapter 3. SOA and the Enterprise Service Bus 47

Table 3-3 Categorized ESB capabilities

Communication Service interaction

� Routing

� Addressing

� Protocols and standards (HTTP,
HTTPS)

� Publish/subscribe

� Response/request

� Fire and forget, events

� Synchronous and asynchronous
messaging

� Service interface definition (WSDL)

� Substitution of service implementation

� Service messaging models required
for communication and integration
(SOAP, XML, or proprietary
Enterprise Application Integration
models)

� Service directory and discovery

Integration Quality of service

� Database

� Legacy and application adapters

� Connectivity to enterprise application
integration middleware

� Service mapping

� Protocol transformation

� Data enrichment

� Application server environments
(J2EE and .Net)

� Language interfaces for service
invocation (Java, C/C++, or C#)

� Transactions (atomic transactions,
compensation, WS-Transaction)

� Various assured delivery paradigms
(WS-ReliableMessaging or support
for Enterprise Application Integration
middleware)

Security Service level

� Authentication

� Authorization

� Non-repudiation

� Confidentiality

� Security standards (Kerberos,
WS-Security)

� Performance (response time,
throughput and capacity)

� Availability

� Other continuous measures that might
form the basis of contracts or
agreements
48 Patterns: Implementing Self-Service in an SOA Environment

Integration
Because additional integration capabilities could be supported, the ESB should
be capable of connectivity to a wide range of different service providers, using
adapters and EAI middleware. It should be capable of data enrichment to alter
the service request content and destination on route, and map an incoming
service request to a one or more service providers.

Quality of service
The ESB might be required to support service interactions that require different
qualities of service to protect the integrity of data mediated through those
interactions. This support can involve transactional support, compensation, and
levels of delivery assurance. These features should be variable and driven by
service interface definitions. Other ESB quality of service considerations include:

� Support qualities of service on top of communication protocols that are
fundamentally more brittle

� Business transactions spanning several systems that need to be monitored
as a whole

� Support for exception and error handling

Message processing Management and autonomic

� Encoded logic

� Content-based logic

� Message and data transformations

� Message and service aggregation and
correlation

� Validation

� Intermediaries

� Object identity mapping

� Service / message aggregation

� Store and forward

� Administration capability

� Service provisioning and registration

� Logging

� Metering

� Monitoring

� Integration to systems management
and administration tooling

� Self-monitoring and self-management

Modeling Infrastructure Intelligence

� Object modeling

� Common business object models

� Data format libraries

� Public versus private models for
business-to-business integration

� Development and deployment tooling

� Business rules

� Policy-driven behavior, particularly for
service level, security and quality of
service capabilities (WS-Policy)

� Pattern recognition
 Chapter 3. SOA and the Enterprise Service Bus 49

Security
The ESB should ensure the integrity and confidentiality of the services that it
carries is maintained. It should integrate with the existing security infrastructures
to address the essential security functions, such as:

� Identification and authentication
� Access controls
� Confidentiality
� Data integrity
� Security management and administration
� Disaster recovery and contingency planning
� Incident reporting

Additionally, the ESB should integrate with the overall management and
monitoring of the security infrastructure. The ESB can either provide security
directly or can integrate with other components, such as authentication,
authorization, and directory components.

Service level
The ESB should mediate interactions between systems supporting specific
performance, availability and other requirements. It should offer a variety of
techniques and capabilities to meet these requirements. The ESB should provide
support that allows technical and business service level agreements to be
monitored and enforced.

Message processing
The ESB needs to be capable of integrating message, object, and data models
between the application components of an SOA. It should also be able to make
decisions, such as routing, based on content of service messages. The ESB
needs a mediation model that allows message processing to be customized. The
model should also allow sequencing of infrastructure services (for example,
security logging and monitoring) around business services invocations.
Mediations can be located close to consumers, providers, or anywhere in the
ESB infrastructure that is transparent to consumers and providers. Mediations
can also be chained. The ESB should be able to validate content and format.

Management and autonomic capabilities
In addition to basic management capabilities, the ESB should also support the
migration to autonomic and on demand infrastructure by supporting metering and
billing, self-healing and dynamic routing, and it should be able to react to events
to self-configure, heal, and optimize.
50 Patterns: Implementing Self-Service in an SOA Environment

Modeling
The ESB should support the increasing array of cross-industry and vertical
standards in both the XML and Web services spaces. It should support custom
message and data models. The ESB should also support the use of development
tooling and be capable of identifying different models for internal and external
services and processes.

Infrastructure intelligence
The ESB should be capable of evolving towards a more autonomic,
infrastructure. It should allow business rules and policies to affect ESB function,
and it should support pattern recognition.

3.2.7 The ESB and other SOA components
The ESB is not the only infrastructure component in an SOA. Although individual
scenarios vary, other commonly occurring components are:

� Business Service Directory, which provides details of available services to
systems that participate in the SOA.

� Business Service Choreography, which is used to orchestrate sequences of
service interactions into short or long-lived business processes.

� ESB Gateway, which is used to provide a controlled point of external access
to services where the ESB does not provide this natively. Larger
organizations are likely to keep the ESB Gateway as a separate component.
An ESB Gateway can also be used to federate ESBs within an enterprise.
 Chapter 3. SOA and the Enterprise Service Bus 51

52 Patterns: Implementing Self-Service in an SOA Environment

Chapter 4. Runtime patterns

The next step is to choose Runtime patterns that most closely match the
requirements of the application.

Runtime patterns are used to define the logical middleware structure supporting
the Application patterns. In other words, Runtime patterns describe the logical
architecture required to implement an Application pattern. Runtime patterns
depict the major middleware nodes, their roles, and the interfaces between these
nodes.

The Runtime patterns illustrated in this chapter give some typical examples of
possible solutions, but these examples should not be considered exhaustive.

4

© Copyright IBM Corp. 2005, 2006. All rights reserved. 53

4.1 An introduction to the node types
A Runtime pattern consists of several nodes representing specific functions.
Most Runtime patterns consist of a core set of common nodes, with the addition
of one or more nodes unique to that pattern. To understand the Runtime pattern,
you will need to review the node definitions described in the following sections.

� User node

The user node is most frequently a personal computing device (PC)
supporting a commercial browser, for example, Netscape Navigator and
Internet Explorer. The browser is expected to support SSL and some level of
DHTML. Increasingly, designers need to also consider that this node might be
a pervasive computing device, such as a personal digital assistant (PDA).

� Domain Name System (DNS) node

The DNS node assists in determining the physical network address
associated with the symbolic address (URL) of the requested information.
The Domain Name Server node provides the technology platform to provide
host-to-IP address mapping, allowing for the translation of names (URLs) into
IP addresses and vice versa.

� Public Key Infrastructure (PKI)

PKI is a system for verifying the authenticity of each party involved in an
Internet transaction, protecting against fraud or sabotage, and for
nonrepudiation purposes to help consumers and retailers protect themselves
against denial of transactions. Trusted third-party organizations called
certificate authorities issue digital certificates, which are attachments to
electronic messages that specify key components of the user's identity.

During an Internet transaction using signed, encrypted messages, the parties
can verify that the other’s certificate is signed by a trusted certificate authority
before proceeding with the transaction. PKI can be embedded in software
applications or offered as a service or a product. e-business leaders agree
that PKI is critical for transaction security and integrity, and the software
industry is moving to adopt open standards for their use.

� Web application server node

A Web application server node is an application server that includes an HTTP
server (also known as a Web server) and is typically designed for access by
HTTP clients and to host both presentation and business logic.

The Web application server node is a functional extension of the informational
(publishing-based) Web server. It provides the technology platform and
contains the components to support access to both public and user-specific
information by users employing Web browser technology. For the latter, the
node provides robust services to allow users to communicate with shared
54 Patterns: Implementing Self-Service in an SOA Environment

applications and databases. In this way it acts as an interface to business
functions, such as banking, lending, and Human Resources (HR) systems.

The node can contain these data types:

– HTML text pages, images, multimedia content for the client browser
– Servlets, JavaServer™ Pages™
– Enterprise beans
– Application program libraries, such as Java applets for dynamic download

to client workstations

� Web server redirector node

In order to separate the Web server from the application server, a so-called
Web server redirector node (or redirector for short) is introduced. The Web
server redirector is used in conjunction with a Web server. The Web server
serves HTTP pages and the redirector forwards servlet and JSP™ requests
to the application servers. The advantage of using a redirector is that you can
move the application server behind the domain firewall into the secure
network, where it is more protected than within the DMZ.

� Application server node

The application server node provides the infrastructure for application logic
and can be part of a Web application server. It is capable of running both
presentation and business logic but generally does not serve HTTP requests.
When used with a Web server redirector, the application server node can run
both presentation and business logic. In other situations, it can be used for
business logic only.

� Integration server node

The purpose of the integration server node is to interface between any front
end access channel, such as the Web, a call center, or a client/server (fat
client) PC, and any needed back-end application system. This can include
applications from other companies. The integration server node performs the
following kinds of services:

– Convert protocols from the front end to match what the back-end systems
understand.

– Decompose a single message from the front end (such as a Web server)
into several back-end messages (or transactions), and then recompose
the replies.

– Navigate from the front end to any back-end system that needs to be
accessed.

– In more complex cases, control the process or unit of work for a number of
back-end interactions based on a request from the front end.
 Chapter 4. Runtime patterns 55

The intent is to relieve each front end from handling the complexity of
interfacing with potentially multiple back-end systems which might be in
different companies. The front end, such as the Web server, should just need
to send a message to the integration server and have it look after the
interface.

A second purpose for locating these interface services on the Integration
server concerns security. There is a firewall between the Web server and the
integration server. The Web server does not need to know about all the
back-end addresses. Many locations do not want a server located in the DMZ
to have access directly to sensitive data and systems. In this case, the Web
server can only send messages to the integration server, nowhere else.

� Directory and security services node

The directory and security services node supplies information about the
location, capabilities, and attributes (including user ID and password pairs
and certificates) of resources and users known to this Web application
system. This node can supply information for various security services
(authentication and authorization) and can also perform the actual security
processing, for example, verifying certificates. The authentication in most
current designs validates the access to the Web application server part of the
Web server, but this node also authenticates for access to the database
server.

� Protocol firewall node

A firewall is a hardware and software or just software system that manages
the flow of information between the Internet and an organization's private
network. Firewalls can prevent unauthorized Internet users from accessing
private networks connected to the Internet, especially intranets, and can block
some virus attacks coming from the Internet. A firewall can separate two or
more parts of a local network to control data exchange between departments.
Components of firewalls include filters or screens, each of which controls the
transmission of certain classes of traffic. Firewalls provide the first line of
defense for protecting private information, but comprehensive security
systems combine firewalls with encryption and other complementary
services, such as content filtering and intrusion detection.

Firewalls control access from a less trusted network to a more trusted
network. Traditional implementations of firewall services include:

– Screening routers (the protocol firewall)
– Application gateways (the domain firewall)

A pair of firewall nodes provides increasing levels of protection at the expense
of increasing computing resource requirements.

The protocol firewall is typically implemented as an IP router.
56 Patterns: Implementing Self-Service in an SOA Environment

� Domain firewall node

The domain firewall is typically implemented as a dedicated server node. See
“Protocol firewall node” on page 56 for a description of firewalls.

� Existing applications and data node

Existing applications are run and maintained on nodes, which are installed in
the internal network. These applications provide for business logic that uses
data maintained in the internal network. The number and topology of these
existing application and data nodes is dependent on the particular
configuration used by these existing systems.

� Business service directory

The role of the business service directory is to provide details of services that
are available to perform business functions identified within a taxonomy. The
business service directory can be implemented as an open-standard UDDI
registry. Catalogs, such as a UDDI registry, can achieve one of the primary
goals of a business service directory: to publish the availability of services
and encourage their reuse across the development activity of an enterprise.

The vision of Web services defines an open-standard UDDI registry that
enables the dynamic discovery and invocation of business services. However
although technologies mature toward that vision, more basic solutions are
likely to be implemented in the near term.

� Enterprise service bus

The ESB is a key enabler for a SOA as it provides the capability to route and
transport service requests from the service requester to the correct service
provider. The true value of the ESB concept, however, is to enable the
infrastructure for SOA in a way that reflects the needs of today’s enterprise: to
provide suitable service levels and manageability, and to operate and
integrate in a heterogeneous environment.

Furthermore the ESB needs to be centrally managed and administered and
have the ability to be physically distributed.

4.1.1 Why use an enterprise service bus?
Using an ESB node is key to designing an SOA solution. For that reason, we will
go into the ESB node in more detail to help you understand the advantages.

Selecting a Runtime pattern that uses an ESB helps you achieve the following:

� Minimizes the number of adapters required for each point-to-point connection
to link service consumers to service providers.

� Improves reuse in multiple point-to-point scenarios.
 Chapter 4. Runtime patterns 57

� Addresses any technical and information model discrepancies between
services.

� Provides a single configuration point for distributed deployment.

� Decouples service requesters from providers

� Provides a common access point for service requesters

� Provides centralized security for services

The service bus can span across multiple system and application tiers, and can
extend beyond the enterprise boundary.

Figure 4-1 shows a first level decomposition of the major components that make
up an ESB node.

Figure 4-1 ESB runtime pattern: Level one

The ESB is a key enabler for an SOA because it provides the capability to route
and transport service requests from the service consumer to the correct service
provider. The ESB controls routing within the scope of a service namespace,
indicated symbolically in Figure 4-1 by the oval on the ESB Hub.

The true value of the ESB concept, however, is to enable the infrastructure for
SOA in a way that reflects the needs of today’s enterprise: to provide suitable
service levels and manageability and to operate and integrate a heterogeneous
environment. Furthermore, the ESB needs to be centrally managed and
administered and have the ability to be physically distributed.

Hub

Namespace
Directory

Enterprise Service Bus

Administration and
Security Services
58 Patterns: Implementing Self-Service in an SOA Environment

The Hub, as shown in Figure 4-1 on page 58, supports the key ESB functions
and, therefore, fulfills a large part of the ESB capabilities. The Hub has a
fundamental service integration role and should be able to support various styles
of interaction.

The following are the minimum set of functions that this node should support:

� Routing

This function removes the need for applications to know anything about the
bus topology or its traversal. The interaction that a requester initiates is sent
to one provider.

� Addressing

Addressing complements routing to provide location transparency and
support service substitution. Service addresses are transparent to the service
consumer and can be transformed by the hub. The hub obtains the service
address from the namespace directory.

� Messaging styles

The hub should support at least one or more messaging styles. The most
common are request/response, fire and forget, events, publish/subscribe, and
synchronous and asynchronous messaging.

� Transport protocols

The hub should support at least one transport that is or can be made widely
available, such as HTTP/S. The hub can provide protocol transformation. If a
protocol transformation is required that is not supported by the hub, then a
specific connector can be used to perform the transformation.

� Service interface definition

Services should have a formal definition, ideally in an industry-standard
format, such as WSDL.

� Service messaging model

The hub should support at least one model such as SOAP, XML, or a
proprietary EAI model.

A Namespace Directory component may be present to provide addressing
information in order for the hub to properly forward requests.

An Administration and Security Services component provides a single point of
administration that, at a minimum, should support service addressing and
naming. The key services that need to be provided by this node are:

� ESB configuration
� Service provisioning and registration
� Logging
 Chapter 4. Runtime patterns 59

� Metering
� Monitoring
� Integration with systems management and administration tooling

More advanced administration features that can be provided by this node include
self-monitoring and self-management.

The hub should support security capabilities such as authentication,
authorization, non-repudiation, confidentiality, and security standards, such as
Kerberos and WS-Security. The Administration and Security Services
component provides the interface to the security services.

4.2 Runtime patterns for Directly Integrated Single
Channel

The Directly Integrated Single Channel application pattern provides point-to-point
connectivity between the user and the existing back-end applications.

The Runtime pattern for the Directly Integrated Single Channel application
pattern has been broken down into a generic Runtime pattern and then further
refined using an SOA profile.

4.2.1 Generic Runtime pattern for Directly Integrated Single Channel
The Runtime pattern shown in Figure 4-2 represents one solution for the Directly
Integrated Single Channel application pattern. Based on the Enterprise Solution
Structure (ESS) Thin Client Transactional pattern, this runtime is a starting point
for extending business to the Web.
60 Patterns: Implementing Self-Service in an SOA Environment

Figure 4-2 Directly Integrated Single Channel application pattern::Generic profile

The generic profile Runtime pattern uses a Web server redirector containing the
Web server and an application server, effectively splitting the function of a Web
application server across two machines. Placing the application server in the
internal network provides a higher level of security than you might find in
installations with one Web application server protected by a single layer of
firewall security. The application server node will run both presentation and
business logic. The Web server remains in the DMZ and serves static pages.
The Web server redirector forwards requests from the Web server to the
application server.

4.2.2 SOA profile for Directly Integrated Single Channel
The Runtime pattern for the Directly Integrated Single Channel application
pattern can be refined as shown in Figure 4-3 to take advantage of service
oriented architecture technology.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

Existing
Applications

and Data

Application
Server

Presentation
Application

Directly Integrated Single Channel application

Application
Application
 Chapter 4. Runtime patterns 61

Figure 4-3 Directly Integrated Single Channel application pattern::Runtime pattern: SOA profile

In this SOA profile, the application server node becomes the service consumer
with the back-end applications acting as service providers. The service
consumer is connected to the service providers with a simple enterprise service
bus. Due to the nature of the SOA approach, the consumer and provider could
be reversed.

Implementing the SOA profile with an ESB adds extra capabilities to the runtime
pattern, for example routing and decomposition capability. Because of this, the
SOA profile for the Directly Integrated Single Channel runtime pattern can be
applicable to multiple Self-Service application patterns. This highlights the fact
that using SOA facilitates the future expansion of solution functionality without
requiring major changes to the middleware structure.

4.3 Runtime patterns for Router
The Router application pattern provides intelligent routing from multiple channels
to multiple back-end applications using a hub-and-spoke architecture. The
interaction between the user and the back-end application is a one-to-one
relation, meaning the user interacts with applications one at a time.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

Presentation

Directly Integrated Single Channel application
Application

ApplicationApplication

ESB
Application

Server
Existing

Applications
and Data

<service consumer> <service provider>

Business
Service

Directory
62 Patterns: Implementing Self-Service in an SOA Environment

The Runtime pattern for the Router application pattern has been broken down
into a generic Runtime pattern and then further refined using an SOA profile.

4.3.1 Generic Runtime pattern for Router
The Runtime pattern shown in Figure 4-4 represents one solution for the Router
application pattern.

Figure 4-4 Router application pattern::Generic runtime pattern

This Runtime pattern uses a Web server redirector node in the DMZ to serve
static HTML pages to the client. Requests for dynamic data are forwarded to the
application server in the internal network. Together, these two nodes provide the
presentation tier, capable of handling multiple, diverse, presentation styles.
Using a redirector allows you to place the bulk of the business logic behind the
protection of both the protocol and domain firewalls.

In addition to presentation logic, primarily in the form of JavaServer Pages
(JSPs), the application server contains some business logic. This is primarily in
the form of the controlling servlets required to access the back-end applications.
The application server builds a request based on user input and passes it to the
integration server.

The integration server examines the request, determines the appropriate
destination, and forwards it to the chosen back-end application, where the

Internal Network
Demilitarized Zone

(DMZ)Outside World
Pr

ot
oc

ol
 F

ire
w

al
l

I
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

Application
Server

Integration
Server

Existing
Applications

and DataD
om

ai
n

Fi
re

w
al

l

Presentation

Router application pattern
Application

Application
Router

Presentation
 Chapter 4. Runtime patterns 63

primary business logic resides. This may involve activities such as message
transformation, protocol conversion, security management, and session
concentration. The integration server may use a database to look up routing
information, as a caching device, or for holding intermediary data.

4.3.2 SOA profile for Router
The Runtime pattern for the Router application pattern can be refined as shown
in Figure 4-5 to take advantage of service oriented architecture technology. In
this SOA profile, the application server node becomes the service consumer with
the back-end applications acting as service providers. The service consumer is
connected to the service providers via a simple enterprise service bus.

Figure 4-5 Router application pattern::Runtime pattern: SOA profile

In this pattern the ESB node has replaced the integration server node. It provides
the message routing function, as well as protocol conversion, logging,
transformation, or other tasks related to the proper routing of messages.

The ESB approach:

� Minimizes the number of adapters required to link service consumers to
service providers.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

ESB
Application

Server
Existing

Applications
and Data

<service consumer> <service provider>

Business
Service

Directory

Presentation

Router application pattern
Application

Application
Presentation

Router
64 Patterns: Implementing Self-Service in an SOA Environment

� Improves reuse.

� Addresses any technical and information model discrepancies amongst
services.

� Provides a single configuration point for distributed deployment.

� Decouples service requesters from providers

� Provides a common access point for service requesters

� Provides centralized security for services

The ESB can span across multiple system/application tiers, and may extend
beyond the enterprise boundary.

Note that this Runtime pattern appears to be identical to the SOA profile of the
Runtime pattern for the Directly Integrated Single Channel application pattern.
The use of SOA and an ESB introduces the flexibility to accommodate a wide
range of functionality, including point-to-point, routing, and as we will see later,
decomposition capability.

4.4 Runtime patterns for Decomposition
The Decomposition application pattern expands on the Router application
pattern, providing all the features and functions of that pattern and adding
recomposition/decomposition. This capability allows an incoming request to be
split into multiple requests directed to separate back-end applications. The
results of these requests is recombined into a single response to the user.

The Runtime pattern for the Decomposition application pattern has been broken
down into a generic Runtime pattern and then further refined using an SOA
profile.

4.4.1 Generic Runtime pattern for Decomposition
The Runtime pattern shown in Figure 4-6 on page 66 represents one solution for
the Decomposition application pattern.
 Chapter 4. Runtime patterns 65

Figure 4-6 Decomposition application pattern::Generic runtime pattern

In the Decomposition application pattern, the decomposition tier serves as an
integration point for delivery channels in the presentation tier, allowing access to
individual back-end applications. In the Generic runtime pattern (Figure 4-6 on
page 66), the functions of the decomposition tier are performed by an integration
server node. The functions of the presentation tier are performed jointly by a
Web server redirector node and the application server node. Placing a Web
server redirector in the DMZ provides an extra layer of security by putting all
application logic behind the firewall. Only a portion of the presentation function is
left in the DMZ.

The Web server redirector serves static HTTP pages, while forwarding dynamic
servlet and JSP requests to the application server. The presentation logic,
therefore, spans both nodes. Together, these two provide the presentation tier,
capable of handling multiple, diverse presentation styles. Using a redirector
allows you to place the bulk of the business logic behind the protection of both
the protocol and domain firewalls.

In addition to presentation logic (for example, JSPs), the application server
contains some business logic. This is primarily in the form of the controlling
servlets required to access the back-end applications. The application server
builds a request based on user input and passes it to the integration server node.
The primary business logic resides in the back-end applications.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

Application
Server

Presentation

Decomposition application pattern
Application

Application
Decomposition

Integration
Server

Existing
Applications

and Data

D
om

ai
n

Fi
re

w
al

l

Presentation
66 Patterns: Implementing Self-Service in an SOA Environment

The integration server examines messages and routes them to the appropriate
back-end applications. It can go a step further by taking a single complex
message, decomposing it into multiple messages, and routing those messages
to the appropriate back-end applications. It is also capable of managing these
messages such that it can wait for responses and recompose them into a single
response to be sent back to the user. This effectively takes multiple, diverse
back-end applications and unifies them into one interface for the user.

The integration server can use a local database as a work-in-progress database
to store information required for message decomposition and recomposition.

4.4.2 SOA profile for Decomposition
The Runtime pattern for the Decomposition application pattern can be refined as
shown in Figure 4-7 to take advantage of service oriented architecture
technology. In this SOA profile, the application server node becomes the service
consumer with the back-end applications acting as service providers. The
service consumer is connected to the service providers via a simple enterprise
service bus.

Figure 4-7 Decomposition application pattern::Runtime pattern:SOA profile

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

ESB
Application

Server
Existing

Applications
and Data

<service consumer> <service provider>

Business
Service

Directory

Presentation

Decomposition application pattern
Application

Application
Decomposition

Presentation
 Chapter 4. Runtime patterns 67

The functionality related to handling messages including
decomposition/recomposition, routing, transformation, logging, and protocol
conversion moves to the ESB.

The ESB approach:

� Minimizes the number of adapters required to link service consumers to
service providers.

� Improves reuse.

� Addresses any technical and information model discrepancies amongst
services.

� Provides a single configuration point for distributed deployment.

� Decouples service requesters from providers

� Provides a common access point for service requesters

� Provides centralized security for services

Note that this Runtime pattern appears to be identical to the SOA profile of the
Runtime patterns for the Directly Integrated Single Channel and Router
application patterns. The use of SOA and an ESB introduces the flexibility to
accommodate a wide range of functionality, including point-to-point, routing, and
decomposition capability.
68 Patterns: Implementing Self-Service in an SOA Environment

Chapter 5. Product mappings and
product overview

The next step after choosing a Runtime pattern is to determine the actual
products and platforms to be used. It is suggested that you make the final
platform recommendation based on the following considerations:

� Existing systems and platform investments
� Client and developer skills available
� Client choice

The platform selected should fit into the customer's environment and ensure
quality of service, such as scalability and reliability, so that the solution can grow
along with the e-business.

Our sample application has been implemented using IBM WebSphere
Application Server V6 in the Microsoft Windows 2000 environment.

This chapter introduces the major products used in the application and provides
an overview of the products as they apply to the selected SOA profile Runtime
patterns.

5

© Copyright IBM Corp. 2005, 2006. All rights reserved. 69

5.1 Product mapping
Figure 5-1 shows a Product mapping based on the Windows 2000 operating
system platform and the SOA profile of the Runtime patterns described in:

� “Runtime patterns for Directly Integrated Single Channel” on page 60.

� “Runtime patterns for Router” on page 62

� “Runtime patterns for Decomposition” on page 65

The SOA profile of each of these Runtime patterns uses the same nodes. As we
pointed out earlier, the use of SOA and an ESB provides a wide range of
functionality. The differentiator between the Runtime patterns is the functionality
implemented within the ESB. Our selection of products (see Figure 5-1) was
such that the same product set could be used for the implementation of each of
the Runtime patterns.

Figure 5-1 Windows 2000 Product mapping

This product mapping implements the ESB using the service integration
technology in WebSphere Application Server. The service integration bus
provides the service endpoints and queue destinations used by the consumers to
access the providers. The service integration bus has the ability to mediate

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server Application

Server
Existing

Applications
and Data

Windows 2000 + SP4
IBM WebSphere Application
Server V6.0 HTTP Plug-in
IBM HTTP Server 6.0

<service consumer> <service provider>

ESB

Business
Service

Directory

Directory and
Security
Services

Windows 2000 + SP4

JMS Option:
IBM WebSphere Application Server V6.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
IBM WebSphere Application Server V6.0
IBM DB2 UDB ESE 8.2
Web service EJB application

JCA Option:
z/OS Release 1.4
IBM CICS Transaction Gateway V6.0
IBM CICS Transaction Server V3.1
CICS COBOL application

Windows 2000 + SP4
IBM WebSphere
Application Server V6.0

IBM WebSphere Application
Server Network Deployment
V6.0 - IBM WebSphere
UDDI Registry.
70 Patterns: Implementing Self-Service in an SOA Environment

messages as they pass through the bus. Mediation can be used to affect the
processing of the message, to translate the format, change the destination, log
information, or other actions before the message reaches the service provider.
Use of the bus provides a central management location that insulates changes in
the service providers from the service consumers.

The following alternatives are shown for the implementation of the services
provided by the back-end enterprise applications:

� Web services using IBM WebSphere Application Server V6

The SOA approach in this case is implemented using Web services. The
application server acts as the service consumer and the back-end application
as the service provider. The service integration bus provides the Web service
endpoint for the service consumer.

� J2EE Connectors using IBM CICS

The SOA approach in this case is also implemented using Web services. The
service provider uses a CICS ECI J2EE Connector adapter to access the
existing CICS enterprise application using the CICS Transaction Gateway.
The functionality that invokes the CICS application is wrapped as a Web
service.

� Java Message Service (JMS) using the WebSphere Application Server V6
default messaging provider

The SOA approach is implemented using JMS messaging. The
implementation shown uses the default messaging provider integrated in
WebSphere Application Server V6. This is acceptable because the enterprise
application receiving the messages is a WebSphere application on an
application server connected to the same bus. For more advance messaging
environments, the use of WebSphere MQ, or the default messaging provider
in conjunction with WebSphere MQ are better options. In either case, the
Java application uses JMS to place messages on a local queue. The
messaging provider is then responsible for ensured delivery of this message
to the proper destination.

The service integration bus provides the communication infrastructure for the
default messaging provider.

By using a Web server redirector node, we can place the majority of the business
logic in the internal network, placing it behind two firewalls. The redirector is
implemented using the IBM HTTP Server and WebSphere Application Server
Web server plug-in. The redirector serves static HTML pages and forwards
requests for dynamic content to a WebSphere application server using the HTTP
protocol.
 Chapter 5. Product mappings and product overview 71

The network protocols used are:

� HTTP/HTTPS

Hypertext Transfer Protocol (HTTP V1.1), or Hypertext Transfer Protocol
Secure (HTTPS - HTTP V1.1/SSL V3), is used from the user’s Web browser
to the HTTP server in the Web server redirector node.

HTTP (or HTTPS) is also used from the WebSphere Web server plug-in in the
Web server redirector node to the Web container in the Application server
node.

� LDAP

The application server uses Lightweight Directory Access Protocol (LDAP V3)
to access the LDAP server in the Directory and Security Services node.

� JDBC

The application server uses a Java Database Connectivity (JBDC V2.0) driver
to access the database.

� The protocol alternatives used to connect to the enterprise tier are:

– SOAP/HTTP

Simple Object Access Protocol (SOAP 1.1) and HTTP V1.1 are used
between the Web services client in the application server node and the
Web service provider in the existing enterprise tier.

Message data is passed using XML V1.0 with UTF-8 encoded character
strings. Messages are validated using the message’s XML schema
definition.

– CICS Transaction Gateway TCP

The proprietary CICS Transaction Gateway V6.0 TCP protocol is used
from the J2C resource adapter in the application server to the CICS
Transaction Gateway in the existing enterprise tier.

Message data is passed using a byte array representing the CICS
COMMAREA. Character data can flow in ASCII or EBCDIC, or it could be
binary.

– WebSphere MQ and the WebSphere Application Server default
messaging provider:

The proprietary WebSphere MQ protocol is used from the messaging
provider on the application server node to the messaging provider in the
existing enterprise tier.

Message data is passed using XML V1.0 with UTF-8 encoded character
strings. Messages are validated using the message’s XML schema
definition.
72 Patterns: Implementing Self-Service in an SOA Environment

5.2 IBM WebSphere Application Server
The IBM WebSphere Application Servers are a suite of servers that implement
the J2EE specification. This simply means that any Web applications that are
written to the J2EE specification can be installed and deployed on any of the
servers in the WebSphere Application Server family.

The primary component of the WebSphere Application Server products is the
application server, which provides the environment to run your Web-enabled
e-business applications. You can think of an application server as Web
middleware, the middle tier in a three-tier, e-business environment. The first tier
is the Web server that handles requests from the browser client. The third tier is
the business database, for example DB2 UDB, and the business logic, for
example, traditional business applications such as order processing. The middle
tier is IBM WebSphere Application Server, which provides a framework for
consistent, architected linkage between the HTTP requests and the business
data and logic.

Figure 5-2 WebSphere Application Server product overview

Web
server

WebSphere
Application

Server

Application
Server

Application
Server

Clients

Web browser

Java

Msg
Queue

Msg
Queue

Legacy
systems

CICS
IMS
DB2
SAP
etc.

Application
Server

J2EE applications

Messaging

Web
services
provider

Enterprise
application
developer

Rational
Application
Developer

Rational Web
Developer

Web
application
developer

Secure
access

Tivoli
Access

Manager

Web services
Web

Services
Gateway

Web
Services
Gateway

Application
Server
 Chapter 5. Product mappings and product overview 73

WebSphere Application Servers are available in multiple packages to meet
specific business needs. They also serve as the base for other WebSphere
products, such as WebSphere Commerce, by providing the application server
required for running these specialized applications.

WebSphere Application Servers are available on a wide range of platforms,
including UNIX®-based platforms, Microsoft operating systems, IBM z/OS®, and
IBM Eserver® iSeries.

5.2.1 WebSphere Application Server V6 for distributed platforms
The latest product to be announced in the WebSphere Application Server family
is IBM WebSphere Application Server V6. It features:

� Full J2EE 1.4 support

� High-performance connectors to many common back-end systems, reducing
the coding effort required to link dynamic Web pages to real line-of-business
data.

� Application services for session and state management

� Web services

Web services enable businesses to connect applications to other business
applications, to deliver business functions to a broader set of clients and
partners, to interact with marketplaces more efficiently, and to create new
business models dynamically.

� A fully integrated JMS 1.1 messaging provider

This messaging provider complements and extends WebSphere MQ and
application server. It is suitable for messaging among application servers and
for providing messaging capability between WebSphere Application Server
and an existing WebSphere MQ backbone.

� Many of the programming model extensions previously found in WebSphere
Business Integration Server Foundation

Because varying e-business application scenarios require different levels of
application server capabilities, WebSphere Application Server is available in
multiple packaging options. Although they share a common foundation, each
option provides unique benefits to meet the needs of applications and the
infrastructure that supports them. At least one WebSphere Application Server
product package fulfills the requirements of any particular project and the
prerequisites of the infrastructure that supports it. As your business grows, the
WebSphere Application Server family provides a migration path to higher
configurations.
74 Patterns: Implementing Self-Service in an SOA Environment

WebSphere Application Server - Express V6
The Express package is geared to those who need to get started quickly with
e-business. It is specifically targeted at medium-sized businesses or
departments of a large corporation, and is focused on providing ease of use and
ease of application development. It contains full J2EE 1.4 support but is limited to
a single-server environment.

WebSphere Application Server - Express is unique from the other packages in
that it is bundled with an application development tool. Although there are
WebSphere Studio and Rational Developer products designed to support each
WebSphere Application Server package, normally they are ordered independent
of the server. WebSphere Application Server - Express includes the Rational
Web Developer application development tool. It provides a development
environment geared toward Web developers and includes support for most J2EE
1.4 features with the exception of Enterprise JavaBeans™ (EJB™) and J2EE
Connector Architecture (JCA) development environments. However, keep in
mind that WebSphere Application Server - Express V6 does contain full support
for EJB and JCA, so you can deploy applications that use these technologies.

WebSphere Application Server V6
The WebSphere Application Server package is the next level of server
infrastructure in the WebSphere Application Server family. Though the
WebSphere Application Server is functionally equivalent to that shipped with
Express, this package differs slightly in packaging and licensing. The
development tool included is a trial version of Rational Application Developer, the
full J2EE 1.4 compliant development tool.

WebSphere Application Server Network Deployment V6
WebSphere Application Server Network Deployment is an even higher level of
server infrastructure in the WebSphere Application Server family. It extends the
WebSphere Application Server base package to include clustering capabilities,
Edge components, and high availability for distributed configurations. These
features become more important at larger enterprises, where applications tend to
service a larger customer base, and more elaborate performance and availability
requirements are in place.

Application servers in a cluster can reside on the same or multiple machines. A
Web server plug-in installed in the Web server can distribute work among
clustered application servers. In turn, Web containers running servlets and Java
ServerPages (JSPs) can distribute requests for EJBs among EJB containers in a
cluster.

The addition of Edge components provides high performance and high
availability features. For example:
 Chapter 5. Product mappings and product overview 75

� The Caching Proxy intercepts data requests from a client, retrieves the
requested information from the application servers, and delivers that content
back to the client. It stores cacheable content in a local cache before
delivering it to the client. Subsequent requests for the same content are
served from the local cache, which is much faster and reduces the network
and application server load.

� The Load Balancer provides horizontal scalability by dispatching HTTP
requests among several, identically configured Web server or application
server nodes.

5.2.2 Service integration
The service integration functionality within WebSphere Application Server V6
provides the infrastructure to support both message-oriented and
service-oriented applications. This new functionality is based on the concept of
the service integration bus, or simply, the bus.

The bus provides advanced support for application integration. It combines
support for applications connecting through native JMS, WebSphere MQ JMS,
WebSphere MQ, and Web services. It supports the message-oriented
middleware and request-response interaction models. As a part of this, the
service integration bus supports multiple message distribution models, reliability
options, and transactional messaging.

Figure 5-3 on page 77 gives you a high-level view of the bus functionality.
76 Patterns: Implementing Self-Service in an SOA Environment

Figure 5-3 Service integration bus

� Bus

A service integration bus, or bus, provides a conceptual connection point for
destinations and services. The application integration capabilities of the
service integration bus are provided by a number of connected messaging
engines.

� Messaging engine

While the conceptual entity clients connect to is the bus, the physical
connection is to a messaging engine. A messaging engine manages bus
resources and provides the connection point for applications. Each
messaging engine is associated with a server or cluster that is a member of
the bus.

A messaging engine manages messages by routing them to the appropriate
endpoint, through additional messaging engines if required. These messages
can be persisted to a database and managed within a transactional scope.

 Bus

Application
Server 3

Messaging
Engine

Cell

WebSphere MQ

Queue Manager

C
ha

nn
el

Node

Deployment Manager

WebSphere Application Server V6 Cell

 Bus

Application
Server 1

Messaging
Engine

Publication Point

Queue
Destination

Topic Space
Destination

Application
Server 2

Messaging
Engine

Queue Point

Foreign Bus
Link

Foreign Bus
Link

Mediation Point
 Chapter 5. Product mappings and product overview 77

Clients can connect into any messaging engine in the bus and send
messages to it. If the destination is assigned to a different messaging engine,
the messaging engine will route it to the correct messaging engine.

� Destination

A destination is an addressing point within a bus. A destination is assigned to
one bus member and, therefore, one or more messaging engines. Clients
send messages to a destination and the bus ensures that it is routed to the
correct localization on the bus. The following destination types are supported
by the service integration bus:

– Web service destinations

Web service destinations are a representation of an outbound Web service
in the bus. They are used as a placeholder for a port selection mediation.

– Port destinations

Port destinations are a representation of an outbound Web service port.
Sending a Web service request to a port destination will result in the target
Web service being invoked.

– Queue destinations

Queue destinations are destinations that are configured for point-to-point
messaging.

– Topic space destinations

Topic space destinations are destinations that are configured for
publish/subscribe messaging.

– Alias destinations

Alias destinations are destinations that are configured to refer to another
destination. They provide an extra level of indirection for messaging
applications. An alias destination can also be used to override some of the
values specified on the target destination, such as default reliability and
maximum reliability. An alias destination can also refer to a destination on
a foreign bus. Foreign buses are discussed in “Foreign bus link” on
page 79.

– Foreign destinations

Foreign destinations are not actual destinations within a service
integration bus, but they can be used override the default reliability and
maximum reliability properties of a destination that exists on a foreign bus.
Foreign buses are discussed in “Foreign bus link” on page 79.

Destinations can be mediated to provide advanced message formatting and
routing function.
78 Patterns: Implementing Self-Service in an SOA Environment

� Message point

When a destination is assigned to a bus member, a message point is created.
The messages are stored on the message point. The following are the types
of message point that can be contained with a messaging engine:

– A Queue point is the message point for a queue destination,

– A Publication point is the message point for a topic space.

Creating a topic space destination automatically defines a publication
point for each messaging engine within the bus.

– Mediation points, are where messages are stored while they wait to be
mediated. A mediated destination also has mediation points.

� Mediation

A mediation processes in-flight messages between the production of a
message by one application and the consumption of a message by another
application. Mediations enable the messaging behavior of a bus to be
customized. Examples of the processing that can be performed by a
mediation are:

– Transforming a message from one format into another

– Dynamically routing messages to one or more target destinations that
were not specified by the sending application

– Augmenting messages by adding data from a data source

– Disaggregation of a request into several requests and then aggregation of
the responses

When you configure a mediation for use at a particular destination, the
physical location is called a mediation point.

� Foreign bus link

A bus can be configured to connect to and exchange messages with other
messaging networks. A foreign bus is how the service integration bus refers
to one of these networks.

A foreign bus encapsulates information related to the remote messaging
network, such as the type of the foreign bus and whether messaging
applications are allowed to send messages to the foreign bus. When buses
are interconnected, applications can send messages to destinations defined
on other buses.

When a foreign bus is configured on a bus, it simply names a foreign bus. It
does not define a link between the two. In order for the two buses to be able
to communicate with each other at runtime, links must be configured between
a specific messaging engine within the local bus and a specific messaging
engine, or queue manager, within the foreign bus. When configuring a direct
 Chapter 5. Product mappings and product overview 79

service integration bus link, these links must be configured in both directions
in order for the two buses to be able to communicate. At runtime, messages
that are routed to a foreign bus will flow across the corresponding link.

5.2.3 ESB capabilities
WebSphere Application Server V6 provides several runtime features that support
ESB capabilities. It has support for Web services standards and for programming
models that enable data and message manipulation. Development tools for
WebSphere Application Server, such as Rational Application Developer, include
tools and wizards that simplify the development of application, framework, or
infrastructure code to leverage those runtime features.

WebSphere Application Server provides, through the service integration bus
component, communication infrastructure for messaging and Web services
applications that enables it to support the communication and message
processing requirements of an ESB. WebSphere Application Server and tools
also provide support for a wide variety of integration methods, either directly
(databases, J2EE connectors, and so forth) or through support for Enterprise
Application Integration middleware (such as WebSphere MQ).

WebSphere Application Server V6 meets the ESB capabilities that the following
sections describe.

Communication
WebSphere Application Server supports all of the minimum and extended
capabilites that we have defined for communication, including support for:

� SOAP-based Web service hosting and invocation

� Asynchronous messaging

The support is provided by the service integration bus component that
provides a JMS V1.1 compliant JMS provider for reliable message transport.

� Synchronous messaging with HTTP and HTTPS transports

� Point-to-point, request/response, fire and forget, events, and
publish/subscribe styles of messaging

� Routing support that allows:

– Dynamic service and port selection
– Web service requests converted from one WSDL definition to another
– Internet routing with proxy

� WSDL as the service interface definition and the service implementation
definition

WSDL can publish services to a UDDI directory.
80 Patterns: Implementing Self-Service in an SOA Environment

Integration
WebSphere Application Server supports all of the minimum and extended
capabilites that we have defined for integration, including support for:

� JDBC used for connectivity to external data sources, for example, a relational
database.

� Protocol transformation capability comes in the form of the service integration
bus supporting transformation from SOAP/HTTP to SOAP/JMS and vice
versa.

� Existing software and application adapters can be incorporated into the
system by implementing the J2EE Connector Architecture support for
connecting the J2EE platform to heterogeneous Enterprise Information
Systems (EIS). Examples include ERP, mainframe transaction processing,
database systems, and existing applications not written in the Java
programming language.

� Connectivity to enterprise application middleware

The service integration bus is tightly integrated with WebSphere MQ.
Connections can be defined so that WebSphere MQ queue managers view a
service integration bus as a queue manager, and so the service integration
bus views queue managers as another bus. The JMS support means
messages can be exchanged with any other JMS V1.1 compliant provider.

� Data enrichment of services messages within the ESB

The service integration bus provides mediation support that allows
processing of in-flight messages. Examples of the processing that can be
performed by a mediation are transforming a message from one format into
another, routing messages to one or more target destinations that were not
specified by the sending application, augmenting messages by adding data
from a data source, and distributing messages to multiple target destinations.

� WebSphere Application Server is a fully J2EE V1.4 compliant application
server.

� Language interfaces for service invocation

WebSphere Application Server supports Java interfaces. It provides Web
service support so that it can act as both a Web service provider and as a
consumer. As a provider, it hosts Web services that are published for use by
clients. As a consumer, it hosts applications that invoke Web services from
other locations

Security
WebSphere Application Server supports some of the extended capabilites that
we have defined for security, including support for:
 Chapter 5. Product mappings and product overview 81

� Tokens, keys, signatures, and encryption according to the WS-Security
specification can be applied to every deployed Web service.

� Authentication and authorization as part of J2EE.

� HTTPS

� Enabled proxy authentication

� Message-level security, as part of the WS-Security specification, and
implemented using JAX-RPC

Message processing
WebSphere Application Server supports some of the extended capabilites that
we have defined for message processing. It provides:

� Content based logic support

The mediation support in the service integration bus allows messages to be
routed and altered based on content.

� Message and data transformation support using mediations in the service
integration bu.

� Message aggregation and correlation support

The mediation framework requires custom Java coding to perform
aggregation and correlation.

� Validation supported only through mediation support

This means validation must be coded instead of configured.

� Intermediary support

The service integration bus allows WebSphere Application server to act as an
intermediary.

� Store and forward support

Modeling
WebSphere Application Server has limited support for the extended capabilites
that we have defined for modeling.

Service interaction
WebSphere Application Server supports all of the minimum and some of the
extended capabilites that we have defined for service interaction. It provides:

� WSDL support for the service interface definition and the service
implementation definition

� Service directory and discovery support
82 Patterns: Implementing Self-Service in an SOA Environment

� Substitution of service implementation

Using WebSphere Application Server as an ESB means service
implementations can be substituted without the service consumer needing to
be aware of the change.

Quality of service
WebSphere Application Server supports some of the extended capabilites that
we have defined for quality of service. It provides:

� Assured delivery support

The service integration bus supports five levels of message reliability and
persistence. The integration with WebSphere MQ means that it can also use
the assured delivery features of WebSphere MQ.

� Transaction support

WebSphere Application Server can act as an XA compliant transaction
manager or as a participant in transactions controlled by another transaction
controller.

Service level
WebSphere Application Server supports some of the extended capabilites that
we have defined for service level. It provides:

� Performance tuning and monitoring tools

In particular, Web service performance can be monitored through the
Performance Monitoring Infrastructure (PMI), including the number of
asynchronous and synchronous requests and responses.

� High availability

WebSphere Application Server Network Deployment provides a number of
facilities for provide high availability across all components of the WebSphere
Application Server environment.

Management and autonomic systems
WebSphere Application Server supports all of the minimum and some of the
extended capabilites that we have defined for management and autonomic
systems. It provides:

� Administration tools and support

� Provision for service provision and registration

� Integration to system management and administration tooling, in particular
IBM Tivoli® products
 Chapter 5. Product mappings and product overview 83

Infrastructure intelligence
WebSphere Application Server has limited support for the extended capabilites
that we have defined for infrastructure intelligence.

5.3 IBM Rational Software Development Platform
The IBM Rational Software Development Platform is not a single product, but
rather an integrated set of products which share a common technology platform
built on the Eclipse 3.0 framework in support of each phase of the development
life cycle.

The IBM Rational Software Development Platform provides a team-based
environment with capabilities that are optimized for the key development team
roles, including: business analyst, architect, developer, tester, and deployment
manager. It enables a high degree of team cohesion through shared access to
common requirements, test results, software assets, and workflow and process
guidance. Combined, these capabilities improve both individual and team
productivity.

Figure 5-4 Rational Software Development Platform products

We have included a brief description of each of the products included in the IBM
Rational Software Development Platform (see Figure 5-4) that share common
tooling based on the IBM Eclipse SDK V3.0 (IBM supported Eclipse 3.0):

Rational Software Development Platform (IBM Eclipse SDK 3.0)

WebSphere
Business
Integrator
Modeler

Rational
Web

Developer

Rational
Application
Developer

Rational
Software
Architect

Rational
Software
Modeler

Rational
Function
Tester

Rational
Performance

Tester

Analyst Architect / Application Developer Tester

Rational
Manual
Tester
84 Patterns: Implementing Self-Service in an SOA Environment

� Rational Software Modeler

The Software Modeler is a UML-based visual modeling and design tool for
system analysts, software architects, and designers who need to clearly
define and communicate their architectural specifications to stakeholders.

This product was known in previous releases as Rational XDE™ Modeler and
is targeted at development shops where the business analyst has the distinct
role of architecture and design but no development.

� Rational Software Architect

The Software Architect is a design and construction tool that leverages
model-driven development with UML for creating well-architected
applications, including those based on a Service-Oriented Architecture
(SOA). It unifies modeling, Java structural review, Web Services, J2SE™,
J2EE, database, XML, Web development, and process guidance for
architects and senior developers creating applications in Java or C++.

This product was known in previous releases as Rational Rose® and Rational
XDE for Java. Software Architect includes architecture and design capability
as well as full J2EE development functionality provided by Rational
Application Developer. This product is targeted at development shops where
the architect has a strong architecture and design role as well as application
development. If architects only need the modeling functionality, they should
use the Rational Software Modeler product.

� Rational Web Developer

The IBM Rational Web Developer is targeted to the Web application
developer and provides visual tools for Web, Java, and rich client
applications, and full support for XML, Web services, and Enterprise
Generation Language.

In previous releases this product was known as WebSphere Studio Site
Developer. Rational Web Developer is packaged with IBM WebSphere
Application Server Express V6.0.

� Rational Application Developer

The IBM Rational Application Developer is a full suite of development,
analysis, and deployment tools for rapidly implementing J2EE applications,
Enterprise JavaBeans, portlets, and Web applications.

In previous releases this product was known as WebSphere Studio
Application Developer and is targeted at J2EE developers.

Note: IBM Rational Software Architect V6.0 is used to model and develop
the ITSOMart application.
 Chapter 5. Product mappings and product overview 85

� Rational Functional Tester

The Rational Function Tester is an automated testing tool for Java, HTML,
VB.NET, and Windows applications. It provides the capability to record robust
scripts that can be played back to validate new builds of an application.

� Rational Performance Tester

The Rational Performance Tester is a multi-user, system-performance tester
designed to test Web applications, focusing on ease-of-use and scalability.

� WebSphere Business Integrator Modeler

The WebSphere Business Integrator Modeler does not carry the Rational
brand name, but is an important product of the Rational Software
Development Platform. WebSphere Business Integrator Modeler targets the
business analyst who models business processes. WebSphere Business
Integrator Modeler can be used to generate Business Process Execution
Language (BPEL) definitions to be deployed to WebSphere Business
Integrator production environments. The WebSphere Business Integrator
Modeler BPEL provides a more seamless move to production and eliminates
the need to create Visio® diagrams and then move to production.

5.3.1 Workbench
An integrated development environment (IDE) is a set of software development
tools such as source editors, compilers, and debuggers, that are accessible from
a single user interface. In Rational Software Development Platform, the IDE is
called the Workbench. Rational Application Developer’s Workbench provides
customizable perspectives that support role-based development and a common
way for all members of a project team to create, manage, and navigate
resources easily. It consists of a number of interrelated views and editors.

Views provide different ways of looking at the resource on which you are
working, while editors allow you to create and modify the resource. Perspectives
are a combination of views and editors that show various aspects of the project
resource, and are organized by developer role or task. For example, a Java
developer would work most often in the Java perspective, while a Web designer
would work in the Web perspective.

Several perspectives are provided in Rational Software Development Platform.
Team members can customize them, according to their current role or
preference. You can open more than one perspective at a time, and switch
perspectives while you are working with Rational Software Development
Platform. If you find that a particular perspective does not contain the views or
editors you require, you can add them to the perspective and position them to
suit your preference.
86 Patterns: Implementing Self-Service in an SOA Environment

Perspectives
Perspectives provide a convenient grouping of views and editors which match
the way you use Rational Software Development Platform. Depending on the
role you are in and the task you preform, you open a different perspective. A
perspective defines an initial set and layout of views and editors for performing a
particular set of development activities (for example, EJB development or
profiling). You can change the layout and the preferences, then save the
customized perspective so that you can open it again later.

Views
Views provide different presentations of resources or ways of navigating through
the information in your workspace. For example, the Navigator view displays
projects and other resources that you are working as a folder hierarchy, like a file
system view. Rational Application Developer provides synchronization between
different views and editors. Some views display information obtained from other
software products, such as database systems or software configuration
management (SCM) systems.

A view might appear by itself, or stacked with other views in a tabbed notebook
arrangement. A perspective determines the initial set of views that you are likely
to need. For example, the Java perspective includes the Package Explorer and
the Hierarchy views to help you work with Java packages and hierarchies.

Editors
When you open a file, Rational Software Development Platform automatically
opens the editor that is associated with that file type. For example, the Page
Designer editor is opened for .html, .htm and .jsp files, while the Java editor is
opened for .java and .jpage files.

Editors that have been associated with specific file types open in the editor area
of the Workbench. By default, editors are stacked in a notebook arrangement
inside the editor area. If there is no associated editor for a resource, Rational
Application Developer will open the file in the default editor, which is a text editor.

Wizards
There are a significant number of wizards available that lead you through the
process of creating almost any type of file, project, or artifact that you will need.
The wizards take you through a series of input panels where you receive
guidance in selecting and entering values to create the new item. The wizard
process provides many defaults, making the process easy. The results include
the new files and automatic updates to affected files. For example, the wizard
that creates a new dynamic Web project creates the Web project, its file structure
and deployment descriptors. The deployment descriptor for the EAR file it
belongs to is also updated to reflect the new module.
 Chapter 5. Product mappings and product overview 87

Perspective layout
Many of Rational Software Development Platform’s perspectives use a similar
layout. Figure 5-5 shows a layout of a perspective which is quite common.

Figure 5-5 Perspective layout

On the left side are views for navigating through the workspace. In the middle of
the Workbench is larger pane, usually the source editor or the design pane,
which allows you to change the code and design of files in your project. The right
pane usually contains outline or properties views. In some perspectives, the
editor pane is larger and the outline view is at the bottom left corner of the
perspective.

The content of the views is synchronized. For example, if you change a value in
the properties view, the editor view is automatically updated to reflect the
change.

Editor

Tasks

O
u

tl
in

e

N
av

ig
at

o
r

Toolbar
88 Patterns: Implementing Self-Service in an SOA Environment

5.4 Rational Application Developer
IBM Rational Application Developer V6.0 is the full function development platform
for developing Java 2 Platform Standard Edition (J2SE), and Java 2 Platform
Enterprise Edition (J2EE) applications with a focus on applications to be
deployed to IBM WebSphere Application Server and IBM WebSphere Portal.

Rational Application Developer contains a great deal of functionality for Web,
Java, and J2EE application developers. This section gives a high-level overview
of just a few of the features found in Rational Application Developer. These are
the features that you will see used in the development scenarios later in this
book.

For more information about Rational Application Developer and a more complete
listing of its capabilities, we would suggest the following IBM Redbooks:

� Rational Application Developer V6 Programming Guide, SG24-6449

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

5.4.1 Web development
Web developers can use the Web perspective and supporting views within
Rational Application Developer to build and edit Web resources such as servlets,
JSPs, HTML pages, style sheets and images, as well as the deployment
descriptor files.

You create and maintain Web resources in Web projects. They provide an
environment that enables you to perform activities such as link-checking,
building, testing, and publishing. Within a Web project, Web resources can be
treated as a portable, cohesive unit.

Web projects can be static or dynamic. Static Web projects are comprised solely
of static resources, which can be served by a traditional HTTP server (HTML
files, images, and so on), and are useful for when you do not have to program
any business logic. J2EE Web projects, on the other hand, can deliver dynamic
content as well, which gives them the ability to define Web applications.

Wizards provide the means to create Web projects and the artifacts that go in
them. These wizards include:

� HTML File wizard
� JSP File wizard
� Faces JSP File wizard
� Page Template File wizard
� JavaScript™ File wizard
 Chapter 5. Product mappings and product overview 89

� CSS File wizard
� Image File wizard

Web perspective
The Web perspective is designed for Web application development. It contains a
default set of views, wizards, and toolbar icons that are often used by Web
developers.

Page Designer
The Page Designer is the primary editor for developing HTML, XHTML, JSPs,
and Faces JSP source code. It has three representations of the page, including
Design, Source, and Preview. The Design tab provides a WYSIWYG
environment to visual design the contents of the page. As its name implies, the
Source tab provides access to the page source code. The Preview tab shows
what the page would like if displayed in a Web browser.

Web Site Designer
The Web Site Designer is provided to simplify and speed up the creation of the
Web site navigation and creation of HTML and JSP pages. You can view the
Web site in a Navigation view to add new pages, delete pages and move pages
in the site. The Web Site Designer is especially suited for building pages that use
a page template.

The Web Site Designer is used to create the structure for your application in
much the same way you would create a book outline to serve as the basis for
writing a book. You use the Web Site Designer to visually lay out the flow of the
application, rearranging the elements (JSPs, HTML pages) until it fits your
needs. Then you continue by creating pages based on this design.

As you build your Web site design, the information is stored so that navigation
links and site maps can be generated automatically. This means that when the
structure of a site changes, for example, when a new page is added, the
navigation links are automatically regenerated to reflect the new Web site
structure.

Struts
Struts development can take advantage of the Web development features
available. In addition, Rational Application Developer provides the following
support for Struts-based Web applications:

� A Web project can be configured for Struts. This adds the Struts runtime and
dependent JARs, tag libraries, and action servlet to the project, and creates
skeleton Struts configuration and application resources files. Rational
Application Developer provides support for Struts 1.1, selectable when setting
90 Patterns: Implementing Self-Service in an SOA Environment

up the project. This field is selectable as at the time of this writing support for
Struts 1.2.x is being added to Rational Application Developer.

� A set of Struts Component Wizards define action form classes, action classes
with action forwarding information, and JSP skeletons with the tag libraries
included.

� The Struts Configuration Editor maintains the control information for the
action servlet.

� A graphical design tool edits a graphical view of the Web application from
which components (forms, actions, JSPs) can be created using the wizards.
This graphical view is called a Web diagram. The Web diagram editor
provides top-down development (developing a Struts application from
scratch), bottom-up development (diagramming an existing Struts application
that you might have imported) and meet-in-the-middle development
(enhancing or modifying an existing diagrammed Struts application).

� Validators validate the Struts XML configuration file and the JSP tags used in
the JSP pages.

JavaServer Faces (JSF)
As with Struts development, JSF developers can also take advantage of the
many Web development features available in Rational Application Developer. In
addition, Rational Application Developer provides a set of views and wizards to
make working with JSF components simple. The New Faces JSP File wizard
creates a JSP for use with JavaServer Faces components and automatically
creates the corresponding backing bean. Built-in tools exist to simplify and
automate event handling and to simplify page navigation. The Palette view
contains a wide array of Faces components that you can drag and drop to the
Page Designer.

Development of a Web application using JSF can be seen in Chapter 9, “JSF
front-end scenario” on page 239.

5.4.2 EJB development
EJB development is done in the J2EE perspective. Rational Application
Developer supports the Enterprise JavaBeans 1.1, 2.0, and 2.1 specification
levels. Features for EJB development include:

� The Enterprise Bean wizard

This wizard creates stateless and stateful enterprise beans. You can choose
to create a session bean, message-driven bean, bean-managed persistent
entity bean, or container-managed persistent entity bean.
 Chapter 5. Product mappings and product overview 91

� The Deployment Descriptor editor

This editor provides an intuitive interface for modifying the EJB deployment
descriptor.

� EJBs

The EJBs automatically validated and updated as they are modified.

� Tools creating access beans

� Tools creating session bean facades

� EJB mapping tools

These tools help you map entity enterprise beans to back-end data stores,
such as relational databases. There is support for top-down, bottom-up, and
meet-in-the-middle mapping development. You can also create schemas and
maps from existing EJB JAR files.

� Deployment code generation

5.4.3 Web services support
The Rational Software Development Platform provides tools that are geared
toward the development and deployment of both Web service providers and
requesters. Web services development is normally done in the Web or J2EE
perspective.

Web services providers
The Web Service wizard assists you with the creation of Web services, either
from scratch, or from an existing application.

The bottom-up method of creating Web services takes existing artifacts,
including Java beans, enterprise beans, DADX files, and URLs, then creates a
Web service from them. It wraps the existing artifacts as SOAP-accessible
services and describes them in WSDL.

The alternate method, the top-down method, creates Web services from WSDL
that exists or is created using the WSDL Editor. This approach lets you start by
designing the Web service implementation by building a WSDL file that
describes it. You can then use the Web Services wizard to create the Web
service and skeleton Java classes to which you can add the required code.

In addition to creating the Web service, the wizard can be used to test the Web
service in the Web Service Explorer and to generate a Java bean client proxy to
the Web service.
92 Patterns: Implementing Self-Service in an SOA Environment

The Web Service wizards and deployment descriptor editors assist you with
configuring Web services security (WS-Security) for the WebSphere Application
Server environment.

Web services clients
The Web Service Client wizard assists you in generating and a Java bean proxy
and sample application to access a Web service. The input to the wizard is the
WSDL file for the Web service. The wizard allows you to select the client type
from the following:

� Web: Servlets, JSPs, or JavaBeans invoked by a servlet or JSP
� EJB: Session EJBs or JavaBeans invoked by a session EJB
� Managed Java client: Java program running in an application client container
� Stand-alone Java client: Java program running outside a container

The wizard also assists you in testing the new client.

Web Services Explorer
The IBM Web Services Explorer assists you in discovering and publishing your
Web service descriptions. The Web Services Explorer provides an interface
allowing you to publish your Web service to a UDDI v2 or v3 Business Registry.
Publishing the Web service allows you to advertise and make your Web services
available so that other businesses and clients can access them.

The Web Services Explorer can also be used to test HTTP bound Web services.

Web services sample test JSPs
The Web Service wizard can create test JavaServer Pages (JSPs) for a Web
service. This function is part of generating client-side code, such as proxy
classes, into a client Web project. The test client can be generated by the Web
Service wizard when generating server and client code and by the Web Service
Client wizard when generating a client from a WSDL file.

Web service client JSPs have an advantage over the Web Services Explorer,
because they can also be used to test SOAP/JMS Web services.

WSDL support
Wizards and editors are available to work with WSDL. You can use a graphical
editor to create a WSDL file from a template and to add WSDL elements
(service, port, port types, messages). WSDL files are validated for WS-I
compliance.
 Chapter 5. Product mappings and product overview 93

5.4.4 Connector support
Starting with Rational Application Developer version 6.0.0.1 support for
connectors is provided by the J2EE Connector (J2C) Architecture tools. These
tools allow developers to create J2EE applications that integrate and extend
operations and data on their existing Enterprise Information Systems (EIS).

Wizards
The following wizards assist in developing applications for connectors.

� J2C Java Bean Wizard: For the generation of EIS specific Java beans.

� CICS/IMS™ Data Binding Wizard: For the creation of reusable data types for
input or output into CICS/IMS transactions.

� Deployable Code Creation Wizard: For the creation of Web pages, Web
Services, or EJBs from your J2C Java bean.

Java bean editing
The following features are available when editing Java beans:

� Add method snippets. Add a new method to access an EIS operation.
� J2C doclet tag code assist, change J2C Java beans to expose or modify

generated J2C tags.

Resource adapters
The following resource adapters are supported in the J2C tools:

� CICS ECI 5.1 (J2C 1.0)
� CICS ECI 6.0 (J2C 1.5) - Outbound only
� IMS 9.1.0.1.1 (J2C 1.0)
� IMS 9.1.0.2 (J2C 1.5) - Outbound only

5.4.5 Test environment
Rational Application Developer provides support for testing, debugging, profiling
and deploying enterprise applications to local and remote test environments. To
run an enterprise application or Web application, the application must be
published, or deployed, to the server. Publishing the application is achieved by
installing the EAR project for the application into an application server. The
server can then be started and the application can be tested in a Web browser,
or by using the Universal Test Client (UTC) for EJBs and Web services.

Rational Application Developer includes integrated test environments for IBM
WebSphere Application Server V5.0/V5.1/V6.0 and IBM WebSphere Portal
V5.0.2/V5.1. You can simultaneously run multiple server configurations and test
environments in the same development environment.
94 Patterns: Implementing Self-Service in an SOA Environment

5.4.6 Team development
Rational Application Developer provides clients for ClearCase® and CVS. Using
a version control mechanism allows multiple members of a team to work on an
application by checking out files from a repository, updating them and checking
them back in.

Rational ClearCase is a software configuration management (SCM) product that
helps to automate the tasks required to write, release, and maintain software
code. Rational ClearCase offers the essential functions of version control,
workspace management, process configuration, and build management. By
automating many of the necessary and error-prone tasks associated with
software development, Rational ClearCase helps teams of all sizes build high
quality software.

Concurrent Version System (CVS) is a simple open-source software
configuration management (SCM) system. CVS only implements version control.
CVS can be used by individual developers as well as by large, distributed teams.

5.5 Rational Software Architect
Rational Software Architect contains the features found in Rational Application
Developer, plus features that appeal to software architects. Rational Software
Architect is a design and development tool that leverages model-driven
development with the Unified Modeling Language (UML) for creating
well-architected applications and services.

5.5.1 Rational Unified Process guidance
You can access process guidance content and features directly in the Rational
Software Development Platform to guide you and other team members in your
software development project. A configuration of the Rational Unified Process®
(RUP®) platform is provided with topics on software development best practices,
tool mentors, and other process-related information.

5.5.2 Model-driven development
Model-driven development (MDD) is the concept of using models as the basis of
application development. One approach to model-driven development, called
Model Driven Architecture (MDA), is in the process of being defined by the
Object Management Group (OMG). MDA defines development using UML
models at different levels of abstraction. Transformations are used to take a
 Chapter 5. Product mappings and product overview 95

model at one level and transform it to a model at a different level. You can see
the Model Driven Architecture (MDA) standards at:

http://www.omg.org/mda

Rational Software Architect provides full support for MDD with UML 2 modeling,
transformations, code generation from models, and patterns. As a part of the
model-driven development support, Rational Software Architect also supports
the current principles of Model Driven Architecture (MDA).

Transformations
A transformation converts elements of a source model to elements of a target
model. For example, the source and target model can be text files, code models
or UML models. When the source and target models are both UML models, the
transformation usually converts the elements from one level of abstraction to
another. You can apply a transformation to an entire model or a subset of model
elements in a model to generate output such as code.

Rational Software Architect comes with the following set of transformations

� Business Tier Transformations

– UML → EJB Business Tier

� Integration Tier Transformations

– UML → EJB Integration Tier
– UML → EJB UML

� Presentation Tier Transformations

– UML → IBM Portlet (JSF)

� RSA Transformations

– EMF Deployment → UML2
– UML → EMF Deployment
– UML → C++
– UML → EJB
– UML → Java

Additional transformations may be available on the Web.

Patterns
Rational design patterns capture frequently used or complex structures and
processes for reuse. They are used to integrate repeatable software design
solutions into UML 2.0 models. Rational patterns are a type of transform.
96 Patterns: Implementing Self-Service in an SOA Environment

http://www.omg.org/mda

Rational Software Architect provides the tools needed to create design patterns.
When developers recognize repeatable structures or processes they can create
patterns from them, allowing others to use these designs.

Patterns are stored in a RAS repository as a unique type of reusable asset in the
form of a plug-in. Users can browse the repository for useful patterns as they
model systems. The pattern user relies on the pattern documentation for
information about selecting and applying a pattern. Depending on the pattern
design, the pattern applier has the flexibility to apply all or only part of a pattern
as needed.

A set of sample patterns is supplied with Rational Software Architect and can be
seen in the RAS perspective. Another set of patterns is included with the product
and can be installed as an example.

5.5.3 Modeling
UML modeling provides a way of architecting systems in such a way they can be
communicated to the stakeholders. UML models show a specific perspective of a
system. Models are visual representations and as such are easily verified and
communicated. Models start at the conceptual levels and can be refined down to
detailed levels. Rational Software Architect supports UML Version 2 (UML 2).

Rational Software Architect supports modeling through all phases of software
development.

1. Capturing system requirements

The first step in any system design is to determine the requirements for the
solution. The IBM Rational RequisitePro® solution is a requirements and use
case management tool. This tool can be integrated with Rational Software
Architect, allowing you to map existing requirements to existing UML model
elements. You can also create requirements from existing model elements, or
create model elements from existing requirements definitions. The result of
this development phase is one or more use case diagrams that describe how
the system will be used.

2. Domain analysis

The next step is to build on the use case model by describing the high-level
structure of the system based on the system domain requirements. An
analysis model is used to capture this information. The analysis model
consists of class diagrams that model the static structure of the system and of
sequence diagrams that model the interactions between participants. The
analysis model describes the logical structure of the system but does not
define how it will be implemented.
 Chapter 5. Product mappings and product overview 97

3. Architectural design

The next step is to create a design model to define the architecture and
implementation choices for the application. The design model builds on the
analysis model by adding details about the system structure and how
implementation will occur. Classes that were identified in the analysis model
are refined to include the implementation constructs.

You can use a variety of diagrams for this purpose, including sequence, state
machine, component, and deployment diagrams. It is during this stage that
you can apply proven design patterns and automated model-to-model
transformations.

� Implementation

Developers transition from design to implementation by using automated
transformations to convert the model to code (such as Java, EJB, or C++)
and by continuing to develop and deploy the application by using software
and Web development, debugging, testing and deployment capabilities.

The Modeling perspective is the primary workbench interface for working with
models.

5.5.4 Asset-based development
As business needs are increasingly solved using more and more complex
software solutions, it has become apparent that many of these solutions are
created using the same integral key components structured in a similar manner.
The idea that the same actions can be performed over and over in a variety of
ways to create a solution has given rise to many of the fundamental concepts
used in software development today, namely the use of patterns to structure
solutions, and the reuse of assets within a context to build the key components of
a solution.

Asset-based development embodies the idea of developing solutions by reusing
defined and documented assets. These assets are made up of software artifacts
that detail the requirements, design elements, development and testing process,
and deployment requirements. Reusing these assets streamlines the
development process and leverages previous investments.

The success of asset-based development within a department, organization, or
on a more widespread basis, the community, lies in the ability to identify potential
assets for reuse. Once a potential asset is identified, often through repeated
experiences during development and deployment processes, it must be defined
and made available for reuse by storing it in a central repository.
98 Patterns: Implementing Self-Service in an SOA Environment

Potential consumers browse the repository for assets they can use.
Documentation, an integral part of each asset, is key to the successful use
effectiveness of an asset. The documentation details not only how the asset is to
be used, but should give enough information that a potential consumer knows if
the asset is appropriate for their use.

As a final step, feedback to the managers of the asset will help in tracking the
effectiveness and value of the asset.

Figure 5-6 Asset-based development cycle

The following platforms deliver asset-based development:

� Rational Unified Process (RUP) has defined processes for producing and
consuming assets.

� The IBM Software Development platform has incorporated asset-based
development capabilities into its products. Rational Software Architect and
Rational Software Modeler both contain tools for producing, consuming, and
managing assets.

The Reusable Asset Specification (RAS) defines a standard way to package
assets and describe their contents. Rational Software Architect provides a
reusable asset (RAS) perspective for working with reusable assets.

Asset
Production

Asset
Identification

Asset
Consumption

Asset
Management

Asset
Repository

Asset
Artifact Artifact

Asset
Artifact Artifact

Asset
Artifact Artifact

Candidate Asset

Feedback

Feedback
 Chapter 5. Product mappings and product overview 99

5.6 For more information
For further information about these topics, see the following publications:

� An introduction to Model Driven Architecture Part 1: MDA and today’s
systems

http://www-128.ibm.com/developerworks/rational/library/3100.html

� An introduction to Model-Driven Architecture (MDA): Part II: Lessons from the
design and use of an MDA toolkit

http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge
/apr05/brown/

� Model Driven Architecture (MDA) standards at:

http://www.omg.org/mda

� Reusable Asset Specification

http://www.flashline.com/ras/RAS_060604.pdf
100 Patterns: Implementing Self-Service in an SOA Environment

http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge/apr05/brown/
http://www-128.ibm.com/developerworks/rational/library/3100.html
http://www.omg.org/mda
http://www.flashline.com/ras/RAS_060604.pdf

Chapter 6. Technology options

This chapter provides an overview of the Web application technology options you
should consider when building a solution. Given the vast number of products in
the market today, a complete analysis of all options would be out of the scope of
this book. Therefore, our focus will be on IBM technology, and IBM supported
industry standards. The recommendations are guided by the demands of reuse,
flexibility, and interoperability, and subsequently are based on the open industry
standards outlined by Java 2 Platform, Enterprise Edition (J2EE). Many of the
choices continue to evolve and expand as the J2EE specification matures to
include a broader view of the enterprise architecture. These recommendations
are based on the J2EE1.3 specification and parts of the J2EE1.4 specification.

6

© Copyright IBM Corp. 2005, 2006. All rights reserved. 101

6.1 The big picture
Our discussion of technology options is organized along the enterprise
application tiers shown in Figure 6-1:

� Client technologies for interfacing with end users

� Web application server technologies for providing server-side presentation
and business logic

� Integration technologies for providing access to the enterprise tier

Figure 6-1 Self-Service application tiers

6.2 Client technologies
Figure 6-2 on page 103 shows the recommended technologies for clients.

W eb C lient W eb Application Server

Enterprise tier

Application

DB

Application

DB
Browser W eb

Server
Application

Server

C
on

ne
ct

or
s

Server tierClient tier
102 Patterns: Implementing Self-Service in an SOA Environment

Figure 6-2 Web client technology model

The clients are thin clients with little or no application logic. Applications are
managed on the server and downloaded to the requesting clients. The client
portions of the applications should be implemented in HTML, JavaScript,
Dynamic HTML (DHTML), XML, and Java applets.

The selection of client-side technologies used in your design will require
consideration for the server side, such as whether to store, or create
dynamically, elements for the client side.

The following sections outline some of the possible technologies that you should
consider, but remember that your choices may be constrained by the policy of
your customer or sponsor. For example, for security reasons, only HTML is
allowed in the Web client at some government agencies.

We also touch on some of the current wireless technology choices.

Browser/Web Top

Java VM

Applets
and

JavaBeans

Protocols - HTTP, IIOP, ...

Network Infrastructure

Native Apps
Shrink
Wrapped
Custom

CREDIT CARD

1234 5678 90121234 5678 9012
VALID FROM GOOD THRU

XX/XX/XX XX/XX/XX
PAUL FISCHER
XX/XX/XX XX/XX/XX
PAUL FISCHER

Pervasive

NC

Managed PC

PC

TCP/IP, WAP ...

HTML, DHTML, XML, WML
 Chapter 6. Technology options 103

6.2.1 Web-based clients
In this section we discuss the key technologies involved with Web-based clients.

Web browser
A Web browser is a fundamental component of the Web client. For PC-based
clients, the browser typically incorporates support for HTML, DHTML, JavaScript,
and Java. Some browsers are beginning to add support for XML as well. Under
user control, there is a whole range of additional technologies that can be
configured as plug-ins, such as RealPlayer from RealNetworks or Macromedia
Flash.

As an application designer, you must consider the level of technology you can
assume will be available in the user’s browser, or you can add logic to your
application to enable slight modifications based upon the browser level. For
Internet users, this is especially true. With intranet users, you can assume
support for a standard browser. Regarding plug-ins, you need to consider what
portion of your intended user community will have that capability.

Cross-browser strategies are required to ensure robust application development.
Although many of these technology choices are maturing, they continue to be
inconsistently supported by the full range of browser vendors. Developers must
know browser compatibility for all features being exploited by the application. In
general, developers will need to code to a lowest denominator, or at least be able
to distinguish among browser types using programmatic techniques. The key
decision here is to determine the application requirements and behavior when
handled by old browsers, other platforms such as Linux® and Mac, and even the
latest browsers.

In the J2EE model, the Web browser plays the role of client container. The model
requires that the container provide a Java Runtime Environment as defined by
the Java 2 Platform, Standard Edition (J2SE). However, for an e-business
application that is to be accessed by the broadest set of users with varying
browser capabilities, the client is often written in HTML with no other
technologies. On an exception basis, limited use of other technologies, such as
using JavaScript for simple edit checks, can then be considered based on the
value to the user and the policy of the organization for whom the project is being
developed.

The emergence of pervasive devices introduces new considerations to your
design with regard to the content streams that the device can render and the
more limited capabilities of the browser. For example, Wireless Application
Protocol (WAP) enabled devices render content sent in Wireless Markup
Language (WML).
104 Patterns: Implementing Self-Service in an SOA Environment

HTML
HyperText Markup Language (HTML) is a document markup language with
support for hyperlinks, that is, rendered by the browser. It includes tags for
simple form controls. Many e-business applications are assembled strictly using
HTML. This has the advantage that the client-side Web application can be a
simple HTML browser, enabling a less capable client to execute an e-business
application.

The HTML specification defines user interface (UI) elements for text with various
fonts and colors, lists, tables, images, and forms, meaning text fields, buttons,
checkboxes, and radio buttons. These elements are adequate to display the user
interface for most applications. The disadvantage, however, is that these
elements have a generic look and feel, and they lack customization. As a result,
some e-business application developers augment HTML with other
user-interface technologies to enhance the visual experience, subject to
maintaining access by the intended user base and compliance with company
policy on Web client technologies.

Because most Web browsers can display HTML Version 3.2, this is the lowest
common denominator for building the client side of an application. To ensure
compatibility, developers should unit-test pages against a validator tool. Free
tools, such as the W3C HTML Validation Service, are available at:

http://validator.w3.org/

Dynamic HTML
DHTML allows a high degree of flexibility in designing and displaying a user
interface. In particular, DHTML includes Cascading Style Sheets (CSS), which
enable different fonts, margins, and line spacing for various parts of the display
to be created. These elements can be accurately positioned using absolute
coordinates. See “Cascading Style Sheets” on page 106, for further details.

Another advantage of DHTML is that it increases the level of functionality of an
HTML page through a document object model and event model. The document
object enables scripting languages such as JavaScript to control parts of the
HTML page. For example, text and images can be moved about the window, and
hidden or shown, under the command of a script. Also, scripting can be used to
change the color or image of a link when the mouse is moved over it, or to
validate a text input field of a form without having to send it to the server.
 Chapter 6. Technology options 105

http://validator.w3.org/

Unfortunately, there are several disadvantages to using DHTML. The greatest of
these is that two different implementations (Netscape and Microsoft) exist and
are found only on the more recent browser versions. A small, basic set of
functionality is common to both, but differences appear in most areas. The
significant difference is that Microsoft allows the content of the HTML page to be
modified by using either JScript® or VBScript, while Netscape allows the content
to be manipulated (moved, hidden, shown) using JavaScript only.

Due to varying levels of browser support, cross-browser design strategies must
be used to ensure appropriate presentation and behavior of DHTML elements. In
general, this technology is not recommended unless its features are needed to
meet usability requirements.

Cascading Style Sheets
Cascading Style Sheets (CSS) allow you to define a common look and feel for
HTML documents. This specification describes how Web documents are to be
presented in print and online.

CSS is defined as a set of rules that are identified by selectors. When processed
by the client browser, the selectors are matched to specific HTML tags and then
are applied against the properties of the tag. This allows for global control over
colors, fonts, margins, and borders. More advanced commands allow for control
over pixel coordinates. Related stylesheet commands can be grouped and then
externalized as a separate template file to be referenced by a multitude of Web
pages.

CSS is defined as level1 and level 2 specifications. Level 1 was written with
HTML in mind, while level 2 was expanded to include general markup styles for
XML documents. Developers using CSS should unit test against a validator tool,
such as the W3C CSS Validation Service at:

http://jigsaw.w3.org/css-validator/

Due to varying levels of browser support, cross-browser design strategies must
be used to ensure appropriate presentation and behavior of CSS elements. In
general, this technology should be used with great attention to support of
specification elements.

JavaScript
JavaScript is a cross-platform, object-oriented scripting language. It has great
utility in Web applications because of the browser and document objects that the
language supports. Client-side JavaScript provides the capability to interact with
HTML forms. You can use JavaScript to validate user input on the client and help
improve the performance of your Web application by reducing the number of
requests that flow over the network to the server.
106 Patterns: Implementing Self-Service in an SOA Environment

http://jigsaw.w3.org/css-validator/

Ecma International, a European standards body, has published a standard
(ECMA-262) that is based on JavaScript (from Netscape) and JScript (from
Microsoft), called ECMAScript. The ECMAScript standard defines a core set of
objects for scripting in Web browsers. JavaScript and JScript implement a
superset of ECMAScript. For further information, see:

http://ecma-international.org

To address various client-side requirements, Netscape and Microsoft have
extended their implementations of JavaScript in Version 1.2 by adding new
browser objects. Because Netscape's and Microsoft's extensions are different
from each other, any script that uses JavaScript 1.2 extensions must detect the
browser being used, and select the correct statements to run.

One caveat is that users can disable JavaScript on the client browser, but this
can be programmatically detected.

The use of JavaScript on the server side of a Web application is not
recommended, given the alternatives available with Java. Where your design
indicates the value of using JavaScript, for example for simple edit checking, use
JavaScript 1.1, which contains the core elements of the ECMAScript standard.

Java applets
The Java applet offers the most UI technology flexibility that can be run in a Web
browser. Java provides a rich set of UI elements that include an equivalent for
each of the HTML UI elements. In addition, because Java is a programming
language, an infinite set of UI elements can be built and used. There are many
widget libraries available that offer common UI elements, such as tables,
scrolling text, spreadsheets, editors, graphs, charts, and so on.

You can use either the awt or the Swing classes to build a Java applet. But while
designing your applet, you should keep in mind that Swing is supported only by
later browser versions.

A Java applet is a program written in Java that is downloaded from the Web
server and run on the Web browser. The applet to be run is specified in the
HTML page using an APPLET tag:

<APPLET CODEBASE="/mydir" CODE="myapplet.class" width=400 height=100>
 <PARAM NAME="myParameter" VALUE="myValue">
</APPLET>

For this example, a Java applet called myapplet will run. An effective way to send
data to an applet is with the use of the PARAM tag. The applet has access to this
parameter data and can easily use it as input to the display logic.
 Chapter 6. Technology options 107

http://ecma-international.org

Java can also request a new HTML page from the Web application server. This
provides a function equivalent to the HTML FORM submit function. The
advantage is that an applet can load a new HTML page based upon an obvious
action (a button being clicked) or a unique action (the editing of a cell in a
spreadsheet).

A characteristic of Java applets is that they seldom consist of just one class file.
On the contrary, a large applet may reference hundreds of class files. Making a
request for each of these class files individually can tax any server and also tax
network capacity. However, packaging all of these class files into one file
reduces the number of requests from hundreds to just one. This optimization is
available in many Web browsers in the form of either a JAR file or a CAB file.
Netscape and HotJava™ support JAR files simply by adding an
ARCHIVE="myjarfile.jar" variable within the APPLET tag. Internet Explorer uses
CAB files specified as an applet parameter within the APPLET tag. In all cases,
executing an applet contained within a JAR/CAB file exhibits faster load times
than individual class files. While Netscape and Internet Explorer use different
APPLET tags to identify the packaged class files, a single HTML page containing
both tags can be created to support both browsers. Each browser simply ignores
the other's tag.

JavaScript can be used to invoke methods on an applet using the SCRIPT tag in
the applet’s HTML page.

A disadvantage of using Java applets for UI generation is that the required
version of Java must be supported by the Web browser. Thus, when using Java,
the UI part of the application will dictate which browsers can be used for the
client-side application. Note that the leading browsers support variants of the
JDK™ 1.1 level of Java, and they have different security models for signed
applets.

Using Java plug-ins, you can extend the functionality of your browser to support
a particular version of Java. Java plug-ins are part of the Java Runtime
Environment (JRE) and are installed when the JRE gets installed on the
computer. You can specify certain tags in your Web page to use a particular
JRE. This will download the particular JRE if it is not found on the local computer.
This can be done in HTML through either of the following:

� Conventional APPLET tag
� OBJECT tag instead of APPLET tag for Internet Explorer or the EMBED tag

with the APPLET tag for Netscape
108 Patterns: Implementing Self-Service in an SOA Environment

A second disadvantage of Java applets is that any classes that are not included
as part of the Java support in the browser, such as widgets and business logic,
must be loaded from the Web server as they are needed. If these additional
classes are large, the initialization of the applet may take from seconds to
minutes, depending upon the speed of the connection to the Internet.

Using HTTP tunneling, an applet can call back on the server without reloading
the HTML page. For users who are behind a restrictive firewall, HTTP tunneling
offers a bidirectional data connection to connect to a system outside the firewall.

Java applets can also require substantially more memory than JavaScript or
DHTML. As previously mentioned, applets are generally composed of several
distinct Java classes. All class objects will require some memory, particularly
those classes holding application data. Great care must be taken with the
manipulation of Java data classes, or an applet could severely tax the client’s
memory resources.

Because of the above shortcomings, the use of Java applets is not
recommended in environments where mixed levels and brands of browsers are
present. Small applets may be used in rare cases where HTML UI elements are
insufficient to express the semantics of the client-side Web application user
interface. If it is absolutely necessary to use an applet, be certain to include UI
elements that are core Java classes whenever possible.

XML (client side)
XML allows you to specify your own markup language with tags specified in a
Document Type Definition (DTD) or XML Schema. The real content streams are
then produced that use this markup. The content streams can be transformed to
other content streams by using Extensible Stylesheet Language (XSL), based on
CSS.

For PC-based browsers, HTML is well established for both document content
and formatting. The leading browsers have significant investments in rendering
engines and a Document Object Model (DOM) based on HTML for manipulation
by JavaScript.

XML seems to be evolving as a complementary role for active content within
HTML documents for the PC browser environment.

For new devices such as WAP-enabled phones and voice clients, the data
content and formatting is being defined by new XML schema: WML for WAP
phone and VoiceXML for voice interfaces.
 Chapter 6. Technology options 109

For most Web application designs, you should focus your attention on the use of
XML on the server side. See 6.3.8, “XML” on page 120, for additional discussion
of the server-side use of XML.

XHTML 1.1 (HTML 4.01)
Extended HyperText Markup Language (XHTML) is an extension to HTML 4,
which supports XML-based document types. XHTML is intended to be used as a
language for XML-conforming content as well as for HTML 4-conforming user
agents.

The advantages of XHTML are:

� Because XHTML documents are XML conforming, they can be viewed,
edited, and validated with standard XML tools.

� XHTML documents can be used to traverse either the HTML Document
Object Model or the XML Document Object Model.

Some issues with XHTML are:

� XHTML documents are not as easy to create as HTML documents because
XHTML is validated more strictly than HTML.

� HTML is already used so widely that it is difficult for XHTML to attract the
attention of most Web developers.

� Browser support is not usually an issue because documents can be created
using HTML-compatible XHTML that is understood by most browsers. There
are also utilities that can be used to convert HTML documents to
HTML-compatible XHTML.

� Development tool support for XHTML is also improving. The Page Designer
tool in IBM WebSphere Studio Application Developer V5.0, for example,
allows visual authoring of XHTML pages.

XHTML Basic is designed for Web clients that do not support the full set of
XHTML features. It is meant to serve as a common language and share basic
content across mobile phones, pagers, car navigation systems, vending
machines, and so forth.

Some of the common features found in Wireless Markup Language (WML) and
other subsets of HTML have been used as the basis for developing XHTML
Basic:

� Basic text
� Basic forms and tables
� Hyperlinks
110 Patterns: Implementing Self-Service in an SOA Environment

Some HTML 4 features have been found inappropriate for non-desktop devices,
so extending and building on XHTML Basic will help to bridge that gap.

XForms
XForms is W3C’s specification for Web forms that can be used with desktop
computers, hand-held devices, and so forth. The disadvantage of the HTML Web
forms is that there is no separation of purpose from presentation. XForms
separates the data and logic of a form from its presentation. Also, XForms are
device-independent.

XForms uses XML for transporting the data that is displayed on the form and the
data that is submitted from the form. HTML is used for the data display.

Currently, the main issue with XForms is that it is still an emerging technology, so
browser and server support is not yet standard.

6.2.2 Mobile clients
Mobile clients include wireless devices such as phones, pagers, and PDAs. The
challenges these devices bring as Web clients are based primarily on the very
limited computer resources of the supporting platform. The goal, however, is to
overcome these limitations to provide access to information and application
services from anywhere by leveraging and extending the existing Web server
architectures.

Devices
Mobile devices include wireless desktop PCs, WAP devices, i-mode devices,
PDAs, and Phone w/Voice. PDA devices cannot run the major operating systems
that run on desktop PCs and consequently there are various mobile
device-specific platforms. Palm devices use Palm-OS. WinCE/PocketPC devices
use a version of Microsoft Windows called Windows CE.

Voice
Voice-enabled applications allow for a hands-free user experience
unencumbered by the limitations of computer interface controls.

Voice technology fall into two categories: Those that recognize speech and those
that generate speech. The ability to recognize human voice by computers is
called Automatic Speech Recognition (ASR). The ability to generate speech from
written text is called speech synthesis or Text-to-Speech (TTS).
 Chapter 6. Technology options 111

Architecture
Support for mobile clients impacts the runtime topology and therefore must be
designed and implemented using best practices for system architecture. The
good news is that any past investment in Web architecture to support
Internet-based applications can be extended to support mobile clients.

A Wireless Application Protocol (WAP) gateway is used between the mobile
client device and the Web server. The gateway translates requests from the
wireless protocol into HTTP requests and, conversely, converts HTTP requests
into the appropriate device format.

WAP
WAP is the Wireless Application Protocol. This is the standard for the
presentation and delivery of information to wireless devices, which are platform,
device, and network neutral. The goal of this protocol is to provide a platform for
global, secure access through mobile phones, pagers, and other wireless
devices.

Microbrowser
WAP microbrowsers run on mobile clients. They are responsible for the display
of Web pages written in WML and can execute WMLScripts. These play the
same role as HTML browsers that run on a PC.

WML
The Wireless Markup Language (WML) is based on XML and HTML 4.0 to fit
small hand-held devices. It is a tag-based language that handles formatting static
text and images, can accept data input, and can follow hyperlinks.

WMLScript
This is the companion language to WML, in the same way as JavaScript is a
companion language to HTML. WMLScript allows for procedural programming
such as loops, conditional, and event handling. It has been optimized for a small
memory footprint and small devices. This language is derived from JavaScript.

Bluetooth
Bluetooth is a set of technical specifications for low-range (up to 30 feet) wireless
devices that define standards such as power use and radio frequency. The goal
of this technology is to connect a wide range of computing and
telecommunication devices easily and simply in a peer-to-peer manner.
112 Patterns: Implementing Self-Service in an SOA Environment

J2ME
The Java 2 Platform Micro Edition (J2ME™) provides a standard environment
for applications running on small embedded devices, such as mobile phones,
pagers, PDAs, and TV set-top boxes. Given the wide variance in the available
resources of such devices, the J2ME specification is divided in multiple
configurations and profiles.

J2ME configurations include a Java virtual machine (JVM™) and Java class
libraries. The two existing configurations differ primarily on the computing
resources available to the device, such as memory, power, and storage. Within a
configuration, a J2ME profile will provide additional Java APIs geared to a
specific class of device, such as pagers or PDAs.

For further details about J2ME, see:

http://java.sun.com/j2me

6.3 Web application server
Figure 6-3 on page 114 shows the recommended technology model for a Web
application server.
 Chapter 6. Technology options 113

http://java.sun.com/j2me

Figure 6-3 Web application server technology model

We assume in this book that you are using a Web application server and
server-side Java. While there are many other models for a Web application
server, this is the one experiencing widespread industry adoption.

Before looking at the technologies and APIs available in the Web application
programming environment, we need to have a word about two fundamental
operational components on this node: the HTTP server and the application
server. For production applications, they should be chosen for their operational
characteristics in areas such as robustness, performance, and availability.

We follow the well-known Model-View-Controller (MVC) architectural pattern so
often used in user interfaces. For the Web application programming model:

� The Model represents the data of the application, and the business rules and
logic that govern the processing of the data. In a J2EE application, the model

Native Platform
Services

Web Application Server

Java VM

Dynamic
Content
Services

Enterprise Java
Libraries

e-business Applications

Enterprise JavaBeans

Java Servlets

Java Server Pages

Protocols - HTTP, IIOP, ESB, ...

Network Infrastructure

Existing
Data &

Applications

NSF
IMS

CICS

RDB

Persistent Store

File
RDB

Connectors

Java

Server

Faces

Service Data Objects

Portlets

Portlet Container
114 Patterns: Implementing Self-Service in an SOA Environment

is usually represented to the View and the Controller with a set of JavaBean
components.

� The View is a visual representation of the model. Multiple views can exist
simultaneously for the same model, and each view is responsible for making
sure that it is presenting the most current data by either subscribing to state
change events or by making periodic queries to the model. With J2EE, the
view is generally implemented using JavaServer Pages (JSP).

� The Controller decouples the visual presentation from the underlying
business data and logic by handling user interactions and controlling access
to the model. It processes the incoming HTTP requests and invokes the
appropriate business or UI logic. Using J2EE, the controller is often
implemented as a servlet.

Given its wide spread acceptance, there are several design frameworks
supporting the implementation of the Model-View-Controller pattern. These
include the Java Server Faces (JSF) Framework, Apache Jakarta Project’s
Struts, and IBM Global Services’s EAD4J.

6.3.1 Java servlets
Servlets are Java-based software components that can respond to HTTP
requests with dynamically generated HTML. Servlets are more efficient than CGI
for Web request processing because they do not create a new process for each
request.

Servlets run within a Web container as defined by the J2EE model and, therefore
have access to the rich set of Java-based APIs and services. In this model, the
HTTP request is invoked by a client such as a Web browser using the servlet
URL. Parameters associated with the request are passed into the servlet through
the HttpServletRequest, which maintains the data in the form of name/value
pairs. Servlets maintain state across multiple requests by accessing the current
HttpSession object, which is unique per client and remains available throughout
the life of the client session.

Acting as an MVC Controller component, a servlet delegates the requested tasks
to beans that coordinate the execution of business logic. The results of the tasks
are then forwarded to a View component, such as a JSP, to produce formatted
output.

One of the attractions of using servlets is that the API is a very accessible one for
a Java programmer to master. The specification of the J2EE 1.4 platform
requires Servlet API 2.4 for support of packaging and installation of Web
applications.
 Chapter 6. Technology options 115

Servlets are a core technology in the Web application programming model. They
are the recommended choice for implementing the Controller classes that handle
HTTP requests received from the Web client.

6.3.2 JavaServer Pages (JSPs)
JSPs were designed to simplify the process of creating Web pages by separating
Web presentation from Web content. In the page construction logic of a Web
application, the response sent to the client is often a combination of template
data and dynamically generated data. In this situation it is much easier to work
with JSPs than to do everything with servlets. The JSP acts as the View
component in the MVC model.

The chief advantage JSPs have over standard Java servlets is that they are
closer to the presentation medium. A JavaServer Page is developed as an HTML
page. Once compiled it runs as a servlet. JSPs can contain all of the HTML tags
that Web authors are familiar with. A JSP may contain fragments of Java code
that encapsulate the logic that generates the content for the page. These code
fragments may call out to beans to access reusable components and enterprise
data.

JSP technology uses XML-like tags and scriptlets written in Java programming
language to encapsulate the conditional logic that generates dynamic content for
an HTML page. In the runtime environment, JSPs are compiled into servlets
before being executed on the Web application. Output is not limited to HTML but
also includes JavaScript, WML, XML, cHTML, DHTML, and VoiceXML. The JSP
API for J2EE 1.4 is JSP 2.0.

6.3.3 JavaServer Faces
JavaServer Faces (JSF) is a framework for developing Java Web applications
The JSF framework aims to unify techniques for solving a number of common
problems in Web application design and development, such as:

� User interface development

JSF allows direct binding of user interface (UI) components to model data. It
abstracts request processing into an event-driven model. Developers can use
extensive libraries of prebuilt UI components that provide both basic and
advanced Web functionality.

� Navigation

JSF introduces a layer of separation between business logic and the resulting
UI pages; stand-alone, flexible rules drive the flow of pages.

� Session and object management
116 Patterns: Implementing Self-Service in an SOA Environment

JSF manages designated model data objects by handling their initialization,
persistence over the request cycle, and cleanup.

� Validation and error feedback

JSF allows direct binding of reusable validators to UI components. The
framework also provides a queue mechanism to simplify error and message
feedback to the application user. These messages can be associated with
specific UI components.

� Internationalization

JSF provides tools for internationalizing Web applications, supporting
number, currency, time, and date formatting, and externalizing of UI strings.

JSF is particularly well-suited to implement the MVC architectural pattern.
Specifically, the JSF framework maps to the pattern as follows:

� Model

Managed beans make up the model of a JSF application. These Java beans
typically interface with reusable business logic components or external
systems, such as a mainframe or database.

� View

JSPs make up the view of a JSF Web application. These JSPs are created by
combining model data with predefined and custom-made UI components.

� Controller

The FacesServlet, which drives navigation and object management, makes
up most of a JSF application’s controller. Event listeners also contribute to the
controller logic.

Note that unlike other frameworks supporting the MVC pattern, JavaServer
Faces are a standard component of the J2EE 1.4 specification. Therefore, it has
received wide support from IBM and other leading vendors.

6.3.4 Struts
Struts is a Servlet-JSP framework offered by the Apache Software Foundation.
Struts supports application architectures based on the Model II approach, which
is an implementation of the traditional MVC paradigm discussed earlier.

Struts addresses a number of common design and implementation issues
associated with most servlet projects:

� Mapping HTTP parameters to JavaBeans
� Standard input validation
� Standard error display
 Chapter 6. Technology options 117

� Message internationalization
� Hard coded JSP URIs

Struts is widely used, and supported by most J2EE IDE tools (including Rational
Software Architect and Rational Application Developer). However, JavaServer
Faces are likely to become the industry standard, because it has been adopted
as a J2EE standard. There are many similarities between the two frameworks,
and, in fact, many of the concepts originated in Struts were adopted in the JSF
specification.

6.3.5 Service Data Objects
Service Data Objects (SDO) is a data programming architecture and API for the
Java platform that unifies data programming across data source types, provides
support for common application patterns, and enables applications, tools, and
frameworks to more easily query, view, bind, update, and introspect data. SDO is
currently the subject of a Java specification request (JSR-235), but has not yet
been standardized under this process.

SDOs are designed to simplify and unify the way in which applications handle
data. Using SDO, application programmers can uniformly access and manipulate
data from heterogeneous data sources, including relational databases, XML data
sources, Web services, and enterprise information systems. The SDO
architecture consists of three major components:

� Data object

The data object is designed to be an easy way for a Java programmer to
access, traverse, and update structured data. Data objects have a rich variety
of strongly and loosely-typed interfaces for querying and updating properties.
This enables a simple programming model without sacrificing the dynamic
model required by tools and frameworks. A data object may also be a
composite of other data objects.

� Data graph

SDO is based on the concept of disconnected data graphs. A data graph is a
collection of tree-structured or graph-structured data objects. Under the
disconnected data graphs architecture, a client retrieves a data graph from a
data source, mutates the data graph, and can then apply the data graph
changes to the data source. The data graph also contains some metadata
about the data object including change summary and metadata information.
The metadata API allows applications, tools, and frameworks to introspect the
data model for a data graph, enabling applications to handle data from
heterogeneous data sources in a uniform way.

� Data mediator
118 Patterns: Implementing Self-Service in an SOA Environment

The task of connecting applications to data sources is performed by a data
mediator. Client applications query a data mediator and get a data graph in
response. Client applications send an updated data graph to a data mediator
to have the updates applied to the original data source. This architecture
allows applications to deal principally with data graphs and data objects,
providing a layer of abstraction between the business data and the data
source.

6.3.6 Portal applications
Portal applications have several important features:

� They can collect content from a variety of sources and present them to the
user in a single unified format.

� The presentation can be personalized so that each user sees a view based
on their own characteristics or role.

� The presentation can be customized by the user to fulfill their specific needs.

� They can provide collaboration tools, which allow teams to work in a virtual
office.

� They can provide content to a range of devices, formatting and selecting the
content appropriately according to the capabilities of the device.

Portlets
Portlets are Java based components much like servlets, but are designed to be
aggregated to produce a portal page. A single portal page request will generally
trigger the invocation of multiple portlets. The Java Portlet V1.0 specification has
been developed to provide a standard for the development of Java portlets for
portal applications. For further details, see:

http://jcp.org/en/jsr/detail?id=168

Portlets will run within a portlet container, which provides them the required
runtime environment. The container manages the portlet life cycle and storage
needs.

One such container, is the one provided by the IBM WebSphere Portal. It runs
within WebSphere Application Server, using the J2EE standard services and
management capabilities of the server as the basis for portal services.
 Chapter 6. Technology options 119

http://jcp.org/en/jsr/detail?id=168

6.3.7 JavaBeans
JavaBeans is an architecture developed by Sun™ Microsystems™, Inc.
describing an API and a set of conventions for reusable, Java-based
components. Code written to Sun’s JavaBeans architecture is called JavaBeans
or just beans. One of the design criteria for the JavaBeans API was support for
builder tools that can compose solutions incorporating beans. Beans may be
visual or non-visual.

Beans are recommended for use in conjunction with servlets and JSPs in the
following ways:

� As the client interface to the Model layer

A Controller servlet will use this bean interface.

� As the client interface to other resources

In some cases, this can be generated for you by a tool.

� As a component that incorporates a number of property-value pairs for use by
other components or classes

For example, the JavaServer Pages specification includes a set of tags for
accessing JavaBeans properties.

6.3.8 XML
Extensible Markup Language (XML) and XSL stylesheets can be used on the
server side to encode content streams and parse them for different clients,
enabling you to develop applications for both a range of PC browsers and for
emerging pervasive devices. The content is in XML and an XML parser is used to
transform it to output streams based on XSL stylesheets that use CSS.

This general capability is known as transcoding and is not limited to XML-based
technology. The appropriate design decision here is how much control over the
content transforms you need in your application. You will want to consider when
it is appropriate to use this dynamic content generation and when there are
advantages to having servlets or JSPs specific to certain device types.

XML is also used as a means to specify the content of messages between
servers, whether the two servers are within an enterprise or represent a
business-to-business connection. The critical factor here is the agreement
between parties on the message schema, which is specified as an XML DTD or
Schema. An XML parser is used to extract specific content from the message
stream. Your design will need to consider whether to use an event-based
approach, for which the SAX API is appropriate, or to navigate the tree structure
of the document using the DOM API.
120 Patterns: Implementing Self-Service in an SOA Environment

IBM’s XML4J XML parser was made available through the Apache open source
organization under the Xerces name. For open source XML frameworks, see:

http://xml.apache.org/

Defining XML documents
XML documents are defined using DTDs or XML Schemas.

DTDs are a basic XML definition language, inherited from the SGML
specification. The DTD specifies what markup tags can be used in the document
along with their structure.

DTDs have two major problems:

� Poor data typing

In DTDsm elements can only be specified as EMPTY, ANY, element content,
or mixed element-and-text content, and there is no standard way to specify
null values for elements.

Data typing such as date formats, numbers, or other common data types
cannot be specified in the DTD. As a result, an XML document might comply
with the DTD but still have data type errors that can only be detected by the
application.

� Not defined in XML

DTD uses its own language to define XML syntax that is not compliant to the
XML specification. This makes it difficult to manipulate a DTD.

To solve these problems, the World Wide Web Consortium (W3C) defined a new
standard to define XML documents called XML Schema. XML Schema provides
the following advantages over DTDs:

� Strong typing for elements and attributes
� Standardized way to represent null values for elements
� Key mechanism that is directly analogous to relational database foreign keys
� Defined as XML documents, making them programmatically accessible

Even though XML Schema is a more powerful technology to define XML
documents, it is also a lot harder to work with, so DTDs are still widely used to
define XML documents. Additionally, simple, not hard-typified documents can be
easily defined using DTDs with similar results to using XML Schema.

Whether you use one or the other will depend on the complexity of the messages
and the validation requirements of the application. Actually, in many cases both
(a DTD and a XML Schema) are provided, so they can be used by the
application depending on its requirements.
 Chapter 6. Technology options 121

http://xml.apache.org/

XSLT
Extensible Stylesheet Language Transformations (XSLT) is a W3C specification
for transforming XML documents into other XML documents. The XSLT is built on
top of the Extensible Stylesheet Language (XSL), which, like CSS2 seen
in“Cascading Style Sheets” on page 106, is a stylesheet language for XML.
Unlike CSS2, XSL is also a transformation language.

A transformation expressed in the XSLT language defines a set of rules for
transforming a source tree to a result tree, and it is expressed in the form of a
stylesheet.

An XSLT processor is used for transforming a source document to a result
document. There are currently a number of XSLT processors available on the
market. DataPower has introduced an XSL just-in-time (JIT) compiler, which
speeds up the time taken for the XSL transformation.

The XSLT processor has a performance overhead, so online processing of larger
documents can be slow.

XML security
XML security is an important issue, particularly where XML is being used to by
organizations to interchange data across the Internet. Several new XML security
specifications are working their way through three standards bodies:

� World Wide Web Consortium (W3C)
� Internet Engineering Task Force (IETF)
� Organization for the Advancement of Structured Information Standards

(OASIS)

We highlight a few specifications here:

� XML Signature Syntax and Processing is a specification for digitally signing
electronic documents using XML syntax.

A key feature of the protocol is the ability to sign parts of an XML document
rather than the document in its entirety. This is necessary because an XML
document might contain elements that will change as the document is passed
along or various elements that will be signed by different parties.

WebSphere Studio provides you with the ability to create and verify XML
digital signatures using a wizard.

Note: We have to remember that the validation process of an XML document
using XML Schemas is an expensive process. Validation should be performed
only when it is necessary.
122 Patterns: Implementing Self-Service in an SOA Environment

� XML encryption will allow encryption of digital content, such as Graphical
Interchange Format (GIF) images or XML fragments. XML Encryption allows
parts of an XML document to be encrypted while leaving other parts open,
encryption of the XML itself, or the super-encryption of data (that is,
encrypting an XML document when some elements have already been
encrypted).

� XML Key Management Specification (XKMS) establishes a standard for
XML-based applications to use Public Key Infrastructure (PKI) when handling
digitally signed or encrypted XML documents. XML signature addresses
message and user integrity, but not issues of trust that key cryptography
ensures.

� Security Assertion Markup Language (SAML) is the first industry standard for
secure e-commerce transactions using XML. It aims to standardize the
exchange of user identities and authorizations by defining how this
information is to be presented in XML documents, regardless of the
underlying security systems in place.

Advantages of XML
There are many advantages of XML in a broad range of areas. Some of the
factors that influenced the wide acceptance of XML are:
 Chapter 6. Technology options 123

� Acceptability of use for data transfer

XML is a standard way of putting information in a format that can be
processed and exchanged across different hardware devices, operating
systems, software applications, and the Web.

� Uniformity and conformity

XML gives you an common format that could be developed upon and is
accepted industry-wide.

� Simplicity and openness

Information coded in XML is human readable.

� Separation of data and display

The representation of the data is separated from the presentation and
formatting of the data for display in a browser or other device.

� Industry acceptance

XML has been accepted widely by the information technology and computing
industry. Numerous tools and utilities are available, along with new products
for parsing and transforming XML data to other data, or for display.

Disadvantages of XML
Some XML issues to consider are:

� Complexity

While XML tags can allow software to recognize meaningful content within
documents, this is only useful to the extent that the software reading the
document knows what the tagged content means in human terms, and knows
what to do with it.

� Standardization

When multiple applications use XML to communicate with each other they
need to agree on the tag names they are using. While industry-specific
standard tag definitions often do exist, you can still declare your own
nonstandard tags.

� Large size

XML documents tend to be larger in size than other forms of data
representation.

6.3.9 Enterprise JavaBeans
Enterprise JavaBeans is Sun Microsystem's trademarked term for its EJB
architecture, or component model. When writing to the EJB specification, you are
developing enterprise beans or, if you prefer, EJBs for short.
124 Patterns: Implementing Self-Service in an SOA Environment

Enterprise beans are distinguished from JavaBeans in that they are designed to
be installed on a server and accessed remotely by a client. The EJB framework
provides a standard for server-side components with transactional
characteristics.

The EJB framework specifies clearly the responsibilities of the EJB developer
and the EJB container provider. The intent is that the plumbing required to
implement transactions or database access can be implemented by the EJB
container. The EJB developer specifies the required transactional and security
characteristics of an EJB in a deployment descriptor (this is sometimes referred
to as declarative programming). In a separate step, the EJB is then deployed to
the EJB container provided by the application server vendor of your choice.

There are three types of Enterprise JavaBeans:

� Session beans
� Entity beans
� Message-driven beans

A typical session bean has the following characteristics:

� Executes on behalf of a single client.

� Can be transactional.

� Can update data in an underlying database.

� Is relatively short lived.

� Is destroyed when the EJB server is stopped. The client has to establish a
new session bean to continue computation.

� Does not represent persistent data that should be stored in a database.

� Provides a scalable runtime environment to execute a large number of
session beans concurrently.

A typical entity bean has the following characteristics:

� Represents data in a database.

� Can be transactional.

� Is shared access from multiple users.

� Can be long-lived, as long as the data in the database.

� Survives restarts of the EJB server. A restart is transparent to the client.

� Provides a scalable runtime environment for a large number of concurrently
active entity objects.

A typical message-driven bean has the following characteristics:
 Chapter 6. Technology options 125

� Consumes messages sent to a specific queue.

� Is asynchronously invoked.

� Is stateless.

� Can be transaction aware.

� May update shared data in an underlying client message.

� Executes upon receipt of single client message.

� Has no component or home interface.

� Is removed when the EJB container crashes. The container has to reestablish
a new message-driven object to continue computation.

Typically, an entity bean is used for information that has to survive system
restarts. In session beans, on the other hand, the data is transient and does not
survive when the client's browser is closed. For example, a shopping cart
containing information that can be discarded uses a session bean, and an
invoice issued after the purchase of the items is an entity bean.

An important design choice when implementing entity beans is whether to use
Bean Managed Persistence (BMP), in which case you must code the JDBC logic,
or Container Managed Persistence (CMP), where the database access logic is
handled by the EJB container.

The business logic of a Web application often accesses data in a database. EJB
entity beans are a convenient way to wrap the relational database layer in an
object layer, hiding the complexity of database access. Because a single
business task can involve accessing several tables in a database, modeling rows
in those tables with entity beans makes it easier for your application logic to
manipulate the data.

An important change to the specification in EJB 2.0 is the addition of a new
enterprise bean type, the message-driven bean (MDB). The message-driven
bean is designed specifically to handle incoming JMS messages. The EJB
container uses message properties and a bean deployment descriptor to select
the bean to invoke when a message arrives, so your application logic only needs
to process the message contents.

The J2EE 1.3 platform requires support for EJB 2.0. As a tool provider the
WebSphere Application Server V5.0 supports J2EE 1.3 and therefore supports
EJB 2.0. EJBs are packaged into EJB modules (JAR files) and then combined
with Web modules (WAR files) to form an enterprise application (EAR file). EJB
deployment requires generating EJB deployment code specific to the target
application server.
126 Patterns: Implementing Self-Service in an SOA Environment

6.3.10 Additional enterprise Java APIs
The J2EE specification defines a set of related APIs that work together. Here are
the remainder not discussed so far:

� JNDI: Java Naming and Directory Interface™

This package provides a common API to a directory service independent of
any directory access protocol. This allows for easy migration to new directory
services. Through this interface, component providers can store and retrieve
Java object instances by name. Service provider implementations include
those for JDBC data sources, LDAP directories, RMI, and CORBA object
registries. Sample uses of JNDI include:

– Accessing a user profile from an LDAP directory
– Locating and accessing an EJB home
– Locating a driver-specific data source

� RMI-IIOP: Remote Method Invocation (RMI) and RMI over IIOP

These methods are part of the EJB specification as the access method for
clients to access EJB services. From the component provider point of view,
these calls are local. The EJB container takes care of calling the remote
methods and receiving the response. To use this API, component providers
create an IDL description of the EJB interface and then compile it to generate
the client-side and server-side stubs. The stubs connect the object
implementations with the Object Request Broker (ORB). ORBs communicate
with each other through the Internet Inter-ORB Protocol (IIOP). RMI can also
be used to implement limited-function Java servers.

� JTA: Java Transaction API

This Java API for working with transaction services is based on the XA
standard. With the availability of EJB servers, you are less likely to use this
API directly.

� JAF: JavaBeans Activation Framework

This API is not intended for typical application use, but it is required by the
JavaMail™ API.

� JavaMail

This is a set of classes for supporting e-mail. Functionally it provides APIs for
reading, sending, and composing Internet mail. This API models a mail
delivery system and requires the SMTP for sending mail and POP3 or IMAP
for receiving mail. Special data wrapper classes are provided to view and edit
data in the mail content. Support for MIME data is delegated to the JAF-aware
beans.

� JAXP is an API for parsing and transforming XML documents.

� JAAS is the Java Authentication and Authorization Service.
 Chapter 6. Technology options 127

6.4 Integration technologies
With the continuous progress of enterprise computing, more and more
enterprises are finding the need to adopt new technologies quickly and integrate
with existing applications. Furthermore, it is often not feasible for enterprises to
completely discard their existing infrastructure, due to limitations in cost and
human resources.

Enterprise application integration (EAI) allows disparate applications to
communicate with each other. Some points you should consider while deciding
on the integration technology between your application and the enterprise tier
applications are as follows:

� The current infrastructure

Do you already have a messaging system on the enterprise tier? Then it
makes sense to go for JMS. Or if you have an existing system, such as CICS
or IMS, J2EE Connectors might be the better choice.

� Time to market

Web service enabling an application is relatively fast with the Web services
development tools available.

� Future expansion plans

If you plan to expand your enterprise systems in the future, keep in mind the
integration with your current infrastructure and your planned infrastructure.
Web services can provide the most cost-effective migration path in such a
case.

� Reliability

JMS with WebSphere MQ, for example, can be used to provide assured
transfer of data, even when the enterprise application is unavailable.

� Transaction support

Web services currently do not offer support for transactions. If your
application needs transactional management, it might be worthwhile to
consider either JMS or J2EE Connectors.

6.4.1 Web services
Web services is a recent reinvention of concepts that have been around for
sometime. They introduce many new advantages and capabilities. In a sense,
none of the function provided by Web services is new; CORBA has provided
much of this function for many years. What Web services does do that is new is
to build upon existing open Web technologies such as XML, URL and HTTP.
Web services are defined in several different standards such as SOAP and
128 Patterns: Implementing Self-Service in an SOA Environment

WSDL which build upon general Web and other Web services standards. These
standards are defined by the World Wide Web Consortium, the Organization for
the Advancement of Structured Information Standards (OASIS) and Web
Services Interoperability Organization (WS-I).

The basic Web services support provides for three simple usage models. These
are:

� One-way usage scenario

A Web services message is sent from a consumer to a provider and no
response message is expected.

� Synchronous request/response usage scenario

A Web services message is sent from a consumer to a provider and a
response message is expected.

� Basic callback usage scenario

A Web service message is sent from a consumer to a provider using the
two-way invocation model, but the response is just treated as an
acknowledgement that the request has been received. The provider then
responds by calling making use of a Web service callback to the consumer.

Other Web service standards are built upon these basic standards and
invocation models to provide higher level functions and qualities of service.
Examples of these standards are WS-Transaction, WS-Security and
WS-ResourceFramework.

One of the main aims of Web services is to provide a loose coupling between
service consumer and service providers. While this is limited to a certain extent
by a requirement for the consumers and providers to agree on a WSDL interface
definition, Web services have been created with significant flexibility with regard
to their location. Figure 6-4 on page 130 shows how the Web services interaction
model has been designed with this form of loose coupling.
 Chapter 6. Technology options 129

Figure 6-4 Basic Web service interaction model.

The interactions work as follows:

1. The service provider publishes some WSDL defining its interface and location
to a service registry.

2. The service consumer contacts the service registry to obtain a reference to a
service provider.

3. The service consumer, having obtained the location of the service provider,
makes calls on the service provider.

SOAP
SOAP is an-XML based format for constructing messages in a transport
independent way and a standard on how the message should be handled. SOAP
messages consist of an envelope containing a header and a body. It also defines

Note: Although this model is regularly discussed, the service registry is often
removed from the cycle in real implementations in the interests of simplicity
and lack of trust of the services in the service registry. This has the drawback
that if the service provider is relocated, the service consumer needs to be
changed to refer to the new location of the service provider.

Service
Consumer

Service
Registry

Service
Provider

Find Publish

Use

12

3

Exposes business functions as
Web services
Publishes functions to registry
Listens to and accepts requests

Requires business functions
Searches registry for matching
functions
Binds and make requests

Maintains repository of
business functions
Accessed via UDDI

Business functions
described in WSDL
using UDDI

Business functions
described in WSDL
using UDDI

Business functions
using SOAP

UDDI: Service Registry
WSDL: Service Description
SOAP: Service Invocation
130 Patterns: Implementing Self-Service in an SOA Environment

a mechanism for indicating and communicating problems that occurred while
processing the message. These are known as SOAP faults.

The headers section of a SOAP message is extensible and can contain many
different headers defined by different schemas. The extra headers can be used
to modify the behavior of the middleware infrastructure. For example, the
headers can include information about transactions that can be used to ensure
that actions performed by the service consumer and service provider are
coordinated.

The body section contains the content of the SOAP message. When used by
Web services, the SOAP body contains XML-formatted data. This data is
specified in the WSDL describing the Web service.

When talking about SOAP, it is common to talk about SOAP in combination with
the transport protocol used to communicate the SOAP message. For example,
SOAP transported using HTTP is referred to as SOAP over HTTP or
SOAP/HTTP.

The most common transport used to communicate SOAP messages is HTTP.
This is to be expected because Web services are designed to make use of Web
technologies. However, SOAP can also be communicated using JMS as a
transport. When using JMS the address of the Web service is expressed in terms
of a JMS connection factory and a JMS destination. Although using JMS
provides a more reliable transport mechanism it is not an open standard,
requires extra and potential expensive investment, and does not interoperate as
easily as SOAP over HTTP.

The SOAP version 1.1 and 1.2 specifications are available from the World Wide
Web Consortium.

Web Services Description Language (WSDL)
Web Services Description Language (WSDL) is an XML-based interface
definition language that separates function from implementation, and enables
design by contract as recommended by SOA. WSDL descriptions contain a port
type (the functional and data description of the operations that are available in a
Web service), a binding (providing instructions for interacting with the Web
service through specific protocols, such as SOAP over HTTP), and a port
(providing a specific address through which a Web service can be invoked using
a specific protocol binding).

It is common for these three aspects to be defined in three separate WSDL files,
each importing the others.
 Chapter 6. Technology options 131

The value of WSDL is that it enables development tooling and middleware for
any platform and language to understand service operations and invocation
mechanisms. For example, given the WSDL interface to a service that is
implemented in Java, running in a WebSphere environment, and offering
invocation through HTTP, a developer working in the Microsoft .Net platform can
import the WSDL and easily generate application code to invoke the service.

As with SOAP, the WSDL specification is extensible and provides for additional
aspects of service interactions to be specified, such as security and
transactionality.

Universal Description, Discovery, Integration
Universal Description, Disccover, Integration (UDDI) servers act as a directory of
available services and service providers. SOAP can be used to query UDDI to
find the locations of WSDL definitions of services, or the search can be
performed through a user interface at design or development time. The original
UDDI classification was based on a U.S. government taxonomy of businesses,
and recent versions of the UDDI specification have added support for custom
taxonomies.

A public UDDI directory is provided by IBM, Microsoft, and SAP, each of whom
runs a mirror of the same directory of public services. However, there are many
patterns of use that involve private registries. For more information, see the
following articles:

� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

6.4.2 J2EE Connector Architecture
The J2EE Connector Architecture is aimed at providing a standard way to access
enterprise applications from a J2EE-based Java application. It defines a set of
Java interfaces through which application developers can access Enterprise
Information Systems (EIS), for example, CICS, and Enterprise Resource
Planning (ERP) applications.

J2EE Connector Architecture V1.5 support is a requirement of the J2EE V1.4
specification. Resource adapters allow J2EE applications to connect to a
particular EIS. The J2EE Connector Architecture specification defines two
different types of resource adapters:
132 Patterns: Implementing Self-Service in an SOA Environment

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

� Outbound adapters

Outbound adapters are used by application initiated requests to an EIS.

� Inbound adapters

Inbound adapters are used by the EIS making calls to a message-driven
bean.

The J2EE Connector Architecture provides a Common Client Interface API (CCI)
with both common, and resource adapter specific, interfaces. Application
programmers code to this single API rather than needing to use different
interfaces for each proprietary system. However it is common for a resource
adapter to make use of its own, or an existing API, such as JDBC or JMS.

The J2EE Connector Architecture specification provides support for transactions,
security and sharing of connections between different clients.

Advantages of the J2EE Connector Architecture
Some reasons to use J2EE Connector Architecture resource adapters are:

� The CCI simplifies application integration with diverse EISs. This common
interface makes it easy to plug third-party or home-grown resource adapters
into your applications.

� Inbound adapters provide a way to get a message-driven bean invoked when
an event occurs in the EIS. For example, a message arrives at a JMS
destination.

� Outbound adapters that are XA capable automatically participate in any
transactions in effect without requiring action by an application.

� Outbound adapters can pick up security credentials from the container in
which they execute.

� Connections to the EIS can be shared to reduce resource overhead.

Disadvantages of the J2EE Connector Architecture
Although the CCI provides a common interface definition, some resource adapter
specific interfaces still need to be used and the usage of these interfaces varies
depending on the EIS the resource adapter used.

6.4.3 Java Message Service
Messaging middleware is a popular choice for accessing existing enterprise
systems in an asynchronous manner. It is one of the options if you are
implementing a solution based on the Directly Integrated Single Channel
application pattern.
 Chapter 6. Technology options 133

A standard way for using messaging middleware from a Java application is using
the Java Message Service (JMS) interface. JMS offers Java programmers a
common way to create, send, receive and read enterprise messages. The JMS
specification was developed by Sun Microsystems with the active involvement of
IBM, other enterprise messaging vendors, transaction processing vendors, and
RDBMS vendors.

In IBM WebSphere Application Server V6.0, the J2EE 1.4 specification is
implemented, which includes JMS 1.1 and EJB 2.1.

According to the JMS 1.1 specification, a message provider is integrated in an
application server. As shown in Figure 6-5, the integrated message provider
makes it possible to communicate asynchronously with other WebSphere
applications, without installing separate messaging software such as IBM
WebSphere MQ. WebSphere’s integrated JMS server is based on IBM
WebSphere MQ.

Figure 6-5 Integrated JMS provider

An important feature of EJB 2.1 is message-driven beans (MDB). As described in
6.3.9, “Enterprise JavaBeans” on page 124, message-driven beans are designed
specifically to handle incoming JMS messages.

What is messaging?
Messaging is a form of communication between two or more software
applications or components. One strength of messaging is application
integration. Messaging communication is loosely coupled, as compared to tightly
coupled technologies such as Remote Method Invocation (RMI) or Remote
Procedure Calls (RPC). The sender does not need to know anything about the

J2EE ServerJ2EE Server
Message

PUT

Message
GET

J2EE Application

Web

Message
GET

Message
PUT

J2EE Application

Web
134 Patterns: Implementing Self-Service in an SOA Environment

receiver for communication. The message to be delivered is sent to a destination
(queue) by a sender component. The recipient picks it up from there. Moreover,
the sender and receiver do not both have to be available at the same time to
communicate.

JMS has two messaging styles, or two domains:
� One-to-one, or point-to-point model
� Publish/subscribe model

Advantages of JMS
The JMS standard is important because:

� It is the first enterprise messaging API that has achieved wide cross-industry
support.

� It simplifies the development of enterprise applications by providing standard
messaging concepts and conventions that apply across a wide range of
enterprise messaging systems.

� It leverages existing, enterprise-proven messaging systems.

� It allows you to extend existing message-based applications by adding new
JMS clients that are integrated fully with their existing non-JMS clients.

� Developers have to learn only one common interface for accessing diverse
messaging systems.

Disadvantages of JMS
JMS only provides asynchronous messaging so the design is more complex
when addressing response correlation, error handling, and data synchronization.

6.4.4 Enterprise Service Bus
The Enterprise Service Bus (ESB) is emerging as a middleware infrastructure
component that supports the implementation of SOA within an enterprise. An
ESB provides an infrastructure that removes any direct connection between
service consumers and providers. Consumers connect to the bus and not the
provider that actually implements the service. A bus also implements further
value added capabilities. For example security and delivery assurance can be
implemented centrally within the bus instead of having this buried within the
applications.

Note that an Enterprise Service Bus is a concept, not a specific product. It
describes a coherent architectural approach for effectively implementing a
service-oriented architecture. The actual implementation of an ESB, can be
accomplished using a variety of different technologies.
 Chapter 6. Technology options 135

For more detail on Enterprise Service Bus, see 3.2, “Overview of the Enterprise
Service Bus” on page 36.

WebSphere service integration bus
The service integration bus is the key component in the WebSphere Application
Server V6 that supports the implementation of an Enterprise Service Bus. The
flexibility of the service integration bus allows the ESB to connect consumers and
providers utilizing different transport mechanism. The service integration bus
combines support for applications connecting with native JMS, WebSphere MQ,
and Web services. It supports the message-oriented middleware and
request-response interaction models. As a part of this, the service integration
bus supports multiple message distribution models, reliability options, and
transactional messaging.

For more information about the service integration bus, see 5.2.2, “Service
integration” on page 76.

6.4.5 Others
In this section we briefly touch on a few other integration technologies, including:

� RMI/IIOP
� CORBA

RMI/IIOP
Remote Method Invocation (RMI) APIs allow developers to build distributed
applications in the Java programming language. They enable an object running
in one Java Virtual Machine to access another object running in a different Java
Virtual Machine.

The Internet Inter-ORB (Object Request Broker) Protocol (IIOP) is a protocol
used for communication between CORBA object request brokers. An object
request broker is a library that enables CORBA objects to locate and to
communicate with one another.

RMI/IIOP is an implementation of the RMI API over IIOP that allows developers
to write remote interfaces in the Java programming language.

CORBA
Common Object Request Broker Architecture (CORBA) is a platform-,
language-, and vendor-neutral standard for writing distributed object systems.
The CORBA standard was developed by the Object Management Group (OMG),
a consortium of companies founded in 1989. CORBA offers a broad range of
middleware services, including naming service, relationship service, and so on.
136 Patterns: Implementing Self-Service in an SOA Environment

CORBA can be used for integration with existing applications. This is done by
creating a CORBA wrapper for the existing application, which can then be
invoked by other applications.

CORBA is just a specification, and there are a number of vendors (such as IONA
or Borland) that implement it. Each vendor will provide additional value-added
services such as persistence, security, and so on, which can be leveraged by
CORBA developers.

The disadvantage of CORBA is in the steep learning curve involved. Also,
CORBA is slow-moving; it takes a long time for the OMG to adopt a new feature.

6.5 Where to find more information
For more information about topics discussed in this chapter, see:

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

� WebSphere Studio 5.1.2, JavaServer Faces and Service Data Objects,
SG24-6361

� Patterns: Implementing an SOA using an Enterprise Service Bus in
WebSphere Application Server V6, SG24-6494

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401

� Revealed! Architecting Web Access to CICS, SG24-5466

� MQSeries Programming Patterns, SG24-6506

� Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly &
Associates, Inc., 1998

� Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley 1999

� Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc., 1999

� IBM CICS

http://www.ibm.com/software/ts/cics

� ECMAScript language specification

http://www.ecma-international.org/publications/standards/ECMA-262.HTM

� Java APIs and technology

http://java.sun.com/products
 Chapter 6. Technology options 137

http://www.ibm.com/software/ts/cics
http://www.ecma-international.org/publications/standards/ECMA-262.HTM
http://java.sun.com/products

� Validator tools

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/

� World Wide Web Consortium (W3C) site

http://www.w3.org/

� Open source XML frameworks

http://xml.apache.org/

� Sun ONE™ article, Riddle Me This: Is Your XML Data Safe? by Brett Mendel

http://sunonedev.sun.com/building/tech_articles/xmldata.html

� Service-oriented architecture and Web services

http://www.ibm.com/software/solutions/webservices/resources.html
138 Patterns: Implementing Self-Service in an SOA Environment

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://www.w3.org/
http://xml.apache.org/
http://sunonedev.sun.com/building/tech_articles/xmldata.html
http://www.ibm.com/software/solutions/webservices/resources.html

Chapter 7. Application and system
design guidelines

Application design for e-business presents some unique challenges compared to
traditional application design and development. The majority of these challenges
are related to the fact that traditional applications were primarily used by a
defined set of internal users, whereas e-business applications are used by a
broad set of internal and external users such as employees, customers, and
partners. Web applications must be developed to meet the varied needs of these
end users.

7

© Copyright IBM Corp. 2005, 2006. All rights reserved. 139

7.1 e-business application design considerations
The following list provides key issues to consider when designing e-business
applications:

� The user experience and the look and feel of the site need to be constantly
enhanced to leverage emerging technologies and to attract and retain site
users.

� New features have to be constantly added to the site to meet customer
demands.

� Such changes and enhancements will have to be delivered at record speed to
avoid losing customers to the competition.

� e-business applications in essence represent the corporate brand online.
Developers have to work closely with the marketing department to ensure
that the digital brand effectively represents the company image. Such
intra-group interactions usually present content management challenges.

� It is hard to predict the runtime load of e-business applications. Based on the
marketing of the site, the load can increase dramatically over time. If the load
increases, the design must allow such applications to be deployed in various
high-volume configurations. It is important to be able to move Web
applications between these runtime configurations without making significant
changes to the code.

� Security requirements are significantly higher for e-business applications
compared to traditional applications. To execute traditional applications from
the Web, a special set of security-related software might be needed to access
private networks.

� The emergence of the personal digital assistant (PDA) and broadband
Internet markets will require the same information to be presented in various
UI formats. PDAs will require a lightweight presentation style to accommodate
the low network bandwidth. Broadband users, on the other hand, will demand
a highly interactive, rich, GUI.

To meet these challenges, it is critical to design Web applications to be flexible.
This chapter helps you understand some of these design challenges and
presents various design patterns that promote loosely coupled design to provide
a maximum degree of flexibility in a Web application. We also provide application
integration design guidelines and best practices for Web services, J2EE
Connectors, and JMS.
140 Patterns: Implementing Self-Service in an SOA Environment

7.2 Application structure
A Self-Service Web application can be viewed as a set of interactions between
the browser and the Web application server. The interaction usually begins with
an initial request by the browser for the welcome page of the application. This is
most often done by the user typing in the welcome page URL on the browser. All
subsequent interactions are initiated by the user by clicking a button or a link.
This causes a request to be sent to the Web application server. The Web
application server processes the request and dynamically generates a results
page and sends it back to the client along with a set of buttons and links for the
next request.

A closer examination of these interactions reveals a common set of processing
requirements that need to be considered on the server side. These interactions
can be easily mapped to the classical Model-View-Controller design pattern. As
outlined in the book Design Patterns: Elements of Reusable Object-Oriented
Software, the relationship between the MVC triad classes are composed of
Observer, Composite, and Strategy design patterns.

We start this section with a detailed look at the MVC design pattern. After that,
we examine some design patterns for interaction between MVC components and
some implementation considerations for the MVC components, including:

� Result bean design pattern
� View bean design pattern
� Formatter beans design pattern
� Command bean design pattern
� Frameworks including Struts and EAD4J
� WebSphere command framework with EJBs
� Best practices for EJBs

7.2.1 Model-View-Controller design pattern
Over the years, a number of GUI-based client/server applications have been
designed using the Model-View-Controller (MVC) design pattern. This powerful
and well-tested design pattern can be extended to support Self-Service Web
applications.

This section will describe the MVC pattern in detail. Note that in practice, we
expect that an existing MVC based design framework, such as JSF or Struts will
be used. However, in order to provide a broader view of the key design issues,
this section will not focus on any one framework. The frameworks described in a
later section.

As shown in Figure 7-1 on page 142, Model represents the application object
that implements the application data and business logic. The View is responsible
 Chapter 7. Application and system design guidelines 141

for formatting the application results and dynamic page construction. The
Controller is responsible for receiving the client request, invoking the appropriate
business logic, and based on the results, selecting the appropriate view to be
presented to the user.

Figure 7-1 The Model-View-Controller design pattern

A number of different types of skills and tools are required to implement various
parts of a Web application. For example, the skills and tools required to design
an HTML page are vastly different from the skills and tools required to design
and develop the business logic part of the application. In order to leverage these
scarce resources effectively and to promote reuse, we recommend structuring
Web applications to follow the Model-View-Controller design pattern.

Throughout this chapter, Model is often referred to as business logic, View is
referred to as page constructor or display page, and Controller is referred to as
interaction controller. This section further outlines the responsibilities of each of
these components and discusses what technologies could be used to implement
the same.

Interaction controller (Controller)
The easiest way to think about the responsibility of the interaction controller is
that it is the piece of code that ties protocol-independent business logic to a Web
application. This means that the interaction controller's primary responsibility is
mapping HTTP protocol-specific input into the input required by the

Browser Client

Web Application Server

Business Logic

Model

Page
Construction

View

Controller

Interaction
Controller
142 Patterns: Implementing Self-Service in an SOA Environment

protocol-independent business logic (that might be used by several different
types of applications), scripting the elements of business logic together and then
delegating to a page construction component that will create the response page
to be returned to the client. Here is a list of typical functions performed by the
interaction controller:

� Validate the request and session parameters used by the interaction.

� Verify that the client has the necessary privileges to access the requested
business task.

� Demarcate the transaction.

� Invoke business logic components to perform the required tasks. This
includes mapping the request and session parameters to the business logic
component's input properties, using the output of the components to control
logic flow, and correctly chaining the business logic.

� Call the appropriate page construction component based on the output of one
or more of the business logic commands.

Interaction controllers can be implemented using either Java servlets or JSPs. It
is important to note that interaction controller code is primarily Java code, and
Java code is easy to develop and maintain using Java Integrated Development
Environments (IDEs) such as Rational Application Developer and Rational
Software Architect. Because servlets are also Java classes it is possible to
leverage such IDEs to write, compile, and maintain servlets.

JSPs, on the other hand, provide a simple script-like environment. Even though
JSPs are primarily used for dynamic page construction, they can be used to code
interaction controller logic. Due to their simplicity, JSPs have a broad appeal to
script programmers, and many of the tools available today for JSPs are primarily
targeted toward dynamic page construction. The latest application development
tools from IBM Rational are designed to support the development of every facet
of a Web application, including servlets, JSPs, and JSFs.

Finally, it is up to the project team to decide whether to use JSPs, servlets, or
both for coding interaction controller logic. What is much more important is to
recognize the need for the separation between interaction controller logic and
page construction logic. Such a separation is necessary under the following
conditions:

� Display pages need to be reusable because they can be called by multiple
interaction controllers. For example, Figure 7-2 on page 144 shows that an
error page can be called by more than one interaction controller. In such a
scenario, if we were to combine the error page construction logic and the
interaction controller logic, then the error page logic would need to be
duplicated in several places throughout the application.
 Chapter 7. Application and system design guidelines 143

Figure 7-2 Single display page used by multiple interaction controllers

� The interaction controller is required to do page selection. There are several
reasons for this, such as the need to include different display pages
depending on runtime results, national language support, client browser
types, customer types, etc. For example, Figure 7-3 shows an interaction
controller calling a page constructor for either an administrator page or a page
for normal users, based on the user type.

Figure 7-3 One interaction controller calling multiple page constructors

� If there is a need to use different tools and skills for coding interaction
controllers and display pages then it is good to separate the two to simplify
the development process. Failing to do so could result in multiple people
having to write different parts of the same file, thus complicating the version
control and code management process.

Note: It is recommended that servlets be used in most cases to implement
interaction controllers. However, for simple applications where there is no
conditional or transactional logic involved, it is possible to combine the
interaction controller and page construction logic into one component. Under
such conditions, a JSP would be the best choice.

Page Construction

(For example, Error Page)

Interaction
Controller 1

Interaction
Controller 2

Interaction
Controller

Page Construction 1

(For example,
Admin Page)

Page Construction 2

(For example,
Normal User Page)

If User=Admin Else
144 Patterns: Implementing Self-Service in an SOA Environment

Another common design issue to consider is the relationship between
interactions and interaction controllers. The following is an overview of the
options:

� One interaction to one interaction controller

For every unique interaction, there is a unique interaction controller. For
example, login is handled by loginServlet, and logoff is handled by
logoffServlet.

� One interaction group to one interaction controller

A group of related Web interactions are all handled by the same interaction
controller. The interaction controller for the group is passed a parameter to
differentiate which interaction within the group is being performed. For
example, login and logoff both could be handled by authenticateServlet,
which can get a parameter called action type that could be either set to login
or logoff.

� All interactions to one interaction controller

This approach extends the interaction group to all interactions and builds a
monolithic interaction controller. This choice is also referred to as a gateway,
and is best used in conjunction with a suite of interaction handler classes to
which the servlet may delegate individual business requests.

We recommend a combination of these choices rather than any one exclusively.
One-to-one will not scale for very large applications. As a rule, a servlet can
handle all of the pages related to one use case. In fairly complex use cases,
these can be broken up into a suite of servlets handling specific interactions, or
employ the use of a gateway model with several interaction handlers.

Page constructor (View)
The page constructor is responsible for generating the HTML page that will be
returned to the client. It is the view component of the application. Similar to
interaction controllers, WebSphere allows display pages to be implemented as
either servlets or JSPs. JSPs allow template pages to be developed directly in
HTML, with scripting logic inserted for dynamic elements of the page and jsp
include actions for multipart pages. Hence, a JSP is the best choice for
implementing page construction components.

In many cases, the interaction controller passes the dynamic data as JavaBeans
to the display page for formatting. In other cases, the display page invokes
business logic directly to obtain dynamic data. It makes sense to have the
interaction controller pass the data when it has already obtained it and when the
data is an essential component of the contract between the interaction controller
and the display page. In other cases, the data needed for display is not an
essential part of the interaction and can be obtained independently by inserting
 Chapter 7. Application and system design guidelines 145

calls to business logic directly in the display page. However, such direct access
to business logic from the page construction component increases the
complexity of the display page, since the page designer must know the details of
the business logic methods. For this reason, you must be careful to minimize
such direct access to business logic from the display pages. Ideally, the source
data the page constructor requires can be pre-packaged by the Controller, which
eliminates direct manipulation of the Model by the View.

Once the page constructor has obtained the dynamic data (either from the
interaction controller or by its own logic), it will typically format the data. This can
be done in two ways. The simplest mechanism is to format the data using simple
scripting inside the page constructor. An alternative is to develop reusable
formatting components called formatter beans that will take a data set and return
formatted HTML.

Business logic (Model)
The business logic part of a Web application is the piece of code ultimately
responsible for satisfying client requests. As a result, the business logic must
address a wide range of potential requirements which include ensuring
transactional integrity of application components, maintaining and quickly
accessing application data, supporting the coordination of business workflow
processes, and integrating new application components with existing
applications. To address these requirements, WebSphere supports business
logic written in Java and uses the full facilities of the Java runtime, including
support for servlets, beans, enterprise beans, JDBC, CORBA, LDAP, JMS, and
JCA connectors to CICS, IMS, and other enterprise services.

We recommend that the business logic be wrapped with JavaBeans or EJBs.
Such a separation of business logic from the Web-specific interaction controller
and display page logic isolates the business logic from the details of Web
programming, increasing the reusability of the business logic in both Web and
non-Web applications.

Advantages and disadvantages of the MVC design pattern
To summarize, the MVC design pattern recognizes various types of program
logic involved in implementing a typical Web application and advocates the
separation of business logic, page construction logic, and interaction controller
logic. We recommend using servlets for implementing interaction controllers,
JSPs for implementing dynamic display pages, and simple JavaBeans and
enterprise beans for implementing business logic. Such a separation provides
the following advantages:
146 Patterns: Implementing Self-Service in an SOA Environment

� Leverages different skill sets

As discussed earlier, the skill sets required to design an HTML page are
vastly different from the skill sets required to code the business logic in Java.
The separation of concerns outlined here allows for the effective use of skilled
resources.

� Increases reusability

In a non-trivial application, there are usually display pages that can be called
from multiple interaction controllers. For example, an error page can be called
as a result of many interactions. Similarly, based on some conditions there
might be a need to perform page selection. For example, you might have to
display different pages for administration users and normal users. Finally, the
business logic could be used by several interactions or applications. For
example, you might have to display the current weather information on
multiple pages of a Web application. Under these conditions, a clear
separation of concerns would increase the potential for reuse.

� Can support multiple user interfaces

e-business applications often support multiple user interfaces such as HTML
clients for the Internet, application clients for the call center, wireless
hand-held PDAs, and voice response units (VRUs). Separating the
presentation logic from the business logic allows reuse of the business logic
component among these user interface environments. In addition to providing
higher reusability, such a separation also ensures the consistency of the
business logic across these applications.

� Improves maintainability of the site

In this scenario it is easy to make changes to the user interface without
affecting the business logic, and vice versa. For example, the user interface
can be changed to leverage a new HTML standard such as CSS without
affecting the business logic components, making it easy to respond to the
demands of the business in record speed.

� Reduces complexity

Any non-trivial application implemented without clear separation of concerns
could result in large and complex code. For such applications, the MVC
separation reduces the complexity.
 Chapter 7. Application and system design guidelines 147

On the other hand, it is important to recognize the following disadvantages of the
MVC design pattern:

� Possible overkill for small applications

The MVC design pattern can introduce extra artifacts that might not be
necessary for very simple cases and might, in fact, increase the complexity of
the application. However, if the application is likely to evolve over time, then it
can be beneficial to purchase a more complex system than you need in the
present to gain the flexibility for the future provided by the MVC design
pattern.

� High level of communication requirements between various groups

Since various groups would be typically responsible for implementing the
various parts of the application, there is a need for a defined communication
plan. For example, page developers need to know interaction controller
names and vice versa. They have to agree upon a naming convention for
various parameters and attributes, and interaction control developers need to
know the business logic, and so forth.

7.2.2 Result bean design pattern
If the interaction controller expects more than one field as a result of executing
the business logic, then we recommend returning a data bean that wrappers all
the result fields. Since this data bean represents the result of executing business
logic, we call it a result bean. A result bean effectively defines the contract
between a particular piece of business logic and a particular interaction
controller. Result beans are usually implemented as simple JavaBeans. Since
JavaBeans are by definition serializable, they can be passed by value between
EJB-based business logic implementations. Whenever possible, result bean
properties should be implemented as read-only properties. A constructor could
be used to initialize these properties during instantiation. This prevents the
interaction controllers and page constructors from inadvertently updating the
data.

It is important to note that a result bean can be reused by multiple business logic
methods or objects. For example, based on some condition, the controller may
decide to call two different business logic methods. If it is appropriate, both
methods could use the same result bean to return the results. The reverse can
also be true. Multiple controllers may call the same business logic that returns
the same result bean to all controllers.

Figure 7-4 on page 149 demonstrates the relationship between MVC
components, result beans, and view beans. See 7.2.3, “View bean design
pattern” on page 149, for our discussion on view beans.
148 Patterns: Implementing Self-Service in an SOA Environment

Figure 7-4 Result bean and view bean design pattern

Advantages of result beans
Some reasons to use result beans are:

� Result beans clearly define what the controller expects back from the
business logic.

� Once a result bean is defined, the developers of the Controller and the Model
can develop their components independently. This simplifies and optimizes
the development process and allows for parallel development.

� Since result beans can be serialized, they can be sent to remote servers or
received from remote servers, such as EJB-based distributed applications. In
addition, they can be stored in a file for persistence purposes.

� The result bean data structure can be reused by multiple business logic
objects and interaction controller objects.

7.2.3 View bean design pattern
A view bean defines the contract between the Controller and the View. It lists all
the attributes the JSP can display. The main benefit of defining such a view bean

HTML
JavaScript

Browser Client

Web Application Server

Command Bean

Model

Page
Construction

View

Also holds the
result data

Business Logic

View
Bean

Controller

Interaction
Controller

Result
Bean
 Chapter 7. Application and system design guidelines 149

is to make it easy for the JSP page designer to get all the required data in one
place. The display page often contains the data from the following sources:

� Result bean properties (returned by the business logic)
� HTTP request data (including attributes, parameters, cookies, URL string)
� Session state
� Servlet context

Figure 7-4 on page 149 demonstrates the relationship between MVC
components, view beans, and result beans. See 7.2.2, “Result bean design
pattern” on page 148, for our discussion on result beans.

The Controller is responsible for instantiating the view bean and initializing all of
the properties of the bean. View beans can be designed to be responsible for
view-specific transformations. For example, a view bean can be responsible for
converting the monetary values into the user-preferred currency. Such a view
bean can have two properties: The monetary value in a base currency and the
currency display type. The Controller can initialize both of these properties. The
view bean can use this information to call a reusable currency conversion library
and get the monetary value in the appropriate format.

Usually, view beans are tightly coupled with a JSP, because the primary purpose
is to provide all the properties the JSP designer would need in one place.
However, under special circumstances one can reuse the view beans by
inheritance.

Both result beans and view beans are implemented using simple Java beans. In
simple Web interactions, both a result bean and a view bean could be
implemented by the same Java bean.

Advantages and disadvantages of view beans
Some advantages of view beans are:

� Clearly defines all the fields a View (JSP) can display.

� Once a view bean is clearly defined, the developers of the Controller and the
View can develop their components independently. This simplifies and
optimizes the development process and allows for parallel development.

� The View (JSP) designer can get all the dynamic data from one view bean
and use <jsp:useBean> and <jsp:getProperty> tags to insert these values.
This allows the JSP designer to concentrate on the look and feel of the page
rather than worry about gathering data from various sources (for example,
sessions, cookies, result beans, and so on) and coding complex View-specific
Java code. View beans effectively hide these complexities from the display
page designer.
150 Patterns: Implementing Self-Service in an SOA Environment

� Complete separation of the View-specific logic from the business logic, for
example, currency conversion based on the user preference.

� Using inheritance can promote view bean reuse and ensure that similar
information is received by all users, for example, CSRs and customers.

� View beans can be used with tools such as Rational Developer or IBM
WebSphere Studio Application Developer, which allows a developer to insert
JavaBean properties into JSPs.

� JSPs and associated view beans can be exhaustively unit tested by the View
developer prior to integration with the rest of the application.

On the other side, it is important to recognize the following disadvantages of
introducing result beans and view beans:

� View beans are tightly coupled with display pages and interaction controllers.
This implies that any changes to the dynamic content of the display page will
require a change to the interaction controller. We depend on the interaction
controller to gather all the required information in one view bean.

� For small applications, the introduction of view beans could result in too many
individual pieces of code and could increase the complexity of application
management.

� The number of artifacts to be coded, managed, and maintained will be
increased.

7.2.4 Formatter beans design pattern
The view bean concept described in the previous section tries to minimize the
need for inserting Java code directly inside a display page. In order to insert
complex tables or drop-down lists, complex conditional loops may be needed.
JSP API 1.1 does not define repeat tags that allow for looping through an
indexed JavaBean property. One option to overcome this is to implement the
complex table or drop-down list generation in Java and wrap it inside a bean.
Such reusable beans are called formatter beans.

To summarize, a formatter bean is a bean that wrappers reusable HTML
formatting logic inside a method.

Advantages and disadvantages of formatter beans
Some advantages of formatter beans are:

� Eliminates the need for inserting complex scripting logic inside a JSP.
� Promotes reusability of the formatting logic.
� Hides the complexity of scripting logic from view designers.
 Chapter 7. Application and system design guidelines 151

� Promotes the ability to drop common information on multiple pages, such as
displaying the current weather information and current stock price on all the
pages of the Web application.

A disadvantage of formatter beans is that some of the display page functionality
that is best expressed in a JSP is now moved into Java code.

7.2.5 Command bean design pattern
The business logic part of a Web application must address a wide range of
potential requirements, including transactional integrity, application data access,
workflow support, and integration of new and legacy applications. To achieve
this, business logic components may use various protocols, including JDBC,
JNDI, IIOP, RMI, Web services, JCA, JMS, and so on to communicate with
enterprise applications, enterprise data sources, and external applications. The
Model is not only responsible for implementing the business logic, but also for
hiding the details of the data and application access protocols. To simplify the
implementation of the Model, we can implement one business logic bean per
task. We call such beans command beans.

Command beans can be defined as JavaBeans that provide a standard way to
invoke business logic. The following are the key characteristics of command
beans:

� Each command bean corresponds to a single business logic task, such as a
query or an update task.

� All command beans inherit from a single command interface. In essence, they
implement the command interface.

� The inherited command bean defines business domain-specific properties
such as account numbers.

� Command execution results are stored as properties of a command bean.
Therefore, command beans also act as result beans.

� Commands have a simple, uniform usage pattern:

a. Create an instance of the command bean.
b. Initialize the bean by setting its properties.
c. Cause the bean to execute its action by calling one of its methods.
d. Access the results of command execution by inspecting its properties.
e. Discard the command object.

� Commands can be serialized.

Figure 7-5 on page 153 shows how such a command bean interacts with the
other components of the Web application.
152 Patterns: Implementing Self-Service in an SOA Environment

Figure 7-5 Command beans

7.2.6 Frameworks
The goal of frameworks is to make it easier to build and maintain Web
applications with reusable components. In addition to providing software
components, a framework will also defined a design or approach.

For instance, when we discussed the MVC pattern, we detailed a wide variety of
possible design alternatives. Without the use of a framework, the project team
would have to carefully chose between the different design approaches, and
them implement all the components using servlets and JSPs.

Using a standard framework, many of the design decisions are already done,
generally following industry best practices. Each framework will define a design
approach in implementing the MVC pattern. The framework will also provide
reusable components which will accelerate and standardize this implementation.

In this section, we examine the following Web application frameworks:

� JavaServer Faces (JSF) framework
� The Apache Jakarta Project’s Struts framework
� IBM’s Enterprise Application Development Frameworks for Java (EAD4J)

HTML
JavaScript

Browser Client

Web Application Server

Command Bean

Model

Page
Construction

View

Controller

Interaction
Controller

Also holds the
result data

Business Logic

External Services

Enterprise
Applications

Enterprise
Data Sources

External
Applications
For example,

Business
Partner

View
Bean

Note: The command bean contains the command execution results, so there
is no need to introduce another result bean. In essence, the command bean
encapsulates both the business logic and result data.
 Chapter 7. Application and system design guidelines 153

Although we recommend the use of a framework when implementing the MVC
pattern, there are some issues to consider:

� Frameworks are restrictive. They are good for what they have been designed
for, but nothing else. Framework choice is critical because customizing a
framework can be difficult.

� Frameworks impose a way of thinking. Different ideas just do not fit. If the
framework is well-designed, this can be a good thing because it prevents bad
practices.

� There is a learning curve. It takes time to get started with a framework, partly
because there are more components to deal with and additional configuration
is needed.

JavaServer Faces
The JavaServer Faces is a standard J2EE technology, created by Java
Specification Request (JSR) 127. Although it is still a relatively new concept,
JSFs have wide acceptance by the tool vendors, including the Rational and
WebSphere product line.

The main pieces of a JSF application are:

� JSF pages

JSPs are built from JSF components, and each component is represented by
a server-side class.

� Faces servlet

One servlet (FacesServlet) controls the execution flow.

� Configuration file

An XML file (faces-config.xml) that contains the navigation rules between the
JSPs, validators, and managed beans.

� Tag libraries

The JSF components are implemented in tag libraries.

� Validators

The Java classes validate the content of JSF components, for example, to
validate user input.

� Managed beans

Java beans defined in the configuration file hold the data from JSF
components. Managed beans represent the data model and are passed
between business logic and user interface. JSF moves the data between
managed beans and user interface components.
154 Patterns: Implementing Self-Service in an SOA Environment

� Events

Events are Java code executed in the server for events (for example, a push
button). Event handling is used to pass managed beans to business logic.

Now that we have introduced the JSP components, we examine how they fit in to
the MVC architectural pattern:

� Model

Managed beans make up the model of a JSF application.

� View

JSPs make up the view of a JSF Web application. These JSPs are created by
combining model data with predefined (tag libraries) and custom-made UI
components.

� Controller -

The FacesServlet, which drives navigation and object management, makes
up most of a JSF application’s controller. Event listeners also contribute to the
controller logic.

See Chapter 9, “JSF front-end scenario” on page 239 for a sample
implementation of the MVC pattern using JavaServer Faces. In addition, the
following can provide more information:

� The official JSF specification

http://java.sun.com/j2ee/javaserverfaces/

� WebSphere Studio 5.1.2, JavaServer Faces and Service Data Objects,
SG24-6361

Struts
Struts is a Model II servlet-JSP framework offered by the Apache Software
Foundation. Struts supports application architectures based on the Model II
approach, which is an implementation of the traditional MVC paradigm discussed
earlier. Before the emergence of JSF, Struts was the industry standard choice for
implementing the MVC pattern. In fact the JSF specification is heavily influenced
by Struts.

True to the MVC design pattern, Struts applications have three major
components:

� Controller is implemented using the Struts ActionServlet and classes
extending the Struts Action class

� View is implemented using JavaServer Pages and Struts form beans

� Model implements the application's business logic
 Chapter 7. Application and system design guidelines 155

The ActionServlet routes HTTP requests from the user to the appropriate action
class. Action classes provide access to the application’s business logic and
control how flow should proceed. Form beans are used to collect and validate
form data from the user.

Figure 7-6 shows an example Struts form bean, TransferFundsForm, that has
been defined in the struts-config.xml file and linked to an action mapping. When
a request calls for the TransferFundsAction Struts action, the ActionServlet
retrieves the form bean (or creates it if it does not exist), and passes it to the
action.

Figure 7-6 Struts action class diagram

The action can then check the contents of the form bean before its input form is
displayed, and also queue messages to be handled by the form. When ready,
the action can return control with a forward to its output form, usually a JSP. The
ActionServlet can then respond to the HTTP request and direct the client to the
JSP. Figure 7-7 on page 157 summarizes this sequence.

Action

ActionForm

ActionServlet TransferFundsAction

TransferFundsForm

«instantiate»
«use»

Business
Logic
156 Patterns: Implementing Self-Service in an SOA Environment

Figure 7-7 Struts action sequence diagram

For more information about Struts see:

� Legacy Modernization with WebSphere Studio Enterprise Developer,
SG24-6806

� WebSphere Developer Domain for a number of articles on Struts:

http://www7b.software.ibm.com/wsdd/

� The Apache Jakarta Project Struts Web site:

http://jakarta.apache.org/struts/

EAD4J
EAD4J is an enterprise application Java framework that is J2EE compliant and
may be licensed from IBM Global Services. It represents IBM Global Services
best practices for custom enterprise application development in the Java space.
Harvested and hardened from hundreds of e-business engagements, EAD4J is
not limited to the Model II space but instead is a full feature, end-to-end J2EE
framework aimed at the enterprise customer.

EAD4J is comprised of a set of components, each responsible for a different
portion of the J2EE space, for example:

� EAD4J.Jade is based on the Model II Servlet-JSP pattern.
� EAD4J.Topaz provide support in the model/persistence areas.

 : User : transferFunds
Successful.jsp

 : TransferFunds
Form

 : TransferFunds
A ction

 : A ctionServ let

1 : doPost (arg0 , arg1)

2 : setA mount (amount)
3 : v alidate ()

4 : perform (mapping , form ,
request , response)

5 : getA mount ()

6 : \Forward\

7 : getA mount ()
 Chapter 7. Application and system design guidelines 157

http://www7b.software.ibm.com/wsdd/
http://jakarta.apache.org/struts/

� EAD4J.Opal handles logging.
� EAD4J.Ruby handles the XML/XSLT transcoding issues.

EAD4J is more than a Web application solution framework. EAD4J provides
solutions for batch processing, interfaces with thick clients, back-office
applications, or integration into existing applications using only a single
component of the EAD4J suite. In addition to the code, EAD4J provides
documentation, UML models, extensive Javadoc™, reference applications, and
training, all required by customers who need an application infrastructure for
mission critical and enterprise scale applications.

7.2.7 WebSphere command framework with EJBs
This section discusses the motivation for using the shippable command model in
e-business applications with enterprise beans. We discuss how the command
framework can be used with session and entity beans for the application model.

For a full discussion of the WebSphere command framework, see the following
publications:

� Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

� Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175

More information about the command pattern is available in Design Patterns:
Elements of Reusable Object-Oriented Software.

Command model
In their most basic form, commands simply encapsulate some request for
information or action. Commands are particularly useful for significant program
boundaries, such as the boundary between presentation code and business
logic.

To use commands you must perform the following steps:

1. Create (instantiate).

2. Initialize by setting some of the command’s properties. This can be done in
one of the command's constructors by calling some of the command’s set
methods, or by a combination of two mechanisms. All commands must have
a no-argument constructor to comply with the JavaBeans standard, but they
can also have convenience constructors that take initial values for the
command’s properties.

3. Call the command’s execute() method. This is a no-argument method that
makes the command's output properties ready for access.
158 Patterns: Implementing Self-Service in an SOA Environment

Optionally, you can perform the next step:

4. Inspect the command’s output properties by calling get methods. Depending
on how you implement your commands, some operations might not require
any output parameters.

The command package
WebSphere V6.0 includes support for the command model as formalized in the
command package (com.ibm.websphere.command) and extended to
accommodate command shipping (called TargetableCommands). The concept
behind command shipping is to intercept the execute method, ship the command
to a better execution point (say on a remote server), execute it there, and then
ship it back to the caller.

The command package is available to any WebSphere Java application. For
example, you can implement command shipping using an entity bean. When
execute() is called on a command, performExecute(TargetableCommand
targetableCommand) is called on the entity bean. Or, for example, you could
implement command shipping using a catcher servlet. In this approach, the
CommandTarget class would construct and send an HttpServletRequest to a
servlet on the EJB server. The servlet would retrieve the command from the
request, execute it, then store the executed command in the
HttpServletResponse object for return to the CommandTarget.

Both of these approaches are valid. The choice of which to use can depend on
whether you want your servlet and EJB environments completely separate.
Security is also a factor. The EJB approach transports over IIOP, which can
present a problem in environments with strict firewall rules. The servlet catcher
uses HTTP for the protocol, but in some environments Internet protocols are not
allowed to pass through the firewall from the presentation layer to the application
layer.

Advantages and disadvantages of command shipping
The command shipping model has several compelling advantages:

� It is a direct extension of the base command model and therefore maintains
the same programming style and tooling advantages.

� It isolates application logic from communication protocols and routing
policies. This allows the best protocol to be selected without requiring
extensive application changes. Indeed, using techniques such as dynamic
class loading, new protocols can be supported on-the-fly without the need to
change or recompile existing code.

� It supports an agent-oriented service definition model in which the service
provider provides a functional interface without consideration for distribution
overhead. The service client then defines commands based on the service
 Chapter 7. Application and system design guidelines 159

interface. The commands are shipped to the service and run there. This
allows the service client to control the granularity of remote communication
and avoids many of the performance and complexity issues associated with
remote interfaces.

� In an EJB environment, command shipping allows multiple EJB calls to be
made without the need for multiple round trips to the EJB server. All calls are
made locally by the command server.

There are also some disadvantages.

� The simplest implementation of command shipping uses Java serialization to
generate the messages that flow between servers. This might hamper the
use of a messaging infrastructure such as MQSeries® Integrator, because it
is difficult to interpret a serialized bean at an intermediate point. However,
command shipping does not dictate an encoding for requests. It is perfectly
reasonable to provide a command target that encodes the command in XML,
or even SOAP, for transport. Currently this will require per-command
encoding logic, but this logic would be required on a per-request basis with
any approach.

� The simplest implementation of command shipping uses the same class for
both the server-side and the client-side implementation of the command.
Thus, if the server-side implementation of the execute method needed to be
changed, it would be necessary to redeploy the command class to all clients
as well, for example, by including the command classes in a deployed EJB
JAR file. Given the goal of agent-oriented service definitions, this does not
seem like a serious issue. However, if this is a concern, then a simple
dynamic delegation pattern can be followed where the execute method of a
command is implemented by delegation to a dynamically linked helper class
with classForName. In this way the helper class can be changed at any time
with no impact on the client code.

Command caching
Command caching is beyond the scope of this book. However, it warrants a brief
discussion to show future direction and to further justify the use of the command
model.

Command caching extends the command model to allow executed commands to
be saved in a cache and then retrieved when they are needed, thus avoiding the
cost of reexecuting the command. To do this, commands are extended with IDs
and other metadata such as dependencies. The usage model for cacheable
commands is exactly like that for non-cacheable commands. However, when
execute() is called on the command, the caching infrastructure checks to see if a
command with exactly the same ID is already in the cache. If it is, then the
contents of the cached command are copied into the newly executed command
160 Patterns: Implementing Self-Service in an SOA Environment

using the setOutputProperties() method added by TargetableCommand.
Execute() then simply returns without really executing the command.

Advantages and disadvantages of command caching
The advantages of command caching are:

� Caching is transparent to application code.

� It is a true caching model. The application works correctly if items are not in
the cache. Just as an application using a command does not know or care
how the action is carried out, an application using a caching command does
not know or care if the action is carried out. It interacts with the command in
the same way, regardless of implementation.

� It provides a unified caching model. The model is the same for expensive
computations, remote requests, database queries, and so forth.

� A consistent caching model helps to contain the complexity of invalidation.

The disadvantages of command caching are:

� It mixes logic and data solution by using data objects for output properties of
commands.

� J2EE container services does not provide a command manager cache. It
requires the application developer to implement invalidation logic. However:

– Timeouts work very well for most non-user specific commands.

– There is a special pattern for user-specific commands that keeps things
quite simple.

– A consistent, regular framework is better than ad hoc caching, which is the
only real alternative.

Command classes
The complete command hierarchy is shown in Figure 7-8 on page 162. This
shows the command interface as the base for all commands. Each command
has to implement at least the Command interface. When using the base
command interface, the command is executed locally in the same JVM as the
calling servlet. An application that requires a command to be executed remotely
(a shippable command) needs to implement the TargetableCommand and
TargetableCommandImpl interfaces. Finally, if a command is to undo the work
done by another command, then it must implement the CompensableCommand
interface.
 Chapter 7. Application and system design guidelines 161

Figure 7-8 Command hierarchy

7.2.8 Best practices for EJBs
The following is a brief collection of best practices for developers of Enterprise
JavaBeans:

� Use session beans to represent large-grained tasks in the business process.

Session beans are used by one client and may or may not have associated
properties.

� Use entity beans to represent fine-grained business domain elements.

Entity beans are shared by many clients and typically have persistent data.

«JavaInterface»
TargetableCommand

+ getCommandTarget ()
+ getCommandTargetName ()
+ hasOutputProperties ()
+ performExecute ()
+ setCommandTarget ()
+ setCommandTargetName ()
+ setOutputProperties ()

TargetableCommandImpl

«JavaInterface»
CompensableCommand

+ getC ompensatingC ommand ()

«Jav aInterface»
Serializable

«JavaInterface»
Command

+ execute ()
+ isReadyToCallExecute ()
+ reset ()
162 Patterns: Implementing Self-Service in an SOA Environment

� Use JavaBeans as helper objects to get work done.

Use JavaBeans as general-purpose utility elements, but avoid using helper
objects in create() and finder methods in entity beans. This makes reuse of
the bean challenging and deployment difficult.

� Wherever possible use stateless session beans.

Stateless session beans can be pooled by the EJB container for efficiency,
since they do not retain data between client invocations.

� Use session beans as facades to entity beans.

This prevents a new transaction from being created on every method call, and
eliminates the need to code business logic to back out a failed transaction.

� Use Container Managed Persistence (CMP) entity beans in most cases.

Use Bean Managed Persistence (BMP) for situations requiring complex SQL
or relational joins. When using BMP, always use WebSphere data source
objects and connection pooling.

� Cache read-only objects in a Singleton JavaBean.

Cache read-only objects or objects that do not change state on a per-JVM
basis by storing them in a Singleton JavaBean. Access these objects using a
stateless session bean.

� Use session beans for write-only objects.

For write-only objects that do not need to be read into memory, such as a log
entries, use session beans or consider using asynchronous messaging.

� Cache the EJB home interface.

Looking up the context, the remote home, and the remote interface is
expensive, so cache the home interface to improve performance. Beware of
stale handles.

� EJB local versus remote interface

Only provide a local interface for entity EJBs. This ensures that fine-grained
entity access is only available within the JVM. Provide remote coarse-grained
entity access using a session bean as a facade.

See also the best practice recommendations in publication EJB 2.0 Development
with WebSphere Studio Application Developer, SG24-6819, for further details.

7.3 Design guidelines for Web services
In this section we discuss the following Web services topics:
 Chapter 7. Application and system design guidelines 163

� Web services architecture
� Web services design considerations
� The key challenges in Web services
� Best practices for Web services

7.3.1 Web services architecture
Web services are deployed on the Web by service providers. The functions
provided by the Web service are described using the Web Services Description
Language (WSDL). Deployed services are published on the Web by service
providers.

A service broker helps service providers and service requestors find each other.
A service requestor uses the Universal Discovery Description and Integration
(UDDI) API to ask the service broker about the services it needs. When the
service broker returns the search results, the service requestor can use those
results to bind to a particular service.

As we can see in Figure 7-9:

� Web service descriptions can be created and published by service providers.
� Web services can be categorized and searched by specific service brokers.
� Web services can be located and invoked by service requesters.

Figure 7-9 Web services roles and operations

We can now look at the building blocks of Web services:

� SOAP
� UDDI
� WSDL

Fin
d

Bind/Invoke
Service

Requester
Service
Provider

Service
Broker

Publish

W
SD

L,
UDDI W

SDL, UDDISOAP
164 Patterns: Implementing Self-Service in an SOA Environment

SOAP
SOAP is a network-, transport-, and programming language-neutral protocol that
allows a client to call a remote service. The message format is XML. The
currently adopted standard is W3C’s SOAP 1.1 specification, while SOAP 1.2 is
in the review process.

SOAP has the following characteristics:

� SOAP is designed to be simple and extensible.

� All SOAP messages are encoded using XML.

� SOAP is transport protocol independent. HTTP is one of the supported
transports. Hence, SOAP can be run over an existing Internet infrastructure.

� There is no distributed garbage collection. Therefore, call by reference is not
supported by SOAP; a SOAP client does not hold any stateful references to
remote objects.

� SOAP is operating system independent and not tied to any programming
language or component technology. It is object model neutral.

Due to these characteristics, it does not matter what technology is used to
implement the client, as long as the client can issue XML messages. Similarly,
the service can be implemented in any language, as long as it can process XML
messages.

WSDL
The Web Services Description Language (WSDL) is an XML-based interface and
implementation description language. WSDL1.1 provides a notation to formally
describe both the service invocation interface and the service location.

WSDL allows a service provider to specify the following characteristics of a Web
service:

� The name of the Web service and addressing information

� The protocol and encoding style to be used when accessing the public
operations of the Web service

� Type information, including operations, parameters, and data types
comprising the interface of the Web service, plus a name for the interface

A WSDL specification uses XML syntax, therefore, there is an XML schema for it.

UDDI
UDDI stands for Universal Description Discovery and Integration. UDDI is both a
client-side API and a SOAP-based server implementation that can be used to
store and retrieve information on service providers and Web services.
 Chapter 7. Application and system design guidelines 165

UDDI is a technical discovery layer. It defines:

� The structure for a registry of service providers and services
� The API that can be used to access registries with this structure
� The organization and project defining this registry structure and its API

UDDI is a search engine for application clients rather than human beings.
However, there is a browser interface for human users as well.

Next we look at the roles a business and its Web service-enabled applications
can take. Three roles can be identified:

� Service broker
� Service provider
� Service requester

Service broker
The Web service broker is responsible for creating and publishing the UDDI
registry. UDDI registries can be provided in two forms:

� Public registries, such as the IBM UDDI Business Registry and the IBM UDDI
Business Test Registry:

http://www.ibm.com/services/uddi/protect/registry.html
http://www.ibm.com/services/uddi/testregistry/protect/registry.html

� Private registries such as the UDDI registry provided with IBM WebSphere
Application Server

The service broker does not have to be a public UDDI registry. There are other
alternatives, for example a direct document exchange link between the service
provider and the service requester.

Service provider
The service provider creates a Web service and publishes its interface and
access information to the service registry.

Figure 7-10 on page 167 shows in more detail the application architecture of a
Web service provider. Note that we have introduced the concept of a Web
service provider bean. This bean can be a simple Java bean, an EJB (stateless
session bean) or a simple Java class. This bean is a facade for the actual
business logic that is present in the form of business objects. The Web service
provider bean exposes methods that might mirror methods in the actual business
objects, or the bean might expose methods that call a number of business
objects. In any case, think of this as a facade bean for the real business objects.
Using this architecture, we do not have to change the existing business logic or
business objects in order to create a Web service from the existing enterprise
business objects.
166 Patterns: Implementing Self-Service in an SOA Environment

http://www.ibm.com/services/uddi/protect/registry.html
http://www.ibm.com/services/uddi/testregistry/protect/registry.html

Figure 7-10 Web service provider architecture

A WSDL specification consists of two parts, the service interface and the service
implementation. Hence, service interface provider and service implementation
provider are the two respective subroles for the service provider. The two roles
can, but do not have to, be taken by the same business.

Service requester
The service requester locates entries in the broker registry using various find
operations and then binds to the service provider in order to invoke one of its
Web services.

Figure 7-11 on page 168 shows the architecture of a Web service requester.
Note that the architectural model follows the Model-View-Controller (MVC)
pattern, with the servlet as the main component of the controller; the JSP the
main component of the View; and the commands and the Web services residing
the Model layer. Web services provide a link to another system within the Model
layer.

This is considered a best practice for building Web-based applications. We can
see that Web services fit very easily into this model.

Web Service
Requester

Web Service
Provider Bean

Model
Business Logic

Enterprise
Applications

Enterprise
Data Sources

Business
Objects

XML
SOAP

Message
SOAP
Server

XML
SOAP

Message
 Chapter 7. Application and system design guidelines 167

Figure 7-11 Web service requester architecture

7.3.2 Web services design considerations
This section describes architectural decisions that you need to make when
designing Web service providers and requesters. We describe each of the
decisions that need to be made and then talk about some of the technical issues
involved in these decisions. We then give some guidelines for system architects
on how to make the appropriate choices for a given application.

Transmission patterns
The first design option we should look at for designing Web services is the
Transmission pattern we expect to use. These patterns represent different types
of operations that can be defined in a WSDL file. The four basic patterns are:

� Request-response
� One-way
� Solicit-response
� Notification operation

Request-response
The request-response transmission primitive is shown in Figure 7-12 on
page 169.

Model
Business Logic

Enterprise
Applications

Enterprise
Data Sources

Page
Construction

(JSP)

View

Controller

Interaction
Controller
(Servlet)

Command
Bean

Web Service
Consumer

Result
Bean

View
Bean

Web Service
Provider
168 Patterns: Implementing Self-Service in an SOA Environment

Figure 7-12 Request-response transmission

One-way
The one-way transmission primitive is shown in Figure 7-13.

Figure 7-13 One-way transmission

Solicit-response
The solicit-response transmission primitive is shown in Figure 7-14 on page 170.

Note: A request-response operation is an abstract notion. A particular binding
must be consulted to determine how the messages are actually sent: Within a
single communication (such as a HTTP request/response), or as two
independent communications (such as two HTTP requests).

Web Service
Requester

Web Service
Provider

Web Service
Requester

Web Service
Provider
 Chapter 7. Application and system design guidelines 169

Figure 7-14 Solicit-response transmission

Notification operation
The notification operation transmission primitive is shown in Figure 7-15.

Figure 7-15 Notification operation transmission

SOAP messaging mechanisms
The next design point in architecting a Web service is to choose the SOAP
messaging mechanism to use. Figure 7-16 on page 171 shows the two general
categories of Web services SOAP messaging mechanisms:

� SOAP RPC-based Web services
� SOAP message-oriented Web services

Web Service
Requester

Web Service
Provider

Web Service
Requester

Web Service
Provider
170 Patterns: Implementing Self-Service in an SOA Environment

Figure 7-16 SOAP messaging operations

RPC versus message-oriented
The advantages and disadvantages of the SOAP RPC approach versus the
SOAP message-oriented Web service approach can be summarized as follows:

� SOAP RPC advantage:

Simpler development:

� SOAP RPC disadvantages

Requester is too dependent on the availability of the Web service provider

� SOAP message-oriented advantages:

– Less dependency on the Web service provider availability

– Works well for exchanging large documents

– Works well from a nonrepudiation perspective because documents can be
signed digitally and stored at both ends

– Enables extended enterprise electronic workflow and business process
integration using asynchronous integration

� SOAP message-oriented disadvantage:

Relatively more complex development because it uses assured delivery of
asynchronous messages and can require compensating transactions.

Model
Business Logic

Business
Objects

XML
SOAP

Message Enterprise
Applications

Enterprise
Data Sources

External
Applications
For example,

Business
Partner

External
Web Service
Consumer

XML
SOAP

Message

Message
Router

RPC
Router

Web Service
Provider BeanXML

SOAP
Message
 Chapter 7. Application and system design guidelines 171

Static versus dynamic Web services discovery
Our next design point is to decide if the Web service requester will use static or
dynamic discovery of available Web services. The requester has to begin with
the WSDL file that describes the interface and implementation specification of
the Web service to be invoked. This WSDL file can be retrieved dynamically
using a service registry, or statically, as shown in Figure 7-17.

Figure 7-17 Web services discovery methods

Three types of discovery methods for requesters can be identified. They import
interface and implementation information at different points in time (build time
versus. runtime):

� Static service

No public, private, or shared UDDI registry is involved. The service requester
obtains a service interface and implementation description through a
proprietary channel from the service provider (an e-mail, for example), and
stores it in a local configuration file.

� Provider-dynamic

The service requester obtains the service interface specification from a
public, private, or shared UDDI registry at build time and generates proxy
code for it. The service implementation document identifying the service
provider is dynamically discovered at runtime (using the same or another
UDDI registry).

Service
Requester

Static Service

SOAP
Listener

Service
Provider

Service
Requester

Dynamic Discovery

SOAP
Listener

Service
Provider

Service
Registry
172 Patterns: Implementing Self-Service in an SOA Environment

� Type-dynamic

The service requester obtains both the service interface specification and the
service implementation information from a public, private, or shared UDDI
registry at runtime. No proxy code is generated; the service requester directly
uses the more generic SOAP APIs to bind to the service provider and invoke
the Web service.

Message structure
The Web services specification does not mandate any particular message
structure. The message structure is defined by the service provider. Message
structures can be anything from simple strings to complex XML documents.

SOAP encoding versus literal encoding
SOAP encoding, the infamous set of rules often referred to as Section 5 encoding
after its location in the specification, was introduced to provide standard rules for
encoding data within SOAP envelopes. Simple services and clients could simply
agree to follow a set of rules for encoding data to XML in order to make writing
services and clients easier. But SOAP encoding is only a suggestion in the
specification. Thus, when a product claims SOAP compatibility, it is not explicitly
claiming SOAP encoding compatibility. This is why the available higher-level
APIs cannot be correct in general when they do automatic marshalling of
datatypes. Just as the extensibility of SOAP with regard to transports often
causes implicit assumptions that create compatibility problems, so does this
extensibility with regard to payload data encoding. To know whether the client
API will generate SOAP envelopes that a specific Web service will understand,
we must be explicitly aware of the data encoding that the Web service expects
and whether that encoding is supported by the client API.

An alternative is to use literal encoding where the payload of a SOAP message is
defined completely by a specific schema, often an XML Schema. Instead of
having the Web service and the client agree to follow a set of rules for serializing
the data, they agree on the exact format of the data. If the format is described by
using an XML Schema, a development tool can read it and provide automatic
marshalling of the data from the native language structures into XML. In this
case, all the toolkit has to understand is the entire XML Schema specification
instead of the combination of the particular encoding rules as well as the chosen
type system. The only issue left with using literal encoding is how the tool finds
the particular service's XML Schema. This issue is solved by WSDL.
 Chapter 7. Application and system design guidelines 173

Currently, no machine-understandable standard exists for describing data
models for use with SOAP Section 5 encoding, so developers are leaning
towards literal encoding with XML Schema. Development tools often provide
features such as syntax assistance and data model validation with XML Schema.
This may change soon, however, as the Web Services Description working
group is considering creating a language to describe SOAP Section 5 data
models as part of the WSDL binding for SOAP in WSDL version 1.2.

Synchronous versus asynchronous Web services
Our next design point is selecting the kind of messaging we want to implement.
Our choices are synchronous or asynchronous. The Web services specifications
define synchronous operations only. However, Web services are by their very
nature somewhat asynchronous. From the perspective of the Web service
provider it must, in effect, be a listener and be prepared to accept requests
asynchronously from the requester. From the consumer or requester side, the
application can be designed for either synchronous or asynchronous operation.
Although Web services defines synchronous operations only, there is nothing in
the specifications to preclude asynchronous operations. Generally, the Web
services requester has no guarantee of when, or if, it will receive a response.
Beyond that, there are also situations where the Web service provider needs to
perform some external operation, or wait for human intervention, or call another
service that would introduce a delay in the response.

Synchronous Web services are suitable when the Web service provider can
provide the required response instantaneously, such as when getting a stock
quote. Here we are, in effect, using Web services as another RPC mechanism.
Current tools are more focused on this type of Web service. Asynchronous Web
services are suitable when the Web service provider is unable to provide the
required response instantaneously, for a variety of reasons as mentioned above.
Asynchronous operations are usually driven by the asynchronous nature of the
business transaction itself. Asynchronous Web services are suitable for
document exchange between enterprises. It is important to separate this design
point from the reliability of the underlying transport mechanism. We will discuss
this in further detail in the next sections.

The designer of a Web services requester needs to decide how to handle
asynchronous responses and how to ensure that his or her implementation is
compatible with the way in which a service provider supports asynchronous
operations. One option for the requester is to issue a request and then block its
thread of execution waiting for a response, but for obvious reasons this is not a
good alternative; among other problems, it results in resource inefficiencies and
raises transactional and scalability issues. The preferred solution is to build
asynchronous behavior into the Web services requester. The requester makes a
request as part of one transaction and carries on with the thread of execution.
The response message is then handled by a different thread within a separate
174 Patterns: Implementing Self-Service in an SOA Environment

transaction. In this model, the requester requires a notification mechanism and a
registered listener component to receive responses. Likewise, there must be a
correlator (a correlation or transaction ID) exchanged between the service
requester and the service provider for associating responses with their requests.

Transports and local interfaces
The transports that can be used for Web services communications vary in their
capabilities to facilitate the support of asynchronous operations. Thus, it is not
only Web services behavior that can be described as either asynchronous or
synchronous; the transport used for exchanging Web services messages also
falls into one category or the other. Transports whose interfaces inherently
support the correlation of response messages to request messages for
application use and support a push and pull type of message exchange are often
described as being asynchronous transports. Synchronous transports do not
provide these facilities and, when used for asynchronous operations, require that
the applications (the client and service provider, for the purposes of this
discussion) manage the correlation of messages exchanged by not only defining
how the correlator will be passed within each message, but by also matching
responses with requests. Examples of transports that can be used in support of
asynchronous operations are listed in Table 7-1.

Table 7-1 Web services transports

Typically, when business partners use Web services to integrate their business
processes, they prefer to use HTTP, HTTPS, and HTTPR as transports for
communications across the Internet.

Correlation ID
Regardless of the transport being used for an asynchronous operation, because
the response to a request is expected to be received at a later time, there must
be a mechanism to correlate the response with the request. Web services
requesters and providers must agree upon a correlation ID scheme. They also
must agree upon who is responsible for generating the correlation ID.

Return address
In addition there must be an agreed-upon mechanism to identify the return
address to which to send the response. You could set up a return address in a
profile database or its return address could be part of every request.

Asynchronous transports Synchronous transports

HTTPR
JMS
IBM WebSphere MQ Messaging
MS Messaging

HTTP
HTTPS
RMI/IIOP
SMTP
 Chapter 7. Application and system design guidelines 175

The asynchronous transports enable a client to continue processing on its thread
of execution immediately after requesting a service invocation. They also provide
mechanisms to enable a client to determine the status of its Web service
requests, and to retrieve responses to those requests.

Web service implementations that do not provide the ability to initiate the
transmission of a response on a separate thread of execution cannot be used for
asynchronous operations. Examples of such implementations would be those
that use EJBs to front-end database applications or implementations that provide
access to enterprise systems through the use of local interfaces such as JCA.

Asynchronous Web services approaches
When implementing an asynchronous mechanism in Web Services, the
preferred solution is to build asynchronous behavior into the Web services
requester. The requester makes a request as part of one transaction and carries
on with the thread of execution. The response message is then handled by a
different thread within a separate transaction. In this model, the requester
requires a notification mechanism and a registered listener component to receive
responses. Similarly, there must be a correlator (a correlation or transaction ID)
exchanged between the service requester and the service provider for
associating responses with their requests.

A typically asynchronous scenario would include the following:

� Production and transmission of a request message by a service requester
� Consumption of the request message by the service provider
� Production and transmission of a response message by the service provider
� Consumption of the response message by the service requester

We examine the two approaches for asynchronous Web services:

� Decoupled publication-subscription
� Polling

Decoupled publication-subscription
This approach requires partners A and B to be both Web service provider and
consumer. They alternate roles. This means both need the SOAP server
footprint. Figure 7-18 on page 177 illustrates the steps to implement
publication-subscription asynchronous Web services messaging.
176 Patterns: Implementing Self-Service in an SOA Environment

Figure 7-18 Publication-subscription asynchronous Web service approach

Polling
Here the consumer polls on a periodic or event basis to retrieve the response for
an earlier request. Partner A remains as a pure Web service consumer and does
not need the SOAP server footprint. Figure 7-19 illustrates how to implement a
polling approach to asynchronous Web services.

Figure 7-19 Polling asynchronous Web service approach

Development strategies for Web service providers
A service provider can choose between three different development styles when
defining the WSDL and the Java implementation for her Web service:

� Top-down

When following the top-down approach, both the server-side and client-side
Java code are developed from an existing WSDL specification.

Request with Correlation ID (Request/Response Operation)

Confirmation of the Request Receipt

Send Response to an earlier Request with Correlation ID (Request/Respone Operation)

Confirmation of the Response Receipt

Partner A
Web Service

Consumer/Provicer

Partner B
Web Service

Provider/Consumer

Partner A
Web Service
Consumer

Request with Correlation ID (Request/Response Operation)

Partner B
Web Service

Provider

Confirmation of the Request Receipt

Response to an earlier Request with Correlation ID

Request to retrieve the response for Correlation ID (Request/Response Operation)
 Chapter 7. Application and system design guidelines 177

� Bottom-up

If some server-side Java code already exists, the WSDL specification can be
generated from it. The client-side Java proxy is still generated from this
WSDL document.

� Meet-in-the-middle

The meet-in-the-middle (MIM) development style is a combination of the two
previous ones. There are two variants:

– MIM variant 1

Some server-side Java code is already there. Its interface, however, is not
fully suitable to be exposed as a Web service. For example, the method
signatures might contain unsupported data types. A Java wrapper is
developed and used as input to the WSDL generation tools in use.

– MIM variant 2

There is an existing WSDL specification for the problem domain; however,
its operations, parameters, and data types do not fully match with the
envisioned solution architecture. The WSDL is adopted before server-side
Java is generated from it.

In the near future, we expect most real-world projects to follow the
meet-in-the-middle approach, with a strong emphasis on its bottom-up elements.
This is MIM variant 1, starting from and modifying existing server-side Java and
generating WSDL from it.

Level of integration between requester and provider
In a homogeneous environment, client and server (requester and provider) use
the same implementation technology, possibly from the same vendor. They
might even run in the same network.

In such an environment, runtime optimizations such as performance and security
improvements are possible. We expect such additional vendor-specific features
to become available as the Web services technology evolves.

We do not recommend enabling such features, however, because some of the
main advantages of the Web service technology such as openness, language
independence, and flexibility can no longer be exploited. Rather, you should
design your solution to loosely couple requester and provider, allowing
heterogeneous systems to communicate with each other.

7.3.3 The key challenges in Web services
Web services can potentially revolutionize application integration by providing a
layer of abstraction between the technology that requests a service and the
178 Patterns: Implementing Self-Service in an SOA Environment

technology that provides the service. In order to achieve this, though, there are
still technical challenges that have to be addressed. This section briefly
describes a few key issues, such as the Extended Web Services Architecture,
security, interoperability, quality of service, and distributed transactions.

Extended Web Services Architecture
In November 2002, W3C released a draft Web Service Architecture specification
that identifies the functional components, the relationships among those
components, and establishes a set of constraints to guide the desired properties
of the overall architecture.

The proposed architecture consists of a basic architecture that defines the
interactions between service requesters and service providers, as discussed in
7.3.1, “Web services architecture” on page 164.

The proposed architecture also defines an Extended Web Services Architecture
that incorporates additional features and functionality. These additional features
include:

� Asynchronous messaging
� Attachments typically used to include binary data in SOAP messages
� Caching
� Message Exchange Pattern (MEP)
� Correlation
� Long running transactions
� Reliable messages
� Message authentication
� Message confidentiality
� Message integrity
� Message routing
� Management messages
� Session

See the W3C Web Services Architecture specification for more detail:

http://www.w3.org/TR/2002/WD-ws-arch-20021114/

Security
Security concerns are the main limitation of current Web services initiatives. The
Internet and many of its prevalent technologies were not designed with security
in mind. Web services security must also be compatible with the foundational
technologies (SOAP, WSDL, XML Digital Signature, XML Encryption, and
SSL/TLS).

We further discuss the latest development in Web services security in 10.8.1,
“Security considerations for Web services” on page 354.
 Chapter 7. Application and system design guidelines 179

http://www.w3.org/TR/2002/WD-ws-arch-20021114/
http://www.w3.org/TR/2002/WD-ws-arch-20021114/

Interoperability
By using open standards, Web services can enable any two software
components to communicate, no matter what technologies or platforms are used
to create or deploy them. That is the theory. Interoperability is one of the key
value propositions of Web services. Unfortunately, there is still no common,
agreed-upon definition of what a Web service is, and there are still many needed
standards in their infancy, some still competing against each other. Such
fragmentation and niching of Web services standards, tools, and APIs could
really jeopardize the applicability and thus the wide adoption of Web services.

To address the potential problems, the Web Services Interoperability (WS-I)
Organization released the Web Services Basic Profile 1.0 on October 17, 2002. It
is an important milestone for the technology as a published description of what
standards and technologies will be required for interoperability between Web
services implementations on different software and operating system platforms.

As an architect or a developer, you need to monitor WS-I’s progress and
participate if you can. In addition, try to follow the use cases and scenarios
introduced in the current draft documentation as design guidance.

See the WS-I Basic Profile Version 1.0 specification for more detail:

http://www.ws-i.org/Profiles/Basic/2002-10/BasicProfile-1.0-WGD.htm

Quality of Service (QoS)
Quality of Service is one of the top issues in the minds of those considering Web
services. WSDL specifies the syntactic signature for a service but does not
specify any semantics or non-functional aspects. QoS-enabled Web services
require a separate QoS language for Web services to answer questions such as:

� What is the expected latency?
� What is the acceptable round-trip time?

A programmer needs to understand the QoS characteristics of Web services
while developing applications that invoke Web services.

Ideally, a QoS-enabled Web services platform should be capable of supporting a
multitude of different types of applications:

� With different QoS requirements
� Using different types of communication and computing resources

When considering QoS-aware Web services, the interface specification should
provide QoS statements that can be associated to the whole interface or
individual operations and attributes. In the case of a service requestor, these
statements describe the required QoS associated with the service required by
180 Patterns: Implementing Self-Service in an SOA Environment

http://www.ws-i.org/Profiles/Basic/2002-10/BasicProfile-1.0-WGD.htm
http://www.ws-i.org/Profiles/Basic/2002-10/BasicProfile-1.0-WGD.htm

the client. From a service provider's perspective, these statements describe the
offered QoS associated with the service offered by the server object.

See the IBM developerWorks® article Understanding quality of service for Web
services:

http://www-106.ibm.com/developerworks/library/ws-quality.html

Distributed transactions
Almost every party agrees that we need a standard that accommodates both
classical ACID (XA or database-style transactions) and long-running,
compensating transactions. But there is still sharply divided opinion on where
such standards fit in the Web services stack.

The Business Transaction Protocol (BTP) from OASIS was backed by a number
of smaller vendors (BEA, HP, Choreology, Oracle) and the Version 1.0 was
released in May 2002. BTP tries to adopt XML-based technology for business
transactions on the Internet and tackles such challenges as transactions that
span multiple enterprises and long lasting transactions.

BTP has been criticized as being too complex, and still lacks backing from an
industry heavyweight such as IBM or Microsoft. In August 2002, IBM, Microsoft,
and BEA published two drafted specifications:

� WS-Coordination is a general purpose and extensible framework for
providing protocols that coordinate the actions of distributed transactions. The
defined framework enables an application service to create a context needed
to propagate an activity to other services and to register for coordination
protocols. The framework also enables existing transaction processing,
workflow, and other systems for coordination to hide their proprietary
protocols and to operate in a heterogeneous environment. It can be used with
message sequencing and state machine synchronization.

See the following Web site for the published specification:

http://www-106.ibm.com/developerworks/library/ws-coor/

� WS-Transaction includes support for the two types of transactions. It
describes coordination types that are used with the extensible coordination
framework as described in WS-Coordination. Two coordination types are
defined: Atomic Transaction (AT) and Business Activity (BA). WS-Transaction
is a building block used with other specifications (for example,
WS-Coordination, WS-Security) and application-specific protocols that are
able to accommodate a wide variety of coordination protocols related to the
coordination actions of distributed applications.

See the following Web site for the published specification:

http://www-106.ibm.com/developerworks/library/ws-transpec/
 Chapter 7. Application and system design guidelines 181

http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-coor/
http://www-106.ibm.com/developerworks/library/ws-transpec/

While these proposals and specifications are still evolving, it is recommended
that we, as architects and developers, actively participate in, review, comment,
and help improve the specifications. Also evaluate early implementations for
inclusion in corporate architecture standards and possible application
implementation. If there is urgent need for designing and implementing a Web
services-based transactional infrastructure and related business services, we
recommend using the principles behind the new specifications.

7.3.4 Best practices for Web services
Web services constitute a distributed computer architecture made up of different
computers communicating over a network to form one system. In this section, we
focus on best practices for Web services development and deployment within a
J2EE environment, that is Web services that are built using servlets, JSP pages,
EJB architecture, and all the other standards that are part of the J2EE
technology.

Apply distributed computing principles
Think of Web services as another technology for developing distributed systems.
All of the best-practice principles used in developing distributed systems apply to
Web services. All of the considerations that would go into any enterprise systems
design apply to Web services, such as high availability, high throughput,
clustering, hardware management, and network topology.

The main difference between most distributed systems and Web services is that
Web services are newer. Most Web services software is less than a year old. As
a rule, there is not the same level of reliability, security, or performance that you
would find with other distributed systems software that has been around longer.
Another factor is that Web services are built on a set of technologies (SOAP,
XML, WSDL, UDDI) that are still evolving and are being evolved by separate
standards organizations and vendors in parallel. It will be some time before all of
these standards will be able to converge, especially given the Sun versus
Microsoft debate. Because of the lack of a solid set of standards, implementation
details are left for individuals. Still, some common principles can be adopted as
best practices at this time:

� Design systems that are layered

This is the same principle that you would apply to any distributed, component
architecture. It is especially important in Web services applications where we
do not have control over some components (services) that we access in our
application.
182 Patterns: Implementing Self-Service in an SOA Environment

� Design coarse-grained Web services

Web services have all of the same issues as those of distributed systems
when it comes to requesting a remote service. Requesting a service from a
machine over the network is more expensive than a local operation. With this
in mind, keep the request as coarse-grained as possible when requesting a
Web service from a remote machine.

Existing JavaBeans or EJBs with fine-grained methods or operations should
be aggregated into a single coarse-grained Web service, wherever possible.
This technique avoids unnecessary network traffic and overhead on the
communication stack. This also makes it possible to push the transaction
integrity requirements to the Web service provider making for a cleaner
design. In other words, if a coarse-grained request did not successfully
complete, then the Web service provider can roll back that entire transaction.

� Design for loosely coupled components.

A Web service by definition is an interface to a loosely-coupled component on
a remote system. Therefore, it is very important to be cognizant of the impact
of integrating loosely coupled components. With this in mind, define clear
contracts between layers and services, but use the Parameter List paradigm
where possible.

� Limit dependency on other components.

Managing dependencies is one of the key challenges in using Web services
in an intranet or extranet scenario. Common dependencies that occur in an
application design are:

– Call flow dependency

Business processes implemented by systems are not typically within the
domain of one business component.

– Object association dependency

Using object-oriented techniques, it is easy to model a business problem
by associating objects together. However, from an implementation
perspective, doing so increases the linkage from one component to
another. Use interfaces where possible.

� Implement all cross “domain” business processes in a control or workflow
layer.

The flexibility of an application is increased if all business processes that
cross multiple business domains are implemented in a workflow layer. In
doing so, the application architecture has more flexibility in what is called,
when it is called, managing the call (such as exception handling), and
performing any translation on the data that is passed in or out.
 Chapter 7. Application and system design guidelines 183

Utilize standard XML structures to pass data
One of the biggest challenges to using Web services effectively is the need to not
only pass data, but also the meaning of data between services. The standard
currency for Web services in this case is an XML document. Of course, simply
using XML is not enough. In order for a Web service to understand the elements
(or metadata) of a document, the structure and meaning must be standardized:

� Design components to store metadata as well as data. Understanding the
meaning and value of the information passed is critical to implementing any
distributed system.

� Manage data within the Web service component responsible for the data. By
exposing a business process as a Web service that is available to users
within and outside an organization, it is best to make that service as
transparent as possible. Web service requesters should not have detailed
knowledge of database structures or data formats.

� When designing XML schema to define business-related, more advanced
data types, try not to use complex XML schema constructs (such as choice),
and decompose them into simple and clean interfaces with primitive data
types. Also avoid using specific techniques (for example, INOUT parameter
passing) that are not widely supported.

� Whenever possible, provide complete XML Schema and WSDL definitions in
one WSDL file rather than importing them from various locations.

Use existing Web services tools
This begins with using standards-based tools for service lookup. While UDDI
promises to provide the capability for dynamic lookup of services to call, the
reality might be closer to a dynamic binding capability to a known service.

Use an IDE that supports Web services, such as Rational Application Developer.
This allows you to expose assets and services using WSDL and
proxy-generation tools, shielding you from the underlying XML messages in Web
services.

Web services tools will eventually make XML transparent, but for now it is
essential that you become comfortable with XML standards based on SOAP,
WSDL, UDDI, or ebXML.

The future will bring tool suites that will incorporate standard API for creating
GUIs, tools for generated Web services-enabled JSP pages and servlets, and
collections of XML-based Java APIs for XML processing registries, messaging,
binding, and remote procedure calls (RPC). Also look for application servers
such as IBM WebSphere, to have the ability to automatically publish an EJB as a
Web service in future releases.
184 Patterns: Implementing Self-Service in an SOA Environment

Use Web scalability principles
Many of the same principles that apply to any Web application can be applied to
Web services scalability. For example:

� Maintain state information on the Web service provider side.

� Use a session ID to access persistent data.

� Use existing Web techniques for increasing throughput:

– Acceleration hardware
– Load balancing

� Use caching wherever possible:

– Despite being dynamic, caching of responses for certain transactions can
be feasible.

– Caching works well for non-user specific data, especially if validation is
simple.

– User-specific data can be cached if combined with server affinity.

XML performance
Concerns about Web services performance being impacted by transmitting and
parsing XML have been overstated. The time to parse XML is usually negligible
and can be dependent on an XML parser library. Still, in order to minimize the
effect on performance of XML parsing, some steps can be taken:

� Use SOAP implementations that allow for pluggable XML parsers to leverage
the latest advances in parser technology.

� Avoid chaining services if possible, since this will increase path lengths.

� Design for coarse-grained, document-based interactions.

� Balance architecting service reuse with number of invocations per
transaction.

Interoperability
Consider the following interoperability principles:

� Web services should be used when you need interoperability across
heterogeneous platforms. In other words, use Web services when you need
to expose all or part of your application to other applications on different
platforms.

� There will be some issues with vendor compliance, albeit less than CORBA.
Beware of vendor-specific extensions.

� Use Apache as your benchmark for SOAP compliance.
 Chapter 7. Application and system design guidelines 185

� Use low-level XML APIs to adjust SOAP requests to overcome glitches:

– MS SOAP API
– JDOM or other Java XML API

� Build sample stubs that use WSDL for all supported platforms to share with
partners.

Maintainability
Consider the following maintainability principles:

� Standardize on SOAP rather than roll your own XML message structures.

� Utilize the flexibility of XML to release updates to a Web service.

� Employ a version and release number on each request in the SOAP header
so that service can be routed for backwards compatibility.

Reuseability
Consider the following reuseability principles:

� Leverage reuse of services by establishing an enterprise-wide
service-oriented architecture.

� Reduce the cost and complexity of maintaining multiple, distributed
infrastructures:

– Phase out CORBA and others with Web services where applicable.

– Expose coarse-grained services for application integration. This approach
helps to promote reuse of components.

– Use CORBA for lightweight, tightly-coupled, fine-grained access to
applications if necessary.

� Limit the use of complex types in distributed environments.

Reliability
There are no Quality of Service agreements in Web services or guaranteed
delivery. With Web services. you will be accessing services that are not under
your control. Therefore, plan for the cases where the service you are requesting
fails.

Web services support both asynchronous and synchronous RPC-style
architectures as well as messaging. You can use a loosely-coupled,
asynchronous architecture that allows functions to continue without network
response. However, you cannot count on the reliability of many of the services
you call because they are not under your control. You will need to provide
backup plans for important processes.
186 Patterns: Implementing Self-Service in an SOA Environment

7.4 Design guidelines for J2EE Connector Architecture
The J2EE Connector Architecture (JCA) defines a set of standards about how a
resource adapter provides connectivity to an enterprise system application (EIS)
and how the system contracts with an application server.

There are set of contracts between the resource adapter and the application
server which provides services to the resource adapter and maintains a
pluggable mechanism when running in the application server.

There are currently two versions of the JCA specification. The JCA 1.0
specification includes outbound communication and JCA 1.5 includes outbound
as well as inbound communication.

You can find these specifications here:

http://java.sun.com/j2ee/connector/

7.4.1 Components of J2EE Connector Architecture

Figure 7-20 J2EE Connector Architecture components

S y s te m L e v e l C o n t ra c ts

L ife C y c le M a n a g e m e n t
C o n n e c t io n M a n a g e m e n t
T ra n s a c t io n M a n a g e m e n t
W o rk M a n a g e m e n t
M e s s a g e In f lo w
T ra n s a c t io n In f lo w
S e c u r ity M a n a g e m e n t

E IS -S p e c if ic
In te r fa c e

C o m m o n
C lie n t
In te r fa c e

A p p lic a t io n
C o m p o n e n t

J 2 E E
A p p lic a t io n S e r v e r

R e s o u r c e
A d a p te r

E n te r p r is e
In fo r m a t io n S y s te m
 Chapter 7. Application and system design guidelines 187

http://java.sun.com/j2ee/connector/

As shown in Figure 7-20 on page 187, Version 1.5 of the J2EE Connector
Architecture defines a number of components and interfaces that make up this
architecture to connect to any EIS. JCA main components include resource
adapter, system level contracts between application server and resource
adapter, and the Common Client Interface (CCI).

JCA 1.5 defines the following:

� Common Client Interface (CCI)

The CCI defines a common API for interacting with resource adapters. It is
independent of a specific EIS. A Java developer communicates to the
resource adapter using this API.

� System contracts

These contracts are a set of system-level contracts between an application
server and EIS. These extend the application server to provide:

– Connection management enables an application server to pool
connections to the underlying EIS and enables application components to
connect to an EIS. This leads to a scalable application environment that
can support a large number of clients requiring access to an EIS.

– Transaction management enables an application server to use a
transaction manager to manage transactions across multiple resource
managers. This contract also supports transactions that are managed
internal to an EIS resource manager without the necessity of involving an
external transaction manager.

– Security management provides support for a secure application
environment that reduces security threats to the EIS and protects valuable
information resources managed by the EIS

– Life cycle management (new in JCA 1.5) enables an application server to
manage the life cycle of a resource adapter. This contract provides a
mechanism for the application server to bootstrap a resource adapter
instance during its deployment or application server startup, and to notify
the resource adapter instance during its undeployment or during an
orderly shutdown of the application server.

– Work management (new in JCA 1.5) enables a resource adapter to do
work (monitor network endpoints, call application components, and so on)
by submitting Work instances to an application server for execution. The
application server dispatches threads to execute submitted Work
instances. This allows a resource adapter to avoid creating or managing
threads directly, and allows an application server to efficiently pool threads
and have more control over its runtime environment. The resource adapter
can control the security context and transaction context with which Work
instances are executed.
188 Patterns: Implementing Self-Service in an SOA Environment

– Transaction inflow management (new in JCA 1.5) enables a resource
adapter to propagate an imported transaction to an application server.
This contract also allows a resource adapter to transmit transaction
completion and crash recovery calls initiated by an EIS, and ensures that
the ACID (Atomicity, Consistency, Isolation and Durability) properties of
the imported transaction are preserved.

– Message inflow management (new in JCA 1.5) enables a resource adapter
to asynchronously deliver messages to message endpoints residing in the
application server independent of the specific messaging style, messaging
semantics, and messaging infrastructure used to deliver messages. This
contract also serves as the standard message provider pluggability
contract that allows a wide range of message providers (Java Message
Service (JMS), Java API for XML Messaging (JAXM), etc.) to be plugged
into any J2EE compatible application server via a resource adapter.

These system contracts are transparent to the application developer. They do
not implement these services themselves.

� Resource adapter deployment and packaging

A resource adapter provider develops a set of Java interfaces/classes as part
of its implementation of a resource adapter. The Java interfaces/classes are
packaged together with a deployment descriptor to create a Resource
Adapter Archive (represented by a file with an extension of .rar). This
Resource Adapter Module is used to deploy the resource adapter into the
application server.

For a full description of all of the system contracts listed above, please refer to
the J2EE Connector Architecture Version 1.5 specification. All of the above
contracts discussed are valid for both managed and non-managed environment.

7.4.2 Managed and non-managed environments
There are two different types of environments that a Java application using J2EE
Connectors can run in:

� Managed environment

The Java application accesses a resource adapter through an application
server such as WebSphere Application Server. Management of connections,
transactions, and security is provided by this application server. The Java
application developer does not have to code this management manually.
 Chapter 7. Application and system design guidelines 189

� Non-managed environment

In a non-managed environment, you do not have to use an application server.
Instead, the Java application directly uses the resource adapter to access an
EIS. In this case management of connections, transactions, and security must
be handled manually by the Java application. You can find further details in
the WebSphere Developer Domain article Using J2EE Resource Adapters in
a Non-managed Environment:

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109
_kelle.html

7.4.3 Outbound and inbound communication
JCA specification defines two types of communication (Figure 7-21 on page 191)
that a Java application using J2EE Connectors can use to connect and work with
EIS are:

� Outbound communication allows an application in your J2EE application
server environment to initiate a request to another outside system via
resource adapter. System contracts defined in the JCA specification such as
Connection management and Transaction management provides mechanism
for outbound calls.

� Inbound communication (new in JCA 1.5) allows you to initiate calls to a J2EE
application server environment with a resource adapter from any outside
system. System contracts in the JCA specifications, such as transaction
inflow management and message inflow, provide the mechanism for inbound
calls. Inbound messages delivered through this communication may
introduce transaction context into the system.
190 Patterns: Implementing Self-Service in an SOA Environment

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kelle.html

Figure 7-21 Inbound and outbound communication with a resource adapter

7.4.4 WebSphere Application Server and JCA
WebSphere Application Server Connection Management architecture is based
on JCA specification for both procedural and relational access to EIS.
WebSphere Application Server has two programming model for connection
manager, that is, JDBC and J2C. WebSphere Application Server provides its
own Relational Resource Adapter (WebSphere Relational Resource Adapter) to
make JDBC data source connections managed by the connection manager,
which also manages JCA connections for J2EE 1.3 and up specifications. Users
still configure JDBC resources as it were a data source which uses this adapter
to connect to database. They do not experience any difference in their
applications because of underlying use of JCA architecture.

WebSphere Application Server V6 supports both JCA 1.0 and JCA 1.5
specifications.

Application

Application

System Contracts
Connection management,
Transaction management

EIS
Outbound

Communication Resource Adapter

Inbound
Communication

Application Server

System Contracts
Message Inflow,

 Transaction inflow

Transaction
originator

Transaction
originator
 Chapter 7. Application and system design guidelines 191

7.4.5 Common Connector Interface
The Common Client Interface (CCI) defines a standard client API so that
application components can access multiple resource adapters, as shown in
Figure 7-22. This API can be used directly, or you can use enterprise application
integration frameworks to generate EIS access code for the developer. The CCI
is designed to be an EIS independent API, so that an enterprise application
development tool can produce code for any J2EE-compliant resource adapter
that implements the CCI interface. Such tools include the Enterprise Service
toolkit of Rational Application Developer and IBM WebSphere Studio Application
Developer Integration Edition V5.1.

Figure 7-22 CCI with multiple resource adapters

The CCI has the following characteristics:

� It is independent of a specific EIS. It forms a base-level API for EIS access on
which higher-level functionality, specific to an EIS, can be built.

� It provides an API that is consistent with other APIs in the J2EE platform,
such as JDBC.

� It is targeted primarily towards application development tools and enterprise
application integration frameworks, rather than Java developers using the CCI
API directly.

One goal of the CCI is to complement, rather than replace, the JDBC API. The
CCI programming model and JDBC programming model are aligned, but the
APIs serve the following different purposes:

� The JDBC API is used to access relational databases.
� The CCI API is used to access EISs which are not relational databases.

CCI

Java
Application

Resource
Adapter 1

EIS2

EIS3

Resource
Adapter 2

Resource
Adapter 3

EIS1
192 Patterns: Implementing Self-Service in an SOA Environment

The CCI classes can be used directly by the programmer, but are more likely to
be used by Enterprise Application Integration (EAI) vendors and application
development tools as the interface to resource adapters.

CCI classes
The CCI interface can be divided into the following parts:

� Connection-related interfaces
� Interaction-related interfaces
� Data representation-related interfaces
� Metadata-related interfaces
� Additional classes

A resource adapter provides an implementation of the CCI interfaces.

Connection related interfaces
The following information relates to Figure 7-23.

Figure 7-23 CCI classes from the java.resource.cci package

The connection interface provides an interface for the connection with an EIS
application. The following classes are available in the javax.resource.cci
package:

� ConnectionFactory is the interface for getting a connection to the EIS.

� Connection is the application level connection handle used by a component
to access the EIS.

«JavaInterface»
ConnectionFactory

«JavaInterface»
Connection

«JavaInterface»
Interaction

«JavaInterface»
InteractionSpec

«JavaInterface»
Record

«JavaInterface»
MappedRecord

«JavaInterface»
IndexedRecord

«JavaInterface»
ResultSet

«JavaInterface»
RecordFactory

«JavaInterface»
LocalTransaction

«use»

0..1

«use»

«use»

«instantiate»
«JavaInterface»

Streamable

«JavaInterface»
ConnectionSpec

«use»«instantiate»
 Chapter 7. Application and system design guidelines 193

� ConnectionSpec is for passing connection-specific properties for the
Connection.

� LocalTransaction enables a component to demarcate resource manager local
transactions.

Interaction related interfaces
An interaction instance supports the following interaction with an EIS system:

� Interaction has an execute method, which executes an EIS function and gives
the result back in an output record or as return value.

� InteractionSpec holds the properties for the interaction with the EIS system.

Data representation related interfaces
Data representation interfaces are used to represent the data that is involved in
an interaction with an EIS system.

� Record is a representation of the input or output record.

� MappedRecord is a key-value pair-based collection that represents a record.

� IndexedRecord is an ordered and indexed collection that represents a record.

� RecordFactory is the factory used for creating mapped or indexed records.

� Streamable enables an adapter to set input or get output data as a stream of
bytes.

� ResultSet is a representation of tabular data containing retrieve and update
methods.

� ResultSetMetaData provides meta information about the columns in the
ResultSet.

Metadata related interfaces
The metadata related interfaces provide you meta information about a resource
adapter implementation and an EIS connection.

� ConnectionMetaData provides information about an EIS instance connected
through a connection instance.

� ResourceAdapterMetaData provides information about the capabilities of a
resource adapter implementation.

� ResultSetInfo provides information over the support of the ResultSet interface
of the resource adapter.

Additional classes
The additional classes consist of exception interfaces.
194 Patterns: Implementing Self-Service in an SOA Environment

� ResourceException extends java.lang.Exception. It consists of a string
describing the error, a specific error code, and a reference to another
exception.

� ResourceWarning provides information about the warnings related to the
interactions with the EIS system.

7.4.6 CICS resource adapters
The CICS Transaction Gateway (CICS TG) is a set of client and server software
components that allows a Java application to invoke services in a CICS region.
The Java application can be a servlet, an enterprise bean, or any other Java
application.

The CICS Transaction Gateway (Figure 7-24) consists of the following
components:

� The gateway daemon is a long-running process that acts as a server for
network-attached Java applications.

� The client daemon provides client-server connectivity.

� The configuration tool provides a graphical interface for configuring the client
and the gateway daemon.

� The terminal servlet that allows you to use a Web browser as an emulator for
a 3270 CICS application.

� A Java class library containing the three basic interfaces: ECI, EPI, ESI.

Figure 7-24 CICS Transaction Gateway

ctgcfgJava Client
Application

HTTP
or

TCP

CICS Transaction
Gateway

JNI

ECI EPI ESI

Client
Daemon

Transport Drivers
Network

Configuration
Tool

CICS
Server

Gateway
Daemon CTG.INI
 Chapter 7. Application and system design guidelines 195

Two J2EE Connector CICS resource adapters are provided with the IBM CICS
Transaction Gateway (CICS TG):

� External Call Interface (ECI) is a call interface to COMMAREA-based CICS
applications.

� External Presentation Interface (EPI) is an API to invoke 3270-based
transactions.

ECI resource adapter
The CICS ECI resource adapter uses the External Call Interface (ECI) of the
CICS Transaction Gateway to communicate with CICS. It can link to CICS
programs, passing data in a buffer called a COMMAREA. The J2EE Connector
resource adapter archive (RAR) file is cicseci.rar.

EPI resource adapter
The CICS EPI resource adapter uses the External Presentation Interface (EPI) of
the CICS Transaction Gateway to communicate with CICS. It can start CICS
transactions by interacting with a virtual terminal. The virtual terminal represents
a 3270 terminal to the CICS TG user. The J2EE Connector RAR file is
cicsepi.rar.

7.4.7 Selecting a CICS resource adapter
In this section we consider the characteristics of the two CICS resource adapters
(EPI and ECI) and the situations in which each would be selected:

� External Call Interface (ECI)

ECI uses COMMAREA as an interface to a CICS enterprise application. If the
enterprise application is not using COMMAREA as an interface, it needs to be
modified to use COMMAREA. The development effort for a session bean that
has an interface with a CICS ECI resource adapter is relatively small. This is
because ECI has a simple calling type interface rather than the
screen-oriented, conversational type interface of EPI. For this reason, we
recommend that ECI be used for new enterprise applications that will be Web
enabled. You can separate business logic in the enterprise tier from
presentation logic residing in an application server.

� External Presentation Interface (EPI)

EPI uses a 3270 data stream as an interface to a CICS 3270 application. If
the enterprise application is a 3270 CICS application, EPI should be used for
the resource adapter. There is no need to change the enterprise 3270
application at all. Using J2EE Connector Architecture CCI, the EPI application
can use the same interface as ECI, but the underlying interface is
conversational.
196 Patterns: Implementing Self-Service in an SOA Environment

Table 7-2 shows the characteristics of ECI and EPI.

Table 7-2 CICS ECI and EPI characteristics

7.4.8 CICS ECI design considerations
Some application design considerations when selecting the CICS ECI resource
adapter are:

� If your existing CICS application does not use a COMMAREA interface, it
must be changed to use COMMAREA.

� The COMMAREA size and interaction complexity

For performance reasons, the size of COMMAREA and the number of
interactions between the Web application and enterprise application should
be minimized. The maximum COMMAREA size is 32 KB.

� DPL considerations

In the CICS world, ECI calls are treated as Distributed Program Link (DPL)
calls. Refer to CICS Transaction Server for OS/390: Application Programming
Guide, SC33-1687 for details on DPL considerations.

7.4.9 Best practices for J2EE Connector Architecture
Some best practices for J2C application developers are:

� Use J2C in a managed environment.

From an application developer’s perspective, the greatest benefit of using
J2C is the Quality of Services (QoSs) provided by the system contracts. In the
managed environment, the application developer does not have to program
transactions, security, concurrency, and distribution, but relies on a container
to provide these services transparently. In a nonmanaged environment, the
application client has to take responsibility for managing connections,

Characteristic ECI EPI

Protocol type Remote call Conversational

Interface COMMAREA 3270 data stream

Maximum data length 32 KB 24x80 plus control charac-
ters

CICS TG JCA support Distributed or z/OS Distributed only

Recommendation Use with new applications
or existing COMMAR-
EA-based applications

Use with existing 3270 ap-
plications only
 Chapter 7. Application and system design guidelines 197

transactions, and security by using the low-level APIs exposed by the
resource adapter. Connection pooling, for example, provides advantages
such as reduced network I/O and CPU utilization, and writing your own
connection pooling code is not a simple task.

� Minimize the resource adapter-specific calls.

J2C provides a set of common client programing interfaces, an
EIS-independent API for coding the resource adapter-specific function calls.
The application developer should not use the resource adapter-specific calls
directly if the function is provided by CCI. However, even CCI has a resource
adapter-specific interface such as ConnectionSpec or InteractionSpec. You
can encapsulate the manipulating of these classes or the other resource
adapter-specific calls into a method that makes the calling side of the method
more generic and independent to the resource adapters. This technique
should be considered if you need to invoke several resource adapters.

� Use container-managed transactions.

WebSphere Application Server is a transaction manager that supports the
coordination of resource managers and participates in distributed global
transactions with transaction managers that support specific protocols. If
there is only a single resource manager in a global transaction then the
WebSphere transaction manager will optimize the XA flows using what is
called only-agent optimization (such as a one phase commit), providing an
automatic performance optimization on the prepare flows. It does not
however, provide a mechanism to optimize down to a local transaction.

The use of container-managed transactions allows you to exploit the QoS
provided by the container and resource adapter, and to concentrate on
providing the business logic in the enterprise application.

7.5 Design guidelines for JMS
In this section, we focus on the roles of the Java Message Service (JMS) in
enterprise messaging applications. JMS applications are composed of the
following parts:

� JMS clients are Java programs that send and receive messages.

� Messages are defined for each application and used for communication.

� A JMS provider is a message system that implements JMS in addition to the
other administrative and control functionality required for a full-featured
messaging product.

� Administrated objects are preconfigured JMS objects created by an
administrator for JMS clients. There are two types of administrative objects:
198 Patterns: Implementing Self-Service in an SOA Environment

– ConnectionFactory is used to create a connection with the provider.
– Destination is used to access a source or destination of messages.

Both are required for the JMS client to send a message.

7.5.1 Message models
Each messaging model has a set of interfaces in JMS that define specialized
operations for that model. There are two domains defined in the JMS
specification for messaging applications:

� Point-to-point (PTP)
� Publish/subscribe (pub/sub)

JMS is based on some common messaging concepts which are defined in JMS
parent classes. See Figure 7-25. Each messaging domain defines a customized
set of these classes for its own domain. There are also classes defined that are
transaction aware, such as XAQueueConnection Factory.

Figure 7-25 JMS classes

Publish/subscribe messagingPoint-to-point messaging

«JavaInterface»
ConnectionFactory «JavaInterface»

TopicConnection
Factory

«JavaInterface»
XA Queue

ConnectionFactory

«JavaInterface»
XA TopicConnection

Factory

«JavaInterface»
QueueConnection

Factory

«JavaInterface»
Connection

«JavaInterface»
QueueConnection«Jav aInterface»

XA Queue
Connection

«JavaInterface»
XA TopicConnection

«JavaInterface»
TopicConnection

«JavaInterface»
Session

«JavaInterface»
QueueSession

«Jav aInterface»
TopicSession«JavaInterface»

XA QueueSession
«JavaInterface»

XA TopicSession

«Jav aInterface»
Queue

«Jav aInterface»
Topic

«JavaInterface»
MessageConsumer

«JavaInterface»
MessageProducer

«Jav aInterface»
Destination

«JavaInterface»
QueueReceiver

«Jav aInterface»
QueueSender

«JavaInterface»
TopicPublisher

«JavaInterface»
TopicSubscriber

«JavaInterface»
Message
 Chapter 7. Application and system design guidelines 199

The JMS parent classes define the following basic message concepts:

� ConnectionFactory is an administrative object used by a client to create a
connection.

� Connection is an active connection to a JMS provider.

� Destination is an administrative object encapsulating the identity of a
message destination.

� Session is a single-threaded context for sending and receiving messages.

� MessageProducer is an object created by a Session for sending messages to
a Destination.

� MessageConsumer is an object created by a Session for receiving messages
from a Destination.

Not all JMS objects can be used concurrently. Table 7-3 shows the objects that
can be used concurrently and those that cannot.

Table 7-3 Concurrent JMS classes

There are two reasons for restricting concurrent access to sessions. First,
sessions are the JMS entities that support transactions. It is very difficult to
implement transactions that are multi-threaded. Second, sessions support
asynchronous message consumption. If a session has been set up with multiple,
asynchronous consumers, it is important that these separate consumers do not
execute concurrently.

JMS point-to-point model
Point-to-point (PTP) messaging in Figure 7-26 on page 201 involves working with
queues of messages. The sender sends messages to a specific queue to be
consumed normally by a single receiver. In point-to-point communication, a
message has at most one recipient. A sending client addresses the message to
the queue that holds the messages for the intended or receiving client. You can
think of the queue as a mailbox. Many clients might send messages to the

Object Concurrent use

ConnectionFactory Yes

Connection Yes

Destination Yes

Session No

MessageProducer No

MessageConsumer No
200 Patterns: Implementing Self-Service in an SOA Environment

queue, but a message is taken out by only one client. Like a mailbox, messages
remain in the queue until they are removed. Thus the availability of the recipient
client does not affect the ability to deliver a message. In a point-to-point system,
a client can be a sender (message producer), a receiver (message consumer), or
both. In JMS, PTP types are prefixed with Queue.

Figure 7-26 JMS point-to-point model

JMS publish/subscribe model
In contrast to the point-to-point model of communication, the publish/subscribe
model, shown in Figure 7-27, enables the delivery of a message to multiple
recipients. A sending client addresses, or publishes, the message to a topic to
which multiple clients can be subscribed. There can be multiple publishers, as
well as subscribers, to a topic. A durable (or persistent) subscription, or interest,
exists across client shutdowns and restarts. While a client is down, all objects
that are delivered to the topic are stored and then sent to the client when it
renews the subscription. A non-durable subscription will deliver messages when
the consumer is connected, but discard messages when the consumer is not
connected. In a publish/subscribe system, a client can be a publisher (message
producer), a subscriber (message consumer), or both. In JMS, pub/sub types are
prefixed with Topic.

Figure 7-27 Publish/subscribe model

JMS also supports the optional durability of subscribers and remembers that they
exist while they are inactive. All an application has to do is send information it
wants to share to a standard destination managed by the JMS provider
publish/subscribe, and let the JMS provider publish/subscribe distribute it.

JMS Client
Sends

Sender

Consumes

Receiver

Queue
Msg Msg

JMS Client

Subscribes Subscriber

JMS Client

JMS Client

JMS Client
Publishes

Publisher

Topic
 Chapter 7. Application and system design guidelines 201

Similarly, the target application does not have to know anything about the source
of the information it receives.

Another important aspect of the pub/sub model is that there is typically some
latency in all pub/sub systems. This is because messages observed by
subscribers can depend on the underlying JMS provider’s capability to propagate
the existence of new subscribers and how long the messages are retained by the
provider.

7.5.2 JMS messages
Another design choice to use is JMS message type. JMS messages are
composed of the following parts:

� The Header contains information to identify and route messages.

� Properties are custom values that can optionally be added to messages.
Properties can be:

– Standard: JMS properties
– Provider-specific: properties specific to a messaging provider
– Application-specific: properties added to messages, which are used by

JMS applications

� The Body is the message data.

If you decide to use certain JMS providers, such as IBM WebSphere MQ, then
you need to perform a mapping of the JMS message parts so that the message
can be delivered by IBM WebSphere MQ, as in Figure 7-28.

Figure 7-28 Message content mappings using IBM WebSphere MQ

JMS provides different message types. Each contains specific interfaces
pertaining to its content and allows specific operations on the messages.

The message types that can be used in JMS are:

� BytesMessage contains operations for storing and accessing a stream of
bytes.

JMS Message

JMS Client

Header

Properties

Body

WebSphere MQ
Message

Mapping

Mapping

Copying

Mapping

Mapping

Copying
Data

MQMD

JMS Message

JMS Client

Header

Properties

Body
202 Patterns: Implementing Self-Service in an SOA Environment

� StreamMessage contains operations for storing and accessing a stream of
Java primitive values. It is filled and read sequentially.

� ObjectMessage contains operations for storing and accessing a serialized
Java object. If the application design requires more than one object to be
serialized, then use a Collection object.

� MapMessage contains operations for storing and accessing a set of
key-value pairs from the message body. The keys must be strings and the
values must be primitive types.

� TextMessage contains operations for storing and accessing the body of a
message as a string. Text messages can be used to store XML-data. This
type of message can be used for sending messages to non-Java
applications.

A couple of message settings are also important to look at:

� Delivery mode

When delivery needs to be assured by the business requirements, persistent
messages are needed. But when this is not needed, performance can be
gained by the use of nonpersistent messages.

� Message expiration

When using nonpersistent messages, message expiration can be used to
discard messages that have remained on a queue or topic for longer than
required. This prevents unprocessed messages from building up over time.

7.5.3 Message-driven beans
A message-driven bean (MBD) is an asynchronous message consumer. The
onMessage method of the message-driven bean is invoked by the container on
arrival of a JMS message on a queue. Rather than writing application code to poll
for messages on a queue, you can use a message-driven bean instead. The
main difference between message-driven beans and other enterprise beans is
that message-driven beans have only a bean class. There is no home or remote
interface for a message-driven bean. Message-driven beans can only be invoked
by the container.

As with all programming models, certain best practices have emerged for using
the message-driven bean programming model. These best practices are:

� Delegate business logic to another handler.

Traditionally, the role of a stateless session bean is to provide a facade for
business logic. Message-driven beans should delegate the business logic
concerned with processing the contents of a message to a stateless session
 Chapter 7. Application and system design guidelines 203

bean. Message-driven beans can then focus on what they were designed to
do, which is processing messages. See Figure 7-29.

An additional benefit of this approach is that the business logic within the
stateless session bean can be reused by other EJB clients.

Figure 7-29 Delegating business logic to a session bean

� Do not maintain a client-specific state within an MDB.

Message-driven bean instances should not maintain any conversational state
on behalf of a client. This enables the EJB container to maintain a pool of
message-driven bean instances and to select any instance from this pool to
process an incoming message. However, this does not prevent a
message-driven bean from maintaining a state that is not specific to a client,
for instance, data source references or references to another EJB.

� Avoid large message bodies.

A JMS message probably will travel over the network at some point in its life.
It will definitely need to be handled by the JMS provider. All of these
components contribute to the overall performance and reliability of the
system. The amount of data contained in the body of a JMS message should
be kept as small as possible to avoid impacting the performance of the
network or the JMS provider.
204 Patterns: Implementing Self-Service in an SOA Environment

� Minimize message processing time.

Instances of a message-driven bean are allocated from a method-ready pool
to process incoming messages. These instances are not returned to the
method-ready pool until message processing is complete. Therefore, the
longer it takes for a message-driven bean to process a message, the longer it
is unavailable for reallocation.

If an application is required to process a high volume of messages, the
number of message-driven bean instances in the method-ready pool could be
rapidly depleted if each message requires a significant processing. The EJB
container would then need to spend valuable CPU time creating additional
message-driven bean instances for the method-ready pool, further impacting
the performance of the application.

Additional care must be taken if other resources are enlisted into a global
transaction during the processing of a message. The EJB container will not
attempt to commit the global transaction until the MDB’s onMessage method
returns. Until the global transaction commits, these resources cannot be
released on the resource managers in question.

For these reasons, the amount of time required to process each message
should be kept to a minimum.

� Avoid dependencies on message ordering.

Try to avoid having an application making any assumptions with regard to the
order in which JMS messages are processed. This is due to the fact that
application servers enable the concurrent processing of JMS messages by
MDB’s and that some messages can take longer to process than others.
Consequently, a message delivered later in a sequence of messages might
finish message processing before a message delivered earlier in the
sequence. It might be possible to configure the application server in such a
way that messaging ordering is maintained within the application, but this is
usually done at the expense of performance or architectural flexibility, such as
the inability to deploy an application to a cluster.

� Be aware of poison messages.

Sometimes, a badly-formatted JMS message arrives at a destination. Such a
message might cause an exception to be thrown within the MDB during
message processing. An MDB that is making use of container-managed
transactions then marks the transaction for rollback. The EJB container rolls
back the transaction, causing the message to be placed back on the queue
for redelivery. However, the same problem occurs within the MDB the next
time the message is delivered. In this situation, such a message might be
received, and then returned to the queue, repeatedly. These messages are
known as poison messages.
 Chapter 7. Application and system design guidelines 205

Fortunately, some messaging providers have implemented mechanisms that
can detect poison messages and redirect them to a another destination.
WebSphere MQ and the default messaging provider are two such providers.

Listener ports versus JCA activation specifications
Message-driven beans can be configured as listeners on a Java Connector
Architecture (JCA) 1.5 resource adapter or against a listener port, as in
WebSphere Application Server V5.

Using JCA activation specifications
With a JCA 1.5 resource adapter, message-driven beans can handle generic
message types, not just JMS messages. This makes message-driven beans
suitable for handling generic requests inbound to WebSphere Application Server
from enterprise information systems through the resource adapter. In the JCA
1.5 specification, such message-driven beans are commonly called message
endpoints or simply endpoints.

For JMS messaging, message-driven beans can use a JMS provider that has a
JCA 1.5 resource adapter, such as the default messaging provider, part of
WebSphere Application Server V6. With a JCA 1.5 resource adapter, you deploy
EJB 2.1 message-driven beans as JCA 1.5-compliant resources, to use a J2C
activation specification. See Figure 7-30.

Figure 7-30 Message-driven bean components for an JCA resource adapter
206 Patterns: Implementing Self-Service in an SOA Environment

With the SIB JMS Resource Adapter, the default messaging provider listed under
JMS providers, a message-driven bean acts as a listener on a specific JMS
destination.

Using listener ports
If the JMS provider does not have a JCA 1.5 resource adapter, such as the V5
default messaging and WebSphere MQ, you must configure JMS
message-driven beans against a listener port, as in WebSphere Application
Server V5. See Figure 7-31.

Figure 7-31 Message-driven bean components using listener ports

The message listener service is an extension to the JMS functions of the JMS
provider and provides a listener manager, which controls and monitors one or
more JMS listeners.
 Chapter 7. Application and system design guidelines 207

Each listener monitors either a JMS queue destination for point-to-point
messaging, or a JMS topic destination for publish/subscribe messaging.

A connection factory is used to create connections with the JMS provider for a
specific JMS queue or topic destination. Each connection factory encapsulates
the configuration parameters needed to create a connection to a JMS
destination.

A listener port defines the association between a connection factory, a
destination, and a deployed message-driven bean. Listener ports are used to
simplify the administration of the associations between these resources.

When a deployed message-driven bean is installed, it is associated with a
listener port and the listener for a destination. When a message arrives on the
destination, the listener passes the message to a new instance of a
message-driven bean for processing.

When an application server is started, it initializes the listener manager based on
the configuration data. The listener manager creates a dynamic session thread
pool for use by listeners, creates and starts listeners, and during server
termination controls the cleanup of listener message service resources. Each
listener completes several steps for the JMS destination that it is to monitor,
including:

� Creating a JMS server session pool, and allocating JMS server sessions and
session threads for incoming messages.

� Interfacing with JMS ASF to create JMS connection consumers to listen for
incoming messages.

� If specified, starting a transaction and requesting that it is committed (or rolled
back) when the EJB method has completed.

� Processing incoming messages by invoking the onMessage() method of the
specified enterprise bean.

7.5.4 Managing JMS objects
JMS Connection is the first point of access to JMS objects. JMS Connection is
created from JMS ConnectionFactory. Once a connection is created, one or
more sessions can be created in the context of the connection. JMS Sessions
allow you to create message consumers and producers. When consumers or
producers are created, the connection needs to be started to receive or send
messages. JMS Connections can be cached, similar to the way EJB home
objects are cached, and reused by many clients.

JMS Sessions are designed for synchronous access only. A session can only be
used by a single client and not shared among other clients. Similarly, an instance
208 Patterns: Implementing Self-Service in an SOA Environment

of either MessageConsumer and MessageProducer can only be used by a single
client. JMS Sessions are opened for the duration of message sending or
receiving; after this the session can be closed.

When a session is opened, the correct session acknowledgment must be
selected from a performance perspective. In our sample scenario, we selected
AUTO_ACKNOWLEDGE. This policy specifies that the message be delivered
once and only once. The server must send an acknowledgment back, so the
server incurs an overhead to implement this policy. The
DUPS_OK_ACKNOWLEDGE setting resends the message until an
acknowledgment is sent from the server. The server will operate in a lazy
acknowledge mode, thereby reducing the overhead on the server but resulting in
an increase in network traffic. With the most overhead of the three settings,
CLIENT_ACKNOWLEDGE will cause the server to wait until a request for
acknowledgment is sent from the client. Usually the client calls the sent
message’s acknowledge method.

On completion of interaction with the message producer or consumer (sender or
receiver), the session needs to be closed. If the connection is closed, the session
belonging to this connection is automatically closed.

The message producers and consumers must also be closed when you finish
sending and receiving messages. Again if the connection is closed, the
producers and consumers are automatically closed.

Garbage collection of Java cannot be relied upon to clean out objects in a timely
manner. It is always a good practice to call the close of any resource-bound
object.

For further information, read the JMS specification at:

http://java.sun.com/products/jms/docs.html

7.5.5 JMS and JNDI
The Java Naming and Directory Interface (JNDI) API implementation provides
directory and naming functionality to programs developed in Java. This allows
Java programs to discover and retrieve objects of any type from the JNDI name
space.

JMS has two types of administered objects:

� ConnectionFactory
� Destination

An administrator can place objects of these types in the JNDI name space to be
accessed by messaging applications.
 Chapter 7. Application and system design guidelines 209

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

Figure 7-32 shows the role of JMS and JNDI relative to a Java application. These
two APIs sit above any specific service providers and encapsulate any
vendor-specific information.

As a result, a developer using these technologies in a messaging-enabled
application need only be familiar with the APIs, not the specific messaging
systems.

Figure 7-32 The role of JMS and JNDI relative to an application

So, how does an administrator put these objects in the JNDI name space? This
step is vendor-specific. If you are using WebSphere MQ V5.3 with WebSphere
Application Server, or just the WebSphere default messaging provider, you can
administer these objects right from the WebSphere administrative console. If you
are using another application server, WebSphere MQ V5.3 provides a tool called
JMSAdmin for this purpose.

7.5.6 Choosing a JMS provider
WebSphere Application Server V6 comes with a JMS 1.1 compliant default
messaging provider. This provider uses the service integration bus for transport.
WebSphere Application Server V6 also provides support for the IBM WebSphere
MQ product as the JMS provider, as well as the capability to define and use
generic JMS providers.

When deciding which JMS provider suits your environment, consider the
following about each provider:

� The following are some reasons why you might choose to use the default
messaging provider:

– You have a requirement for your message-driven beans to handle generic
message types, not just JMS messages.

– You would like to use mediations that act on inbound or outbound
messages.

– You are only connecting J2EE applications hosted by WebSphere
Application Server to each other.

MQSeries MSMQ LDAP CORBA

JNDIJMS

Java Application
210 Patterns: Implementing Self-Service in an SOA Environment

� The following are some reasons why you might choose to use IBM
WebSphere MQ:

– Your message-driven beans are written following the EJB 2.0
specification.

– You want to use WebSphere MQ specific features.

– Your message-driven beans have to handle JMS messages generated by
non-J2EE applications.

– You want to integrate your solution in a more complex scenario that
requires the use of WebSphere MQ, like using WebSphere Business
Integration Message Broker.

If you decide to use WebSphere MQ, you could decide to use both options, using
the default messaging provider’s MQ Links, to communicate both JMS providers.
For details about the WebSphere MQ Links, refer to WebSphere Application
Server V6 System Management and Configuration Handbook, SG24-6451.

7.5.7 WebSphere default messaging provider design considerations
The service integration technologies of IBM WebSphere Application Server can
act as a messaging system when you have configured a service integration bus
that is accessed through the default messaging provider. This support is installed
as part of WebSphere Application Server, administered through the
administrative console, and is fully integrated with the WebSphere Application
Server runtime.

The JCA 1.5 message inflow management enables a resource adapter to deliver
messages asynchronously to message endpoints residing in the application
server independent of the specific messaging style, messaging semantics, and
messaging infrastructure used to deliver messages. This contract also serves as
the standard message provider pluggability contract that allows a wide range of
message providers (Java Message Service (JMS), Java API for XML Messaging
(JAXM), etc.) to be plugged into any J2EE compatible application server with a
resource adapter.

JMS ActivationSpec bean
An ActivationSpec Java bean instance encapsulates the configuration
information needed to setup asynchronous message delivery to a message
endpoint.
 Chapter 7. Application and system design guidelines 211

Service integration bus and WebSphere MQ
The service integration bus is the underlying messaging provider for the default
messaging provider, replacing the embedded messaging provider that was
supported in WebSphere Application Server V5.

If you operate within a WebSphere Application Server environment, sending
messages across a service integration bus, you can also exchange point-to-point
and publish/subscribe messages with applications in a WebSphere MQ network.
The method of exchange uses a component called WebSphere MQ link. The
WebSphere MQ link makes exchanging messages very simple by automatically
converting them so their characteristics are retained or mapped to similar
settings. However, there are some circumstances where the two systems work
differently and you can select from the conversion options available.

In most cases messages will flow either from a:

� Service integration bus in a WebSphere Application Server to a WebSphere
MQ network

� WebSphere MQ network directly to a service integration bus in WebSphere
Application Server

However, you can also send messages between two different:

� WebSphere Application Server service integration buses by way of an
intermediate WebSphere MQ network

� WebSphere MQ networks through a service integration bus of an
intermediate WebSphere Application Server.

Regardless of the route you implement, the requirements are the same: the
requirements of the receiving WebSphere MQ destination must be recognized,
and the message transformed to achieve a smooth transfer. This is why the
WebSphere MQ link was designed. It handles both styles of messaging familiar
to WebSphere MQ programmers: point-to-point and publish and subscribe.

For details about WebSphere MQ Links, refer to WebSphere Application Server
V6 System Management and Configuration Handbook, SG24-6451.

Message reliability levels (Quality of Service)
Messaging queues and topics are defined as destinations on the bus. It is on a
destination that an administrator specifies the default quality of service levels that
will be applied when a message producer or message consumer interacts with
the destination. An administrator is able to configure a default reliability and a
maximum reliability for each service integration bus destination.
212 Patterns: Implementing Self-Service in an SOA Environment

� Best effort nonpersistent

Messages that are sent to this destination are discarded when the messaging
engine with which it associated stops or fails. Messages can also be
discarded if the connection used to send them becomes unavailable, or as a
result of constrained system resources. Messages delivered asynchronously
to non-transactional MessageListeners or message-driven beans will not be
redelivered if an exception is thrown.

� Express nonpersistent

Messages that are sent to this destination are discarded when the messaging
engine with which it is associated is stopped or if it fails. Messages can also
be discarded if the connection used to send them becomes unavailable.

� Reliable nonpersistent

Messages that are sent to this destination are discarded when the messaging
engine with which it is associated stops or fails.

� Reliable persistent

Messages that are sent to this destination can be discarded when the
messaging engine with which it is associated fails, but are persisted if the
messaging engine stops normally.

� Assured persistent

Messages that are sent to this destination are never discarded.

Administrators can also allow message producers to override the default
reliability specified on a destination. The mechanism used to achieve this
depends on the type of the message producer. For instance, a JMS message
producer can use the quality of service properties on the default messaging
provider connection factory to map the JMS PERSISTENT and
NON_PERSISTENT delivery modes onto the required service integration bus
reliabilities.

Note: Reliability should be chosen according to your messaging needs. More
reliable qualities of service might not perform as well as less reliable qualities
of service.

Note: The reliability specified by a message producer can never exceed the
maximum reliability specified on a service integration bus destination. In the
case of a JMS message producer, attempting to do this will cause a JMS
exception to be thrown to the client application.
 Chapter 7. Application and system design guidelines 213

7.5.8 WebSphere MQ design considerations
If you have elected to use WebSphere MQ as the messaging provider, there are
a few design issues you should consider.

Connection options
A message placed on an IBM WebSphere MQ queue from an application server
may originate directly from a servlet, or may be sent from a command bean or
EJB. We recommend the latter two methods and not so much from servlets.
Regardless of the method, the messages are sent to a queue manager using
one of the two available WebSphere MQ Java APIs by IBM WebSphere MQ.
Each API has certain characteristics that make it appropriate for a situation,
depending on your priorities. However, the API chosen can have an effect on you
options for distributing the application components.

The two APIs that we discuss here are:

� The IBM WebSphere MQ for Java Message Service package,
com.ibm.mq.jms.jar and com.ibm.jms

IBM WebSphere MQ for JMS classes implements the J2EE Java Message
Service (JMS) interface to enable JMS programs to access a subset of IBM
WebSphere MQ features from a vendor-neutral point of view, as defined by
the JMS specification. The JMS interface is implemented by a set of IBM
WebSphere MQ classes for JMS.

� The IBM WebSphere MQ for Java package, com.ibm.mq.jar

IBM WebSphere MQ for Java classes enable Java applets, applications,
servlets, and EJBs to issue direct calls and queries to IBM WebSphere MQ
using specific calls designed to take advantage of IBM WebSphere MQ
features.

A JMS Java application uses the vendor-independent JMS interfaces to access
the MQ-specific implementation of the JMS classes.

A key idea in JMS is that it is possible, and strongly recommended, to write
application programs that use only references to the interfaces in javax.jms. All
vendor-specific information is encapsulated in implementations of:

� QueueConnectionFactory
� TopicConnectionFactory
� Queue
� Topic

Coding outside the JMS interface to access WebSphere MQ-specific features
will, of course, reduce the portability of the application, because it is now
referencing WebSphere MQ-specific classes directly. If application portability,
214 Patterns: Implementing Self-Service in an SOA Environment

vendor independence, and location transparency are of importance, pure JMS is
the obvious choice. JMS uses abstracted concepts of messaging to provide a
vendor-independent API to messaging, while underneath lies the IBM
WebSphere MQ implementation of the JMS interfaces. The real-world entities
that are IBM WebSphere MQ queue managers and queues are accessed by
JMS clients through the use of the Java Directory and Naming Service (JNDI).
The IBM WebSphere MQ entities are published to JNDI from the WebSphere
Administrative Console, or through a tool called JMSAdmin. MQ JMS supports
both the point-to-point and publish/subscribe models of JMS.

MQ base JMS classes provide two connection options to IBM WebSphere MQ:

� Bindings mode to connect to a queue manager directly
� Client mode using TCP/IP to connect to a queue manager (not supported on

z/OS or OS/390®)

All options support connection pooling.

Java bindings mode
In bindings mode, also known as server connection, the communication to the
queue manager utilizes interprocess communications. One of the key factors that
should be kept in mind is that binding mode is available only to programs running
on the WebSphere MQ server that hosts the queue manager.

The key connection parameter in this case is the queue manager name.

Figure 7-33 Java bindings mode

Connecting to the local queue manager has several major advantages:

� The probability of establishing a connection to a queue manager in your own
host is high, as opposed to a connection with a remote queue manager.

Application Server

Application

Broker1

Queue Manager

Broker2

Queue Manager

Queue
Manager
 Chapter 7. Application and system design guidelines 215

� The time taken to establish a network connection to the queue manager is
avoided.

� The local queue manager can distribute the work among multiple brokers. If
connection performance is a high priority in your network, then using bindings
mode is the clear choice.

Using bindings mode, you can also use WebSphere as an XA resource
coordinator for units of work that involve WebSphere MQ updates and database
updates, for databases and drivers that support the XOpen/XA standards.

Java client mode
Client connection uses a TCP/IP connection to the WebSphere MQ Server and
enables communications with the queue manager. Programs using client
connections can run on an WebSphere MQ client machine as well as on a
WebSphere MQ server machine. Client connections use client channels on the
queue manager to communicate with the queue manager. The client connection
does not support XA transaction coordination by the queue manager.

Both the WebSphere MQ classes for Java and the WebSphere MQ classes for
JMS are needed to use WebSphere MQ client mode. The key connection
parameters are host name, TCP/IP port, and server connection channel name. If
your code is using only the JMS interfaces (for maximum portability), then client
mode cannot be achieved because there are no methods exposed in the JMS
interface to select a host or port number.

The client mode is best used when you do not want IBM WebSphere MQ to
reside on the same machine as the application server. It allows you to connect
directly to a remote IBM WebSphere MQ queue manager.

Figure 7-34 Client mode to remote brokers

Broker1

Queue Manager

Broker2

Queue Manager

Application Server

Application
216 Patterns: Implementing Self-Service in an SOA Environment

When you connect directly to a queue manager on a broker, as in Figure 7-34 on
page 216, you relinquish any workload distribution the queue manager offers.
The application must decide which broker to send the work to and any workload
distribution would have to be done in the application itself, which is not
recommended. Even having the queue managers in a cluster does not help,
because a queue manager will always send the work to the local instance of the
broker. Another pitfall is that XOpen/XA facilities for coordinated commits to
WebSphere MQ/JMS and databases are no longer available using WebSphere
as the transaction coordinator.

One way around this issue is to connect to a remote queue manager that does
not have a broker instance, but is there purely for workload distribution, as shown
in Figure 7-35.

Figure 7-35 Client mode to a remote queue manager

You still have the network connectivity time. In fact, you have made it a little
worse by introducing an intermediate system. But you do have the advantage of
the queue manager workload distribution and the ability to connect to a remote
queue manager. Yet another way would be to use TCP/IP load balancing, but
this is not a function of WebSphere MQ.

The client mode can also be used to connect to the local queue manager by
passing through the internal TCP/IP stack. This is obviously not as efficient as
using the bindings mode, but it does allow your program to be used in a generic
environment where you do not know if the queue manager will be local or not.
You can also make the different connection options parameter-driven so that the
application is ready no matter the connection type. You do need to ensure that
the correct parameters are passed so you get the connection type you desire. A
database table would be a good place to store these if you are interacting with a
database.

Broker1

Queue Manager

Broker2

Queue Manager

Application Server

Application Queue
Manager
 Chapter 7. Application and system design guidelines 217

Both MQ JMS classes (not the pure JMS interface) and MQ base Java allow you
to put messages from the Java application in WebSphere directly into the remote
broker’s queue. If you are thinking of doing this, you should consider the
performance implications. The cost of creating a network connection is added to
the total cost of each request. For each request, an IBM WebSphere
MQ-to-client session is created. There is no long-lasting network connection.
This will impact the ability to run thousands of sessions in parallel. If you create a
local IBM WebSphere MQ session for each request, the overhead will be much
lower. The network connection is now maintained by a sender-receiver channel
pair and is long running. Ideally, long-running IBM WebSphere MQ sessions are
preferable.

WebSphere MQ clustering
WebSphere MQ offers the ability to create clusters. MQ clusters provide a
number of benefits that JMS applications use silently. Clusters offer:

� Simpler administration of logically related queue managers

Clustering allows communication between queue managers to promote
information about the queues they offer. Once in a cluster, queues on remote
queue managers are visible to all queue managers if the queues are defined
as cluster queues. The number of explicit definitions within IBM WebSphere
MQ administration is reduced with the use of clusters.

� Workload and failover management

Adding queue managers to clusters allows access to WebSphere MQ
workload and failover features.

As shown in Figure 7-36, QM3 is able to load balance across the queue
named ReplyQ, since it is available on both QM1 and QM2. Similarly, if QM1
is disabled, all messages for ReplyQ are routed to QM2.

Figure 7-36 Cluster workload management

CLUSTER_1

ReplyQ

QM1

ReplyQ

QM2

QM3
218 Patterns: Implementing Self-Service in an SOA Environment

None of these features can be controlled through the JMS interfaces. However,
MQ will automatically utilize the workload and failover under JMS.

These and other features of MQ offer significant benefits and demonstrate that
IBM WebSphere MQ is a reliable, scalable, and mature JMS provider.

7.5.9 For more information
These documents and Web sites are further information sources:

� Java Message Service API documentation

http://java.sun.com/products/jms

� WebSphere Studio 5.1.2, JavaServer Faces and Service Data Objects,
SG24-6361

� WebSphere Developer Domain article Integrating IBM WebSphere
Application Server and the WebSphere MQ Family

http://www7b.boulder.ibm.com/wsdd/techjournal/0110_yusuf/yusuf.html

� WebSphere Developer Domain article IBM WebSphere and MQSeries
Integration Using Servlets and JavaServer Pages

http://www7b.boulder.ibm.com/wsdd/library/techtip/pwd/wsmq_integration.html

� IBM Redbook MQSeries Programming Patterns, SG24-6506

� IBM Redbook EJB 2.0 Development with WebSphere Studio Application
Developer, SG24-6819

� WebSphere MQ Application Programming Guide, SC34-6064

� WebSphere MQ Using Java, SC34-6066

7.6 Design guidelines for the ESB
An enterprise service bus is a concept that can be implemented using a variety of
software programs. In the implementation scenarios in this book, the ESB is
implemented using the service integration bus in WebSphere Application Server.

7.6.1 Service integration bus
A service integration bus supports applications using message-based and
service-oriented architectures. A bus is a group of one or more interconnected
servers or server clusters that have been added as members of the bus.
Applications connect to a bus at one of the messaging engines associated with
its bus members.
 Chapter 7. Application and system design guidelines 219

http://java.sun.com/products/jms
http://www7b.boulder.ibm.com/wsdd/techjournal/0110_yusuf/yusuf.html
http://www7b.boulder.ibm.com/wsdd/library/techtip/pwd/wsmq_integration.html

The service integration bus provides the backbone support for the WebSphere
Application Server default messaging provider. It supports sending messages
asynchronously (possible whether the consuming application is running or not
and whether or not the destination is reachable). Both point-to-point and
publish/subscribe messaging are supported.

In addition, the service integration bus Web services enablement support
provides the following support for Web services:

� You can take an internal service, define it as a service destination, and make
it available as a Web service.

� You can take an external Web service, and make it available at a service
destination.

� (Network Deployment only) You can use the Web services gateway to map
an existing service - either an internal service, or an external Web service - to
a new Web service that seems to be provided by the gateway.

The Web services enablement support is included with WebSphere Application
Server but is not installed by default.

The bus appears to its applications as though though were a single logical entity,
which means applications only need to connect to the bus and do not need to be
aware of the bus topology. In many cases, the knowledge of how to connect to
the bus and which bus resources are defined are handled by a suitable API
abstraction, such as the administered JMS connection factory and JMS
destination objects.

Many scenarios only require relatively simple bus topologies, perhaps even just
a single server. You can add multiple servers to a single bus to increase the
number of connection points for applications to use. You can also increase
scalability, and achieve high availability, by adding server clusters as members
of a bus. However, servers do not have to be bus members to connect to a bus.
In more complicated scenarios, multiple buses are configured, which can be
interconnected to form more complicated networks. An enterprise might deploy
multiple interconnected buses for organizational reasons. For example, an
enterprise with several autonomous departments might want to have separately
administered buses in each location.

The service integration bus introduces a number of new concepts:

� Buses

A service integration bus within WebSphere Application Server V6 is simply
an architectural concept. It gives an administrator the ability to group a
collection of resources together that provide the messaging capabilities of the
bus. At runtime, the bus presents these cooperating messaging resources to
220 Patterns: Implementing Self-Service in an SOA Environment

applications as a single entity, hiding from those applications the details of
how the bus is configured and where on the bus the different resources are
located.

� Bus members

The members of a service integration bus are the application servers and
server clusters within which messaging engines for that bus can run.

� Messaging engines

A messaging engine is a server component that provides the core messaging
functionality of a service integration bus. A messaging engine manages bus
resources and provides a connection point for applications.

� Data stores

Every messaging engine defined within a bus has a data store associated
with it. A messaging engine uses this data store to persist durable data, such
as persistent messages and transaction states. Durable data written to the
data store survives the orderly shutdown, or failure, of a messaging engine,
regardless of the reason for the failure.

� Destinations

A bus destination is a virtual location within a service integration bus, to which
applications attach as producers, consumers, or both to exchange messages.
To support the default messaging provider, you can define the following types
of destinations:

– Queue destinations
– Topic space destinations
– Alias destinations
– Foreign destinations

In addition, destinations are created for Web services defined to the bus.

� Mediations

A mediation processes in-flight messages between the production of a
message by one application, and the consumption of a message by another
application. Mediations enable the messaging behavior of a service
integration bus to be customized. Mediations are defined for a destination.

� Foreign buses

A foreign bus is a property of a service integration bus, and represents other
service integration buses with which this bus can exchange messages. See
Figure 7-37.
 Chapter 7. Application and system design guidelines 221

Figure 7-37 Service integration buses in a multiple-bus topology

For details about the bus, please refer to WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451.

7.6.2 Mediations
A mediation in the WebSphere Application Server service integration bus
processes inflight messages between the production of a message by one
application, and the consumption of a message by another application.
Mediations provide you with functionality to customize the messaging behavior of
the bus. This may include processing such as:

� Transforming a message from one format into another.

� Routing messages to one or more target destinations that were not specified
by the sending application.
222 Patterns: Implementing Self-Service in an SOA Environment

� Augmenting messages by adding data from a data source.

� Distributing messages to multiple target destinations.

A mediation is associated with a destination on the bus to create a mediated
destination. A mediated destination has two parts: pre-mediated and
post-mediated. Applications send messages to the pre-mediated part, and
receive them from the post-mediated part. A mediation receives messages from
the pre-mediated part, transforms the messages in some way, and places one or
more messages on the post-mediated part. In this way, the mediation controls
the progress of messages to their intended target destination.

A mediation can operate within a global unit of work to ensure transactional
integrity. Several mediations can operate at the same time to improve the
throughput of messages at a destination.

The behavior of a mediation is defined by a mediation handler list. Mediation
handler lists contain one or more mediation handlers.

Mediation handlers
A mediation handler is a Java program that performs the function of a mediation,
and can be deployed in a mediation handler list. The mediation handler class
implements the following interface:

com.ibm.websphere.sib.mediation.handler.MediationHandler.

A mediation handler can have properties that control its behavior.

A mediation handler is packaged for deployment with a supplied EJB. At
deployment, you can set properties to control the behavior of the mediation at
run-time, and specify membership of one or more mediation handler lists. You
deploy a mediation handler as an EAR file and install it into WebSphere
Application Server.

Mediation handler lists
A mediation handler list is a collection of mediation handlers that are invoked in
sequence.

A mediation handler list is a simple pipeline of mediation handlers. The same
parameters are passed from one mediation handler to the next mediation
handler in the list.
 Chapter 7. Application and system design guidelines 223

Figure 7-38 Mediation handler lists

A mediation handler list can contain one or more mediation handlers.
Membership of a mediation handler list is specified when a mediation is
deployed.

When you configure the messaging provider in WebSphere Application Server,
you can associate a mediation handler list with one or more selected
destinations. This makes the mediation handler list eligible to mediate messages
that arrive at the destination.

7.6.3 Working with messages in mediations
This section describes some concepts you need to understand to work with
messages in mediations.

Mediation APIs
Several application programming interfaces (APIs) are provided to allow you to
work with the message context and code mediations.
224 Patterns: Implementing Self-Service in an SOA Environment

� MediationHandler

This interface defines the method that i the mediation runtime invokes. The
method returns boolean true if the message passed into this method should
continue along the handler list. Otherwise, it returns false. The API has just
one method handle, handle(), that the runtime uses to invoke a mediation.

In addition to the context information that is passed from one handler to
another, it can return a reference to an SIMessage and an
SIMediationSession. The SIMessage is the service integration bus
representation of the message that is processed by the MediationHandler.
The SIMediationSession is a handle to the runtime resources.

� MessageContext

This interface abstracts the message context that is processed by a handler
in the handle method. The MessageContext interface provides methods to
manage a property set. The API has two methods:

– getSIMessage() a method to get the service integration bus representation
of the message being mediated

– getSession() is a method to get an SIMediationSession object, which is a
handle to the core runtime.

� SIMessage

This interface is the public interface to a service integration bus message for
use by mediations. The SIMessage interface has many methods which allow
you to work with the message properties, header contents, routing path,
metadata, and others.

In particular, the method getDataGraph() returns the SDO data graph which
contains the SIMessage content in a tree representation. This method allows
you to work directly with the individual fields in the message payload.

Forward and reverse routing paths define a sequential list of intermediary bus
destinations that messages must pass through to reach a target bus
destination. A routing path applies the mediations configured on several
destinations to messages sent along the path. The methods
getForwardRoutingPath(), setForwardRoutingPath(),
getReverseRoutingPath(), and getReverseRoutingPath() allow you to get
and set the contents of the forward routing path and reverse routing path for
this SIMessage.

� SIMediationSession

This interface defines the methods for querying and interacting with the
service integration bus. and also includes methods that provide information
about where the mediation is invoked from, and the criteria that are applied
before the message is mediated.
 Chapter 7. Application and system design guidelines 225

The API has these methods:

– getBusName() returns the name of the bus upon which the mediation is
associated.

– getDestinationName() returns the name of the destination with which the
mediation is associated.

– getDiscriminator() returns the discriminator that is defined in the
mediation definition.

– getMediationName() returns the name of the mediation that is being
executed.

– getMessageSelector() returns the message selector that is defined in the
mediation definition.

– getMessagingEngineName() returns the name of the messaging engine
from which the mediation was invoked.

– getSIDestinationConfiguration() returns the SIDestinationConfiguration
object associated with the destination that is specified by destinationName
or destinationAddress.

– receive(), which receives an SIMessage from the service integration bus.

– send(), which sends a copy of an SIMessage to the service integration
bus in addition to the message that is returned by the message interface.

SDO DataGraphs
A message published in one format, a Web services SOAP message for
exampe, can be routed to a service provider that requires another format, such
as Java beans, using the Java API for XML-based RPC (JAX-RPC). Equally, the
routing could be in the other direction. If the message is operated on by a
mediation as it passes through the bus, in either direction, the mediation must be
able to operate on the message regardless of the underlying format. This is
achieved by using a common message model for the data mediators to use. The
model is called SDO DataGraph and it gives an abstract view of the message,
allowing you to concentrate on the information being conveyed (such as the
parameters of the request, the data of the response) without having to worry
about the packaging of that information.

SDO is based on the concept of data graphs. In the data graphs architecture, a
mediation retrieves a data graph, a collection of tree-structured or
graph-structured data objects, from a message, transforms the data graph, and
applies the data graph changes back to the data source.

In general, graphs that are generated from messages form a tree structure. The
service presents a standard SDO data graph representation of the message
payload, whatever the format of the incoming message‘s payload. A data object
226 Patterns: Implementing Self-Service in an SOA Environment

holds a set of named properties, each of which contains either a primitive-type
value or a reference to another Data Object. The Data Object API provides a
dynamic data API for manipulating these properties.

Routing paths
A routing path defines a sequential list of intermediary bus destinations that
messages must pass through to reach a target bus destination. A routing path is
used to apply the mediations configured on several destinations to messages
sent along the path.

A forward routing path identifies a list of bus destinations that a message should
be sent to from the producer to the last destination from which receivers retrieve
messages. The reverse routing path is constructed automatically for
request/reply messages, and identifies the list of destinations that any reply
message should be sent to from the receiver back to the producer. Use of
reverse routing path enables a reply message to take a different route back to
the producer, and therefore have more mediations applied.

When a message arrives at a destination in the path, mediations can manipulate
the entries in the forward routing path, to change the sequence of destinations
through which messages pass. If a mediation manipulates the forward routing
path, and the reverse routing path has been set (for a request message that
expects a reply), then the mediation is responsible for making any corresponding
changes to the reverse routing path.

A destination without mediations can be included in a routing path to provide a
future option to apply a mediation assigned to that destination.
 Chapter 7. Application and system design guidelines 227

228 Patterns: Implementing Self-Service in an SOA Environment

Chapter 8. Business scenario and
design

The concepts in this book are illustrated through the use of a fictional scenario for
an imaginary company called ITSOMart. This chapter gives you an overall view
of the scenario and application design we follow throughout the samples. It will
also discuss why we chose the business and application patterns used, the
technology options chosen, and the products selected for implementation.

8

© Copyright IBM Corp. 2005, 2006. All rights reserved. 229

8.1 ITSOMart overview
ITSOMart is a well established grocery chain that has been operating for the past
40 years. The target customers are the high income group. ITSOMart focuses on
higher margin, luxury, and speciality products. It has 1000 stores nation-wide.

The business is currently geared toward two distinct customer types:

� Business customers
� Home residential customers

In the future, they would like to have additional lines of business, starting with
Institutional service.

Product types, quantities, marketing strategy, and delivery services differ
depending on the customer type. Although there is one common warehouse, the
company has created two divisions to handle these customer types. Each
division has its own account database with information specific to the customer.

8.1.1 Business goals
Market research has shown that there is a growing demand in the high income
group for full-service, online home shopping. ITSOMart wants to capitalize on
this demand by taking their store services and delivery online.

ITSOMart wants to put the Customer Management and Order systems online
and make them accessible over the Web. In the process, they want to use, rather
than replace, their significant investment in the existing CRM. They would also
prefer to use a third-party credit rating service rather than implementing their
own.

They anticipate doing this in several phases, starting with the online customer
registration capability.

8.2 Customer registration scenario
The first step ITSOMart wants to take in making their services online is to allow
customers to register online. They would prefer for potential customers to access
the ITSOMart Web site and to register by entering data that can be used to
contact the customer and to get an initial credit rating for them. The data will be
stored in an existing system and an account number will be assigned.
230 Patterns: Implementing Self-Service in an SOA Environment

8.2.1 Actors
In this scenario, there is one primary actor called Customer. Table 8-1 provides
details on this actor.

Table 8-1 Customer Registration actors

8.2.2 Use case
The Customer Registration use case is shown in Table 8-2.

Table 8-2 Customer Registration use case

Actor Name Customer

Brief Description Customer uses the self-service online Customer
Management service to create a new account

Status Primary

Relationships

Association to use cases 001 Customer Registration

Use Case Name 001 Customer Registration

Use Case overview Customer enters the site and asks for the registration
page. Once presented with the page, Customer enters
the requested information and submits it. A credit check
is performed on the customer. If the credit rating is
acceptable, the Customer Management service is
invoked to register the customer. The appropriate
Delivery services, as selected by the customer, are
invoked to assign account numbers. On completion, an
e-mail is sent to the Customer indicating the status of
the registration (success or failure). If the registration is
successful, the account number or numbers are
returned.

Preconditions The Customer supplies the information required to
create a new customer account and selects one or more
account types (business, home, or both).

Termination Outcome 1 The Customer Management service registers the
customer, creates the appropriate accounts, and sends
a confirmation e-mail.
 Chapter 8. Business scenario and design 231

The use case model is shown in Figure 8-1.

Figure 8-1 Customer Registration use case model

8.2.3 Self-Service pattern selection
The Self-Service business pattern addresses the following problem:

Organizations have services and capabilities that need to be surfaced for
interested parties to access and manipulate information relevant to them. The
organization or business needs to enable the interested party to work with this
information.

This describes the situation for the ITSOMart customer, so they know they
should focus on the Self-Service patterns. However, the requirements for the
application must be defined before determining the application patterns that will
be used.

Customer

Register

Credit Rating Service

Home Delivery Service

Customer Management Service

Business Delivery Service

E-mail Service
232 Patterns: Implementing Self-Service in an SOA Environment

8.3 Customer registration application design
The application design for the customer registration scenario is illustrated in this
section by an activity diagram and a sequence diagram, followed by a
step-by-step explanation. These diagrams were created using the modeling tools
available in Rational Software Architect.

8.3.1 Activity diagram
The activity diagram, shown in Figure 8-2, is a UML diagram that provides a view
of the behavior of a system by describing the sequence of actions in a process.
ITSOMart created this diagram at the beginning of the project to clarify the flow of
events required to accomplish their objectives.

Figure 8-2 Activity diagram of ITSOMart application
 Chapter 8. Business scenario and design 233

Application pattern selection
The activity diagram makes the requirements of the application a little clearer. At
this stage, we can see that several application patterns might be appropriate.

� Directly Integrated Single Channel

There is one service provider for the credit check action and one for the
e-mail action. These services will be accessed using a direct connection.

� Router

The customer will have the opportunity to select the product and delivery type
in which they are interested. The application will examine the choice selected
by the customer and route the request to the appropriate application. The
application will assign an account number to the new customer.

� Decomposition

In the event that the customer selects multiple types, the application will send
that request to each selected business division and collect the account
numbers before responding to the client.

8.3.2 Sequence diagram
ITSOMart next used a sequence diagram to illustrate the chronological sequence
of messages between objects in an interaction. The sequence diagram for the
customer registration scenario is shown in Figure 8-3 on page 235.
234 Patterns: Implementing Self-Service in an SOA Environment

Figure 8-3 Sequence diagram of ITSOMart application

The flow of the ITSOMart application is as follows:

1) A customer accesses the Web site and clicks a button requesting to
register. The request is processed by a JSP, which provides a form
for user information.

2) The customer enters the requested data and clicks a Submit button.
JSF is used to validate the data on the client-side. The data includes
customer data and the type of account requested. One or more
account types can be selected.

3.1.1) The JSP stores the data input by the customer into a DB2 database
using CMP’s.

3.1.3) Next, it places a message on a queue containing the primary key of
the record stored in the database.

1: Cust Entry Page

2: Cust Entry Page
<<return>>

3.1: process details
3.1.1: Store User Details

<<return>>
3.1.2: Store User Details

3.1.3: Put PK of DB in MQ Q

<<return>>

User: View: Model/Controller: Local DB2 DB: JMS: MDB/Processor Module: ESB: Credit Check WS: Services:

Interaction1

View: Model/Controller: Local DB2 DB: JMS: MDB/Processor Module: ESB: Services:User:

JMS can be
a standalone
WebSphere MQ
or ESB

WS stands for
Web Service

[Good Credit]

3.1.3.2: Send Email

3.1.3.1: process details

3: Page Submit

<<return>>
3.1.3.1.1: Page Submit

<<return>> 3.1.3.1.2: Retrieve PK details
<<return>>

3.1.3.1.3: Retrieve PK details

3.1.3.1.5: Get Cust details from DB using PK

3.1.3.1.6: Get Credit Rating
3.1.3.1.6.1: Get Credit

3.1.3.1.6.2: Get Credit<<return>>3.1.3.1.7: Get Credit Rating

alt-a

3.1.3.1.4: Get Cust details from DB using PK
<<return>>

3.1: Get Message and send Email

3.2: Get Message and send Email
<<return>>

1: Delete User from Local DB
<<return>>

2: Delete User from Local DB

[Bad Credit]

3: Put Rejection Email

alt-b

Credit Check

3.1: Get Message and send Email

3.2: Get Message and send Email
<<return>>3: Put Acceptance Email E-mail

Account21: Calls WS to get account number

2.2: Calls WS to get account number
<<return>>2: Get account number

1: Put customer details in CRM Customer
CRM

1.1: Calls JCA WS to put customer details in CRM

1.2: Calls JCA WS to put customer details in CRM
<<return>>

E-mail
 Chapter 8. Business scenario and design 235

3.1.3.1.1) A response page is sent to the customer stating that the registration
process is underway and he will receive an email confirmation when
it is done.

3.1.3.1.2) The message placed on a JMS queue is retrieved by a message
driven bean, initiating a serial process. The process invokes the
back-end services.

3.1.3.1.4) Using the primary key in the message, the customer data is retrieved
from the local database.

3.1.3.1.6) The customer data is sent to the Credit Service to get a quote. The
Credit Service is available as a Web service and is accessed through
the ESB (enterprise service bus).

alt-a) If the customer rating is acceptable, the customer data is stored in
the existing CRM on CICS using JCA connectors. The CRM
maintains the master copy of customer information. Each business
application that corresponds to the customer type selected will be
sent the information and will return an account number. Once the
account numbers are returned, an e-mail is sent to the customer
indicating the registration was accepted and the account numbers
assigned.

alt-b) If the rating is not acceptable, the customer data is removed from the
database and an e-mail is sent to the customer indicating the
registration was rejected.

8.3.3 Technology and product selection
The application designers decided on the technology to use based on the
existing back-end applications and the requirements of the new application.
WebSphere Application Server was determined to be the best choice for the new
application because it is a simple, service-oriented J2EE application design
provided the functionality needed, while facilitating additions to the application as
the business grows.

The user interface is implemented as one application while the driver for the
registration process is implemented as a separate application. Future processes,
such as an order process, can be implemented without affecting existing process
applications. Simple changes to the user interface application can accommodate
the new process. The processes required are invoked by placing a message on
a queue to be picked up by a message-driven bean that starts the process.

Using a Web service interface to access the credit check service allows them to
easily change credit check providers.
236 Patterns: Implementing Self-Service in an SOA Environment

A Web service interface also works well for their home and business delivery
services. Adding additional options, such as institutional delivery, are simplified
by using a standard interface.

Their current preferred e-mail provider is accessed through a J2EE application
that uses a messaging interface. The messaging infrastructure provides reliable,
secure delivery of messages.

Their existing application that maintains the customer registration data is a CICS
application. Wrapping the existing application as a Web service allowed them to
build the new application without worrying that future alterations would be
needed to accommodate changes in the CICS application.

The service integration technology in WebSphere Application Server was chosed
for the implementation of the enterprise service bus. It provides transport
capability for Web services, the default messaging provider, and its mediation
capability is used to implement the router and decomposition aspects.
 Chapter 8. Business scenario and design 237

238 Patterns: Implementing Self-Service in an SOA Environment

Chapter 9. JSF front-end scenario

This chapter discusses the design and implementation of the Web-based
front-end part of the ITSOMart application. In particular, the chapter focuses on
the use of JavaServer Faces (JSF) technology. The chapter will use the practical
example of the ITSOMart front-end, to illustrate many of the theoretical concepts
introduced in Chapter 6, “Technology options” on page 101 and Chapter 7,
“Application and system design guidelines” on page 139.

It is expected that you are familiar with the business scenario, a basic structure of
the ITSOMart application, described in Chapter 8, “Business scenario and
design” on page 229.

In addition to reviewing some of the key characteristics of a JSF Web-based
application, we also focus on the use of Rational Software Architect to develop
JSF applications.

9

Note: The Web development tools used to develop JSF applications are
available in Rational Application Developer and Rational Web Developer as
well.
© Copyright IBM Corp. 2005, 2006. All rights reserved. 239

9.1 Architectural overview
The architectural overview model shown in Figure 9-1, illustrates how the
ITSOMart application was extended to communicate with an external enterprise
system using Web services. The area we focus on in this chapter is highlighted.
It represents the user interface portion of the application.

Figure 9-1 Architectural overview model: front-end application

The OrderSystemV6 application provides the interface to the customer. When a
customer registers, OrderSystemV6 updates the local database and places a
message on a queue containing the database record key. A message-driven
bean takes the message out of the queue and initiates the rest of the processing.

HTTP
Requests Self Service

Application

Mail Sender
(MDB) MailService

ESB

Processor

Mail Service Proxy
(JMS)

(MDB)

queue

JCA
Resource
Adapter

CRM (CICS)CRM Proxy Web
service

queue

Credit Check
Proxy CreditCheckWeb

service

Get Account
 Proxy

HomeDelivery
Web

service
BusinessDelivery

OrderSystemV6.ear
240 Patterns: Implementing Self-Service in an SOA Environment

9.2 System design overview
This section discusses the system design of the front-end of the ITSOMart
application. Note that we have already extensively covered the topic of front-end
application design on section 7.2, “Application structure” on page 141. However,
the intent of this section is to use the real example of the ITSOMart application to
illustrate how one would match the needs of an application to the design
approaches previously discussed. We then reinforce the concepts by describing
how the designed approach is specifically mapped to the ITSOMart application.

This section also tangentially illustrates the modeling capabilities of Rational
Software Architect. All diagrams in this section were constructed using Rational
Software Architect.

9.2.1 Design considerations
Before designing an application, it is critical to understand your guiding
principles. Aside from the obvious goal of fullfilling the customer requirements,
you need to identify the goals you are trying to achieve with your system design
approach.

Goals can vary from application to application, so in this section we focus
specifically in the ones we considered when designing the ITSOMart system.
Nonetheless, these are general enough goals which are likely applicable to most
self-service applications. We first examine these principles and goals below, then
the component model and object model sections illustrate how they map to our
selected design approach.

� Design must separate the presentation layer from business logic.

The term separate presentation from business logic has been a staple in user
interface design for decades now. The basic idea is that a good user interface
design should keep the rendering of screens separate from the application
logic which manages the information displayed.

User interface design is about presenting information in an aesthetically
pleasing fashion to end customers. Beyond a simple choice of technology, a
graphical user interface (GUI) design might involve a wide variety of human
factor guidelines, ranging from recommended types of menu bars, to which
colors are psychologically more apt to grab a customer’s attention.
Languages supporting GUI implementation, such as HTML or Java, generally
support multiple ways of presenting data. The choice of the presentation
should be driven by human factors guidelines.

Conversely, the design of the of the application code responsible for
implementing the business logic is influenced by more standard IT drivers
such as performance, storage capacity, code reuse, reliability, and so forth.
 Chapter 9. JSF front-end scenario 241

Clearly the drivers for the presentation and business layers are very different,
hence the need for a clean separation. It is essential that simple look and feel
changes in the user interface do no propagate down to business logic, and
vice versa. For instance, in the case of the ITSOMart application, if we
changed the screen flow of the application, we would not want to impact the
EJB layer supporting the customer administration functions. Similarly, if we
chose to reorganize the customer database table, we would not want the user
interface modules to be impacted.

� Design must leverage different skill sets.

There are usually multiple technologies involved in the implementation of a
self-service application. In the ITSOMart sample for instance, we are using
JMS, Web services, Enterprise Service Bus (ESB), JCA, DB2, and EJB, in
addition to whatever technology we chose for out front-end. Although the
specific products and technologies may vary, such diversity is typical of most
e-business applications.

When designing the front-end we need an approach which will effectively
leverage the skill set of our team. For example, we do not want the human
factor specialist responsible for the look and feel of the front-end, to have to
worry about the details of data storage in DB2. We do not need the developer
responsible for the JSP or servlet code that handles the user request
processing, to also be a specialist in the integration technologies needed to
communicate with our back-end.

� Design should support multiple user interfaces.

In today’s e-business environment, there are multiple mediums in which to
present customer information. In addition to Web-based applications over the
Internet, wireless devices such as PDAs and cell phones are a rapidly
growing market. Business-to-business interfaces can forgo the use of a user
interface, and opt instead for an XML-based Web services interface.

Looking at the ITSOMart application as an example, it is currently targeted for
a Web browser interface. However, the business requirements could change
in the future, such that a user could register from a cell phone. If that were the
case, we would prefer our selected design approach to be such that it would
minimize the impact to the overall application.

� Design approach should leverage on well defined design patterns.

Patterns will improve the quality of the overall design because they represent
the experience of proven successful solutions. Patterns can be applied at an
overall architectural level, or as detailed as a single Java class. The use of
patterns also improve productivity, as they facilitate the design process, and
242 Patterns: Implementing Self-Service in an SOA Environment

can even accelerate the implementation through the use of tooling. Rational
Software Architect for instance, supports an extensive library of commonly
used patterns, which can be easily applied to design models, and even
automatically generate code.

� Design should favor industry-standard technology.

It is often tempting to use unproven, or vendor-specific technology. For
instance, a particular vendor might offer a proprietary package that perfectly
fits the customer requirements. This solution might very well be cheaper and
faster to purchase. There might also be a new open source framework, which
appears to address many of our design goals.

There are times when taking either of these approaches is a valid option, but
the risks need to be well understood. Proprietary packages will generally limit
the flexibility of your environment to change, because you will be dependent
on the availability of new versions from the provider. New technology might
sound appealing, but without careful analysis you can find yourself in the
proverbial bleeding edge. New technology tends to evolve. Applications
written using early versions can quickly become deprecated. In either
scenario, staffing becomes an issue as well, because it might be difficult to
quickly attain resources familiar with new or vendor-specific technologies.
Therefore, all things being the same (not always an easy determination), we
recommend the use of established industry-standard technology.

For the ITSOMart front-end application in particular, there is no need of any
new or specialized technology. Therefore, our design approach should rely on
industry standard, preferably open standards, technology.

9.2.2 Component model
Now that we have discussed the various principles guiding our design process,
we will discuss the different aspects of the design approach we selected. The
component model will describe the overall structure of our application, in terms of
its high level components.

Component diagram
The component diagram in Figure 9-2 on page 244 depicts the different software
components which make up the front-end of the ITSOMart application. The
following sections elaborate on the different components.
 Chapter 9. JSF front-end scenario 243

Figure 9-2 ITSOMart front-end component model

Model-View-Controller architectural pattern
Our component model is based on the Model-View-Controller (MVC)
architectural pattern, widely used in user interface applications for many years. It
is particularly well-suited for Web-based applications, making it an overwhelming
choice across the industry. 7.2.1, “Model-View-Controller design pattern” on
page 141, discusses the MVC pattern in detail, therefore we do not repeat it
here. We simply review the main points so we can show how it is realized in the
ITSOMart application. The MVC pattern divides the application in three
components, indicated by differently shaded areas in Figure 9-2:

� The Model represents the data of the application, as well as the business
rules and logic that govern the processing of the data. In the ITSOMart
front-end, the Model is implemented through EJB classes that interact with
the database and back-end.

� The View is a visual representation of the model. Multiple Views can exist
simultaneously for the same Model. In the ITSOMart application, the View is
implemented using JSF and JSP Web pages.
244 Patterns: Implementing Self-Service in an SOA Environment

� The Controller decouples the visual representation from the underlying
business data and logic by handling user interactions and controlling access
to the Model. In the ITSOMart application, the Controller is implemented
primarily by the JSF FacesServlet. The FacesServlet controls the flow by
either forwarding requests to JSP and JSF pages, or invoking action calls on
various managed beans associated with JSF components.

The MVC pattern addresses all of the design goals we identified for the
ITSOMart application:

� It clearly supports the separation of presentation and business logic. The
presentation layer is isolated to the View component, while the business logic
is captured in the Model. Similarly, the separation of components also allows
for leveraging the different skill sets.

� MVC is also obviously a good fit for supporting multiple user interfaces. The
very definition of the View dictates that multiple Views can be associated with
a single Model.

� As we mentioned earlier, the MVC pattern is certainly a well-established
industry standard.

The MVC pattern describes a high-level architecture model, but does not specify
the low level design for implementing it. There are multiple frameworks
supporting the low level design and implementation an MVC-based application.
For the ITSOMart application, we selected the JavaServer Faces (JSF)
framework.

The JavaServer Faces framework
The ITSOMart application uses the JSF framework to implement the MVC
pattern. 7.2.6, “Frameworks” on page 153, discusses the JSF framework in
detail. The following are some of the reasons the JSF framework fits the design
goals for our application:

� JSF provides a very clean separation of presentation and business logic. The
presentation is contained in the JSP pages, built using HTML and JSF UI
components. The business logic is implemented in separate Java beans,
which are linked to the presentation through the JSF <faces-config>
configuration file. This clear separation allows screen designers to operate
strictly on the presentation layer, without needing the J2EE skills required of
the application developers.

� Presenting content over multiple types of user interfaces is a basic design
goal of JSF, due to its pluggable rendering capability. Although the current
implementation of ITSOMart is rendered for a Web browser using HTML, a
different rendering kit could present the same components using WML for a
wireless device.
 Chapter 9. JSF front-end scenario 245

Note that a WML rendering kit is not a standard component of Rational
Software Architect at this time. However the JSF framework can clearly
accommodate this and other kits as they become available.

� JSF is a standard component of the J2EE 1.4 specification, and is rapidly
gaining acceptance in the industry. JSF is now supported by all major IDEs
and Web application servers, including the WebSphere and Rational family of
products.

JSF versus Struts

A fair question at this point, would be to ask why we selected the JSF framework
over Jakarta Struts? See 7.2.6, “Frameworks” on page 153 for more details
about Struts. It is true that there is no overwhelming advantage for JSF at this
time. The primary deciding factor was that JSF has now been adopted as a J2EE
standard. JSF has been embraced rapidly by the IT industry, including all the
major tool vendors. JSF incorporates most of the concepts which made Struts so
popular over the last few years, while making improvements in various areas.

The general consensus at this time, is that if an application is already
implemented in Struts, there is no great need to convert it to JSF. However,
when writing a new application, as we are in this case, JSF is the preferred
option.

Enterprise JavaBeans components
The last layer of our component model is composed of Enterprise JavaBeans
(EJBs), which provide the Model portion of the MVC pattern, as well as the
integration to the back-end services.

The Customer entity bean manages the data for one customer, storing it in a
DB2 table. Following the J2EE session facade pattern, the access to this entity
bean is encapsulated in an EJB session bean. The session facade also provides
access to the back-end services supporting the ITSOMart application.

9.2.3 Object model
This section describes the object model for the ITSOMart front-end, through the
use of various modeling diagrams.

Front-end class diagram
The class diagram in Figure 9-3 on page 247 shows the primary classes in the
ITSOMart front-end. For the sake of readability, we restricted the visibility of the
classes’ components strictly to those operations and data members we wanted
to highlight. Note that given the nature of a JSF front-end, a formal UML class
diagram might not provide the complete picture of the application. That is
because the JSP pages, which are an integral component of the JSF framework,
246 Patterns: Implementing Self-Service in an SOA Environment

are not allowed in standard UML class diagram notation. However we illustrate
the JSP relationships later in freeform diagrams, and Web flow diagrams.

Figure 9-3 ITSOMart front-end class diagram

The following are some of the key classes and relationships depicted in the class
diagram:

� The top portion of the diagram represents a layer of Java beans that support
the Faces JSP pages. There is a bean assigned to each JSP page, and each
bean is responsible for getting and setting the data in the JSF UI components
of the page. Some beans also support the action methods which trigger the
back-end requests. See 9.3.2, “JSF managed bean design” on page 257, for
an extended discussion about JSF managed beans.

� The CustomerDO class is the data object used to encapsulate and exchange
the customer information across the application.

PageCodeBase
<<Java Class>>

cEmailValidator
<<Java Class>> JSF Managed

Request Beans

DeleteConfirm
<<Java Class>>

SystemError
<<Java Class>>

CreateConfirm
<<Java Class>>

CustomerNotFound
<<Java Class>>

UpdateConfirm
<<Java Class>>CustomerAdmin

<<Java Class>>

+ doLoginButtonAction ()

CreateCustomer
<<Java Class>>

+ doCreateCustomerAction ()

UpdateCustomer
<<Java Class>>

+ doUpdateCustomerAction ()
+ doDeleteAction ()

HomeFactory
<<Java Class>>

OrderSystemSessionFacadeLocal
LocalHome

<<Java Interface>>

OrderSystemSessionFacadeLocal
<<Java Interface>>

+ createCustomer ()
+ retrieveCustomer ()
+ updateCustomer ()
+ deleteCustomer ()

email : String
Iname : String
fname : String
streetAddress : String
city : String
phone : String
password : String
state : String
zip : String
accountInfo : String
deliveryType : String

CustomerDO
<<Java Class>>
 Chapter 9. JSF front-end scenario 247

� The OrderSystemSessionFacade related classes provide access to the
ITSOMart application back-end. They provide a simple remote interface for
performing the basic operations triggered by the front-end: create, retrieve,
update, and delete. See 9.3.5, “Back-end interface” on page 262, for further
discussion on the back-end interface

� The EmailValidator class provides a customer defined format validation for
e-mail addresses. 9.3.3, “JSF input validation” on page 259, further describes
JSF validation.

Create customer freeform diagram
The freeform diagram in Figure 9-4 on page 249 provides a less rigorous but
more comprehensive overview of the ITSOMart front-end. To improve clarity, this
pseudo-class diagram is restricted to only those classes and components which
are related to the use case of creating a new customer profile. In the sections to
come, we continue to focus on this create customer profile use case. This will
provide an end-to-end view from high-level design, through low-level
implementation.

Because this is not a formal UML class diagram, it also includes the JSP pages,
the JSF FacesServlet, and the back-end beans responsible for storing the
customer in the database.

The diagram also provides a detailed view of how the JSF framework in the
ITSOMart front-end, maps into the MVC architectural pattern. This is similar to
the high-level mapping presented in the component diagram in Figure 9-2 on
page 244, but at a much lower level.

� The Model component is implemented through EJB session and entity beans.
They store the customer information, and implement the business logic that
triggers the credit check. The model data is stored and carried through the
application in the CustomerDO data object.

� The View component is implemented using JSP Web pages which present
the customer creation input form to the user (CreateCustomer.jsp), as well as
the confirmation page (CreateConfirm.jsp). The JSP pages will use JSF UI
components to render the information in the Web browser.

� The Controller component is implemented by the JSF FacesServlet, and the
CreateCustomer JSF managed bean. FacesServlet is a standard J2EE class
(in the javax.faces.webapp package), and is responsible for controlling the life
cycle of a JSF request. This is more clear in the sequence diagram in the next
section (Figure 9-5 on page 250).
248 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-4 Create customer freeform diagram

Create customer sequence diagram
The relationship between the classes used to create a customer are further
detailed in the sequence diagram in Figure 9-5 on page 250. In addition to
presenting the logic flow for the ITSOMart front-end, the diagram also offers a
good practical example of the role of FacesServlet in controlling the life cycle of
the JSF request.
 Chapter 9. JSF front-end scenario 249

Figure 9-5 Create customer sequence diagram

The use case starts with the CreateCustomer.jsp page loaded onto the user’s
browser, as shown in Figure 9-6 on page 251.
250 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-6 Create customer screen

After the user has completed the profile information, he or she clicks the Create
button, which triggers the following flow:

1) The HTTP request is forwarded to the FacesServlet, registered in the Web
server to handle all JSF-related requests.

1.1) FacesServlet obtains the request arguments and updates the
CreateCustomer managed bean.

1.1.1) The CustomerDO object within CreateCustomer is loaded with the
customer information.

1.2) FacesServlet now invokes any special validation functions. For the
ITSOMart front-end, that means EmailValidator is called. In this case, we
 Chapter 9. JSF front-end scenario 251

assume the request is valid. If it were not, the request would end here, and
FacesServlet would return the same create input screen, with the
appropriate validation errors added.

1.3) FacesServlet now invokes the doCreateCustomerAction method on the
CreateCustomer managed bean, which is associated with the Create
button in the JSP page.

1.3.1) doCreateCustomerAction obtains a reference to a
OrderSystemSessionFacadeLocal object, and invokes the
createCustomer method, passing in the CustomerDO object, which was
loaded on step 1.1.1.

1.3.2) OrderSystemSessionFacadeLocal will get realized in the back-end, and
perform the required steps to create and process the customer profile. In
this case, we assume the request will be successful.

1.4) Upon receiving the successful creation status, the
doCreateCustomerAction method returns the string “createSuccess”.

1.5) FacesServlet will match the “createSuccess” string with a navigation rule in
the faces-config.xml configuration file. The rule identifies CreateConfirm.jsp
as the target page (9.3.1, “ITSOMart Web diagram” on page 253, further
describes this navigation concept). FacesServlet will then dispatch the
response, which is displayed as seen in Figure 9-7 on page 253.
252 Patterns: Implementing Self-Service in an SOA Environment

.

Figure 9-7 Create customer confirmation screen

9.3 Low level design
Now that we have discussed the overall design of the ITSOMart front-end, we
will turn our attention to some of the low level design decisions associated with a
JSF application. Once again, we focus these discussions on our own sample
application.

9.3.1 ITSOMart Web diagram
The Web diagram in Figure 9-8 on page 254 (constructed using Rational
Software Architect), presents the complete end-to-end flow of the ITSOMart
application front-end. A Web diagram is a valuable tool for visualizing and
constructing JSP/JSF-based applications.

In the diagram, the nodes represent the different JSP pages which make up the
application presentation. The connections represent simple Web page links, or
the outcome of JSF actions. Because the ITSOMart application uses strictly
 Chapter 9. JSF front-end scenario 253

JSF-based navigation, all connections in Figure 9-8 on page 254 represent JSF
action results.

Using the Web diagram, a human factor expert can design the entire flow of the
application, without having to look at a single line of code, or even a screen
design. When a JSP page node is added, the corresponding .jsp file is created,
but simply left blank. Adding a JSF outcome connection creates a JSF rule,
which is stored in the faces-config.xml configuration file. Because JSF page
navigation is isolated from the code with these external navigation rules, the
designer can have the complete end-to-end flow planned out, without ever
having to edit a JSP file. When the Web diagram is completed, there should be a
complete framework of JSP files and navigation rules ready to be completed by a
GUI developer.

Figure 9-8 ITSOMart Web diagram

To better understand the Web diagram and the page design process, we return
to the example of our familiar create customer use case. The following steps
254 Patterns: Implementing Self-Service in an SOA Environment

traverse the Web diagram top to bottom from the home page, through the
creation of a customer profile.

1. The home page for the ITSOMart front-end is the CustomerAdmin.jsp page.
From that page, if the user wants to create a customer, she should be
redirected to the CreateCustomer.jsp page. Therefore, we add a JSF
connection from CustomerAdmin.jsp to CreateCustomer.jsp, specifying the
outcome to be createCustomer. See “Selecting the outcome string” on
page 256. When we do that, a navigation rule is automatically added to the
faces-config.xml file as in Example 9-1.

Example 9-1 Navigation rule for faces-fonfig.xml

<navigation-case>
<from-outcome>createCustomer</from-outcome>
<to-view-id>/CreateCustomer.jsp</to-view-id>

</navigation-case>

Now when the CustomerAdmin.jsp is implemented, all we need to do is make
sure that the link or button we use to trigger customer creation returns the
string createCustomer.

2. From the CreateCustomer.jsp screen, we expect the user to enter the
appropriate information, then press a create button. If the creation is
successful, we would prefer the user to see a confirmation page, therefore we
add a JSF connection with the outcome of createSuccess. We then link it to
the CreateConfirm.jsp page.

Note that the Web diagram also accounts for an error scenario. If there is an
unexpected problem, and we cannot create the customer profile, we would
prefer the user to see a standard error page. Therefore we add a JSF
connection with a rule that points the systemError outcome to the
SystemError.jsp page. Later, when implementing the code, all the developer
needs to know is that in the case of an unexpected exception, the code
should return the string systemError.

As in the previous case, these JSF connections are automatically added by
Rational Software Architect to the face-config.xml file. The navigation rules in
Example 9-2 for both the success and failure cases, are saved in the
configuration file.

Example 9-2 Navigation systemError outcome rules

<navigation-case>
<from-outcome>createSuccess</from-outcome>
<to-view-id>/CreateConfirm.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>systemError</from-outcome>
 Chapter 9. JSF front-end scenario 255

<to-view-id>/SystemError.jsp</to-view-id>
</navigation-case>

3. From the create confirmation screen (CreateConfirm.jsp), we only allow the
user to sign out. In our case, signing out redirects the customer to the home
page (CustomerAdmin.jsp). This is represented with the signOut JSF
connection from CreateConfirm.jsp to CustomerAdmin.jsp. As with the other
connections, an appropriate entry is added to the face-config.xml file.

This example illustrates how the application flow can be designed through a Web
diagram. Clearly the flow of the rest of the application can be inferred following
the same process we have shown to create the customer use case.

Note that additional details can also be included in a Web diagram. Because we
were designing the entire application flow, we chose to include only the JSP
pages and navigation rules. However, a designer can also include the managed
beans responsible for performing the JSF actions. Although we felt this would
add too much clutter in the overall scenario, 9.4.5, “Implementing page
navigation” on page 275, shows an example of a more detailed diagram for a
specific case.

Selecting the outcome string
As we saw in the diagram, the outcome string is a key part of the navigation rule.
When designing the application, we should decide on a strategy for selecting
these strings consistently.

One approach sometimes used is to choose a string that is clearly associated
with the target page. For instance, the strategy could be that the outcome string
would match the name of the desired target JSP page. In other words, an
outcome string of updateConfirm would always take us to the UpdateConfirm.jsp
page.

The problem with such an approach, is that it defeats the purpose of an external
configurable navigation framework. If the outcome strings are hardcoded to
match exact JSP file names, we could have just as easily used a standard servlet
forwarding mechanism to forward the request to the JSP file.

The approach we recommend and the one used by the ITSOMart application, is
to choose outcome strings that generically represent the outcome of an action.
Instead of expressing what the next page should be, the string should represent
what the current page accomplished.

For example in our create customer use case, if the customer creation were
successful, we would return an outcome of createSuccess. Currently
createSuccess leads to the CreateConfirm.jsp page. However in the future, the
256 Patterns: Implementing Self-Service in an SOA Environment

flow could change, and after creating a profile, the customer might be forwarded
to a different area to enter additional details. In that case, we could simply
change the navigation rule on web-config.xml, such that createSuccess would
now lead to a new page called CustomerDetail.jsp. This would be done without
having to touch any of the JSP files, or Java classes.

9.3.2 JSF managed bean design
Once we have designed the end-to-end screen flow of our JSF application, we
need to understand how data is exchange between screens, and how the
back-end functions are accessed. In JSF, this is accomplished by the use Java
beans managed by the JSF framework.

The managed beans can be declared with four different scopes:

� Request

The bean is persisted between two pages, the current page and the target
next page, or on a page reload. In that case, the bean is stored in the
HTTPServletRequest.

� Session

The bean is stored in the HTTPSession and exists for the life of a user’s
session.

� Application

The bean is stored in the ServletContext and exists for the life cycle of the
JSF application, with one instance for all users.

� None

The bean is not stored anywhere, and can only be used as a temporary
variable

From a logical perspective, managed beans are used in multiple ways in the JSF
applications. In the following sections, we discuss the different applications of
managed beans, and specifically how they are used in the ITSOMart front-end.

Backing beans
A typical Faces JSP page is composed of multiple input and output UI JSF
components (text fields, output texts, selection lists, and so on). Backing beans
are managed beans used to bind these UI components to Java objects that can
be accessed by the application.

When using Rational Software Architect to create a Faces JSP page, a backing
bean is automatically created, and a definition for it is added to the
faces-config.xml file. This bean will be used to bind with the JSF UI components
 Chapter 9. JSF front-end scenario 257

in the JSP page. Although technically speaking we could edit the configuration
file and change this JSP to bean mapping, there is no particular reason to that.
Therefore, following this default behavior, the design of the ITSOMart application
is such that each JSP page will have a unique corresponding backing bean.

The backing beans are declared with request scope. Because the bean’s
purpose is strictly to interact with the one JSP file in particular, there is no reason
its information needs to be stored beyond the request.

Action beans
In addition to rendering data, the other key operation in a Faces JSP page is to
trigger an action. These actions cause the application to perform some operation
and might include navigating to another page. They are triggered by JSF UI
components such as command buttons and links.

From a JSF design perspective, we could declare a managed bean dedicated
explicitly to handle actions. However, this is not strictly necessary. The default
behavior of Rational Software Architect is to create an action handler method in
the standard backing bean associated with the JSP page. In that case, the
backing bean is logically also an action handling bean.

The ITSOMart front-end follows the simple approach of placing the action
handler on the backing bean. There is little need for dedicated action classes,
since the relevant operations are already clearly isolated in the
OrderSystemSessionFacade object, as seen in the object model on 9.2.3,
“Object model” on page 246.

For example, again using the create customer case, the pc_CreateCustomer
backing bean has a doCreateCustomeAction method. This method is bound as
the handler for the Create button (a JSF <hx:commandExButton> UI component)
on the CreateCustomer.jsp page.

Data beans
Although backing beans get and set data on a specific page, they are not meant
to carry data across multiple screens. Therefore, if an application has persistent
data which needs to be carried through to multiple screens, a dedicated
managed bean is generally used for that purpose.

The scope of the data bean depends on the requirement of the application. The
most common scenario for e-business applications, is probably that a certain
amount of data gets carried through a user session, the shopping cart being the
classic case. In that case, the managed bean should be declared with session
scope. The declaration of the data bean is done in the faces-config.xml
configuration file.
258 Patterns: Implementing Self-Service in an SOA Environment

In the case of the ITSOMart application, we define the CustomerDO class as the
managed bean responsible for storing session data. The class stores the basic
customer data carried through multiple screens in the application.

9.3.3 JSF input validation
The JSF framework provides a variety of ways of validating user input. This
section discusses some of these options, and describes the ones employed in
the ITSOMart application. Implementation details for the various validation
options are presented later in 9.4.6, “Implementing input validation” on page 280.

Client side versus server side validation
Before looking into the various JSF validation options, we first discuss one of
known limitations. JSF currently does not support client side validation. That
means that even the most simple of input format checking requires validation to
be performed on the server. This goes against the common practice for
Web-based applications, where simple input validation is often done on the client
side, using JavaScript.

The options in this case, are to stick with standard JSF validation, or manually
program client side validation with JavaScript. The JSF-based validation will fit in
naturally with the tooling and the framework, but the JavaScript client side
validation reduces the server load. Either option is valid, and the choice will
depend on the relative importance of reducing server load for the application in
question.

In the ITSOMart front-end, we have chosen to use JSF-based validation to
demonstrate this technique. Note that the specifications for the upcoming JSF2.0
release will include client-side validation, which should remedy the current
shortcoming.

Standard component validation
Most JSF UI components include at least some level of input validation. These
include checks for required values, string length, and date formats. These are not
comprehensive, but they do offer some useful basic functionality. The ITSOMart
front-end makes use of all appropriate standard validation provided by the JSF
components.

Custom validation
The validation provided in the standard JSF components is limited to basic data
types such as strings, numbers, and dates. Clearly this is not sufficient for most
complex applications. However, JSF does provide a simple framework for
specifying custom-defined validation functions. Once a special validation class is
 Chapter 9. JSF front-end scenario 259

constructed, and the definition is added to the faces-config.xml configuration file,
it can be reused to validate any applicable JSF component.

For example, in the case of the ITSOMart application, we have defined a custom
validation class: EmailValidator. The EmailValidator class implements a special
validation for e-mail addresses. Once defined and included in faces-config.xml,
the function is reused for e-mail format validation in multiple screens.

9.3.4 Error handling
The error handling on the ITSOMart front-end is relatively simple. Because this is
a sample application, we chose to spend more time on the sunny day scenario,
rather than on the rainy day one. The following sections focus on the design
considerations we contemplated when incorporating error handling to our JSF
application.

Validation errors
The previous section discusses how data is validated, but does not describe how
validation errors are eventually presented to the user. There are a few options
available in the JSF framework using error display UI components.

Although it is possible to use a separate JSP error page, from a human factors
perspective, it is generally preferred to display input validation errors in the same
page where they were entered. In that case, we can follow two different
approaches. The validation errors can be shown specifically for each field, in
which case the error message is positioned right next to the component being
validated. The other option is to have a single error display field which displays
all the errors of the page. JSF offers UI components which accommodate either
approach.

In the ITSOMart application, we opted for the approach of associating validation
errors to each individual component. The approach of grouping all validation
errors in one place might have reduced screen clutter, but it requires some
specialized coding and configuration to work in a reasonable way. Associating
error display fields for each individual input component is relatively easy to
accomplish using Rational Software Architect, and offers a clear indication of
where the error occurred.

Figure 9-9 on page 261 shows a section of the Create Customer screen in the
ITSOMart application, illustrating the messages displayed in case of validation
errors.
260 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-9 Create customer input validation

Application and system errors
There is nothing particularly unique about the way we handle application and
system errors in the JSF framework. Errors from the back-end are captured with
exceptions just as in any other Java-based application. What JSF does have in
its favor, is the flexible screen navigation framework that makes it quite simple to
redirect responses to the appropriate error pages. As we have seen before, JSF
actions return a plain outcome string, which gets mapped separately into a target
JSP page.

For example, assume our create customer action checks for the appropriate
exceptions, and chooses to report on the following conditions: a customer
already exists with that e-mail, there was a DB2 error inserting the data, or there
was another system exception (the catch all case). In that case, our action
handler would return three possible error strings: duplicateEmail, dbError, or
systemError. Now all we would have to do is setup the navigation rules such that
these strings would direct the application to an appropriate JSP error page.
Better yet, many of the error pages and navigation rules can easily be reused for
all other pages.

Note that although we could have implemented that level of detail in the create
customer error handling, in reality we did not. As we mentioned earlier, we
wanted to concentrate our effort on other aspects of the technology. As it is, in
the ITSOMart application, all internal application or system errors map to the
 Chapter 9. JSF front-end scenario 261

same outcome string: systemError. This string is then mapped to the generic
error page, SystemError.jsp, with a global navigation rule. Although a single error
page is not realistic for most complex applications, this does show how quickly
we can implement basic error handling in a JSF application.

9.3.5 Back-end interface
There are a number of patterns that can be used to integrate the JSF front-end
with the back-end of an application. These include the command bean pattern,
the business delegate pattern, session facade pattern, and data object pattern,
among others. In this redbook, we concentrate on the new JSF technology, as
well as the integration technologies used in the back end such as ESB, JCA,
JMS, and so forth. We did not want to spend much time on this particular layer,
and therefore chose to reuse classes from a larger ITSOMart ordering system, of
which our customer registration application is a subset.

The ITSOMart front-end to back-end interface follows the session facade design
pattern. The OrderSystemSessionFacade class offers coarse-grained services to
access the entity beans that store the customer data, and the message-based
credit check subsystem. It provides a simple remote interface for performing the
basic operations triggered by the front-end: create, retrieve, update, and delete.

9.4 Application development guidelines
Now that we have thoroughly discussed the high-level and low-level design
issues associated with the ITSOMart front-end, we will turn our attention to the
development aspects. Specifically, we highlight the use of Rational Software
Architect in building the application.

Note that given the scope of this redbook, we cannot expect to provide a
comprehensive user guide for building a JSF application using Rational Software
Architect. What we do instead, is touch on some of the key features, and see
how they are applied in the construction of our ITSOMart example. Instead of
describing every aspect of JSF development, we focus on the specific choices
and guidelines which drove the development of the ITSOMart front-end.

The complete ITSO front-end source code is available for download so we will
not attempt to walk through the entire process of constructing it from scratch.
See Appendix B, “Additional material” on page 485. We show, however, in depth
examples of how some of the key construction steps are performed.
262 Patterns: Implementing Self-Service in an SOA Environment

9.4.1 Rational Software Architect development environment
The development techniques we address in this chapter use the Web
development tools available in Rational Software Architect, Rational Application
Developer, and Rational Web Developer.

The OrderSystemWeb project
JSF applications should be developed under a dynamic Web project. In
ITSOMart, the dynamic Web project for the ITSOMart front-end is called
OrderSystemWeb. All JSP files, Java backing beans, page templates, CSS style
sheets, and JSF configuration files are contained within that project. For the
whole application to work, the project is deployed along with multiple other
projects which make up the complete ITSOMart application. See “Description of
application files” on page 454 for a description of the ITSOMart application
project structure.

The Web perspective
Development of JSF applications is generally done under the Web perspective.
Figure 9-10 on page 264 shows a bird’s eye view of the ITSOMart
OrderSystemWeb project under the Web perspective.
 Chapter 9. JSF front-end scenario 263

Figure 9-10 Web perspective

The top center area shows the CreateCustomer.jsp file being edited in the Page
Designer, and the bottom area shows the properties window. To the right is the
palette containing the HTML, JSF and JSP UI components used to construct the
front-end. The top left area is the standard project explorer, and the bottom left
area shows the data associated with the CreateCustomer.jsp page.

9.4.2 Web page templates
Most Web applications have a standard look and feel that to all their pages. In
addition to a standard Cascading Style Sheet (.CSS), which the ITSOMart
application uses, pages often share common UI components, generally
consisting of a header, footer, navigation map, and so on. Rational Software
Architect facilitates the use of this feature by supporting page templates.
264 Patterns: Implementing Self-Service in an SOA Environment

Creating the ITSOMart page template
The ITSOMart front-end application uses a page template. To construct the page
template, we perform the following steps:

1. In the Project Explorer view, right-click the OrderSystemWeb dynamic Web
project.

2. In the context menu select New → Page Template File.

3. When the New Page Template File wizard appears, enter the following:

– Under File Name, enter CustomerAdminTemplate.

– Under Model, select Template Containing Faces Components.

4. Click Finish and the template file is created and placed in the design canvas,
ready to by constructed.

5. Complete the template by using the same HTML, JSP, and JSF UI
components you would use on a regular Faces JSP page. For the ITSOMart
template, we basically use HTML tables and graphic images to build the top
banner which appears in all our screens.

The resulting template for the ITSOMart application is shown in Figure 9-11. The
figure also shows a closer view of the palette used to add UI components. If we
decide to update the template later, all pages which used it will automatically
inherit the changes.

Figure 9-11 ITSOMart page template
 Chapter 9. JSF front-end scenario 265

Using the ITSOMart page template
Once a template is created, it can be used in two ways. We can apply it to an
existing JSP page, or we can specify it to be used when we first create a JSP
page.

For example, the following steps show how we applied the
CustomerAdminTemplate template in the creation of the CreateCustomer.jsp
Faces JSP file:

1. Right-click the OrderSystemWeb dynamic Web project.

2. In the context menu select New → Faces JSP File.

3. When the New Faces JSP Template File wizard appears, populate the
information as shown in Figure 9-12 on page 267.

a. Make sure to check the Create from page template option in the first
screen.

b. On the second screen, select CustomerAdminTemplate from the list.

4. Click Finish and the CreateCustomer.jsp file is created, using the template.
266 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-12 Creating JSP page specifying a template

9.4.3 Designing screens using the Page Designer
The Page Designer is the basic Rational Software Architect tool for designing
Web pages. It is generally located in the center of the Web perspective. It
provides three different tabs for editing pages:

� The Design tab provides a canvas where UI components are dropped from
the palette (usually located to the right of the design panel), and arranged for
the desired look and feel.

� The Source tab displays the HTML, JSP, and JSF source code.

� The Preview tab provides an approximation of the way the screen will look on
a Web browser.
 Chapter 9. JSF front-end scenario 267

Figure 9-13 shows an example of the three tabs of the Page Designer. We
deviate here from our standard create user use case, simply because those
screens would be to wide to fit side by side in the page.

Figure 9-13 Page designer three tabs

In addition to the standard HTML and JSP tags, JSF pages have a number of
JSF UI components available for screen design. Not only are there standard JSF
tags from the reference J2EE implementation, but the framework also allows for
easy incorporation of additional tags from other vendors. For instance, Rational
Software Architect offers an IBM extension library which supports a number of
additional tags.

All pages in the ITSOMart application are Faces JSP pages that use JSF UI
components. In the subsequent sections, we show how these UI components
interact with the JSF managed beans, perform standard validation, and are used
to trigger actions.

9.4.4 Binding UI components to managed beans
As we discussed in 9.3.2, “JSF managed bean design” on page 257, managed
beans are a critical part of a JSF application. This section will show how we
create the managed beans used in the ITSOMart application, and how they are
bound to the JSF UI components.

Creating backing beans
As previously noted in 9.3.2, “JSF managed bean design” on page 257, when
using Rational Software Architect to create a Faces JSP page, a backing bean is
automatically created, and a definition for it is added to the faces-config.xml file.
The naming convention is such that the bean class will have the same base
268 Patterns: Implementing Self-Service in an SOA Environment

name as the JSP page, only varying in the extension (.java instead of .jsp). The
managed bean is named pc_<class>, where <class> is the name of the backing
bean class. For example, when the CreateCustomer.jsp file is created, the
CreateCustomer.java bean class is automatically created. CreateCustomer.java
will have methods to get and set each JSF UI component in the JSP file. The
pc_CreateCustomer managed bean definition is added to the faces-config.xml
file as in Example 9-3:

Example 9-3 The pc_CreateCustomer managed bean definition

<managed-bean>
<managed-bean-name>pc_CreateCustomer</managed-bean-name>
<managed-bean-class>pagecode.CreateCustomer</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

Creating the CustomerDO data bean
The customerDO data bean is used to store the customer data, and transfer it
across the different pages.

The first step is to create the CustomerDO Java class. This is a standard class,
which we create under the com.ibm.patterns.order.dto package. The class
should have data members for each piece of customer information, such as first
name, last name, e-mail, address, etc. The class will also have the standard
get/set methods to set and retrieve the properties.

After the class is created, in order to declare a new data bean customerDO, we
use the page data window as follows:

1. Open one of the JSP files where the data bean is to be used. In our case, we
can use the CreateCustomer.jsp file we have used in other examples.

2. On the page data window, right-click and select New → JavaBean.

3. When the Add Java Bean wizard appears, enter the customerDO bean
information as shown in Figure 9-14 on page 270. Note that we need to check
the Make this JavaBean reusable check box, and set the scope to session,
in order to make the data available for other pages.

4. Click Finish and the customerDO bean is created.
 Chapter 9. JSF front-end scenario 269

Figure 9-14 Creating customerDO managed bean

When the bean is created through the wizard, the following lines in Example 9-4
are automatically added to the faces-config.xml:

Example 9-4 Creating the customerDO managed bean in faces-config.xml

<managed-bean>
<managed-bean-name>customerDO</managed-bean-name>
<managed-bean-class>com.ibm.patterns.order.dto.CustomerDO</managed-bean-
class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

After the bean is created, in order to add it to other pages such as the
UpdateCustomer.jsp page, the process is nearly the same. The only difference is
that in the Add JavaBean wizard, we select Add existing reusable Java Bean
instead. The customerDO bean will appear in a table where we can select it.

Once a bean has been added to a JSP page, it appears in its associated page
data window. Figure 9-15 on page 271 shows the resulting page data for the
CreateCustomer.jsp page after the customerDO bean is added to it.
270 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-15 CreateCustomer.jsp page data window

Binding UI components to managed beans
Now that we have discussed the creation of both UI components and managed
beans, we examine how to bind them. For example, the following steps describe
the steps for binding the Last Name field in the CreateCustomer.jsp page to the
lname property in customerDO.

1. Open CreateCustomer.jsp on the Design tab of the Page Designer.

2. Click the JSF inputField component used for the last name, which should
populate the Properties window on the bottom. Select the Properties tab if it
is not yet selected.

3. In the Value field, click the small icon to the right of the field. That brings up
the Select Page Data Object wizard, as shown in Figure 9-16 on page 272.

4. Expand the customerDO bean, select the lname property, and click Ok.
 Chapter 9. JSF front-end scenario 271

Figure 9-16 Selecting bind variable property

5. Now the Properties tab should show the value bind expression as seen in
Figure 9-17.

Figure 9-17 Bind value populated

With the steps above completed, changes in the last name screen field will
update the lname property in the customerDO session variable, and vice-versa.
272 Patterns: Implementing Self-Service in an SOA Environment

Binding command buttons to action methods
To trigger actions from a Faces JSP page, we use JSF command buttons or
command link UI components. When triggering an action, we must link the button
with the code that will handle it. As we saw in 9.3.2, “JSF managed bean design”
on page 257, these methods can be placed in dedicated action beans, but the
standard behavior is to simply add them to the backing bean for the JSP page.

In our customer create use case, we used the following steps to bind the Create
button to the appropriate method on the CreateCustomer.java backing bean.

1. Open CreateCustomer.jsp on the Design tab.

2. Click the Create commandButton JSF component, which should populate the
Properties window on the bottom. Select the Properties tab if it is not yet
selected.

3. Click the small icon on top right side of the Properties window, as circled in
Figure 9-18. The icon is labeled, Click to code the action this button
performs. This will take you to the Command Quick Edit screen. Alternatively,
you may click the Quick Edit tab.

Figure 9-18 Command button properties

4. As shown in Figure 9-19 on page 274, enter the code you want to execute
when the Create button is clicked.
 Chapter 9. JSF front-end scenario 273

Figure 9-19 Command Quick Edit window

5. Now if you check the CreateCustomer.java backing bean source code (see
Figure 9-20), you see the method doCreateCustomerAction is created, using
the code entered in the Quick Edit screen.

Figure 9-20 CreateCustomer action method

Now when you click the Create button, the doCreateCustomerAction method is
called.

Code view of managed bean binding
When using a sophisticated IDE such as Rational Software Architect, we may at
times lose track of how the actions we performed using the different wizards,
translate into the JSF/JSP code which will ultimately be deployed on the server.
274 Patterns: Implementing Self-Service in an SOA Environment

Using the Source tab in the page designer, we can inspect the actual source
code of the JSP files. Figure 9-21 shows the portions of source code
corresponding to the two examples we described earlier. This is code which was
generated by Rational Software Architect based on the information we entered in
the properties window and the different wizards.

The first window shows the code binding the last name input field to the lname
field in the customerDO managed bean. The second window shows the code
binding the Create button to the doCreateCustomerAction method in the
pc_CreateCustomer backing bean.

Figure 9-21 CreateCustomer.jsp data binding source code

9.4.5 Implementing page navigation
Section 9.3.1, “ITSOMart Web diagram” on page 253, provides a very good
overview of the page navigation in JSF, and specifically in the ITSOMart
application. This section explains the low-level details of how we use Rational
Software Architect to setup the navigation rules.

For this particular example, we depart from our usual create customer use case,
and instead look at the update customer screen. The reason is simply because
 Chapter 9. JSF front-end scenario 275

that screen offers more possible outcomes, which makes it a more interesting
example to describe navigation. Figure 9-22 shows the ITSOMart update screen,
allowing the user to update their profile information, delete, or cancel the
operation.

Figure 9-22 Update Customer Screen

Update customer Web diagram
Section 9.3.1, “ITSOMart Web diagram” on page 253 introduces the concept of
Web diagrams. In that section however, the diagram is used to illustrate the
complete end-to-end flow of the ITSOMart application and omits such details as
the managed beans being invoked to trigger actions. Figure 9-23 on page 277
provides a more detailed Web diagram illustrating the screen flow design and
navigation for the update customer use case.
276 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-23 Update customer Web diagram

Reading the diagram, we can infer the following information about the screen
flow of the update customer use case.

� From the UpdateCustomer.jsp page, there are three possible navigation
scenarios:

– The user can trigger an action to update the profile, with the
doUpdateCustomerAction method of the pc_UpdateCustomer backing
bean. Note that the method name is truncated by Rational Software
Architect in the Web diagram.

– The user can trigger an action to delete the profile with the doDeleteAction
method of the pc_UpdateCustomer backing bean.

– The user can cancel out of the update screen, and simply navigate back to
the home page, CustomerAdmin.jsp.

� Depending on whether the update or delete actions are successful, the user
application navigates to an appropriate confirmation screen, or to a generic
system error page.

Implementing customer update navigation
Now that we understand how we want the use case to flow, we show how we
implement the flow using Rational Software Architect. We begin by setting up a
navigation rule for the Update button in the UpdateCustomer.jsp page.
 Chapter 9. JSF front-end scenario 277

Assume that before we start, we first create an action method,
doUpdateCustomerAction, in the UpdateCustomer.java backing bean. This
method is bound to the Update button in the UpdateCustomer.jsp page, following
the steps previously described in “Binding command buttons to action methods”
on page 273. The method will return the outcome string of updateSuccess, if the
customer information is successfully updated. If there are any errors, the method
returns systemError.

Now we can add the navigation rule as follows.

1. Open UpdateCustomer.jsp in the Design tab.

2. Click the Update commandButton JSF component, which should populate
the Properties window on the bottom.

3. Scroll to the right portion of the Properties window, where you will find the
navigation rules table, as shown in Figure 9-24. Click the Add Rule button.

Figure 9-24 Navigation rules table

4. When the Add Navigation Rule wizard appears, enter the following, as shown
in Figure 9-25 on page 279:
278 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-25 Add Navigation Rule wizard

a. Under Page, select UpdateConfirm.jsp.
b. Under The outcome named, enter updateSuccess.
c. Check All pages and Any action.

5. Click OK, and the navigation rule is created.

6. Clearly, adding the rule for the Delete button follows much the same
procedure. The only difference is in the outcome string (deleteSuccess), and
the target JSP (DeleteConfirm.jsp).

7. The rule directing errors to the SystemError.jsp page is even simpler,
because the same rule applies to all pages in the ITSOMart application. It is a
global rule that sets the target of SystemError.jsp for the systemError
outcome, regardless of the current page or action.

Implementing a simple page redirection
In the previous example, the navigation is based on the result of some action
being performed. In many cases however, the navigation is a simple static link to
a different page. Those scenarios do not require an action method to be created
in the backing bean.
 Chapter 9. JSF front-end scenario 279

One such case, is the cancel button in the UpdateCustomer.jsp page. In that
case, we simply want to be redirected to the home page (CustomerAdmin.jsp).
We can implement that as follows:

1. Following the directions in the previous section, we can create a navigation
rule that maps the outcome string cancelUpdate to theUpdateCustomer.jsp
page.

2. Click the Cancel commandButton JSF component, which should populate the
Properties window on the bottom.

3. Click the All Attributes icon, as shown on the top right portion of Figure 9-26,
to display the complete attribute list for the Cancel button.

Figure 9-26 Cancel update command detailed attributes

4. Select or type the outcome string cancelUpdate in the action attribute.

Now the Cancel button will navigate to the UpdateCustomer.jsp directly, without
any action method being created on the backing bean.

9.4.6 Implementing input validation
This section describes how input validation was implemented in the ITSOMart
front-end. The application makes use of both standard validation available in the
JSF components, as well as custom-defined validation for the e-mail format.

Implementing standard validation
Most JSF UI components include at least some level of standard input validation.
These include checks for required values, string length, and date formats. For
example, the following steps describe how to setup standard validation for the
first name component of the CreateCustomer.jsp page.

1. Open CreateCustomer.jsp on the Design tab of the page designer.
280 Patterns: Implementing Self-Service in an SOA Environment

2. Click the JSF inputField component used for the first name, which should
populate the Properties window on the bottom. Select the Properties tab if it
is not yet selected.

3. Select the Validation panel in the left navigation bar.

4. In the Validation panel, enter the options, as shown in Figure 9-27:

– Check the Value is required option, to indicate first name is a mandatory
field.

– Set Maximum length to 20.

– Check the option Display validation error messages in an error
message control. This will automatically place a Display Error JSF
component adjacent to the first name input field. The field will display the
appropriate validation errors when needed.

Figure 9-27 Standard validation panel

Implementing custom validation
As we have just seen, standard validation is easy to implement in Rational
Software Architect. However, it only supports simple data types. In the ITSOMart
application, we make use of custom-defined validation to check the syntax of
e-mail addresses.

Unlike the standard validation, custom validation requires a rather manual
process. The following sections show how we implement the special e-mail
format validation in the ITSOMart front-end.

Implement validator interface
The first step is to define a Java class to validate the e-mail address. This class
must implement the javax.faces.validator.Validator, and specifically the validate
method. For the ITSOMart application, we created the EmailValidator class. It
provides a simple validation of the most common e-mail format (user@domain),
using Java pattern matching. There are more sophisticated e-mail validation
 Chapter 9. JSF front-end scenario 281

functions, but for the purpose of this example, this one should suffice.
Example 9-5 shows the code for the EmailValidator class.

Example 9-5 EmailValidator class

public class EmailValidator implements Validator {

public void validate(FacesContext arg0, UIComponent arg1, Object arg2)
throws ValidatorException {

System.out.println("EmailValidator start");
UIInput field = (UIInput) arg1;
String emailValue = (String)arg2;

// use regular expression to identify a reasonable e-mail
Pattern pat = Pattern.compile(".+@.+\\.[a-z]+");

if (!(pat.matcher(emailValue).matches())) {
 FacesMessage errmsg = new

FacesMessage(FacesMessage.SEVERITY_ERROR,
"Invalid e-mail format", "Invalid e-mail format");

throw new ValidatorException(errmsg);
}

}
}

Registering the validator in the faces-config.xml file
Once we have created our validator class, we need to register it by adding the
lines in Example 9-6 to the faces-config.xml file.

Example 9-6 Adding the validator class to faces-config.xml

<validator>
<validator-id>emailValidator</validator-id>
<validator-class>

com.ibm.patterns.orderutil.web.EmailValidator
</validator-class>

</validator>

Attach validator to UI component
Now that we have created and registered the validator class, we need to attach it
to the e-mail UI component, using the <f:validator/> JSF tag. The component
Properties window of Rational Software Architect does not support this tag, so
we need to manually enter it in the source code.

Figure 9-28 on page 283 shows the source code for the validator being applied to
the email field of the CreateCustomer.jsp page.
282 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-28 Using custom e-mail validator

Once the validator is associated with inputText, the validation behaves as the
standard one would. You can associate a Display Error JSF component adjacent
to the email field, and validation errors would be displayed in the same way
standard errors were. In fact, looking back at Figure 9-9 on page 261, you can
see that the standard validation error for last name has the same general
appearance as the custom one we applied on the e-mail address.

9.4.7 Debugging applications in Rational Software Architect
Rational Software Architect provides a comprehensive debugging facility, which
also supports JSF. Although a complete discussion of the debugging features
would be out of the scope of this chapter, we do provide an introduction of how to
perform a simple debugging task on a JSF application.

Using our customer creation example, we imagine a situation where the
customer profile was not entered correctly in the database. In this scenario, we
suspect the values entered by the user in the screen are being corrupted
somewhere before they are inserted in the database. To debug this problem, we
might want to see the values collected from the UI components, just before they
are passed in to the session facade. The following subsections present the
different steps we would take to perform that debugging task.

Starting the server in debug mode
Before we can perform debugging on the application server, we need to start it in
debugging mode. To following steps describe that process:

1. In the workspace, open the Servers view, which is generally available as a
one of the tabs in the bottom center area.

1. Right-click the server you are using. In our example, we used the WebSphere
Application Server V6 test environment that comes integrated with Rational
Software Architect.
 Chapter 9. JSF front-end scenario 283

2. In the context menu select Debug. Alternatively, a short cut icon with the
usual bug picture is also available on the top right side of the Servers view.

The WebSphere server starts in debug mode. Note that if the server was already
running in normal mode, it would have to be restarted to operate in debug mode.

Setting breakpoints
The next step is to set a breakpoint to stop the code execution at the right spot.
In our case, we want to stop inside the doCreateCustomerAction method of the
CreateCustomer managed bean, just before we call the createCustomer method
in the session facade. This is accomplished with the following steps:

1. Open the CreateCustomer.java file in the standard Java editor window.

2. Right-click the marker bar (vertical ruler) to the left of the line at which we
want to stop the execution flow. This should bring up a context menu, as seen
in Figure 9-29.

Figure 9-29 Setting a breakpoint

3. In the context menu select Toggle Breakpoint.

The breakpoint is set. A small blue circle on the marker bar, indicates the
breakpoint location.

Debug the application on a server
To begin the debugging session, start the application in debug mode on the
server. We start at the home page CustomerAdmin.jsp as follows:
284 Patterns: Implementing Self-Service in an SOA Environment

1. Right-click the CustomerAdmin.jsp in the Project Explorer view.

2. In the context menu select Debug → Debug on Server ...

3. The application opens on the standard Internet browser. Follow the customer
creation use case, entering information about the user on the
CreateCustomer.jsp page, and then clicking the Create button.

4. When the code reaches the breakpoint we set, it will stop execution, and
prompt the user to switch to the debug perspective, as seen in Figure 9-30.

Figure 9-30 Confirm switch to debug perspective

5. Click Yes, and the workspace changes to the Debug perspective, which we
discuss on the next section.

Debug perspective
Figure 9-31 on page 286 provides a bird’s eye view of the debug perspective in
Rational Software Architect. The default view shows the following panels:

� The Debug view at top left highlights the stack trace for the thread we are
currently debugging.

� The Variable view at top right displays different application and system
variables.

� The middle area shows the code where the execution was suspended, and
the outline for the class. The exact line where the code stopped, is
highlighted. In our case, this is the line on the CreateCustomer.java managed
bean where we are calling the createCustomer method in the session facade.

� The Console view at the bottom shows the standard WebSphere console
error messages.
 Chapter 9. JSF front-end scenario 285

Figure 9-31 Debug perspective overview

Displaying variable values
The basis of our debugging example is that we wanted to examine the values
collected from the UI components, just before they are passed in to the session
facade. Now that we have the debug perspective opened and the execution has
stopped on the right breakpoint, this is a simple matter. As we see in the code,
the variable being passed to the session facade is localCustomerDO. We can
view the variable data as follows:

1. In the Variables view, locate the node for the localCustomerDO variable.

2. Expand the node so the member data is displayed as seen in Figure 9-32 on
page 287.
286 Patterns: Implementing Self-Service in an SOA Environment

Figure 9-32 Display variable data

Now we can view the data that is about to be passed to the session facade. The
data seems consistent with what was entered on the screen. This indicates there
were no problems retrieving the screen values.

Stepping through the execution
Continuing with our debugging example now that we have determined that the
screen values have been captured correctly, we want to step through the code to
determine where the values get corrupted. This can be accomplished using the
Debug view:

1. The small icons an the top of the Debug view allow you to step through the
execution of the thread. Click the Step Into arrow icon, which will step the
debug view into the session facade code. The Java editor in the center of the
screen automatically opens the session facade class.

2. Click the Step Over icon to step to the next line of code. The Java editor
continuously highlights the current line being executed. Continue clicking
Step Over until you have reached the line where the we are about the
execute the createCustomer method on the session bean. Figure 9-33 on
page 288 shows the Debug view and the Java editor at this point in time.
 Chapter 9. JSF front-end scenario 287

Figure 9-33 Stepping through code execution

Once again, at this point we would look at the Variables view (not shown in
Figure 9-33) and inspect the value of the customer data. In the code above, we
would look at the aCustomerDO variable. If the values were correct, we would
continue and step into the createCustomer method. We would continue this
process until we isolated the place where the values were corrupted.

9.5 Runtime guidelines
The JavaServer Faces framework requires no special runtime configuration in
WebSphere Application Server. All the required JSP files, managed bean
classes, utility classes, and configuration files are deployed into the server when
we publish the Web project.

9.5.1 The web-config.xml configuration file
Just about all significant configuration information needed by the application
server to support a JSF-based application is stored in the web-config.xml file.

Step Into Step Over
288 Patterns: Implementing Self-Service in an SOA Environment

Through out this chapter we have seen multiple examples of navigation rules,
managed bean declarations, validator declarations, and so forth that are stored
in the file. For the most part, Rational Software Architect takes care of creating
and updating web-config.xml based on information we entered using the various
wizards. However we encourage you to look at the examples we provide and
understand the general structure of the file. It is not unusual for a designer or
developer to make small manual changes to the file for things that are not
supported by wizards. The custom e-mail validator in 9.4.6, “Implementing input
validation” on page 280 is one such example.

9.6 System management
As we have explained, the JavaServer Faces framework does not require special
resources to be allocated and maintained on the server. Moreover, once the JSP
files, managed beans, and configuration information is processed by the
application server, it breaks down into well known J2EE components such as
servlets, java classes, HTTP session data, and so forth. The display code which
eventually gets forwarded to the user browser, is a standard combination of
HTML and JavaScript. Therefore, there are no significant system management
considerations particular to the JSF technology.

9.7 For more information
For more information about the topics covered in this chapter see:

� WebSphere Studio 5.1.2, JavaServer Faces and Service Data Objects,
SG24-6361

� Rational Application Developer V6 Programming Guide, SG24-6449

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

� IBM developerWorks

http://www.ibm.com/developerWorks

� Sun JavaServer Faces Technology Page

http://java.sun.com/j2ee/javaserverfaces/index.jsp
 Chapter 9. JSF front-end scenario 289

http://www.ibm.com/developerWorks
http://java.sun.com/j2ee/javaserverfaces/index.jsp

290 Patterns: Implementing Self-Service in an SOA Environment

Chapter 10. Web services scenario

This chapter gives an overview of the use of Web services in an SOA
environment and illustrates the three application patterns using the ITSOMart
sample application:

It discusses how the design guidelines outlined in Chapter 7, “Application and
system design guidelines” on page 139 were applied to the sample scenario. It
also describes the process used to develop the Web services and the Web
service clients as a way of illustrating development guidelines for Web services
applications. The sample has been deployed on WebSphere Application Server
V6 and we use this to illustrate runtime configuration tasks that must be done.
Lastly, we discuss system management considerations for using Web services.

10
© Copyright IBM Corp. 2005, 2006. All rights reserved. 291

10.1 Architectural overview model

The architectural overview model, shown in Figure 10-1, illustrates how the
ITSOMart application was extended to communicate with enterprise systems
using Web services.

The highlighted portion of Figure 10-1 is the focus of this chapter. From the J2EE
architecture point of view, this is the part of the application server business logic
tier that retrieves some business data from one or more applications in the EIS
tier. Results are retrieved and processed and sent back to the presentation tier.

Figure 10-1 Architectural overview model: Web services

The components that participate in the Web Services Scenario are:

� CreditCheckProxy

This proxy is used by the Processor application to call the CreditCheck Web
service.

HTTP
Requests Self Service

Application

Mail Sender
(MDB) MailService

ESB

Processor

Mail Service Proxy
(JMS)

(MDB)

queue

JCA
Resource
Adapter

CRM (CICS)CRM Proxy Web
service

queue
Processor.ear

CreditCheck
Proxy CreditCheckWeb

service

HomeDelivery
Proxy

HomeDelivery
Web

service
BusinessDelivery

CreditCheck.ear

DeliverySystem.ear

Mediations

RoutingMediationsEJBEAR.ear
AggregatorEJBEAR.ear
292 Patterns: Implementing Self-Service in an SOA Environment

� HomeDeliveryProxy

The Processor application uses this proxy to call the HomeDelivery Web
service. The ESB intercepts the request and routes it to the appropriate
services.

� Enterprise service bus (ESB)

The ESB is implemented using the service integration bus. The bus acts as
an intermediary for the Web service. Using an ESB insulates the application
from changes in the Web service location and provides the opportunity to
implement mediations or security measures in the future.

� CreditCheck

The CreditCheck Web service returns a credit rating for the customer.

� DeliverySystem

The DeliverySystem application has two Web services: HomeDelivery and
BusinessDelivery. These delivery systems create account numbers for the
new customer and return the information to the user.

This scenario illustrates the following three application patterns using Web
services technology:

� Directly Integrated Single Channel application pattern:

ITSOMart calls a Web service that returns a customer credit rating. The rating
is used to determine whether to allow the customer to open an account.

� Router application pattern

ITSOMart allows the user to select whether they want home delivery,
business delivery, or both. If home or business delivery is chosen the request
is routed to the appropriate service to assign an account number that is then
returned to the user. The routing is performed through the use of a mediation
in the ESB.

� Decomposition application pattern

If the user selects both home delivery and business delivery, the request for
an account number is sent to both services. The responses with the account
numbers are aggregated into a single response for the customer. The
decomposition of the message into multiple messages and the recomposition
into a single response are performed through the use of a mediation in the
ESB.
 Chapter 10. Web services scenario 293

10.2 System design overview
As system designers, the first question we should ask ourselves is What is the
business problem we are trying to solve? In the case of our sample ITSOMart
application, we know that we want to obtain credit information for customers who
register to use the application and we want to create an account number for the
new customer. We know these services can be obtained through an existing
enterprise that could reside potentially anywhere, on any platform, database, or
application. The challenges are related to how we can provide seamless
integration between these disparate systems and how we make this transparent
to the user. Web services is one choice that we have as system designers for
solving seamless integration problem.

For our example, we assume the following conditions:

� ITSOMart does not want to develop a CreditCheck application if there is one
already available that they can use for their purpose of obtaining sensitive
credit information about possible customers. They have been able to locate
such an application that offers the service by means of a Web service.

� ITSOMart has existing applications maintained at each division headquarters
that can assign customer numbers for new customers. These applications are
J2EE applications hosted on a WebSphere Application Server and can be
easily made available as Web services.

� The CreditCheck and DeliverySystem applications are the Web service
providers. The ITSOMart application is the Web service requester. ITSOMart
will initially use a static, rather than dynamic, publish and discovery approach,
therefore no UDDI registry is needed. Using the interface and implementation
information contained in the WSDL file provided by each service provider,
ITSOMart will be able to communicate with the services.

� The DeliverySystem application has two Web services: one for home delivery
and one for business delivery. When a request to create a new customer is
entered, a Web service request is sent to the HomeDelivery system. A
mediation attached to the HomeDelivery destination in the bus will determine
(based on delivery type) whether the request will go to HomeDelivery,
BusinessDelivery or both. In the event a request is sent to both services, the
response is diverted to a destination where another mediation combines (or
aggregates) the responses into one response and sends the new response
back to the client.

� The CreditCheck and HomeDelivery applications can be located:

– On the same server as the ITSOMart application
– On another server on the same LAN as the ITSOMart application
– On another server on the same intranet, or private network, as the

ITSOMart application
294 Patterns: Implementing Self-Service in an SOA Environment

The enterprise applications could also be located on another server
accessible on the Internet. However, our focus is on intra-enterprise
applications with the Self-Service business pattern. The Extended Enterprise
(business-to-business) business pattern can be used to connect
intra-enterprise applications.

10.2.1 Component model
A component model shows a breakdown of both the client (Web service
requester) application server and the enterprise (Web service provider)
application server. The component model diagram in Figure 10-2 illustrates the
design for the CreditCheck service.

Figure 10-2 CreditCheck component model diagram

A session bean provides the connection to a Web services proxy. The proxy has
the information required to send a message to the service provider using the
SOAP and HTTP protocols. In this case, the proxy sends the request to an
inbound service on the service integration bus. The bus makes the connection
between the inbound service and the outbound service representing the
CreditCheck service.

The component model diagram in Figure 10-3 on page 296 illustrates the design
for the DeliverySystem service.

Self Service Application

Processor EJB Module

CreditCheck
Client Proxy

CreditCheck ApplicationService Integration Bus

Web Service
Destination

CreditCheck
Data Binding

CreditCheckBean

CreditCheckEJB Module
 Chapter 10. Web services scenario 295

Figure 10-3 Component model diagram

A Web service call to HomeDelivery invokes the HomeDelivery inbound service
on the bus. The destination representation for the HomeDelivery service has a
mediation that looks at the request and makes a routing decision based on the
delivery service requested by the client. The request could be routed to the
HomeDelivery service, the BusinessDelivery service or both. If both services are
called, a second mediation intercepts the responses and combines them into one
response.

10.2.2 Object model
In this section we provide an object model for our Web services scenario.

Class diagram for CreditCheckClient
Figure 10-4 on page 297 shows a class diagram of the classes directly involved
with providing Web services for the CreditCheckClient application.

On the requester side, the ProcessorWebService bean from the ITSOMart
application requests the credit rating using the CCWSClientBean EJB.
CCWSClientBean is the Web services requester bean, serving as the interface
between the ITSOMart application and the CreditCheck Web service. As far as
the application knows, it is simply calling a local method called
returnSimpleQuote on this bean and expects a credit rating to be returned.

Self Service Application

Processor EJB Module

HomeDelivery
Client Proxy

DeliverySystem ApplicationService Integration Bus

Web Service
Destination

HomeDelivery
Data Binding

HomeDeliveryBean

HomeDelivery EJB Module

BusinessDelivery
Data Binding

BusinessDeliveryBean

BusinessDelivery EJB Module

Router
Mediation

Aggregator
Mediation
296 Patterns: Implementing Self-Service in an SOA Environment

On the provider side, a stateless session EJB called CreditCheck serves as the
Web services bean for the provider. In a real application, this bean would
probably act as a facade to the actual enterprise business objects. It knows
which enterprise objects to call in order to retrieve the information it needs to
create a response to the Web services request.

Figure 10-4 Class diagram of the CreditCheckClient application

Class diagram for ClientDelivery
Figure 10-4 on page 297 shows a class diagram of the classes directly involved
with providing Web services for the ClientDelivery application. The flow is
identical to that of the CreditCheckClient application.

<<use>>

<<use>>

<<use>>

<<use>>

EJSLocalStatelessCCWSClientHome_f09aa5f3
<<Java Class>>

c

EJSStatelessCCWSClientHomeBean_f09aa5f3
<<Java Class>>

c

EJSLocalStatelessCCWSClient_f09aa5f3
<<Java Class>>

c CCWSClientLocalHome
<<Java Interface>>

I

CCWSClientBean
<<Java Class>>

c

CreditCheckProxy
<<Java Class>>

c

CreditCheckInboundServiceLocator
<<Java Class>>

c

CCWSClientLocal
<<Java Interface>>

I

CreditCheckInboundPortBindingStub
<<Java Class>>

c CreditCheckInboundService
<<Java Interface>>

I

<<Java Interface>>
CreditCheckI

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>
 Chapter 10. Web services scenario 297

Figure 10-5 Class diagram of the Web service requester and provider

Sequence diagram
Two Web service calls are performed in this part of the scenario. Both calls are
originated from the createCustomer() method in Processor.java. The first call is
issued to get a credit rating for the customer from the CreditCheck Web service.
The second call is to get an account number. The fact that the account number is
created by one of two account services depending on the type of delivery
account requested is transparent to the user and to the Processor application.
Routing to the proper account service is done in the ESB.

For simplicity we will treat each of these Web service invocations as separate
sequence diagrams. In reality, the Processor code performs several steps in
sequence to create a customer, the first is to get the credit rating, and the second
is to get the account number.

<<use>>

<<use>>

<<use>>

<<use>>

EJSLocalStatelessDeliveryWSClientHome_bc5368fa
<<Java Class>>

c

EJSStatelessDeliveryWSClientHomeBean_bc5368f
<<Java Class>>

c

EJSLocalStatelessDeliveryWSClient_bc5368f3
<<Java Class>>

c DeliveryWSClientLocalHome
<<Java Interface>>

I

DeliveryWSClientBean
<<Java Class>>

c

HomeDeliveryProxy
<<Java Class>>

c

HomeDeliveryInboundServiceLocator
<<Java Class>>

c

DeliveryWSClientLocal
<<Java Interface>>

I

HomeDeliveryInboundPortBindingStub
<<Java Class>>

c HomeDeliveryInboundService
<<Java Interface>>

I

<<Java Interface>>
HomeDeliveryI

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>
298 Patterns: Implementing Self-Service in an SOA Environment

Get credit rating
The sequence diagram in Figure 10-6 shows the interaction of classes and the
flow of control through the application as the credit rating for the customer is
obtained from the CreditCheck service.

Figure 10-6 Sequence diagram for the CreditCheck Web services requester and provider

1) The createCustomer() method in the Processor class is invoked.

1.1) createCustomer() invokes getCreditRating() method in the
ProcessorWebService class, passing the customer information
needed to obtain a credit rating.

1.1.1) getCreditRating() invokes the getCreditCheck() method to get the
creditCheck information of a particular customer.

1.1.1.1) getCreditCheck() does a JNDI lookup for the CCWSClient bean,
which acts as an interface to the Web service.

1.1.1.1.5) getCreditCheck() invokes the returnSimpleQuote() method of
CCWSClient bean, which in turn, invokes the returnSimpleQuote()
method of the proxy for the CreditCheck application. Control is then
passed to the CreditCheck application on the Web service provider.
The CreditCheck application returns the credit check reply message
back through the chain to CCWSClient bean.

1.1.1.1.7) The credit check rating gets passed back through the chain to the
requester side.

1: createCustomer
1.1: getCreditRating

1.1.1: getCreditCheck
1.1.1.1: <<create> InitialContext
1.1.1.1.1: lookup

<<return>>
1.1.1.1.2: lookup 1.1.1.1.3: create

<<return>>
1.1.1.1.5: getCreditCheck

<<return>>
1.1.1.1.4: create

1.1.1.1.6: returnSimpleQuote

<<return>>
1.1.1.1.7: returnSimpleQuote<<return>>

1.1.1.1.8: getCreditRating

<<return>>
1.1.1.2: createCustomer

Processor:Processorc I ccLocalHome:CCWSClientLocalHomeProcessorWebService:ProcessorWebServicec ic:InitialContext: I Property:CCWSClientLocal
 Chapter 10. Web services scenario 299

Get account
The sequence diagram in Figure 10-7 shows the interaction of classes and the
flow of control through the application as the account number for the customer is
obtained from one or both of the delivery services.

Figure 10-7 Sequence diagram for HomeDelivery Web services requester and provider

1) The createCustomer() method in the Processor class is invoked.

1.2) createCustomer() invokes the getAccount() method in the
DeliveryWebService class, passing the customer information needed
to obtain an account number.

1.2.1) getAccount() does a JNDI lookup for the DeliveryWSClient bean,
which acts as an interface to the Web service.

1.2.1.6) getAccount() invokes the getAccount() method of DeliveryWSClient
bean, which in turn, invokes the getAccount() method of the proxy for
the HomeDelivery application. The ESB intercepts the Web service
request and routes it to the HomeDelivery Web service provider, the
BusinessDelivery Web service provider, or both depending on the
type of delivery the customer has requested. The Web service
application returns the account number reply message back through
the chain to DeliveryWSClient bean.

1.2.1.8 The account number then gets passed back through the chain to the
requester side.

Processor:Processorc I ccLocalHome:DeliveryWSClientLocalHomeDeliveryWebService:DeliveryWebServicec ic:InitialContext: I Property:DeliveryWSClientLocal

1: createCustomer

1.2: getAccount

1.2.1: <<create> InitialContext
1.2.1.1: lookup

<<return>>
1.2.1.2: lookup

1.2.1.3: create

<<return>>
1.2.1.5: getAccount

<<return>>
1.2.1.4: create
1.2.1.6: getAccount

<<return>>
1.2.1.7: getAccount<<return>>

1.2.1.8: getAccount

<<return>>
1.1.1.8: createCustomer
300 Patterns: Implementing Self-Service in an SOA Environment

10.3 Applying the design guidelines
In this section we describe the architecture or design decisions that went into
building our sample Web services application. This sample application is an
extension of the ITSOMart application. We use Web services to communicate
between the ITSOMart and the CreditCheck and Delivery Enterprise system.

There are several architectural decisions that go into designing Web service
providers and requesters. These include:

� Transmission pattern
� SOAP messaging mechanism
� Static or dynamic Web services discovery
� Synchronous versus asynchronous Web services
� Message structure
� Mediation

For a complete discussion of application design considerations when developing
Web services applications, see 7.3, “Design guidelines for Web services” on
page 163.

Transmission pattern
Our first task was to define a request-response transmission pattern. In this
pattern, the Web service receives a single request, sends a single response, and
then closes the session. This is an appropriate pattern for our case, where the
ITSOMart application simply requests a credit rating from an enterprise system
and receives a response with Web services.

SOAP messaging mechanism and synchronous pattern
The SOAP messaging mechanism we selected in our application is the RPC
mechanism. Our choice was between using the Remote Procedure Call (RPC)
mechanism or the message-oriented communication mechanism. We decided
on RPC because this is the simplest and most straightforward method. It is also
the most commonly used today. Also, we made the assumption that this would be
a synchronous message transfer and we did not have a need for a delivery
confirmation. The message-oriented communication mechanism is most
appropriate for asynchronous or confirmed delivery types of scenarios. Since our
application had no need for these features, the RPC messaging mechanism was
the most appropriate.
 Chapter 10. Web services scenario 301

Message structure
This scenario uses two simple text messages (request and a response) that are
exchanged between the Web service requester and the Web service provider.
These text messages contain customer details (the request) and the resulting
credit rating (the response). This could be extended to use a more structured
message approach in the form of XML messages.

Mediation
In this scenario, there are multiple delivery systems that can be called depending
on the delivery type selected by the client. Mediation can be used to route the
requests to one or more of the systems and if necessary, manage multiple
responses.

10.4 Development guidelines for Web services
The development process for building a Web service is very similar to the
development process of any other software. There are four main phases in
developing a Web service: build, deploy, run, and manage.

1. The build phase includes development and testing of the Web service
application, including the definition and functionality of the service.

2. The deploy phase includes publication of the service definition, the WSDL
document, and deployment of the runtime code of the Web service.

3. The run phase includes finding and invoking the Web service.

4. The manage phase includes the management and administration of the Web
service. This includes performance measurement and maintenance of the
Web service.

Figure 10-8 depicts the complete development process. Using different problem
domains, the terms used within this picture would change; however, the general
view would not.
302 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-8 Web services development

The remainder of this section describes the four development phases in more
detail.

Build phase
The build phase, which includes testing and debugging, is the first phase in the
development process of a new Web service. Because Web services can be
written from scratch and use already existing applications, there are two possible
paths to be followed:

� The solid path

From the initial state, we build or already have Java code. Using this Java
code, we build the service definition (WSDL document) with the business
methods that we want to expose. After we have generated the WSDL
document, we assemble the Web service application. This approach is called
bottom-up development. This is the approach used for developing our
CreditCheck application. We first implement the CreditCheck application as a
single application, and then expose these methods for use with a Web
service.

� The dashed path

From the initial state, we build or already have a service definition, a WSDL
document. Using this WSDL document, we build or adapt the Java code to
implement that service. After we have implemented the code, we assemble
the Web service application. This approach is called top-down development.

Deploy phase
The second phase of a Web service development process is deployment. In this
phase, we deploy the Web service to an application server. Deploying a Web

Build Deploy

1

1

Service
definition

WSDL

Initial

Java
code

Web
service
build

Web
service
deploy

Service
registry

Run

Client

deploy run

find

invokepublish

build

build
or have

build or
have

assemble

assemble

Manage

Web
service

run

Web
service
manage

WebSphere
manage
 Chapter 10. Web services scenario 303

service makes it accessible by clients. However, these clients have to be aware
of the newly installed Web service, and thus, the next step in this phase is to
publish the Web service. The publication can be done through a private or public
UDDI registry, using a WSIL document, or by directly providing the information
about the new service to consumers, for example, through e-mail. A combination
of all these publishing methods is also possible. After the service has been
published, it can be called by clients. In our example we do not publish the
WSDL to a UDDI registry, rather we directly provide the information about the
service directly.

Run phase
The third phase is the runtime. In this phase, the Web service is operative and is
invoked by clients that require the functionality offered by the service. Our client
is the ITSOMart application. Internally, ITSOMart has an EJB project containing
a client that calls the CreditCheck Web service.

Manage phase
The final phase is the management phase where we cover all the management
and administration tasks of the Web service.

The manage phase can include measurement tools that are used for monitoring
the Web service and to accumulate performance data. In most real-life
applications, clients would require a certain quality of service. Also, tools for
authorization and statistics (billing) could be required.

10.5 Application development using Web services
The following sections illustrate the process of using Rational Software Architect,
or Rational Application Developer if you prefer, to develop a Web service.

10.5.1 Implementation approach
The implementation tasks will be performed in two phases.

In the first phase, the CreditCheck and HomeDelivery Web services will be called
directly without using an ESB. The clients are created using WSDL provided by
the service provider. In this phase, a client is created for the HomeDelivery Web
service. The BusinessDelivery Web service is not invoked.

In the second phase, the Web services are defined to the bus and new WSDL is
generated by the bus. The clients are regenerated to use the new WSDL, thus
routing the Web service calls through the bus.
304 Patterns: Implementing Self-Service in an SOA Environment

Using two phases is done for development and testing purposes only. It is easier
to ensure the application is working as designed before introducing the extra
layer of the ESB.

The ITSOMart scenario uses three Web services: CreditCheck in
CreditCheck.ear, HomeDelivery in DeliverySystem.ear, and BusinessDelivery in
DeliverySystem.ear. Each Web service was built in a similar manner. This
section illustrates how the CreditCheck service was built.

The process takes CreditCheck, an existing application, and creates a Web
service from it. We guide you through the process of creating the WSDL
document, the proxy classes, and testing the generated server code using the
Web Services Explorer. We then go through the process of creating a Web
service client that can be incorporated into a requester application to access the
new Web service. We test again to ensure that the client and provider are
working correctly. Last, we define the services to the service integration bus and
regenerate the clients to call the service using the service definition on the bus.

10.5.2 Creating a Web service from a session bean
In this section, we create a Web service using the bottom-up development
method using CreditCheckEJB as input.

Note: The following process ensures that the Web services developer
capability is enabled in the workbench:

1. Select Window → Preferences.
2. Expand Workbench and select Capabilities.
3. Check the Web Service Developer box and click OK.

For information about downloading the sample application, see Appendix B,
“Additional material” on page 485.

Preparation: This sample assumes that the CreditCheck application has
been imported into the Rational Software Architect workspace. This is the
existing application that returns a credit rating and contains an EJB called
CreditCheckEJB.

We use SOAP over HTTP as the transport mechanism. A Web router project
is required with a servlet to route the client requests to the session EJB.
Before starting this procedure, create a dynamic Web project called
CreditCheckRouter and put it in CreditCheck. You will need to have this in
place before starting the Web Service wizard.
 Chapter 10. Web services scenario 305

To initiate the Web Service wizard on our EJB:

1. Switch to the J2EE Perspective.

2. In the Project Explorer view, navigate to
CreditCheckEJB/ejbModule/com.ibm.patterns.creditCheck/
CreditCheckBean.java. Right-click to bring up the context menu.

3. Select Web Services → Create Web Service.

See Figure 10-9.

Figure 10-9 Web Service wizard: Web services

On the Web Services page, select the following options (Figure 10-9):

– Select the Web service type EJB Web Service.

– Select Start Web service in Web project.

– In our scenario, we cleared the Launch Web Services Explorer to
publish this Web service to a UDDI Registry, because we are not using
a UDDI in our test environment. Note that you can use the Web Services
Explorer (included in Rational Software Architect) later to publish the Web
service.

Note: If you cannot find Web Services on the context menu, verify that the
Web service capability is enabled.
306 Patterns: Implementing Self-Service in an SOA Environment

– Clear Generate a proxy. The wizard generates client proxy classes
enabling simple method calls in a client program to call the Web service.
These classes are generated based on the WSDL created for the Web
service. Because we plan to use the bus as a destination for the Web
service, new WSDL for the Web service will be created when we configure
the bus. For now, we do not want to create a proxy for the client.

– Clear Test the Web service. This option lets you test the Web service
using the Web Services Explorer before the proxy is generated. It also
enables you to create a test client (a set of JSPs) in a client project.

– Clear Monitor the Web service. This option lets you monitor your Web
service using the TCP/IP Monitor by routing the traffic through the monitor
and configuring the monitor for the server on which the service is
deployed.

4. Click Next to proceed to next page. On the Object Selection page
(Figure 10-10), you can specify from which Java bean the Web service is
generated.

Figure 10-10 Web Service wizard: object selection

– Ensure that the EAR project selected is CreditCheck.
– Select the CreditCheck for the EJB beans and CreditCheckEJB Project

from list.

Click Next.

5. On the Service Deployment Configuration page (Figure 10-11 on page 308),
specify the deployment settings for the service and the generated test client, if
you chose to create one.
 Chapter 10. Web services scenario 307

Figure 10-11 Web Service wizard: service deployment configuration

To deploy the CreditCheck service for testing in the Rational Software
Architect integrated test environment WebSphere Application Server V6,
ensure that the following are selected:

– Web service runtime: IBM WebSphere
– Server: WebSphere v6.0 Server @ localhost
– J2EE Version: 1.4
– Service Project: CreditCheckEJB
– EAR Project: CreditCheck

Click Next.

6. The Service Endpoint Interface Selection page allows you to specify the
router project, the service endpoint interface, and the transport protocol used
for the Web service. See Figure 10-12 on page 309.

Important: Always verify the generated project names. Rational Software
Architect inserts default names that might not be your choice.

If you generate the client code into the wrong project (for example, a server
project), it is very hard to back out of the changes unless you work in a
team environment with a repository.
308 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-12 Web Service wizard: service endpoint interface selection

– Select router project: CreditCheckRouter.

– Clear the Use an existing endpoint interface check box.

– Select SOAP over HTTP as the transport protocol used for this Web
service.

Click Next.

7. The next page contains options for creating the Web service. For our sample,
we took the defaults as shown in Figure 10-13 on page 310.
 Chapter 10. Web services scenario 309

Figure 10-13 Web Service wizard: Identity

– WSDL file: CreditCheck.wsdl (default).

– Methods: returnSimpleQuote

– Style and Use: Document/Literal

– Security Configuration: No Security

Click Next. The SEI, helper classes, the WSDL file, and the Web service
deployment descriptor are generated into the service project.

8. Leave both options cleared on the Web Service Publication page because the
CreditCheck Service will not be published to a UDDI registry (Figure 10-14 on
page 311).
310 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-14 Web Service wizard: publication

Click Finish to complete the Web Service wizard.

The Web Service wizard publishes the application to the server you specified
and starts the server.

Generated files
According to the settings made during the run of the wizard, the following files in
the creditCheckEJB/ejbModule project have been created:

� Service endpoint interface (SEI), creditCheck_SEI.java, is the interface
defining the methods exposed in the Web service.

� The WSDL file, /META-INF/wsdl/CreditCheck.wsdl, describes the Web
service.

� The deployment descriptor files, webservices.xml, ibm-web
services-ext.xml and ibm-Web services-bnd.xml files describe the Web
service according to the Web services for J2EE style (JSR 109). The
JAX-RPC mapping is described in the creditCheck_mapping.xml file.

See Figure 10-15 on page 312.
 Chapter 10. Web services scenario 311

Figure 10-15 Generated files for creditCheckEJB/ejbModule

HomeDelivery and BusinessDelivery Web services
The Web services for the HomeDelivery and BusinessDelivery EJBs are created
in the same manner. Both EJBs are in the DeliverySystem EAR. Two router
projects are required, HomeDeliveryRouter.war and
BusinessDeliveryRouter.war.
312 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-16 DeliverySystem EAR file structure

The two EJBs each have the same structure. The Web services are created
using HomeDeliveryBean and BusinessDeliveryBean. These beans were
created in the com.ibm.patterns.Delivery package.

Figure 10-17 shows the structure of the BusinessDelivery EJB after the Web
Service Wizard is run.

Figure 10-17 BusinessDelivery EJB enabled as Web services

Figure 10-18 on page 314 shows the structure of the BusinessDelivery EJB after
the Web Service Wizard is run.
 Chapter 10. Web services scenario 313

Figure 10-18 HomeDelivery EJB enabled as Web services

10.5.3 Testing with the Web Services Explorer
Once the Web service is installed and running in a server, it can be tested using
the Web Services Explorer.

To start the Web Services Explorer, perform the following tasks:

1. Select the CreditCheck.wsdl file in
CreditCheckEJB/ejbModule/META-INF/wsdl.

2. Right-click and select Web Services → Test with Web Services Explorer.

3. A Web Browser view opens with the WSDL file selected. It shows the
operations (methods) that can be invoked and the endpoint (Figure 10-19).
314 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-19 Web Services Explorer: operations

To test the CreditCheck service, do the following:

1. Select the returnSimpleQuote operation. You are presented with input
parameters for the service. In our example, no input values are necessary.

2. Click Go at the bottom of the Actions pane to execute the Web service. The
Status pane displays the results (Figure 10-20 on page 316).
 Chapter 10. Web services scenario 315

Figure 10-20 Web Services Explorer: execution

3. Click Source in the Status pane to see the SOAP input and output messages.
Double-click the Status pane header to maximize it.

4. A message from the CreditCheck application returns a credit assessment of
either, GOLD, SILVER or BRONZE.

10.5.4 Creating Web service clients
Having the EJB Web service generated and running enables us to write a Web
service client. The Web service client can be executed in different environments:

� Web: Servlets, JSPs, or Java beans invoked by a servlet or JSP
� EJB: Session EJBs or Java beans invoked by a session EJB
316 Patterns: Implementing Self-Service in an SOA Environment

� Managed Java client: Java program running in an application client container.
� Stand-alone Java client: Java program running outside a container

For our example, we will create an EJB client.

Creating an EJB Web service client

ITSOMart uses two Web service clients, CreditCheckClient and ClientDelivery,
both in Processor.ear. These clients are created in an identical manner. This
section illustrates how CreditCheckClient is built, using the WSDL file from the
CreditCheck Web service. A similar process would be used to create the
ClientDelivery Web service client from the WSDL file of the HomeDelivery Web
service.

Rational Software Architect provides the Web Services Client wizard to help you
create a Web service client application.

To create the Web service client, follow these steps:

1. Select ProcessorEJB/ejbModule/META-INF/wsdl/CreditCheck.wsdl.

2. Right-click and select Web Services → Generate Client. This starts the Web
Service Client wizard.

Note for users of the service integration bus: The Web service client is
built using WSDL files that describe the Web service. This section assumes
you are using the WSDL generated by the Web Service wizard in the previous
section. However, in our runtime configuration, we plan to use the WebSphere
Application Server service integration bus as an intermediate destination point
for the Web service. During the bus configuration, a new WSDL file for this
Web service will be created pointing to the bus as the endpoint. We will show
you how to update the client to use the new WSDL in 10.7.7, “Update the Web
service clients to use the bus” on page 344.

Preparation: The client will be created in the Processor enterprise
application. The Processor application contains an EJB module called
CreditCheckClient that has a session bean called CCWSClientBean. This
session bean will be used to call the Web service.

A new folder has been created in the CreditCheckClient module and the
CreditCheck.wsdl file created previously (see “Generated files” on page 311)
has been copied from the CreditCheckEJB module to the new folder, giving
you the following:

CreditCheckClient/ejbModule/META-INF/wsdl/CreditCheck.wsdl
 Chapter 10. Web services scenario 317

3. Take the default values, shown in Figure 10-21, on the first panel.

Figure 10-21 Web Service Client wizard

Click Next

4. On Web Service Selection page (Figure 10-22), select the WSDL file:

Figure 10-22 WSDL client definition

Click Next.
318 Patterns: Implementing Self-Service in an SOA Environment

5. The settings on the Client Environment Definition page allow you to define the
type of client to create and where to locate it. See Figure 10-23.

Figure 10-23 Client environment configuration

Select the following values:

– ClientType: EJB
– Client Project: CreditCheckClient
– EAR Project: Processor

Click Next.

6. The Client Proxy Page is displayed. See Figure 10-24 on page 320. Our
sample application does not address security issues, so we take the defaults.
This page also allows you to define custom namespace mappings. Ensure
that this option is not selected.
 Chapter 10. Web services scenario 319

Figure 10-24 Client proxy settings

7. Click Finish. The client code is generated and your Web service can now be
accessed through it.

In addition to using the wizard to create the Web service, we now have to
implement the returnSimpleQuote method in the CCWSClientBean. We use the
proxy generated with the wizard in the previous steps as a means of locating the
Web service and then calling the exposed returnSimpleQuote method. The
following steps need to be followed:

1. Open the CreditCheckClient project.

2. Navigate to the /ejbModule/com.ibm.patterns.creditCheck package.

3. Open the CCWSClientBean.java and insert the code shown in Figure 10-30
on page 336 at the bottom of the bean. This method calls the proxy, which in
turn, finds the CreditCheck Web service to obtain customer credit information
from the CreditCheck application.
320 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-25 Implementation of exposed method in CCWSClientBean.java

4. Save your changes and deploy the changes to the server.

DeliveryClient
The Web service client for the DeliverySystem Web service is created in the
ClientDelivery EJB. This EJB is also in the Processor EAR file (Figure 10-26).

Figure 10-26 Processor EAR file

A session bean called DeliveryWSClientBean has been created in the EJB. The
WSDL file for the HomeDelivery Web service has been copied into the

public String returnSimpleQuote(String title, String surname,
String forename, String houseNo, String address1, String postcode,
String country) {

//implement the method, using the actual proxy
String score = null;

CreditCheckProxy ccProxy = new CreditCheckProxy();

try {
score = ccProxy.getCreditCheck().returnSimpleQuote(title, surname,

forename, houseNo, address1, postcode, country);
} catch (RemoteException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}

return score;

}

 Chapter 10. Web services scenario 321

ClientDelivery/ejbModule/META-INF/wsdl folder and is used to create the client.
Note that only the WSDL for HomeDelivery is used. If the client request is
actually for the BusinessDelivery Web service, the request is routed to that
service by the ESB, not the client.

The code shown in Figure 10-27 is added to the DeliveryWSClientBean.

Figure 10-27 Implementation of exposed method in DeliveryWSClientBean

Incorporating the client into the application
The ITSOMart application calls the CreditCheck and DeliverySystem Web
services from an EJB called ProcessorEJB in the Processor application. The
code can be found in the createCustomer() method of
com.ibm.patterns.serialProcess/Processor.java. Example 10-1 shows the code
that invokes the credit check service.

Example 10-1 Code calling the credit check Web service

String creditRating = new
ProcessorWebService().getCreditRating(customerDetails);

Example 10-2 shows the code that calls the delivery system service.

Example 10-2 Code calling the delivery system Web service

String accountNo = new
DeliveryWebService().getAccount(deliveryType,customerDetails.getFname())

public String getAccount(String type,String userId) throws
RemoteException

{
String score = null;

HomeDeliveryProxy ccProxy = new HomeDeliveryProxy();

try {
score = ccProxy.getHomeDelivery().getAccount(type,userId);

} catch (RemoteException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

return score;
}

322 Patterns: Implementing Self-Service in an SOA Environment

10.6 Creating the mediations
Mediations are implemented as mediation handlers. A mediation handler can be
deployed, and each mediation handler executes some specific message
processing at runtime (for example, transforming a message format or routing a
message to a particular destination). A mediation handler is a Java program
framework to which you add the code that performs the mediation function.

This section illustrates creation of two mediation applications:

1. A router mediation will receive messages at the destination created for the
HomeDelivery outbound service. It will check the delivery type parameter
send by client (Home, Business, or All) and based on the value it will send the
message to the HomeDelivery outbound service, the BusinessDelivery
outbound service or to both. If All is selected, the reverse routing path is
changed to a queue that will be mediated with the aggregator mediation.

2. A mediation will aggregate responses from multiple services into one
response. This situation will occur when a user elects to get both a home and
a business account (All). This mediation will be attached to a queue
destination that receives the responses from both the BusinessDelivery and
HomeDelivery services.

Figure 10-28 Mediation flow

HomeDelivery EJB
BusinessDelivery EJB

HomeDelivery EJB
HomeDelivery EJB

DeliverySystem EAR

HomeDelivery EJB
ClientDelivery EJB

HomeDelivery EJB
HomeDelivery Proxy

Processor.ear
HomeDelivery EJB

RoutingMediationsEJB

HomeDelivery EJB
Aggregator EJB

Service ingration bus

HomeDelivery
Inbound service

BusinessDelivery
outbound service

HomeDelivery
outbound service

If type="All"

If type="Home"
If type="Business"

If type="All"

DeliveryReponseDestination

DeliveryRequestMediation

DeliveryReponseMediation

TempDestination
 Chapter 10. Web services scenario 323

Rational Application Developer provides support for developing mediation
handler code and adding mediation handlers to the J2EE deployment
descriptors.

10.6.1 Create the router mediation
The router mediation performs the following tasks:

� Examines the delivery type specified in the incoming message.

� If the type is Home, no action is required. The forward routing path of the
message is already set to the HomeDelivery Web service.

� If the type is Business, it modifies the forward routing path of the message to
send it to route it to the BusinessDelivery Web service.

� If the type is All, it:

– Clones the message.
– Modifies the forward routing path of one message to BusinessDelivery.
– Modifies the reverse routing path of both messages to a queue destination

(for aggregation).

Use the following steps to create the router mediation:

1. Build the code:

a. Create a simple project called RoutingMediations.

b. Right-click the RoutingMediations project and select Add → Others →
Java Class. Name the class RoutingMediation.

c. Implement the MediationHandler interface and add the routing code in the
handle method (see “RouterMediation code” on page 325).

d. Create a JAR file from the package and call it RoutingMediations.jar.

2. Create the mediation EJB:

a. Create an EJB project called RoutingMediationsEJB with an EAR file
name of RoutingMediationsEJBEAR.

b. Drag and drop RoutingMediations.jar to the Utility JARS folder in
RoutingMediationsEJBEAR.

3. Define the mediation handler in the EJB deployment descriptor:

a. Expand the RoutingMediationsEJB project in the navigator and double-
click Deployment Descriptor.

b. Select the Mediation Handler tab.
324 Patterns: Implementing Self-Service in an SOA Environment

c. Click the Add button and enter RoutingHandler as the name. Enter
myPackage.RoutingMediation as the handler class.

d. Save the descriptor.

RouterMediation code

The handle() method (Example 10-3) is invoked by the arrival of a message on
the mediated port. It gets a handle to the MessageContext interface, which
provides methods to manage a property set. Message context properties enable
handlers in a handler chain to share processing related state. The context
properties used for the mediation (Table 10-3 on page 350) are defined when you
prepare the runtime for mediation.

The handle() method casts the message context to SIMessageContext. This is
the object that is required on the interface of a mediation handler. In addition to
the context information that can be passed from one handler to another, it can
return a reference to an SIMessage and an SIMediationSession. The SIMessage
is the service integration bus representation of the message being processed by
the MediationHandler. An SIMessage contains message properties, header
contents, routing path, and the message body. The SIMediationSession is a
handle to the runtime resources.

Example 10-3 RoutingMediation part 1

public class RoutingMediation implements MediationHandler {

public boolean handle(MessageContext context) throws MessageContextException {

String businessDestination=(String)context.getProperty("businessDestination");
SIMessageContext ctx =(SIMessageContext)context;
SIMediationSession session = ctx.getSession();
String busName = session.getBusName();
SIMessage message = ctx.getSIMessage();
SIMessage newMessage=null;
List frp=null;
SIDestinationAddressFactory factory =
 SIDestinationAddressFactory.getInstance();

Next (Example 10-4 on page 326), we retrieve the DataGraph object from the
message. The message is inspected to find the type of delivery the customer has
requested-Home, Delivery, or All (both).

Note: The entire source code for the router mediation can be seen by
downloading the sample application. The code is in the RoutingMediations.jar
in the RoutingMediationsEJB project.
 Chapter 10. Web services scenario 325

Example 10-4 RoutingMediation part 2

try {

 DataGraph graph = message.getDataGraph();
 DataObject rootNode = graph.getRootObject();
 DataObject infoNode = rootNode.getDataObject("Info");

 // Get the body node
 DataObject bodyNode = infoNode.getDataObject("body");

 // Get the data object for the first part of the body
 DataObject part1Node = bodyNode.getDataObject("parameters");

 // Determine the delivery option requested by the customer (Home, Business, All)
 String ticker = part1Node.getString((String)context.getProperty("type"));

If the user has requested both home and business delivery (type=All), the next
section (Example 10-5) clones the message.

The original message has a forward routing path that will send it to the
HomeDelivery service. The forward routing path in the cloned message is set to
send it to the BusinessDelivery service, using the businessDestination context
property.

The reverse routing path for both messages is changed to the value of the
DeliveryResponseDestination context property. In this case, the property is set to
a destination queue defined on the bus. Once the forward and reverse routing
paths are properly set, the new message is sent.

Example 10-5 RoutingMediation part 3

 if (ticker.equalsIgnoreCase((String)context.getProperty("ALL")))
 {
 newMessage = (SIMessage)message.clone();

List frp1= newMessage.getForwardRoutingPath();
newMessage.setApiMessageId(message.getApiMessageId());
newMessage.setDataGraph(message.getDataGraph(),message.getFormat());

 SIDestinationAddress businessDestAddress = factory.

 createSIDestinationAddress(businessDestination,busName);

frp1.add(businessDestAddress);
newMessage.setForwardRoutingPath(frp1);
List reverse1 = newMessage.getReverseRoutingPath();
System.out.println("Reverse Routing Path -- "+reverse1);
SIDestinationAddress deliveryResponseAddress = factory.
326 Patterns: Implementing Self-Service in an SOA Environment

createSIDestinationAddress((String)context.getProperty("DeliveryResponseDestination"),busName);

reverse1.clear();
reverse1.add(deliveryResponseAddress);
newMessage.setReverseRoutingPath(reverse1);

List reverse = message.getReverseRoutingPath();
 reverse.clear();
 reverse.add(deliveryResponseAddress);
 message.setReverseRoutingPath(reverse);

 try {
 System.out.println("sending Cloned Message-- "+newMessage);

session.send(newMessage,false);
 System.out.println("Cloned Message sent ");

 } catch (SIMediationRoutingException e2) {
e2.printStackTrace();

 } catch (SIDestinationNotFoundException e2) {
e2.printStackTrace();

 } catch (SINotAuthorizedException e2) {
e2.printStackTrace();

 }
 }

If the user has requested only business delivery, the next section (Example 10-6)
sets the forward routing path of the original message to the BusinessDelivery
service.

Example 10-6 RoutingMediation part 4

 else if (ticker.equalsIgnoreCase((String)context.getProperty("BusinessDelivery")))
 {
 frp= message.getForwardRoutingPath();
 SIDestinationAddress businessDestAddress = factory.

 createSIDestinationAddress(businessDestination,busName);
frp.add(businessDestAddress);
message.setForwardRoutingPath(frp);

 }

Finally (Example 10-7), if the user has requested only home delivery, no action is
needed.

Example 10-7 RoutingMediation.class part 5

 else if (ticker.equalsIgnoreCase((String)context.getProperty("HomeDelivery")))
 {
 System.out.println("**** End Of The Request ****");
 }
 Chapter 10. Web services scenario 327

}
catch (Exception e) {
 e.printStackTrace();
 throw new MessageContextException();
}
return true;

}
}

10.6.2 Create the Aggregator mediation
This mediation is associated with the reply queue destination. When an incoming
message has the delivery type All, the request is sent to both the HomeDelivery
and the BusinessDelivery services. The reverse routing path is modified to new
reply queue destination. The response from both the messages is sent to this
reply queue destination where the Aggregator mediation is invoked. The
mediation aggregates the responses from both services into one response and
sends it back to the client.

The following are the steps to create the aggregator mediation:

1. Build the code:

a. Create a simple project called Aggregator.

b. Right-click the Aggregator project and select Add → Others → Java
Class. Name the class AggregatorMediation.

c. Implement the MediationHandler interface and add the code required for
aggregating the responses in the handle method (see “Aggregator code”
on page 329).

d. Create a JAR file from the package and call it Aggregator.jar.

2. Create the mediation EJB:

a. Create an EJB project called AggregatorEJB with an EAR file name of
AggregatorEJBEAR.

b. Drag and drop Aggregator.jar to the Utility JARS folder in
AggregatorEJBEAR.

3. Define the mediation handler in the EJB deployment descriptor:

a. Expand the AggregatorEJB project in the navigator and double-click
Deployment Descriptor.

b. Select the Mediation Handler tab.
328 Patterns: Implementing Self-Service in an SOA Environment

c. Click Add and enter AggregatorHandler as the name. Enter
myPackage.AggregatorMediation as the handler class.

d. Save the descriptor.

Aggregator code

The handle() method (Example 10-8) is responsible for the message handling
and aggregation of the response messages, and sending the aggregated
response back to the original requester. The handle() method is invoked by the
arrival of a message on the queue that it has been configured to mediate,
DeliveryResponseDestination.

The handle() method casts the message context to an SIMessageContext and
retrieves the forward routing path for the message.

Example 10-8 AggregatorMediation code part 1

public class AggregatorMediation implements MediationHandler {

public boolean handle(MessageContext context) throws MessageContextException {

SIMessageContext ctx =(SIMessageContext)context;
 String busName = ctx.getSession().getBusName();
 SIMessage message = ctx.getSIMessage();
 List frp = message.getForwardRoutingPath();
 SIMediationSession session = ctx.getSession();
 SIMessage otherMessage=null;
 SIDestinationAddressFactory factory =
 SIDestinationAddressFactory.getInstance();

Next (Example 10-9), it retrieves the name of a temporary storage queue it will
use to hold received messages. The code checks to see if it can receive a
message from the temporary queue. If no message is there, then the message
that has arrived on the mediated queue is the first response. If it is the first
response, the forward routing path is set to the temporary queue and the
message is stored there.

Example 10-9 AggregatorMediation code part 2

 try {
otherMessage = session.receive((String)context.getProperty("TempDataDestination"));

if (otherMessage == null)

Note: The entire source code for the aggregator mediation can be seen by
downloading the sample application. The code is in the Aggregator.jar file in
the AggregatorEJB project.
 Chapter 10. Web services scenario 329

{
SIDestinationAddress queue= factory.

 createSIDestinationAddress((String)context.getProperty("TempDataDestination"),busName);
 frp.clear();

 frp.add(queue);
 message.setForwardRoutingPath(frp);
}

If there is a message on the temporary queue, this response is the second
message (Example 10-10).

The first message (otherMessage) is retrieved from the temporary queue and the
account number information (getAccountReturn) is extracted. Next, the account
information is extracted from the second message (message). Then the two
responses are combined and written back into the current (second) message.

Example 10-10 AggregatorMediation code part 3

else
{

DataGraph graph = null;
try {

graph = otherMessage.getDataGraph();
DataObject rootNode = graph.getRootObject();

 DataObject infoNode = rootNode.getDataObject("Info");
 DataObject bodyNode = infoNode.getDataObject("body");
 DataObject part1Node = bodyNode.getDataObject("parameters");
 String ticker = part1Node.getString("getAccountReturn");

 DataGraph graph1 = message.getDataGraph();

DataObject rootNode1 = graph1.getRootObject();
 DataObject infoNode1 = rootNode1.getDataObject("Info");
 DataObject bodyNode1 = infoNode1.getDataObject("body");
 DataObject part1Node1 = bodyNode1.getDataObject("parameters");
 String ticker1 = part1Node1.getString("getAccountReturn");

 part1Node1.setString("getAccountReturn",
 ticker+","+ticker1);

Lastly (Example 10-11), the forward routing path is changed so the response will
be sent back to the client.

Example 10-11 AggregatorMediation code part 4

 String newDestination =
(String)context.getProperty("InboundServiceClientResponseDest");

 SIDestinationAddress newAddress = factory.
330 Patterns: Implementing Self-Service in an SOA Environment

 createSIDestinationAddress(newDestination,busName);
 frp.clear();

 frp.add(newAddress);
 message.setForwardRoutingPath(frp);
}
return true;

}
}

10.6.3 Extending the mediations
The techniques in this simple example illustrate how to manipulate messages in
a mediation. The code as written will work if you only expect two responses.

You can extend this example to manage more than two responses by adding a
queue to contain control data that indicates how many messages were sent out.
This information is used by the aggregator to know how many responses to
expect. For an example of this, see the broker scenario in Patterns: SOA with an
Enterprise Service Bus in WebSphere Application Server V6, SG24-6494.

Another element to consider is how long to wait for a response from each
service. This example waits indefinitely, but it would be reasonable include code
that handles a situation where not all responses are received within a time limit.

10.7 Runtime guidelines for Web services
This section describes how to configure the service integration bus for Web
services. We first look at the Web services support provided in WebSphere
Application Server. We then go into specific configuration tasks required to run
the sample application.

10.7.1 Web services support in WebSphere Application Server V6
WebSphere Application Server can act as both a Web service provider and as a
requester. As a provider, it hosts Web services that are published for use by
clients. As a requester, it hosts applications that invoke Web services from other
locations. WebSphere Application Server supports SOAP-based Web service
hosting and invocation.

WebSphere Application Server V6 provides J2EE 1.4 support, including Web
services 1.1.

� JAX-RPC v1.0 for J2EE 1.3, v1.1 for J2EE 1.4
� JSR 109 (Web services for J2EE)
 Chapter 10. Web services scenario 331

� WS-I Basic Profile 1.1.2 support
� WS-I Simple SOAP Binding Profile 1.0.3
� WS-I Attachments Profile 1.0
� SAAJ 1.2
� UDDI V2 and V3
� JAXR
� WS-TX (transactions)
� SOAP 1.1
� WSDL 1.1 for Web services
� WSIL 1.0 for Web services
� OASIS Web Services Security: SOAP Message Security 1.0 (WS-Security

2004)
� OASIS Web Services Security: UsernameToken Profile 1.0
� OASIS Web Services Security X.509 Certificate Token Profile

WebSphere Application Server also provides an integrated private UDDI V3
registry and in the Network Deployment package, integrated Web Services
Gateway function.

Web services and the service integration bus
Also new, is the ability to use the service integration bus as an intermediary
between service requestors and service providers, allowing control over the flow,
routing, and transformation of messages through mediations and JAX-RPC
handlers. The bus provides a flexible way to expose and call services located in
an intranet from the Internet (and vice versa), while also providing mechanisms
for protocol switching and security.

The use of Web services with the bus is an evolution of the Web Services
Gateway provided in WebSphere Application Server V5. Whereas the Web
Services Gateway was a stand-alone application in V5, the bus is more tightly
integrated into the application server, enabling users to take advantage of
WebSphere Application Server administration and scalability options, and also
build on top of the asynchronous messaging features provided by WebSphere
Application Server.

The bus enables users to specify a level of indirection between service
requestors and providers by exposing existing services at new destinations. It
also provides options for managing these services through mediations, which
can access and manipulate incoming and outgoing message content, or even
route the message to a different service. Support for JAX-RPC handlers is also
included in the bus, as is Web services gateway functionality.

While all WebSphere Application Server packages can use the bus as a
destination point for Web services, the Web Services Gateway function is only
available in the Network Deployment package.
332 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-29 illustrates a basic bus configuration and how it can enable Web
services clients in an intranet to access an Internet-based Web service. Clients
would use the bus-generated WSDL to access the service, and the specified
mediations could be used for message logging, transformation, routing, or other
purposes.

Figure 10-29 Exposing Web services through the bus

The following terms apply to the Web services support in the bus:

� Endpoint listeners are entry points to the bus for Web services clients.
Endpoint listeners control whether clients connect over SOAP/HTTP or
SOAP/JMS. They are associated with inbound services and gateway
resources.

� Inbound services are destinations within the bus exposed as Web services.
Inbound services define how Web service consumers communicate with the
bus.

� Outbound services are destinations within the bus that represent external
Web services. Outbound services define how the bus communicates with the
Web service providers.

An inbound and outbound service needs to be defined for each Web service
routed through the bus.

endpoint
listener

reply
destination

endpoint
listener

SOAP/HTTP
SOAP/JMS

client
requestor

outbound
service

destination

outbound
port

destination

consumer /
invoker

gateway
service
reply

destination

gateway
service

destination

WSDL

target
Web

service

SOAP/HTTP
SOAP/JMS
RMI/IIOP

Bus
generated

WSDL

SIMessage

SIMessage

SIMessage

Mediation

Mediation

Intranet Service Integration Bus
(DMZ)

Internet

SIMessage

Msg request path

Msg response path

SIMessage
 Chapter 10. Web services scenario 333

� A Gateway instance enables a user to create gateway and proxy services.

� A Gateway service exposes external Web services as bus-managed Web
services.

� A Proxy service exposes external Web services as bus-managed Web
services, but with the added feature of allowing runtime control over the target
service endpoint that is called.

� A Mediation is a stateless session EJB attached to a service destination that
can apply processing to messages that pass through it, for example, logging
or message transformation.

� JAX-RPC handler is a J2EE standard for intercepting and manipulating Web
services messages.

� JAX-RPC handler list is used to manage JAX-RPC handlers by determining
the order in which they are executed. These lists can be associated with bus
services.

� The UDDI reference contains configuration information for UDDI registries to
which the bus is able to connect.

10.7.2 Configuration tasks
In the ITSOMart scenario, we have chosen to use the service integration bus as
our implementation of the ESB. The configuration tasks that need to be done in
order to run the credit check portion of the application are as follows:

1. Create an endpoint listener.
2. Create the outbound services.
3. Create the inbound services.
4. Generate and export new WSDL for the services.
5. Update the Web service clients to use the bus.
6. Configure the router mediation.

Preparation: Our scenario assumes that you have done the following:

1. Created a bus and added the application server as a member. The bus
definition is fundamental to most other configuration tasks. It is not possible
to begin creating or configuring any services or gateway resources until a
bus object has been created. One bus is normally sufficient to handle all
application servers in a cell. In our scenario, we use one bus called
ITSOMartBus.

For information about creating the bus and adding the members, see
“Create a service integration bus” on page 463.

2. Installed the Web services support for the bus. For information about how
to do this, see “Install Web services support for the bus” on page 464.
334 Patterns: Implementing Self-Service in an SOA Environment

10.7.3 Create an endpoint listener
Endpoint listeners are required if you want to expose destinations on the bus to
clients connecting over SOAP/HTTP and SOAP/JMS. They are the entry points
to the bus for these protocols, carrying requests between Web services clients
and buses, and are used by both inbound services and gateway services. An
endpoint listener acts as the ultimate receiver of an incoming SOAP message to
the bus and passes on the data and context of that message.

To define a new endpoint listener using the administrative console, perform the
following steps:

3. Expand Servers and click Application Servers.

4. Click the server name.

5. Under Additional Properties click Endpoint Listeners.

6. Click New.

7. For our CreditCheck example using SOAP/HTTP, enter in the following
values:

– Name

This is the name of the endpoint listener. It should have a value of
SOAPHTTPChannel1.

– URL root

This is the base URL for Web service requests into this endpoint listener.
The URLs used for making Web service requests to the service integration
bus will have this at the beginning. Set this to:

http://localhost:9080/wsgwsoaphttp1

Where localhost can be replaced with the server’s host name and 9080
may be replaced with the correct port number for your server setup.

– WSDL serving HTTP URL root

The location of the HTTP URL that is serving your Web service WSDL.
Enter a value of:

http://localhost:9080/sibws/wsdl

8. Click Apply. This saves the General Properties and makes the Additional
Properties available (Figure 10-30 on page 336).

Note: Before creating endpoints, make sure you have the CreditCheck and
DeliverySystem applications deployed and running.
 Chapter 10. Web services scenario 335

Figure 10-30 Additional properties of Endpoint

9. From the Additional Properties list, click Connection properties then New.

10.A drop-down list of available buses appears to which you can connect the
endpoint listener. Select the bus you want to use, click OK, and then click
save to save your changes.

This completes the configuration of your endpoint listener. By connecting it to a
bus, we make it available for use with inbound services.

Note: The URL root values supplied for the SOAP/HTTP endpoint listeners
assume that you have used the defaults supplied in the endpoint listener
applications. If you have changed these, you also have to modify the values
you supply when creating the endpoint listener.
336 Patterns: Implementing Self-Service in an SOA Environment

10.7.4 Create the outbound services
Outbound services define Web service requests that leave the service
integration bus and are received by a service provider. See Figure 10-31.

Figure 10-31 A typical outbound service configuration

In our scenario, we need to define an outbound service definition for the
CreditCheck, HomeDelivery, and BusinessDelivery Web services. Start with the
CreditCheck service:

1. From the administrative console, expand Service integration and click
Buses.

2. Click ITSOMartBus.

3. Under Additional Properties click Outbound Services.

4. Click New.

5. The first page of the wizard (Figure 10-32 on page 338) requires you to
specify a URL or UDDI repository where a WSDL definition of the service can
be found. In our case, we are using a URL. The URL options allows you to
specify an HTTP URL or a file system path. Enter the following URL then click
Next.

http://localhost:9080/CreditCheckRouter/wsdl/com/ibm/patterns/creditCheck/
CreditCheck.wsdl

SOAP/JMS target
service

outbound
service

outbound
port

WSDL

outbound
port

SOAP/HTTP

outbound
port

RMI/IIOP

Bus
 Chapter 10. Web services scenario 337

Figure 10-32 Service destination and template WSDL settings page

6. The next page displays the available services defined in the WSDL file. This
page allows you to select which service you wish to create an outbound
service for. In our case there is only one service to select
CreditCheckService. Click Next.

7. The next page (Figure 10-33) displays the ports defined for the selected
service. There is only one port in our service, so check CreditCheck and click
Next.

Figure 10-33 Port sections page
338 Patterns: Implementing Self-Service in an SOA Environment

8. The next page allows you to change the name of the outbound service,
service destination name and port destination name. It also allows you to
specify a port selection mediation. Accept the defaults and click Next.

9. The final page allows you to select the bus member to which to assign the
outbound service. Accept the defaults and click Finish. The outbound service
will be created.

A Web service destination and port destination are created for each outbound
service. You can see these destinations by clicking on Destinations in the
bus details page. See Figure 10-34 for details.

Figure 10-34 Newly created outbound Web service and port destination

10.Save the changes.

HomeDelivery and BusinessDelivery outbound services
Repeat these steps and create two additional outbound services for
HomeDelivery and BusinessDelivery using the following WSDL locations:

� HomeDelivery:

http://localhost:9080/HomeDeliveryRouter/wsdl/com/ibm/patterns/delivery/Hom
eDelivery.wsdl

� BusinessDelivery:

http://localhost:9080/BusinessDeliveryRouter/wsdl/com/ibm/patterns/delivery
/BusinessDelivery.wsdl
 Chapter 10. Web services scenario 339

10.7.5 Create the inbound services
Inbound services define Web service requests that are received by the bus.
These requests are then routed to the appropriate outbound service.

Figure 10-35 A typical inbound service configuration

We need to define inbound services for the CreditCheck service and
HomeDelivery service. Start with the CreditCheck inbound service:

1. From the bus details page under Additional Properties, click Inbound
Services.

2. Click New.

3. The first page of the wizard, shown in Figure 10-36 on page 341, is used to
select the service destination name and supply the template WSDL service
definition.

SOAP/HTTP
endpoint
listener

SOAP/JMS

client
requestor

inbound
service

service
destination

inbound
port

Bus
generated

WSDL

--------------------SOAP/JMS
endpoint
listener

inbound
port

SOAP/HTTP

Bus
340 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-36 Service destination and template WSDL settings page

– Service destination name

Use the drop-down to select the destination the inbound service requests
should be placed on. In our case we want to specify the Web service
destination that was created for the CreditCheck outbound service.

Select the value of:

http://creditCheck.patterns.ibm.com:CreditCheckService:CreditCheck

– Template WSDL location

This field is for specifying the WSDL definition of the Web service to be
invoked. While the WSDL that will be used by client applications will be
slightly different, it will be based on this WSDL. In our scenario we will
specify the WSDL of the Web service endpoint that will ultimately be
invoked once the request has been routed through the bus:

Enter a value of:

http://localhost:9080/CreditCheckRouter/wsdl/com/ibm/patterns/
creditCheck/CreditCheck.wsdl

4. Click Next.

5. The next page asks which service in the template WSDL should be used. Our
WSDL has only one entry, so accept the default and click Next.

6. The next page, shown in Figure 10-37 on page 342, allows for you to rename
the inbound service and to specify which endpoint listener is to be used.
 Chapter 10. Web services scenario 341

Figure 10-37 Specify inbound service name and endpoint listener.

– Inbound Service name

This name will be the name of the service in the WSDL and affects the
code that is generated by Rational Software Architect. By default it is
based on the service destination name with InboundService at the end.

Enter CreditCheckInboundService.

– Endpoint listener

The endpoint listener defines what mechanism will be used to get Web
service requests into the inbound service. Select the endpoint created in
10.7.3, “Create an endpoint listener” on page 335 (SOAPHTTPChannel1).

7. Click Next.

8. The final page allows UDDI-specific properties to be specified. Because we
are not using UDDI accept the defaults and click Finish.

The default port name for the inbound service is based on the endpoint
listener name followed by the phrase InboundPort, so in our case the inbound
port name will be SOAPHTTPChannel1InboundPort. Because our clients are
calling a port called CreditCheckInboundPort, the clients will be unable to
invoke the service. This can be rectified with the following steps.

9. From the Inbound service listing page click CreditCheckInboundService.

10.Under Additional Properties click Inbound Ports.

11.Click the port named SOAPHTTPChannel1InboundPort.

12.The next page allows you to modify the inbound port name. Change the name
to CreditCheckInboundPort and click OK.
342 Patterns: Implementing Self-Service in an SOA Environment

HomeDelivery inbound service
Repeat this process to create the inbound service for HomeDelivery.

Table 10-1 HomeDelivery inbound service property values

10.7.6 Generate and export new WSDL for the services
The enterprise applications need to be modified to point to our service integration
bus inbound services rather than directly to the Web service.

To do this, we must create new WSDL files for the Web services, and export
these WSDL files from WebSphere Application Server into ZIP files. We can then
give the ZIP files to an application developer who can import them into Rational
Software Architect and change the enterprise applications client code
accordingly.

Perform the following steps to download a ZIP file for each inbound service:

1. In the administrative console, locate the inbound services list. Click
CreditCheckInboundService.

2. Under Additional Properties click Publish WSDL files to ZIP file.

3. Click CreditCheckInboundService.zip and save the file to disk.

4. The ZIP file can now be provided to the application developers to regenerate
the Web service clients.

5. Repeat these steps to download a ZIP file for HomeDeliveryInboundService .

PROPERTY NAME PROPERTY VALUE

Template WSDL location http://localhost:9080/HomeDeliveryRouter/wsdl/com
/ibm/patterns/delivery/HomeDelivery.wsdl

Service destination name http://delivery.patterns.ibm.com:HomeDeliveryServ
ice:HomeDelivery

Endpoint Listener SOAPHTTPChannel1

Inbound Service Name HomeDeliveryInboundService

Inbound Port Name HomeDeliveryInboundPort

Schemas: When the inbound and outbound services are created, the WSDL
is automatically imported into the SDO repository. Unfortunately any schemas
used are not similarly imported and must be imported manually. The
ITSOMart application contains no XSD definitions so this is not necessary.
 Chapter 10. Web services scenario 343

10.7.7 Update the Web service clients to use the bus
This section describes how to regenerate the Web service client code we
generated earlier in “Creating an EJB Web service client” on page 317, this time
using WSDL generated for the Web service at the bus.

This changes the following:

� Endpoint address

The endpoint address used by Web service consumers to invoke a Web
service provider will change to invoke the inbound service on the bus rather
than the provider directly.

� WSDL name space

By going through the service integration bus, the WSDL definition namespace
changes. This requires that we regenerate the Web service client stubs and
the service references in our J2EE applications. It does not affect the
in-transit SOAP message.

When an inbound service is exported from WebSphere Application Server, it is
packaged in a ZIP file. The ZIP file contains four WSDL files. Each WSDL file
describes a portion of the service.

Assuming that our sample bus is called ITSOMartBus and the service we are
looking at is called CreditCheckInboundService, these files are named:

� ITSOMartBus.CreditCheckInboundServiceBindings.wsdl

Defines the binding and transport for each operation in the service.

� ITSOMartBus.CreditCheckInboundServicePortTypes.wsdl

Imports the port type, operations, and messages for the service from an
HTTP server.

� ITSOMartBus.CreditCheckInboundServiceService.wsdl

Defines the service and port for the service.

� ITSOMartBus.CreditCheckInboundServiceNonBound.wsdl

Imports a port type and defines a non-specific binding and service. Not used
in this scenario.

Note: Ensure the WebSphere Application Server V6 unit test environment is
started prior to completing these steps. Check this by examining the status of
the server in the Servers view of the J2EE perspective.
344 Patterns: Implementing Self-Service in an SOA Environment

Import the generated WSDL
The WSDL files generated by WebSphere Application Server for the inbound
services have to be imported into your workspace.

To import the CreditCheckInboundService WSDL, perform the following tasks:

1. In the workbench select File → Import.

2. The import dialog box is shown. Scroll down. select Zip file, and click Next.

3. In the next panel:

a. Specify the location of the zip file containing the WSDL by either entering
the path into the pull-down box labelled From zip file or by clicking Browse
and selecting the file form the file dialog box.

b. In the right panel uncheck the box labelled
ITSOMartBus.CreditCheckInboundServiceNonbound.wsdl.

c. Select the project into which to import the WSDL files. Click Browse and
expand CreditCheckClient → ejbModule → META-INF, select wsdl, and
click OK.

d. Click Finish to import the files.

4. Repeat these steps to import the HomeDeliveryInboundService WSDL into
the ClientDelivery project.

Create the namespace mapping files
When you generate a Web service client, Rational Software Architect creates
Java class implementations of all the XSD components defined by the Web
service. The name of each Java class is derived from the name of the XSD
component. The package name of each Java class is derived from the
namespace of the XSD component.

The Java package name is based on the host part of the namespace name. For
example, an XSD component that belongs to the package:

http://www.ibm.com/CreditCheck.wsdl

Would be stored in a Java package called:

www.ibm.com

It is common to have multiple namespaces defined with a common host part.
Examples include www.ws-i.org, www.w3c.org and schemas.xmlsoap.org. It is

Note: Certain characters that are valid in a host part of a URI are not valid in a
package name, such as a dash (-) character. In these cases those characters
will be mapped to a different character.
 Chapter 10. Web services scenario 345

possible in these cases that some schemas will define elements with the same
name. Without namespace mapping, these elements generate classes with the
same name and in the same package. This would result in one of the generated
classes overwriting the other. Namespace mapping allows a namespace to be
mapped to an arbitrary package name, eliminating this problem.

Namespace mapping can be used to map XSD components from multiple
namespaces into a single Java package. This is useful for mapping the
namespaces defined in the bus-generated WSDL files to the package name for
the code (for, example com.ibm.patterns.creditCheck).

There are three namespaces to map:

� The targetNamespace, which is the same for all service definitions generated
by the service integration bus.

� The sibusbinding namespaces, which are unique to each Web service with
which we are working.

� The other namespaces used by XSD components.

To do this, perform the following tasks:

1. Determine the namespaces defined by the CreditCheck Web service. Open
the WSDL file ITSOMartBus.CreditCheckInboundServiceService.wsdl
and examine the namespace definitions defined in the <definitions> tag
(Example 10-12).

Example 10-12 Definitions attribute of a service WSDL file

<wsdl:definitions
targetNamespace=

"http://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Node01Cell/ITSOMartBus/Service"
xmlns:sibusbinding=

"http://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartBus/
CreditCheckService/Binding"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

2. From this file, we can determine the value of the targetNamespace is:

http://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/
ITSOMartBus/Service

We can also determine the value of the sibusbinding namespace is:

http://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMa
rtBus/CreditCheckService/Binding
346 Patterns: Implementing Self-Service in an SOA Environment

Notice that these namespaces incorporate the cell and name of the bus.

3. Create a namespace mapping file to map these two namespaces to the Java
package com.ibm.com.patterns. Perform the following tasks:

a. Select the CreditCheckClient project and go to the
ejbModule/META-INF folder.

a. Select File → New → Other from the main menu.

b. In the New dialog box select Simple → File then click Next.

c. Set the parent folder to namespace mappings. Then enter
nsmappings.properties in the File name text field and click Finish. This
will create the file and open and editor for it.

d. The file is formatted so the namespace comes first, followed by equals,
then the package name, all on one line. Multiple lines can be specified.
The namespace mappings will be unique to your system, so you must
determine the namespace names yourself by examining
ITSOMartBus.CreditCheckInboundServiceService.wsdl. We used the
mappings shown in Example 10-13.

Example 10-13 Namespace mapping file for CreditCheck

http\://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartBus/Service=com.ibm.
patterns.creditCheck
http\://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartBus/CreditCheckInbou
ndService/Binding=com.ibm.patterns.creditCheck

e. Save the changes to nsmapping.properties.

f. Next, create an nsmappings.properties file in the ClientDelivery project
and perform the same mapping for the HomeDelivery inbound service
(See Example 10-14).

Example 10-14 Namespace mapping file for HomeDelivery

http\://www.ibm.com/websphere/sib/webservices/T23734WLZ2Node01Cell/ITSOMartBus/Service=com.ibm.
patterns.delivery
http\://www.ibm.com/websphere/sib/webservices/T23734WLZ2Node01Cell/ITSOMartBus/HomeDeliveryInbo
undService/Binding=com.ibm.patterns.delivery

Note: Although one of the namespace mappings shown in Example 10-13
spans multiple lines, it should each be entered on a single line in the
namespace mapping file. This also applies to Example 10-12 on page 346.

Also note that the namespace must be modified from using http:// to
using http\:// in the namespace mapping file.
 Chapter 10. Web services scenario 347

Generate the Web service clients
We are now ready to generate (or regenerate, because ours already exists) the
Web service clients for the CreditCheck and HomeDelivery services. Their
respective clients will point to the inbound service on the bus rather than directly
to the Web service. Perform the following tasks:

1. Select File → New → Other. Then select Web Services → Web Service
Client and click Next.

2. We want to create a Java proxy client, so ensure Client proxy type is set to
Java proxy then click Next.

3. Use the browse button to locate
CreditCheckClient/ejbModule/META-INF/wsdl/ITSOMartBus.CreditChec
kServiceService.wsdl. Click OK, then Next.

4. On the page shown in Figure 10-38, specify the information about how the
Web service client will be generated.

Figure 10-38 Specify Web service client type

– Client type specifies the type of the Web service client to generate. Select
EJB. The other options are Web, Application client, and Java.

– Client Project specifies the project where the Web service client will be
generated. Select CreditCheckClient.

– EAR Project specifies the EAR project which the Web service client will be
associated with. Select Processor.

Click Next to move to the next page.
348 Patterns: Implementing Self-Service in an SOA Environment

5. The next page allows security information to be specified. It also has a check
box labelled Define custom mappings for namespace to package. Select
this check box then click Next.

6. Import the namespace mappings file. Click Import, expand
CreditCheckClient to find the namespace.mapping folder, highlight
nsmappings.properties, and click OK. This populates the Mapping pairs
table with the relevant information shown in Figure 10-39.

Figure 10-39 Namespace mappings

7. Click Finish and the Web service client is generated. Acknowledge any
warning messages you receive during the Web service client generation.

8. Repeat these steps to regenerate the client for the HomeDelivery Web
service. See Table 10-2.

Table 10-2 HomeDelivery Web service

Proper Name Property Value

WSDL Location ClientDelivery/ejbModule/META-INF/wsdl/ITSOMartB
us.HomeDeliveryServiceService.wsdl

Client Project ClientDelivery

EAR Project Processor

Namespace Mappings File Expand ClientDelivery to find the
namespace.mapping folder, select
nsmappings.properties.
 Chapter 10. Web services scenario 349

Test the application
Now that we have configured the Web service client to go through the bus, it is
time to test it.

By regenerating the client, the generated proxy is reconfigured to point to the
new inbound service. Therefore no further changes need to be performed to the
ITSOMart application as it uses the proxy to locate the Web service. You can test
with the Web Services Explorer (10.5.3, “Testing with the Web Services Explorer”
on page 314. Note that without the mediations in the bus, testing the
ClientDelivery will always return a home delivery account number.

10.7.8 Configure the router mediation
The following steps take you through the installation and configuration process
for the router mediation created in 10.6.1, “Create the router mediation” on
page 324.

Define the mediation
1. Install the mediation application, RoutingMediationsEJBEAR.

2. Locate the bus definition by selecting Service integration → Buses. Click
the bus name (ITSOMartBus) to open it.

3. Under Additional Properties, click Mediations.

4. Click New.

5. Enter the following values:

– Mediation name: DeliveryRequestMediation
– Handler list name: RoutingHandler

The handler list name must match the handler list name defined in the EJB
deployment descriptor.

6. Add the following context properties in Table 10-3 to the mediation.

Table 10-3 :DeliveryRequestMediation context properties

Name Data Type Value

ALL String All

BusinessDelivery String BusinessDelivery

type String type

DeliveryResponseDestinat
ion

String DeliveryResponseDestinat
ion

HomeDelivery String HomeDelivery
350 Patterns: Implementing Self-Service in an SOA Environment

Click OK.

Mediate the destination
To mediate the destination, perform the following steps:

1. Locate the bus definition by selecting Service integration → Buses. Click
the bus name (ITSOMartBus) to open it.

2. Under Additional Properties click Destinations.

3. In the list of destinations, check the box to the left the port name. In this case,
the Web service port is:

http://delivery.patterns.ibm.com:HomeDeliveryService:HomeDelivery.

Click the Mediate button.

4. In the next screen, select DeliveryRequestMediation as the mediation to
apply to the destination.

Click Next.

5. In the next screen, select the bus and click Next.

6. Click Finish.

Save your changes.

10.7.9 Configure the aggregator mediation
The following steps take you through the installation and configuration process
for the aggregator mediation created in 10.6.2, “Create the Aggregator
mediation” on page 328.

Create the queues
Two queue destinations on the bus are used to aggregate the responses from
multiple services.

1. From the bus details page for ITSOMartBus under Additional Properties
click Destinations.

2. Click New.

3. For the destination type, accept the default of Queue and click Next.

businessDestination String http://delivery.patterns.ibm
.com:BusinessDeliverySer
vice:BusinessDelivery

Name Data Type Value
 Chapter 10. Web services scenario 351

4. The first page of the wizard, asks for an identifier and description to be
entered. The identifier is the queue name. Enter
DeliveryResponseDestination and click Next.

5. The next page allows you to specify to which bus member to assign the
destination. There is only one bus member in our scenario so accept the
default and click Next.

6. The final page is just a summary, click Finish and the destination is created.

7. Repeat this process to create a queue destination called TempDestination.

Define the mediation
The following steps take you through the configuration process for the mediation
application.

1. Install the mediation application, AggregatorEJBEAR.ear.

2. Locate the bus definition by selecting Service integration → Buses. Click
the bus name (ITSOMartBus) to open it.

3. Under Additional Properties click Mediations.

4. Click New.

5. Enter the following values:

– Mediation name: DeliveryResponseMediation
– Handler list name: AggregatorHandler

The handler list name must match the handler list name defined in the EJB
deployment descriptor.

6. Add the following context properties in Table 10-4 to the mediation.

Table 10-4 Aggregator mediation values

Click OK.

Mediate the destination
To mediate the destination, perform the following steps:

1. Locate the bus definition by selecting Service integration → Buses. Click
the bus name (ITSOMartBus) to open it.

Name Data Type Value

InboundServiceClientResp
onseDest

String <your_node>.server1.SO
APHTTPChannel1Reply

TempDataDestination String TempDestination

getAccountReturn String getAccountReturn
352 Patterns: Implementing Self-Service in an SOA Environment

2. Under Additional Properties click Destinations.

3. In the list of destinations, check the box to the left the queue name. In this
case, the queue is DeliveryResponseDestination.

Click the Mediate button.

4. In the next screen, select DeliveryResponseMediation as the mediation to
apply to the destination.

Click Next.

5. In the next screen, select the bus and click Next.

6. Click Finish.

Save your changes.

10.8 System management for Web services
Planning for systems management in a Web services environment is similar to
the planning needed for any other distributed system, but we face some unique
challenges in Web services technology.

Web services are based on plain text XML messaging that could potentially be
vulnerable to interception. In addition, Web services potentially allow
transactions beyond firewalls and enable external entities to invoke internal
applications or access sensitive information.

Another problem is that since there is no confirmed delivery (at least not explicitly
built into the Web services specification) what happens if we do not get a
response to a particular request? How do we know if the Web service provider is
not working, just slow, or just did not receive our request?

We have no explicit way of determining if a service on a remote server (not under
our control) is working. This becomes an availability issue on our local server. At
the application level, we need a way to respond to unavailable systems.

Some other areas of system management to consider with Web services include:

� Firewall considerations

From the perspective of the firewall, an RPC router is just another servlet that
is accessed through HTTP or HTTPS.

� Load-balancing considerations

– The same considerations and techniques as for normal servlets apply,
with one exception. By default, there is no hot failover for session type
Web services. If failover is a requirement, it should be handled on the next
 Chapter 10. Web services scenario 353

layer; for example, in a servlet acting as Web service implementation, or
by using a redundantly configured EJB session facade.

– A stateless request-style Web service instance can be pooled and
load-balanced because it is a Java object in the JVM of the application
server.

– Failover is also supported for request-style Web services.

– If session style is used, scalability is best. However, the Web service
implementation class must be serializable and small.

– If application style is used, load balancing is not an issue, because there is
only one instance whose lifetime is identical to the one of the application
server hosting it.

� Other Quality of Service considerations

– Clearly define and document achievable QoS standards or requirements.
– Service providers should try to make key measurements available online.
– Use existing standards or proposed specifications as design guidelines.

10.8.1 Security considerations for Web services
Web services security is one of the bigger challenges in implementing Web
services-based systems. With WebSphere Application Server V6, you have the
following options for securing Web services:

� Message-level security using Web services security (WS-Security)
� Transport-level security using TLS/SSL

Figure 10-40 provides an overview of Web services security.
354 Patterns: Implementing Self-Service in an SOA Environment

Figure 10-40 Securing Web services

For a full discussion of Web services security and implementation examples, see
WebSphere Version 6 Web Services Handbook Development and Deployment,
SG24-6461.

WS-Security
The WS-Security specification defines message-level security that provides for
message content integrity and confidentiality. Unlike SSL, WS-Security can
provide end-to-end message-level security. This means that the message
security can be protected even if the message goes through multiple services,
called intermediaries. WS-Security is independent of the transport layer protocol
and can be used for any Web service binding (for example, HTTP, SOAP, RMI).

Figure 10-41 End-to-end message-level security

WebSphere Application Server Version 6.0 supports the WS-Security 2004
specification and two token profiles (UsernameToken 1.0, X.509 Certificate

Securing
Web Services

Authentication
example: user

name/password

Integrity
message
signature

Message-level security
(WS-Security)

Confidentiality
message
encryption

Transport-level security
(TLS/SSL)

encrypt the message stream
(HTTPS for HTTP)

Web service
client

Web service
server

Security Context

Intermediary
 Chapter 10. Web services scenario 355

Token 1.0). The level of the security specification supported in WebSphere
Application Server Version 6 is above these specifications, with the described
changes in the OASIS erratas:

� Web Services Security: SOAP Message: Errata 1.0

http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wss-soa
p-message-security-1%200-errata-003.pdf

� Web Services Security: UsernameToken Profile: Errata 1.0

http://www.oasis-open.org/committees/download.php/9290/oasis-200401-wss-use
rname-token-profile-1.0-errata-003.pdf

� Web Services Security: X.509 Token Profile: Errata 1.0

http://www.oasis-open.org/committees/download.php/9287/oasis-200401-x509-to
ken-profile-1.0-errata-003.pdf

Here are some simple guidelines as to when WS-Security should be used:

� Multiple parts of message can be secured in different ways.

You can apply multiple security requirements, such as integrity on the
security token (user ID and password) and confidentiality on the SOAP body.

� Intermediaries can be used.

End-to-end message-level security can be provided through any number of
intermediaries.

� Non-HTTP transport protocol is used.

WS-Security works across multiple transports (also change of transport
protocol) and is independent of the underlying transport protocol.
356 Patterns: Implementing Self-Service in an SOA Environment

http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wss-soap-message-security-1%200-errata-003.pdf
http://www.oasis-open.org/committees/download.php/9290/oasis-200401-wss-username-token-profile-1.0-errata-003.pdf
http://www.oasis-open.org/committees/download.php/9287/oasis-200401-x509-token-profile-1.0-errata-003.pdf

� User authentication is possible.

Authentication of multiple party identities is possible.

WS-Security represents only one of the layers in a complex, secure Web
services solution design. A more general security model is required to cover
other security aspects, such as logging and non-repudiation. The definition of
those requirements is defined in a common Web services security model
framework. For more information, see:

� Security in a Web Services World: A Proposed Architecture and Roadmap,
proposed by IBM and Microsoft.

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

Transport-level security
To secure HTTP, transport-level security can be applied. Transport-level
security is a well-known and often used mechanism to secure HTTP Internet and
intranet communications. Transport-level security is based on Secure Sockets
Layer (SSL) or Transport Layer Security (TLS) that runs beneath HTTP.

HTTPS allows client-side and server-side authentication through certificates,
which have been either self-signed or signed by a certification agency.

For Web services bound to the HTTP protocol, HTTPS/SSL can be applied in
combination with message-level security (WS-Security).

Unlike message-level security, HTTPS encrypts the entire HTTP data packet.
There is no option to apply security selectively on certain parts of the message.
SSL and TLS provide security features including authentication, data protection,
and cryptographic token support for secure HTTP connections.

SOAP/HTTP transport-level security
Although HTTPS does not cover all aspects of a general security framework, it
provides a security level regarding party identification and authentication,
message integrity, and confidentiality. It does not provide authentication,
auditing, and non-repudiation. SSL cannot be applied to other protocols, such as
JMS. To run HTTPS, the Web service port address must be in the form https://.

Even with the WS-Security specification, SSL should be considered when
thinking about Web services security. Using SSL, a point-to-point security can be
achieved.
 Chapter 10. Web services scenario 357

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

Figure 10-42 Point-to-point security with HTTPS

Here are a few simple guidelines to help decide when transport-level security
should be used:

� No intermediaries are used in the Web service environment.

With intermediaries, the entire message has to be decrypted to access the
routing information. This would break the overall security context.

� The transport is only based on HTTP.

No other transport protocol can be used with HTTPS.

� The Web services client is a stand-alone Java program.

WS-Security can only be applied to clients that run in a J2EE container (EJB
container, Web container, application client container). HTTPS is the only
option available for stand-alone clients.

Bus security
The service integration bus provides facilities for secure communication between
service requestors and the bus (inbound to the bus), and between the bus and
any target Web services (outbound from the bus). Security in the bus can be
applied at a number of different levels.

� Web services security (WS-Security) in the bus
� HTTP endpoint listener authentication
� Operation-level authorization
� Using HTTPS with the bus
� Proxy server authentication

For more details on how to implement the above security levels in the bus, see
Chapter 22 of WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461.

10.8.2 Web Services Gateway
If you are deploying the application using Network Deployment, you have the
option to deploy your Web services through IBM’s Web Services Gateway. This
option is not available for standalone server environments.

Web service
client Intermediary Web service

server

Security Context Security Context

HTTPS HTTPS
358 Patterns: Implementing Self-Service in an SOA Environment

A gateway service is the Web interface for an underlying service (the target
service) that is either provided internally (hosted so as to be directly available at
a service destination), or provided externally (as an external Web service). The
gateway service is made available at a different location to the target service, so
you can replace or relocate the target service without changing the details for the
associated gateway service. You can also have more than one target service
(that is, more than one implementation of the same logical service) for each
gateway service.

It is important to note that IBM’s Web Services Gateway is now integrated within
the bus. It is therefore possible to control and monitor access to your gateway
services in the following ways:

� You can control which groups of users can access a particular gateway
service by making the service available only through a particular gateway
instance.

� You can associate JAX-RPC handler lists with ports, so that the handlers can
monitor activity at the port, and take appropriate action depending upon the
sender and content of each message that passes through the port.

� You can set the level of security to be applied to messages (the WS-Security
binding). The security level can be set independently for request and
response messages.

10.9 More information
For more information, see:

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

� Understand Enterprise Service Bus scenarios and solutions in
Service-Oriented Architecture, Part 1, available at:

http://www.ibm.com/developerworks/webservices/library/ws-esbscen/

� WebSphere Application Server Version 6.0 Information Center, available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

� The XML Signature workgroup home page is available at:

http://www.w3.org/Signature/

� The XML Encryption workgroup home page is available at:

http://www.w3.org/Encryption/

� The WS-Security specification 1.0 is available at:

http://www.ibm.com/developerworks/library/ws-secure/
 Chapter 10. Web services scenario 359

http://www.ibm.com/developerworks/webservices/library/ws-esbscen/
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://www.w3.org/Signature/
http://www.w3.org/Encryption/
http://www.ibm.com/developerworks/library/ws-secure/

� Security in a Web Services World: A Proposed Architecture and Roadmap,
proposed by IBM and Microsoft.

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

� OASIS WS-Security 1.0 and token profiles is available at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

� Web Services Security: SOAP Message: Errata 1.0

http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wss-
soap-message-security-1%200-errata-003.pdf

� Web Services Security: UsernameToken Profile: Errata 1.0

http://www.oasis-open.org/committees/download.php/9290/oasis-200401-wss-
username-token-profile-1.0-errata-003.pdf

� Web Services Security: X.509 Token Profile: Errata 1.0

http://www.oasis-open.org/committees/download.php/9287/oasis-200401-x509-
token-profile-1.0-errata-003.pdf

There are several commercial and non-commercial information sources that
cover more general subjects, such as SSL encoding and the HTTPS protocol.
360 Patterns: Implementing Self-Service in an SOA Environment

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wss-soap-message-security-1%200-errata-003.pdf
http://www.oasis-open.org/committees/download.php/9290/oasis-200401-wss-username-token-profile-1.0-errata-003.pdf
http://www.oasis-open.org/committees/download.php/9287/oasis-200401-x509-token-profile-1.0-errata-003.pdf

Chapter 11. JMS scenario

In this chapter, we give an overview of the use of JMS in an SOA environment.
The ITSOMart sample application has been extended to use JMS to place a
message on a queue. That message is handled by a message-driven bean that
starts the process of sending the message to a mail server for processing.

This chapter discusses how the design guidelines outlined in Chapter 7,
“Application and system design guidelines” on page 139 were applied to the
sample scenario. It also describe the process used to develop the messaging
application as a way of illustrating development guidelines for JMS. The sample
has been deployed on WebSphere Application Server V6 and we use this to
illustrate runtime configuration tasks that must be done. Lastly, we discuss
system management considerations for using JMS.

11
© Copyright IBM Corp. 2005, 2006. All rights reserved. 361

11.1 Architectural overview model
The following diagram shows the ITSOMart application. The portion highlighted,
the ESB, is the piece we discuss in this chapter. When a customer registers with
ITSOMart, the application uses the Mail Service Proxy to send an e-mail to the
customer. The proxy builds a JMS message, and sends it to MailService through
the ESB. For the rest of the chapter, we focus only on these components.

Figure 11-1 Architectural overview model: JMS

The components that participate in the JMS scenario are:

� Mail Service Proxy

This component is used by the Processor application to deliver a JMS
message that holds the information to send to the customer.

HTTP
Requests Self Service

Application

Mail
Sender
(MDB)

MailService

ESB

Processor

Mail Service Proxy
(JMS)

(MDB)

queue

JCA
Resource
Adapter

CRM (CICS)CRM Proxy Web
service

queue
Processor.ear

Credit Check
Proxy CreditCheckWeb

service

Get Account
 Proxy

HomeDelivery
Web

service
BusinessDelivery

ProcessorToMail.Queue

XlateToXML
mediation
text > XML

XlateToXML.ear

MailService.ear
362 Patterns: Implementing Self-Service in an SOA Environment

� Enterprise Service Bus

The ESB is implemented using the service integration bus. The bus provides
the transport mechanism for the default messaging provider. Messages sent
to MailService are placed on a queue defined to the bus. A mediation will be
added to transform the format of the message payload from text to XML. This
mediation activity is transparent to the applications. If, in the future, a different
mail service is used and it requires something other than XML, the only
change required is in the mediation activity on the bus.

� Mail Sender

This component uses an EJB message-driven bean to receive the message
from the queue and the Java Mail API to send the e-mail to MailService.

� MailService

Our SMTP server, that sends the e-mail to the customer.

� XlateToXML

This component is a mediation application. When a message arrives at the
bus, this application transforms the message. The Mail Sender MDB receives
the transformed message.

This scenario illustrates the following application pattern using messaging
technology:

� Directly Integrated Single Channel application pattern

ITSOMart places a message on a queue. Mediation takes place to transform
the message into a new format. The Mail service retrieves the message and
sends an e-mail to the user.

11.2 System design overview
In this scenario, the ITSOMart application will be connected to an enterprise-tier
application (MailService) using JMS.

11.2.1 Component model
The ITSOMart will send a notification message to the customer when the
registration process is complete. The application does this by generating a JMS
message for MailService. The message contains the e-mail text to be sent.
MailService is expecting XML format so a mediation is added to the bus that
transforms the message to the proper format.

Figure 11-2 on page 364 shows the component model for the scenario.
 Chapter 11. JMS scenario 363

Figure 11-2 Using mediation in the bus

11.2.2 Object model
The sequence diagram in Figure 11-3 shows how the Mail Service proxy sends
the e-mail message to MailService using JMS. Note that the application is
unaware that the ultimate receiver of the message requires XML format. The use
of the ESB makes the format transformation transparent to the sender.

Figure 11-3 Sequence diagram for sending e-mail message to MailService

1) The createCustomer() method in the Processor class is invoked.

1.1) createCustomer() invokes the sendActivationMail() method in the
MailService class, passing the customer information from the
registration.

Self Service Application

Processor EJB Module

Mail
Sender
MDB

Mail Service
Proxy

MailServiceEJB Module

To SMTP Mail
Service

MailService ApplicationService Integration Bus

Queue
Destination

JMS Msg
Act.

Spec.

JMS MsgJMS Msg
Mediation

TXT XML

1: createCustomer
1.1: sendActivationMail

1.1.1: sendMail

1.1.2 createTextMessage

1.1.4 setText

<<return>>
sendActivationMail

:Processor :MailService :Session :MessageProducer:TextMessage

<<return>>
1.1.3 createTextMessage

<<return>>
1.1.5 setText

1.1.6 createProducer

<<return>>
1.1.7 createProducer

<<return>>
1.1.9 send

1.1.8 send
364 Patterns: Implementing Self-Service in an SOA Environment

1.1.1) sendActivationMail() invokes sendMail(), passing the text of the
message and e-mail address.

1.1.2) sendMail() creates a connection to the message service provider, a
session for sending and receiving messages, and an empty text
message.

1.1.4) sendMail() sets the text for the message.

1.1.6) sendMail() creates a message producer to create a message.

1.1.8) sendMail() sends the message.

11.3 Applying the design guidelines
In the ITSOMart application, the following applies:

� The Mail Service Proxy acts as the JMS client.

� A JMS message of type text is used to send the e-mail information to the
MailService.

� The default messaging provider in WebSphere Application Server V6 is used
as the JMS provider.

11.3.1 Point-to-point messaging model
The messaging model used for this example is the JMS point-to-point model. In
this model, a client typically sends a message to a specific queue and receives a
message from a specific queue. The ITSOMart application connects to a single
messaging application at the back-end and therefore point-to-point is the most
suitable model.

The front-end application uses the send-and-forget messaging pattern. The
back-end application uses the message consumer pattern to process requests
and the send-and-forget pattern to deliver the reply.

For further reference on JMS point-to-point and publish/subscribe, refer to the
JMS Specification available at:

http://java.sun.com/products/jms/docs.html

11.3.2 JMS resource lookups using JNDI
The sample application uses a utility class named JNDILookup to look up the
JMS resources. JMSLookup adds some useful functionality, such as caching the
JMS objects references. See Example 11-1 on page 366.
 Chapter 11. JMS scenario 365

http://java.sun.com/products/jms/docs.html

Example 11-1 JNDI lookup of JMS Connection Factory

/*
 * Created on Apr 17, 2005
*/
package com.ibm.patterns.util;

import java.util.HashMap;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
 * @author sandyg
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public class JNDILookup {

private static JNDILookup instance = new JNDILookup();
private Context ic = null;
private HashMap objectNames=new HashMap();

public static JNDILookup singleton() {
return instance;

}

private void getInitialContext() throws NamingException {
ic = (Context)new InitialContext().lookup("java:comp/env");

}

public Object getJndiObject(String jndiName) throws NamingException{

//Check if object exists in HashMap if so return
Object retreived=null;
if (objectNames.containsKey(jndiName)) {

retreived = objectNames.get(jndiName);
return retreived;

}
//The object was not found, do a lookup

retreived = findObject(jndiName);
return retreived;

}

private Object findObject(String jndiName) throws NamingException{
Object retreived=null;
//hmm.. object was not found, this is the first run we need to lookup

and put in HashMap
366 Patterns: Implementing Self-Service in an SOA Environment

if (ic==null) {
//System.out.println("ic was null, it was probably the first time

this was called");
getInitialContext();

}
retreived=ic.lookup(jndiName);
objectNames.put(jndiName,retreived);
return retreived;

}

}

The JMS resource reference is bound to the JMS resource JNDI name during
application assembly or deployment.

11.3.3 Message selectors
An activation specification defined at runtime triggers the message-driven bean
when a message arrives on the queue. When defining the activation
specification, you can limit the messages that trigger the MDB by specifying a
message selector. See Figure 11-4 on page 368.
 Chapter 11. JMS scenario 367

Figure 11-4 Specifing a message selector for a message-driven dean

The selector string can refer to fields in the JMS message header and fields in
the message properties. Message selectors cannot reference message body
values.

11.3.4 Message time-to-live
The default messaging provider provides a mechanism through JMS to set the
time-to-live of a message. The code in Example 11-2 shows how we can set
time-to-live within this scenario to 20 seconds.

Example 11-2 Setting the JMS message time-to-live

producer.send(reqMsg,DeliveryMode.NON_PERSISTENT,0,20000);

Setting the message time-to-live is an important best practice to avoid large
numbers of unconsumed messages on queues.
368 Patterns: Implementing Self-Service in an SOA Environment

JMSExpiration
JMSExpiration is the sum of the time-to-live and current GMT. If, however,
time-to-live is set to zero, then JMSExpiration is set to zero.

If it is determined that GMT is now greater than the JMSExpiration value, then
the message should be destroyed by the messaging provider. JMS, however,
does not automatically notify the messaging provider. It is always good to check
the JMSExpiration manually in the code.

11.3.5 Persistent versus non-persistent messages
A persistent or durable message is an obvious performance issue. However, if
the operation is too critical to the business needs, then it becomes a necessary
choice to ensure or guarantee delivery.

PERSISTENT is the default setting. We can explicitly set the use of non-persistent
messages. Alternatively, it can be set within the send method provided by the
MessageProducer, as shown in Example 11-3.

Example 11-3 Setting JMS message delivery mode

producer.send(reqMsg,DeliveryMode.NON_PERSISTENT,0,20000);

11.3.6 Mediation
In this scenario, the XlateToXML mediation will transform the message from text
to XML. The destination is the queue destination used by the Mail Service Proxy.

11.4 Development guidelines for JMS
In this section we cover the basics of creating a JMS application from Java
coding steps to the involvement of various tools that can aid development. The
aim is to provide a pointer and not necessarily complete walkthroughs of the
tools.

11.4.1 JMS development
Rational Application Developer also provides a WebSphere Application Server
V6 test environment. You need to create the required JMS resources in the test
environment.
 Chapter 11. JMS scenario 369

11.4.2 Creating a JMS client application
In this section we consider the steps necessary to add JMS connectivity to your
application. To create the Java application, perform the following steps:

1. Configure the JMS provider and destination or destinations in your Integrated
Development Environment (IDE). In our environment, we used Rational
Software Architect and the WebSphere Application Server V6 unit test
environment, which includes the default messaging provider.

2. Get an instance of JMS javax.jms.ConnectionFactory, usually through a JNDI
lookup.

3. Get an instance of JMS Connection from the ConnectionFactory.

4. Start the JMS Connection.

5. Get a JMS Session from the Connection object.

6. Using the Session object, create either a producer (QueueReceiver) or
consumer (QueueSender) on a specified destination.

7. Use this producer or consumer to access the Destination.

8. Close the message consumer, session, and connection. Closing the
connection will close the session and the message producers and consumers
associated with it. See Example 11-4.

Example 11-4 Sending a JMS text message

Connection con = qcf.createConnection();
Session session = con.createSession(false, Session.AUTO_ACKNOWLEDGE);
TextMessage msg = session.createTextMessage();
msg.setText(message);
MessageProdcer producer = session.createProducer(queue);
producer.send(msg);
producer.close();
session.close();
con.close();

11.4.3 Creating a message-driven bean
To create a message-driven bean, perform the following steps:

1. Create the message-driven bean definition and class.
2. Configure the JCA activation specification.
3. Create the message-driven bean implementation.

Tip: Remember to manage the JMS resources (opening and closing) properly
and also to handle timeout properly if using EJBs as message consumers.
370 Patterns: Implementing Self-Service in an SOA Environment

Creating the message-driven definition and class
To create the message-driven bean, launch and follow the EJB Create wizard in
Figure 11-5.

Figure 11-5 Creating a message-driven bean

Configuring the JCA activation specification
After you create the message-driven bean definition, you can use the EJB
Deployment Descriptor’s editor to specify the JNDI name of the ActivationSpec
bean. Select your message-driven bean from the Bean tab, then specify the
JNDI name, as in Figure 11-6.
 Chapter 11. JMS scenario 371

Figure 11-6 Specify the JNDI name of the ActivationSpec Bean

Creating the message-driven bean implementation
To create the the message-driven bean implementation, just implement the
method onMessage(javax.jms.Message) of the message-driven bean class, as
in Example 11-5.

Example 11-5 Implementing the message-driven bean

public void onMessage(javax.jms.Message msg) {
try {

if (msg instanceof TextMessage) {
TextMessage txtMsg = (TextMessage) msg;
String buffer = txtMsg.getText();
Document document =

DocumentBuilderFactory.newInstance().newDocumentBuilder().
parse(new InputSource(new StringReader(txtMsg.getText())));

Element mailElement = document.getDocumentElement();
Element destinationElement =

(Element)mailElement.getElementsByTagName("destination").item(0);
String to = destinationElement.getAttribute("address");
Element messageElement =

(Element)mailElement.getElementsByTagName("message").item(0);
String body = messageElement.getAttribute("body");
sendMail(to, body);

} else {
System.out.println("Wrong format. Mail not sent.");

}
} catch (Exception e) {
372 Patterns: Implementing Self-Service in an SOA Environment

System.out.println(e.getMessage());
e.printStackTrace();

}
}

11.4.4 Creating a mediation
This section will take you through the following steps to create a mediation:

� Create a mediation handler class
� Define a mediation handler list

Create a mediation handler class
The following steps outline how to create a mediation handler class:

1. Create a new EJB project.

2. Create a mediation handler class by implementing the
com.ibm.websphere.sib.mediation.handler.MediationHandler interface, as in
Example 11-6.

Example 11-6 TransformMediator medation handler class

package com.ibm.patterns.esb.ejb;

import javax.xml.rpc.handler.MessageContext;
import com.ibm.websphere.sib.mediation.handler.MediationHandler;
import com.ibm.websphere.sib.mediation.handler.MessageContextException;

public class TransformMediator implements MediationHandler {

public boolean handle(MessageContext ctxt) throws MessageContextException {
...

}
}

3. Add functional code to the mediation handler that will, for example, transform
or route messages. Within a mediation you can:

– Work with message context.

The SIMessageContext interface has a superinterface of
MessageContext. Methods in MessageContext allow you to manage a set
of message properties (name/value pairs) within the message context.
This allows handlers in a handler chain to share a processing-related
state. You can get and set properties (getProperty, setProperty), view the
names of the properties, and remove a property.
 Chapter 11. JMS scenario 373

– Work with message properties.

There are two different types of message properties: system properties
(including JMS headers, JMSX properties, and JMS_IBM_properties) and
user properties.

Working with message properties allows you to affect how a message is
processed downstream. The rule set in the selector field during mediation
configuration tests values in the message properties.

Properties are accessed using the SIMessage interface. You can get
properties (getMessageProperty, getUserProperty), set properties
(setMessageProperty, setUserProperty), delete and clear properties, and
view property names.

– Work with the message header.

The message header contains fields that affect message routing, priority,
reliability, expiration, and so forth. These fields are most often used to
change the routing of a message.

The SIDestinationAddress API gives the mediation access to the bus
name and destination. The SIDestinationAddressFactory API can be used
to create a new SIDestinationAddress for the message.

– Work with the message payload.

To work with the contents of the message, you will use the SIMessage
and SIMessageContext APIs. The SIMediationSession API gives the
mediation access to the bus so that the mediation can send and receive
messages.

The code in Example 11-7 shows you the implementation code of the mediation
handler class for our sample scenario. This mediation retrieves the payload of the
JMS text message as a Java string value and transforms it to XML format. The
message is retrieved from the SIMessage instance as a datagraphs. In data
graphs representing JMS messages, the root data object contains a property
named data, and that data object in turn contains a property named value.

Example 11-7 Mediation handler class used in out sample scenario

public boolean handle(MessageContext ctxt) throws MessageContextException {
try {

System.out.println("Transform Mediator...");
SIMessageContext siMessageCtxt = (SIMessageContext)ctxt;
SIMediationSession siSession = siMessageCtxt.getSession();
SIMessage siMessage = siMessageCtxt.getSIMessage();

String format = siMessage.getFormat();
if (format.equals("JMS:text")) {
 DataGraph graph = siMessage.getDataGraph();
374 Patterns: Implementing Self-Service in an SOA Environment

 String payload = graph.getRootObject().getString("data/value");
 graph.getRootObject().setString("data/value", formatJMSMessage(payload));
} else {

System.out.println("JMS Message is not a JMS Text Message");
}
System.out.println("Message transformed");
return true;

} catch (Exception e) {
System.out.println("Error transforming message: "+e.getMessage());
e.printStackTrace();

}
return false;

}
private String formatJMSMessage(String txtMessage){

String newMessage = "";
int index = txtMessage.indexOf("|");
if (index!=-1) {

String destination = txtMessage.substring(0,index);
String message = "";
if (index>message.length()) {

message = txtMessage.substring(index+1);
}
try {

DocumentBuilder docBuilder =
DocumentBuilderFactory.newInstance().newDocumentBuilder();

Document document = docBuilder.newDocument();
Element mailElement = document.createElement("mail");
document.appendChild(mailElement);
Element destinationElement = document.createElement("destination");
destinationElement.setAttribute("address",destination);
mailElement.appendChild(destinationElement);
Element messageElement = document.createElement("message");
messageElement.setAttribute("body",message);
mailElement.appendChild(messageElement);
newMessage = DOMWriter.nodeToString(document);
System.out.println("Formated message: "+newMessage);

} catch (Exception e){
System.out.println("Error formating message: "+e.getMessage());
e.printStackTrace();
return txtMessage;

}
}
return newMessage;

}
}

 Chapter 11. JMS scenario 375

Define a mediation handler list
To define a mediation handler list, you can use the EJB Deployment Descriptor’s
editor. Here, we are defining a list with only one mediation handler:

1. Open the EJB Deployment Descriptor.
2. Click the Mediation Handlers tab.
3. Click Add...
4. Specify a name for the mediation handler and the mediation handler class, as

in Figure 11-7.

Figure 11-7 Define a mediation handler list

5. Click Finish.
376 Patterns: Implementing Self-Service in an SOA Environment

11.5 Runtime configuration for JMS
This section discusses the runtime configuration required to run a JMS
application in a WebSphere Application Server V6 environment and using the
default messaging provider. See Figure 11-8.

Figure 11-8 JMS application configuration

11.5.1 Create a queue destination
The queue destination provides the queue for point-to-point messaging. The
application places a message on this queue.

Note: This configuration assumes that you have created a service integration
bus and added your application server as a bus member. See “Create a
service integration bus” on page 463 for information.

activation specification
Name=Mail MDB ActivationSpec
JNDI name=esb/SelfService/Mail
Dest type=Queue
Dest JNDI name=jms/SelfService/ProcessorToMailQ
Bus=ITSOMartBus

queue destination:
ID=ProcessorToMail.Queue
Mediation Handler List=TransformMediation

ITSOMartBus

JMS connection factory
Name=ProcessorToMail
JNDI name=jms/SelfService/ProcessorCF
Bus=ITSOMartBus

JMS queue
Name=ProcessorToMail
JNDI name=jms/SelfService/ProcessorToMailQ
Bus=ITSOMartBus
Queue=ProcessorToMail.Queue

EJB deployment descriptor - Resource reference:

jms/ProcessorCF binds to jms/SelfService/ProcessorCF

jms/ProcessorQ binds to jms/SelfService/CustomerToProcessorQ

OrderSystemSessionFacadeBean

ConnectionFactory qcf = (ConnectionFactory) lookupObject
.getJndiObject("jms/ProcessorCF");

Connection connection = qcf.createConnection();
connection.start();

Queue q = (Queue) lookupObject.getJndiObject("jms/ProcessorQ");

MailServiceEJB

XlateToXMLEJB
 Chapter 11. JMS scenario 377

1. Locate the bus definition by selecting Service integration → Buses. Click
the bus name (ITSOMartBus) to open it.

2. Under Additional Properties click Destinations.

3. Click New.

4. For the destination type, accept the default of Queue and click Next.

5. The first page of the wizard asks for an identifier and description to be
entered. The identifier is the name by which the destination will be exposed to
applications. Enter ProcessorToMail.Queue and click Next.

6. The next page allows you to specify which bus member to which to assign the
destination. There is only one bus member in our scenario, so accept the
default and click Next.

7. The final page is just a summary, click Finish and the destination will be
created.

8. Save the configuration.

9. Click Finish.

10.Save your changes.

11.5.2 Create the JMS connection factory
The next step is to create the JMS connection factories that allow the application
to send a JMS message.

1. From the administrative console expand Resources → JMS Providers and
click Default messaging.

2. Under Connection Factories click JMS connection factory.

3. Click New.

4. The next page allows you to specify the properties for the JMS connection
factory. Take the defaults for everything but the following:

– Name

Enter a value of ProcessorToMail.

– JNDI Name

This is where the application resource reference will be bound to. Enter a
value of jms/SelfService/ProcessorCF.

– Bus name

Select ITSOMartBus in the pull-down.

5. Click OK and save the changes.
378 Patterns: Implementing Self-Service in an SOA Environment

11.5.3 Create JMS queue
Now we need to create the JMS queue.

1. From the administrative console expand Resources → JMS Providers and
click Default messaging.

2. Under Destinations click JMS queue.

3. Click New.

4. The next page allows you to specify the values for the queue.

– Name

Enter a value of ProcessorToMail.

– JNDI Name

This is the name to which the application’s message reference will be
bound. Enter a value of jms/SelfService/ProcessorToMailQ.

– Bus name

Select the value of ITSOMartBus. This will cause the page to be reloaded
with the Queue names list already poplulated.

– Queue name

This field specifies the service integration bus queue type destination that
will be used to store the messages sent to this JMS queue. Select the
value of ProcessorToMail.Queue.

5. Click OK.

6. Save the configuration.

11.5.4 Create JMS activation specification
Now we need to create the activation specification that will trigger
MailServiceEJB when a message arrives on the queue.

1. From the admin console expand Resources → JMS Providers and click
Default messaging.

2. Under Activation Specifications click JMS activation specification.

3. Click New.

4. The next page allows you to specify the values for the activation specification.
Most of the values can keep their default values. Described here are the ones
of most interest.
 Chapter 11. JMS scenario 379

– Name

This field is an administrative name used for locating the JMS activation
specification. Enter a value of Mail MDB Activation Spec.

– JNDI name

This is where the application’s message-driven beans will be bound to for
message delivery. Enter a value of esb/SelfService/Mail.

– Destination type

The means the type of the JMS destination (queue or topic) that will be
used to deliver messages to the message-driven bean. Accept the default
of Queue.

– Destination JNDI name

This field is the location in JNDI of the JMS destination from which to
receive messages. Enter a value of jms/SelfService/ProcessorToMailQ.

– Bus name

The name of the bus from which the JMS destination will receive
messages. This is not required, but for consistency select ITSOMartBus.

5. Click OK.

6. Save the changes

11.5.5 Mediation configuration
The following steps take you through the configuration process to add the
mediation.

1. Install the application that will perform the mediation. In our sample, the
application is the XlateToXML application.

2. Locate the bus definition by selecting Service integration → Buses. Click
the bus name (ITSOMartBus) to open it.

3. Under Additional Properties click Mediations.

4. Click New.

See Figure 11-9 on page 381.
380 Patterns: Implementing Self-Service in an SOA Environment

Figure 11-9 Define a mediation

Enter the following values:

– Mediation name: TransformMediator
– Handler list name: TransformMediator

The handler list was defined in the EJB deployment descriptor for the
application. See “Define a mediation handler list” on page 376.

Click OK.

Mediate the destination
1. Locate the bus definition by selecting Service integration → Buses. Click

the bus name (ITSOMartBus) to open it.

2. Under Additional Properties click Destinations. See Figure 11-10 on
page 382.
 Chapter 11. JMS scenario 381

3. In the list of destinations, check the box to the left the queue name. In this
case, the queue is ProcessorToMail.queue.

Figure 11-10 Select a destination to mediate

Click the Mediate button.

4. In the next screen (Figure 11-11), select the mediation. Click Next.

Figure 11-11 Assign the mediation to the destination
382 Patterns: Implementing Self-Service in an SOA Environment

5. In the next screen, select the bus and click Next.

6. Click Finish.

7. Save your changes.

11.5.6 Test the application
When you use the ITSOMart application to register a customer, an e-mail is
generated and sent to the e-mail address you enter in the registration.

View the message on the queue
If there is some question about the format of the message or whether it is arriving
on the queue, you can view the message on the queue by performing the
following steps:

1. Stop the MailService application.

2. Select Service integration → buses.

3. Click the bus name.

4. Under Additional Properties, click Destinations.

5. In the list of destinations, any mediations for the destination are listed in the
table. Click the queue destination.

6. Under Message points, click Queue points.

7. Select the queue point.

8. Click the Runtime tab.

9. Click Messages.

Starting and stopping mediation processing
If you think there might be a problem in the mediation application or
configuration, you can stop mediation processing by performing the following
steps:

1. Select Service integration → buses.

2. Click the bus name.

3. Under Additional Properties, click Destinations.

4. In the list of destinations, any mediations for the destination are listed in the
table. Click the queue destination.

5. Under Message points, click Mediation points.

6. Check the box to the left of the mediation and click the Stop button.

The message will be processed, but no mediation will occur.
 Chapter 11. JMS scenario 383

11.6 System management for JMS
This section takes a brief look at system management issues when using JMS
applications.

11.6.1 JMS performance issues
Some issues that play a role in JMS messaging performance are:

� Generic versus specific message structure

Making the message structure more generic requires more translation and
interpretation time at the sender and receiver ends. Making a message too
specific reduces flexibility for even small changes in the message structure.
Remember to create an error queue for messages that cannot be validated.

� Message persistence

Using persistent messages requires writing the messages to disk, which
takes time, reducing performance.

� Request/reply scenario

In a request/reply scenario, it is important that the issue of blocking calls is
dealt with correctly. Essentially, EJBs should only be used with appropriate
request/reply timeouts and retries.

� Message-driven bean

Minimize the time spent in a message-driven bean processing the message.
This will make message-driven bean processing faster. Let the pool of
message-driven beans depend on the number of messages that arrive at the
queue.

� Optimization with connection

Start the connection when appropriate so that consumers are ready to
consume messages before the producers are started. Also process
messages concurrently using a server session pool for the processing of the
messages. Close the connection when you are finished consuming
messages.

11.6.2 Performance monitoring for mediations
When PMI is enabled, the following information is collected for each mediated
destination:

� Mediation time is the time taken to perform the mediation.

� Messages mediated is the number of messages mediated at this destination.
384 Patterns: Implementing Self-Service in an SOA Environment

� Thread count is the number of threads in the mediation thread pool
performing work for the mediation.

To enable these counters, perform the following tasks:

1. Select Monitoring and Tuning → Performance Monitoring Infrastructure
(PMI).

2. Click the server name.

3. Click the Runtime tab.

4. Click Custom.

5. Expand SIB Service → SIB Messaging Engines → <messaging
engine> → <mediation_name> → Destinations.

6. Click the queue destination. See Figure 11-12.

7. Check the boxes to the left of the counters and click Enable.

Figure 11-12 Enable the mediation counters

8. Click Thread Usage under Destinations.

9. Check the box to the left of ThreadCount and click Enable.

To view the counters, perform the following steps:

1. Select Monitoring and Tuning → Performance Viewer → Current activity.

2. Click the server name.

3. Expand Performance Modules → SIB Service → SIB MessagingS
Engines → <message_engine> → <mediation_name>.

See Figure 11-13 on page 386.
 Chapter 11. JMS scenario 385

4. Check the boxes to the left of the queue Destinations and the ThreadUsage.

Figure 11-13 Monitoring mediation counters

11.6.3 Security considerations
The JMS specification does not specify any features for controlling message
integrity or authentication. It is expected that the JMS provider will provide these
services. Security is considered to be a JMS provider-specific feature that is
configured by an administrator, rather than controlled with the JMS API by
clients.

Message-driven bean security
Messages arriving at a destination being processed by a message-driven bean
have no client credentials associated with them; the messages are anonymous.
Security depends on the role specified by the RunAs Identity for the
message-driven bean as an EJB component.

Security considerations for the default messaging provider
You can enable bus security so that access to the bus itself and to all
destinations on the bus must be authorized. For bus security to be enabled,
WebSphere global security must also be enabled.
386 Patterns: Implementing Self-Service in an SOA Environment

When a bus is created, an initial set of authorization permissions is created.
These permissions grant all authenticated users access to the bus and to all
local destinations.

When bus security is enabled, you must set the Inter-engine authentication alias
property to control the authentication of messaging engines joining the bus and
for secure communication between messaging engines. Similarly, the Mediations
authentication alias property is used for mediations that access the bus.

You can use secure transport connections (SSL or HTTPS) to ensure
confidentiality and integrity of messages in transit between application clients
and messaging engines and between messaging engines. This is achieved by
defining transport chains and then referencing the transport chain name as
follows:

� For application client connections: from the connection factory administered
objects

� For connections to foreign buses: from the Target inbound transport chain
property of the service integration bus link

� For connections to WebSphere MQ: from the Transport chain property of the
WebSphere MQ link

� For connections between messaging engines: from the Inter-engine transport
chain property of the bus

In the routing definitions for connections to foreign buses, the user ID applied to
messages entering or leaving the foreign bus can be replaced by values
specified by the Inbound user ID and Outbound user ID properties.

The Authentication alias property of the service integration bus link is used for
authentication of access to a foreign bus.

Mediations security considerations
When an application sends a message to the bus, the identity of the sender
application is associated with the message. When bus security is enabled, any
new messages sent by a mediation will have the mediation identity versus the
original sender identity. In this case, the mediation identity will require access to
the destination. By default, a mediation inherits its identity from the messaging
engine. You can change the identity for a mediation handler by specifying a
RunAS role using the assembly tools.
 Chapter 11. JMS scenario 387

388 Patterns: Implementing Self-Service in an SOA Environment

Chapter 12. J2EE Connector
Architecture scenario

This chapter gives an overview of the J2EE Connector Architecture (JCA) and
discuss its place in an SOA environment. The ITSOMart sample application has
been extended to access a back-end CRM system using a resource adapter. A
Web service that wraps the functionality accessing the CRM is used to access
the CRM through the ESB.

This chapter discusses how the design guidelines outlined in Chapter 7,
“Application and system design guidelines” on page 139 were applied to the
sample scenario. It also describes the process used to develop the sample
application as a way of illustrating development guidelines for JCA applications.
The sample has been deployed on WebSphere Application Server V6 and we
use the sample to illustrate runtime configuration tasks that must be performed.
Lastly, we discuss system management considerations for JCA applications.

12
© Copyright IBM Corp. 2005, 2006. All rights reserved. 389

12.1 Architectural overview model
The architecture overview model in Figure 12-1 shows the overall structure of the
ITSOMart application. The highlighted area shows the section of the application
on which this chapter focuses, the ESB.

Figure 12-1 Architectural model for ITSOMart application

From the J2EE architecture point of view, this is the part of the business logic tier
that creates, updates, and deletes business data from the single application in
the Enterprise Information System (EIS) tier.

The components that participate in the JMS Scenario are:

� CRM Proxy

This component is used by the Processor application to call the CRM Web
service.

� Enterprise Service Bus (ESB)

HTTP
Requests Self Service

Application

Mail Sender
(MDB) MailService

ESB

Processor

Mail Service Proxy
(JMS)

(MDB)

queue

queue
Processor.ear

Credit Check
Proxy CreditCheckWeb

service

Get Account
 Proxy

HomeDelivery
Web

service
BusinessDelivery

JCA
Module CRM (CICS)CRM Proxy Web

service

R
es

ou
rc

e
Ad

ap
te

r

JCAModule.ear
390 Patterns: Implementing Self-Service in an SOA Environment

The ESB is implemented using the service integration bus. The bus acts as
an intermediary for the Web service. Using an ESB insulates the application
from changes in the Web service location and provides the opportunity to
implement mediations or security measures in the future.

� JCA Module

This component sends the requests to create, update, or delete customer
data to the CICS application.

� Resource Adapter

The CICS ECI resource adapter is used to access the back-end CICS
transaction.

� CRM

A CICS transaction that manages the customer database.

This scenario illustrates the following application pattern using messaging
technology:

� Directly Integrated Single Channel application pattern:

ITSOMart sends the customer information directly to the back-end
application. The connection to the CICS system is done using a J2C Java
bean that has been deployed as a Web service.

12.2 System design overview
In this scenario (Figure 12-2 on page 392) we connect the ITSOMart application
to a back-end CICS application called MartAcct.ccp using the CICS ECI resource
adapter. The ECI resource adapter is one of the resource adapters that allows
Java applications to connect to CICS. It uses the External Call Interface (ECI) of
the CICS Transaction Gateway (CICS TG) to communicate with CICS. CICS TG
can link to a CICS enterprise-tier, or back-end application passing data in a
buffer called the COMMAREA. The CICS application receives customer info
through the COMMAREA from the ITSOMart application.
 Chapter 12. J2EE Connector Architecture scenario 391

Figure 12-2 System design overview

The following assumptions apply to the scenario:

� Of the several resource adapters supported for CICS, we are using a CICS
ECI resource adapter for the ITSOMart system.

� Our enterprise-tier application for ITSOMart is a COMMAREA-based CICS
program, which resides in a CICS transaction server.

12.2.1 Component model
Figure 12-3 shows the component model for this portion of the ITSOMart
application. The component model is described from an application developer’s
point of view rather than a user’s point of view.

Figure 12-3 Component model

EISWebSphere Application Server v6

CICS
Transaction

Gateway v6.0

CICS
Application

MARTACCT.ccp

CICS Transaction
Server

ITSOMart
Application

(Composed of various
EAR files)

CICS ECI
Resource
Adapter

CICS
Transaction

Gateway

CICS ECI
Resource
Adapter

J2CMartBeanImpl

MartAccounts
Data Binidng

JCA Web Module

JCAModule

CICS
Application

(MARTACCT)

CICS Transaction
Server

Enterprise ApplicationService Integration Bus

Web
Service

Destination

Self Service Application

Processor EJB

JCAClient EJB
392 Patterns: Implementing Self-Service in an SOA Environment

The components involved in the JCA scenario are:

� Processor EJB

When a customer uses the registration process, the front-end portion of the
application generates a message and places it on a queue. The processor
EJB is an MDB that receives this message. It triggers the JCA Web service
proxy to perform the appropriate action (add, update, or delete) on the CRM
(CICS)

� JCA CICS client

This EJB client is generated from the WSDL representing the CICS Web
service. The client calls the exposed methods in the JCA Web service proxy.

� Service integration bus

The bus enables users to specify a level of indirection between service
requestors and providers by exposing existing services at new destinations.

� JCAModule

The MartAccounts data binding bean maps the back-end application structure
to Java.

The J2CMartBeanImpl implementation bean is created from the CICS
application. It uses the Common Client Interface (CCI) classes to send a
request to a CICS back-end application via a CICS ECI resource adapter.
The reply is sent back from the resource adapter with the appropriate success
or failure message, which is eventually sent back to the Processor bean. All
the interactions with the CICS component are performed in asynchronous
manner,

The CICS ECI resource adapter provides the CCI for the JCA service. It
receives a request from the J2C Impl bean and passes it to the CICS
application using the CICS ECI-specific protocol. The reply from the CICS
application is passed back to the J2C Impl bean via the resource adapter
asynchronously. The CICS ECI resource adapter has an interface to an
application server that provides the system contacts defined in the J2EE
Connector Architecture.

The application server provides system and component contracts to both the
J2C Impl bean and the CICS ECI resource adapter.

� Enterprise application

The CICS application receives a request from the CICS ECI resource adapter
containing the information about the customer using COMMAREA. It creates
a new record for each new customer with the information provided. It can also
update and delete customer information.
 Chapter 12. J2EE Connector Architecture scenario 393

12.2.2 Object model
In this section, we provide an object model for our JCA scenario.

Class diagram
Figure 12-4 on page 394 shows a class diagram for the JCAModule portion of
the application. We focus on this piece because it provides the actual interface to
the back-end CRM system. The diagram shows the static relationships between
the classes.

MartAccounts and MartJ2CBeanImpl were developed for the ITSOMart
application. The rest of the classes are provided by the ECI resource adapter or
the J2EE packages.

Figure 12-4 Class diagram for J2EE Connector scenario

The com.ibm.patterns.jcaService package includes MartJ2CBeanImpl which
uses MartAccounts to update a customer record in the enterprise tier.
394 Patterns: Implementing Self-Service in an SOA Environment

The MartAccounts class provides a byte array for the CICS COMMAREA, which
is used to pass the information to the back-end application. The MartAccounts
class is an implementation of the Record class provided by J2EE Connector
class library.

The ECIInteractionSpec class is the specification of an interaction for CICS ECI.
The superclass of ECIInteractionSpec is InteractionSpec. The various kinds of
resource adapters extend InteractionSpec.

InteractionSpec and Record are the only classes that need to be specific to a
particular resource adapter. If an application needs to interact with another
resource adapter, the only changes that need to be made are to use the new
Record class and InteractionSpec class. The use of the other classes, such as
ConnectionFactory, Connection, and Interaction, remains the same. For
example, if the application needs to have an interface with the IMS Resource
adapter, the application needs a new Record for IMS and it needs to create and
set an IMS InteractionSpec, which is passed to the generic interaction object.

Interaction diagram
The interaction diagram in Figure 12-5 shows the sequence of the message flow
for the JCA call within the ITSOMart application. Once the customer credit rating
is checked, the customer registration information is sent to the CRM application
and an e-mail is sent to the customer.

Figure 12-5 Interaction diagram for JCA functionality in ITSOMart scenario

Figure 12-6 on page 396 shows the message interactions of the classes.
 Chapter 12. J2EE Connector Architecture scenario 395

Figure 12-6 Sequence diagram for createCustomerJ2EE Connector scenario

1) Processor invokes the storeCustomerDetails_CICS() method of
ProcessorJCA.

2) ProcessorJCA invokes the createMartAccount_CICS method of
JCAWSClientBean to create the customer with the information
provided in CustomerDetails object.

2.1) JCAWSClientBean invokes the createCustomer() method of
MartJ2CBeanImplProxy.

2.1.1) MartJ2CBeanImplProxy invokes the createCustomer() method of
MartJ2CBeanImpl.

2.1.1.1) MartJ2CBeanImpl gets a connection using a connection factory. The
runtime connection attributes are configured from the application
server connection factory properties. This may not mean a physical
connection to the enterprise has been opened. A physical connection

c :MartJ2CBeanImp/Proxy
self:Processorc

I :ConnectionFactoryc :ProcessorJCA

c :JCAWSClientBean
c :MartAccounts

c :MartJ2CBeanImpl I :Connection
I :Interaction I :Record

c :ECIInteractionSpec

1: storeCustomerDetails_CICS

2: createMartAccount_CICS
2.1: createCustomer

2.1.1: createCustomer
2.1.1.1: getConnection

2.1.1.2: createInteraction
2.1.1.2.1: \CalledOperation\

2.1.1.3: ECIInteractionSpec

2.1.1.4: setCommareaLength

2.1.1.5: setReplyLength

2.1.1.6: setFunctionName

2.1.1.7: setInteractionVerb

2.1.1.8: \CalledOperation\

2.1.1.9: execute

2.1.1.10: \CalledOperation\

2.1.1.12: close

2.1.1.13: close

2.1.1.11: \CalledOperation\
<<return>>

2.1.2: createCustomer
<<return>>

3: createMartAccount_CICS
<<return>>

Web Service:

<<return>>
2.2: createCustomer
396 Patterns: Implementing Self-Service in an SOA Environment

may have been opened by another connection instance and pooled
by an application server. An application program only needs to be
concerned with the logical connection given by the
ConnectionFactory, no matter if the physical connection is opened or
not.

2.1.1.2) MartJ2CBeanImpl invokes the connection createInteraction()
method.

2.1.1.3) MartJ2CBeanImpl creates a CICS ECI interaction spec.

2.1.1.4) MartJ2CBeanImpl sets the COMMAREA length in CICS ECI
interaction spec.

2.1.1.5) MartJ2CBeanImpl sets the reply length in CICS ECI interaction spec.

2.1.1.6) MartJ2CBeanImpl sets the CICS program name in CICS ECI
interaction spec.

2.1.1.7) MartJ2CBeanImpl sets the interaction verb in CICS ECI interaction
spec for asynchronous calling.

2.1.1.8) MartJ2CBeanImpl creates a MartAccounts record and sets it with the
customer information.

2.1.1.9) MartJ2CBeanImpl invokes the execute method of the interaction
passing the interaction spec and the record. The input and output
record is the same object in this scenario.

2.1.1.10) MartJ2CBeanImpl creates the record.

2.1.1.12) MartJ2CBeanImpl closes the interaction.

2.1.1.13) MartJ2CBeanImpl closes the connection. This may not mean that a
physical connection to the enterprise is closed, but an application
program should close the logical connection every time an interaction
is completed.

12.3 Applying the design guidelines
In this section, we discuss some of the low-level design considerations made
while adding J2EE Connector support to the ITSOMart application.
 Chapter 12. J2EE Connector Architecture scenario 397

12.3.1 Creating the input and output record
The first step is in building the call to the back-end application using JCA is to
create an input and output record structure that corresponds to the enterprise
application. A record is the Java representation of a data structure used as input
or output to an EIS function. Once a connection to the enterprise tier is
established, we should be able to pass and request the required data to the EIS
for the business operations we need. In the case of ECI, the record is a
representation of the COMMAREA.

We look at how you can create these records with two different approaches:

� By using Rational Software Architect to import the COMMAREA structure
from an enterprise application written in C or COBOL

� By implementing the javax.resource.cci.Record interface to make a custom
record

Using Rational Software Architect
Rational Software Architect provides the capability to create CCI custom records
in a Java bean class known as a data binding bean. This class implements
javax.resource.cci.Record class (included in <was_install>/lib j2ee.jar) and is a
representation of the COMMAREA for an ECI connection.A J2C Java bean class
uses this data binding record class as a data structure for both input and output
data from EIS to application server. You will see how to do this later in “Step 1:
Create the data binding class” on page 410.

Example 12-1 shows the code found in our sample MartAccounts class. This
class implements Record and uses a simple getter-setter design pattern for its
field values for a generic ECI application.

Example 12-1 Implementation of Record

public class MartAccounts implements javax.resource.cci.Record,
javax.resource.cci.Streamable, com.ibm.etools.marshall.RecordBytes {

/**
 * @generated
 */
private byte[] buffer_ = null;

/**
 * @generated
 */
private int bufferSize_ = 0;

/**
 * @generated
 */
398 Patterns: Implementing Self-Service in an SOA Environment

private static byte[] initializedBuffer_ = null;

/**
 * @generated
 */
private static java.util.HashMap getterMap_ = null;
/**
 * @generated
 */
private java.util.HashMap valFieldNameMap_ = null;
/**
 * constructor
 * @generated
 */
public MartAccounts() {

initialize();
}
/**
 * constructor
 * @generated
 */
public MartAccounts(java.util.HashMap valFieldNameMap) {

valFieldNameMap_ = valFieldNameMap;
initialize();

}
/**
 * @generated
 * initialize
 */
public void initialize() {

bufferSize_ = 719;
buffer_ = new byte[bufferSize_];
if (initializedBuffer_ == null) {

String ci__tyInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

ci__tyInitialValue, buffer_, 401, "ISO-8859-1", 100,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");

String street__addInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

street__addInitialValue, buffer_, 301, "ISO-8859-1", 100,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");

String pho__neInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

pho__neInitialValue, buffer_, 501, "ISO-8859-1", 20,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");

String l__nameInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

l__nameInitialValue, buffer_, 201, "ISO-8859-1", 100,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");
 Chapter 12. J2EE Connector Architecture scenario 399

String e__mailInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

e__mailInitialValue, buffer_, 1, "ISO-8859-1", 100,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");

String pass__wordInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

pass__wordInitialValue, buffer_, 521, "ISO-8859-1", 100,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");

String mart__msgInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

mart__msgInitialValue, buffer_, 625, "ISO-8859-1", 94,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");

String mart__flagInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

mart__flagInitialValue, buffer_, 0, "ISO-8859-1", 1,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");

String f__nameInitialValue = " ";
MarshallStringUtils.marshallFixedLengthStringIntoBuffer(

f__nameInitialValue, buffer_, 101, "ISO-8859-1", 100,
MarshallStringUtils.STRING_JUSTIFICATION_LEFT, " ");

byte[] bytes = new byte[bufferSize_];
System.arraycopy(buffer_, 0, bytes, 0, bufferSize_);
initializedBuffer_ = bytes;

} else {
System.arraycopy(initializedBuffer_, 0, buffer_, 0, bufferSize_);

}
}

Creating a custom record manually
You can create a custom record that is specific to an enterprise application by
extending the Record interface. In Example 12-2 the GenericRecord class uses a
simple getter-setter design pattern for its field values for a generic ECI
application. If you are not going to use a development tool for the record
generation, this generic record provides a simple interface to communicate with
COMMAREA-based enterprise applications.

Example 12-2 Implementation of Custom Record

public class GenericRecord implements javax.resource.cci.Record,
javax.resource.cci.Streamable {

private byte commarea[]=null;

public GenericRecord() {
super();

}

public GenericRecord(byte[] comm) {
400 Patterns: Implementing Self-Service in an SOA Environment

setCommarea(comm);
}

public Object clone() throws CloneNotSupportedException{
return super.clone();

}

public void setCommarea(byte[] comm) {
try {

read(new java.io.ByteArrayInputStream(comm));
}catch (java.io.IOException ioe) {
}

}

12.3.2 Data conversion
An enterprise tier might use a different code set from the client application.
Typically the enterprise tier resides in a mainframe using the EBCDIC code set,
and the client application is written in Java using Unicode. Similarly, encoding of
an integer in the PC world is different from that in the UNIX and mainframe
worlds. There are various options to performing data conversion between
different systems.

Data conversion with Rational Software Architect
If you are using Rational Software Architect, the J2EE Connector Tools provide
the tools to do the automatic conversion. Using the tools, you can import the
Java message structure and conversion code from the C or COBOL
COMMAREA definition used in the CICS application. The panel shown in
Figure 12-7 on page 402 allows you to select the required options while creating
a data binding record class.
 Chapter 12. J2EE Connector Architecture scenario 401

Figure 12-7 Data conversion options

Data conversion manually
If you create a record manually using a generic record, you need to perform code
conversion yourself. Example 12-3 on page 403 shows how the String account
name is converted to EBCDIC using the String getBytes method, and then used
to set the input record.
402 Patterns: Implementing Self-Service in an SOA Environment

Example 12-3 Data conversion (Unicode to EBCDIC)

rateRecord = new GenericRecord(account.getBytes(“IBM037”));

Example 12-4 shows how the entire output COMMAREA returned from the
enterprise tier is converted from EBCDIC to a String format using a String
constructor.

Example 12-4 Data conversion (EBCDIC to Unicode)

String commarea_rate = new String(rateRecord.getCommarea(),"IBM037");

12.3.3 Connection management
Once you have a mapping record structure in Java from COBOL or C code, you
are ready to make a connection and supply the required data. This section
describes the things that need to be done by the application program to connect
to CICS using a J2EE connector.

A connection can be managed or nonmanaged. A managed connection is
managed by the application server. A non-managed connection is obtained
directly through the resource adapter.

The class diagram in Figure 12-4 on page 394 shows a managed connection.
The application program uses ConnectionFactory and Connection to manage the
connection. A reference to ConnectionFactory is obtained from the JNDI name
space using InitialContext, and an instance of Connection is obtained from
ConnectionFactory. The physical aspects of connection management are
handled by the following components:

� Application server and resource adapter

Connections from the application server to the CICS Transaction Gateway
through the ECI resource adapter can utilize the application server pool
manager to reuse free connections as they become available. This applies
both to network connections when using a remote Gateway daemon and to
local connections when using a local CICS Transaction Gateway. Similarly,
terminals in use with the EPI resource adapter are also pooled, although
connections are not pooled for the EPI resource adapter.

� Resource manager

Some resource managers have their own connection management functions.
The CICS Transaction Gateway internally manages the connections from the
Client daemon to the attached CICS regions. This is not visible to the
application server or resource adapter.
 Chapter 12. J2EE Connector Architecture scenario 403

Rational Software Architect generates another Java bean called a J2C Java
bean that implements connection management for us. The intializeBinding()
method handles the JNDI look up for managed connections. A resource
reference to the CICS ECI resource adapter connection factory, called
MartAccountCFRef, is defined in the deployment descriptor to map to the actual
JNDI name. The value of the JNDI reference can be changed at deployment
time.

JNDI lookup
The ITSOMart application looks up a connection factory instance with a
managed connection using the JNDI interface. Example 12-5 shows this lookup.

Example 12-5 Acquiring a connection factory using JNDI lookup

protected void initializeBinding() throws ResourceException {
ConnectionFactory cf = null;
String jndiName = "MartAccountCFRef";
javax.naming.Context ctx = null;
try {

ctx = new javax.naming.InitialContext();
if (ctx != null)

cf = (ConnectionFactory) ctx.lookup("java:comp/env/" + jndiName);
if (cf == null)

throw new javax.naming.NamingException();
} catch (javax.naming.NamingException exception) {

try {
if (ctx != null)

cf = (ConnectionFactory) ctx.lookup(jndiName);
} catch (javax.naming.NamingException exception1) {
}

}

For non-managed connections, the intializeBinding() method first creates a
managedConnectionFactory instance and sets the required values. Once the
connection properties are set, it creates the connection from the
managedConnectionFactory instance. Example 12-6 shows acquiring a
connection factory using managedConnectionFactory in a non-managed
environment.

Example 12-6 Acquiring a connection factory

com.ibm.connector2.cics.ECIManagedConnectionFactory mcf = new
com.ibm.connector2.cics.ECIManagedConnectionFactory();

mcf.setConnectionURL("sourcecode.rtp.raleigh.ibm.com");
mcf.setServerName("gifty");
mcf.setUserName("ANUPAG");
404 Patterns: Implementing Self-Service in an SOA Environment

mcf.setPassword("anpag");
mcf.setTraceLevel(Integer.valueOf("1"));
cf = (ConnectionFactory) mcf.createConnectionFactory();

Once the connection is acquired, whether managed or non-managed, it is set
using setConnectionFactory:

setConnectionFactory(cf);

Dealing with a connection
The application component invokes the getConnection method on the
connection factory to get a CICS connection, as shown in Example 12-7. The
returned connection instance represents an application-level handle to an
underlying physical connection.

Example 12-7 Acquiring a connection

// use connection factory to get a connection handle
conn = cf.getConnection();

You can also specify a user ID and password in a connection spec, as shown in
Example 12-8.

Example 12-8 Acquiring a connection specifying user ID and password

// create a connection spec
ECIConnectionSpec connspec = new ECIConnectionSpec(userid, password);
// use connection factory to get a connection handle
conn = cf.getConnection(connspec);

The enterprise system uses the user ID and password for authentication and
authorization. A connection specification is unique to a resource adapter, so the
application needs to use the required connection specification, such as
ECIConnectionSpec. Creating ConnectionSpec is optional because the
authentication details can be specified when deploying the application.

After the component finishes with the connection, it closes the connection using
the close method, as shown in Example 12-9:

Example 12-9 Closing a connection

// close a connection
conn.close();

If an application component fails to close an allocated connection after its use,
that connection is considered an unused connection. The application server
 Chapter 12. J2EE Connector Architecture scenario 405

manages the clean up of unused connections. When terminating a component
instance, the container cleans up all connections used by that component
instance.

12.3.4 Executing the enterprise application
An interaction (Example 12-10) enables an application program to execute
functions provided by the enterprise tier. The execute method takes an input
record, output record, and an InteractionSpec. This method executes the
enterprise tier function represented by the InteractionSpec and updates the
output record.

An Interaction instance is created from a Connection and is required to maintain
its association with the Connection instance. The close method releases all
resources maintained by the resource adapter for the interaction. Closing an
Interaction instance should not close the associated connection instance.

Example 12-10 Interaction

// use connection to create an interaction object
Interaction interaction = conn.createInteraction()

In Example 12-11, the code creates the InteractionSpec that executes the
interaction on a CICS ECI resource adapter.

Example 12-11 IneractionSpec

// Create and setup the CICS ECI interation spec
InteractionSpec iSpec = interactionSpec;

While creating the Java methods in the J2C Java BeanImpl bean, Rational
Software Architect allows you to set properties in InteractionSpec. In the
ITSOMart scenario, we are using an asynchronous ECI call and set the
FunctionName as MARTACCT. See Example 12-12,

Example 12-12 Create record and execute

if (iSpec == null)
{
iSpec = new com.ibm.connector2.cics.ECIInteractionSpec();
((com.ibm.connector2.cics.ECIInteractionSpec)iSpec).setFunctionName("MARTACCT")
;
}
...
//Create Record
406 Patterns: Implementing Self-Service in an SOA Environment

com.ibm.patterns.jcaService.MartAccounts output = new
com.ibm.patterns.jcaService.MartAccounts();

// Invoke the program
interaction.execute(iSpec, input, output);

12.3.5 Transaction management
The two-phase commit capability of CICS ECI resource adapters is only
supported with WebSphere Application Server for z/OS. However, we would still
recommend that you use container-managed transactions in distributed platform
environments, and allow the container to optimize the transaction using an
only-agent optimization or last participant support.

For more information, see IBM WebSphere Developer Technical Journal:
Transactional integration of WebSphere Application Server and CICS with the
J2EE Connector Architecture at:

http://www-128.ibm.com/developerworks/websphere/techjournal/0408_wakelin/
0408_wakelin.html

12.3.6 Security
The user ID and password required to access the back-end system can be
specified in the resource adapter properties in the WebSphere Application
Server runtime environment. The user ID and password can also be specified
using a component-managed authentication alias, a container-managed
authentication alias, or programatically using the ConnectionSpec.

12.4 Development guidelines for JCA
This section describes the implementation of a JCA connection in the ITSOMart
sample application. The sample was developed using Rational Software
Architect and deployed on WebSphere Application Server V6. The service
integration bus was used to provide the destination endpoints for the Web
service.
 Chapter 12. J2EE Connector Architecture scenario 407

http://www-128.ibm.com/developerworks/websphere/techjournal/0408_wakelin/0408_wakelin.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0408_wakelin/0408_wakelin.html

The following are the steps used to build a J2C application that interfaces with
CICS transactions using ECI

1. Prepare the enterprise application, in this case a CICS-COBOL program.
2. Use the J2C Wizard to create a data binding bean and a J2C Java bean.
3. Deploy the J2C Java bean as a Web service.
4. Create inbound and outbound services for the bus.
5. Generate the client for the inbound Web service.
6. Integrate the J2C beans and the client in the ITSOMart application.

12.4.1 The CICS enterprise application

In the ITSOMart scenario, a CICS COBOL enterprise application program named
martacct.ccp exists on the back-end CICS system. It is designed to manage
customer information on a database using the E-MAIL field as the primary key.
The DFHCOMMAREA code snippet is shown in Figure 12-8 on page 409.

J2C Connector Tools: To do these steps you need v6.0.0.1 of Rational
Software Architect and the optional J2C Connector Tools. To upgrade and
add the tool, use the IBM Rational Product Updater. You can access this from
the workbench by selecting Help → Software Updates → IBM Rational
Product Updater. Click the Updates tab to find the V6.0.0.1 upgrade. The
J2C Connector Tools can be found under the Optional Features tab.

Note: This section assumes that you have an existing COBOL or
COBOL/CICS program and that you can access the source code from the
workspace.
408 Patterns: Implementing Self-Service in an SOA Environment

Figure 12-8 DFHCOMMAREA from CICS COBOL program

The martacct program file provides add, update, delete, and retrieve capability to
the database. To separate these functions, a flag called MART-FLAG will be sent
with every enterprise function call. Figure 12-9 shows the functions available in
the program.

Figure 12-9 Functions available in CICS-COBOL program

12.4.2 Create a JCA application to access the enterprise application
Rational Software Architect includes wizards that assist you in creating JCA
applications.
 Chapter 12. J2EE Connector Architecture scenario 409

The steps to create the application are as follows:

1. Create a data binding class that maps the COBOL structures to Java.

2. Create a J2C Java bean that will have the EIS connection information and the
Java methods that call the EIS functions. A J2C Java bean will use the data
binding bean class as the input and output to the available functions.

3. Optionally: Deploy the created bean as a JSP, EJB, or Web service. In this
scenario, we will deploy the J2C Java bean as a Web service.

Note that to test the application you need to have the COBOL application running
on the CICS server.

Step 1: Create the data binding class
Perform the following steps:

1. In the workbench, select File → New → Other → J2C in the tool bar.

2. Expand J2C and select CICS/IMS Java Data Binding, as shown in
Figure 12-10 on page 411.

Preparation: Before working with JCA applications in Rational Software
Architect, be sure to do the following:

1. Ensure the J2C capability is enabled in your workspace:

a. Open the workspace and select Window → Preferences.

b. Expand Workbench and click Capabilities. Make sure the box to the
left of the Enterprise Java folder is checked.

c. Click Apply and then OK.

2. Open the J2EE perspective.

This sample assumes that you have created the following:

� An enterprise application project called JCAModule. The J2EE properties
for the project specify J2EE version 1.4. The server properties specify
WebSphere Application Server V6.0 as the target server.

� A dynamic Web project in JCAModule called JCAWeb. The context root is
JCAWeb. The project properties specify Servlet version 2.4 and
WebSphere Application Server V6.0 as the target server.
410 Patterns: Implementing Self-Service in an SOA Environment

Figure 12-10 Create the J2C data binding

Click Next.

3. The next screen gives you the following data binding options:

– C MPO to Java
– COBOL to Java
– C to Java
– COBOL MPO to Java

Select COBOL to Java from the drop-down.

Browse to the COBOL program file, martacct.ccp, and click Next.

4. In the next panel, select the platform the CICS server is running on and
provide the code page settings.

Click Query to display the data structures available in enterprise application
program and select the appropriate settings.

In our example, we used the settings shown in Figure 12-11 on page 412.
 Chapter 12. J2EE Connector Architecture scenario 411

Figure 12-11 Import settings

Click Next.

5. Figure 12-12 on page 413 allows you to specify the values to use in creating
and saving the new file.
412 Patterns: Implementing Self-Service in an SOA Environment

Figure 12-12 Import settings ,Data Binding name: MartAccounts

– Choose Default for the generation style.

– In the Data Binding section, provide the Web project name, JCAWeb.

– Enter the package name com.ibm.patterns.jcaService.

– The class name defaults to the one chosen in the Importer panel
(Figure 12-11 on page 412). We chose DFHCOMMAREA. Rename it to
MartAccounts.

Click Finish.

You can see the new file in the Project Explorer view (Figure 12-13 on page 414).
 Chapter 12. J2EE Connector Architecture scenario 413

Figure 12-13 Project Explorer showing the data binding bean

Step 2: Create the J2C Java bean
In this step, we create a J2C Java bean that contains the methods to be exposed
for the client from the COBOL program. This bean will also:

� Contain the connection information for the CICS Transaction Gateway.

� Use the data binding bean class we just created for the input and output
record structure.

1. On tool menu select File → New → Other → J2C (Figure 12-10 on
page 411).

2. Expand J2C and select J2C Java Bean. Click Next.

3. The next screen, shown in Figure 12-14 on page 415,allows you to select the
resource adapter you will use to connect to the EIS system.
414 Patterns: Implementing Self-Service in an SOA Environment

Figure 12-14 Resource adapter selection.

In the View By field, select J2C version. In the resulting list of resource
adapters, expand the 1.5 category and select ECIResourceAdapter (IBM
6.0.0). Click Next.

4. In the next screen, two connection options are available:

a. Managed Connection

These connections are created by a connection factory and are managed
by the application server. The application accesses a connection factory
using JNDI.

For this option, provide the JNDI name of the connection factory.
 Chapter 12. J2EE Connector Architecture scenario 415

b. Non-managed Connection:

These are obtained directly through the resource adapter and are not
managed by the application server.

Select both connection types. The information required for our example is
shown in Figure 12-15 on page 417.

Best practice: Managed connections are recommended as best
practice. The application server’s connection manager works with the
resource adapter to manage connections efficiently, providing JCA
quality of service.

Note: When both types of connection are selected the server will first try to
find the JNDI name. Only if the managed connection cannot be located,
will the non-managed connection be tried.
416 Patterns: Implementing Self-Service in an SOA Environment

Figure 12-15 J2C Java bean connection information for our application

The following is the list of input properties for non-managed connections:

– Connection class name:
com.ibm.connector2.ECIManagedConnectionFactory.

– Connection URL: Provide the server address (URL) of the CICS ECI
server.

– Server name: Provide the name of CICS server.

– Port Number: Provide the port number to be used to communicate with
CICS TG.

– User name: Provide the user name for the connection.

– Password: provide the password for the connection
 Chapter 12. J2EE Connector Architecture scenario 417

To access the advanced CICS properties, click Show Advanced,

– Client security: Provide the client security class name.
– Server security: Provide the server security class name.
– Trace Level: Identify the level of information to be traced

Click Next.

5. The next screen (Figure 12-16) allows you to specify the output properties for
the new J2C Java bean.

Figure 12-16 J2C Bean Output properties panel

– Project name: JCAWeb
– Package name: com.ibm.patterns.jcaService
– Interface name: MartJ2CBean
– The implementation name will default to the interface name concatenated

with BeanImpl.

Click Next.

6. The next screen (Figure 12-17 on page 419) allows you to select the Java
methods for each function or service you want to access in the EIS. It will use
the COBOL importer to map the data types between the COBOL source and
the data in the Java methods.
418 Patterns: Implementing Self-Service in an SOA Environment

Figure 12-17 Java Methods created for our application

Repeat the following process four times to add these methods:

– createCustomer
– deleteCustomer
– updateCustomer
– getCustomer

a. Click Add.

b. Enter the method name and click Next.

c. Specify the input type by browsing to and selecting the data binding class.
In each case for our sample we select MartAccounts.

d. Check the Use input type for output box.

e. Click Finish.
 Chapter 12. J2EE Connector Architecture scenario 419

f. This will bring you back to the original screen where you can specify
values related to the use of the method. For our sample, each method
uses the following settings:

• interactionSpec class:
com.ibm.connector2.cics.ECIInteractionSpec

• Function name: MARTACCT
• Commarea length : -1

Click Next.

7. The next screen contains deployment information. Leave the settings as they
are and click Finish.

You can see the new Java bean in the Project Explorer view (Figure 12-18).

Figure 12-18 Project Explorer showing J2C Java bean

Step 3: Deploy the J2C Java bean as a Web service
This step deploys the J2C Java bean as a Web service.
420 Patterns: Implementing Self-Service in an SOA Environment

1. On tool menu select File → New → Other → J2C (Figure 12-10 on
page 411).

2. Expand J2C and select Web page, Web Service, or EJB from J2C Java
Bean. Click Next,

3. In the next window provide the J2C bean Impl file name we created in the
previous step:

/JCAWeb/JavaSource/com/ibm/patterns/jcaService/MartJ2CBeanImpl.java

Click Next.

4. Select Web Service as the deployment option.

5. Click Advanced and select Configure resource Adapter Deployment. Click
Next. See Figure 12-19.

Figure 12-19 Web Service Creation

– Provide the Web project name (JCAWeb) and EAR project name
(JCAModule).

– Click Advanced to view or modify the resource reference and JNDI lookup
names. We will take the defaults.
 Chapter 12. J2EE Connector Architecture scenario 421

Click Next.

6. In the next screen (Figure 12-20) you can select the server to deploy to for
testing and the deployment option.

Figure 12-20 Resource adapter deployment options

– Select Deploy as Stand Alone.

– We only have one unit test environment server defined so that server is
selected by default.

7. Click Finish.

At the completion of this step, the J2C Java bean will be deployed as a Web
service on the selected application server. The wizard will generate
MartJ2CBeanImpl.wsdl in the WebContent /wsdl folder. In addition, the following
files are generated:

� MartJ2CBeanImpl_SEI.java
� MartJ2CBean.java
� MartAccounts_Ser.java
� MartAccounts_Helper.java
� MartAccounts_Deser.java

All these files are in Project Explorer shown in Figure 12-21 on page 423.

Note: The resource reference name will update the Impl code,
replacing the JNDI name with this name. It also create a resource
reference in the deployment descriptor and will add the JNDI lookup
name as the JNDI name to this reference name.
422 Patterns: Implementing Self-Service in an SOA Environment

Figure 12-21 Generated files for the Web service

You can browse the WSDL file by double-clicking on the file in the Project
Explorer view. Rational Software Architect provides an editor especially suited
to working with WSDL files.

Figure 12-22 on page 424 shows the relationship between service, bindings and
port types defined in the WSDL for the service.
 Chapter 12. J2EE Connector Architecture scenario 423

Figure 12-22 MartJ2CBeanImpl WSDL graph (generated)

Figure 12-23 shows the relationship between the port types and messages
defined.

Figure 12-23 MartJ2CBeanImpl WSDL graph (generated)
424 Patterns: Implementing Self-Service in an SOA Environment

Figure 12-24 shows the MartAccounts data binding message parts that are
passed as arguments to each method.

Figure 12-24 MartJ2CBeanImpl WSDL graph (generated)

This completes the process of creating the JCA application and the Web service.
 Chapter 12. J2EE Connector Architecture scenario 425

12.4.3 Create the EJB Web service client

The process of generating a Web service client is detailed in , “Creating an EJB
Web service client” on page 317. This section does not go into details on those
steps already covered, but tell yous how the Web service client was generated
for the JCA portion of the ITSOMart application.

To do this we completed the following tasks:

1. Create an EJB project
2. “Create a stateless session bean” on page 427
3. “Import the WSDL files” on page 427
4. “Create a namespace mapping file” on page 427
5. “Generate Web service client” on page 428

Create an EJB project
1. In the workbench, select File → New → Other → EJB Project in the tool bar.

2. Provide the name of the project, JCAClient. Click Show Advanced.

– Make sure EJB version is 2.1 is selected and the target server is
WebSphere Application Server v6.0.

– Check Add module to an EAR project and select the Processor EAR
project.

– Uncheck Create an EJB Client JAR project to hold the client
interfaces and classes.

3. Click Finish.

Note for users of the service integration bus: The Web service client is
built using WSDL files that describe the Web service. This section assumes
you are using the WSDL generated by the Web Service wizard in the previous
section. However, in our runtime configuration, we plan to use the WebSphere
Application Server service integration bus as an intermediate destination point
for the Web service. During the bus configuration, new WSDL for this Web
service will be created, pointing to the bus as the endpoint. This process is
outlined in 12.5.3, “Configure the bus for the Web service” on page 438. If you
are using the service integration bus, you should deploy the Web service,
define it to the bus, and generate the new WSDL before generating the Web
service client.
426 Patterns: Implementing Self-Service in an SOA Environment

Create a stateless session bean
1. In the workbench, select File → New → Other → EJB → Enterprise Bean in

the tool bar.

2. Click Next.

– Select Session bean.
– EJB project: JCAClient
– Bean name: JCAWSClient
– Default Package: com.ibm.patterns.jcaService

3. Click Next and select Local client view.

4. Click Finish.

Import the WSDL files
The WSDL files need to be imported into the workspace. If you are using the
service integration bus for Web services, the WSDL must be exported from the
application server first. See “Export the new WSDL from the bus to generate the
client” on page 440.

Before starting this process, create a new folder called wsdl in
JCAClient/ejbModule/META-INF.

To import the MartJ2CBeanImplInboundService WSDL do the following:

1. In toolbar select File → Import.

2. In the dialog box, select Zip file and click Next.

3. In the next screen:

a. Specify the location of the zip file containing the WSDL.

b. Make sure the WSDL files are selected.

c. Select the project to import the WSDL files into. We want to import the files
to JCAClient/ejbModule/META-INF/wsdl.

d. Click OK.

e. Click Finish.

Create a namespace mapping file
Refer to “Create the namespace mapping files” on page 345 for information
about creating namespace mapping files.

1. Under the META-INF folder, create a folder called namespace mapping,
Create a new file nsmappings.properties, and click OK.

2. Determine the name spaces defined by the Web service. Open the service
WSDL file, ITSOMartESB.MartJ2CBeanImplInboundServiceService.wsdl,
 Chapter 12. J2EE Connector Architecture scenario 427

and examine the namespace definitions defined in the <definitions> tag, as
in Example 12-13.

Example 12-13 Definitions attribute of a service WSDL file

<wsdl:definitions xmlns:impl="http://jcaService.patterns.ibm.com"
xmlns:intf="http://jcaService.patterns.ibm.com"
xmlns:sibusbinding="http://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartE
SB/MartJ2CBeanImplInboundService/Binding" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsi="http://ws-i.org/profiles/basic/1.1/xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartESB/
Service">

3. From this file we can determine the value of the targetNamespace is:

http://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartE
SB/Service

We can also determine the value of the sibusbinding namespace is:

http://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartE
SB/MartJ2CBeanImplInboundService/Binding

Notice that these name spaces incorporate the cell and name of the service
integration bus used.

4. Create a namespace mapping file to map these two name spaces to the Java
package com.ibm.patterns.jcaService. Perform the following:

We used the mappings shown in Example 12-14.

Example 12-14 Namespace mapping file

http\://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartESB/Service=com.ibm.
patterns.jcaService
http\://www.ibm.com/websphere/sib/webservices/IBM-PKHOODNode03Cell/ITSOMartESB/MartJ2CBeanImplI
nboundService/Binding=com.ibm.patterns.jcaService

5. Save the changes to nsmapping.properties.

Generate Web service client
We are now ready to generate a Web service client for the JCA service. The
input for this is the imported WSDL file. More information about generating Web
service clients can be found in 10.5.2, “Creating a Web service from a session
bean” on page 305.

1. Select File → New → Other. Then select Web Services → Web Service
Client and click Next.
428 Patterns: Implementing Self-Service in an SOA Environment

2. We want to create a Java proxy client, so ensure Client proxy type is set to
Java proxy then click Next.

3. Select the WSDL file:

/JCAClient/ejbModule/META-INF/wsdl/ITSOMartESB.MartJ2CBeanImplI
nboundServiceBindings.wsdl.

Click Next.

4. In the next panel use the following values:

– Client type: EJB
– Client project: JCAClient
– EAR project: Processor

Click Next.

5.The next page allows security information to be specified. It also has a check
box labelled Define custom mappings for namespace to package. Select
this check box then click Next.

6. To import the namespace mappings file, click Import, expand namespace
mapping, highlight nsmappings.properties, and click OK.

7. Click Finish and the Web service client will be generated. Acknowledge any
warning messages you receive during the Web service client generation.

8. You can confirm the Web service client has been generated by examining the
[Service]Locator.java file, which in this case is
MartJ2CBeanImplInboundServiceLocator.java. You will find this in the
com.ibm.patterns.jcaService. Open this file and look for the following line of
code which indicates the address of the ITSOMartService points to the
service integration bus.

private final java.lang.String JCAPort_address =
"http://localhost:9080/wsgwsoaphttp1/soaphttpengine/ITSOMartESB/MartJ2CBean
ImplInboundService/JCAPort";

We now have to implement the methods in the JCAWSClientBean.

1. Open the JCAClient project.

2. Navigate to the /ejbModule/com.ibm.patterns.jcaService package.

3. Open JCAWSClientBean.java and insert the following code in
Example 12-15 on page 430 at the bottom of the bean. This method calls the
proxy, which in turn finds the JCA Web service.

4. Save your changes.
 Chapter 12. J2EE Connector Architecture scenario 429

Example 12-15 Add the following methods to JCAWSClientBean

public MartAccounts createMartAccount_CICS(MartAccounts input) throws
Exception{

MartAccounts respOutput_forCreate = null;
try{

MartJ2CBeanImplProxy proxy = new MartJ2CBeanImplProxy();
respOutput_forCreate = proxy.createCustomer(input);

}catch (Exception e){
System.out.println("JCAWSClientBean -

createMartAccount_CICS failed" + e.toString());
throw e;

}
return respOutput_forCreate;
}

public MartAccounts getMartAccount_CICS(MartAccounts input) throws
Exception{

MartAccounts respOutput_forGet = null;
try{

MartJ2CBeanImplProxy proxy = new MartJ2CBeanImplProxy();
respOutput_forGet = proxy.getCustomerInfo(input);

}catch (Exception e){

System.out.println("JCAWSClientBean - getMartAccount_CICS failed"
+ e.toString());

throw e;
}

return respOutput_forGet;
}

public MartAccounts updateMartAccount_CICS(MartAccounts input) throws
Exception{

MartAccounts respOutput_forUpdate = null;
try{

MartJ2CBeanImplProxy proxy = new MartJ2CBeanImplProxy();
respOutput_forUpdate = proxy.updateCustomerInfo(input);

}catch (Exception e){
System.out.println("JCAWSClientBean -

updateMartAccount_CICS failed" + e.toString());
throw e;

}
return respOutput_forUpdate;
}

430 Patterns: Implementing Self-Service in an SOA Environment

public MartAccounts deleteMartAccount_CICS(MartAccounts input) throws
Exception{

MartAccounts respOutput_forDelete = null;
try{

MartJ2CBeanImplProxy proxy = new MartJ2CBeanImplProxy();
respOutput_forDelete = proxy.deleteCustomer(input);

}catch (Exception e){
System.out.println("JCAWSClientBean -

deleteMartAccount_CICS failed" + e.toString());
throw e;

}
return respOutput_forDelete;
}

12.4.4 Integrate the JCA service client with Processor
Now we are ready to integrate the two components.

Processor.java calls the JCA service client.

Attention: During this project we ran into a few problems using the early
version of Rational Software Architect. We anticipate the fixes for these
problems to be included in a near future Fix Pack. In the meantime, here are
the problems that we ran into and the work-arounds we used.

� Problem 1: Change the componentNameLink value in bnd file.

a. Open
JCAClient/ejbModule/META-INF/ibm-webservicesclient-bnd.xmi.

b. Replace the value ___SET_THIS_TO_ejb-name___ of
componentNameLink to JCAWSClient.

� Problem 2: Change the componentNameLink value in ext file.

a. Open
JCAClient/ejbModule/META-INF/ibm-webservicesclient-ext.xmi.

b. Replace the value ___SET_THIS_TO_ejb-name___ of
componentNameLink to JCAWSClient.

� Problem 3: Add serializable statement in MartAccounts.java.

a. Open
JCAClient/ejbModule/com.ibm.patterns.jcaService/MartAccounts.
java.

b. Add implements java.io.Serializable to public class MartAccounts:

public class MartAccounts implements java.io.Serializable {
 Chapter 12. J2EE Connector Architecture scenario 431

� Processor.java can be found in ProcessorEJB EJB Project
� Package com.ibm.patterns.serialProcess.

Example 12-16 shows the snippet of code in Processor.java that invokes the
Web service for the JCA call.

Example 12-16 Call to JCA in Processor.java

private void createCustomer() {
//Call to CreditRating application
String creditRating = new ProcessorWebService().getCreditRating(customerDetails);
if (isCreditSatisfactory(creditRating)) {

//Credit is Satisfactory
//Create customer in CRM and send Acceptance Mail

ProcessorJCA.storeCustomerDetails_CICS(customerDetails);

new MailService().sendActivationMail(customerDetails);
System.out.println("Customer created successfully....");

}
else {

//Credit rating is not satisfactory
//Delete customer from Db2 and send rejection Email
deleteCustomerfromDB();
new MailService().sendRejectionEmail(customerDetails);
System.out.println("The customer does not have satisfactory credit");

}
}

private void deleteCustomer() {
ProcessorJCA.deleteCustomerDetails_CICS(pkey);
deleteCustomerfromDB();
new MailService().sendDeletionEmail(pkey);
System.out.println("Customer deleted successfully...");

}

private void updateCustomer() {

ProcessorJCA.updateCustomerDetails_CICS(pkey);

new MailService().sendUpdationEmail(customerDetails);
System.out.println("Customer details updated successfully...");

}
}

432 Patterns: Implementing Self-Service in an SOA Environment

12.5 Runtime guidelines for JCA applications
In this section we discuss some of the more pertinent points about the runtime
configuration of WebSphere Application Server V6, CICS Transaction Gateway
6.0. and IBM CICS required for the ITSOMart application.

Configuring the runtime requires the following actions:

� Install and configure the local CICS Transaction Gateway.

� Install and configure the CICS ECI resource adapter on WebSphere
Application Server.

� Configure WebSphere Application Server and the service integration bus.

This process assumes that the CICS Transaction Server and CICS application
are up and running.

12.5.1 CICS Transaction Gateway

There are three typical CICS Transaction Gateway runtime configurations for the
ITSOMart application:

� Local CICS Transaction Gateway
� Remote CICS Transaction Gateway
� Remote CICS Transaction Gateway on z/OS

The ITSOMart scenario uses a remote CICS Transaction Gateway running on a
distributed platform. It connects to the CICS server using TCP.

Local CICS Transaction Gateway
When designing a solution that includes CICS Transaction Gateway and
WebSphere Application Server, there are several topologies to consider.
Figure 12-25 on page 434 illustrates the use of a local connection between the
application running in WebSphere Application Server and CICS Transaction
Gateway. The CICS Transaction Gateway resides on the same machine as
WebSphere Application Server. The application is using the CICSECI resource
adapter.

In local mode the CICS Transaction Gateway Java code is loaded into the
application server JVM. The client daemon is invoked through the CICS
Transaction Gateway JNI layer. The client daemon then invokes an
enterprise-tier CICS program using ECI calls. The underlying protocols that the
ECI call uses to invoke CICS applications are TCP/IP, APPC, or TCP62 (APPC
over TCP/IP protocol). The ECI call can be routed to any CICS server.
 Chapter 12. J2EE Connector Architecture scenario 433

Figure 12-25 Local CICS Transaction Gateway

Remote CICS Transaction Gateway
In a remote topology (Figure 12-26), WebSphere Application Server and CICS
Transaction Gateway reside on separate machines and use TCP/IP for
communication. A gateway daemon on the CICS Transaction Gateway machine
provides the interface to the WebSphere Application Server and the client
daemon.

Figure 12-26 Remote CICS Transaction Gateway

This is the topology used in the sample ITSOMart application.

Remote CICS Transaction Gateway on z/OS
Another common topology, shown in Figure 12-27 on page 435, features a
remote CICS Transaction Gateway on z/OS. A transaction is invoked from a
distributed environment remotely using the TCP protocol. The protocol between
an application server and a CICS Transaction Gateway can be either TCP or
SSL. The CICS Transaction Gateway invokes a CICS enterprise-tier program
using the External CICS Interface (EXCI). EXCI is an interface that allows a z/OS

JNI

CICS
Transaction

Gateway

Client
Daemon

CICS
ServerCICSECI

Resource
Adapter

WebSphere Application
Server

EJB

CCI

APPC
TCP62
TCP/IP

Distributed platform

TCP

CICS Transaction
Gateway

JNI

Client Daemon

CICS
Server

CICSECI
Resource
Adapter

WebSphere Application
Server

EJB
CCI

Distributed platform

SNA
TCP62
TCP/IP

Gateway
Daemon

Distributed platform
434 Patterns: Implementing Self-Service in an SOA Environment

address space, such as a native Java process running under the z/OS UNIX
service, to invoke a CICS transaction. The CICS program is invoked using a
mirror transaction that resides in the same CICS region as the CICS application.
EXCI calls can be routed to any CICS region within a sysplex, which means that
the CICS application can reside in a different z/OS system from the CICS
Transaction Gateway.

Figure 12-27 Remote CICS Transaction Gateway on z/OS

12.5.2 WebSphere Application Server V6 configuration
This section describes the runtime setup for the application in WebSphere
Application Server V6. It consists of the following steps:

� Installing a CICS ECI resource adapter
� “Configuring a connection factory” on page 437
� Configure the bus

Installing a CICS ECI resource adapter
To install the CICS ECI resource adapter in WebSphere Application Server:

1. Locate the CICS ECI J2C resource adapter archive (RAR) file.

The CICS ECI adapter we used is available with the Rational Application
Developer and Rational Software Architect in the following location:

<Rational_Install>\Resource Adapters\cics15\cicseci.rar

2. Open the WebSphere administrative console and select Resources →
Resource Adapters in the navigation tree.

3. Click the Install RAR button to install the .rar file into WebSphere.

4. Browse to the cicseci.rar file and click Next. See Figure 12-28 on page 436.

TCP

CICS Transaction
Gateway

JNI

CICS Server

CICSECI
Resource

Adapter

WebSphere Application
Server

EJB
CCI

Distributed platform

Gateway
Daemon

z/OS

EXCI
 Chapter 12. J2EE Connector Architecture scenario 435

Figure 12-28 Installing the RAR file

5. In the next panel, leave all the fields blank so that WebSphere uses the
values from the RAR file deployment descriptor. Click OK. This installs the
resource adapter file. You will see an entry in the resource adapter list called
ECIResourceAdapter. Next we add the resource adapter definition.

6. Click New.

7. In the Resource Adapters Configuration form:

– Set the Name to cicseci.

– Select the following archive path:

${CONNECTOR_INSTALL_ROOT}/cicseci.rar

Click OK.

Create a J2C authentication data entry
The authentication data entry will be used to access the CICS system.

To add a J2C authentication data entry, do the following tasks:

1. Select Security → Global Security.

2. Under the Authentication section expand JAAS configuration and select
J2C Authentication data/
436 Patterns: Implementing Self-Service in an SOA Environment

3. Click New.

4. Provide an alias for use when defining this to a resource, and supply a user ID
and password with the authority to access CICS.

Configuring a connection factory
To add a connection factory for the application, perform the following tasks:

1. Select Resources → Resource Adapters in the navigation tree.

2. Click the new cicseci in the resource adapter list.

3. Under Additional Properties click J2C Connection factories.

4. In the J2C Connection factories form click New.

5. In the J2C Connection factories General Properties form, shown in
Figure 12-29, provide the following information:

Figure 12-29 J2C Connection Factories General Properties

– Name: MartAccountCFRef

– JNDI name: eis/MartAccountCF

– Select the authentication data entry you created in the drop-down list for
the component-managed authentication alias.

Click OK.

6. Click the new MartAccountCFRef in the J2C Connection Factories list.

7. Under Additional Properties click Custom Properties and complete the
required connection properties for CICS:
 Chapter 12. J2EE Connector Architecture scenario 437

– Set the ServerName to the CICS TG server name.

– Set the fully qualified host name (ConnectionURL) to the machine CICS
TG is installed.

– Set the PortNumber for CICS TG. The default is 2006.

Figure 12-30 Connection factory Properties

8. Save your changes.

12.5.3 Configure the bus for the Web service

Note: Our scenario assumes that you have done the following:

� Created a bus called ITSOMartBus and added the application server as a
member.

For information about creating the bus and adding the members, see
“Create a service integration bus” on page 463.

� Installed the Web services support for the bus. For information about how
to do this, see “Install Web services support for the bus” on page 464.

This section is very much a repeat of the information found in 10.7, “Runtime
guidelines for Web services” on page 331 so we will not go into detail, but just
briefly touch on what needs to be done for the ITSOMart application.
438 Patterns: Implementing Self-Service in an SOA Environment

Create an endpoint listener
Create an endpoint listener for the application server using the following settings.
The instructions for this are in “Create an endpoint listener” on page 335.

� Name: SOAPHTTPChannel2.

� URL root:

http://localhost:9080/ws2soaphttp

� WSDL serving HTTP URL root:

http://localhost:9080/JCAWeb/wsdl

� Add a connection property and select ITSOMartBus as the bus.

Create an outbound service
Use the instructions in 10.7.4, “Create the outbound services” on page 337 to
create an outbound service with the following settings:

� WSDL location type: URL

� WSDL location:

http://localhost:9080/JCAWeb/wsdl/com/ibm/patterns/jcaService/MartJ2CBeanIm
pl.wsdl

� Service: MartJ2CBeanImplService

� Port: MartJ2CBeanImpl

Create the inbound service
Use the instructions in 10.7.5, “Create the inbound services” on page 340 to
create an inbound service with the following settings:

� Service destination name:

http://jcaService.patterns.ibm.com:MartJ2CBeanImplService:MartJ2CBeanImpl

� Template type: URL

� Template WSDL location:

http://localhost:9080/JCAWeb/services/MartJ2CBeanImpl/wsdl/MartJ2CBeanImpl.
wsdl

� Inbound service name: MartJ2CBeanImplInboundService

� Endpoint listener: SOAPHTTPChannel2

� Port name: JCAPort

The results can be seen in Figure 12-31 on page 440.
 Chapter 12. J2EE Connector Architecture scenario 439

Figure 12-31 Inbound service for JCA

Export the new WSDL from the bus to generate the client
Use the instructions in 10.7.6, “Generate and export new WSDL for the services”
on page 343 to export the WSDL for use with Rational Software Architect. You
can export the files by opening MartJ2CBeanImplInboundService in the
inbound services list for the bus.

Use the instructions found in “Create the EJB Web service client” on page 426 to
generate the Web client.

12.5.4 Setting up the CICS application
In this scenario, WebSphere Application Server connects to the CICS server
using the CICS Transaction Gateway. The application developer and deployer
only see this interface. The actual CICS server could be located on a mainframe
z/OS environment or on an Encina-based TxSeries distributed environment.

To set up the ITSOMart CICS application, perform the following tasks:

1. Create a new region called MARTREGN on the CICS server.
440 Patterns: Implementing Self-Service in an SOA Environment

2. Compile the MARTACCT.ccp file and add MARTACCT.ibmcob file in the bin
directory for the CICS region.

3. Start the region.

4. Test the program using the Local CICSTERM program.

12.6 System management guidelines for JCA
This section provides system management guidelines for J2EE
Connector-enabled applications and the underlying CICS environment. We look
at the following topics:

� 12.6.1, “Logging and tracing” on page 441
� 12.6.2, “Performance monitoring and tuning” on page 442
� 12.6.3, “Scalability and availability considerations” on page 444
� 12.6.4, “Security considerations” on page 448

12.6.1 Logging and tracing
It is often helpful to examine log and trace files when your application
experiences J2EE Connector errors or problems.

Application logging
It is always important for applications to record their activity to a logging facility.
When you write a log to the standard output file or standard error file, the
application server will record it to the corresponding log files.

Connection factory trace
Connection factory classes can be traced using the WebSphere Application
Server trace service. The trace level can also be set as a connection factory
property in WebSphere administrative console.

Connection factory tracing is often not particularly helpful when debugging the
CICS interaction. CICS TG tracing is usually the better option.

CICS TG trace
CICS Transaction Gateway (CICS TG) trace records detail activities of the CICS
TG gateway daemon, such as the processing of ECI requests from clients. The
four levels of tracing are:
 Chapter 12. J2EE Connector Architecture scenario 441

� stack tracing
� standard tracing
� debug tracing
� JNI tracing

JNI tracing is usually the most useful of all traces. It is the JNI level between the
Java CICS TG and the native EXCI or CICS client.

The application can enable tracing programmatically. It can also be enabled
dynamically in the Gateway daemon using the TCPAdmin protocol handler, or
statically as a start option. CICS TG trace is recorded in the standard output file
or standard error file.

External CICS Interface trace
The External CICS Interface (EXCI) provides a programming interface for the
non-CICS address space to invoke CICS programs. CICS TG utilizes EXCI to
communicate with the CICS program. The CICS Transaction Gateway writes
trace entries to the EXCI trace when it issues an EXCI request. The trace entries
in a dump can be printed using standard z/OS utilities (GTF).

CICS trace
CICS Transaction Server provides a facility for recording CICS activity. In CICS
for MVS™, there are three destinations for trace entries: Internal trace, auxiliary
trace, and generalized trace facility (GTF).

12.6.2 Performance monitoring and tuning
In this section we briefly look at performance monitoring and tuning for J2EE
Connectors in WebSphere Application Server V6.0.

Using Tivoli Performance Viewer
The Tivoli Performance Viewer is a graphical performance monitor for
WebSphere Application Server V6. This can be accessed through the
WebSphere administrative console by selecting Monitoring and Tuning →
Performance Viewer. You can use the Performance Viewer to retrieve
performance data from application servers. Data is collected continuously by
application servers and retrieved as needed from within the Viewer.

You can regulate the impact of data collection by modifying the PMI settings.
These settings can be found viewed and modified by selecting Monitoring and
Tuning → Performance Monitoring Infrastructure (PMI). The counters in the
JCA Connection Pools category provides information about J2EE connectors,
such as the number of managed connections (ManagedConnections) and the
442 Patterns: Implementing Self-Service in an SOA Environment

number of connection handles (connections). Figure 12-32 shows the PMI
options available under JCA connection pools.

Figure 12-32 Tivoli Performance Viewer JCA connection pool options

Tuning connection pooling properties
There are several parameters you can set to optimize connection pooling
properties using the WebSphere administrative console:

� Connection timeout

This is the number of milliseconds after which a connection request is
determined to have timed out and a ResourceAllocationException is thrown.
The wait might be necessary if the maximum value of connections has been
reached (MaxConnections). This value has no meaning if the maximum
connections property has not been set.
 Chapter 12. J2EE Connector Architecture scenario 443

If the connection timeout is set to a very small number such as 1, the
ResourceAllocationException is thrown almost immediately after the pool
manager determines that the maximum number of connections has been
used. If the connection timeout is set to 0, the pool manager waits until a
connection can be allocated. In other words, it waits until the number of
connections falls below the maximum connections.

� Maximum connections

This is the maximum number of managed connections that can be created by
a particular ManagedConnectionFactory. After this number is reached, no
new connections are created, and either the requester waits or the
ResourceAllocationException is thrown. If maximum connections is set to 0,
the number of connections can grow indefinitely. Maximum connections must
be larger than minimum connections.

� Minimum connections

The minimum number of managed connections to maintain. If this number is
reached, the garbage collector will not discard any managed connections.
Note that if the actual number of connections is lower than the value specified
by the minimum connections settings, no attempt will be made to increase the
number of connections to the minimum. Minimum connections must be less
than or equal to maximum connections.

� Reap time

This is the number of seconds between runs of the garbage collector. The
garbage collector discards all connections that have been unused for the
value specified by the unused timeout.

To disable the garbage collector, set the reap time to 0. Another way to
disable the garbage collector is to set the unused timeout to 0.

� Unused timeout

Number of milliseconds after which an unused connection is discarded.
Setting this value to 0 disables the garbage collector.

12.6.3 Scalability and availability considerations
As shown in Figure 12-33 on page 445, there are several scalability and
availability options when using J2EE connectors to access CICS enterprise
applications:

� EJB workload management provided by WebSphere Application Server.

� Inbound CICS TG requests (TCP or HTTP) can be workload managed using
various methods.
444 Patterns: Implementing Self-Service in an SOA Environment

� CICS requests (ECI or EPI) can be workload managed using CICS scalability
technologies.

Figure 12-33 Scalability options

EJB workload management
EJBs deployed in WebSphere Application Server V6 can take advantage of the
workload management (WLM) facility for EJBs. In WebSphere Application
Server, workload management for EJBs is enabled automatically when clusters
are created in a cell. There is no need for a special configuration to enable it.

Workload management of CICS TG requests
This section describes scalability and availability options between EJBs in a
distributed environment (Windows or UNIX) and the CICS TG in a zSeries®
environment. An ECI request from a J2EE connector resource adapter goes to
the CICS TG on zSeries as an HTTP or TCP request.

Web
Browser

Servlet

CICS ECI
Resource
Adapter

EJB

CICS ECI
Resource
Adapter

EJB

CICS ECI
Resource
Adapter

EJB

:

CICS
Transaction

Gateway

CICS
Transaction

Gateway

CICS
Transaction

Gateway

:

CICS TS

CICS
Program

(ITSOMART)

CICS TS

CICS
Program

(ITSOMART)

CICS TS

CICS
Program

(ITSOMART)

:

RMI/IIOP TCP/HTTP EXCI/MRO

1 2 32

JSP
 Chapter 12. J2EE Connector Architecture scenario 445

WLM across LPARs
Options for implementing workload managing CICS TG for z/OS requests across
LPARs include:

� IBM Load Balancer

Load Balancer is an IBM solution that provides an advanced IP-level
workload-balancing mechanism. The function is provided as a component of
IBM WebSphere Edge Server. It can provide workload balancing for any TCP
or UDP protocol, including HTTP requests to a Web server or TCP packets to
an application such as the CICS Transaction Gateway. Load Balancer can be
used to perform load balancing of inbound requests to CICS TG for z/OS.

� DNS connection optimization

DNS connection optimization allows workloads to be distributed across
multiple z/OS images. DNS connection optimization balances IP connections
in a z/OS sysplex IP domain, by dynamically updating the z/OS DNS server
database based on feedback from MVS WLM about the health of the
registered applications. This is sometimes referred to as dynamic DNS,
although this feature merely refers to the dynamic update function of the z/OS
DNS server.

� Sysplex distributor

Sysplex distributor is implemented in z/OS V2.10 and offers major
enhancements to TCP/IP workload management in a sysplex. Balancing is
enabled by using a single-cluster IP address, which routes packets onto
multiple nodes. Sysplex distributor provides for close integration with the MVS
WLM policy agent and service level agreements (SLAs) in making the routing
decisions. This is different from Load Balancer because it has to poll the WLM
advisor on z/OS to update its routing information. The cluster IP address is
actually a VIPA (virtual IP address) and so can be dynamically routed to
another z/OS LPAR in the sysplex. This allows for failover of the cluster
address.

WLM within an LPAR
TCP/IP port sharing provides a simple way of workload balancing HTTP requests
across a group of cloned address spaces running in the same z/OS image. For
our purposes these could be cloned CICS regions, CICS TG Java gateway
applications, or Web servers. To enable port sharing, the address spaces are
configured to listen on the same TCP/IP port number, and the SHAREPORT
parameter is specified in the TCP/IP profile. As incoming client connections
arrive for this port, TCP/IP will distribute them across the address spaces that are
listening on the shared port. TCP/IP will select the address space with the least
number of connections (both active and in the backlog) at the time that the
incoming client connection request is received. This allows you to do workload
balancing for incoming HTTP requests across several cloned address spaces.
446 Patterns: Implementing Self-Service in an SOA Environment

The workload balancing is based entirely on the number of IP connections, and
so does not take into account the individual health or capacity of any given CICS
region. However, it does provide a very simple means of providing failover and
workload balancing across multiple regions within an LPAR. The TCP/IP Port
Sharing function is provided by the Communication Server for z/OS.

Workload management of CICS requests
This section describes scalability options within a CICS world. The following
functions provide workload management of requests from the CICS TG to a
zSeries CICS region.

WLM from CICS Client daemon
When the CICS TG resides in a distributed environment, the CICS Client
daemon, also sitting in the distributed environment, will kick off the CICS
transaction residing on zSeries. The CICS Client daemon provides a workload
management function for load balancing ECI requests. Options are provided that
allow you to balance work across CICS regions using either a round-robin
technique or a weighted distribution.

The CICS Client daemon also provides the ability to detect failed regions, and
provides a configurable timeout period to check the status of regions that have
previously failed. It does not, however, provide any form of performance agent
for feedback on the status of the CICS regions. Thus, it is best viewed as a
means of removing a single-point-of-failure in a listener region. Note that the
CICS Client Daemon Workload Manager is not available with the CICS Client
daemon on AIX® and Solaris™, but the exit on which it is based is provided,
enabling you to implement your own customized workload manager.

WLM from CICS TG for z/OS
Workload management functions that are applicable when CICS Transaction
Gateway resides in zSeries include:

� External CICS Interface (EXCI)

EXCI provides a programming interface for non-CICS address space
programs to invoke CICS programs. CICS TG utilizes EXCI to communicate
with the CICS program. CICS TG provides a user-replaceable module called
DFHXCURM to perform basic load balancing. It allows the destination CICS
APPLID on and EXCI call to be altered and various retryable errors to be
handled. This allows for basic workload balancing of EXCI calls, based on a
simple availability check to be performed in this exit before the EXCI call is
sent to the CICS system.
 Chapter 12. J2EE Connector Architecture scenario 447

� CICS multi-region operation

CICS multi-region operation (MRO) enables CICS systems that are running in
the same MVS image, or in the same MVS sysplex, to communicate with
each other. MRO does not support communication between a CICS system
and a non-CICS system such as IMS. MRO is a widely used technique that is
a central part of CICS scalability.

� CICS distributed program link

CICS distributed program link (DPL) enables CICS application programs to
run programs residing in other CICS regions by shipping program-control
LINK requests. An application can be written without regard for the location of
the requested programs. It simply uses program-control LINK commands in
the usual way. Entries in the CICS program definition tables allow the system
programmer to specify that the named program is not in the local region (s the
client region), but in a remote region (server region).

An ECI request from CICS TG in either zSeries or a distributed environment
comes to an enterprise CICS program as a DPL request. The request can be
routed to a CICS program that resides in any CICS region in a sysplex.

12.6.4 Security considerations
The J2EE Connector Architecture security contract extends the J2EE security
model to provide secure connections to EIS. To create a connection to an EIS,
there must be some form of signing on to the EIS, to authenticate the connection
requester. Re-authentication can also take place if supported by the EIS. This
occurs when the security context is changed after a connection is made. (For
example, connection pooling could cause a re-authentication when the
connection is redistributed.)

Performing the sign-on generally involves one or more of the following steps:

1. Determine the resource principal under whose security context the
connection will be made.

2. Authenticate the resource principal.

3. Establish secure communications.

4. Determine authorization (access control).

The application component requests that a connection be established under the
security context of a resource principal. For example, a CICS ECI application can
specify the user name and password to the resource adapter that signs on to
CICS to invoke the CICS program. Once a connection is established
successfully, all application-level invocations to the EIS instance using the
448 Patterns: Implementing Self-Service in an SOA Environment

connection happen under the security context of the resource principal. The
application component has the following two choices related to EIS sign-on:

� Container-managed sign-on

The deployer sets up the resource principal and EIS sign-on information. For
example, the deployer sets the user name and password for establishing a
connection to an EIS instance.

� Component-managed sign-on

Application code in the component performs the sign-on to an EIS by
explicitly specifying the security information for a resource principal.

If you choose component-managed sign-on, you need to specify a user name
and password at an instance of ConnectionSpec. Example in design describes
the way to use ConnectionSpec when used with the CICS ECI resource adapter.

WebSphere Application Server V6.0 supports component-managed sign-on
(Option C in the J2EE Connector Architecture Specification) which requires the
component to pass user ID and password credentials through the
ConnectionSpec to CICS. If the credentials in the ConnectionSpec are not set,
then the credentials in the ManagedConnectionFactory are used to authenticate
to CICS. WebSphere Application Server V6.0 also supports container-managed
sign-on with the use of a user ID and password credential (Option A in the J2EE
Connector Architecture Specification).

This section provides some security guidelines for J2EE Connector-enabled
applications and the underlying CICS environment. We look at the following
topics:

� Signing on to the enterprise tier
� SSL encryption support
� CICS security

Signing on to the enterprise tier
The J2EE Connector Architecture provides security contacts for an application
component. A user ID and password can be specified by the application
component, or it can be specified in the deployment descriptor when the security
contract is managed by the EJB container.

Authentication can be performed against the Resource Access Control Facility
(RACF®) using user ID and password authentication in the CICS TG for z/OS, by
setting the variable AUTH_USERID_PASSWORD=YES in the ctgstart script.
 Chapter 12. J2EE Connector Architecture scenario 449

If the CICS TG runs on a distributed platform it is possible to use the ESIRequest
to verify user IDs and passwords with the destination CICS region. On all
platforms, it is also possible to use SSL client certificates to identify the
authenticity of the CICS TG.

The authorization attributed to the server program running in CICS is always
based on a user ID. The Java client program should obtain this user ID (and
password) from the Web user, and flow it with every ECI or EPI call. The
ATTACHSEC setting on the CONNECTION between CICS and the CICS TG will
determine how CICS will use the user ID flowed on the client’s ECI and EPI calls.

As shown in Figure 12-34, steps for a typical sign-on scenario using CICS TG for
z/OS are:

Figure 12-34 Sign-on scenario using CICS TG on a mainframe

1. An end user enters a user ID and password from a browser.

2. The user ID and password are set in the ConnectionSpec by the application
component running in the application server.

3. The CICS TG for z/OS performs an authentication using RACF DB.

WebSphere Application
Server

(Servlet/JSP/EJBs)

z/OS UNIX Service

OS/390 or z/OS

TCP/IP
CICS Transaction

Gateway

Gateway
Deamon

Web
Browser

CICS TS

Mirror
Program

(DFHMIRS)

CICS
Program

(CALCRATE)

CPMI

Client
Deamon

CICS ECI
Resource
Adapter

Servlet EJB

Windows/AIX/Linux

RACF DB

CICS
 Resources

1

3

4

2

EXCI
JSP

TCP/SSL
450 Patterns: Implementing Self-Service in an SOA Environment

4. At the enterprise CICS region, the user ID is checked using RACF DB again,
and authorization is done based on the CICS resource definition.

SSL encryption support
The client application connects to the gateway daemon using TCP/IP sockets
(TCP). A secure version using SSL is also available. As an alternative to SSL,
the CICS TG security exit can be used to support your own encryption/decryption
procedure between the Java application and the CICS TG server.

CICS security
CICS uses the z/OS System Authorization Facility (SAF) to route authorization
requests to an external security manager (ESM) to perform all its security
checks. Any suitable ESM could be used, but because the IBM Resource Access
Control Facility (RACF) product is the most commonly used ESM, we refer to
RACF when discussing CICS external security. For complete information about
CICS security, refer to the CICS RACF Security Guide, SC33-1701.

To support any CICS security checking, the appropriate security profiles must
first be defined in RACF for all the users, groups, and resources you want to
protect. Security is then enabled within a CICS region using the SEC parameter
in the System Initialization Table (SIT). If SEC=YES is specified, CICS external
security is enabled, and CICS then uses the SIT parameters XAPPC, XCMD,
XDB2, XDCT, XFCT, XJCT, XLT, XPCT, XPPT, XPSB, XTRAN, XTST, and
XUSER to further control security. If SEC=NO is specified, no security checking is
performed, and users have unrestricted access.

For each CICS region that uses security, you are required to have two
special-purpose user IDs, the default user ID and the region user ID. Because
CICS tasks always run under a user ID, the default user ID is used when users
do not explicitly sign on (and in a few other special instances). Thus, the default
user ID should be given very low authorization levels. The default user ID is
specified on the DFLTUSER SIT parameter. The region user ID is the user ID
under which the CICS job itself runs. The region user IDt is by definition a
powerful user ID and is also used in determining if connected CICS systems are
equivalent.

Authentication of CICS users is the responsibility of RACF. Users can either be
authenticated with the traditional mechanism of user ID and passwords (CICS
sign-on), or, more recently, by the use of SSL client certificates when using CICS
Web support or CICS CORBA client support. Having authenticated the user,
CICS can apply two levels of authorization to a transaction. The first is
 Chapter 12. J2EE Connector Architecture scenario 451

transaction security, sometimes referred to as attach-time or transaction-attach
security. The next level of security is resource security and applies to
CICS-controlled resources such as programs, files, or queues used by the
transaction.

Within an application, further authorization can be controlled by CICS. The CICS
system programming command can be protected by the facilities of command
security, and the issuing of requests on an interconnected CICS system can be
controlled using intercommunication security. Lastly, surrogate user security can
also be used to authorize an authenticated user to perform actions on behalf of a
different user.

For more details on CICS security, refer to the publication Securing Web Access
to CICS, SG24-5756.

12.7 For more information
For more information, see:

� WebSphere Application Server Version 6.0 Information Center, available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

� J2EE Connector Architecture Specification Version 1.5

http://java.sun.com/j2ee/connector/

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

� Patterns: Self-Service Application Solutions Using WebSphere V5.0,
SG24-6591
452 Patterns: Implementing Self-Service in an SOA Environment

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://java.sun.com/j2ee/connector/

Appendix A. Sample application install
summary

This appendix contains the instructions needed to import the ITSOMart sample
application into Rational Software Architect or Rational Application Developer
and to configure the WebSphere Application Server V6 unit test environment to
run the sample. The recommended release of either Rational product is 6.0.0.1
with the J2EE Connector Tools Feature installed.

A

© Copyright IBM Corp. 2005, 2006. All rights reserved. 453

Description of application files
The application contains the following EAR files:

� OrderSystemV6.ear
� Processor.ear
� CreditCheck.ear
� JCAModule.ear
� MailService.ear
� XlateToXML.ear
� DeliverySystem.ear
� RoutingMediationsEJBEAR.ear
� AggregatorEJBEAR.ear

Figure A-1 shows an overview of the ITSOMart sample application.

Figure A-1 ITSOMart runtime configuration

PATTERNS

HTTP
Requests Self Service

Application

ITSOMartBus

Processor

(MDB) Web
service

Credit Check
Proxy

CustomerToProcessor.Queue

CreditCheck

CreditCheck.ear

JCA
Resource
Adapter

CRM (CICS)CRM Proxy
Web

service

JCAModule.ear

Mail Sender
(MDB) MailService

Mail Service Proxy
(JMS)

Xlate
text > XML

ProcessorToMail.Queue

MailService.ear

Mail Server

OrderSystemV6.ear

Processor.ear

PATTERNS

Get Account
 Proxy

HomeDelivery
Web

service
BusinessDelivery

DeliverySystem.ear

RoutingMediationsEJBEAR.ear
AggregatorEJBEAR.ear
454 Patterns: Implementing Self-Service in an SOA Environment

Import the source files to the workbench
In order to prepare the application for runtime, you need to have access to the
application files from Rational Application Developer or Rational Software
Architect.

Make sure you have the J2EE Connector Tools optional feature installed and
that your service level is 6.0.0.1.

1. Unzip SG246680.zip into a temporary directory.

2. Open the development tool and switch to the J2EE perspective.

3. Import each EAR file included by doing the following:

a. Select File → Import.
b. Select EAR file and click Next.
c. Browse to the first .ear file in the temporary directory and click Open.
d. Click Finish.

4. Repeat step 3 for each of the EAR files.

5. In the Project Explorer, under Dynamic Web Projects, find JCAWeb.
Right-click it and select Properties.

6. Click Java Build Path in the left side of the window, and in the right. Click the
Projects tab. See Figure A-2 on page 456.

7. Check the box to the left of cicseci and click OK.

Tip: Installation on Windows-based systems might run into problems with
reaching the maximum length of 256 characters for a directory path (URI)

Work around: Create another profile under C:/profiles/ and ensure that
you install the Web services support using the newly created profile. Refer to
Rational Application Developer V6 Programming Guide, SG24-6449 for
details.
 Appendix A. Sample application install summary 455

Figure A-2 JCAWeb Java build path settings

Note that you still have an error in the Problems view that says
CreditCheckProxy can not be resolved or is not a type. This problem will be
resolved later in “CreditCheck application” on page 472 when the WSDL file is
copied to the project and a new client is generated. You can also see a few
warning messages that you can ignore.

Runtime preparation
The sample application can be deployed to a WebSphere Application Server V6
application server, or to a WebSphere Application Server V6 test environment in
Rational Application Developer or Rational Software Architect.

In both instances, the runtime environment is configured using the WebSphere
administrative console. The difference will be in the method of deployment and in
the location of the runtime files for WebSphere.

This assumes a standalone application server. If you are using Network
Deployment, you might see some slight differences in the administrative console
menu and in the range of options on the configuration pages.

In these instructions, we assume the following. You might need to make
adjustments based on your installation.

� That you have a running standalone application server named server1 using
port 9080 for access to the Web container.
456 Patterns: Implementing Self-Service in an SOA Environment

In the unit test environment, make sure the server has the type Base,
Express, or unmanaged Network Deployment server. You can see this by
double-clicking the server in the Servers view. The server configuration opens
and you see the Server type box under the Network Deployment section.

The only time this matters with the sample is when you are installing the Web
services support. In a distributed environment, you must use DB2 for the SDO
repository. This is not difficult, but for this sample, it is best not to complicate
matters.

� That you have opened the administrative console.

� That you are using a Windows system. If you are not using Windows most of
these instructions will still work as documented but you may need to refer to
the WebSphere InfoCenter for platform-specific information such as
command locations or extensions.

� File locations will be denoted with <was_install>. For example, if you have
WebSphere Application Server installed, <was_install> will look similar to
C:\WebSphere\AppServer. In the Rational test environment, it might look
similar to C:\Rational\RSA\runtimes\base_v6.

When dealing with relatively new WebSphere features such as the bus, we go
into detail on how to perform these tasks. For other tasks that have remained
much the same from previous versions of WebSphere such as creating data
sources, we simply give you the information you need to populate those items.

Configuring the data source and creating the database
The application uses a customer database called PATTERNS. This database
holds the customer registration information entered by the customer. The
Patterns database used by the application can be implemented uding a DB2
database or a Cloudscape™ database.

Test environment: To get to the administrative console, do the following:

1. Switch to the J2EE perspective and select the Servers view.

2. Right-click the WebSphere Application Server v6.0 entry, and select
Start. The Console view opens and you can see the messages from
the start up of the server.

3. When you see the Open for e-business message, switch back to the
Servers view. Right-click the server and select Run administrative
console.
 Appendix A. Sample application install summary 457

Using a DB2 database
The advantage of using DB2 for the sample is the availability of the DB2
administrative tools. In particular, the Control Center is useful for displaying the
database tables and querying the table entries. This allows you to easily see if
the application is storing the customer information in the table. It also makes it
easy to delete entries.

Create the database
Use these steps to create the database:

1. Copy the PATTERNS.sql file to a temporary location, for example C:\temp.
This file has been included in the zip file you download. It is also located in
located in <workspace>\OrderSystemEJB\Scripts\Data.

2. Open DB2 command window and enter the information in Example A-1.

Example: A-1 Creating the database

cd C:\temp

db2cmd

db2 create db patterns
db2 connect to patterns
db2 -tvf PATTERNS.sql
db2 connect reset

Create the data source
Use the administrative console to create the following items.

1. Create a J2C authentication entry with the user ID / password authorized to
access the database. See Figure A-3 on page 459.
458 Patterns: Implementing Self-Service in an SOA Environment

Figure A-3 J2C authentication entry for the Patters database

2. Create a JDBC provider with the following properties, as in Figure A-4 on
page 460.
 Appendix A. Sample application install summary 459

Figure A-4 JDBC driver for the Patterns database

3. Create a data source with the following properties, as in Figure A-5 on
page 461.

Note: The default configuration for this DB2 driver uses environment
variables to specify the location of the various driver files. Be sure that you
have set the following environment variable (select Environment →
WebSphere variables)

� DB2UNIVERSAL_JDBC_DRIVER_PATH to the proper value, for
example, c:\sqllib\java.
460 Patterns: Implementing Self-Service in an SOA Environment

Figure A-5 Data source for the Patterns Database

4. Test the connection to make sure the access is working.
 Appendix A. Sample application install summary 461

Using a Cloudscape database
Using a Cloudscape database eliminates the need for access to a DB2 server.
The sample includes a ready-to-use Cloudscape database that you can simply
copy into your WebSphere Application Server files. Cloudscape databases can
be viewed and manipulated using the cview.bat tool in
<was_install>\cloudscape\bin\embedded directory.

Create the database
The Cloudscape database, PATTERNS.zip is included in the sample zip file.

1. Create a new folder in the <was_install>\cloudscape directory called
PATTERNS.

2. Unzip this file into the <was_install>\cloudscape\PATTERNS directory.
Figure A-6 shows the directory structure when unzipped into the directory
structure for Rational Software Architect test server environment.

Figure A-6 Cloudscape database

Create the data source
Use the administrative console to create the following items.

1. Create a JDBC provider with the following properties, as in Figure A-7 on
page 463.
462 Patterns: Implementing Self-Service in an SOA Environment

Figure A-7 JDBC driver for the Patterns database

2. Create a data source. Use the defaults along with the following properties:

– JNDI name: jdbc/Patterns
– Select Use this Data Source in container managed persistence
– Database name: PATTERNS

3. Test the connection to make sure the access is working.

Create a service integration bus
The application sample uses a service integration bus as the default JMS
provider and for Web service destinations. You need to create the bus and add
the application server where the application will run as a member of the bus.

1. Create a bus by selecting Service integration → Buses.

2. Click New.

3. Enter ITSOMartBus for the name and click Apply.

4. Click the Bus members link under Additional Properties.

5. Click Add.
 Appendix A. Sample application install summary 463

6. Click Server, and select the server on which you will run the application. If
you only have a standalone server, the defaults are correct. Click Next.

7. Click Finish.

8. Restart the server.

Install Web services support for the bus
The service integration bus Web services support is not installed by default when
you install WebSphere Application Server, so this needs to be performed
manually.

Installing this support requires you to do the following:

� Install the SDO Repository application.
� Install the resource adapter.
� Install the SIBWS application.
� Install the SOAP over HTTP endpoint listener application.

Scripts are provided to assist you with installing these features. All commands
should be run from a command prompt in the <was_install>/bin directory.

Install the SDO Repository application
The SDO Repository application must be installed to manage the repository. In a
standalone server environment, you can use Cloudscape for the repository. This
step will create it for you.

1. Run the following commands:

cd <was_install>\bin

wsadmin.ext -f installSdoRepository.jacl -createDb

Where ext is the file extension, bat for a Microsoft Windows system and sh
for a UNIX system.

2. Look for the message that confirms that the SDO repository installation
completed successfully.

Note: These instructions assume you have a standalone application server.
Managed servers in a Network Deployment environment must use DB2 for the
SDO repository. Refer to the InfoCenter for instructions on created the DB2
database and installing the SDO repository application, if this is the case.
464 Patterns: Implementing Self-Service in an SOA Environment

The -createDb flag instructs the script to install IBM Cloudscape as the
underlying database for the SDO repository.

Install the resource adapter
The resource adapter is required to enable outbound services to be correctly
configured within the bus. It should be installed before the core application and
endpoint listeners. To install the resource adapter, perform the following steps:

1. Run the following command in Example A-2. The clusterName is optional and
should only be specified in a clustered environment:

Example: A-2 Installing the resource adapter

cd <was_install>\bin

wsadmin -f <was_install>/util/sibwsInstall.jacl INSTALL_RA -installRoot
<was_install> -nodeName node-name -profileName profile_name [-clusterName
cluster_name]

Tip: If changes have to be made to the SDO installation, users should first run
the script to uninstall the SDO repository before reinstalling:

wsadmin.ext -f uninstallSdoRepository.jacl -removeDb

This removes the application and JDBC configuration information. To remove
the actual database itself, you will have to delete the database from the

<was_install>/profiles/your_profile/databases/SdoRepDb directory.
 Appendix A. Sample application install summary 465

For example:

./wsadmin.sh -f /opt/WebSphere/AppServer/util/sibwsInstall.jacl INSTALL_RA
-installRoot /opt/WebSphere/AppServer -nodeName myNode01 -profileName
new_profile_name

In our Rational test environment we entered:

wsadmin -f c:/Rational/RSA/runtimes/base_v6/util/sibwsInstall.jacl
INSTALL_RA -installRoot “c:/Rational/RSA/runtimes/base_v6” -nodeName Node01

2. Look for the message that confirms that the SIB_RA installation completed
successfully.

Install the SIBWS application
The core application is required tor making bus-generated WSDL available. To
install the core application:

1. Run the following command in Example A-3.

Example: A-3 Installing the core application

cd <was_install>\bin

wsadmin.ext -f <was_install>/util/sibwsInstall.jacl INSTALL
-installRoot <was_install> -serverName server_name
-nodeName node_name

You can specify installation on either a server and node or a cluster. For
example:

./wsadmin.sh -f /opt/WebSphere/AppServer/util/sibwsInstall.jacl INSTALL
-installRoot /opt/WebSphere/AppServer -serverName server1 -nodeName
myNode01 -profileName new_profile_name

If you are installing on a cluster, you should run the following command
instead:

Tip: The second <was_install> must have elements in the path separated
by a forward slash (/) even on Windows system. So a path of
c:\WebSphere\AppServer becomes c:/WebSphere/AppServer.

Tip: The concept of nodes is not apparent in a standalone application server.
If you are not sure what your node name is, select Servers → Application
Servers in the administrative console. The node name is listed next to the
server in the application server list.
466 Patterns: Implementing Self-Service in an SOA Environment

./wsadmin.sh -f /opt/WebSphere/AppServer/util/sibwsInstall.jacl INSTALL
-installRoot /opt/WebSphere/AppServer -clusterName myCluster01

In our Rational test environment we entered:

wsadmin -f c:/Rational/RSA/runtimes/base_v6/util/sibwsInstall.jacl INSTALL
-installRoot “c:/Rational/RSA/runtimes/base_v6” -nodeName Node01
-serverName server1

2. Look for the message that confirms that the installation completed
successfully and that the application has been started.

Install the SOAP over HTTP endpoint listener application
The endpoint listener applications are required when users want to expose
services using the bus to Web services clients wanting to connect using
SOAP/HTTP or SOAP/JMS.

To install the HTTP endpoint listeners, run the following command:

wsadmin.ext -f install_root/util/sibwsInstall.jacl INSTALL_HTTP
-installRoot install_root_using_forward_slashes -serverName server_name
-nodeName node_name -profileName profile_name

For example:

./wsadmin.sh -f /opt/WebSphere/AppServer/util/sibwsInstall.jacl INSTALL_HTTP
-installRoot /opt/WebSphere/AppServer -serverName server1 -nodeName myNode01
-profileName AppSrv01

In our Rational test environment we entered:

wsadmin -f c:/Rational/RSA/runtimes/base_v6/util/sibwsInstall.jacl INSTALL_HTTP
-installRoot c:/Rational/RSA/runtimes/base_v6 -nodeName Node01 -serverName
server1

Look for the message that confirms that the installation completed successfully
and that both applications have been started.

Note: If you want to make services available over SOAP/JMS, you have to
install the SOAP/JMS endpoint listener applications. Before doing this,
however, you must configure the necessary JMS resources as specified in the
WebSphere Application Server Information Center, otherwise the applications
will not start.

In our sample, we are only using the SOAP over HTTP listener so it is not
necessary to install the SOAP over JMS listener. If you decide to use this
listener, refer to the WebSphere Application Server InfoCenter for installation
instructions.
 Appendix A. Sample application install summary 467

Configure the bus for JMS messaging
The sample application also uses the bus as the default messaging provider.
This support is built in to the bus and doesn’t need to be installed, but the
following application-specific configuration does need to be performed:

� Create the queue destinations
� Configure the queue mediation
� Configure the JMS connection factories
� Create the JMS queues
� Create the JMS activation specifications

Create the queue destinations
The OrderSystemV6 and Processor applications use JMS to trigger work to
occur asynchronously. This requires two destination queues to be created.
These next steps describe how to create these destinations:

1. From the bus details page for ITSOMartBus under Additional Properties
click Destinations.

2. Click New.

3. For the destination type, accept the default of Queue and click Next.

4. The first page of the wizard, asks for an identifier and description to be
entered. The identifier is the queue name. Enter CustomerToProcessor.Queue
and click Next.

5. The next page allows you to specify to which bus member to assign the
destination. There is only one bus member in our scenario so accept the
default and click Next.

6. The final page is just a summary, click Finish and the destination will be
created.

7. Create a second queue type destination by repeating steps 2 through 6. The
identifier for this queue is ProcessorToMail.Queue.

Configure the JMS connection factories
The next step is to create the JMS connection factories that allow the application
to send a JMS message.

1. From the admin console expand Resources → JMS Providers and click
Default messaging.

2. Under Connection Factories click JMS connection factory.

3. Click New.
468 Patterns: Implementing Self-Service in an SOA Environment

4. The next page allows you to specify the properties for the JMS connection
factory. Take the defaults for everything but the following:

– Name

Enter a value of CustomerToProcessor.

– JNDI Name

This is where the application resource reference will be bound to. Enter a
value of jms/SelfService/CustomerCF.

– Bus name

Select ITSOMartBus in the pull-down menu.

5. Click OK and save the changes.

6. Create a second connection factory using the values shown in Table A-1.

Table A-1 Connection factory values

Create the JMS queues
Now we need to create some JMS queues, one for each of the service
integration bus queue type destinations we defined.

1. From the administrative console expand Resources → JMS Providers and
click Default messaging.

2. Under Destinations click JMS queue.

3. Click New.

4. The next page allows you to specify the values for the queue.

– Name

Enter a value of CustomerToProcessor

– JNDI Name

This is where the application’s message reference will be bound to. Enter
a value of jms/SelfService/CustomerToProcessorQ

– Bus name

Select the value of ITSOMartBus. This will cause the page to be reloaded
with the Queue names list filled populated.

Field Value

Name ProcessortoMail

JNDI Name jms/SelfService/ProcessorCF

BusName ITSOMartBus
 Appendix A. Sample application install summary 469

– Queue name

This field specifies the service integration bus queue type destination that
will be used to store the messages sent to this JMS queue. Select the
value of CustomerToProcessor.Queue

5. Click OK.

6. Repeat the process to create a second JMS queue using the values shown in
Table A-2.

Table A-2 JMS queue values

7. Save the changes.

Create the JMS activation specifications
Now we need to create some activation specifications. We will need one for each
JMS queue we created earlier.

1. From the admin console expand Resources → JMS Providers, and click
Default messaging.

2. Under Activation Specifications click JMS activation specification.

3. Click New.

4. The next page allows you to specify the values for the activation specification.

Most of the values can keep their default values. Described below are the
ones of most interest.

– Name

An administrative name used for locating the JMS activation specification.
Enter a value of Processor MDB Activation Spec.

– JNDI name

This is where the application’s message-driven beans will be bound to for
message delivery. Enter a value of esb/SelfService/Processor.

– Destination type

Feild Value

Name ProcessorToMail

JNDI Name jms/SelfService/ProcessorToMailQ

BusName ITSOMartBus

Queue Name ProcessorToMail.Queue
470 Patterns: Implementing Self-Service in an SOA Environment

The type of the JMS destination that will be used to deliver messages to
the message-driven bean. Accept the default of Queue.

– Destination JNDI name

The location in JNDI of the JMS destination that should be used to receive
messages from. Enter a value of jms/SelfService/CustomerToProcessorQ

– Bus name

The name of the bus the JMS destination will receive messages from. This
is not required, but for consistency select the value of ITSOMartBus.

5. Click OK.

6. Repeat steps 3 through 5 to create a second activation specification for the
Mail application using the values in Table A-3.

Table A-3 Mail activation specification

7. Save the changes.

Name Value

Name Mail MDB Activation Spec

JNDI Name esb/SelfService/Mail

Destination Type Queue

Destination JNDI Name jms/SelfService/ProcessorToMailQ

Bus Name ITSOMartBus
 Appendix A. Sample application install summary 471

CreditCheck application

1. Install the CreditCheck.ear file on the application server.

2. Create an endpoint listener for your application server using the process
outlined in 10.7.3, “Create an endpoint listener” on page 335, and the
following values:

– Name: SOAPHTTPChannel1

– URL root:

http://localhost:9080/wsgwsoaphttp1

– WSDL serving HTTP URL root:

http://localhost:9080/sibws/wsdl

– Connection properties bus name: ITSOMartBus

3. Create an outbound service definition for the CreditCheck Web service using
the process outlined in 10.7.4, “Create the outbound services” on page 337
using the values below. Make sure the application server is started.

– WSDL location:

http://localhost:9080/CreditCheckRouter/wsdl/com/ibm/patterns/
creditCheck/CreditCheck.wsdl

– For all other selections use the defaults. When selecting the service and
port, take the only option available.

Installing applications: To install an application to the Rational Software
Architect unit test environment, perform the following steps:

1. Select the server in the Servers view, right-click, and select Add and
remove projects ...

2. Select the application in the list of available projects and click Add >.

3. Click Finish.

To install an application to WebSphere Application Server:

1. Export the EAR file from Rational Software Architect to the
<was_install>installableApps directory.

2. In the administrative console, select Applications → Enterprise
Applications.

3. Click Install and follow the wizard.
472 Patterns: Implementing Self-Service in an SOA Environment

4. Create an inbound service definition for the CreditCheck Web service using
the process outlined in 10.7.5, “Create the inbound services” on page 340
and use the following values:

– Service destination name:

http://creditCheck.patterns.ibm.com:CreditCheckService:CreditCheck

– Template WSDL location:

http://localhost:9080/CreditCheckRouter/wsdl/com/ibm/patterns/
creditCheck/CreditCheck.wsdl

– Inbound Service name: CreditCheckInboundService.

– For all other selections use the defaults. When selecting the service and
port, take the only option available.

Change the inbound port name to CreditCheckInboundPort.

5. Generate the new WSDL files for the Web service and export them using the
process outlined in 10.7.6, “Generate and export new WSDL for the services”
on page 343.

6. Follow the process outlined in 10.7.7, “Update the Web service clients to use
the bus” on page 344 to import the new WSDL and update the Web service
client to use the new WSDL.

a. Use the process in “Import the generated WSDL” on page 345 to import
the WSDL files to CreditCheckClient/ejbModule/META-INF/wsdl.

b. Use the process in “Create the namespace mapping files” on page 345 to
create a namespace mapping file:

• Located in CreditCheckClient/ejbModule/META-INF/namespace
mappings.

• With the entries in Example A-4, substitute your cell name and bus
name where appropriate. Each entry starting with http\ should be
entered on one line.

Example: A-4 Name space mappings

http\://www.ibm.com/websphere/sib/webservices/cell/bus/Service=com.ibm.patterns.creditCheck
http\://www.ibm.com/websphere/sib/webservices/cell/bus/CreditCheckInboundService/Binding=com.ib
m.patterns.creditCheck

7. Use the process outlined in “Generate the Web service clients” on page 348
to regenerate the client to use the bus.

8. Enable the tool, by selecting Windows → Preferences → Workbench →
Capabilities. Enable all the features listed under Web Services Developer.
 Appendix A. Sample application install summary 473

9. Create a simple project and a simple folder under it. Unzip the WSDL zip file,
and import it into the folder. Right-click the service wsdl, and select Web
Services → Test with Web Services Explorer.

JCAModule CRM application
The following project files are included with the zip files so you can import and
browse the source in Rational Software Architect:

� JCAClient
� JCAModule
� JCAWeb

However, the call to it in processor.java has been commented out. Running this
piece would require that you:

� Have a CICS server installed with an application that updates a customer
database.

� Install the CICS ECI resource adapter.

For this reason, we do not expect you to attempt to deploy this portion of the
application. The process of creating the runtime configuration for this portion can
be seen in 12.5, “Runtime guidelines for JCA applications” on page 433.

The code that calls this portion of the application has been commented out in
Processor.java. See “Processor application” on page 480.

Mail service application
To use the mail portion of the application, you need access to a mail service. In
our testing, we used a Notes mail server.

Configure a Mail provider
To configure the mail provider, perform the following tasks:

1. Select Resources → Mail Providers. Click on Built-in Mail Provider.

2. Under Additional Properties select Mail Sessions.

3. Click New. See Figure A-8 on page 475.
474 Patterns: Implementing Self-Service in an SOA Environment

Figure A-8 Create a new mail provider

Complete the fields that define your mail provider. For the sample, the JNDI
name should be mail/SelfService/MailService.

Click OK.

4. Save your changes.

Install the applications
The following applications need to be installed for the mail service portion of the
application to work:

� MailService.ear
� XlateToXML.ear
 Appendix A. Sample application install summary 475

� OrderSystemV6.ear. During the installation, make sure that the correct
backend-ID (Cloudscape vs. DB2) for the database is chosen.

During the installation of the applications, you can ignore the following warning:

ADMA8019E: The resources that are assigned to the application are beyond the
deployment target scope. Resources are within the deployment target scope if
they are defined at the cell, node, server, or application level when the
deployment target is a server, or at the cell, cluster, or application level
when the deployment target is a cluster. Assign resources that are within the
deployment target scope of the application or confirm that these resources
assignments are correct as specified.

Configure the mediation
The following steps take you through the configuration process for the mediation
application.

1. Install the mediation application, XlateToXML.

2. Locate the bus definition by selecting Service integration → Buses. Click
the bus name (ITSOMartBus) to open it.

3. Under Additional Properties click Mediations.

4. Click New. See Figure A-9 on page 477.
476 Patterns: Implementing Self-Service in an SOA Environment

Figure A-9 Define a mediation
 Appendix A. Sample application install summary 477

Enter the following values:

– Mediation name: TransformMediator
– Handler list name: TransformMediator

Click OK.

Mediate the destination
To mediate the destinations, perform the following steps:

1. Locate the bus definition by selecting Service integration → Buses. Click
the bus name (ITSOMartBus) to open it.

2. Under Additional Properties click Destinations.

3. In the list of destinations, check the box to the left the queue name. In this
case, the queue is ProcessorToMail.queue.

Click the Mediate button.

4. In the next screen, select TransformMediator as the mediation to apply to
the destination.

Click Next.

5. In the next screen, select the bus and click Next.

6. Click Finish.

Save your changes.

DeliverySystem application
To install the DeliverySystem application, follow these steps

1. Install the DeliverySystem.ear file on the application server.

2. Create an outbound service definition for the HomeDelivery Web service
using the process outlined in 10.7.4, “Create the outbound services” on
page 337 using the values below. Make sure the application server is started.

– WSDL location:

http://localhost:9080/HomeDeliveryRouter/wsdl/com/ibm/patterns/
delivery/HomeDelivery.wsdl

– For all other selections use the defaults. When selecting the service and
port, take the only option available.

Note: Be sure to uncomment the appropriate lines in Processor.java to
activate this portion of the application.
478 Patterns: Implementing Self-Service in an SOA Environment

3. Create another outbound service definition for the BusinessDelivery Web
service using the process outlined in 10.7.4, “Create the outbound services”
on page 337 using the values below. Make sure the application server is
started.

– WSDL location:

http://localhost:9080/BusinessDeliveryRouter/wsdl/com/ibm/patterns/
delivery/BusinessDelivery.wsdl

– For all other selections use the defaults. When selecting the service and
port, take the only option available.

4. Create an inbound service definition for the HomeDelivery Web service using
the process outlined in 10.7.5, “Create the inbound services” on page 340
and use the following values:

– Service destination name:

http://delivery.patterns.ibm.com:HomeDeliveryService:HomeDelivery

– Template WSDL location:

http://localhost:9080/HomeDeliveryRouter/wsdl/com/ibm/patterns/
delivery/HomeDelivery.wsdl

– Inbound Service name: HomeDeliveryInboundService.

– Select SOAPHTTPChannel1 for the endpoint listener.

– For all other selections use the defaults. When selecting the service and
port, take the only option available.

Change the inbound port name to HomeDeliveryInboundPort.

5. Generate the new WSDL files for the Web service and export them using the
process outlined in 10.7.6, “Generate and export new WSDL for the services”
on page 343.

6. Follow the process outlined in 10.7.7, “Update the Web service clients to use
the bus” on page 344 to import the new WSDL and update the Web service
client to use the new WSDL.

a. Use the process in “Import the generated WSDL” on page 345 to import
the WSDL files for HomeDelivery to
ClientDelivery/ejbModule/META-INF/wsdl.

b. Use the process in “Create the namespace mapping files” on page 345 to
create a namespace mapping file:

• Located in ClientDelivery/ejbModule/META-INF/namespace mappings.

• With the entries in Example A-5 on page 480, substitute your cell name
and bus name where appropriate. Each entry starting with http\ should
be entered on one line.
 Appendix A. Sample application install summary 479

Example: A-5 Name space mappings

http\://www.ibm.com/websphere/sib/webservices/cell/bus/Service=com.ibm.patterns.delivery
http\://www.ibm.com/websphere/sib/webservices/cell/bus/HomeDeliveryInboundService/Binding=com.i
bm.patterns.delivery

c. Use the process outlined in “Generate the Web service clients” on
page 348 to regenerate the client to use the bus.

7. To test the service, follow these steps:

a. Enable the Web Services Explorer tool, by selecting Windows →
Preferences → Workbench → Capabilities. Enable all the features
listed under Web Services Developer.

b. Create a simple project and a simple folder under it. Unzip the WSDL zip
file, and import it into the folder. Right-click the service WSDL and select
Web Services → Test with Web Services Explorer.

8. Install and configure the router mediation application, for the incoming
request for HomeDelivery using the process outlined in 10.7.8, “Configure the
router mediation” on page 350. In this step you will:

a. Install the RoutingMediationsEJBEAR application
b. Define the DeliveryRequestMediation mediation on the bus
c. Mediate the port for the HomeDelivery destination.

9. Install and configure the aggregator mediation application, for the incoming
responses to the for HomeDelivery and BusinessDelivery services using the
process outlined in 10.7.9, “Configure the aggregator mediation” on
page 351. In this step you will:

a. Create two queue destinations on the bus, DeliveryResponseDestination
and TempDestination

b. Install the AggregatorEJBEAR mediation application.

c. Define the DeliveryResponseMediation mediation on the bus.

d. Mediate the DeliveryResponseDestination queue.

10.Save the configuration.

Processor application
If you are going to run with the MailService or JCAModule applications, you will
need to modify Processor.Java to uncomment the lines that activate these calls.
You will find Processor.java in the ProcessorEJB module at
com.ibm.patterns.serialProcess.Processor.java class.
480 Patterns: Implementing Self-Service in an SOA Environment

The lines of code to be uncommented are found in the following three methods in
Example A-6:

Example: A-6 Uncommenting MailService and JCAModule

private void createCustomer() {
//Call to CreditRating application
String creditRating = new

ProcessorWebService().getCreditRating(customerDetails);
if (isCreditSatisfactory(creditRating)) {

//Credit is Satisfactory
//Create customer in CRM and send Acceptance Mail

//Uncomment if you have the JCA service configured
//ProcessorJCA.storeCustomerDetails_CICS(customerDetails);

//Uncomment if you have the Mail service configured
//new MailService().sendActivationMail(customerDetails);
System.out.println("Customer created successfully....");

}
else {

//Credit rating is not satisfactory
//Delete customer from Db2 and send rejection E-mail
deleteCustomerfromDB();
//Uncomment if you have the Mail service configured
//new MailService().sendRejectionEmail(customerDetails);
System.out.println("The customer does not have satisfactory credit

and will not be created...");
}

}

private void deleteCustomer() {
//Uncomment if you have the JCA service configured
//ProcessorJCA.deleteCustomerDetails_CICS(pkey);
deleteCustomerfromDB();
//Uncomment if you have the Mail service configured
//new MailService().sendDeletionEmail(pkey);
System.out.println("Customer deleted successfully...");

}

private void updateCustomer() {

//Uncomment if you have the JCA service configured
//ProcessorJCA.updateCustomerDetails_CICS(pkey);

//Uncomment if you have the Mail service configured
//new MailService().sendUpdationEmail(customerDetails);
System.out.println("Customer details updated successfully...");
 Appendix A. Sample application install summary 481

}

Install Processor.ear
The last step is to install Processor.ear into the server and start it.

Access the application
The application can be accessed from a Web browser using the following URL:

http://localhost:9080/OrderSystemWeb/index.jsp

Common errors:
Following are some common errors and how to correct them.

� Error:

[5/4/05 22:50:46:953 EDT] 00000036 Helpers W NMSV0605W: A Reference object
looked up from the context "java:" with the name
"comp/env/jms/SelfService/ProcessorToMailQ" was sent to the JNDI Naming
Manager and an exception resulted.

Tip: Ensure the JMS queue with the name
jms/SelfService/MailService/MailSenderQueue is defined on the server.

� Error:

[5/4/05 22:50:47:172 EDT] 00000036 RALifeCycleMa E J2CA0052E: The lookup
of the ActivationSpec with JNDI Name esb/SelfService/Processor failed due
to exception javax.naming.NameNotFoundException: Context:
sandygNode01Cell/nodes/ITSONode/servers/server1, name:
esb/SelfService/Processor: First component in name
esb/SelfService/Processor not found. Root exception is
org.omg.CosNaming.NamingContextPackage.NotFound:
IDL:omg.org/CosNaming/NamingContext/NotFound:1.0

Tips: Ensure the ActivationSpec with the name esb/SelfService/Processor is
defined on the server.

� Error:

[5/4/05 22:50:47:516 EDT] 00000036 EJBContainerI E WSVR0062E: Unable to
start EJB, Processor#ProcessorEJB.jar#ProcessorMDB:
javax.resource.ResourceException: Failed to lookup
ActivationSpec.esb/SelfService/Processor
482 Patterns: Implementing Self-Service in an SOA Environment

Tip: Ensure the ActivationSpec esb/SelfService/Processor is defined on the
server.

� Error:

[5/2/05 12:00:08:141 EDT] 00000041 J2CUtilityCla E J2CA0036E: An
exception occurred while invoking method setDataSourceProperties on
com.ibm.ws.rsadapter.spi.WSManagedConnectionFactoryImpl used by resource
OrderSystem dataSource_CF : java.lang.NoClassDefFoundError:
com/ibm/db2/jcc/SQLJConnection

Tip: Make sure the DB2 driver jars are in the classpath of the server

� Error:

[5/5/05 8:45:59:188 EDT] 00000037 StaleConnecti A CONM7007I: Mapping the
following SQLException, with ErrorCode -30082 and SQLState 08001, to a
StaleConnectionException: java.sql.SQLException: SQL30082N Attempt to
establish connection failed with security reason "24" ("USERNAME AND/OR
PASSWORD INVALID"). SQLSTATE=08001
DSRA0010E: SQL State = 08001, Error Code = -30,082

Tip: Check the user name and password in the authentication alias defined
for the data source

� Error:

[5/27/05 14:33:09:979 EDT] 0000003d SystemErr R
com.ibm.patterns.order.exception.CustomerCreationException

Tip: Make sure the e-mail address entered for the customer is unique.
 Appendix A. Sample application install summary 483

484 Patterns: Implementing Self-Service in an SOA Environment

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246680

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246680.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246680.zip Zipped sample application EAR files

B

© Copyright IBM Corp. 2005, 2006. All rights reserved. 485

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 6 MB
Operating System: Windows

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. Instructions for using the sample application
are in Appendix A, “Sample application install summary” on page 453.
486 Patterns: Implementing Self-Service in an SOA Environment

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 491. Note that some of the documents referenced here might be
available in softcopy only.

� WebSphere Studio 5.1.2, JavaServer Faces and Service Data Objects,
SG24-6361

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

� Patterns: Self-Service Application Solutions Using WebSphere V5.0,
SG24-6591

� Rational Application Developer V6 Programming Guide, SG24-6449

� Legacy Modernization with WebSphere Studio Enterprise Developer,
SG24-6806

� Self-Service Applications using IBM WebSphere V4.0 and IBM MQSeries
Integrator, SG24-6160

� MQSeries Programming Patterns, SG24-6506

� EJB 2.0 Development with WebSphere Studio Application Developer,
SG24-6819

� Patterns: Implementing an SOA Using an Enterprise Service Bus,
SG24-6346

� Patterns: Implementing an SOA using an Enterprise Service Bus in
WebSphere Application Server V6, SG24-6494

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401

� Revealed! Architecting Web Access to CICS, SG24-5466
© Copyright IBM Corp. 2005, 2006. All rights reserved. 487

� Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

� Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175

Other publications
These publications are also relevant as further information sources:

� Adams, Jonathan, Srinivas Koushik, Guru Vasudeva, and George Galambos.
Patterns for e-business: A Strategy for Reuse by Jonathan Adams. IBM
Press, 2001. ISBN 1-931182-02-7.

� CICS Transaction Server for OS/390: Application Programming Guide,
SC33-1687

� Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly &
Associates, Inc., 1998. ISBN 1565923928.

� Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc., 1999. ISBN 1565924835.

� Gamma, Erich, Richard Helm, Ralph Johnson, John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
1995. ISBN 0-201-63361-2.

� Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley 1999. ISBN 0201485435.

� WebSphere MQ Application Programming Guide, SC34-6064

� WebSphere MQ Using Java, SC34-6066

Online resources
These Web sites and URLs are also relevant as further information sources:

� Apache Jakarta Project Struts Web site:

http://jakarta.apache.org/struts/

� An introduction to Model Driven Architecture Part 1: MDA and today’s
systems

http://www-128.ibm.com/developerworks/rational/library/3100.html

� An introduction to Model-Driven Architecture (MDA): Part II: Lessons from the
design and use of an MDA toolkit

http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge
/apr05/brown/
488 Patterns: Implementing Self-Service in an SOA Environment

http://jakarta.apache.org/struts/
http://www-128.ibm.com/developerworks/rational/library/3100.html
http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge/apr05/brown/
http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge/apr05/brown/

� ECMAScript language specification

http://www.ecma-international.org/publications/standards/ECMA-262.HTM

� IBM CICS

http://www.ibm.com/software/ts/cics

� IBM WebSphere and MQSeries Integration Using Servlets and JavaServer
Pages

http://www7b.boulder.ibm.com/wsdd/library/techtip/pwd/wsmq_integration.html

� IBM developerWorks

http://www.ibm.com/developerWorks

� Integrating IBM WebSphere Application Server and the WebSphere MQ
Family

http://www7b.boulder.ibm.com/wsdd/techjournal/0110_yusuf/yusuf.html

� Java APIs and technology

http://java.sun.com/products

� Java Message Service API documentation

http://java.sun.com/products/jms

� JSF specification

http://java.sun.com/j2ee/javaserverfaces/

� JCA specification:

http://java.sun.com/j2ee/connector/

� Java 2 Platform Micro Edition (J2ME):

http://java.sun.com/j2me

� Java Portlet V1.0 specification:

http://jcp.org/en/jsr/detail?id=168

� Model Driven Architecture (MDA) standards:

http://www.omg.org/mda

� OASIS WS-Security 1.0 and token profiles:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

� Open source XML frameworks:

http://xml.apache.org/

� Patterns for e-business:

http://www.ibm.com/developerWorks/patterns/
 Related publications 489

http://www.omg.org/mda
http://java.sun.com/products/jms
http://www7b.boulder.ibm.com/wsdd/techjournal/0110_yusuf/yusuf.html
http://www7b.boulder.ibm.com/wsdd/library/techtip/pwd/wsmq_integration.html
http://java.sun.com/j2ee/connector/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ibm.com/developerWorks/patterns/
http://xml.apache.org/
http://www.ibm.com/software/ts/cics
http://www.ecma-international.org/publications/standards/ECMA-262.HTM
http://java.sun.com/products

� Reusable Asset Specification

http://www.flashline.com/ras/RAS_060604.pdf

� Sun JavaServer Faces Technology Page

http://java.sun.com/j2ee/javaserverfaces/index.jsp

� Security in a Web Services World: A Proposed Architecture and Roadmap,
proposed by IBM and Microsoft.

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

� Service-oriented architecture and Web services

http://www.ibm.com/software/solutions/webservices/resources.html

� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

� IBM WebSphere Developer Technical Journal: Transactional integration of
WebSphere Application Server and CICS with the J2EE Connector
Architecture:

http://www-128.ibm.com/developerworks/websphere/techjournal/0408_wakelin/04
08_wakelin.html

� Understanding quality of service for Web services:

http://www-106.ibm.com/developerworks/library/ws-quality.html

� Understand Enterprise Service Bus scenarios and solutions in
Service-Oriented Architecture, Part 1:

http://www.ibm.com/developerworks/webservices/library/ws-esbscen/

� Using J2EE Resource Adapters in a Non-managed Environment at:

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kell
e.html

� WebSphere Developer Domain:

http://www7b.software.ibm.com/wsdd/

� WebSphere Application Server Version 6.0 Information Center, available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

� W3C Web Services Architecture specification:

http://www.w3.org/TR/2002/WD-ws-arch-20021114/

� W3C HTML Validation Service, are available at:

http://validator.w3.org/
490 Patterns: Implementing Self-Service in an SOA Environment

http://www7b.software.ibm.com/wsdd/
http://www.w3.org/TR/2002/WD-ws-arch-20021114/
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kelle.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kelle.html
http://www.ibm.com/developerworks/webservices/library/ws-esbscen/
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/
http://validator.w3.org/
http://www.flashline.com/ras/RAS_060604.pdf
http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0408_wakelin/0408_wakelin.html
http://www.ibm.com/software/solutions/webservices/resources.html

� W3C CSS Validation Service at:

http://jigsaw.w3.org/css-validator/

� WS-I Basic Profile Version 1.0 specification:

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

� WS-Coordination specification:

http://www-106.ibm.com/developerworks/library/ws-coor/

� WS-Transaction specification:

http://www-106.ibm.com/developerworks/library/ws-transpec/

� WS-Security specification 1.0:

http://www.ibm.com/developerworks/library/ws-secure/

� Web Services Security: SOAP Message: Errata 1.0

http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wss-soa
p-message-security-1%200-errata-003.pdf

� Web Services Security: UsernameToken Profile: Errata 1.0

http://www.oasis-open.org/committees/download.php/9290/oasis-200401-wss-use
rname-token-profile-1.0-errata-003.pdf

� Web Services Security: X.509 Token Profile: Errata 1.0

http://www.oasis-open.org/committees/download.php/9287/oasis-200401-x509-to
ken-profile-1.0-errata-003.pdf

� World Wide Web Consortium (W3C) site

http://www.w3.org/

� XML Signature workgroup home page:

http://www.w3.org/Signature/

� XML Encryption workgroup home page:

http://www.w3.org/Encryption/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
 Related publications 491

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www-106.ibm.com/developerworks/library/ws-coor/
http://www-106.ibm.com/developerworks/library/ws-transpec/
http://www.w3.org/Signature/
http://www.w3.org/Encryption/
http://www.ibm.com/developerworks/library/ws-secure/
http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wss-soap-message-security-1%200-errata-003.pdf
http://www.oasis-open.org/committees/download.php/9290/oasis-200401-wss-username-token-profile-1.0-errata-003.pdf
http://www.oasis-open.org/committees/download.php/9287/oasis-200401-x509-token-profile-1.0-errata-003.pdf
http://jigsaw.w3.org/css-validator/
http://www.w3.org/

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
492 Patterns: Implementing Self-Service in an SOA Environment

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Numerics
80/20 situation 1

A
ACID 181
Action

beans 258
methods 273

ActionServlet 155–156
Activation specification 367, 370–371

Creating 379
ActivationSpec 211
Administrated objects 198
Agent-oriented service definition 159
Alias

destination 78
Alias destination 221
APPLET tag 108
Application

gateways 56
logging 441
patterns 2, 9, 18
server 55, 187

Architecture
Service-oriented 23

As-is Host application pattern 20
ASR See Automatic Speech Recognition
Assured persistent 213
asynchronous

messaging 179, 332
Web services 174, 176

Atomic Transaction (AT) 181
Authentication 357–358

Message 179
Authorization 358
AUTO_ACKNOWLEDGE 209
Automatic Speech Recognition 111

B
Backing beans 257–258

Creating 268
Bean Managed Persistence 126, 163
© Copyright IBM Corp. 2005, 2006. All rights reserved
Best effort nonpersistent 213
Best practices 2, 14

Enterprise JavaBeans 162
J2EE Connector Architecture 197
Web services 182

Bindings mode 215–216
Bluetooth 112
BMP See Bean Managed Persistence
Bottom-up development 303
Bottom-up Web service development 178
BPEL

See Business Process Execution Language
Breakpoints 284
Broker scenario 227

Development
Mediations

Mediation APIs 224
MediationHandler 225
MessageContext 225
SDO DataGraphs 226
SIMediationSession 225
SIMessage 225
Working with messages in mediations
224

Bus 220
member 221

Business
Activity (BA) 181
Logic 146
patterns 2, 5
Service Choreography 51
Service Directory 51
Transaction Protocol (BTP) 181

Business Process Execution Language 86
Business Service Choreography 51
Business Service Directory

UDDI directory 57
BytesMessage 202

C
Cache 161

EJB Home interface 163
Cacheable command 160
. 493

Caching 179, 185, 365
Caching Proxy 76
Cascading Style Sheets 105, 147

definition of 264
Validator tools 106

Catcher servlet 159
CCI 192–193, 198
CCI See Common Client Interface
cHTML 116
CICS

distributed program link (DPL) 448
multi-region operation 448
server 440
TG trace 441
trace types 442
Transaction Gateway 195, 391, 403, 433

Remote on z/OS 434
TCP protocol 72

CICS Transaction Gateway 403, 433
trace, levels of 441

Class diagrams
J2EE Connectors 394
Web services 296–297

Client
container 104
daemon 195, 447
mode 215, 217
proxy classes 307

CLIENT_ACKNOWLEDGE 209
CMP See Container Managed Persistence
Collection object 203
Command

bean 152–153
buttons 273
caching 160–161
classes 161
execute() 158
interface 161
model 158
package 159
shipping 159

Advantages 159
Disadvantages 159

Command bean 152
Command caching 161
Command model 158
Command shipping 159
COMMAREA 196–197, 391, 393, 395, 398,
400–401, 403

Common Client Interface 188
Framework classes 193
See alsoCCI

Common Object Request Broker Architecture See
CORBA
Communication 48
CompensableCommand 161
Component managed sign-on 449
componentNameLink 431
Composite patterns 2, 7
Confidentiality 356, 387

Message 179
Connection 193, 200, 208, 395, 403, 406

factory 208, 378, 437
trace 441

handles 443
management 188
pooling 163, 198, 215

tuning 443
timeout 443

ConnectionFactory 193, 199–200, 208–209, 370,
395, 403

tracing 441
ConnectionMetaData 194
ConnectionSpec 194, 198, 407
Container Managed Persistence 126, 163
Container managed sign-on 449
Controller 115–117, 120, 142, 146, 149–150, 155,
245, 248

JSF 155
See also Interaction controller
Struts 155

Cookies 150
CORBA 127, 136, 186
Correlation 179
Correlation ID 175
Creating a mediation handler class 227
CSS See Cascading Style Sheets
Custom validation 281
Customer Information Control System

ECI resource adapter 196
Failover 446
Resource adapters 195
Scalability 444
System management 441
Workload management 444
494 Patterns: Implementing Self-Service in an SOA Environment

D
Data beans 258

Creating 269
Data binding

bean 408
class 410

Data binding class 410
Data conversion 401–402
Debug

mode 283
on Server 285
perspective 285
view 287

Debugging JSF 283
Decomposition application pattern 21, 293
Default messaging provider 210, 212

Security 386
Delivery mode 203
Demilitarized Zone 55
Destination 199–200, 209, 221, 339, 370
Development

Mediations 227
DFHCOMMAREA 408
DHTML 116
Directly Integrated Single Channel

Product mappings 70
Runtime patterns 60, 62, 65

Directly Integrated Single Channel application pat-
tern 20, 293
Directory services 56
Distributed Program Link 197
Distributed transactions 181
DNS connection optimization 446
DNS See Domain Name Server
Domain firewall 57
Domain Name Server 54
DPL See Distributed Program Link
DUPS_OK_ACKNOWLEDGE 209
Durable message 369
Durable subscription 201
Dynamic delegation 160
Dynamic HTML

DHTML 103, 105
dynamic page construction 143
Dynamic Web services 172

E
EAD4J 157

EAI See Enterprise Application Integration
EBCDIC 401
ebXML 184
ECI 195, 197, 391, 393–394, 398, 400, 403, 406,
408, 435, 448
ECI resource adapter 196
ECI See External Call Interface
ECIConnectionSpec 405
ECIInteractionSpec 395
ECIResourceAdapter 436
ECMA-262 107
ECMAScript 107
Edge components 75
editors 87
EJB container 125, 163
EJB modules 126
EJB See Enterprise JavaBeans
EJB workload management 444–445
EMBED tag 108
Endpoint 317, 426
Endpoint address 344
Endpoint listener 333, 335–336, 342, 358

Creating 335, 439
Enterprise application 126
Enterprise Application Development frameworks for
Java See EAD4J
Enterprise Application Integration 128
Enterprise Information Systems 132
Enterprise JavaBeans 124, 246

Bean Managed Persistence
Best practices 162
Cache the EJB Home interface 163
Container Managed Persistence
Entity beans 125, 158, 162
Message-driven beans 125
Session beans 125, 162
Stateless session beans 163

Enterprise Resource Planning 132
Enterprise Service Bus 242

Business Service Choreography 51
Business Service Directory 51
Capabilities

Communication 48
Infrastructure Intelligence 49
Integration 48
Management and Autonomic 49
Message Processing 49
Modeling 49
Quality of Service 48
 Index 495

Security 48
Service Interaction 48
Service Level 48

ESB Gateway 51
Mediate 42
Minimum capability

Heterogeneous infrastructure 43
Integration 44
Integration techniques 45
Logical architectural component 43
Manage the service infrastructure 43
Management and Autonomic 44
Service Interaction 44

Substitution 42
Transform 42

Entity EJBs 125, 158, 162
EPI 195
EPI See External Presentation Interface
ESB 262, 293, 363–364, 389–390
ESB capabilities

WebSphere Application Server V6
Communication 80
Infrastructure intelligence 84
Integration 81
Management and autonomic 83
Message processing 82
Modeling 82
Quality of service 83
Security 81
Service interaction 82
Service level 83

ESB Gateway 51
ESB runtime pattern

Business service directory 57
Hub node

Addressing 59
Messaging styles 59
Routing 59
Service interface definition 59
Service messaging model 59
Transport protocols 59

ESI 195
Event driven architectures 42
event-driven model 116
Events 155
EXCI 447
execute() 158–159
Existing applications 57
Express nonpersistent 213

Extended Web Services Architecture 179
Extensible Stylesheet Language Transformations
122
External Call Interface 196
External Call Interface (ECI) 196
External CICS Interface trace 442
External Presentation Interface 196
External Presentation Interface (EPI) 196

F
Faces JSP 247, 257–258, 265, 268, 273

Creating 266
Faces servlet

See FacesServlet
faces-config.xml 154, 245, 254, 257–258, 260, 282
FacesServlet 117, 154–155, 245, 248–249,
251–252
Failover

CICS 446
Web services 353

Firewall 71, 353
Domain 57
Protocol 56

Foreign bus 221, 387
Foreign destination 221
Foreign destinations 78
Form bean 156
Formatter bean 151
Freeform diagram 248

G
Garbage collection 209
Gateway daemon 195
Gateway instance 334
Gateway service 334
Generated files 311
getProperty 150
Guidelines 2, 14

H
Helper objects 163
HTML 103, 105

Validator tools 105
HTTP 72
HTTP server 54
HTTP tunneling 109
HTTPS 72
496 Patterns: Implementing Self-Service in an SOA Environment

HttpServletRequest 159
HttpServletResponse 159

I
IBM HTTP Server 71
IBM Rational Software Development Platform 84

products 84
Rational Application Developer 85
Rational Function Tester 86
Rational Performance Tester 86
Rational Software Architect 85
Rational Software Modeler 85
Rational Web Developer 85
WebSphere Business Integrator Modeler
86

IBM UDDI Business Registry 166
ibm-Web services-bnd.xml 311
ibm-web services-ext.xml 311
IDE See Integrated Development Environments
IIOP 152
IMAP 127
i-mode 111
Inbound communication 190
Inbound service 333, 336, 344, 408, 439

Creating 340
IndexedRecord 194
Industry support 36
Infrastructure Intelligence 49
input record 406
Input validation 280
integrated development environment 86
Integrated Development Environments 143
Integration 48
Integration patterns 2, 6
Integrity 387

Message 179
Interaction 194, 395, 406
Interaction controller 142–146, 148–149, 151

See also Controller
Interaction diagrams

Web services 298
InteractionSpec 194, 198, 395, 406
internationalization 117
Interoperability

Web services 180, 185
intializeBinding() 404
Introduction

Rational Software Development Platform 84

ITSOMart
CreditCheck

Architectural overview 292
Component model 295
Object model 296

Customer registration application design 233
Customer Registration use case 231
JCAModule

Component model 392
Object model 394

MailService
Component model 363
Object model 364

OrderSystemV6
Component model 243
Error handling 260
Object model 246
Web diagram 253, 276

Sequence diagram 235

J
J2C 197
J2C authentication data entry 436
J2C Connector Tools 408
J2C Java bean 404, 408, 410, 414, 420
J2C See J2EE Connector Architecture
J2EE 101, 104, 115
J2EE 1.3 134
J2EE Connector Architecture 71, 132, 389, 441

<$italic JCA, J2C
Availability 444
Best practices 197
CICS resource adapters 195
Class diagrams 394
Common Client Interface 133
Disadvantages 133
Inbound adapters 133
Input record 398
Logging 441
Managed environment 189
Non-managed environment 190
Outbound adapters 133
Output record 398
Scalability 444
Security 448
System management 441
Tracing 441
Workload management 444
 Index 497

XA capable 133
J2EE Connector Tools 401
JAF See JavaBeans Activation Framework
Java 2 Platform, Enterprise Edition See J2EE
Java applets 107

Disadvantages 108
Java client mode 216
Java Database Connectivity 72, 192
Java Message Service 71, 133

Advantages 135
Disadvantages 135
JNDI 209
WebSphere MQ support 135

Java Message Service (JMS) 198
Java Naming and Directory Interface 127, 209
Java Runtime Environment 108
Java Transaction API 127
java.lang.Exception 195
JavaBeans 120
JavaBeans Activation Framework 127
JavaMail 127
JavaScript 104, 106, 259
JavaServer Faces 153–154, 239, 245

See also JSF
JavaServer Pages 116, 120
javax.resource.cci 193
JAXR 332
JAX-RPC 311, 331
JAX-RPC handler 332, 334
JAX-RPC handler list 334, 359
JBDC See Java Database Connectivity
JCA 152, 176

Security 407
System contracts 188
WebSphere Application Server support 191

JCA activation specification 206
JCA connection pool 443
JDBC 192
JDOM 186
JMS

Message types 202
Messaging models 199

JMS client 198
Creating 370

JMS connection factory 378
JMS provider 198, 200–201, 204, 219, 365, 370

Selecting 210
JMS queue 379
JMS See Java Message Service

JMS server session pool 208
JMSAdmin 210
JMSExpiration 369
JNDI 152, 210, 215, 365, 370, 404
JNDI See Java Naming and Directory Interface
JRE See Java Runtime Environment
JScript 106–107
JSF 154, 246

framework 116
introduction 116

JSP 144–145, 149
JSR 109 311, 331
JTA See Java Transaction API

L
Layered design 182
LDAP 127
Lifecycle management 188
Listener port 206–208
Literal encoding 173, 310
Load Balancer 76, 446
Load balancing 185, 217, 353
LocalTransaction 194
Location transparency 59
Logging 441
Long running transactions 179
Loose coupling 183

M
Managed bean 257–258, 268, 271, 274, 284–285
Managed beans 154
Managed connection 415, 442
Managed connections 403
Managed environment 189, 197
ManagedConnectionFactory 444
managedConnectionFactory 404
Management and Autonomic 49
Management messages 179
MapMessage 203
MappedRecord 194
MaxConnections 443
Maximum connections 444
MDB 204
Mediate 42
Mediation 221–223, 293–294, 296, 301–302,
323–324, 328, 332–334, 339, 363

Configuration 380
Mediate the destination 381
498 Patterns: Implementing Self-Service in an SOA Environment

Security 387
Starting and stopping 383

Mediation handler 223, 323, 387
Mediation handler class

Creating 373
Mediation handler list 223–224

Defining 376
Mediation points 79
Mediation time 384
Meet-in-the-middle Web service development 178
Message 198
Message confidentiality 179
Message consumer pattern 365
Message context 373
Message driven architectures 42
Message Exchange Pattern (MEP) 179
Message expiration 203
Message header 374
Message inflow management 189, 211
Message integrity 179
Message ordering 205
Message payload 374
Message persistence 384
Message Processing 49
Message properties 374
Message reliability 212
Message routing 179
Message selector 367
Message structure 173, 302, 384
Message time-to-live 368
MessageConsumer 200, 209
MessageContext 373
Message-driven bean 203, 208, 210–211, 367,
380, 384

Creating 370
Implementation 372
security 386
See also MDB

Message-driven beans 125
Message-level security 354–355
Message-oriented Web services 170
MessageProducer 200, 209, 369
Messages mediated 384
Messaging 134
Messaging engine 221
Messaging mechanisms 170
Microbrowser 112
MIME 127
Minimum connections 444

Mobile clients 111
Model 114, 117, 120, 141–142, 146, 149, 155, 167,
244–245, 248

JSF 155
Struts 155

model 117
Model II 155
Modeling 49
Model-View-Controller 114–115, 141–142, 167,
244

Advantages and disadvantages 146
MQ base JMS classes 215
MQ JMS 215
MS SOAP API 186
MVC 148, 150, 155, 245

See also Model-View-Controller
MVC See Model-View-Controller

N
Namespace mapping 346, 349
Namespace mapping file 345, 427
navigation 116
Navigation rule 278
Network Deployment 332
Node types 54
Non-cacheable command 160
Non-durable subscription 201
Non-managed connection 404, 416
Non-managed connections 403
Non-managed environment 190
Notification operation transmission pattern 170
nsmappings.properties 349

O
Object Management Group 136
Object Request Broker 127
ObjectMessage 203
OMG See Object Management Group
On Demand Business 26

business drivers
variable 26

Service-oriented architecture
Automation 27
Integration 26
Open standards 26
Virtualization 27

One-way transmission pattern 169
onMessage() 203, 205, 208
 Index 499

Outbound communication 190
Outbound service 333, 339, 408, 439

Creating 337
Output record 406

P
Page constructor 145
Page Designer 267
Page navigation 275
Page redirection 279
Page template 265
Palm-OS 111
Patterns for e-business

Application
patterns 2, 9

Best practices 2, 14
Business patterns 2, 5
Composite patterns 2, 7
Guidelines 2, 14
Integration patterns 2, 6
Node types 54
Product mappings 2, 13, 70
Runtime patterns 2, 11, 60, 62, 65
Web site 3

PDA See personal digital assistant
Performance Monitoring Infrastructure (PMI) 384,
442
Performance Viewer 442
Persistent message 369
Persistent subscription 201
personal digital assistant 54
Personal digital assistant (PDA) 140, 147
perspective layout 88
perspectives 87
Pervasive computing 54
PKI See Public Key Infrastructure
Point-to-point messaging 199–200, 220, 365, 377
Poison messages 205
Polling 177
POP3 127
Port destination 339
Port destinations 78
Product mappings 2, 13, 70
programming model extensions 74
Protocol firewall 56
Provider-dynamic 172
Proxy 295, 305, 307, 320, 334, 348, 350, 362, 365,
390

Proxy service 334
Public Key Infrastructure 54, 123
Publication points 79
Publication-subscription 176
Publish/subscribe messaging 199, 201, 220

Q
Quality of Service 48
Quality of Service (QoS) 354
Quality of Service (Qos) 180, 186, 197, 212
Queue 214
Queue destination 208, 221, 377
Queue destinations 78
Queue manager 215, 217
Queue points 79
QueueConnectionFactory 214
QueueReceiver 370
QueueSender 370

R
RACF See Resource Access Control Facility
RAR See Resource Adapter Archive
Rational Application Developer 85

editors 87
perspectives 87
views 87

Rational Functional Tester 86
Rational Performance Tester 86
Rational Software Architect 85
Rational Software Modeler 85
Rational Web Developer 85
Reap time 444
Record 194, 395, 398, 400
RecordFactory 194
Redbooks Web site 491

Contact us xv
Reliable messages 179
Reliable nonpersistent 213
Reliable persistent 213
Remote Method Invocation 127
Request-response transmission pattern 168, 301
Resource Access Control Facility 449
Resource Adapter 391
Resource adapter 189, 192, 211, 389, 394, 403,
435

CICS 196
Resource Adapter Archive 189
Resource adapters
500 Patterns: Implementing Self-Service in an SOA Environment

CICS 195
Resource manager 403
ResourceAdapterMetaData 194
ResourceAllocationException 443–444
ResourceException 195
ResourceWarning 195
Result bean 148–150, 152
ResultSet 194
ResultSetInfo 194
ResultSetMetaData 194
RMI 152
RMI See Remote Method Invocation
RMI/IIOP 127, 136
Router application pattern 20, 293
Routing 222, 387
Routing paths 227
RPC-based Web services 170
RunAS 387
Runtime patterns 2, 11, 60, 62, 65

S
SAAJ 332
Scalability

J2EE Connectors 444
Web services 185

Screening routers 56
SCRIPT tag 108
Secure Sockets Layer 451
Secure transport 387
Security 48

Component managed sign-on 449
Container managed sign-on 449
Default messaging provider 386
J2EE Connector Architecture 448
JCA 407
Mediation 387
Message-driven bean 386
Service integration bus 358, 387
Web services 179, 354

Security management 188
Security services 56
Self-Service business pattern 18
Send-and-forget messaging pattern 365
Service broker 164, 166
Service destination 341
Service endpoint interface 308
Service integration 211
Service integration bus 136, 212, 317, 391, 393,

407, 426
Bus 77
Destination 78
Destinations

Alias destinations 78
Foreign destinations 78
Port destinations 78
Queue destinations 78
Topic space destinations 78
Web service destinations 78

Endpoint listener 335
Foreign bus 79
Mediation 79

Augmenting messages 79
Disaggregation 79
Dynamically routing messages 79
Transforming a message 79

Message point 79
Mediation points 79
Publication points 79
Queue points 79

Messaging engine 77
Security 358, 387
See also bus
Web services 332
WS-Security 358

Service Interaction 48
Service Level 48
Service provider 164, 166, 173, 177, 337
Service provisioning 59
Service requester 164, 167
Service substitution 59
Service-oriented architecture 23, 42

Component Based Design 24
Customized 31
Drivers

Flexible pricing 24
Increasing speed 24
Reducing costs 24
Return on investment 24
Simplifying integration 24

Object Oriented development 24
Proprietary 31
Service

Deployment time 28
Implementation-independent 27
Loosely bound 27
Reusable 27
Runtime 28
 Index 501

Substitution 28
Servlet context 150
Servlets 115
Session 179, 200
Session acknowledgment 209
Session bean 162, 204, 295
Session EJBs 125
Session facade design pattern 262
Session state 150
SIB JMS Resource Adapter 207
SIB Service 385
sibusbinding namespace 346
SIDestinationAddress 374
SIDestinationAddressFactory 374
SIMediationSession 374
SIMessage 374
SIMessageContext 373–374
Simple Object Access Protocol 72

Messaging mechanisms 170, 301
Singleton 163
SMTP 127
SOAP 130, 165, 170, 332

Envelope 130
message-oriented 171
Messages 130
RPC 171
RPC messaging 301

SOAP encoding 173
SOAP See Simple Object Access Protocol
SOAP/HTTP 335–336
SOAP/JMS 335
software

configuration management 95
Solicit-response 169
Solicit-response transmission pattern 169
Stand-alone Single Channel application pattern 19
Standard validation 280
Stateless session bean 427
Stateless session beans 163
Static Web services 172
Streamable 194
StreamMessage 203
Struts 153–155, 246
Swing 107
Synchronous Web services 174
Sysplex distributor 446
System contracts 188
System management

J2EE Connector Architecture 441

JCA 441
JMS 384
Web services 353

T
Tag libraries 154
TargetableCommand 159, 161
targetNamespace 346
TCP protocol 72
Template pages 145
Template WSDL 341
Terminal servlet 195
TextMessage 203
Text-to-Speech 111
Thin clients 103
Thread count 385
Tivoli Performance Viewer 442
TLS/SSL 354
Top-down development 303
Top-down Web service development 177
Topic 214
Topic destination 208
Topic space destination 221
Topic space destinations 78
TopicConnectionFactory 214
Tracing 441
Transaction demarcation 143
Transaction ID 175
Transaction inflow management 189
Transaction management 188, 407
Transform 42
Transmission pattern 168
Transport-level security 354, 357
Transports 175
TTS See Text-to-Speech
Two-phase commit 407
Type-dynamic 173

U
U.S. government taxonomy 132
UDDI 132, 172, 306, 332, 334, 337, 342
UDDI directory 57
UDDI registry 304
UDDI See Universal Description Discovery and Inte-
gration
UI

components 116
Unicode 401
502 Patterns: Implementing Self-Service in an SOA Environment

Universal Description Discovery and Integration
165–166
Unused timeout 444
URL root value 336
useBean 150

V
Validation 280
Validator 283
validator 117
Validator tools

CSS 106
HTML 105

Validators 154
Variable 286
VBScript 106
View 115, 117, 141–142, 145–146, 149–150, 155,
244–245, 248

JSF 155
Struts 155

View bean 148–151
views 87
Voice response units (VRUs) 147
Voice-enabled applications 111
VoiceXML 116

W
WAP See Wireless Application Protocol
Web application server 54, 113
Web browser 104
Web client 102
Web container 115
Web modules 126
Web server 54
Web server plug-in 71
Web server redirector 55, 71
Web service

Testing 307
Web service client

EJB 317
Generate 428
Generating 348

Web service destinations 78
Web Service wizard

JavaBean 306
Web Services

Asynchronous 176
Web services 71, 128, 164

Asynchronous 177
asynchronous 174, 176
Best practices 182
Class diagrams 296–297
Creating clients 316
Design guidelines 163
Dynamic 172
Dynamic discovery 172
Failover 353
Interaction diagrams 298
Interoperability 180, 185
Loose coupling 129
Maintainability 186
Message structure 173
Message-oriented 170
Reliability 186
Reuseability 186
RPC-based 170
Scalability 185
Security 179, 354
Service broker 166
Service provider 166
Service requester 167
Session bean 305
SOAP

Body 130
Header 130

Static 172
static discovery 172
Synchronous 174, 301
Synchronous vs. asynchronous 174
Testing 314
Transmission pattern 168
Transmission patterns 301
Transports 175–176
UDDI 132
Usage models 129

Basic callback 129
One-way 129
Synchronous request/response 129

Workload management 353
WSDL 131

Web services architecture
SOAP 130

Web Services Description Language
See also WSDL

Web Services Explorer 306–307, 314, 350
Web services for J2EE (JSR 109) 331
Web Services Gateway 332, 358
 Index 503

Web Services Interoperability Organization 180
web-config.xml 288
webservices.xml 311
WebSphere Application Server 73

J2C configuration 435, 440
Web server plug-in 71

WebSphere Application Server - Express 75
WebSphere Application Server Network Deploy-
ment 75
WebSphere Application Server V6 75
WebSphere Business Integration Server Founda-
tion 74
WebSphere Business Integrator 86
WebSphere Business Integrator Modeler 86
WebSphere Command Framework 158
WebSphere command framework 158
WebSphere MQ 74, 212, 214, 387

Clustering 218
JMS support 135

WebSphere MQ classes for Java 214, 216
WebSphere MQ classes for JMS 214, 216
Windows 70
Windows CE 111
Wireless Application Protocol 104, 111–112

Microbrowser 112
Wireless Markup Language 104, 112, 116
WLM 446–447
WML 245
WML See Wireless Markup Language
WMLScript 112
Work management 188
Working with messages in mediations 227
Workload management 445, 447

CICS 444
Web services 353

WS-Coordination 181, 491
WSDL 131, 165, 172–173, 177, 304, 317, 332, 338,
423, 426

Export from bus 343
Import to Rational Developer 345
namespace 344

WS-I Attachments Profile 332
WS-I Basic Profile 332
WS-I See Web Services Interoperability Organiza-
tion
WS-I Simple SOAP Binding Profile 332
WSIL 332
WS-Security 332, 354–355, 357–359

service integration bus 358

Web site 359, 491
WS-Transaction 181, 491
WS-TX 332

X
XA resource coordinator 216
XAQueueConnection Factory 199
XForms 111
XHTML

Extended HTML 110
XML 103, 112, 116, 184

Encryption 123
encryption

Web site 359, 491
Performance 185
signature

Web site 359, 491
XOpen/XA 216–217
XSD 346
XSLT See Extensible Stylesheet Language Trans-
formations
504 Patterns: Implementing Self-Service in an SOA Environment

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Patterns: Im
plem

enting Self-Service
in an SOA Environm

ent

®

SG24-6680-01 ISBN 073849626X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: Implementing
Self-Service
in an SOA Environment
Integrate Web
applications with the
enterprise tier

Explore Web
services, J2EE
Connectors, and JMS
solutions

Use SOA and ESB
technology

The Patterns for e-business are a group of proven, reusable
assets that can be used to increase the speed of developing
and deploying Web applications. This IBM Redbook focuses
on the use of service-oriented architecture and the enterprise
service bus to build solutions that help organizations achieve
rapid, flexible integration of IT systems.

It includes the Self-Service::Directly Integrated Single
Channel pattern for implementing point-to-point connections
with back-end applications, the Self-Service::Router pattern
for implementing intelligent routing among multiple back-end
applications, and the Self-Service::Decomposition pattern for
decomposing a request into multiple requests and
recomposing the results into a single response.

This IBM Redbook teaches you by example how to design and
build sample solutions using WebSphere Application Server
V6 with Web services, J2EE Connectors and IBM CICS, and
JMS using the WebSphere Application Server default
messaging provider. WebSphere Application Server service
integration technology is used to implement enterprise
service bus functionality.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	January 2006, Second Edition

	Chapter 1. Patterns for e-business
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Selecting a Business, Integration, Composite pattern, or a Custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Reviewing Product mappings
	1.2.5 Reviewing guidelines and related links

	1.3 Summary

	Chapter 2. Self-Service business pattern
	2.1 Self-service applications
	2.2 Self-Service application patterns
	2.3 Application pattern used in this book

	Chapter 3. SOA and the Enterprise Service Bus
	3.1 Overview of SOA
	3.1.1 Definition of a service
	3.1.2 Web services and SOA
	3.1.3 Messaging and SOA
	3.1.4 The advantages of SOA
	3.1.5 SOA summary

	3.2 Overview of the Enterprise Service Bus
	3.2.1 SOA infrastructure requirements
	3.2.2 Definition of an ESB
	3.2.3 Enterprise requirements for an ESB
	3.2.4 Minimum ESB capabilities
	3.2.5 ESB and Web services technologies
	3.2.6 Extended ESB capabilities
	3.2.7 The ESB and other SOA components

	Chapter 4. Runtime patterns
	4.1 An introduction to the node types
	4.1.1 Why use an enterprise service bus?

	4.2 Runtime patterns for Directly Integrated Single Channel
	4.2.1 Generic Runtime pattern for Directly Integrated Single Channel
	4.2.2 SOA profile for Directly Integrated Single Channel

	4.3 Runtime patterns for Router
	4.3.1 Generic Runtime pattern for Router
	4.3.2 SOA profile for Router

	4.4 Runtime patterns for Decomposition
	4.4.1 Generic Runtime pattern for Decomposition
	4.4.2 SOA profile for Decomposition

	Chapter 5. Product mappings and product overview
	5.1 Product mapping
	5.2 IBM WebSphere Application Server
	5.2.1 WebSphere Application Server V6 for distributed platforms
	5.2.2 Service integration
	5.2.3 ESB capabilities

	5.3 IBM Rational Software Development Platform
	5.3.1 Workbench

	5.4 Rational Application Developer
	5.4.1 Web development
	5.4.2 EJB development
	5.4.3 Web services support
	5.4.4 Connector support
	5.4.5 Test environment
	5.4.6 Team development

	5.5 Rational Software Architect
	5.5.1 Rational Unified Process guidance
	5.5.2 Model-driven development
	5.5.3 Modeling
	5.5.4 Asset-based development

	5.6 For more information

	Chapter 6. Technology options
	6.1 The big picture
	6.2 Client technologies
	6.2.1 Web-based clients
	6.2.2 Mobile clients

	6.3 Web application server
	6.3.1 Java servlets
	6.3.2 JavaServer Pages (JSPs)
	6.3.3 JavaServer Faces
	6.3.4 Struts
	6.3.5 Service Data Objects
	6.3.6 Portal applications
	6.3.7 JavaBeans
	6.3.8 XML
	6.3.9 Enterprise JavaBeans
	6.3.10 Additional enterprise Java APIs

	6.4 Integration technologies
	6.4.1 Web services
	6.4.2 J2EE Connector Architecture
	6.4.3 Java Message Service
	6.4.4 Enterprise Service Bus
	6.4.5 Others

	6.5 Where to find more information

	Chapter 7. Application and system design guidelines
	7.1 e-business application design considerations
	7.2 Application structure
	7.2.1 Model-View-Controller design pattern
	7.2.2 Result bean design pattern
	7.2.3 View bean design pattern
	7.2.4 Formatter beans design pattern
	7.2.5 Command bean design pattern
	7.2.6 Frameworks
	7.2.7 WebSphere command framework with EJBs
	7.2.8 Best practices for EJBs

	7.3 Design guidelines for Web services
	7.3.1 Web services architecture
	7.3.2 Web services design considerations
	7.3.3 The key challenges in Web services
	7.3.4 Best practices for Web services

	7.4 Design guidelines for J2EE Connector Architecture
	7.4.1 Components of J2EE Connector Architecture
	7.4.2 Managed and non-managed environments
	7.4.3 Outbound and inbound communication
	7.4.4 WebSphere Application Server and JCA
	7.4.5 Common Connector Interface
	7.4.6 CICS resource adapters
	7.4.7 Selecting a CICS resource adapter
	7.4.8 CICS ECI design considerations
	7.4.9 Best practices for J2EE Connector Architecture

	7.5 Design guidelines for JMS
	7.5.1 Message models
	7.5.2 JMS messages
	7.5.3 Message-driven beans
	7.5.4 Managing JMS objects
	7.5.5 JMS and JNDI
	7.5.6 Choosing a JMS provider
	7.5.7 WebSphere default messaging provider design considerations
	7.5.8 WebSphere MQ design considerations
	7.5.9 For more information

	7.6 Design guidelines for the ESB
	7.6.1 Service integration bus
	7.6.2 Mediations
	7.6.3 Working with messages in mediations

	Chapter 8. Business scenario and design
	8.1 ITSOMart overview
	8.1.1 Business goals

	8.2 Customer registration scenario
	8.2.1 Actors
	8.2.2 Use case
	8.2.3 Self-Service pattern selection

	8.3 Customer registration application design
	8.3.1 Activity diagram
	8.3.2 Sequence diagram
	8.3.3 Technology and product selection

	Chapter 9. JSF front-end scenario
	9.1 Architectural overview
	9.2 System design overview
	9.2.1 Design considerations
	9.2.2 Component model
	9.2.3 Object model

	9.3 Low level design
	9.3.1 ITSOMart Web diagram
	9.3.2 JSF managed bean design
	9.3.3 JSF input validation
	9.3.4 Error handling
	9.3.5 Back-end interface

	9.4 Application development guidelines
	9.4.1 Rational Software Architect development environment
	9.4.2 Web page templates
	9.4.3 Designing screens using the Page Designer
	9.4.4 Binding UI components to managed beans
	9.4.5 Implementing page navigation
	9.4.6 Implementing input validation
	9.4.7 Debugging applications in Rational Software Architect

	9.5 Runtime guidelines
	9.5.1 The web-config.xml configuration file

	9.6 System management
	9.7 For more information

	Chapter 10. Web services scenario
	10.1 Architectural overview model
	10.2 System design overview
	10.2.1 Component model
	10.2.2 Object model

	10.3 Applying the design guidelines
	10.4 Development guidelines for Web services
	10.5 Application development using Web services
	10.5.1 Implementation approach
	10.5.2 Creating a Web service from a session bean
	10.5.3 Testing with the Web Services Explorer
	10.5.4 Creating Web service clients

	10.6 Creating the mediations
	10.6.1 Create the router mediation
	10.6.2 Create the Aggregator mediation
	10.6.3 Extending the mediations

	10.7 Runtime guidelines for Web services
	10.7.1 Web services support in WebSphere Application Server V6
	10.7.2 Configuration tasks
	10.7.3 Create an endpoint listener
	10.7.4 Create the outbound services
	10.7.5 Create the inbound services
	10.7.6 Generate and export new WSDL for the services
	10.7.7 Update the Web service clients to use the bus
	10.7.8 Configure the router mediation
	10.7.9 Configure the aggregator mediation

	10.8 System management for Web services
	10.8.1 Security considerations for Web services
	10.8.2 Web Services Gateway

	10.9 More information

	Chapter 11. JMS scenario
	11.1 Architectural overview model
	11.2 System design overview
	11.2.1 Component model
	11.2.2 Object model

	11.3 Applying the design guidelines
	11.3.1 Point-to-point messaging model
	11.3.2 JMS resource lookups using JNDI
	11.3.3 Message selectors
	11.3.4 Message time-to-live
	11.3.5 Persistent versus non-persistent messages
	11.3.6 Mediation

	11.4 Development guidelines for JMS
	11.4.1 JMS development
	11.4.2 Creating a JMS client application
	11.4.3 Creating a message-driven bean
	11.4.4 Creating a mediation

	11.5 Runtime configuration for JMS
	11.5.1 Create a queue destination
	11.5.2 Create the JMS connection factory
	11.5.3 Create JMS queue
	11.5.4 Create JMS activation specification
	11.5.5 Mediation configuration
	11.5.6 Test the application

	11.6 System management for JMS
	11.6.1 JMS performance issues
	11.6.2 Performance monitoring for mediations
	11.6.3 Security considerations

	Chapter 12. J2EE Connector Architecture scenario
	12.1 Architectural overview model
	12.2 System design overview
	12.2.1 Component model
	12.2.2 Object model

	12.3 Applying the design guidelines
	12.3.1 Creating the input and output record
	12.3.2 Data conversion
	12.3.3 Connection management
	12.3.4 Executing the enterprise application
	12.3.5 Transaction management
	12.3.6 Security

	12.4 Development guidelines for JCA
	12.4.1 The CICS enterprise application
	12.4.2 Create a JCA application to access the enterprise application
	12.4.3 Create the EJB Web service client
	12.4.4 Integrate the JCA service client with Processor

	12.5 Runtime guidelines for JCA applications
	12.5.1 CICS Transaction Gateway
	12.5.2 WebSphere Application Server V6 configuration
	12.5.3 Configure the bus for the Web service
	12.5.4 Setting up the CICS application

	12.6 System management guidelines for JCA
	12.6.1 Logging and tracing
	12.6.2 Performance monitoring and tuning
	12.6.3 Scalability and availability considerations
	12.6.4 Security considerations

	12.7 For more information

	Appendix A. Sample application install summary
	Description of application files
	Import the source files to the workbench
	Runtime preparation
	Configuring the data source and creating the database
	Using a DB2 database
	Using a Cloudscape database

	Create a service integration bus
	Install Web services support for the bus
	Install the SDO Repository application
	Install the resource adapter
	Install the SIBWS application
	Install the SOAP over HTTP endpoint listener application

	Configure the bus for JMS messaging
	Create the queue destinations
	Configure the JMS connection factories
	Create the JMS queues
	Create the JMS activation specifications

	CreditCheck application
	JCAModule CRM application
	Mail service application
	Install the applications
	Configure the mediation

	DeliverySystem application
	Processor application
	Access the application
	Common errors:

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

