

ibm.com/redbooks

Patterns: Integrating
Enterprise Service Buses in a
Service-Oriented Architecture

Martin Keen
Jonathan Bond
Jerry Denman
Stuart Foster

Stepan Husek
Ben Thompson

Helen Wylie

Integrate ESBs in WebSphere V6 and
Message Broker V5

Patterns for integrating ESBs

Learn by example with
practical scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: Integrating Enterprise Service Buses in a
Service-Oriented Architecture

November 2005

International Technical Support Organization

SG24-6773-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2005)

This edition applies to WebSphere Application Server V6, Rational Application Developer V6, and
WebSphere Business Integration Message Broker V5.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xiii
Become a published author . xv
Comments welcome. xv

Part 1. Patterns for e-business and SOA . 1

Chapter 1. Introduction to Patterns for e-business 3
1.1 The Patterns for e-business layered asset model . 4
1.2 How to use the Patterns for e-business . 6

1.2.1 Selecting a Business, Integration, or Composite pattern, or a Custom
design . 6

1.2.2 Selecting Application patterns. 11
1.2.3 Review Runtime patterns . 12
1.2.4 Reviewing Product mappings . 15
1.2.5 Reviewing guidelines and related links . 16

1.3 Summary . 16

Chapter 2. Product descriptions . 17
2.1 Runtime product descriptions . 18

2.1.1 IBM WebSphere Application Server V6 . 18
2.1.2 IBM WebSphere Business Integration Message Broker V5 23
2.1.3 IBM WebSphere MQ V5.3. 27
2.1.4 IBM WebSphere Enterprise Service Bus V6. 28
2.1.5 IBM DB2 Universal Database Enterprise Server Edition V8.2 28

2.2 Development product descriptions . 29
2.2.1 IBM Rational Application Developer V6 . 29

Chapter 3. SOA runtime patterns and Product mappings 31
3.1 Runtime patterns . 32

3.1.1 Direct Connection using a service bus . 32
3.1.2 ESB runtime pattern . 34
3.1.3 ESB Gateway runtime pattern. 41
3.1.4 BSC runtime pattern . 43
3.1.5 ESB, BSC composite pattern . 46
3.1.6 Exposed ESB Gateway runtime pattern . 48
© Copyright IBM Corp. 2005. All rights reserved. iii

3.1.7 Exposed ESB Gateway, BSC composite pattern 50
3.2 Product mappings . 51

3.2.1 ESB runtime pattern::Product mappings. 52
3.2.2 ESB Gateway runtime pattern::Product mapping 53
3.2.3 BSC runtime pattern::Product mapping . 54
3.2.4 Exposed ESB Gateway Product mapping. 55

Chapter 4. Technology capabilities for an additional ESB 57
4.1 ESB capabilities and decision attributes . 58

4.1.1 Minimum ESB capabilities. 58
4.1.2 Extended ESB capabilities . 59
4.1.3 Softer attributes. 62

4.2 A review of ESB technologies . 65
4.2.1 WebSphere Integration Reference Architecture 65
4.2.2 General capability discussion . 67

4.3 Examples of adding new ESB technology to an existing ESB infrastructure
70

4.3.1 Scenario 1: Adding ESB capabilities to a WebSphere MQ infrastructure
71

4.3.2 Scenario 2: Integrating ESBs in a J2EE and Web services-based
infrastructure. 76

Chapter 5. To ESB but not two ESB? . 81
5.1 Tactical reasons for multiple ESBs . 82

5.1.1 Multiple governance bodies . 82
5.1.2 Funding models. 83
5.1.3 Alignment by organizational unit . 83
5.1.4 Geography . 84
5.1.5 Business strategy . 84
5.1.6 Multiple ESB technologies . 84

5.2 Conclusion. 85

Chapter 6. Integrating ESBs . 87
6.1 ESB capabilities . 88
6.2 ESB service request context translation . 89
6.3 Introduction to ESB integration patterns . 90

6.3.1 ESB Topology patterns overview . 90
6.3.2 ESB Governance patterns overview . 92
6.3.3 ESB Adapter Connector patterns overview. 93

6.4 ESB Topology patterns . 95
6.4.1 Directly Connected ESBs pattern . 95
6.4.2 Brokered ESBs pattern . 97
6.4.3 Federated ESBs pattern . 99

6.5 ESB Governance patterns. 101
iv Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

6.5.1 Local Governance pattern. 102
6.5.2 Intermediary Governance pattern . 102
6.5.3 Federated Governance pattern . 104
6.5.4 Multiple governance patterns . 105

6.6 ESB Adapter Connector patterns . 106
6.6.1 Adapter Connector pattern . 106
6.6.2 Boundary Services Adapter Connector pattern. 109
6.6.3 Composite . 112
6.6.4 Comparing Adapter Connectors and Boundary Services 113

Part 2. Business scenario and guidelines . 115

Chapter 7. The business scenario used in this book. 117
7.1 WS-I sample business scenario . 118
7.2 Sample business scenario used in this book . 118

7.2.1 Business context . 118
7.2.2 Applications in the supply chain management 119
7.2.3 Example of using the sample application . 120

Chapter 8. Technology options . 125
8.1 Web services. 126

8.1.1 SOAP . 128
8.1.2 Web Services Description Language (WSDL) 128
8.1.3 Universal Description, Discovery, Integration (UDDI) 129
8.1.4 Web services interoperability . 129
8.1.5 WS-I Basic Profile V1.0. 130
8.1.6 WS-I Basic Profile V1.1. 131
8.1.7 Advanced and future Web services standards 131
8.1.8 Web services security . 131
8.1.9 WS-ReliableMessaging and SOAP/JMS. 132

8.2 Messaging . 135
8.2.1 JMS . 135
8.2.2 WebSphere MQ messaging . 137
8.2.3 Service integration bus . 139

8.3 J2EE Connector Architecture . 143
8.4 Service Data Objects. 144

8.4.1 SDO architecture. 144

Part 3. Scenario implementation . 147

Chapter 9. Directly Connected homogeneous ESBs 149
9.1 Design guidelines . 151

9.1.1 Business scenario . 151
9.1.2 Selecting ESB integration patterns . 154
 Contents v

9.2 Development guidelines . 156
9.2.1 Scenario implementation. 156
9.2.2 Retargeting Web service client bindings . 159

9.3 Runtime guidelines . 159
9.3.1 Software requirements . 160
9.3.2 Steps to complete the scenario. 161
9.3.3 Building the WebSphere Application Server Network Deployment

infrastructure. 162
9.3.4 Building the service integration bus infrastructure 170
9.3.5 Deploying and building the WS-I scenario 190
9.3.6 Testing the scenario . 236

Chapter 10. Directly Connected heterogeneous ESBs 241
10.1 Design guidelines . 243

10.1.1 Business scenario . 243
10.1.2 Selecting ESB integration patterns . 245

10.2 Development guidelines . 248
10.2.1 ESB based on WebSphere Application Server 248
10.2.2 ESB based on WebSphere Business Integration Message Broker256
10.2.3 Legacy manufacturer application . 284

10.3 Runtime guidelines for ESB based on WebSphere Application Server 287
10.3.1 Building the WebSphere Application Server infrastructure 287
10.3.2 Linking the bus using the WebSphere MQ Link 299
10.3.3 Adding services to the bus . 301

10.4 Runtime guidelines for ESB based on WebSphere Business Integration
Message Broker . 302

10.4.1 Configuring WebSphere MQ queues and channels 302
10.4.2 Connect the toolkit to the configuration manager 303
10.4.3 Create execution groups . 304
10.4.4 Create and deploy Broker archive files . 305
10.4.5 Create database resources. 306

10.5 Runtime guidelines for legacy manufacturer application. 307
10.6 Testing the application . 310

Part 4. Appendixes . 313

Abbreviations and acronyms . 315

Appendix A. Additional material . 317
Locating the Web material . 317
Using the Web material . 317

System requirements for downloading the Web material 318
How to use the Web material . 318
vi Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Related publications . 319
IBM Redbooks . 319
Other publications . 319
Online resources . 320
How to get IBM Redbooks . 322
Help from IBM . 322

Index . 323
 Contents vii

viii Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AS/400®
CICS®
Cloudscape™
DB2 Connect™
DB2 Universal Database™
DB2®
developerWorks®

Domino®
Eserver®
Everyplace®
ibm.com®
IBM®
IMS™
iSeries™
Lotus®

Rational®
Redbooks (logo) ™
Redbooks™
SupportPac™
Tivoli®
WebSphere®
xSeries®
z/OS®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
x Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Preface

The Patterns for e-business are a group of proven, reusable assets that can be
used to increase the speed of developing and deploying e-business applications.
This IBM® Redbook focuses on how you can integrate Enterprise Service Bus
(ESB) implementations in a service-oriented architecture (SOA). We discuss
patterns for integrating ESBs and provide step-by-step instructions for integrating
ESBs implemented in WebSphere® Business Integration Message Broker V5
and WebSphere Application Server V6. However, the ESB integration patterns
and concepts apply to ESBs implemented with any product.

Part 1 introduces SOA and ESB concepts, and discusses the ESB capabilities of
WebSphere Business Integration Message Broker V5 and WebSphere
Application Server V6. It describes guidelines for determining when integration of
ESBs is necessary, and describes patterns for integrating ESBs.

Part 2 describes the business scenario used throughout this book and explains
the key technologies relevant to SOA and ESB.

Part 3 guides you through the process of integrating ESBs. Two scenarios are
described: integration of homogeneous ESBs and integration of heterogeneous
ESBs. The homogeneous ESB scenario describes the integration of two ESBs
implemented in WebSphere Application Server V6. The heterogeneous ESB
scenario describes the integration between an ESB implemented in WebSphere
Application Server V6 and an ESB implemented in WebSphere Business
Integration Message Broker V5.
© Copyright IBM Corp. 2005. All rights reserved. xi

The IBM Enterprise Service Bus strategy:

In September 2005, IBM announced two products intended to be the primary
solution for building ESBs:

� WebSphere Enterprise Service Bus V6

Delivers an ESB with Web services connectivity and data transformation.

� WebSphere Message Broker V6

Delivers an advanced ESB with universal connectivity and data
transformation.

At the time this redbook was written, WebSphere Enterprise Service Bus was
not generally available. In lieu of this product, the service integration bus of
WebSphere Application Server V6 is used in the redbook scenario
implementations to build ESB solutions.

For more information about the IBM ESB strategy see:

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb
xii Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Figure 1 The redbook team (left to right): Helen, Stepan, Ben, Jonathan, Stuart, Jerry,
Martin

Martin Keen is a Senior IT Specialist at the ITSO, Raleigh Center. He writes
extensively about WebSphere products and Patterns for e-business. He also
teaches IBM classes worldwide about WebSphere, SOA, and business process
management. Before joining the ITSO, Martin worked in the EMEA WebSphere
Lab Services team in Hursley, UK. Martin holds a bachelor’s degree in Computer
Studies from Southampton Institute of Higher Education.

Jonathan Bond is a Software Engineer working on the Service Integration Bus
and Web Services Gateway in IBM Hursley, UK. He has three years of
experience in the Web services and SOA field. He holds a Bachelor of Science
degree from the University of Bath.

Jerry M Denman is an Executive IT Architect with IBM Global Services in
Orlando, Florida. He has 20 years of consulting experience. His area of technical
expertise includes EAI, SOA, Service Oriented Integration, Web services
architecture, and enterprise architecture. His primary industries are travel and
transportation, consumer package goods, and retail companies. He is a member
 Preface xiii

of the IBM SOA and Web services Center of Excellence and a frequent
conference speaker.

Stuart Foster is a Certified Software IT Specialist. He has worked for IBM for 20
years, focusing on Java™ and WebSphere since 1997, and he currently works in
the WebSphere Technical Sales team in the UK. He holds a BSc degree in
Management Studies from Aston University, Birmingham, but this was gained a
long time ago. Stuart was a co-author of the IBM Redbook Accessing the
AS/400® with Java published in 1997.

Stepan Husek is an IT Specialist at IBM Global Services, Prague, Czech
Republic. He has more than four years of experience in integration technologies
starting with business-to-business integration based on XML and messaging. He
is a specialist in WebSphere Business Integration products and has experience
with service-oriented architecture, service oriented integration, and business
processes. Stepan holds an MSc degree in Computer Systems, Distributed
Systems and Networking from Czech Technical University, Prague.

Ben Thompson is an Advisory IT Specialist in IBM Software Group EMEA
Laboratory Services in Hursley, UK. He has worked with distributed transactional
middleware for five years and has extensive experience designing and
implementing solutions using the WebSphere product portfolio with IBM
customers worldwide. He frequently deals with ESB and Web Service
architectures and is also a recognized expert in the WebSphere Business
Integration Message Broker. Ben holds a bachelors degree in Natural Science
(Physics) from the University of Cambridge.

Helen Wylie is a certified Consultant IT Architect in Hursley Architectural
Services in the UK. She has many years of experience in various aspects of the
IT industry with the past decade being focused primarily in integration
architectures. She holds a Methematics degree from the Open University and a
post graduate diploma in Computer Science from Cambridge University. Her
recent areas of expertise include service-oriented architecture, integration
patterns, integration projects using a range of IBM products, and most recently
the combination of patterns and models to support automated generation of
services and deployment artifacts for deployment to an ESB.

Thanks to the following people for their contributions to this project:

Jonathan Adams and Paul Verschueren
Patterns for e-business leadership and architecture, IBM UK

Rick Robinson
Architecture Services, IBM EMEA WebSphere Lab Services, IBM UK
xiv Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Dr. Keith Jones
Senior Software Architect & Specialist, IBM Software Group, US

Bob Dill
Distinguished Engineer, IBM Global Services, US

Emily Plachy
Distinguished Engineer, IBM Global Services, US

Tapas Som
Distinguished Engineer, IBM Global Services, US

Jake Thorwart
ITSO Intern, Penn State University

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You’ll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you’ll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xvi Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Part 1 Patterns for
e-business and
SOA

This part contains the following chapters:

� Chapter 1, “Introduction to Patterns for e-business” on page 3

� Chapter 2, “Product descriptions” on page 17

� Chapter 3, “SOA runtime patterns and Product mappings” on page 31

� Chapter 4, “Technology capabilities for an additional ESB” on page 57

� Chapter 5, “To ESB but not two ESB?” on page 81

� Chapter 6, “Integrating ESBs” on page 87

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 1. Introduction to Patterns for
e-business

The role of the IT architect is to evaluate business problems and build solutions
to solve them. The architect begins by gathering input on the problem,
developing an outline of the desired solution, and considering any special
requirements that need to be factored into that solution. The architect then takes
this input and designs the solution, which can include one or more computer
applications that address the business problems by supplying the necessary
business functions.

To improve the process over time, we need to capture and reuse the experience
of the IT architects in such a way that future engagements can be made simpler
and faster. We do this by capturing knowledge gained from each engagement
and using it to build a repository of assets. IT architects can then build future
solutions based on these proven assets. This reuse saves time, money, and
effort and helps ensure delivery of a solid, properly architected solution.

The IBM Patterns for e-business help facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven to be successful. The information captured by them is
assumed to fit the majority, or 80/20, situation. The IBM Patterns for e-business
are further augmented with guidelines and related links for their better use.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last and include:

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout that describes how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure that supports an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and
management of e-business applications.

Figure 1-1 on page 5 shows these assets and their relationships to each other.
4 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The layers of patterns, along with their associated links and guidelines, enable
the architect to start with a problem and a vision for the solution and then find a
pattern that fits that vision. Then, by drilling down using the patterns process, the
architect can further define the additional functional pieces that the application
need to succeed. Finally, the architect can build the application using coding
techniques that are outlined in the associated guidelines.

The Patterns Web site provides an easy way of navigating through the layered
Patterns assets to determine the most appropriate assets for a particular
engagement.

For easy reference, see the Patterns for e-business Web site at:

http://www.ibm.com/developerWorks/patterns/

Best-Practice Guidelines
Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
 Chapter 1. Introduction to Patterns for e-business 5

http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business
As described in the previous section, the Patterns for e-business have a layered
structure where each layer builds detail on the last. At the highest layer are
Business patterns. These describe the entities involved in the e-business
solution.

Composite patterns appear in the hierarchy shown in Figure 1-1 on page 5 above
the Business patterns. However, Composite patterns are made up of a number of
individual Business patterns and at least one Integration pattern. This section
discusses how to use the layered structure of Patterns for e-business assets.

1.2.1 Selecting a Business, Integration, or Composite pattern, or a
Custom design

When faced with the challenge of designing a solution for a business problem,
the first step is to get a high-level view of the goals that you are trying to achieve.
You need to describe a proposed business scenario and match each element to
an appropriate IBM Pattern for e-business. You might find, for example, that the
total solution requires multiple Business and Integration patterns or that it fits into
a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of
time and money spent on call centers that handle customer inquiries. By allowing
customers to view their policy information and request changes online, the
company can cut back significantly on the resources that are spent handling this
type of request by phone. The objective enables policy holders to view policy
information that is stored in legacy databases.

The Self-Service business pattern fits this scenario perfectly. You can use it in
situations where users need direct access to business applications and data. The
following sections discuss the available Business patterns.
6 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Business patterns
A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.

There are four primary Business patterns, that are explained in Table 1-1.

Table 1-1 The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things can often be more complicated. The patterns assume that
most problems, when broken down into their basic components, will fit more than
one of these patterns. When a problem requires multiple Business patterns, you
can use Integration patterns.

Business patterns Description Examples

Self-Service
(user-to-business)

Applications where users
interact with a business via
the Internet or intranet

Simple Web applications

Information Aggregation
(user-to-data)

Applications where users
can extract useful
information from large
volumes of data, text,
images, and so forth

Business intelligence,
knowledge management,
and Web crawlers

Collaboration
(user-to-user)

Applications where the
Internet supports
collaborative work
between users

Community, chat,
videoconferencing, e-mail,
and so forth

Extended Enterprise
(business-to-business)

Applications that link two or
more business processes
across separate
enterprises

EDI, supply chain
management, and so forth
 Chapter 1. Introduction to Patterns for e-business 7

Integration patterns
Integration patterns enable you to tie together multiple Business patterns to solve
a business problem. Table 1-2 describes the Integration patterns.

Table 1-2 Integration patterns

The Access Integration pattern maps to User Integration. The Application
Integration pattern is divided into two essentially different approaches:

� Process Integration, which is the integration of the functional flow of
processing between the applications.

� Data Integration, which is the integration of the information that is used by
applications.

You can combine the Business and Integration patterns to implement
installation-specific business solutions called a Custom design.

Custom design
Figure 1-2 illustrates the use of a Custom design to address a business problem.

Figure 1-2 Patterns representing a Custom design

Integration patterns Description Examples

Access Integration Integration of a number of
services through a
common entry point

Portals

Application Integration Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers,
data propagators, and data
federation engines

A
cc

es
s

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

8 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

If you do not use any of the Business or Integration patterns in a Custom design,
you can show the unused patterns as lighter blocks than those patterns that you
do use. For example, Figure 1-3 shows a Custom design that does not have a
Collaboration or an Extended Enterprise business pattern for a business
problem.

Figure 1-3 Custom design showing unused patterns

If a Custom design recurs many times across domains that have similar business
problems, then it can also be a Composite pattern. For example, the Custom
design in Figure 1-3 can also describe a Sell-Side Hub Composite pattern.

A
cc

es
s

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

 Chapter 1. Introduction to Patterns for e-business 9

Composite patterns
Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. Table 1-3 shows the identified
Composite patterns.

Table 1-3 Composite patterns

Composite patterns Description Examples

Electronic Commerce User-to-online-buying • www.macys.com
• www.amazon.com

Portal Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized access
for its users.

• Enterprise intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses.

• Collaboration providers who
provide services such as e-mail or
instant messaging.

Account Access Provides customers with
around-the-clock account access to
their account information.

• Online brokerage trading
applications.

• Telephone company account
manager functions.

• Bank, credit card, and insurance
company online applications.

Trading Exchange Enables buyers and sellers to trade
goods and services on a public site.

• Buyer's side: interaction between
buyer's procurement system and
commerce functions of
e-Marketplace.

• Seller's side: interaction between
the procurement functions of the
e-Marketplace and its suppliers.

Sell-Side Hub
(supplier)

The seller owns the e-Marketplace
and uses it as a vehicle to sell goods
and services on the Web.

www.carmax.com (car purchase)

Buy-Side Hub
(purchaser)

The buyer of the goods owns the
e-Marketplace and uses it as a vehicle
to leverage the buying or procurement
budget in soliciting the best deals for
goods and services from prospective
sellers across the Web.

www.wwre.org
(WorldWide Retail Exchange)
10 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The makeup of these patterns is variable in that there will be basic patterns
present for each type. However, you can extend the Composite to meet additional
criteria. For more information about Composite patterns, refer to Patterns for
e-business: A Strategy for Reuse by Jonathan Adams, Srinivas Koushik, Guru
Vasudeva, and George Galambos.

1.2.2 Selecting Application patterns
After you identify the Business pattern, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern usually has
multiple possible Application patterns. An Application pattern might have logical
components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns break down the application into the most basic conceptual
components that identify the goal of the application. In our example, the
application falls into the Self-Service business pattern, and the goal is to build a
simple application that allows users to access back-end information. Figure 1-4
shows the Self-Service::Directly Integrated Single Channel application pattern,
which fulfills this requirement.

Figure 1-4 Self-Service::Directly Integrated Single Channel pattern

This Application pattern consists of a presentation tier that handles the request
and response to the user. The application tier represents the component that
handles access to the back-end applications and data. The multiple application
boxes on the right represent the back-end applications that contain the business
data. The type of communication is specified as synchronous (one request/one

Presentation synchronous Web
Application

synch/
asynch Back-End

Application 1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or which cannot be changed

Read/Write data

Back-End
Application 2
 Chapter 1. Introduction to Patterns for e-business 11

response, then next request/response) or asynchronous (multiple requests and
responses intermixed).

Suppose that the situation is a little more complicated. Let’s say that the
automobile policies and the homeowner policies are kept in two separate and
dissimilar databases. The user request actually needs data from multiple,
disparate back-end systems. In this case, there is a need to break the request
down into multiple requests (decompose the request) to be sent to the two
different back-end databases, then to gather the information that is sent back
from the requests, and put this information into the form of a response
(recompose). In this case, the Self-Service::Decomposition application pattern
(as shown in Figure 1-5) would be more appropriate.

Figure 1-5 Self-Service::Decomposition pattern

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

1.2.3 Review Runtime patterns
You can refine the Application pattern further with more explicit functions. Each
function is associated with a runtime node. In reality, these functions, or nodes,
can exist on separate physical machines or can coexist on the same machine. In
the Runtime pattern the physical location of the function is not relevant. The
focus is on the logical nodes that are required and their placement in the overall
network structure.

As an example, suppose that our customer has determined that their solution fits
into the Self-Service business pattern and that the Directly Integrated Single

Presentation synchronous Decomp/
Recomp

synch/
asynch

Application node
containing new
or modified
components

Application node
containing existing
components with no need
for modification or which
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
 flow)

Back-End
Application 1

Back-End
Application 2
12 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Channel pattern is the most descriptive of the situation. The next step is to
determine the Runtime pattern that is most appropriate for the situation.

They know that they will have users on the Internet who are accessing their
business data, Therefore, they require a measure of security. You can implement
security at various layers of the application, but the first line of defense is almost
always one or more firewalls that define who and what can cross the physical
network boundaries into the company network.

The customer also needs to determine the functional nodes that are required to
implement the application and security measures. Figure 1-6 shows the Runtime
pattern that is one option.

Figure 1-6 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node fulfills in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. The
Application pattern handles both static and dynamic Web pages.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Existing
Applications

and Data
D

om
ai

n
Fi

re
w

al
lI

N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data
 Chapter 1. Introduction to Patterns for e-business 13

Application security is handled by the Web application server through the use of
a common central directory and security services node.

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. Figure 1-7
shows a variation on this pattern. It splits the Web application server into two
functional nodes by separating the HTTP server function from the application
server. The HTTP server (Web server redirector) provides static Web pages and
redirects other requests to the application server. This pattern moves the
application server function behind the second firewall, adding further security.

Figure 1-7 Directly Integrated Single Channel application pattern::Runtime pattern

These are just two examples of the possible Runtime patterns that are available.
Each Application pattern will have one or more Runtime patterns defined. You
can modify these Runtime patterns to suit the customer’s needs. For example,
the customer might want to add a load-balancing function and multiple
application servers.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

Application
Server

Directory and
Security
Services

Existing
Applications

and Data
14 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

1.2.4 Reviewing Product mappings
The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The Patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The
Product mappings are oriented toward a particular platform. However, it is more
likely that the customer will have a variety of platforms involved in the network. In
this case, you can mix and match product mappings.

For example, you could implement the runtime variation in Figure 1-7 on page 14
using the product set that is depicted in Figure 1-8.

Figure 1-8 Directly Integrated Single Channel application pattern: Windows 2000 Product mapping

Internal networkDemilitarized zone

O
ut

si
de

 w
or

ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Web Server
Redirector

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway
V5.0
IBM CICS Transaction Server
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3
 Chapter 1. Introduction to Patterns for e-business 15

1.2.5 Reviewing guidelines and related links
The Application patterns, Runtime patterns, and Product mappings can guide
you in defining the application requirements and the network layout. The actual
application development has not been addressed yet. The Patterns Web site
provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application, based on the following
guidelines:

� Design guidelines provide tips and techniques for designing the applications.

� Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

� System management guidelines address the day-to-day operational
concerns, including security, backup and recovery, application management,
and so forth.

� Performance guidelines give information about how to improve the application
and system performance.

1.3 Summary
The IBM Patterns for e-business are a collected set of proven architectures. You
can use this repository of assets to facilitate the development of Web-based
applications. Patterns for e-business help you understand and analyze complex
business problems and break them down into smaller, more manageable
functions that you can then implement.
16 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 2. Product descriptions

This chapter describes products that are discussed and used throughout this
book for both development and runtime activities. The products described are:

� WebSphere Application Server Version 6

� WebSphere Business Integration Message Broker Version 5

� WebSphere MQ Version 5.3

� WebSphere Enterprise Service Bus V6

� DB2® Universal Database™ Enterprise Server Edition Version 8.2

� IBM Rational® Application Developer V6.0

2

© Copyright IBM Corp. 2005. All rights reserved. 17

2.1 Runtime product descriptions
This section describes products that are discussed and used throughout this
book for runtime functionality.

2.1.1 IBM WebSphere Application Server V6
WebSphere Application Servers are a suite of servers that implement the J2EE
specification. Any enterprise applications that are written to the J2EE
specification can be installed and deployed on any of the servers in the
WebSphere Application Server family.

The foundation of the WebSphere brand is the application server. The application
server provides the runtime environment and management tools for J2EE and
Web services-based applications. Clients access these applications through
standard interfaces and APIs. The applications, in turn, have access to a wide
variety of external sources, such as legacy systems, databases, and Web
services, that can be used to process the client requests as shown in Figure 2-1.

Figure 2-1 WebSphere Application Server product overview

Web
server

WebSphere
Application

Server

Application
Server

Application
Server

Clients

Web browser

Java

Msg
Queue

Msg
Queue

Legacy
systems

CICS
IMS
DB2
SAP
etc.

Application
Server

J2EE applications

Messaging

Web
services
provider

Enterprise
application
developer

Rational
Application
Developer

Rational Web
Developer

Web
application
developer

Secure
access

Tivoli
Access

Manager

Web services
Application

Server

Service
Integration B

us

Service
Integration B

us
18 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

WebSphere Application Servers are available in multiple packages to meet
specific business needs. They are also available on a wide range of platforms,
including UNIX® platforms, Microsoft® operating systems, IBM z/OS®, and
iSeries™. Although branded for iSeries, the WebSphere Application Server
products for iSeries are functionally equivalent to those for the UNIX and
Microsoft platforms.

Highlights and benefits
WebSphere Application Server provides the environment to run your
Web-enabled e-business applications. You might think of an application server as
Web middleware or a middle tier in a three-tier e-business environment. The first
tier is the HTTP server that handles requests from the browser client. The third
tier is the business database (for example, DB2 Universal Database) and the
business logic (for example, traditional business applications such as order
processing hosted in IBM CICS® systems). The middle tier is IBM WebSphere
Application Server, which provides a framework for consistent, architected
linkage between the HTTP requests and the business data and logic.

IBM WebSphere Application Server is intended for organizations that want to
take advantage of the productivity, performance advantages, and portability that
Java provides for dynamic Web sites. It includes:

� J2EE V1.4 support.

� High performance connectors to many common back-end systems to reduce
the coding effort required to link dynamic Web pages to real line-of-business
data.

� Application services for session and state management.

� Web services that enable businesses to connect applications to other
business applications, to deliver business functions to a broader set of
customers and partners, to interact with marketplaces more efficiently, and to
create new business models dynamically.

� The service integration bus infrastructure to complement and extend
WebSphere MQ and the application server. It is suitable for those who are
currently using the WebSphere Application Server V5 embedded messaging
and for those who need to provide messaging capability between WebSphere
Application Server and an existing WebSphere MQ backbone.

The service integration bus features include:

– Multiple messaging patterns (APIs) and protocols for message-oriented
and service-oriented applications.

– A J2EE V1.4 compliant JMS provider that is the default messaging
provider.
 Chapter 2. Product descriptions 19

– Support for up-to-date Web services standards including standards that
require JAX-RPC APIs.

– Reliable message transport capability.

– Tightly and loosely coupled communications options.

– Intermediary logic (mediations) to intelligently adapt message flow in the
network.

– Support for clustering to provide scalability and high availability.

– Quality of service options.

– Support for the WebSphere Business Integration programming model,
which converges functions from workflow, message brokering,
collaborations, adapters, and the application server.

– Fully integrated within WebSphere Application Server, including security,
installation, administration console, performance monitoring, trace, and
problem determination.

– Support for connectivity into a WebSphere MQ network.

Because different levels of application server capabilities are required at different
times as varying e-business application scenarios are pursued, WebSphere
Application Server is available in multiple packaging options. Although they share
a common foundation, each provides unique benefits to meet the needs of
applications and the infrastructure that supports them. So, at least one
WebSphere Application Server product package will fulfill the requirements of
any particular project and the prerequisites of the infrastructure that supports it.
As your business grows, the WebSphere Application Server family provides a
migration path to higher configurations.

You can find more information about using IBM WebSphere Application Server
V6 in WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451.

WebSphere Application Server is currently packaged in the following
configurations:

� WebSphere Application Server Express V6
� WebSphere Application Server V6
� WebSphere Application Server Network Deployment V6
� WebSphere Application Server Extended Deployment V5.1

WebSphere Application Server - Express V6
IBM WebSphere Application Server - Express Version 6 is a tightly integrated
development tool and application server that provides an easily affordable entry
point to e-business for companies creating dynamic Web sites utilizing a single
20 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

server deployment model. It supports the full J2EE 1.4 programming model and
extensions including Servlets, JSPs, EJBs, and Web services.

WebSphere Application Server V6
The WebSphere Application Server package is the next level of server
infrastructure in the WebSphere Application Server family. Though the
WebSphere Application Server is functionally equivalent to that shipped with
Express, this package differs slightly in packaging and licensing. The
development tool included is a trial version of Rational Application Developer, the
full J2EE V1.4 compliant development tool.

WebSphere Application Server Network Deployment V6
WebSphere Application Server Network Deployment is an even higher level of
server infrastructure in the WebSphere Application Server family. It extends the
WebSphere Application Server base package to include clustering capabilities,
edge components, and high availability for distributed configurations. These
features become more important at larger enterprises, where applications tend to
service a larger customer base and more elaborate performance and availability
requirements are in place.

Application servers in a cluster can reside on the same or multiple machines. A
Web server plug-in installed in the Web server can distribute work among
clustered application servers. In turn, Web containers running servlets and JSPs
can distribute requests for EJBs among EJB containers in a cluster.

In addition to all of the features and functions within WebSphere Application
Server, this configuration delivers advanced deployment services that include
clustering, edge-of-network services, Web services enhancements, and high
availability for distributed configurations.

WebSphere Application Server Network Deployment provides the following
features:

� Provides UDDI V3, enabling you to describe and discover Web services in
more secure manner

� Delivers advanced Web services security to enhance the security of Web
services interaction

� Provides the Web Services Gateway, which enables Web services invocation
by users from outside the firewall with the benefit of robust security protection

� Supports advanced failover and clustering capabilities

� Simplified administration using the development tool interface

� Browser-based administration for remote administration across firewalls
 Chapter 2. Product descriptions 21

� Convenient administration through embedded administrative console

� Intelligent workload distribution across a cluster

� Failure bypass

� Clustering support

� Edge Server Component, which delivers sophisticated load balancing,
caching, and centralized security capabilities

Because WebSphere Application Server Network Deployment is designed for
distributed configurations it made the ideal choice for deployment of WebSphere
Application Server in the scenarios used in this book.

IBM WebSphere Web services gateway
The WebSphere Web services gateway, a component of WebSphere Application
Server Network Deployment V6, provides a single point of control, access, and
validation of Web service requests, and enables you to control which services
are available to different groups of Web service users. You use the gateway to
make available controlled sets of Web services for use within your organization
and by external users. The services that each gateway instance makes available
as Web services can be a mixture of internal services that are directly available
at service integration bus destinations and external Web services. This approach
provides the following benefits:

� The gateway service is made available at a Web address different from the
target service, so you can replace or relocate the target service without
changing the details for the associated gateway service.

� You can have more than one target service (that is, more than one
implementation of the same logical service) for each gateway service.

� The gateway service can be made available on a different service integration
bus from the target service.

� The gateway provides a common interface to the services in each set. Your
gateway service users need not know where each underlying service is
located, or whether the underlying service is being provided internally or
sourced externally, or whether there are multiple target services available for
a single gateway service.

In WebSphere Application Server Versions 4 and 5, the Web services gateway
was a separable component with its own user interface. In WebSphere
Application Server Network Deployment Version 6, the gateway is fully integrated
into the IBM service integration technologies. It is not available in the WebSphere
Application Server - Express V6 nor WebSphere Application Server packages.
22 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

WebSphere Extended Deployment V5.1
WebSphere Extended Deployment Version 5.1 delivers add-on features to
WebSphere Application Server Network Deployment that provide a dynamic,
goal-directed, high-performance environment for WebSphere applications. These
extended capabilities help you to optimize the utilization and management of
your deployments and enhance the quality of service of your business-critical
applications. The following features and functions extend the capabilities of
WebSphere Application Server Network Deployment:

� WebSphere Extended Deployment, delivering on demand responsiveness,
simplified administration, and high-performance enhancements.

� WebSphere resource virtualization and pooling using node groups and
dynamic clusters

� Dynamic adjustment of WebSphere resources through application placement

� Integration with Tivoli® Intelligent Orchestrator (an optional component,
available separately) for enterprise-wide autonomic provisioning

� Introduction of operational policies to distributed WebSphere environments
and intelligent routing and dynamic workload management according to
established goals

� Visualization of operational environment and application-level performance
against business goals

� Application partitioning technology and design patterns for improved
performance and scalability for high-end transactional WebSphere
applications

� High-availability services for increased reliability for business-critical
applications

You can find more information about the WebSphere Application Server
packages at:

http://www.ibm.com/software/webservers/appserv/was/

2.1.2 IBM WebSphere Business Integration Message Broker V5
WebSphere Business Integration Message Broker V5 extends the messaging
capabilities of WebSphere MQ (described in 2.1.3, “IBM WebSphere MQ V5.3”
on page 27) by adding message routing, transformation, and publish/subscribe
features. WebSphere Business Integration Message Broker provides a runtime
environment that executes message flows, which consist of a graph of nodes that
 Chapter 2. Product descriptions 23

http://www.ibm.com/software/webservers/appserv/was/

represent the processing that is needed for integrating applications. The
message flows can be designed to perform a wide variety of functions, including:

� Routing of messages to zero or more destinations based on the contents of
the message or message header. (Both one-to-many and many-to-one
messaging topologies are supported.)

� Transformation of messages into different formats so that diverse applications
can exchange messages that each of them can understand.

� Processing message content in several message domains, including the XML
domain that handles self-defining (or generic) XML messages, the Message
Repository Manager (MRM), which handles predefined message sets, and
unstructured data (BLOB domain).

WebSphere Business Integration Message Broker also provides these features:

� Simplified integration of existing applications with Web services through the
transformation and routing of SOAP messages, as well as logging of Web
services transactions.

� Mediation between Web services and other integration models as both a
service consumer and a service provider.

� Compliance with standards such as Web Services Definition Language
(WSDL), Simple Object Access Protocol (SOAP), and Hypertext Transfer
Protocol (HTTP).

� Integrated WebSphere MQ transports for enterprise, mobile, real-time,
multicast, and telemetry endpoints.

� Standards-based metadata including XML schema and WSDL.

Architecture
WebSphere Business Integration Message Broker provides both the runtime and
development environment necessary to provide broker functionality. Actions
taken on messages are done by message flows executing in the runtime
component. As messages arrive from applications over a supported transport,
they are processed by the appropriate message flow, then sent on to their
destination.

Figure 2-2 on page 25 illustrates the basic runtime and development
architecture.
24 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 2-2 WebSphere Business Integration Message Broker architecture

1. The primary runtime component is the broker. Brokers contain a number of
execution groups, which are processes in which message flows are run. Each
broker uses a database to store the information it needs to process messages
at runtime.

2. Messages are processed by message flows. Message flows are developed to
provide specific functionality by wiring a series of nodes together. Each node
has a specific job to do within the scheme of the message flow. Nodes for
input and output are designed to take the messages from specific transport
 Chapter 2. Product descriptions 25

types. Other nodes can perform computations or message enhancement, or
make routing decisions.

3. Messages must have a defined structure that is known and agreed to by the
sender and the receiver. In order for the broker to process messages, it must
also understand their format. A message set contains message definition files
that describe the messages.

4. The Message Brokers Toolkit for WebSphere Studio provides an integrated
development environment for message flow development and runtime
administration. Message flows and message sets can be developed using the
Message Brokers Toolkit Workbench, then packaged for execution and
deployed to the runtime environment via a connection established between
the Workbench and the Configuration Manager.

5. The Configuration Manager coordinates all activity (for example, changes to a
message set) between the Workbench and brokers within its domain. Brokers
are grouped into broker domains. Each domain is coordinated by a
Configuration Manager, which uses a database as a repository to store
information relating to its broker domain.

6. If you have applications that use the publish/subscribe services of a broker,
you can apply an additional level of security to the topics on which messages
are published and subscribed. This additional security, known as topic-based
security, is managed by the User Name Server. It provides administrative
control over who can publish and who can subscribe.

7. Transport support facilities provide the interface between the client
applications and the message flows. One or more WebSphere MQ queue
managers provide the underlying transport infrastructure for the WebSphere
Business Integration Message Broker. IBM WebSphere MQ messaging is
used between the Workbench, the Configuration Manager, and the brokers.
WebSphere MQ is also one of the transports supported for communication
between applications and brokers as well.

WebSphere Business Integration Message Broker provides function and transport
capabilities that support and facilitate enterprise-level business integration.

End-user applications can connect to the broker with the following transports:

� WebSphere MQ clients connect using the WebSphere MQ Enterprise
Transport.

� WebSphere MQ Everyplace® clients (pervasive devices) connect using the
WebSphere MQ Mobile Transport.

� Multicast JMS clients connect using the WebSphere MQ Multicast Transport.

� Real-time JMS clients (direct TCP/IP) connect using the WebSphere MQ
Real-time Transport.
26 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

� SCADA clients (remote devices) connect using the WebSphere MQ Telemetry
Transport.

� Web services clients (HTTP) connect using the WebSphere MQ Web
Services Transport (Message Broker only), allowing message flows to be
invoked as Web services

You can find more information about IBM WebSphere Business Integration
Message Broker V5 at:

http://www.ibm.com/software/integration/wbimessagebroker

2.1.3 IBM WebSphere MQ V5.3
IBM WebSphere MQ provides assured once-only delivery of messages across
more than 35 industry platforms using a variety of communications protocols.
The transportation of message data through a network is made possible through
the use of a network of WebSphere MQ queue managers. Each queue manager
hosts local queues that are containers used to store messages. Through remote
queue definitions and message channels, data can be transported to its
destination queue manager.

To use the services of a WebSphere MQ transport layer, an application must
make a connection to a WebSphere MQ queue manager, the services of which
enable it to receive (get) messages from local queues or send (put) messages to
any queue on any queue manager. The application’s connection can be made
directly (where the queue manager runs locally to the application) or as a client
(to a queue manager that is accessible over a network).

Dynamic workload distribution is another important feature of WebSphere MQ.
This feature shares the workload among a group of queue managers that are
part of the same cluster. This enables WebSphere MQ to balance the workload
across available resources automatically and provide hot standby capabilities if a
system component fails. This is a critical feature for companies that need to
maintain round-the-clock availability.

WebSphere MQ supports a variety of application programming interfaces
(including MQI, AMI, and JMS), which provide support for several programming
languages as well as point-to-point and publish/subscribe communication
models. In addition to support for application programming, WebSphere MQ
provides several connectors and gateways to a variety of other products, such as
Microsoft Exchange, Lotus® Domino®, SAP/R3, CICS, and IMS™, to name just
a few.

You can find more information about IBM WebSphere MQ at:

http://www.ibm.com/software/ts/mqseries
 Chapter 2. Product descriptions 27

http://www.ibm.com/software/integration/wbimessagebroker
http://www.ibm.com/software/ts/mqseries

2.1.4 IBM WebSphere Enterprise Service Bus V6
WebSphere Enterprise Service Bus is a new product designed to provide an
ESB for IT environments built around open standards and SOA. It delivers robust
and easy-to use-functionality built on the proven messaging and Web services
technologies of WebSphere Application Server. It is aimed at businesses looking
for Web services based connectivity and service oriented integration.

WebSphere Enterprise Service Bus provides the following features:

� Provides Web services connectivity, JMS messaging, and service oriented
integration by including support for:

– SOAP/HTTP
– SOAP/JMS
– WSDL V1.1
– UDDI V3.0

� Provides support for building an ESB with integration logic such as:

– Protocol conversion for messages received over HTTP, JMS, and IIOP

– Format transformation between XML, SOAP, and JMS message
standards, and many more when used with adapters

– Mediation capabilities, including pre-built mediations for the following
functions:

• Message logging
• Flow of business events
• Use of WebSphere Adapters to capture and disseminate business

events

You can find more information about IBM WebSphere Enterprise Service Bus at:

http://www.ibm.com/software/integration/wsesb/

2.1.5 IBM DB2 Universal Database Enterprise Server Edition V8.2
IBM DB2 Universal Database Enterprise Server Edition is a multi-user version of
DB2 Universal Database that enables you to create and manage partitioned
database environments. Partitioned database systems can manage high
volumes of data and provide benefits such as high availability and increased
performance. Other features include:

� A data warehouse server and related components

� DB2 Connect™ functionality for accessing data stored on midrange and
mainframe database systems

� Satellite administration capabilities
28 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/software/integration/wsesb/

DB2 Universal Database V8.2 delivers new features to address the
ever-increasing demands and requirements on important data, which include:

� Broadened autonomic computing solutions that automate and simplify
potentially time consuming and complex database tasks.

� A significant amount of new capabilities as well as further integration of DB2
tooling into the Microsoft .NET and WebSphere Java environments. These
new capabilities simplify the development and deployment of DB2
applications and enable application developers to take advantage of the
openness, performance, and scalability of DB2 without regard to the back-end
database or the chosen application architecture

� Integration of industry-proven high availability disaster recovery technology
enable line-of-business managers and the enterprise itself to benefit because
applications face less risk of downtime.

You can find more information about the IBM DB2 Universal Database Enterprise
Server Edition at:

http://www.ibm.com/software/data/db2/udb

2.2 Development product descriptions
This section describes products that are discussed and used throughout this
book for development.

2.2.1 IBM Rational Application Developer V6
Rational Application Developer is an integrated development environment with
full support for the J2EE programming model including EJB development, Web
services, Web applications, and Java. In previous releases this product was
known as WebSphere Studio Application Developer. This tool includes integrated
portal development, UML editing, code analysis, automated test and deployment
tools, built-in version control, and team tools. Everything you need to be
productive and to make sure written code is well designed, scalable, and ready
for production is included in Rational Application Developer. Additionally,
everything is provided for version control and protection when developers work in
large teams or on complex projects. Rational Application Developer is optimized
for IBM WebSphere software.

Rational Application Developer V6.0 is part of the Rational Software
Development Platform used to develop applications to be deployed to IBM
WebSphere Application Server V6.0, V5.0.x, and IBM WebSphere Portal
V5.0.2.2 and V5.1. The Rational Software Development Platform provides an
integrated development environment (IDE) and tooling used to design, develop,
 Chapter 2. Product descriptions 29

http://www.ibm.com/software/data/db2/udb

test, debug, and deploy applications in support of the application development
life cycle.

The IBM Rational Software Development Platform is built on the IBM Eclipse
SDK 3.0, which is an IBM-supported version of the Eclipse V3.0 Workbench
containing many new features and a new look and feel. When used with the IBM
Software Development Platform, you can access a broad range of requirements
directly from Rational Application Developer for WebSphere software with
features such as:

� Rational Web Developer tools allow accelerated use of portal, SOA, and
J2EE.

� You can shorten the Java learning curve by using drag-and-drop components
and point-and-click database connectivity.

� You can improve code quality by using automated tools for applying coding
standard reviews, component, and Web service unit testing and multi-tier
runtime analysis.

� Business applications can be integrated with Web services and SOA.

You can find more information about IBM Rational Application Developer at:

http://www.ibm.com/software/awdtools/developer/application
30 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/software/awdtools/developer/application

Chapter 3. SOA runtime patterns and
Product mappings

This section describes the Runtime patterns and Product mappings that are
relevant to a service-oriented architecture (SOA) with specific focus on the
Enterprise Service Bus (ESB).

This chapter describes the following SOA runtime patterns:

� Direct Connection using a Service Bus runtime pattern
� ESB runtime pattern
� ESB Gateway runtime pattern
� BSC runtime pattern
� ESB, BSC composite pattern
� Exposed ESB Gateway runtime pattern (for inter-enterprise)
� Exposed ESB Gateway, BSC composite pattern (for inter-enterprise)

This chapter also provides Product mappings for the following Runtime patterns:

� ESB runtime pattern
� ESB Gateway runtime pattern
� BSC runtime pattern
� Exposed ESB Gateway runtime pattern (for inter-enterprise)

You can find an overview of the products used in the Product mappings in
Chapter 2, “Product descriptions” on page 17.

3

© Copyright IBM Corp. 2005. All rights reserved. 31

3.1 Runtime patterns
Runtime patterns are used to define the logical middleware structure that
supports Application patterns. In other words, Runtime patterns describe the
logical architecture that is required to implement an Application pattern. Runtime
patterns depict the major middleware nodes, their roles, and the interfaces
between these nodes.

The Runtime patterns that are illustrated in this chapter give some typical
examples of possible solutions. However, these examples should not be
considered exhaustive.

3.1.1 Direct Connection using a service bus
The Direct Connection runtime pattern (Figure 3-1) shows a service consumer
that is connected to two other service providers via a simple service bus. The
Application pattern overlays in this figure show that multiple Direct Connection
application patterns can be deployed using the service bus.

Figure 3-1 Direct Connection using a simple service bus

Direct Connection

Source
Application

Target
Application 2

Internal network

Direct Connection

Source
Application

Target
Application 1

App Server/
Services

App Server/
Services

App Server/
Services

<Service Bus>

<Service Provider><Service Consumer> <Service Provider>
32 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The service consumer (or source application) can use the service bus to initiate
direct connections to two service providers — one to Target Application 1 and the
other to Target Application 2.

In order to focus on the service bus concept, we do not explicitly model adapter
connectors or connection rules in Figure 3-1 on page 32. The service bus
concept is, however, an extension of the Direct Connection with federated
adapter connectors runtime pattern that enables a set of connected Direct
Connections. The service bus approach:

� Minimizes the number of adapters required for each point-to-point connection
to link service consumers to service providers.

� Improves reuse in multiple point-to-point scenarios.

� Addresses any technical and information model discrepancies among
services.

The service bus can span multiple system or application tiers, and can extend
beyond the enterprise boundary. A rules repository node can also be included to
model a service directory, allowing services to be discovered within and outside
of the enterprise.

Note: The figure shows the relationship between the Application and Runtime
patterns as an example. For clarity, the remainder of this section concentrates
on the Runtime patterns and does not show the associated Application
patterns. Find full mapping between Application and Runtime patterns at:

http://www.ibm.com/developerworks/patterns

Note: The very simple service bus described here provides just a small subset
of the integration capabilities of a true ESB as described in the remainder of
this chapter.
 Chapter 3. SOA runtime patterns and Product mappings 33

http://www.ibm.com/developerworks/patterns

3.1.2 ESB runtime pattern
The Runtime pattern shown in Figure 3-2 provides the highest-level view of the
ESB.

Figure 3-2 ESB runtime pattern: Level 0

The ESB is a key enabler for an SOA because it provides the capability to route
and transport service requests from the service consumer to the correct service
provider. The ESB controls routing within the scope of a service namespace,
indicated symbolically by the ellipse on the ESB node representation.

The true value of the ESB concept, however, is to enable the infrastructure for
SOA in a way that reflects the needs of today’s enterprise: to provide suitable
service levels and manageability and to operate and integrate in a
heterogeneous environment. Furthermore, the ESB must be centrally managed
and administered and have the ability to be physically distributed.

The Runtime pattern shown in Figure 3-3 on page 35 represents a first-level
decomposition of the major components that make up an ESB.

Enterprise

ESBESB
App Server/

Services

App Server/
Services

App Server/
Services

<Service Consumer>

<Service Consumer>

<Service Consumer>

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>

<Service Provider>
34 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 3-3 ESB runtime pattern: Level 1

This basic topology leverages the nodes with their associated responsibilities as
described in the following sections.

App server/services node
These nodes represent applications that request a service from the ESB or
provide a service to the ESB. These applications can be implemented in any
technology as long as they are able to interact using one of the protocols and
messaging models that is supported by the ESB.

Services can be implemented in a variety of technologies and can be
custom-developed, enterprise applications, such as those typically implemented
in CICS Transaction Server, IMS Transaction Manager, and software packages.

Hub node
This node supports the key ESB functions and, therefore, fulfills a large part of
the ESB capabilities. The hub has a fundamental service integration role and
should be able to support various styles of interaction. There are two interaction
styles (that are covered in detail in Part 3) that the hub supports. Those styles are
the Router and Broker interaction patterns. The Router interaction pattern is
where a request is routed to a single provider. The Broker interaction pattern
supports requests that are routed to multiple providers, including aggregation
and disaggregation of messages. The hub must contain rules for routing
messages, and in the case of hubs that support the Broker interaction pattern,

Enterprise

Business Service
Directory

Business Service
Directory

Zone: Enterprise Service Bus

Namespace
Directory

Namespace
Directory

Administration &
Security Services
Administration &
Security Services

HubHubHub
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>
 Chapter 3. SOA runtime patterns and Product mappings 35

the rules must also describe how messages should be disaggregated or
aggregated.

The minimum set of functions that this node should support are:

� Routing

This function removes the need for applications to know anything about the
bus topology or its traversal. The interaction that a requester initiates is sent
to one provider.

� Addressing

Addressing complements routing to provide location transparency and
support service substitution. Service addresses are transparent to the service
consumer and can be transformed by the hub. The hub obtains the service
address from the namespace directory.

� Messaging styles

The hub should support at least one or more messaging styles. The most
common are request/response, fire and forget, events, publish/subscribe, and
synchronous and asynchronous messaging.

� Transport protocols

The hub should support at least one transport that is or can be made widely
available, such as HTTP/S. The hub can provide protocol transformation. If a
protocol transformation is required that is not supported by the hub, then a
specific connector can be used to perform the transformation. (See
“Connectors” on page 38).

� Service interface definition

Services should have a formal definition, ideally in an industry-standard
format, such as WSDL.

� Service messaging model

The hub should support at least one model such as SOAP, XML, or a
proprietary EAI model.

In addition to these capabilities, the hub can support more advanced capabilities,
such as:

� Integration

Additional integration services that can be provided include service mapping
and data enrichment.
36 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

� Quality of service

These services can include transaction management (for example, ACID
properties, compensation, or WS-Transaction), various assured delivery
paradigms (such as WS-ReliableMessaging), or support for Enterprise
Application Integration middleware.

� Message processing

The hub can support more advanced message processing capabilities such
as encoded logic, content-based logic, message and data transformations,
message/service aggregation and correlation, validation, intermediaries,
object identity mapping, service/message aggregation, and store and
forward.

� Modeling

The hub can support more advanced modeling capabilities such as object
modeling, common business object models, data format libraries, public
versus private models for business-to-business integration, and development
and deployment tooling.

� Service level

Service level indicators might have to be measured, particularly in an
enterprise mission-critical environment. The key indicators are availability and
performance, which includes response time, throughput, and capacity.

� Infrastructure intelligence

More advanced infrastructure capabilities can be provided. These include:

– Business rules
– Policy-driven behavior, particularly for service levels
– Security and quality of service capabilities (WS-Policy).

Namespace directory
This node provides routing information in order for the hub to perform routing of
service interactions. This node could be implemented as a routing table in the
more simple implementations of an ESB.

Administration and security services
This section covers both administration and security services.

Administration
An ESB should be controlled by a single administration infrastructure. This node
provides these administration services which, at a minimum, should support
service addressing and naming.
 Chapter 3. SOA runtime patterns and Product mappings 37

The key services that must be provided by this node are:

� ESB configuration
� Service provisioning and registration
� Logging
� Metering
� Monitoring
� Integration with systems management and administration tooling

More advanced administration features that can be provided by this node include
self-monitoring and self-management.

Security
In a mission-critical environment and, depending on the confidentiality, integrity,
and availability requirements of the applications, the hub should support security
capabilities such as authentication, authorization, non-repudiation,
confidentiality, and security standards, such as Kerberos and WS-Security.

Business service directory
The role of the business service directory is to provide details of services that are
available to perform business functions identified within a taxonomy. The
business service directory can be implemented as an open-standard UDDI
registry. More basic implementations can make use of an HTTP server. Catalogs,
such as a UDDI registry, can achieve one of the primary goals of a business
service directory: to publish the availability of services and encourage their reuse
across the development activity of an enterprise.

The vision of Web services defines an open-standard UDDI registry that enables
the dynamic discovery and invocation of business services. However, although
technologies mature toward that vision, more basic solutions are likely to be
implemented in the near term.

Connectors
If we model the connectors that facilitate the interactions between service
consumer/providers and the ESB, as shown in Figure 3-4 on page 39, we find
that we might require that some of these are both adapter connectors and path
connectors, while other service consumer/providers need only a path connector
to the ESB.

An adapter connector is concerned with enabling logical connectivity by bridging
the gap between the context schema and protocols used by the source and
target applications (in this case, between the service consumer/providers and the
ESB).
38 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

A path connector is concerned with providing physical connectivity between
source and target applications. It can be very complex (for example, the Internet)
or very simple (an area of shared storage).

Figure 3-4 ESB level-two diagram showing adapter connectors

Adapter connectors facilitate integration in a heterogeneous environment with
diverse technology, protocols, application types, and integration styles. Adapters
perform the following key types of functions:

� Technology adaptation

This type of adapter handles service consumers and providers that are built
using technologies that are not natively supported by the hub. Examples of
technologies that can be supported via adapters are CORBA, COM, JDBC,
JMS, and EJB. Some of these technology adapters can use data handlers for
particular data formats such as EDI, SOAP, XML, and various text formats.

These adapters can also support different application server environments
such as J2EE and .NET and different language interfaces such as Java, C,
C++, and C#.

� Application adaptation

This type of adapter facilitates integration with package solutions. Many
examples of package solutions provide application adapters, such as Siebel,
PeopleSoft, and SAP, among others.

Enterprise

Business Service
Directory

Business Service
Directory

Zone: Enterprise Service Bus

Namespace
Directory

Namespace
Directory

Administration &
Security Services
Administration &
Security Services

HubHubHub
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>

Connector

Connector
 Chapter 3. SOA runtime patterns and Product mappings 39

� Legacy adaptation

This type of adapter facilitates exposing valuable enterprise applications as
services. These enterprise applications can be implemented using
technologies such as CICS Transaction Server, IMS Transaction Manager
and ADABAS amongst others.

Development-time support can also be provided in order to develop custom
adapters.

As an example, the connectors in Figure 3-4 on page 39 that are modeled (that is
that are represented as a connector node) can support a Siebel Customer
Service application that acts as a service consumer to the ESB and requests a
service that is provided by an enterprise application running under CICS
Transaction Server. In this scenario, the connector might be a Siebel application
adaptation adapter connector and a legacy adaptation adapter connector that
supports CICS Transaction Server. The connectors that are not modelled (that is,
that are only represented by a line) in this example could support the interaction
between applications that use a SOAP/JMS to interface with the ESB and,
therefore, only require a path connector.

Not all connectors are necessarily within the ESB Zone. Figure 3-5 shows the
possible placement options for connectors that support interaction between
application server and services and the ESB. These application server and
services can be service consumers or service providers.

Figure 3-5 Placement of adapter connectors

Enterprise

Connector

Zone: Enterprise Service Bus

HubHubHub

Connector

Connector

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services
40 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The placement options for connectors are:

� Inside the ESB Zone
� On the boundary of the ESB Zone
� Outside the ESB Zone

In general, IT artifacts (such as nodes, connectors, and client APIs) have some
configuration that determines their behavior. If this configuration is managed by
the ESB management infrastructure, the artifact is inside the ESB Zone.

In some instances, an artifact such as a connector can be either outside or on
the boundary of the ESB Zone, depending on whether it is managed or partly
managed by the ESB infrastructure. An example of a partly managed connector
could be an ESB that is built on WebSphere V6 with J2C Adapter to CICS
Transaction Server using CICS Transaction Gateway in Server or Client mode.
CICS Transaction Gateway runs as a separate process, or at least with its own
configuration and management, but the J2C end is within WebSphere control.

In the scenario described previously, if we build the ESB using WebSphere
Business Integration Message Broker, linking to the J2C adaptor that is running
in WebSphere Application Server, the J2C adaptor is outside the WebSphere
Business Integration Message Broker management and, therefore, outside of the
ESB Zone.

3.1.3 ESB Gateway runtime pattern
The Runtime pattern shown in Figure 3-6 provides the highest-level view of the
ESB Gateway.

Figure 3-6 ESB Gateway runtime pattern: Level 0

Enterprise

ESB
Gateway

ESB
Gateway

ESBESB
App Server/

Services

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

<Service Provider>

<Service Consumer>
 Chapter 3. SOA runtime patterns and Product mappings 41

The ESB Gateway acts as a proxy to provide controlled access to the ESB. A
common use of the ESB Gateway is to expose services to external parties as
well as allow internal applications to access external services in a secure and
controlled manner. This section discusses a generic ESB Gateway pattern. For
information about the Exposed ESB Gateway runtime pattern, see “Exposed
ESB Gateway runtime pattern” on page 48.

Figure 3-7 represents a first-level decomposition of the major nodes that make
up the ESB Gateway.

Figure 3-7 ESB Gateway runtime pattern: Level 1

This basic topology leverages the nodes with their associated responsibilities as
described in the following sections.

App server/services node
You can find information about this node in “App server/services node” on
page 35.

ESB
The ESB is a key enabler for an SOA because it routes and transports service
requests from the service consumer to the correct service provider. For
information about this node, see “ESB runtime pattern” on page 34.

Rules directory
This node contains the necessary configuration information that the ESB
Gateway needs to support secure and controlled access to services. The rules
directory has configuration rules that can include mapping of service interface

Enterprise

Zone: ESB Gateway

Gateway
Endpoint
Gateway
Endpoint

Gateway
Endpoint
Gateway
Endpoint

ESBESB

Rules
Directory

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

<Service Provider>

<Service Consumer>
42 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

definitions to gateway endpoints, mapping of ESB gateway-provided service
names to destination service names, and access control lists.

The configuration rules can also include information about service level policies
to control throughput. These rules protect associated service implementations
from operating beyond the established capacity levels.

Gateway endpoint
This node is the entry point into services that the ESB provides or that are
external to the ESB. It provides the address where messages are received, and it
is mapped to particular protocols that the ESB Gateway supports (for example,
HTTP/S). The gateway endpoint controls access to and from the ESB based on
configuration rules that include access control lists and service level policies. It
maps requests to the appropriate service and facilitates the interaction.

3.1.4 BSC runtime pattern
The Runtime pattern shown in Figure 3-8 provides the highest-level view of this
pattern.

Figure 3-8 BSC runtime pattern – Level 0

With the Business Service Choreography (BSC) runtime pattern, you can
develop and execute business process flow logic that governs the sequence and
control of service invocations. The business process is controlled centrally and is
not part of the program logic in individual applications. Therefore, rather than
having the business process defined in multiple applications and within the
interactions between these multiple applications, the business process can be
modeled and implemented by a central function. The Business Service
Choreography facilitates the implementation of changes to the business process
and monitoring and analysis of business process execution.

Enterprise

App Server/
Services

App Server/
Services

Business
Service

Choreography App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services<Service Consumer>

<Service Provider>

<Service Provider>
 Chapter 3. SOA runtime patterns and Product mappings 43

Figure 3-9 represents a first-level decomposition of the BSC node.

Figure 3-9 BSC runtime pattern – Level 1

This basic topology leverages the nodes with their associated responsibilities as
described in the following sections.

App server/services
This node is described in “App server/services node” on page 35. In this pattern,
the app server/services node provides services to the process manager.

Process manager
This node contains the process flow execution engine. It provides the capability
for model-driven business process automation. It also enables tracking by
leveraging the process execution rules stored in the associated database.

These processes can span multiple applications and organizational boundaries
within an enterprise. The node maintains state and tracks sequencing through
the process flow. In doing so, it often leverages the persistence manager to store
intermediate results. Finally, it invokes target services as necessary via the ESB.

The process manager node can support serial processes in which there is a
sequential execution of process steps and parallel processes where process
steps or subprocesses can execute concurrently.

Enterprise

Process
Manager

Rules
Directory

Zone: BSC

Persistence
Manager

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>
44 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The process manager should support the following key capabilities:

� Process definition standards, such as WS-BPEL, and the ability to execute
process definitions that have been defined and exported from a modeling tool.

� Monitoring and analysis of processes by capturing information about process
execution for historical analysis. It should also support integration with system
management and administration tools.

� Ability to meet non-functional requirements such as performance, availability,
and scalability will be important for mission-critical enterprise applications.
Other key non-functional requirements are security and transaction
management, particularly supporting the integrity and recovery of
long-running business processes.

� Multiple levels of process abstractions.

� Correlation of events or incoming messages with existing process instances.

� Support for branching, parallel branch execution, and recomposing if the
process manager supports parallel process execution.

Persistence manager
This node provides a persistent data storage service in support of the process
flow execution. It holds results from the execution of certain activities within the
context of an end-to-end process flow. These can be intermediate results that are
valid within the context of a particular process flow and process data for the
purpose of process monitoring and analysis. The intermediate results are
necessary to support state management.

The implementation of this node typically involves a persistent data technology,
such as a DBMS. In some cases, you can use non-persistent storage to store the
intermediate results.

Rules directory
This node holds the read-only process execution rules in support of the process
flow execution. These rules control the sequencing of activities and, therefore,
support flow control within the context of an end-to-end process flow. The
implementation of this node involves persistent data technologies, such as a flat
file or a DBMS.
 Chapter 3. SOA runtime patterns and Product mappings 45

3.1.5 ESB, BSC composite pattern
The Runtime pattern shown in Figure 3-10 provides the highest-level view of this
Composite pattern.

Figure 3-10 ESB with BSC composite pattern – Level 0

The BSC node is implemented as a service consumer or service provider of the
ESB. The BSC node is focused on process management function, and the ESB
node provides the integration capabilities with other services. This pattern
generally provides a loosely coupled and more functionally cohesive architecture
where functional responsibility of nodes is clearly defined. The business process
governs the sequence and control of service invocations that are mediated
through the ESB.

Figure 3-11 on page 47 represents a first-level decomposition of the major nodes
that make up this pattern.

The BSC has two core components, the process manager and repository nodes,
that support the development and execution of business process flow logic. This
logic is controlled centrally outside the application logic. Shielding the
applications from the business process flow facilitates the implementation of
changes to the business process and the monitoring and analysis of business
process execution.

Enterprise

ESB

Business
Service

Choreography

Business
Service

Choreography

App Server/
Services

App Server/
Services

<Service Consumer>

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>
46 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 3-11 ESB with BSC composite pattern – Level 1

The BSC and ESB nodes are described in “ESB runtime pattern” on page 34.
Therefore, this section provides only a brief description of these nodes.

BSC
This node is limited to process management and contains only the process
manager, rules directory, and persistent manager nodes. The BSC relies on the
ESB for integration and security functionality, and both receive requests from the
ESB and send requests to the ESB via the hub node. The ESB can issue a
request to the BSC to start execution of a process. The process execution will in

Note: Only a connector to the ESB is required, as opposed to a connector to
each app server/services node that is involved in the process flows as
described in “BSC runtime pattern” on page 43. The service integration
function is subsumed by the ESB, leaving the BSC to perform its core process
management function.

Enterprise

Zone: BSC

Process
Manager

Rules
Directory

Persistence
Manager Business Service

Directory
Business Service

Directory

Zone: Enterprise Service Bus

Namespace
Directory

Namespace
Directory

Administration &
Security Services
Administration &
Security Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>HubHubHub
 Chapter 3. SOA runtime patterns and Product mappings 47

turn most likely require services to be invoked as part of the process flow.
Therefore, the BSC will request services from the ESB.

For a description of the BSC nodes, see “BSC runtime pattern” on page 43.

ESB
The ESB nodes are described in “ESB runtime pattern” on page 34. As far as the
ESB is concerned, the BSC is another application that can both request and
provide services.

3.1.6 Exposed ESB Gateway runtime pattern

Figure 3-12 shows a runtime pattern that supports secured and controlled
access to enterprise services from outside of the enterprise and that enables
enterprise applications to access external services. The two major nodes in this
pattern, the Exposed ESB Gateway and ESB, are described in “ESB Gateway
runtime pattern” on page 41 and “ESB runtime pattern” on page 34.

Figure 3-12 Exposed ESB Gateway runtime pattern – Level 0

The connection between the app service/services node in the partner zone and
the network infrastructure in the inter-enterprise zone could be an HTTP server,
an ESB, an Exposed ESB Gateway, or a firewall. Therefore, depending on
security requirements, the Exposed ESB Gateway node can be inside or outside
of the Enterprise Demilitarized Zone.

This basic topology leverages the nodes with their associated responsibilities as
described in the following sections.

Note: This pattern applies to inter-enterprise solutions.

Enterprise Secure Zone
Inter-enterprise

Zone
Enterprise

Demilitarized ZonePartner Zone

App Server/
Services

Network
Infrastructure

ESB

D
om

ai
n

Fi
re

w
al

l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

App Server/
Services

<Service Provider>

<Service Consumer>

Enterprise Secure ZoneEnterprise Secure Zone
Inter-enterprise

Zone
Enterprise

Demilitarized ZonePartner Zone

App Server/
Services

Network
Infrastructure

ESB

D
om

ai
n

Fi
re

w
al

l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

App Server/
Services

<Service Provider>

<Service Consumer>

Inter-enterprise
Zone

Enterprise
Demilitarized ZonePartner Zone

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n

Fi
re

w
al

l
D

om
ai

n
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

App Server/
Services

<Service Provider>

<Service Consumer>

Enterprise Secure Zone
48 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

App server/services
This node is described in “App server/services node” on page 35.

Connector
This node, which is deployed in the demilitarized zone (DMZ) between two
firewalls, provides a communication link over the Internet for incoming requests
from external applications as well as outgoing requests to external services.

Exposed ESB Gateway
An Exposed ESB Gateway makes the services of one organization available to
others, and vice versa, in a controlled and secure manner. Although this might
require capabilities such as partner provisioning and management, which are
distinct from ESB capabilities, the intent of this component is different from the
intent of the ESB, which is to provide a service infrastructure within an
organization. For both these reasons, the Exposed ESB Gateway is likely to be
integrated to, but not be a part of, the Enterprise Service Bus.

This node is described in “ESB Gateway runtime pattern” on page 41.

ESB
The ESB is a key enabler for an SOA as it provides the capability to route and
transport service requests from the service consumer to the correct service
provider.

This node is described in “ESB runtime pattern” on page 34.

Note: The app server/services node that interacts directly with the ESB
Gateway could be an ESB in the other enterprise.
 Chapter 3. SOA runtime patterns and Product mappings 49

3.1.7 Exposed ESB Gateway, BSC composite pattern

The Runtime pattern shown in Figure 3-13 adds BSC to the Exposed ESB
runtime pattern that is described in “Exposed ESB Gateway runtime pattern” on
page 48.

Figure 3-13 Exposed ESB Gateway, BSC composite pattern: Level 0

This Runtime pattern supports scenarios where business process services
should be provided to both external and internal requesters. The BSC node is
added to expose enterprise business processes to the enterprise, clients,
partners, and suppliers.

This Runtime pattern also enables internal requesters to have controlled and
secure access to services external to the enterprise, which can also include
business processes, depending on the capabilities implemented by the external
organization. Therefore, this Runtime pattern, when combined with appropriate
process definition standards such as BPEL4WS, enables inter-enterprise
processes.

Note: This pattern applies to inter-enterprise solutions.

Inter-enterprise
Zone

Enterprise
Demilitarized ZonePartner Zone

App Server/
Services

Network
Infrastructure

ESB

D
om

ai
n

Fi
re

w
al

l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

Business
Service

Choreography

App Server/
Services

<Service Provider>

<Service Consumer>

Enterprise Secure Zone
Inter-enterprise

Zone
Enterprise

Demilitarized ZonePartner Zone

App Server/
Services

Network
Infrastructure

ESB

D
om

ai
n

Fi
re

w
al

l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

Business
Service

Choreography

App Server/
Services

<Service Provider>

<Service Consumer>

Inter-enterprise
Zone

Enterprise
Demilitarized ZonePartner Zone

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n

Fi
re

w
al

l
D

om
ai

n
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

Business
Service

Choreography

App Server/
Services

<Service Provider>

<Service Consumer>

Enterprise Secure Zone
50 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

3.2 Product mappings
After choosing a Runtime pattern, you need to determine the actual products and
platforms that you will use. The Product mappings in this section are suggested
mappings, and they address both of the scenario implementations that Part 3 of
this book discusses. These Product mappings are also typical product mappings
that are used for production systems.

We suggest that you make the final product selection decisions based on your
particular non-functional requirements, such as volumetric data, performance,
availability, scalability, security, manageability, and supportability. These
non-functional requirements typically are defined during the solution analysis
process.

Other considerations that influence the product selection include:

� Specific technology and product standards
� Existing systems and platform investments
� Existing development skills

Note: The product mappings in this section do not include hardware nodes
and operating systems. The sample scenarios in Part 3 of this book were
implemented on xSeries® Servers running the Windows® 2000 Operating
System.
 Chapter 3. SOA runtime patterns and Product mappings 51

3.2.1 ESB runtime pattern::Product mappings
Figure 3-14 shows a Product mapping for the ESB runtime pattern.

Figure 3-14 ESB runtime pattern::Product mapping=WebSphere Application Server V6

This Product mapping uses WebSphere Application Server Network Deployment
V6.0. Using WebSphere Application Server Network Deployment, you can
implement a scalable clustering of multiple WebSphere Application Server
servers. If the clustering capability is not required, you should use the base
WebSphere Application Server V6 offering.

The service consumer applications that are supported are not only Java
applications that issue SOAP/HTTP requests but are also packages or
applications that are built on other technologies, using other protocols (for
example, the Siebel package in shown in Figure 3-14). For this purpose, the
WebSphere Business Integration Adapters are used to implement the adapter
connector node. The ESB hub is run on WebSphere Application Server Network
Deployment, which acts as a broker between the requester and multiple provider
applications that are also running under WebSphere Application Server Network
Deployment.

The J2EE Connector Architecture (J2C) resource adapter is used to implement
Adapters to access services that are implemented under enterprise resources
such as CICS Transaction Server. The WebSphere UDDI Registry is used to
implement the business service directory. The advantage of using a UDDI
registry is that there is a central location where all available services are

Enterprise

Business Service
Directory

Business Service
Directory

Zone: Enterprise Service Bus

Namespace
Directory

Namespace
Directory

Administration &
Security Services
Administration &
Security Services

HubHubHub
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>

• Service Integration Bus
(part of WebSphere
Application Server
Network Deployment
V6.0.2)

• IBM DB2 UDB V8.2

WebSphere UDDI
Registry V1.1

WebSphere
Application Server
Network Deployment
V6.0.2 EJB Container

WebSphere
Application Server
Network
Deployment V6.0.2

J2C Resource
Adapters

WebSphere
Business
Integration
Adapter

WebSphere Administration
(part of WebSphere
Application Server Network
Deployment V6.0.2)

WebSphere Administration
(part of WebSphere
Application Server Network
Deployment V6.0.2)

Siebel

CICS
Transaction
Server

Adapter
Connector

Adapter
Connector
52 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

published, which should encourage reuse of services within an enterprise. The
Administration Services and namespace directory are provided by WebSphere
Application Server Network Deployment. A local DB2 database is used to store
the SDO repository.

3.2.2 ESB Gateway runtime pattern::Product mapping
Figure 3-15 shows the Product mapping for the ESB Gateway runtime pattern.

Figure 3-15 ESB Gateway::Product mappings

The service consumer application in this scenario is implemented using
WebSphere Application Server V6. However, it could be implemented in other
technologies and, in fact, could be another ESB. The service consumer initiates
a service via the Gateway using either SOAP over HTTP or SOAP over JMS. The
gateway endpoint node in the gateway is implemented using WebSphere
Application Server, and the rules directory is implemented using the file system.

The ESB Gateway verifies that it is a valid request via the access control list held
in the Repository and maps the request to a service that is provided by the ESB.
The request to the ESB uses SOAP over HTTP or JMS.

Network Cloudscape™ database is used to store the SDO repository. The
network configuration of Cloudscape is required to enable the ESB Gateway and
the ESB to share the same repository.

Enterprise

Zone: ESB Gateway

Gateway
Endpoint
Gateway
Endpoint

Gateway
Endpoint
Gateway
Endpoint

ESBESBESB

Rules
Directory

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

WebSphere
Application
Server V6.0.2

Service Integration Bus
(part of WebSphere
Application Server V6.0.2)

• Service Integration Bus &
WebSphere Administration
(part of WebSphere
Application Server V6.0.2)

• Network Cloudscape

WebSphere
Application
Server V6.0.2

WebSphere Administration
(part of WebSphere
Application Server V6.0.2)
 Chapter 3. SOA runtime patterns and Product mappings 53

The service provider application can be implemented using the EJB container of
WebSphere Application Server. However, the ESB supports a heterogeneous
environment through the use of adapters. Therefore, the services can be legacy
enterprise applications, other non-J2EE application servers, or software
packages.

3.2.3 BSC runtime pattern::Product mapping
Figure 3-16 shows the Product mapping for the BSC zone of the ESB, BSC
composite pattern. You can find the Product mapping for the ESB in 3.2.1, “ESB
runtime pattern::Product mappings” on page 52.

Figure 3-16 BSC runtime pattern::Product mappings

The process manager is implemented using the Business Process
Choreography component that is part of the WebSphere Business Integration
Server Foundation product. The process manager controls the process execution
and invokes services from the ESB via the hub using SOAP over HTTP or JMS.

The process manager uses the persistence manager implemented using the
DB2 database to store process results and a business rules bean persisted in
the file system to implement the business process flow rules as part of the rules
directory node.

Enterprise

Zone: BSC

Process
Manager

Rules
Directory

Persistence
Manager Business Service

Directory
Business Service

Directory

Zone: Enterprise Service Bus

Namespace
Directory

Namespace
Directory

Administration &
Security Services
Administration &
Security Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>HubHubHub

WebSphere Business
Integration Server
Foundation V5.1

DB2 UDB V8.2

Business Rules
Bean persisted
in the file system
54 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

For more information about BSC, refer to Patterns: Serial and Parallel Processes
for Process Choreography and Workflow, SG24-6306, and to Patterns: Using
Business Service Choreography In Conjunction With An Enterprise Service Bus,
REDP-3908.

3.2.4 Exposed ESB Gateway Product mapping
Figure 3-17 shows the Product mapping for the Exposed ESB Gateway runtime
pattern.

Figure 3-17 Exposed ESB Gateway::Product mappings

This scenario represents an external service consumer accessing services from
an Enterprise over the Internet. The service consumer in this scenario is
implemented using WebSphere Application Server V6. However, it could be
implemented in any technology capable of issuing HTTPS requests. The figure
also shows an external service provider that is implemented using WebSphere
Application Server V6 and provides Web Services that use SOAP/HTTPS.

The requests are received by an HTTP server that is located in the DMZ, which
receives all incoming requests and sends them to the Exposed ESB Gateway.
The Exposed ESB Gateway verifies and maps the request to a service provided
by the ESB. The ESB is implemented using WebSphere Application Server (as
described in “Exposed ESB Gateway” on page 49) using a network setup for the
Cloudscape database that holds the SDO repository. Finally, the internal service
provider application is implemented using WebSphere Application Server.

Inter-enterprise
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n

Fi
re

w
al

l
D

om
ai

n
Fi

re
w

al
l

Exposed
ESB

Gateway
Pr

ot
oc

ol
 F

ire
w

al
l

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

<Service Provider>

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Consumer>

IBM HTTP
Server V2

WebSphere
Application
Server V6.0.2

Service Integration Bus
(part of WebSphere
Application Server
V6.0.2)

• Service Integration Bus &
WebSphere Administration
(part of WebSphere
Application Server V6.0.2)

• Network Cloudscape

WebSphere
Application
Server V6.0.2

<Service Provider>Internet
 Chapter 3. SOA runtime patterns and Product mappings 55

56 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 4. Technology capabilities for
an additional ESB

This chapter describes two scenarios that illustrate the technology decisions that
must be made to integrate multiple Enterprise Service Bus (ESB) infrastructures
in a single enterprise. The chapter focuses on:

� Minimum and extended ESB capabilities

� Business-related ESB capabilities and considerations

Following this we outline two examples for an additional ESB that lead to different
technology choices:

� WebSphere Business Integration Message Broker V5

� WebSphere Application Server V6

As this redbook is about integrating ESBs, we look at the capabilities and
examples for adding a new ESB infrastructure.

4

Note: We do not recommend creating additional ESBs in an enterprise if there
is no need to do so. A single ESB eliminates the complexities of integrating
additional ESBs. This chapter describes scenarios that require the integration
of multiple ESBs due to business requirements.
© Copyright IBM Corp. 2005. All rights reserved. 57

4.1 ESB capabilities and decision attributes
The capabilities that drive the implementation of an ESB infrastructure are
described in Patterns: Implementing an SOA using an Enterprise Service Bus in
WebSphere Application Server V6, SG24-6494. These are described in terms of
minimum and extended capabilities.

4.1.1 Minimum ESB capabilities
Minimum ESB capabilities are an agreed-upon list of capabilities that define an
ESB. If a given infrastructure does not meet all of these requirements, it cannot
be termed an ESB. Table 4-1 summarizes the minimum ESB capabilities.

Table 4-1 Minimum ESB capabilities

Communication
An ESB must supply a communication layer to support service interactions. It
should support communication through a variety of protocols. It should provide

Category Capabilities Reasons

Communications � Routing
� Addressing
� At least one

messaging style
(request / response,
pub/sub)

� At least one transport
protocol that is or can
be made widely
available

Provide location
transparency and support
service substitution

Integration � Several integration
styles or adapters

� Protocol
transformation

Support integration in
heterogeneous
environments and support
service substitution

Service interaction � Service interface
definition

� Service messaging
model

� Substitution of service
implementation

Support SOA principles,
separating application
code from specific service
protocols and
implementations

Management � Administration
capability

� A point of control over
service addressing
and naming
58 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

underlying support for message and event-oriented middleware and integrate
with existing HTTP infrastructure and other enterprise application integration
(EAI) technologies. An ESB should be able to route between all of these
communication technologies through a consistent naming and administration
model.

Particularly in an integrated ESB scenario, the additional ESB must be able to
support service interactions provided by the original ESB over one or more
available protocols.

Service interaction
An ESB must support SOA concepts for the use of interfaces and support
declaration service operations and quality-of-service requirements.

An ESB should also support service messaging models consistent with those
interfaces and be capable of transmitting the required interaction context, such
as security, transaction, or message correlation information.

Integration
An ESB should support linking to a variety of systems that do not directly support
service-style interactions so that a variety of services can be offered in a
heterogeneous environment.

This includes legacy systems, packaged applications, and other EAI
technologies. Integration technologies might be protocols (for example JDBC,
FTP, EDI) or adapters such as the J2EE Connector Architecture resource
adapters or WebSphere Business Integration Adapters. It also includes service
client invocation through client APIs for various languages (Java, C+, C#) and
platforms (J2EE, Microsoft .NET), CORBA, and RMI.

Management
As with any other infrastructure component an ESB must have administration
capabilities to enable it to be managed and monitored and so to provide a point
of control over service addressing and naming. In addition, it should be capable
of integration into systems management software.

4.1.2 Extended ESB capabilities
In addition to the minimum ESB capabilities, there is a set of extended ESB
capabilities. The detailed requirements of any particular scenario drive extended
ESB capabilities that can then be used to select specific, appropriate products.
 Chapter 4. Technology capabilities for an additional ESB 59

In particular, the following types of requirements are likely to lead to the use of
more sophisticated technologies, either now or over time:

� Quality of service
� Integration
� Security
� Service level
� Modeling
� Infrastructure intelligence
� Management and autonomic

The following sections discuss these requirements in a little more detail.

Quality of service
An ESB may be required to support service interactions that require different
qualities of service to protect the integrity of data mediated through those
interactions. This may involve transactional support, compensation, and levels of
delivery assurance. These features should be variable and driven by service
interface definitions.

Integration
As additional integration capabilities could be supported, the ESB should be
capable of connectivity to a wide range of different service providers, using
adapters and EAI middleware. They should be capable of data enrichment to
alter the service request content and destination on route, and map an incoming
service request to one or more service providers.

Security
An ESB should ensure that the integrity and confidentiality of the services that
they carry are maintained. They should integrate with the existing security
infrastructures to address the essential security functions such as:

� Identification and authentication
� Access controls
� Confidentiality
� Data integrity
� Security management and administration
� Disaster recovery and contingency planning
� Incident reporting

Additionally the ESB should integrate with the overall management and
monitoring of the security infrastructure. The ESB may provide security either
directly or by integrating with other security components such as authentication,
authorization, and directory components.
60 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Service level
An ESB should mediate interactions between systems supporting specific
performance, availability, and other requirements. They should offer a variety of
techniques and capabilities to meet these requirements.

An ESB should provide support that enables technical and business service level
agreements to be monitored and enforced.

Message processing
An ESB must be capable of integrating message, object, and data models
between the application components of an SOA. It should also be able to make
decisions such as routing based on content of service messages, in particular
when the services are defined on an integrated ESB.

An ESB should have a mediation model that enables message processing to be
customized. The model should also allow sequencing of infrastructure services
(for example, security logging and monitoring) around business services
invocations.

Mediations can be located close to consumers, providers, or anywhere in the
ESB infrastructure transparent to consumers and providers. Mediations can also
be chained. An ESB should be able to validate content and format.

Modeling
An ESB should support the increasing array of cross-industry and vertical
standards in both the XML and Web services spaces.

It should support custom message and data models. It should also support the
use of development tooling and be capable of identifying different models for
internal and external services and processes.

Infrastructure intelligence
An ESB should be capable of evolving toward a more autonomic, on demand
infrastructure. It should allow business rules and policies to affect ESB function,
and it should support pattern recognition.

Management and autonomic
In addition to basic management capabilities the ESB should also support the
migration to autonomic and On Demand infrastructure by supporting metering
and billing, self-healing, and dynamic routing, and react to events to
self-configure, heal, and optimize.
 Chapter 4. Technology capabilities for an additional ESB 61

4.1.3 Softer attributes
The minimum and extended ESB capabilities enable the making of an informed
decision for adding an additional Enterprise Service Bus to an existing ESB
infrastructure, and the technology to use. However, the decision criteria for this
technology should not be restricted to these minimum and extended capabilities.
In many situations there will be a list of “softer” attributes that will shape the
decision, and these are shown in Table 4-2.

Table 4-2 Softer attributes for an additional ESB

The following section describes in more detail the additional softer attributes
introduced in Table 4-2 that must be considered for adding an additional ESB to
an existing infrastructure.

Attribute Description

Existing ESB technology What ESB technology is deployed today?

Maturity of existing ESB
implementation

� How long has the existing ESB been deployed?
� How much investment has been made in its overall

capability?
� How well is the ESB delivering its non-functional

attributes, for example:
– Performance
– Reliability
– Serviceability

ESB strategy What is the strategy for the following ESB attributes:
� Single administration
� Single namespace / naming
� Single security
� Governance

Capabilities of existing
ESB

How well does the existing ESB implement the minimum
(and extended) ESB capabilities?

ESB technology
allegiance

Are there any historical or commercial allegiances to a
specific ESB technology?

Enterprise integration
strategy

What is the overall integration strategy within the enterprise?
� Single / dual vendor
� Analyst ratings

Programming model What strategic programming models and tools are used in
the enterprise?

Hardware and operating
system

� What is the current ESB deployed on?
� What is the enterprise strategy for the hardware and

operating system?
62 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Existing ESB technology
It is important to understand which products and version numbers are used to
implement the existing ESB infrastructure. This is not an actual attribute that will
affect the decision for the additional ESB technology. However, no decision can
be made without this fundamental piece of information as it may be required in
further commercial discussions with its vendor and for understanding its
minimum and extended capabilities. This is very important and should not be
overlooked because “version n+1” of the existing ESB may have additional
capabilities when compared with “version n”.

Maturity of existing ESB implementation
The enterprise may have implemented the latest and greatest version of an ESB
but how long has it been in production and how is it performing in terms of
functional and non-functional requirements? Understanding this may have a
bearing on whether an additional ESB is implemented or whether the existing
infrastructure is extended or replaced.

Established ESB example
Many enterprises will have already deployed an environment that displays all of
the minimum requirements for an existing ESB (for example, using WebSphere
Business Integration Message Broker).

The existing environment might have been deployed for a number of years and
had a considerable investment in its overall capability within the enterprise. If we
assume that it is delivering satisfactory service then it is reasonable to conclude
that this ESB will be retained and the additional ESB will have to integrate with it.

Non-functioning ESB example
We can take an alternative view where the existing ESB displays the following
characteristics;

� Has only been deployed for a relatively short period of time
� Has a small number of providers and consumers
� Is delivering a marginal level of service

This example may guide us down a number of different paths:

� Making additional investment in the existing ESB to bring its level of service
and capability up to the required level. And then:

– Extending it to include the requirement for the additional ESB. Therefore,
no new, additional ESB is required at all.

– Adding the additional ESB to it for reasons of governance or any other
capability reason as discussed in 4.1, “ESB capabilities and decision
attributes” on page 58.
 Chapter 4. Technology capabilities for an additional ESB 63

� Replacing the existing ESB with the new ESB technology so that it consumes
the capabilities of the existing ESB. The existing ESB is removed from the
enterprise infrastructure.

Capabilities of existing ESB
How well does the existing ESB implement the minimum and extended ESB
capabilities?

� If the existing ESB implements the minimum capabilities for an ESB and
potentially some of the extended capabilities then it is likely that this ESB will
be retained and the new ESB added alongside.

� However, if the existing ESB does not provide capabilities beyond the
minimum ESB capabilities it may be reasonable to choose a new, additional
ESB that has strong ESB capabilities and to integrate the two ESBs together
using one of the patterns described in this book. This is a realistic situation as
many enterprises may have implemented ESB-style capabilities using older
technologies that have little investment, and which therefore are unable to
grow to meet the requirements of a fully-fledged ESB.

ESB technology allegiance
Many enterprises have an allegiance to a particular vendor or technology.
Irrespective of the merits of a particular technology solution for the additional
ESB, the historical or commercial allegiance to the existing ESB vendor may be
so strong that the decision might have little regard for the strength of other
technologies.

Enterprise integration strategy
The enterprise integration strategy for the organization could have a considerable
bearing on the selection of the additional ESB technology. For example:

� Some enterprises are moving to policies where they are reducing the number
of core IT vendors.

� Others are continuing on a best-of-breed IT selection policy.

� Finally, some enterprises have a policy for building middleware solutions
versus buying Commercial Off The Shelf (COTS) software, commonly known
as “build versus buy.”

Therefore, the enterprise integration strategy could dictate what type of additional
ESB technology is chosen and implemented, irrespective of the capabilities and
wider decision criteria.
64 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Programming model
The programming model and development tools used by an enterprise could also
have a strong bearing on the implementation choice made for an additional ESB
within the enterprise.

For example, a J2EE-centric organization might lean more toward making a
WebSphere Application Server service integration bus decision because of the
similarities of the programming model for application and mediation
development. Whereas organizations using a longer-established programming
model, for example using COBOL as the programming model and its associated
programming model, might decide that WebSphere Business Integration
Message Broker has a tighter fit to their programming practices.

Additionally, an organization geared toward Web services might choose to
implement their additional ESB using WebSphere Application Server because of
the associated tooling capabilities of Rational Application Developer. In particular
they may use the Rational Application Developer wizards to build Web services
components from existing J2EE components and vice-versa.

Hardware and operating system
We must not forget that the underlying hardware and operating system
infrastructure could have a bearing on the additional ESB decision. For example,
the enterprise may have a strategy for deploying new infrastructure deployments
on Linux®, or more specifically on particular versions of Linux. These
prerequisite statements might preclude specific additional ESB technologies.

4.2 A review of ESB technologies
This section provides a short review of various ESB topics that will be used when
discussing the three additional ESB examples later in this chapter.

4.2.1 WebSphere Integration Reference Architecture
The WebSphere Integration Reference Architecture provides a comprehensive
set of services to enable business integration. The services provide the breadth
of functionality needed to solve integration requirements. More important, the
component services can be implemented in stages to allow incremental evolution
on a project-by-project basis while working toward an enterprise integration
solution architecture. Although specific projects may not require all of these
services, enterprise-level integration will require the ability to add these
functional capabilities to the integration architecture. The resultant architecture
provides for separation of concerns by allowing business logic, control logic,
routing, and transformation logic, to be loosely coupled and, as a result, more
 Chapter 4. Technology capabilities for an additional ESB 65

flexible to change. At the organizational level, this approach facilitates simpler
integration solution development and enhances maintainability and operation of
the solution.

The WebSphere Integration Reference Architecture shows the key integration
functions that are required for comprehensive, enterprise-level solutions. These
service groupings provide the ability to apply separation of concerns to
enterprise integration requirements and lead to a convergence with the principles
of SOA as they apply to integration.

At the core of the WebSphere Integration Reference Architecture is the
Connectivity Services layer. This component provides the infrastructure to
support and instantiate the Enterprise Service Bus (ESB) architectural pattern
and is shown in Figure 4-1.

Figure 4-1 WebSphere Integration Reference Architecture

The ESB architectural pattern within the WebSphere Integration Reference
Architecture can be implemented using the service integration bus component of
WebSphere Application Server or with WebSphere Business Integration
Message Broker. There are additional product options within the Connectivity
Services layer but these are outside the scope of this book.

Development Services

Interaction
Services

Process
Services

Information
Services

Partner
Services

Business
Application

Services

Application
and

Information
Assets

Infrastructure Management Services

Business Performance Management Services

Connectivity Services
66 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

4.2.2 General capability discussion
The following section provides a general discussion and background information
for some of the topics that will be discussed in the two examples later in this
chapter.

WebSphere MQ and JMS
WebSphere Application Server provides support for the JMS API and for using
WebSphere MQ as the JMS provider. JMS defines a message format that JMS
providers must support. Many JMS providers (such as WebSphere MQ) that
were designed before JMS was finalized have to provide a mapping between MQ
and JMS message formats. Within WebSphere MQ the MQRFH2 is optional and
is omitted in many native WebSphere MQ applications, but for JMS messages it
carries JMS-specific information. Therefore, it should always be included in a
WebSphere MQ message when the sender knows that the receiving destination
is a JMS application. Figure 4-2 on page 68 shows how the structure of a JMS
message is transformed to a WebSphere MQ message and back again.

The IBM Enterprise Service Bus strategy:

In September 2005, IBM announced two products intended to be the primary
solution for building ESBs:

� WebSphere Enterprise Service Bus V6

Delivers an ESB with Web services connectivity and data transformation.

� WebSphere Message Broker V6

Delivers an advanced ESB with universal connectivity and data
transformation.

At the time this book was written, WebSphere Enterprise Service Bus was not
generally available. In lieu of this product, the service integration bus of
WebSphere Application Server V6 is used in the redbook scenario
implementations to build ESB solutions.

For more information about the IBM ESB strategy see:

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb
 Chapter 4. Technology capabilities for an additional ESB 67

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb

Figure 4-2 Mapping of WebSphere MQ and JMS message formats

SOAP/JMS support
When sending or receiving a JMS message as part of a Web services interaction
using SOAP/JMS and using WebSphere Application Server V6 as the consumer
or producer, additional properties are required. Chapter 10, “Directly Connected
heterogeneous ESBs” on page 241 discusses a suggested mapping for
SOAP/JMS messages flowing between WebSphere Application Server V6 and
WebSphere Business Integration Message Broker. Knowing and understanding
this mapping is important when deciding on an additional ESB and in the
architectural design of the solution.

Message persistence levels
The WebSphere Application Server V6 messaging engine is a new server
component that provides the core messaging functionality of a WebSphere
Application Server service integration bus. As such it is the native JMS provider
for WebSphere Application Server V6. A messaging engine manages bus
resources and provides a connection point for applications. It provides additional
persistence levels from the defined JMS delivery modes and from WebSphere
MQ persistence levels. These persistence levels are shown in Table 4-3.

Table 4-3 Persistence level mapping

WebSphere Application Server
messaging engine reliability
level

JMS delivery
mode

WebSphere MQ
persistence level

Best effort nonpersistent Nonpersistent NonPersistent

Express nonpersistent Nonpersistent NonPersistent

Reliable nonpersistent Nonpersistent NonPersistent

JMS Message
JMS Client

Data

MQMD

WebSphere MQ
Message

Copying

Mapping

Header

Properties

Data

JMS Message
JMS Client

Header

Properties

Data
Copying

Mapping

RFH2

Other Data
68 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Linking the service integration bus to a WebSphere MQ
network

The new service integration bus component in WebSphere Application Server
has been designed to allow extension to:

� Other service integration buses
� A WebSphere MQ infrastructure

The purpose of this topic is to discuss the integration between the service
integration bus component of WebSphere Application Server and WebSphere
MQ since these will be frequent candidates for ESBs that have to be integrated.

Using the WebSphere MQ link within the service integration bus of WebSphere
Application Server you can exchange point-to-point messages, and use publish
and subscribe between WebSphere Application Server and a WebSphere MQ
network by viewing the WebSphere MQ network as a foreign bus.

The WebSphere MQ link is defined on a messaging engine in a service
integration bus. It makes exchanging messages very simple by automatically
converting them so their characteristics are retained or mapped to similar
settings.

A WebSphere MQ link engine is the messaging engine through which other
messaging engines on the same bus send messages to, and receive messages
from, a WebSphere MQ queue manager. This queue manager acts as a gateway
to other WebSphere MQ queue managers. This gateway queue manager is
represented as a foreign bus when you configure the WebSphere MQ link.

Figure 4-3 on page 70 shows how messages exchanged between the messaging
engine with the WebSphere MQ link and the gateway queue manager can be
sent and received by other messaging engines on the same bus, and other
queues on the gateway queue manager.

Reliable persistent Persistent NonPersistent

Assured persistent Persistent Persistent

WebSphere Application Server
messaging engine reliability
level

JMS delivery
mode

WebSphere MQ
persistence level
 Chapter 4. Technology capabilities for an additional ESB 69

Figure 4-3 Communication between the service integration bus and WebSphere MQ

4.3 Examples of adding new ESB technology to an
existing ESB infrastructure

The following two sections each give an example of a situation where an
enterprise is looking to add an additional ESB to an existing ESB infrastructure.
There is no exact rule or matrix that can be applied to the decision-making
process about which technology to use for the additional ESB. Each scenario will
lead the reader to a different conclusion. However, the only precise rule that can
be applied is that where there is the possibility to use only one ESB then that
course of action should be followed, unless there is very good reason not to.

The two scenarios discussed in this section are:

� “Scenario 1: Adding ESB capabilities to a WebSphere MQ infrastructure” on
page 71

� “Scenario 2: Integrating ESBs in a J2EE and Web services-based
infrastructure” on page 76

The assessment of the options for implementation of the new ESB will be
described using a combination of a subset of capabilities described in 4.1.1,
“Minimum ESB capabilities” on page 58 and 4.1.2, “Extended ESB capabilities”
on page 59.

Messaging
engine 1

WebSphere
MQ Link

Messaging engine 3

Messaging engine 2

Bus

Foreign bus

Queue manager 3Queue manager 3

WebSphere MQWebSphere Application Server

Queue manager 2Queue manager 2

WebSphere
MQ channels

Gateway
queue manager
70 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The options examined for the two scenarios include:

� Integration based on WebSphere Application Server V6 service integration
bus, potentially with adapter technology to integrate with the existing ESB.

� Integration based on WebSphere Business Integration Message Broker V5,
potentially with adapter technology to integrate with the existing ESB.

4.3.1 Scenario 1: Adding ESB capabilities to a WebSphere MQ
infrastructure

This example is based on WebSphere MQ technologies, where an MQ-based
service bus is currently in place. This service bus meets most, but not all, of the
minimum ESB capabilities so it cannot be termed an ESB. We examine the
options for adding an ESB to integrate with the existing MQ-based service bus.

Example overview
In this example there is an existing service bus through which legacy services
are presented to an existing suite of applications. The data standards used in this
service bus are consistent across all of the applications, and the transport used
is MQ. The bus is implemented as custom, MQ-enabled infrastructure software
written in-house. It enables applications to submit messages to the bus and to
have these routed to the correct service based on the submission parameters
and a custom message header.

The existing service bus is mature and reliable and has high performance. There
is no desire currently to do a wholesale replacement of the existing bus but the
bus is not flexible enough to offer support for the enterprise architecture under
which many new applications supporting open standards will be integrated.

Proposed change and high-level requirements
The service oriented approach has worked well in this enterprise and a decision
has therefore been made to take this further and to implement a new ESB to
support future integration capabilities.

This ESB must:

� Be capable of supporting the integration of new off-the-shelf packages and
existing applications.

� Support the presentation of a subset of services from the existing service bus
to these new packages.

� Support a full SOA.

� Include support for open standards, in order to provide an integration
environment to meet current and future requirements.
 Chapter 4. Technology capabilities for an additional ESB 71

Communication
The solution must support integration of the WebSphere MQ based existing bus.
Although the service integration bus in WebSphere Application Server V6 could
enable the integration between itself and the existing WebSphere MQ bus (see
“Linking the service integration bus to a WebSphere MQ network” on page 69),
integration with WebSphere Business Integration Message Broker is thought to
provide additional benefits in terms of skills and programming paradigm for this
particular enterprise.

Both WebSphere Application Server and WebSphere Business Integration
Message Broker provide support for HTTP. WebSphere Application Server has
full support for HTTPS, but WebSphere Business Integration Message Broker
has support only for messages coming into the bus as requests but not for
outgoing calls. In some contexts this could be an issue but the deployment
strategy in this enterprise places both ESB components and provider
components in a data center with secured network communications. This
deployment strategy eliminates the need for HTTPS to secure HTTP requests
from the bus out to service providers and this is not therefore a deciding factor.

Routing and addressing in WebSphere Business Integration Message Broker
enables content-based lookup of routing information to support a number of
routing patterns, including the routing of messages to one or more target
destinations that were not specified by the sending application. Mediations can
be implemented in the service integration bus in WebSphere Application Server
V6 to carry out similar functionality. Development of mediations requires Java
implementation skills, which although not an issue in the general case would
require new skills in our example IT department.

The new ESB will be required to support the interaction styles of the existing
service bus and to extend these to further messaging-based interactions.
WebSphere Business Integration Message Broker is able to do this using MQ
and JMS protocols and can maintain full transactionality as requests pass
through the ESB to provide assured delivery and transactionality across
message retrieval and any associated updates executed by the service.

Integration
Both WebSphere Application Server and WebSphere Business Integration
Message Broker have strong integration capabilities and support both database
integration and connection to legacy systems. In both cases adapters normally
are required for such connections, and these are available. In the case of
WebSphere Business Integration Message Broker the use of WebSphere
Business Integration adapters will provide this functionality.

WebSphere Business Integration Message Broker provides extensive data
enrichment support augmenting messages by adding data from an external data
72 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

source, and distributing messages to multiple target destinations. All of this can
be achieved by setting configuration options without needing to write code.
WebSphere Application Server V6 can also provide data enrichment but this
requires mediations to be implemented as code.

Security
The WebSphere MQ network supporting the existing service bus has been fully
secured. There are no remote WebSphere MQ clients, and all WebSphere MQ
servers have authorization set on all queues. Governance is already in place
within the organization to securely manage the creation of new messaging
resources, to apply the appropriate security controls, and to monitor any
attempted breaches. This security model would extend naturally to a new ESB
implemented in WebSphere Business Integration Message Broker.

WebSphere Application Server V6 supports all mandatory elements of security
over both HTTPS and JMS transports. This would support all the necessary
security requirements but would need its security infrastructure to be integrated
with the existing WebSphere MQ–based model.

Modeling
Modeling is not seen as a significant deciding factor in the current scenario. The
new ESB is not intended to support process management, and the modeling of
data flowing through a WebSphere Business Integration Message Broker
message flow is deemed adequate for requirements.

Both products could support the integration of additional functionality for process
management and workflow equally well. However, as it is not relevant to the
example, it is not considered here.

Service interaction
Both WebSphere Application Server and WebSphere Business Integration
Message Broker provide support for SOA principles and separation of application
code from specific service protocols and implementations.

The two technologies place a different emphasis on how the integrity of business
transactions and data are maintained, with WebSphere Business Integration
Message Broker tending to make heavy use of reliable messaging concepts
while WebSphere Application Server will be more likely to use coordinated
transactions where possible or use compensation techniques.

In this example, the skills profile of the integration team is based historically on
WebSphere MQ messaging and the styles of interaction that come with that
background. They would take full advantage of the opportunities for
asynchronous interactions and have the design skills to move to a
 Chapter 4. Technology capabilities for an additional ESB 73

message-based broker style of solution. This would be seen as an extension
rather than denial of the achievements of the existing bus, and there would be a
determination to make the solution work, which is a very strong factor in
achieving ultimate success.

Service level
With regard to this capability, we will consider performance and availability
characteristics.

Performance
Performance characteristics of the WebSphere MQ system are well known within
the organization; they fully understand the use of WebSphere MQ clusters for
workload balancing and believe that it will meet requirements. There is
confidence that the extrapolation of these figures based on WebSphere MQ with
their potential use of WebSphere Business Integration Message Broker would
give the required performance on the new ESB.

Performance of the service integration bus using WebSphere Application Server
is also well documented. For example, benchmark specifications comparing
WebSphere Application Server V6 to other application servers can be found at:

http://www.spec.org/jAppServer2004/results/jAppServer2004.html

Therefore in performance terms, the organization would be happy with either
solution.

Availability
The assessment process examined the requirements for availability and failover.
Both WebSphere Application Server and WebSphere Business Integration
Message Broker solutions were deemed to fully support the requirements. Given
the capabilities of both of these solutions, availability is unlikely to be a deciding
factor in this or other similar decision processes.

Other factors
There are often additional factors not directly related to the functional capabilities
of the bus as discussed in 4.1.3, “Softer attributes” on page 62, and this is true
within this enterprise. Although several options would meet the requirement,
these additional factors can be as important as technological capabilities in
influencing the decision for an additional ESB.

One of the key factors that would normally be a very positive factor leading to the
selection of WebSphere Application Server rather than WebSphere Business
Integration Message Broker is relevant only in situations where services are to be
run on the same infrastructure as the ESB is deployed. WebSphere Application
Server V6, as its name suggests, can perform the role of a highly capable ESB,
74 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.spec.org/jAppServer2004/results/jAppServer2004.html

and can also host many of the provider services themselves. The development of
services from WSDL, or the encapsulation of existing J2EE functionality as Web
services, has significant support in WebSphere Application Server V6,

In this example the services to be provided are mainly made available by
packaged software or existing service-based in-house systems, and there has
been no decision to move to a J2EE platform for further service development.
Therefore, one of the key benefits of a solution based on WebSphere Application
Server service integration bus is not relevant for this organization.

The enterprise architecture for this example does not include process
management as part of a separate layer that cooperates with the ESB. In the future
this may be a separate layer that sits above the ESB. In this longer-term vision, the
ESB would invoke the services that are choreographed by the process
management engine. The WebSphere Application Server runtime engine and the
process engine provided by WebSphere Business Integration Server Foundation
share many J2EE components, administration, and programming model and these
similarities could sway a decision toward WebSphere Application Server. However,
process management is not part of the major requirements for this organization.

Summary
The diagram in Figure 4-4 summarizes the high-level solution that this
organization decided to deploy.

Figure 4-4 Adding ESB capabilities in WebSphere MQ scenarios

Note: Figure 4-4 does not make any reference to the ESB integration patterns
made in this book. The Runtime pattern deployed would require much further
analysis of the multiple ESB requirements for this organization.

WebSphere Application
service integration bus

Service consum
er

Service consum
er

Service provider

Service provider

Service consum
er

Service consum
er

Service provider

Service provider

Inhouse written,
WebSphere MQ

based service bus
 Chapter 4. Technology capabilities for an additional ESB 75

4.3.2 Scenario 2: Integrating ESBs in a J2EE and Web services-based
infrastructure

In this example a large organization wishes to move toward a single,
standards-based ESB but recognizes that with current governance structures it
will not be possible to enforce a single integration implementation across all
divisions. They have therefore decided to allow different organizational units
within the enterprise to own the implementation of their own autonomous ESB,
and to provide a standards-based framework to ensure that the ESBs can be
integrated to share services as necessary across the whole enterprise.

This enterprise has a strategy for implementing new internal and Web channel
applications on J2EE technology. They have a large, existing portfolio of J2EE
applications deployed on a variety of J2EE application servers in different
organizational units. WebSphere Application Server is the predominant J2EE
application server used, and they have recently deployed an internal portal as a
proof of concept using WebSphere Portal Server.

There has been an increasing movement toward SOA over the past few years.
They see investing in reusable, composable services as a strategic asset that will
provide for greater flexibility and success in their marketplace. Because of the
movement toward open standards and with their investment in J2EE and WSDL,
they are keen to implement any business process management solution using a
standards-based process management engine. The process management
engine is likely to be compliant with Business Process Execution Language
(WS-BPEL).

This organization does have some WebSphere MQ infrastructure, although it is
currently used only for point-to-point communications. However, its
implementation has seen performance, availability, ease-of-use, security, and
other non-functional aspects meeting their requirements.

Proposed change and high-level requirements
The organization wishes to integrate within and between divisions of the same
company using an SOA based on Web services standards.

Each division in implementing this architecture must aim for an ESB that
supports not only their own legacy integration requirements but also integration
with the ESBs of other divisions. A set of standards that must be supported will
be defined centrally by the IT strategy group.

The initial standards for inter-ESB communications include:

� HTTPS
� SOAP
76 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

� WSDL
� Support for a central security model based on WS-Security

– X509 certificates
– Optionally signed messages
– Optionally encrypted messages

Services to be integrated will include those offered by existing and planned
software packages, and new services to be developed using J2EE.

Communication
The solution must support service requests over HTTPS and must support
HTTPS between ESBs. WebSphere Business Integration Message Broker
currently only supports HTTPS on incoming requests. Implementation of an
incoming HTTPS solution for WebSphere Business Integration Message Broker
would either require extra development effort or additional infrastructure.
WebSphere Application Server does support protocol natively.

This enterprise is very happy with the style of communication typically used in
Web services. They can see that a WebSphere Business Integration Message
Broker solution built on WebSphere MQ would give them an assured
delivery-based ESB infrastructure. They are looking toward emerging standards,
in particular WS-Transaction and WS-Policy, to give them additional
standards-based capabilities in the future. They will provide transactionality
within their services and hope to extend this to external providers using J2EE
Connector Architecture resource adapters. Therefore, this organization has
decided that it will handle transactional requirements at a business application
level until the new standards emerge.

JMS will also be used by the organization. Both WebSphere Application Server
and WebSphere Business Integration Message Broker support this transport. It
is therefore not a deciding factor in this example.

Routing and addressing in WebSphere Business Integration Message Broker
enables content-based lookup of routing information to support a number of
routing patterns, including the routing of messages to one or more target
destinations that were not specified by the sending application. There will be
some requirement for this functionality in mediating between the ESB
implementations. This requires development of mediations in Java if WebSphere
Application Server is selected. This is not a problem for the organization as Java
is one of their core skill sets.

Integration
Both WebSphere Application Server and WebSphere Business Integration
Message Broker have strong integration capabilities and support both database
integration and connection to legacy.
 Chapter 4. Technology capabilities for an additional ESB 77

However this organization wishes to use the J2EE Connector Architecture as the
framework standard as they have established that J2EE Connector Architecture
resource adapters exist for a number of their existing packages. Both
WebSphere Application Server and WebSphere Business Integration Message
Broker provide support for these resource adapters.

Both WebSphere Application Server V6 and WebSphere Business Integration
Message Broker can transform between the JMS and HTTP protocols, which
have been mandated as standard.

Security
WebSphere Business Integration Message Broker has no in-built support for the
WS-Security features that are mandated as part of the longer-term security
standards for the organization. Plug-in nodes could be developed within
WebSphere Business Integration Message Broker to meet such requirements
but there are no current skills with this organization to perform this task.

WebSphere Application Server already implements the mandatory parts of the
WS-Security standards and can be expected to continue tracking such
standards. Therefore, WebSphere Application Server fits the security model of
this organization.

Modeling
Modeling is not seen as a significant deciding factor in the first instance. However
support for process management is a future requirement. The capabilities of
WebSphere Business Integration Server Foundation V5.1 and its use of
WebSphere Application Server as its cornerstone technology have been noted.

Service interaction
Both WebSphere Application Server and WebSphere Business Integration
Message Broker provide support for SOA principles and separation of application
code from specific service protocols and implementations.

The two technologies place a different emphasis on how the integrity of business
transactions and data are maintained, with WebSphere Business Integration
Message Broker tending to make heavy use of reliable messaging. WebSphere
Application Server V6 is more likely to use coordinated transactions where
possible or compensation techniques.

Service level
With regard to this capability, we consider performance and availability
characteristics.
78 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Performance
Both products are assumed to meet known requirements based on published
data. This is not a deciding factor.

Availability
The assessment process examined the requirements for availability and failover
against known requirements and both WebSphere Application Server and
WebSphere Business Integration Message Broker solutions were deemed to fully
support the requirements. WebSphere Application Server V6 Network
Deployment offered all of the capabilities they needed.

Other factors
One of the key factors which is very positive, leading to the selection of
WebSphere Application Server V6 is the development support available,
provided by Rational Application Developer V6, which provides support for:

� Building Web services using a bottom-up approach (from a J2EE
implementation artifact to exposing a WSDL-defined Web service)

� Building Web services using a top-down approach (from WSDL to service or
client skeletons).

� Building mediations for the WebSphere Application Server V6 service
integration bus.

The enterprise has J2EE skills and sees the advantage of utilizing the same
technology for all of the ESBs and for the services connected to them.

Summary
The diagram in Figure 4-5 on page 80 summarizes the high-level solution that
this organization decided to deploy.

Note: Figure 4-5 does not make any reference to the ESB integration patterns
made in this book. The Runtime pattern deployed would require much further
analysis of the multiple ESB requirements for this organization.
 Chapter 4. Technology capabilities for an additional ESB 79

Figure 4-5 Integrating ESBs in a J2EE and Web services-based infrastructure

WebSphere Application
service integration bus

Service consum
er

Service consum
er

Service provider

Service provider

Service consum
er

Service consum
er

Service provider

Service provider
Service consum

er

Service consum
er

Service provider

Service provider

Service consum
er

Service consum
er

Service consum
er

Service consum
er

Service provider
Service provider

Service provider
Service provider

WebSphere Application
service integration bus

WebSphere Application
service integration bus
80 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 5. To ESB but not two ESB?

The best advice on the subject of having more than one ESB is don’t do it. In
most cases (but not all cases) the best strategy and best practice is to have only
one ESB in an enterprise. The intent of the ESB is to facilitate integration across
the entire enterprise, hence the name Enterprise Service Bus. One ESB would
eliminate the need for directly connected ESBs, federated ESBs, or for any ESB
integration at all.

If the recommendation is a single enterprise ESB, why would an enterprise have
more than one ESB? There are several reasons, technical and organizational,
which we discuss in this chapter. All reasons to have more than one ESB are
tactical because the strategic direction is always a single ESB.

5

© Copyright IBM Corp. 2005. All rights reserved. 81

5.1 Tactical reasons for multiple ESBs
Reasons for implementing multiple ESB implementations in a single organization
include:

� Multiple governance bodies
� Funding models
� Alignment by organizational unit
� Geography
� Business strategy
� Multiple ESB technologies

5.1.1 Multiple governance bodies
Multiple enterprise governance bodies can (and often do) result in multiple ESBs.
It is often politically easier to implement multiple ESBs that align with the multiple
governance bodies than to design and implement a common solution. Each
governance body will define the boundary of its ESB and use the techniques in
this book to integrate them.

In the Patterns for e-business terminology, these governance boundaries are
called zones, and they define the scope of control over architecture and
implementation. Every component in a zone, ESB or application, is under the
same governance body.

This raises the next logical question “why more than one governance body?” and
there are many answers.

Multiple governance bodies can be the result of growth through mergers and
acquisitions. This may be temporary during a transition period or it may be a
permanent choice. It is not uncommon to even find multiple CIO and CTO
positions within an enterprise that has grown this way.

Some enterprises use a franchise or co-op business model. These enterprises
are very likely to have multiple governance bodies. The franchisees remain
autonomous and yet must exchange data with the corporate entity. Each has
independent IT organizations but they may share common infrastructure such as
wide area networks or an entire data center.

Government regulatory requirements may force an enterprise to have multiple
governance bodies. An enterprise that deals with both civilian and military
customers may be required to maintain mandatory separation between the two
parts of the business for security reasons.
82 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

5.1.2 Funding models
How an enterprise funds projects can lead to multiple ESBs. If the enterprise
does not manage the funding and governance from a central point the ESB
implementations will be fragmented and disjointed.

If the technology funding is at the project level then the project team may design
and deploy an ESB as part of that project’s funding. The project may be
something as large as a new ERP system with dozens of endpoints and several
hundred interfaces or as small as a single line of business application with just a
handful of endpoints. The ESB boundary is synonymous with the project
boundary.

This is not an optimal way to fund integration projects nor to design and deploy
an ESB. This will lead to a proliferation of ESBs that are tailored to the specific
needs of an individual project. Enterprise Integration, which includes ESBs, is
best funded at the enterprise level.

5.1.3 Alignment by organizational unit
Enterprises are often organized by brands or lines of business and even
combinations of these. In some cases there is a central governance body but in
many others the IT governance follows the organizational alignment of the
enterprise.

Multiple organizational units in the same enterprise can have unique integration
requirements. A highly diverse enterprise is likely to have highly diverse integration
requirements. The unique integration needs may be based on the diversity of
products and services they deliver to their customers. An enterprise that offers
both manufactured goods and business financing may want to implement multiple
ESBs based on the unique requirements of each business unit.

There can be differences in the form of government regulations that exist in one
region but not another. For example, security and privacy laws differ from nation
to nation and even between regions in the same nation. There may be multiple
ESBs to ensure compliance with these regulations.

Government regulations may affect one enterprise organization unit but not
another. An example is if an enterprise is engaged in healthcare but has a wholly
owned medical device manufacturing subsidiary. In the USA, the ESB for medical
device manufacturing would require Food and Drug Administration 21 CFR Part
11 certification. The initial and ongoing costs of certifying the ESB components
needed for the healthcare organizational unit would not have a business benefit.

As was said before, it is always best to have a single ESB, but the time and cost
to build in the flexibility to accommodate all possible requirements for all
 Chapter 5. To ESB but not two ESB? 83

organizational units may make the business case for the ESB more difficult to
justify.

5.1.4 Geography
Geography can influence the decision to have multiple ESBs. It may be
impractical to manage a single ESB across geographic boundaries. This is
especially true when there is low bandwidth or unreliable communications
between geographies. It can make more sense to manage them separately and
use the techniques in this book to create links between them.

The architecture of an ESB supports components distributed across
geographies. The problem arises with system management capabilities across
geographies. Low bandwidth and intermittent communications can be challenges
to managing a single global ESB.

5.1.5 Business strategy
The architecture of the ESB should be heavily influenced by the guiding principles
of the business. Different parts of the business may adopt different guiding
principles, which would lead to different architectural decisions for the ESB.

For example, one business unit may be in a fast-moving but high-margin industry
where the agility to adapt is more important than cost. Another business unit in
the same enterprise may be in a commodity business with low margins and very
stable processes. In the former a highly flexible but more costly solution would be
more desirable. In the latter the lowest integration cost would be more desirable
than a highly flexible but more expensive solution.

ESB architecture is a series of trade-offs between cost, schedule, and quality. If
all business units can agree to a common set of trade-offs then a single ESB is
possible. If consensus is not possible the ESB architecture is likely to mimic the
lack of consensus.

5.1.6 Multiple ESB technologies
The technology in use by one vendor to implement an ESB may not be
interoperable with the technology from other vendors. An enterprise may not
have the ability or desire to choose a single vendor technology platform to
implement the ESB architecture. There are a number of reasons why an
enterprise may have multiple ESB technologies in the same governance zone.

Many application packages are bundled with ESB technology. Trying to remove
and reimplement the bundled solution would be costly and is not likely to have a
84 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

very good business case. In these cases an enterprise would end up with
multiple ESB technologies that may not be interoperable.

Some enterprises do not wish to be overly dependent on a single vendor’s
technology. In these cases multiple ESB technologies will be intentionally
introduced. In these cases it would be wise to ensure that the selected
technologies are interoperable to ease integration.

5.2 Conclusion
Strategically it is always best to have a single ESB but there are tactical reasons
that may conflict with this strategic objective. Each enterprise must look at the
best combination of strategic and tactical issues to determine the right number of
ESBs. This should be examined on a periodic basis to determine whether the
original decision remains the best one. If you require more than one, the
remainder of this book will help you make the best of that decision.
 Chapter 5. To ESB but not two ESB? 85

86 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 6. Integrating ESBs

The use of an Enterprise Service Bus architecture is becoming common in
enterprises worldwide. The need to integrate multiple ESBs within the same
enterprise is relatively new. This chapter is about some of the emerging patterns
being used to integrate ESBs.

Integrating two or more ESBs is subject to some of the same integration patterns
as connecting two or more applications; integration déjà vu. It seems logical that
integrating ESBs should follow best practices similar to those for enterprise
application integration (EAI). This chapter outlines where the Patterns for
e-business Application Integration patterns are applied to integrating ESBs in
addition to adding some new patterns.

Service-oriented architecture (SOA) best practices can also be applied to
integration. The use of SOA techniques for integration is called Service Oriented
Integration (SOI). We will discuss some emerging SOI patterns you can use to
integrate ESBs.

6

© Copyright IBM Corp. 2005. All rights reserved. 87

6.1 ESB capabilities
An ESB delivers a minimum set of capabilities (defined in 4.1.1, “Minimum ESB
capabilities” on page 58) and also can deliver a set of extended capabilities
(defined in 4.1.2, “Extended ESB capabilities” on page 59). Examples of the
capabilities are:

� Communications: routing, addressing, protocol conversion
� Security: authentication, authorization, non-repudiation
� Message Processing: transformation, mediation, validation
� Quality of Service: transaction, delivery assurance
� Management: logging, metering, monitoring, error handling, metadata

Each ESB can implement these capabilities in different ways. Integrating two
ESBs is more about integrating these capabilities than about merely delivering
the service request and response. It is important to present a consistent model of
interaction between the service providers and service consumers on all of the
ESBs involved.

It will be common to coordinate several ESB capabilities for a single inter-ESB
exchange. Different inter-ESB exchanges may require coordination of different
combinations of ESB capabilities. Coordinating the capabilities between different
ESB implementations is where the complexity begins to surface. One exchange
may require coordination of transaction, authentication, transformation, and
error-handling capabilities. The next exchange may require delivery assurance
and non-repudiation.

There are many differences between integration of ESBs and integration of
applications but there are many similarities. Integration of ESB capabilities share
many best practices with application integration, such as loose coupling,
abstraction, and encapsulation. The major difference is the amount of effort to
integrate aspects other than message content. New levels of integration such as
security, quality of service, and management can raise issues never encountered
during application integration. Many standards efforts are an attempt to address
these new levels of integration.

There are both established and emerging standards for exposing interfaces and
coordinating the behaviors between ESBs. The evolution of specifications such
as WS-Policy, WS-Addressing, and WS-Security will standardize the service
interactions between ESBs. The status of these standards range from approved
specifications still in the experimitation stage to unfinished specifications. Using
some of these specifications (as they exist at the time this book was published)
would be risky. Some may never be formally adopted and others may see major
changes before they are adopted.
88 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Which of these you may find useful depends on how your organization adopts
new technology. Early adopters may start experimenting with some specifications
today, and those who prefer to wait for mainsteam adoption may have to wait
quite a while longer. With so many standards under development, creating a
flexible architecture can be important. A flexible architecture allows refactoring of
ESB integration components and services from custom solutions to open
standards based solutions as each standard matures.

6.2 ESB service request context translation
While a service request is within the domain of the ESB it carries a context. The
context includes, among other things, what ESB capabilities the service request
requires. The level of assured delivery, security, and logging are examples of the
ESB capabilities that can be associated with the context of a particular service
request. This context is understood by all ESB components used to complete the
service call.

When the service request needs to pass from one ESB to another, the context as
well as the content of the service request must be communicated. For example, if
the originating ESB associated once-and-only-once delivery with the service
request, the destination ESB must make the same association. Because two
ESBs may be implemented in different technologies they cannot directly
communicate the service request context. This is the same problem as passing
data between applications implemented in different technologies. A COBOL
application cannot understand a serialized Java object any more than the Java
application could translate a COBOL copybook.

This creates a requirement to translate the service context as it passes between
the ESBs. A solution to translating service request content between COBOL and
Java is XML and SOAP. The data is translated into a technology-agnostic format
both applications can understand. Unfortunately, the corresponding standards to
translate service request context are not as mature as those for service content.

Assured delivery currently has two conflicting standards: WS-Reliability (WS-R)
and WS-Reliable Messaging (WS-RM). They are both now owned by OASIS but
it may take quite a while to reconcile them. WS-Policy is a specification but it is
currently held by one vendor and not by a standards group like OASIS or W3C.
Standards and specifications for other ESB capabilities do not yet exist.

The lack of stable or widely implemented standards for translating service
request context requires custom design and development or experimentation
with emerging standards. Experimentation with emerging standards can lead to a
dead end because different vendors may interpret the standards in different and
incompatible ways. It takes a long time for organizations such as WS-I to set
 Chapter 6. Integrating ESBs 89

interoperability guidelines for new standards and be adopted by vendors. Even
more mainstream standards like SOAP and WSDL still have some
interoperability problems today.

As the standards mature, vendors implement them, and interoperability is
achieved, it will be possible to replace the custom context translation with a
standards-based approach. The amount of rework will depend on how the custom
context passing mechanism is implemented. The principles of service orientation,
low coupling, encapsulation, abstraction, and high cohesion can all affect the
effort to move from custom to standards-based approaches in the future.

6.3 Introduction to ESB integration patterns
This section introduces three sets of patterns to integrate ESBs. Each instance of
integrating two or more ESBs uses at least one pattern from each set. Often
more than one pattern from the same set can be used in the same instance. First
we introduce each of the sets of patterns and then show how they are combined.

6.3.1 ESB Topology patterns overview
The ESB Topology patterns are variations of the SOA profile in the Patterns for
e-business. You can find these variations in the Patterns for e-business layered
asset model under the SOA profile for the Direct Connection, Broker, and Router
runtime patterns.

There are three emerging patterns for ESB Topology

� Directly Connected ESBs
� Brokered ESBs
� Federated ESB

The ESB Topology patterns describe network relationships between ESBs.
Table 6-1 on page 91 describes the business drivers for these patterns, and
Table 6-2 on page 91 describes the IT drivers.
90 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 6-1 ESB Topology business drivers

Table 6-2 ESB Topology IT drivers

Business drivers

D
ir

ec
tly

 C
o

n
n

ec
te

d
 E

S
B

s

B
ro

ke
re

d
 E

S
B

s

F
ed

er
at

ed
 E

S
B

s

Growth through mergers and acquisitions √ √

Distributed governance model √ √

Limited interaction between different enterprise
governance zones (for example, line of business (LOB)
or regions)

√

Maximize speed and flexibility to change business
processes

√ √

Support cross-organizational processes √ √

IT drivers

D
ir

ec
tly

 C
o

n
n

ec
te

d
 E

S
B

s

B
ro

ke
re

d
 E

S
B

s

F
ed

er
at

ed
 E

S
B

s

Route requests between two ESBs √

Route requests between more than two ESBs √ √

The service consumer request requires coordination of
multiple service providers on multiple ESBs

√

Central management of ESB routing rules √ √

Few interactions between ESBs √

Frequent changes to the interactions between ESBs √ √
 Chapter 6. Integrating ESBs 91

6.3.2 ESB Governance patterns overview
There are three emerging Governance patterns for ESB integration component
placement:

� Local Governance
� Intermediary Governance
� Federated Governance

The ESB Governance patterns describe the placement and control (governance)
over the components used to connect the ESBs. The control may be in the form
of organization, architecture, security, or operational.

It is possible to use ESB connection governance patterns with each other in any
combination and in any combination with the Topology and Adapter patterns. For
example, security may use a Federated Governance pattern, logging may use a
Local Governance pattern, and routing an Intermediary Governance pattern.

Table 6-3 on page 93 describes the business drivers for the Governance
patterns, and Table 6-4 on page 93 describes the IT drivers.

Minimize changes to existing ESBs √

Only requires basic interactions √

Loose coupling between ESBs √ √

Provide service provider location transparency to
service consumers

√ √

IT drivers

D
ir

ec
tly

 C
o

n
n

ec
te

d
 E

S
B

s

B
ro

ke
re

d
 E

S
B

s

F
ed

er
at

ed
 E

S
B

s

92 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 6-3 ESB Governance business drivers

Table 6-4 ESB Governance IT drivers

6.3.3 ESB Adapter Connector patterns overview
There are two emerging patterns for ESB Adapter Connectors. These patterns
can be combined with each other and with any of the previously introduced
Topology and Governance patterns. The two Adapter patterns are:

� Adapter Connector
� Boundary Services Adapter Connector

Business drivers

L
o

ca
l

G
ov

er
n

an
ce

In
te

rm
ed

ia
ry

G

ov
er

n
an

ce

F
ed

er
at

ed
G

ov
er

n
an

ce

Business processes cross governance boundaries √ √

Business processes are in a highly regulated environment √ √

IT drivers

L
o

ca
l

G
ov

er
n

an
ce

In
te

rm
ed

ia
ry

G

ov
er

n
an

ce

F
ed

er
at

ed
G

ov
er

n
an

ce

One or both ESBs require implementation knowledge √ √

No knowledge of other ESBs √

ESB integration components are controlled by a third party
(either internal or external to the enterprise)

√

Control within a single governance zone √ √

Tight control over external connections √

Information needed to coordinate behavior is in multiple
governance zones

√

Coordination must be synchronous √

Tip: You will notice that there is no Federated Services pattern. If the services
of two ESBs are fully federated (all services are shared) then, by our the
definition of an ESB, they cease being two separate ESBs and become one
larger ESB.
 Chapter 6. Integrating ESBs 93

The ESB Adapter Connector patterns describe how the ESBs will send and
accept messages and, more important, message context. Table 6-5 describes
the business drivers for the ESB Adapter patterns and Table 6-6 describes the IT
drivers.

Table 6-5 ESB Adapter Connector business drivers

Table 6-6 ESB Adapter Connector IT drivers

Business drivers

C
o

n
n

ec
to

r
A

d
ap

te
r

B
o

u
n

d
ar

y
S

er
vi

ce

More agile integration between organizational
(governance) silos

√

Low initial implementation cost desired over more agility
integration

√

Agility desired over initial integration development costs √

Static interactions between LOBs and regions √

Interaction between LOBs and/or regions are constantly
changing

√

Reduce impact of change √

Lower total cost of ownership √

Accelerate integration of mergers & acquisitions √

IT drivers
C

o
n

n
ec

to
r

A
d

ap
te

r

B
o

u
n

d
ar

y
S

er
vi

ce
s

Binding of service request context to ESB capabilities is
done at build time

√

Binding of service request context to ESB capabilities is
done at run time

√

Limited combinations of ESB capabilities needed to
support service requests

√

Wide variety of ESB capability combinations needed to
support service requests

√

94 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

6.4 ESB Topology patterns
This section described the following three ESB Topology patterns in more detail:

� Directly Connected ESB pattern
� Brokered ESB pattern
� Federated ESB pattern

6.4.1 Directly Connected ESBs pattern
Figure 6-1 shows the Directly Connected ESBs runtime pattern.

Figure 6-1 Directly Connected ESBs runtime pattern

Primary requirement is to translate between otherwise
incompatible technologies

√

Limit number of custom components needed √

Process changes require minimal component changes √

Lower initial implementation cost √

Service-oriented approach √

IT drivers

C
o

n
n

ec
to

r
A

d
ap

te
r

B
o

u
n

d
ar

y
S

er
vi

ce
s

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

HubHub HubHub App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory
 Chapter 6. Integrating ESBs 95

Business drivers
� Limited interaction between different enterprise governance zones (for

example, line of business (LOB) or regions)

IT drivers
� Route requests between two ESBs
� Few interactions between ESBs
� Only requires basic interactions

Pattern description
The Directly Connected ESBs pattern for integrating ESBs is based on the Direct
Connection application pattern for Application Integration as described in
Patterns: Direct Connections for Intra- and Inter-enterprise, SG24-6933.

The simplest type of interaction, this pattern is based on a point-to-point topology.
Using this pattern results in the ESBs communicating directly with each other.

When directly connecting ESBs, service providers on one ESB are mapped
directly to service consumers on another ESB in a point-to-point topology. As
with any point-to-point topology, the endpoints contain implementation
knowledge of each other. For example the ESB hosting the service consumer
must know which ESB hosts the service provider, what protocol to use, and
message format so it can route the request. This results in service routing rules
distributed across multiple ESBs and in multiple ESB components. The
challenges of managing distributed configurations are well known and often cited
as a major systems management problem.

Many important lessons were learned when integrating applications that are
applicable to integrating ESBs. One of the most important is that the number of
links can grow exponentially as the number of components being linked together
grows. This is as true for ESBs as it is for applications. Each time a service
provider is linked to a service consumer on a different ESB another point-to-point
relationship is created. Maintenance will require exponentially more effort as the
number of links between ESBs increases.

WIth no shared infrastructure, each ESB maintains its own namespace directory,
administration, and security services. They share no infrastructure so the link
must coordinate all service request context between the ESBs.
96 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

6.4.2 Brokered ESBs pattern
Figure 6-2 shows the Brokered ESBs runtime pattern.

Figure 6-2 Brokered ESBs pattern

Business drivers
� Growth through mergers and acquisitions
� Distributed governance model
� Maximize speed and flexibility to change business processes
� Support cross-organizational processes

IT drivers
� Route requests between more than two ESBs
� Central management of ESB routing rules
� Frequent changes to the interactions between ESBs
� Minimize changes to existing ESBs
� Loose coupling between ESBs
� Provide service provider location transparency to service consumers

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

Zone:
Brokered ESB

Gateway

Namespace
Directory

Administration
& Security
Services

HubHub HubHub

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

HubHub App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory

HubHub App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory
 Chapter 6. Integrating ESBs 97

Pattern description
As with the Directly Connected ESBs pattern, the Brokered ESBs pattern is also
based on an Application Integration pattern: this time the Broker application
pattern. The Broker application pattern is described in the redbook Patterns:
Broker Interactions for Intra- and Inter-enterprise, SG24-6075.

The Brokered ESBs pattern separates the ESB integration logic and related
business rules from the ESBs. This pattern reduces the number of point-to-point
connections, which is a benefit over the Directly Connected ESBs pattern.

The Brokered ESB Gateway is a component between the ESBs. This component
contains all of the knowledge about how to connect the ESBs. This component
may be referred to as a hub, a bus, or a gateway depending on how it is
implemented and who is describing it. Regardless of what the component is
called, it prevents the ESBs from linking directly with each other and centralizes
control of the inter-ESB connections.

The Brokered ESB Gateway centralizes much of the connection behavior
between the ESBs. The new centralized broker component may be located in a
different governance zone than any of the ESBs it integrates. This component
may fall under the governance of an Integration Center of Excellence (COE) or
enterprise architecture group. In other cases it may be a marketplace under the
control of a third party.

As is the case with an application integration broker, each ESB integrates with
just the broker component rather than each individual ESB. This encapsulates
ESB implementation details, such as routing rules, into the broker. Each ESB
now has less implementation knowledge of the other ESBs. This creates a looser
coupling so changes in one ESB will be less likely to affect the other ESBs.

The Brokered ESB Gateway will offer many of the same capabilities as a typical
ESB but it is not required to offer all ESB capabilities. A Brokered ESB Gateway
can offer nothing more than routing service. In this case it could not be
considered a full-fledged ESB.

Another difference is that the Brokered ESB Gateway has no service providers or
service consumers directly attached. It also may not have its own Business
Service Directory because it has no service providers to publish.

The Brokered ESB Gateway often connects heterogeneous ESBs. When it does,
it must be able to adapt to a wide range of standards and protocols. If different
ESBs implement different levels of the same standard the Brokered ESB Gateway
may have to mediate the potentially incompatible standards. For example, an ESB
using SOAP V1.1 may not be able to consume a SOAP V1.2 message generated
by another ESB. The Brokered ESB Gateway pattern allows centralization of this
type of mediation rather than each ESB implementing it directly.
98 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

6.4.3 Federated ESBs pattern
Figure 6-3 shows the Federated ESBs runtime pattern.

Figure 6-3 Federated ESBs pattern

Business drivers
� Growth through mergers and acquisitions
� Distributed governance model
� Maximize speed and flexibility to change business processes
� Support cross-organizational processes

IT drivers
� Route requests between more than two ESBs

� Service consumer request requires coordination of multiple service providers
on multiple ESBs

� Central management of ESB routing rules

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory

HubHub

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory

HubHub

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory

HubHub

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Consumer>

Namespace
Directory

Administration
& Security
Services

Administration
& Security
Services

Hub Zone: Federated ESB
 Chapter 6. Integrating ESBs 99

� Frequent changes to the interactions between ESBs

� Loose coupling between ESBs

� Provide service provider location transparency to service consumers

Pattern description
The Federated ESBs pattern adds orchestration of service consumer requests
that span multiple ESBs, multiple service providers, or both. It also adds the
ability to attach a service consumer directly to the hub component.

A service consumer can make requests that require resources from multiple
service providers on multiple ESBs. One option is for the service consumer’s
ESB to coordinate the process. This could be a good option if there are only one
or two occurrences of this requirement. If there are more than one or two
occurrences this solution would lead to federation logic scattered across multiple
ESBs. The resulting decentralized management would be similar to the
decentralized management problem of the Directly Connected ESBs pattern. As
with the Directly Connected ESBs pattern, there is a penalty in the form of higher
costs to maintain and extend the implementation.

To avoid the decentralized management problem, the federation component
(hub, bus, or gateway) will control the coordination of multiple service providers.
This implements the same design pattern for integration as products such as
WebSphere Information Integrator implement for data. The key characteristic is
to span heterogeneous ESB implementations and aggregate responses from
service providers on those ESBs. This will be transparent to the service
consumers and service providers involved.

Under some scenarios there is an advantage to connecting those service
consumers who require coordination of service providers on multiple ESBs
directly to the federation component. The service consumer’s ESB will not have
to forward the request to the federation component nor will the federation
component have to forward the results back. This results in a simplification of the
architecture. It reduces the number of connections and the amount of traffic
between the ESBs and the federation component.

The Federated ESBs pattern is not simply a Brokered ESB Gateway with service
consumers directly attached. Its purpose is to coordinate a service consumer’s
request across multiple providers on multiple ESBs.

Introducing the coordination of service providers adds new Application
Integration patterns: the Serial Process and Parallel Process patterns. These
patterns introduce the need for state management and possibly compensating
transactions. Ensure that there are enough requirements to support the
additional cost and complexity.
100 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

6.5 ESB Governance patterns
A governance zone includes all of the components under the control of the same
governance body. The governance body may be a business unit, an enterprise,
or some other organizational construct. Implementation decisions about a
component within a governance zone are made by the governance body. A
governance body does not have much, if any, influence over components outside
of its governance zone. Governance patterns define the relationships of
components in different governance zones.

Governance patterns are not unique to ESB integration. They apply to many
different disciplines in software architecture. The three governance patterns
listed here are not all of the known governance patterns but they are the most
commonly encountered in ESB integration. The criteria that will drive the choice
of governance patterns in ESB integration are control and coupling.

Who has control over the component? As discussed in Chapter 5, “To ESB but
not two ESB?” on page 81 one reason for more than one ESB in an enterprise is
the existence of multiple governance bodies. A governance pattern determines
which governance body controls the components.

What is the acceptable amount of coupling between components in different
governance zones? Coupling between governance zones occurs when one
governance zone has knowledge about how another governance zone
implements components. Coupling between governance zones requires new
levels of coordination and communication, which may inhibit or impede the ability
to make changes. The more coupling, the more dramatic the impact.

The components needed to integrate two ESBs fall into three governance
patterns:

� Local Governance

The component is placed in the same governance as the ESB.

� Intermediary Governance

The component is placed in a different governance zone than any of the
ESBs.

� Federated Governance

Parts of the component are placed in more than one governance zone.
 Chapter 6. Integrating ESBs 101

6.5.1 Local Governance pattern
Figure 6-4 shows the Local Governance pattern.

Figure 6-4 Local Governance pattern

Business drivers
� A highly regulated environment for business processes

IT drivers
� Implementation knowledge required by one or both ESBs
� Control within in a single governance zone
� Tight control over external connections

Pattern description
In the Local Governance pattern, component C in Figure 6-4 is placed in the
existing governance Zone A. Zone B has no architectural or operation control
over component C.

The only coupling is the interface exposed by component C. As long as this
interface remains constant there is no need for communication or coordination
between governance zones when changes are made. Control of component C is
entirely within one governance zone.

Logging exemplifies this type of service context capability. Zone B communicates
only what level of logging is needed by its service consumer. The implementation
of the logging component is completely under the control of Zone A.

6.5.2 Intermediary Governance pattern
Figure 6-5 shows the Intermediary Governance pattern.

Figure 6-5 Intermediary Governance pattern

Zone A Zone B
C

Zone ZZone A Zone B
C

102 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Business drivers
� Business processes cross governance boundaries

IT drivers
� No knowledge of other ESBs

� Third-party control of ESB integration components (either internal or external
to the enterprise)

� Control within a single governance zone

Pattern description
In Figure 6-5 on page 102, component C is place in Zone Z, which is
independent of ESB Zones A and B.

Similar to the Local Governance pattern, the only coupling of component C is the
interfaces it exposes to Zone A and Zone B. Additional coupling has also been
removed because Zone B no longer knows Zone A exists and the reverse is also
true. The only zone visible to either of them is Zone Z. What is on the other side
of Zone Z could be of immense or insignificant complexity and neither Zone A nor
Zone B would be aware of it. This differs from the Local Governance pattern, in
which Zone B knows Zone A exists.

In this case neither Zone A or Zone B controls component C. An independent
Zone Z controls the component. Neither Zone A or Zone B can control the
implementation since it is in the hands of a third party. This is a common pattern
when there are multiple business units (Zone A and Zone B) and a corporate or
headquarters unit (Zone Z). None of the business units have control over the
component; it is controlled by the headquarters zone.

An example of this pattern would be routing and transformation rules for
integrating ESBs. Zone Z would centralize the routing and transformation rules
for maintenance and operations purposes. The ESBs in Zone A and Zone B
delegate this capability to the Zone Z component, which is outside their
governance zones.
 Chapter 6. Integrating ESBs 103

6.5.3 Federated Governance pattern
Figure 6-6 shows the Federated Governance pattern.

Figure 6-6 Federated Governance pattern

Business drivers
� Business processes cross governance boundaries.
� Business processes are in a highly regulated environment.

IT drivers
� One or both ESBs requires implementation knowledge.
� Information needed to coordinate behavior is in multiple governance zones.
� Coordination must be synchronous.

Pattern description
In Figure 6-6, component C has behavior partitioned into components C1 and
C2. A portion of component C is placed under the governance of each zone. The
subcomponents collaborate across the zone boundaries.

This has the potential for the tightest coupling of the three governance patterns
examined so far. Architects use this governance pattern when components in two
governance zones must closely cooperate to deliver some set of functionality. This
close cooperation often results in the component parts sharing implementation
knowledge. It is possible to hide implementation details using techniques such as
XML and Web services but other constraints often prevent this.

The control over component C is jointly held by Zone A and Zone B. Firmly
established communication and cooperation is needed between the governance
bodies. Most often a trust relationship is also needed to use this pattern.

An example is a federated security manager. Component C1 would contain the
implementation details to validate a user with component C2. This would prevent
replication of user information between Zone A and Zone B.

Another common use of this pattern is as a gateway between the two
governance zones. This isolates the technical implementation so only
component C1 knows how component C2 is implemented. Any other component

Zone BZone A
C1 C2
104 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

in Zone A would use C1 whenever it needs to access Zone B. This provides
some level of isolation. If C2 changes, then only C1 needs to change with it.

The interaction between C1 and C2 is often but not always a synchronous
request/response handshake. In the security example, C1 sends a request
containing the user information to C2 and waits for a response from C2 with the
authentication results.

6.5.4 Multiple governance patterns
Multiple governance patterns will be used within the same ESB integration. Best
practice is to use the pattern that best fits the solution and not to try to force
everything into one governance pattern.

Figure 6-7 shows an example of all three governance patterns in use in the same
ESB integration.

Figure 6-7 Multiple governance patterns co-exist

An example of the multiple types of governance patterns shown in Figure 6-7 is
where:

� Routing uses a component that lies outside both ESB zones represented by
C0.

� Security uses components to both ESB zones. This is shown using C1 and
C2.

� Logging could use a component in Zone A only. This is shown using C3.

Each governance pattern solves a different type of integration problem. Pick the
governance pattern that best fits the particular problem.

Zone ZZone A Zone B
C0

C1 C2

C3
 Chapter 6. Integrating ESBs 105

6.6 ESB Adapter Connector patterns
When integrating two ESBs, it is not difficult to pass the service call content. The
difficult part is translating the service context from the semantics of one ESB to
the semantics of another ESB. This is especially true when the ESBs are from
different vendors.

The service context is made up of all of the behaviors the service collaboration
expects the ESB to perform on its behalf.

The links between the ESBs can be one of two architectures:

� Adapter Connector pattern

Service behaviors for the interaction determined at build time.

� Boundary Services Adapter Connector pattern

Service behaviors for the integration determined at runtime.

6.6.1 Adapter Connector pattern
Figure 6-8 shows the Adapter Connector pattern.

Figure 6-8 Adapter Connector pattern

Business drivers
� Low initial implementation cost desired over more agility integration
� Static interactions between LOBs and/or regions

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

HubHub HubHub App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory

Connector
Adapter

Connector
106 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

IT drivers
� Binding of service request context to ESB capabilities: done at build time
� Limited combinations of ESB capabilities needed to support service requests
� Primary requirement: translate between otherwise incompatible technologies
� Lower initial implementation cost

Pattern description
The Adapter Connector pattern is an established pattern and is not unique to
ESB integration. It is a common pattern when connecting heterogeneous
applications. In the case of ESB integration, the Adapter Connector pattern
supports the interaction between a service consumer on a local ESB and a
service provider on a foreign ESB. The logic to translate ESB behaviors (for
example, logging, assured delivery, and security) to support that interaction are
built into the connector and then bound to the connector at design time.

Since the mediations a connector offers are fixed at build time, the only services
the connector can perform are those that were known at build time. If a new or
existing interaction needs a different ESB behavior mediation than the existing
connector supports, it will require modification of an existing connector or
building a new connector. As the number of interactions increase, the complexity
and number of connectors increase at a similar or faster rate.

A connector can be used to mediate a technology mismatch between two ESBs.
They each may support different standards or levels of standards. The connector
would act as a specialized protocol switch to overcome the mismatch.

Encryption is an example of mediating a technology mismatch between two
ESBs. If the service provider ESB encrypts the message, the service consumer
ESB may not know how to decrypt the message. The connector component
would know how to decrypt messages from the service provider and re-encrypt
them in a way the service consumer understands. The specific decisions how
and when to do the encryption translation are all made during the connector
design.

Another example is if the local and foreign ESBs use different JMS
implementations. Conformance with the JMS specification does not promise or
provide for interoperability. The connector would mediate the incompatibility
between different JMS implementations by acting as a compatible JMS client for
each side of the interaction.

Figure 6-9 on page 108 shows two different service consumers who want to
access service providers on a foreign ESB.
 Chapter 6. Integrating ESBs 107

Figure 6-9 Example of connector architecture

The interaction shown in Figure 6-9 between E1 and P1 may require
authentication and authorization, encryption of sensitive data, and extensive
logging for regulatory purposes. The interaction between E3 and P3 requires
logging to support a business process management dashboard. This is likely to
require two unique connectors due to the radically different requirements of each
interface. Now a business process change requires a new interaction between
E2 and P2. This new interaction must support both regulatory logging and
business process management logging. This is likely to result in a new connector
specific to that interaction even though it may reuse code from the other two
connectors.

Since the connector’s behaviors are set at design time, this type of ESB
connection can be fast and easy to build. There are potential penalties for this
initial deployment speed. These penalties can offset the initial development
speed and create an expensive and brittle infrastructure.

The Adapter Connector pattern is good for a small number of connections
between ESBs. As you can see in Figure 6-9, the number of connector
components will typically grow at the same rate as the number of service
consumers using service providers on the foreign ESB. This is similar to the
exponential growth of point-to-point application integration interfaces that
plagues many large enterprises.

It is possible for a connector to support more than one interaction, but there are
risks. Even a well-designed connector may become brittle as each layer of code
is added to support new and changing requirements. Significant rework is
common when a requirements change demands new or different services than

Enterprise

Hub

E1

E3

E2

ESB1Region A Zone

Hub

P1

P3

P2

ESB2 Region B Zone

<Service
Consumer>

“E”

<Service
Provider>

“Service P”

<Service
Provider>

“Service P”

Link 1

Link 2

Link 3
108 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

the connector currently supports. At a minimum, a new code branch is needed
within the connector to bind an alternative service, or a completely new
connector may be required. In either case there are code and configuration
changes whenever the requirements change because the connector can only be
used to support interactions that were known at design time.

6.6.2 Boundary Services Adapter Connector pattern
Figure 6-10 shows the Boundary Services pattern.

Figure 6-10 Boundary Services Adapter Connector pattern

Business drivers
� More agile integration between organizational (governance) silos.
� Agility desired over initial integration development costs.
� Interaction between LOBs and/or regions are constantly changing.
� Reduce impact of change.
� Provides lower total cost of ownership.
� Accelerate integration of mergers and acquisitions.

Tip: If there are many links with different behaviors or a need to frequently
change the links, it is advisable to look at a more robust and flexible linking
method.

Enterprise

Business Service
Directory

Business Service
Directory

Zone:
Enterprise Service Bus

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Business Service
Directory

Business Service
Directory

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

HubHubHub

Zone:
Enterprise Service Bus

Boundary
Service

Boundary
Service

Adapter Connector HubHubHubHubHubHub

Boundary
Service

Boundary
Service

Zone:
ESB Gateway

Boundary
Service

Adapter Connector

Boundary
Service

Adapter Connector
 Chapter 6. Integrating ESBs 109

IT drivers
� Binding of service request context to ESB capabilities is done at run time.
� Needs wide variety of ESB capability combinations to support service requests.
� Limit number of custom components needed.
� Process changes require minimal component changes.
� Service-oriented approach.

Pattern description
Boundary Services are an emerging pattern to create runtime-configurable and
composible interactions between applications. Boundary Services live at the
edge of an application, take the context of an event outside of the boundary, and
translate it to a context understood within the boundary. They also take the
internal event context and prepare it for external consumption. The Boundary
Services Adapter Connector pattern has roots in SOA techniques.

Boundary Services use metadata from the inbound service call (other than the
service location) to determine what behaviors the interaction requires. The
metadata could be part of the transport header (JMS or HTTP header), part of
the message envelope (SOAP header), or part of the message body (XML name
value pair).

The metadata will contain the previously agreed-to semantics that describe the
service call context to the Boundary Services. This is the contract between the
local (service consumer’s) ESB and the foreign (service provider’s) ESB. The
semantics in the metadata describe the responsibilities the local ESB expects the
foreign ESB to perform on its behalf.

Each Boundary Service or group of Boundary Services focuses on the delivery
of one set of capabilities. These Boundary Services implement SOA best
practices by hiding their technical implementation and making no assumptions
about context and state.

A reliable delivery Boundary Service could offer three service levels:

� Best effort delivery
� At least once delivery
� Once and only once delivery

A data security Boundary Service could also offer two services:

� Sign message
� Encrypt message

A logging Boundary Service could offer four services:

� Process monitoring
� Non-repudiation
110 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

� Trace
� Debug

The service call context metadata may change from one invocation to the next
between the same service consumer and service provider. The Boundary
Services adapt to these changes at runtime. Compare this to the design time
binding of service call context metadata required by a connector. This is an
example of the flexibility and agility that is inherent to a service-oriented design.
The Boundary Services can be combined in ways the original designers did not
anticipate.

The Boundary Service knows how to map the service call metadata to an internal
implementation of that service level. For example, when a logging Boundary
Service receives a non-repudiation request, it knows that it is a request to record
an event in a tamper-proof log. The actual mechanism to perform this function is
internal to the ESB and is not part of the Boundary Service. The Boundary
Service only has to know how to map the metadata request to the correct internal
functions.

A Boundary Service can map more than one metadata definition to the same
internal service. For example “trace” and “debug” could both map to the same
level of logging. This is allowable as long as the foreign bus maps the service
context metadata to a service level that exceeds the local bus’s expectation.
Mapping “once and only once” assured delivery to a “best effort” service would
not be acceptable, but mapping a “best effort” request to a “once and only once”
service level would be acceptable (but more resource intensive).

Boundary Services can force delivery of a minimum service level. The
governance body of the ESB can choose the minimum service levels it will
deliver to a foreign service consumer regardless of the request. For example, a
service call may request no message logging. This does not mean that the ESB
cannot log the message, only that it is not violating the contract if it does not.

Boundary Services Adapter Connectors may not deliver less than the requested
service level. If the service level specifies to encrypt the message using 256-bit
encryption, then the message cannot be sent with only 128-bit encryption. The
Boundary Services Adapter Connectors must honor the service level associated
with the semantic definitions agreed upon between the governance bodies. If the
service level is only “encrypt,” then either 128-bit or 256-bit encryption is
acceptable.

In some cases the Boundary Service may be based on an industry standard
such as WS-Security. In other cases an industry standard may not yet exist that
would require a proprietary solution. Following design and development best
practices enables the standards-based solution to replace the proprietary
solution at some future point.
 Chapter 6. Integrating ESBs 111

In some cases the invocation of a Boundary Service may be optional. An
example of an optional Boundary Service could be error handling response
processing. In some cases the service consumer may want a response in the
event of an error and in other cases it is not interested in error conditions. The
service call metadata could include metadata requesting an error response on
one message, and the next service call may not include this metadata element.

A Boundary Service can have a default service level if a specific service level is
not selected. A default service level may be set for a logging Boundary Service if
the service call metadata does not request any other option. This ensures a
minimum level of service that may be required by the governance organization of
the ESB receiving the request.

6.6.3 Composite
As with the Governance patterns and Topology patterns it is possible to use more
than one ESB Adapter Connector pattern. It is doubtful that any instance of
integrated ESBs will be implemented using only the Adapter Connector or the
Boundary Services Adapter Connectors pattern. The reasons to use both ESB
Adapter patterns can be financial and technical, and it will be necessary to make
trade-offs between implementing Boundary Services and Adapter Connector
patterns.

The first reason is the “art of the possible” using the technology available today.
The authors of this book are not aware of a working service-based ACID1
transaction model for ESBs. Developing such a model may be possible but it is
likely to be expensive. The WS-AtomicTransaction specification2 is under
development to address this level of integration. When this standard is in early
adopter or mainstream use, then coordination of a transaction between two
ESBs will be much simpler than it would be today. At that time it may be
economical to expose transaction services as a Boundary Service. Meanwhile a
Adapter Connector may be the only solution available to coordinate transactions.

In contrast, development of Boundary Services for logging has wide tool and
framework support. The WebSphere Application Server Common Event
Infrastructure3 provides a foundation for an event-driven logging Boundary
Service. There are also open source solutions for logging4 frameworks that could
be used as a foundation for building Boundary Services.

1 atomicity, consistency, isolation, and durability
2 http://www.ibm.com/developerworks/library/specification/ws-tx/
3 http://www.ibm.com/developerworks/websphere/library/techarticles/0504_brodie/0504_brod
ie.html
4 http://www.ibm.com/developerworks/websphere/library/techarticles/0207_barcia/barcia.html
112 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/websphere/library/techarticles/0504_brodie/0504_brodie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0504_brodie/0504_brodie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0207_barcia/barcia.html

Using these examples, it would not be hard to imagine integrating two ESBs
using a Adapter Connector for the transaction coordination and Boundary
Services for logging. The transaction Adapter Connector could be converted to a
Boundary Service at a later date if there is adequate return on investment.

Postponing the use of the Boundary Services pattern until every aspect of ESB
integration can be accommodated is unnecessary and probably unwise. There is
business and IT benefit to implementing even one Boundary Service.

6.6.4 Comparing Adapter Connectors and Boundary Services
Table 6-7 lists the major differences between the two ESB Adapter Connector
patterns.

Table 6-7 ESB Adapter Connector patterns selection decision table

Driver Adapter Connector Boundary Services

Service binding Design time Run time

Shared services Few Many

Collaborations Static Dynamic

Initial deployment effort Less More

Modification effort More Less
 Chapter 6. Integrating ESBs 113

114 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Part 2 Business
scenario and
guidelines

This part contains the following chapters:

� Chapter 7, “The business scenario used in this book” on page 117

� Chapter 8, “Technology options” on page 125

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 115

116 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 7. The business scenario used
in this book

The chapters in Part 3, “Scenario implementation” on page 147, use a common
business scenario for all of the scenario implementations. This business scenario
describes a supply chain management application where the supply chain
applications are split between two organizations. The business scenario is based
on the WS-I sample business scenario.

This chapter contains the following sections:

� A description of the WS-I sample business scenario

� The business context of the sample business scenario used in this book

� A definition of each application in the sample business scenario

� An example of using the sample business scenario

7

© Copyright IBM Corp. 2005. All rights reserved. 117

7.1 WS-I sample business scenario
The Web Services Interoperability Organization (WS-I) has developed a supply
chain management business scenario that demonstrates the features, and tests
for compliance of, the WS-I Basic Profile V1.0. The following documents describe
the WS-I sample business scenario and the technical solution overview:

� WS-I Supply Chain Management Use Cases V1.0
� WS-I Usage Scenarios V1.0
� WS-I Supply Chain Management Technical Architecture V1.0

For full details, see the Web Services Interoperability Organization Web site:

http://www.ws-i.org

This WS-I sample business scenario is a simplified supply chain for a consumer
electronics retailer. The scenario consists of a number of Web service interfaces
(WSDL files) and a Web-based GUI. Each Web services engine provider wishing
to demonstrate the WS-I sample business scenario must provide an
implementation for the Web services interfaces.

IBM provides an implementation of the WS-I sample business scenario using
Web services implementations written in J2EE that run in WebSphere
Application Server. Other Web service engine providers have created other
implementations, using other programming languages and application servers.

In this book we use a modified version of the IBM implementation of the WS-I
sample business scenario to demonstrate extended enterprise capabilities using
SOA and Web services.

7.2 Sample business scenario used in this book
We use two fictional organizations to demonstrate design, development, and
runtime considerations for integrating ESBs. The business scenario used is a
modified version of the IBM implementation of the WS-I sample business
scenario. This section describes the high-level business context of the sample
business scenario, describes how the supply chain works, and shows screen
shots from a runthrough of the sample application implementation.

7.2.1 Business context
Organization A provides a Web site on which users place orders for electronic
goods such as televisions, DVD players, and video cameras. The supply chain
management application handles the order of these goods through a Retailer,
the delivery of these goods through a Warehouse, and the restocking of the
118 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ws-i.org

Warehouse through a number of Manufacturers. The Manufacturer applications
belong to Organization B. The users of the Web site are all internal Organization
A employees.

Figure 7-1 shows the application that makes up the supply chain management
scenario.

Figure 7-1 High-level business context

7.2.2 Applications in the supply chain management
The supply chain management scenario works as follows:

� The SCMSampleUI application provides the Web front end for users to
access the supply chain management process.

� The Retailer application can be used to retrieve a list of products sold by the
Retailer, and to place orders.

� The Warehouse application ships product orders if the Warehouse has
sufficient stock.

� The Manufacturer applications (of which there are three) replenish the
Warehouse of products if the Warehouse stock levels fall below a certain
threshold. Each Manufacturer produces different products and belongs to a
separate organization from the other applications.

� The Logging Facility application records the status of orders as they pass
through the supply chain management scenario. This can be used to track the
progress of a given order.

Intranet

Manufacturer
Manufacturer

Manufacturer

Logging
Facility

WarehouseRetail
System

SCM
Application

Organization A

Organization B
 Chapter 7. The business scenario used in this book 119

7.2.3 Example of using the sample application
This section shows an implementation of the sample application running in
WebSphere Application Server. It shows the Web-based GUI and how the supply
chain management process works.

1. Figure 7-2 shows the first window presented to the user. Click Place New
Order.

Figure 7-2 SCM Sample application
120 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

2. This retrieves a list of all products that the Retailer application sells, which are
displayed in the Shopping Cart window (Figure 7-3).

Figure 7-3 SCM Sample product listing

You can order multiple quantities of each product. If the Warehouse has
sufficient stock for the product, an order will be placed.

If the placement of the order causes the Warehouse’s stock level of that
product to drop below a certain threshold, then an reorder request is sent to
the appropriate external Manufacturer of the product.
 Chapter 7. The business scenario used in this book 121

3. The Order Status window, as shown in Figure 7-4, shows which orders were
placed and which orders were not placed due to insufficient stock. To track the
progress of orders, click Track Order.

Figure 7-4 SCM Sample order status page
122 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

4. This retrieves information stored in the Logging Facility application. Figure 7-5
shows the results of an order in which products 605001 and 605002 were
shipped and a reorder for 19 units of product 605002 was placed with
Manufacturer B.

Figure 7-5 SCM Sample track order page

The sample application does not retain state. Therefore all Warehouse stock
levels return to their default values the next time an order is placed.
 Chapter 7. The business scenario used in this book 123

124 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 8. Technology options

This chapter describes technologies that are relevant to integrating Enterprise
Service Bus (ESB) infrastructures.This chapter discusses:

� Web services

� Messaging

� J2EE

� Service Data Objects

8

© Copyright IBM Corp. 2005. All rights reserved. 125

8.1 Web services
Web services is a recent re-invention of concepts that have been around for
some time. They introduce many new advantages and capabilities. In a sense,
none of the function that Web services provide is new; CORBA has provided
much of this function for many years. However, Web services builds on existing
open Web technologies, such as XML, URL, and HTTP. Web services are
defined in several different standards, such as SOAP and WSDL, which build on
general Web and other Web services standards. These standards are defined by
the World Wide Web Consortium (W3C), the Organization for the Advancement
of Structured Information Standards (OASIS), and Web Services Interoperability
Organization (WS-I).

Basic Web services support provides for three simple usage models. These are:

� One-way usage scenario

A Web services message is sent from a consumer to a provider, and no
response message is expected.

� Synchronous request/response usage scenario

A Web services message is sent from a consumer to a provider, and a
response message is expected.

� Basic callback usage scenario

A Web service message is sent from a consumer to a provider using the
two-way invocation model, but the response is treated simply as an
acknowledgement that the request has been received. The provider then
responds by making use of a Web service callback to the consumer.

Other Web service standards are built on these basic standards and invocation
models to provide higher-level functions and qualities of service. Examples of
these standards are WS-Transaction, WS-Security and
WS-ResourceFramework.

Key features of Web services are:

� Based on open standards
� Location and platform independence
� Self described
� Loosely coupled

One of the main aims of Web services is to provide a loose coupling between
service consumers and service providers. While this is limited to a certain extent
by a requirement for the consumers and providers to agree on a WSDL interface
definition, Web services have been created with significant flexibility with regard
126 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

to the location of these Web services. Figure 8-1 shows how the Web services
interaction model has been designed with this form of loose coupling.

Figure 8-1 Basic Web service interaction model

The interactions work as follows:

1. The service provider publishes some WSDL defining its interface and location
to a service registry.

2. The service consumer contacts the service registry in order to obtain a
reference to a service provider.

3. The service consumer, having obtained the location of the service provider,
makes calls on the service provider.

Note: Although this model is regularly discussed, the service registry is often
removed from the cycle in real implementations in the interests of simplicity
and lack of trust of the services in the service registry. This has the drawback
that if the service provider is relocated, the service consumer must be
changed to refer to the new location of the service provider.

Service
Consumer

Service
Registry

Service
Provider

Find Publish

Use

12

3

Exposes business functions as
Web services
Publishes functions to registry
Listens to and accepts requests

Requires business functions
Searches registry for matching
functions
Binds and make requests

Maintains repository of
business functions
Accessed via UDDI

Business functions
described in WSDL
using UDDI

Business functions
described in WSDL
using UDDI

Business functions
using SOAP

UDDI: Service Registry
WSDL: Service Description
SOAP: Service Invocation
 Chapter 8. Technology options 127

8.1.1 SOAP
SOAP is an XML-based format for constructing messages in a transport
independent way and a standard on how the message should be handled. SOAP
messages consist of an envelope containing a header and a body. This format
also defines a mechanism for indicating and communicating problems that
occurred while processing the message. These are known as SOAP faults.

The headers section of a SOAP message is extensible and can contain many
different headers defined by different schemas. The extra headers can be used
to modify the behavior of the middleware infrastructure. For example, the
headers can include information about transactions that can be used to ensure
that actions performed by the service consumer and service provider are
coordinated.

The body section contains the content of the SOAP message. When used by
Web services, the SOAP body contains XML-formatted data. This data is
specified in the WSDL describing the Web service.

It is common to talk about SOAP in combination with the transport protocol used
to communicate the SOAP message. For example, SOAP being transported
using HTTP is referred to as SOAP over HTTP or SOAP/HTTP.

The most common transport used to communicate SOAP messages is HTTP.
This is to be expected because Web services are designed to make use of Web
technologies. However, SOAP can also be communicated using JMS as a
transport. When using JMS, the address of the Web service is expressed in
terms of a JMS connection factory and a JMS destination. Although using JMS
provides a more reliable transport mechanism, it is not an open standard,
requires extra and potential expensive investment, and does not interoperate as
easily as SOAP over HTTP.

SOAP Version 1.1 and 1.2 specifications are available from W3C.

8.1.2 Web Services Description Language (WSDL)
WSDL is an XML-based interface definition language that separates function
from implementation and enables design by contract as recommended by SOA.
WSDL descriptions contain a port type (the functional and data description of the
operations that are available in a Web service), a binding (providing instructions
for interacting with the Web service through specific protocols, such as SOAP
over HTTP), and a port (providing a specific address through which a Web
service can be invoked using a specific protocol binding).

It is common for these three aspects to be defined in three separate WSDL files,
each importing the others.
128 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The value of WSDL is that it enables development tooling and middleware for any
platform and language to understand service operations and invocation
mechanisms. For example, given the WSDL interface to a service that is
implemented in Java, running in a WebSphere environment, and offering
invocation through HTTP, a developer working in the Microsoft .NET platform can
import the WSDL and easily generate application code to invoke the service.

As with SOAP, the WSDL specification is extensible and provides for additional
aspects of service interactions to be specified, such as security and
transactionality.

8.1.3 Universal Description, Discovery, Integration (UDDI)
UDDI servers act as a directory of available services and service providers.
SOAP can be used to query UDDI to find the locations of WSDL definitions of
services, or the search can be performed through a user interface at design or
development time. The original UDDI classification was based on a U.S.
government taxonomy of businesses, and recent versions of the UDDI
specification have added support for custom taxonomies.

A public UDDI directory is provided by IBM, Microsoft, and SAP, each of whom
runs a mirror of the same directory of public services. However, there are many
patterns of use that involve private registries. For more information, see the
following articles:

� “The role of private UDDI nodes in Web services, Part 1: Six species of UDDI”

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� “The role of private UDDI nodes, Part 2: Private nodes and operator nodes”

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

8.1.4 Web services interoperability
To facilitate the development of truly interoperable Web services, the Web
Services Interoperability Organization (often referred to as the WS-I) was formed
in February 2002. The WS-I aims to promote interoperability of Web services
implementations by publishing profiles, which are descriptions of conventions
and practices for the use of specific combinations of Web services standards
through which systems can interact. Technology vendors can then produce
compliant implementations and publicize that compliance, offering some level of
assurance to technology customers as to the level of Web services
interoperability that can be achieved with different implementations.

The WS-I published the first profile for interaction, the Basic Profile V1.0, in July
2003, and many technology vendors provide product implementations of Web
 Chapter 8. Technology options 129

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

services that are compliant with this profile. This is described further in the next
section.

In August 2004 the WS-I published the Basic Profile V1.1, splitting the original
profile in two: the Basic Profile V1.1 and the Simple SOAP Binding Profile V1.0.
The idea is that the combination is equivalent to Basic Profile V1.0. This has
been done to aid in the incorporation of different binding mechanisms, such as
SOAP with Attachments. This enables an implementation to make the claim that
it is compliant with Basic Profile V1.1 and Attachments Profile V1.0 without
needing to implement the Simple SOAP Binding Profile V1.0.

The Web Services Interoperability Organization Web site contains links to
published, draft, and planned interoperability profiles and information about
vendor compliance:

http://www.ws-i.org/

8.1.5 WS-I Basic Profile V1.0
The WS-I Basic Profile V1.0 specifies a set of usage scenarios and Web services
standards that can be used to integrate systems. It focuses on the core
foundation technologies upon which Web services are based. Basic Profile V1.0
was approved unanimously on July 22, 2003, by the WS-I board of directors and
members.

The WS-I Basic Profile V1.0 - Profile Specification consists of the following
non-proprietary Web services related specifications:

� SOAP V1.1
� WSDL V1.1
� UDDI V2.0
� XML V1.0 (Second Edition)
� XML Schema Part 1: Structures
� XML Schema Part 2: Datatypes
� RFC2246: The Transport Layer Security Protocol Version V1.0
� RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile
� RFC2616: HyperText Transfer Protocol V1.1
� RFC2818: HTTP over TLS
� RFC2965: HTTP State Management Mechanism
� The Secure Sockets Layer Protocol Version V3.0

The WS-I Supply Chain Management sample application depicts an application
for a fictitious consumer electronics retailer. This sample application is the basis
of the scenarios in this book as described in Chapter 7, “The business scenario
used in this book” on page 117.
130 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ws-i.org/

See also the following IBM developerWorks® articles:

� First look at the WS-I Basic Profile 1.0

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html

� First look at the WS-I Usage Scenarios

http://www.ibm.com/developerworks/webservices/library/ws-iuse/

� Preview of WS-I sample application

http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

8.1.6 WS-I Basic Profile V1.1
WS-I Basic Profile V1.1 removes the SOAP binding requirements and moves
them to the Simple SOAP Binding Profile V1.0. This means that being WS-I
Basic Profile V1.1 compliant by itself is not very interesting. Only when a binding
is applied can the Web services interact. Two bindings have been created:

� The Simple SOAP Binding Profile V1.0, which together with the WS-I Basic
Profile V1.1 allows equivalent function to the Basic Profile V1.0

� The Attachments Profile V1.0, which allows SOAP with attachments as a
binding option

8.1.7 Advanced and future Web services standards
There are many successful implementations of the basic Web services
standards, particularly SOAP and WSDL, but many aspects of service interaction
and integration are not directly supported by those basic standards, such as
security, transactionality, delivery assurance, and process modeling.

The Web services standards are evolving and maturing to address these aspects
of interaction and integration, increasing their value to SOA. In this section we
cover some of the recent and emerging Web services standards that support
more sophisticated aspects of service interactions and SOA.

Production-level product support for some of these standards is not yet available,
but early implementations exist. The IBM Emerging Technologies Toolkit (ETTK),
for example, provides an implementation of WS-ReliableMessaging. The toolkit
can be downloaded from:

http://www.alphaworks.ibm.com/tech/ettk

8.1.8 Web services security
In theory, Web services can leverage any security model that is appropriate to
the underlying communication technologies. (SOAP/HTTP can utilize basic
 Chapter 8. Technology options 131

http://www.alphaworks.ibm.com/tech/ettk
http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
http://www.ibm.com/developerworks/webservices/library/ws-iuse/
http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

HTTP authentication or SSL authentication and encryption.) However, such
simple point-to-point models are insufficient for the widespread integration needs
of SOA. For example:

� Communication security does not recognize the difference between SOAP
message headers and the SOAP message body.

� Credentials may be technology-specific to the communication mechanism,
but inappropriate to communication mechanisms that are used farther down
the interaction chain.

� Combining many interactions in a secure overall chain involves trust models
between the participants in the chain. Such models are often customized or
proprietary, and are not consistent with flexibly changing the participants in
the chain as they imply a technology barrier to participation.

In 2002, IBM and Microsoft proposed an architecture and road map for Web
services security (WS-Security). This set out a framework consisting of several
Web services specifications, including WS-Security, WS-Trust, WS-Privacy, and
WS-Policy. It also accommodated existing security technologies such as
Kerberos, XML Digital Signatures, and XML Encryption.

Support for the basic WS-Security standards is available in existing products and
can be used to implement secure Web services solutions. Understanding the
security requirements of specific SOA situations and selecting appropriate
technologies, including those compliant with the WS-Security standards, is a key
decision in SOA implementation.

Further information
� “Security in a Web Services World: A Proposed Architecture and Roadmap”

http://www.ibm.com/developerworks/library/ws-secmap/

� “Web Services Security: Moving up the stack”

http://www.ibm.com/developerworks/webservices/library/ws-secroad/

8.1.9 WS-ReliableMessaging and SOAP/JMS
The HTTP protocol is used widely in SOAP interactions and specified in the WS-I
Basic Profile, but offers relatively poor reliability in contrast to communication
protocols that are often associated with valuable business transactions, such as
WebSphere MQ. Many SOA scenarios involve interactions that require a level of
delivery assurance beyond that provided by HTTP.

The WS-ReliableMessaging specification defines a protocol for reliable
communication (including SOAP messages) that use a variety of communication
132 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/developerworks/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secroad/

technologies, which may themselves be less reliable. An updated specification
was published in March 2004.

Until WS-ReliableMessaging is widely available, alternative approaches are
possible using implementations of SOAP over more reliable communication
infrastructures. For example, SOAP messaging is supported through the JMS
API to WebSphere MQ by WebSphere MQ, WebSphere Application Server, and
WebSphere Business Integration Server Foundation. However, such approaches
tend to be implementations by specific technology vendors so, although they are
useful in particular SOA implementations, they do not have all of the potential
benefits of a fully open-standard implementation.

Further information
� Updated: “Web Services Reliable Messaging”

http://www.ibm.com/developerworks/webservices/library/ws-rm/

� “Implementation strategies for WS-ReliableMessaging”

http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

Business Process Execution Language for Web Services
The encapsulation and exposure of business functions as services in an SOA
enables the definition of processes consisting of those services. The Business
Process Execution Language for Web Services (WS-BPEL) provides a standard,
XML language for expressing business processes consisting of functions that are
defined through WSDL interfaces. WS-BPEL supports both short-lived
processes and long-lived processes (processes that must wait at certain points
until some event occurs, such as the receipt of an event).

As with WSDL, WS-BPEL has both design time and runtime uses. At design
time, development or modeling tools can use, import, or export WS-BPEL to
enable business analysts to specify processes and developers to refine them and
bind process steps to specific service implementations. The runtime
choreography and workflow engines can use WS-BPEL to control the execution
of processes and invoke the services that are required to implement them.

Although WS-BPEL is a relatively new standard, product support such as
WebSphere Business Integration Server Foundation V5.1 is available. This
provides additional facilities to compensate failed processes (a proprietary
equivalent to the WS-BusinessActivity standard described in the next section,
“Web services transactions”) and provide a user workflow interface to enable
human actions to fulfill WSDL-defined steps in a WS-BPEL process.
 Chapter 8. Technology options 133

http://www.ibm.com/developerworks/webservices/library/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

Further information
� WS-BPEL specification

http://www.ibm.com/developerworks/library/ws-bpel/

� Business Process with WS-BPEL, a series of introductory articles and
references

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

� WS-BPEL support in WebSphere Business Integration Server Foundation

http://www.ibm.com/software/integration/wbisf/features/

� WS-BPEL support in WebSphere Studio Application Developer Integration
Edition

http://www.ibm.com/software/integration/wsadie/features/

Web services transactions
Although WS-ReliableMessaging provides a means to assure the delivery of
individual communications in a Web services interaction, you also must be able
to control the integrity of business transactions in an SOA that consists of one or
more Web services invocations or interactions.

Within the framework of the Web services coordination (WS-Coordination)
specification, both synchronous (WS-AtomicTransaction) and long-lived
(WS-BusinessActivity) transaction models have been defined. These replace the
previous WS-Transaction specification.

The WS-AtomicTransaction specifies a model for synchronous, two-phase
committal of distributed transactions using Web services protocols.
WS-BusinessActivity defines an asynchronous model for compensating failed
processes using undo actions to reverse the effects of individual steps of the
process. Neither specification has mature product support to date.

Further information
� Web Services Transactions specifications

http://www.ibm.com/developerworks/library/specification/ws-tx/

� “Transactions in the world of Web services,” part 1 and part 2

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

Web Services Policy Framework (WS-Policy)
The Web Services Policy Framework is intended to provide a set of languages by
which service consumers and providers can express their requirements and
capabilities concerning qualities of service of service interactions, such as
134 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.ibm.com/software/integration/wbisf/features/
http://www.ibm.com/software/integration/wsadie/features/
http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

security, transactionality, and communication reliability. Eventually a framework of
such languages, supported by Enterprise Service Bus middleware, will enable
open-standard implementations of negotiated coupling between various aspects
of service interactions.

A WS-Policy specification is available, although specific policy languages for
quality of service aspects such as security are still required, and product support
has yet to emerge.

Further information
� “Web Services Policy Framework”

http://www.ibm.com/developerworks/library/specification/ws-polfram/

� “Web Services Policy Framework: New specifications improve the
WS-Security model”

http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.ht
ml

8.2 Messaging
Messaging is a form of communication between two or more software
applications or components. Messaging is commonly used for application
integration where the application does not need an immediate answer to
proceed.

In messaging, the requester sends a message to a destination. At some point the
provider receives the message and does some processing. It does not require
the two applications to be available at the same time. The power of messaging
lies in this disconnect. Messaging is often referred to as loosely coupled, but to
get the full advantage of this, advanced broker functionality is required. Without
this broker functionality, the requester and provider must agree on a format and
location for the messages. The addition of broker functionality allows for routing
of messages between destinations and for code to be inserted into the
messaging middleware in order to transform message formats.

Infrastructure enabling interaction by exchanging messages is called
message-oriented middleware.

8.2.1 JMS
The Java Message Service (JMS) is a cross-platform Java API for accessing
message-oriented middleware. The JMS specification defines a set of message
types and APIs for sending and receiving the messages to and from destinations.
 Chapter 8. Technology options 135

http://www.ibm.com/developerworks/library/specification/ws-polfram/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html

In JMS, messages have three distinct sections:

� Header

The JMS header contains information about where the message was sent
and where responses should be sent. These properties are typically for use
by the JMS provider.

� Properties

JMS properties are application-level properties. JMS properties can be
strings, numbers, or booleans and are named. The JMS properties are
intended as an extensible form of application-level header.

� Body

The body of the message contains the data being transported. It is intended
for the payload of the message.

JMS defines two different interaction styles for messaging:

� Point-to-point

A single message sent to a destination is received by a single client.

� Publish subscribe

A single message sent or published to a destination is received by all clients.

Messages may be persisted at the destinations. The intent is that persistent
messages are guaranteed to be delivered and not duplicated. Messages also may
be sent as a part of an externally coordinated two-phase commit transaction.

The J2EE V1.3 specification integrates support for JMS V1.0.2b and requires
that J2EE V1.3 compliant application servers include an integral JMS provider. It
also introduces the concept of message-driven beans (MDBs), which enables a
message to be delivered to an EJB, allowing the asynchronous invocation of
business logic.

With J2EE V1.4, the JMS specification is upgraded to the V1.1 level, which
includes support for domain-neutral messaging. In JMS 1.0.2b, the application
writer has to decide which of the two messaging models—point-to-point or
publish subscribe—the program should use. In JMS V1.1, the programming
model is the same for both interaction models. The type of destination that is
used determines which model that maps to. Destinations in JMS are considered
administrative objects that get bound into a JNDI namespace and looked up later.
J2EE V1.4 also makes the concept of an MDB more generic, providing a
framework for anyone wishing to trigger work asynchronously into an enterprise
application.
136 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Advantages of JMS
Some of the advantages of using JMS are:

� It is the first enterprise messaging API that has achieved wide cross-industry
support.

� It simplifies the development of enterprise applications by providing standard
messaging concepts and conventions that apply across a wide range of
enterprise messaging systems.

� It leverages existing, enterprise-proven messaging systems.

� It enables you to extend existing message-based applications by adding new
JMS clients that are integrated fully with their existing non-JMS clients.

� Developers have to learn only one common interface for accessing diverse
messaging systems.

Disadvantages of JMS
Some disadvantages of JMS are:

� It is not a protocol, so all of your JMS applications have to access the same
JMS provider.

� JMS resources require an extra level of administration.

8.2.2 WebSphere MQ messaging
WebSphere MQ messaging is an implementation of message-oriented
middleware. The WebSphere MQ programming model enables communication of
applications or components across a network. The WebSphere MQ
programming model offers an API for widely used programming languages on
major platforms. Applications designed and written to use the Websphere MQ
API are known as message queuing applications. WebSphere MQ also supports
a JMS interface.

Message queuing has been used for many years in e-mail communication. In
WebSphere MQ it works similarly: A message producer sends messages to a
persistent queue, and messages are taken out by message consumer. This style
of communication does not require an immediate reaction from the message
consumer.

This section describes some basic WebSphere MQ messaging terms.
 Chapter 8. Technology options 137

Message
A message is collection of data sent by one message producer to be received by
message consumer. WebSphere MQ defines four types of messages:

� Datagram

A simple message. Reply is not expected.

� Request

A message for which a reply is expected.

� Reply

A message that represents a reply to a request message.

� Report

A message that describes an event such as a system message or error.

WebSphere MQ messages consist of application data and control information.
Message descriptors represents the structure for control information and contain
information such as the type of message, message priority, and the message ID.

Message queue
A message queue is a destination that holds messages. Message producers put
messages on message queues, and message consumers get messages from
message queues. A message queue can be a volatile in-memory buffer or a
persistent buffer on underlaying storage (such as a disk). Message queues are
managed by a queue manager.

Queue manager
A queue manager is a system program that provides services for administering
and connecting to queues. It provides an API so that applications can put
messages in and read messages from a queue, and provides administration
services so that applications can create and remove queues, and change queue
properties.

Advantages of WebSphere MQ messaging
Some of the advantages of using WebSphere MQ are:

� Support for major programming languages
� JMS support
� Highly available and reliable messaging
� Tight integration with WebSphere Application Server
138 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Further information
More information about WebSphere MQ can be found in this IBM publication:
WebSphere MQ Application Programming Guide, SC34-6064-03.

8.2.3 Service integration bus
The service integration bus, which is part of WebSphere Application Server V6,
provides advanced support for application integration. It combines support for
applications connecting via native JMS, WebSphere MQ JMS, WebSphere MQ,
and Web services. It supports the message-oriented middleware and
request-response interaction models. As a part of this, the service integration
bus supports multiple message distribution models, reliability options, and
transactional messaging.

Concepts and architecture
The service integration bus technology introduces a number of new concepts,
which we discuss in this section.

Bus
A service integration bus, or bus, provides a conceptual connection point and a
namespace for destinations and services. The application integration capabilities
of the service integration bus are provided by a number of connected messaging
engines.

Messaging engine
A messaging engine provides the messaging capabilities of the service
integration bus. Messaging engines provide two functions:

� Message management

A messaging engine manages messages by routing them to the appropriate
endpoint (via additional messaging engines if required). These messages can
be persisted to a database and managed within a transactional scope.

� Connection management

While the conceptual entity clients connect to the bus, the physical connection
is to a messaging engine. Clients can connect to and send messages to any
messaging engine in the bus. If the destination is assigned to a different
messaging engine, the messaging engine will route it to the correct
messaging engine.

A messaging engine is assigned to a bus member.
 Chapter 8. Technology options 139

Bus member
A bus member is an application server, or cluster, that is a member of a bus and
therefore is hosting a messaging engine.

Destination
A destination is an addressing point within a bus. A destination is assigned to one
bus member and therefore one or more messaging engines. Clients send
messages to a destination, and the bus ensures that it is routed to the correct
localization on the bus. The service integration bus supports six destination types:

� Web service destinations

Web service destinations are a representation of an outbound Web service in
the bus. They are used as a placeholder for a port selection mediation.

� Port destinations

Port destinations are a representation of an outbound Web service port.
Sending a Web service request to a port destination results in the target Web
service being invoked.

� Queue destinations

Queue destinations are destinations that are configured for point-to-point
messaging.

� Topic space destinations

Topic space destinations are destinations that are configured for
publish/subscribe messaging.

� Alias destinations

Alias destinations are destinations that are configured to refer to another
destination. They provide an extra level of indirection for messaging
applications. An alias destination can also be used to override some of the
values specified on the target destination, such as default reliability and
maximum reliability. An alias destination can also refer to a destination on a
foreign bus.

� Foreign destinations

Foreign destinations are not actual destinations within a service integration
bus, but they can be used to override the default reliability and maximum
reliability properties of a destination that exists on a foreign bus.

Destinations can be mediated to provide advanced message formatting and
routing function.
140 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Inbound service
An inbound service is defined to enable Web service clients to connect to the bus.
An inbound service converts an incoming Web service request into a message
and places it on a destination, where it can then be routed, transformed, and
processed. Inbound services can be invoked using SOAP over JMS or SOAP over
HTTP by associating the service with the relevant endpoint listener.

Outbound service
An outbound service enables a Web service request in the bus to exit and invoke
a Web service. The Web service can be invoked by SOAP over JMS or SOAP
over HTTP. Creating an outbound service causes Web service and port type
destinations to be created. Sending a Web service message to the Web service
destination causes the Web service to be invoked. By routing a request from an
inbound service to an outbound service, the service integration bus can be
inserted in the Web service flow, providing some Enterprise Service Bus
capabilities.

Endpoint listener
An endpoint listener listens for incoming Web service requests via HTTP or JMS
and passes them onto the relevant inbound service. An endpoint listener can be
thought of as a localization point for an inbound service.

Message point
When a destination is assigned to a bus member, a message point is created.
The messages are stored on the message point.

Three types of message point can be contained with a messaging engine:

� Queue points

A queue point is the message point for a queue destination.

� Publication points

A publication point is the message point for a topic space. Creating a topic
space destination automatically defines a publication point for each
messaging engine within the bus.

� Mediation points

A mediated destination also has mediation points. A mediation point is where
messages are stored while they wait to be mediated.

Mediation
A mediation processes in-flight messages between the production of a message
by one application and the consumption of a message by another application.
 Chapter 8. Technology options 141

Mediations enable the messaging behavior of a bus to be customized. Examples
of processing that can be performed by a mediation are:

� Transforming a message from one format into another.

� Dynamically routing messages to one or more target destinations that were
not specified by the sending application.

� Augmenting messages by adding data from a data source.

� Disaggregation of a request into several requests and then aggregation of the
responses.

A mediation is defined within a bus. This mediation can then be associated with a
destination on the bus. A destination with which the mediation is associated is
referred to as a mediated destination.

Foreign bus
A bus can be configured to connect to, and exchange messages with, other
messaging networks. A foreign bus is how the service integration bus refers to
one of these networks.

A foreign bus encapsulates information related to the remote messaging
network, such as the type of foreign bus and whether messaging applications are
allowed to send messages to the foreign bus.

When buses are interconnected, applications can send messages to destinations
that are defined on other buses.

Foreign bus link
When a foreign bus is configured on a bus, it simply names a foreign bus but
does not define a link between the two. In order for the two buses to be able to
communicate with each other at runtime, links must be configured between a
specific messaging engine within the local bus and a specific messaging engine,
or queue manager, within the foreign bus. When configuring a direct service
integration bus link, these links must be configured in both directions in order for
the two buses to be able to communicate. At runtime, messages that are routed
to a foreign bus will flow across the corresponding link.

Exception destinations
If a message cannot be delivered to the target destination, or client, the message
will be placed on an exception destination. This ensures that messages are not
lost in the event of delivery failure, and enables applications to continue in the
event of a corrupt, or poisoned, message.
142 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Further information
More information about the service integration bus can be found in the redbook
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451.

8.3 J2EE Connector Architecture
The J2EE Connector Architecture is aimed at providing a standard way to access
enterprise applications from a J2EE-based Java application. It defines a set of
Java interfaces through which application developers can access Enterprise
Information Systems (EIS), such as CICS and Enterprise Resource Planning
(ERP) applications.

J2EE Connector Architecture V1.5 support is a requirement of the J2EE V1.4
specification. Resource adapters allow J2EE applications to connect to a
particular EIS. The J2EE Connector Architecture specification defines two
different types of resource adapters:

� Outbound adapters

Outbound adapters are used by application-initiated requests to an EIS.

� Inbound adapters

Inbound adapters are used by the EIS making calls to a message-driven bean.

The J2EE Connector Architecture provides a Common Client Interface API (CCI)
with both common and resource adapter specific interfaces. Application
programmers code to this single API rather than needing to use different
interfaces for each proprietary system. However, it is common for a resource
adapter to make use of its own or an existing API, such as JDBC or JMS.

The J2EE Connector Architecture specification provides support for transactions,
security, and sharing of connections between different clients.

Advantages of the J2EE Connector Architecture
Some of the advantages of using the J2EE Connector Architecture are:

� Standard for integration legacy systems into a J2EE environment
� Leverage J2EE transactions, security, and resource model
� Leverage the J2EE connection pooling model
� Connectors are reusable J2EE components acting as resources

Disadvantages of the J2EE Connector Architecture
Among the disadvantages of using the J2EE Connector Architecture: Connectors
are not available for all legacy systems.
 Chapter 8. Technology options 143

8.4 Service Data Objects
The main aim of Service Data Objects (SDO) is to simplify and unify access, by
using a Java API, to heterogeneous data sources including relational databases,
XML data sources, Web services, and enterprise information systems. SDO is a
generic data model that is self described and has a built-in validation and
integrity-checking mechanism.

The Java specification request for SDO is JSR-235, which can be found here:

http://www.jcp.org/en/jsr/detail?id=235

SDO is designed to support:

� Relationship integrity
� Metadata
� Navigation through graphs of data
� Validation
� Static and dynamic APIs
� History tracking

SDO is not intended to replace other data access technologies, but rather to
provide an alternate choice. It has the advantage of simplifying the application
programming tasks required to access data stores.

The SDO data model consist of Data Objects and Data Graphs. Metadata is
stored in Data Objects as named properties. Values can be primitive types or
references to another Data Object. A Data Graph is an envelope for Data
Objects, and it represents a normal unit of transport between components.

8.4.1 SDO architecture
Data Objects are the core of the SDO data model. A set of connected Data
Objects forms Data Graphs, which keep track of the schema that describes Data
Objects and maintains changes made on each node (Data Object) in the graph.
Access to the Data Graph object is mediated by a Data Mediator Service, as
shown in Figure 8-2 on page 145.
144 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.jcp.org/en/jsr/detail?id=235

Figure 8-2 Components of the SDO solution

Note: For more information about the SDO technology, refer to the IBM and
BEA white paper Next-Generation Data Programming: Service Data Objects,
November 2003, which you can download from:

http://ftpna2.bea.com/pub/downloads/commonj/Next-Gen-Data-Programming-Whitep
aper.pdf
 Chapter 8. Technology options 145

http://ftpna2.bea.com/pub/downloads/commonj/Next-Gen-Data-Programming-Whitepaper.pdf

146 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Part 3 Scenario
implementation

This part describes the following two scenarios from the viewpoint of design
guidelines, development guidelines, and runtime guidelines:

� Chapter 9, “Directly Connected homogeneous ESBs” on page 149

This chapter describes the integration between two ESBs when both are
implemented in WebSphere Application Server V6.

� Chapter 10, “Directly Connected heterogeneous ESBs” on page 241

This chapter describes the integration between an ESB implemented in
WebSphere Application Server V6 and WebSphere Business Integration
Message Broker V5.

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 147

148 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 9. Directly Connected
homogeneous ESBs

In this chapter, the Enterprise Service Bus (ESB) integration patterns move from
concept to practical implementation by applying the Directly Connected ESB
Topology pattern between two homogeneous ESB implementations. Using the
WS-I sample business scenario, we demonstrate how the Directly Connected
ESB pattern can be used to integrate two separate ESBs, each implemented
using WebSphere Application Server V6.

In this chapter, the following points are discussed:

� Design guidelines and business needs addressed by the sample scenario,
and selection of the relevant ESB integration patterns

� Development guidelines to describe client binding retargeting options

� Runtime guidelines to create and integrate two ESBs, both implemented in
WebSphere Application Server

9

© Copyright IBM Corp. 2005. All rights reserved. 149

The IBM Enterprise Service Bus strategy:

In September 2005, IBM announced two products intended to be the primary
solution for building ESBs:

� WebSphere Enterprise Service Bus V6

Delivers an ESB with Web services connectivity and data transformation.

� WebSphere Message Broker V6

Delivers an advanced ESB with universal connectivity and data
transformation.

When this book was written, WebSphere Enterprise Service Bus was not
generally available. In lieu of this product, the service integration bus of
WebSphere Application Server V6 is used in this chapter to build ESB
solutions.

For more information about the IBM ESB strategy, see:

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb
150 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb

9.1 Design guidelines
This section discusses sample business needs for linking two ESBs that belong
to different organizations. It maps these business requirements to the sample
scenario and to the appropriate ESB integration patterns.

9.1.1 Business scenario
The business scenario implemented in this chapter represents a variation of the
WS-I sample business scenario as defined in Chapter 7, “The business scenario
used in this book” on page 117. It defines a supply chain management process
that is split across two organizations, as seen in Figure 9-1.

Figure 9-1 High-level business context showing the existing infrastructure

High-level business context
In this scenario, customers access an electronics retailer’s Web site, review a
catalog of available products, and place orders for items such as televisions, DVD
players, and video cameras. The retailer system requests fulfilment of a
consumer’s order from the internal company warehouse, which responds as to
whether line items from the order can be provided. If stock for any line item falls
below a minimum threshold in the warehouse, the company needs to send a
replenishment order to an external manufacturer.

The electronics retailer has shown steady growth for an extended period, and it is
decided that diversification into manufacturing would provide a suitable method
for successfully expanding the company further within their business model. After

Intranet

Manufacturer
Manufacturer

Manufacturer

Logging
Facility

WarehouseRetail
System

SCM
Application

Organization A

Organization B
 Chapter 9. Directly Connected homogeneous ESBs 151

a rigorous process of selection, and after due diligence has been performed, the
acquisition of a manufacturing conglomerate goes ahead. The business drivers
hoping to be achieved through the acquisition are as follows:

� Increased volumes of sales due to slicker integration between the IT
infrastructures of the two Enterprise Service Buses, including reuse of
existing code. There is no prospect of application code being rewritten.

� An expanded customer base for the manufacturer’s goods.

� Faster provision of items to the Warehouse when items go out of stock.

� Improved customer satisfaction.

The acquisition of the Manufacturing company means that the electronics retailer
organization now contains two separate enterprises, each of which has its own
existing Enterprise Service Bus architecture in order to facilitate communications
with their separate functional components.

Organizational overview
In this scenario we have two separate enterprises that have recently merged to
provide joint marketing, sales, and manufacturing capabilities. The two,
previously separate, enterprises have the following characteristics:

� Organization A

– Internet-based e-commerce systems (SCM application)

– Retail system

– Warehouse and delivery

� Organization B

– Manufacturing capability

Organization A has a number of commercial off-the shelf (COTS) packages, and
these applications have been linked using the ESB technology in WebSphere
Application Server V6.

Organization B has grown through acquisition and now provides the
manufacturing capability for three brands of electronic goods that are
manufactured by separate divisions. These divisional systems have been linked
together using a simple home-grown integration layer written in J2EE, again
using an ESB. In the scenario these divisional systems are known as
ManufacturerA, ManufacturerB, and ManufacturerC.
152 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Integration of organizations
Because of the new recent merger there is a requirement to link the two
organizations to enable:

� Increased revenue through the direct e-commerce sale of the manufactured
products.

� Faster fulfillment of out-of-stock items.

� Improved customer satisfaction by being able to meet customer demand.

� Reuse of existing application code, allowing for a fast integration between the
two infrastructures.

Both of the organizations are keen to follow industry standards for their
supporting IT infrastructure and have made a number of their application
modules available as Web services. They are both committed WebSphere
Application Server users, and the new, joint enterprise is keen to take advantage
of new capabilities available in WebSphere Application Server V6.

The major requirement from the business is to integrate the two organizations’
business processes quickly through a reasonably small set of static business
services. Longer term it is thought that gaining flexibility in their business
processes will become important but for now, getting the two organizations
working together has top priority.

Therefore, the business is asking the IT department to deliver simple routing of
requests initially between the two organizations, but using integration technology
that will enable more dynamic routing in the future. The IT department
recognizes this need, but is mindful of future development costs and wants to
ensure that their new infrastructure can also be changed very quickly. On their
wish list is a requirement for most service changes to be made through
configuration changes rather than a lengthy code change process.

Because of the requirement to integrate their infrastructure quickly, the two
separate IT organizations have decided to set up a joint implementation team to
get their business services integrated together. However, because of the time
that it will take to agree any new and invasive governance pattern, it has been
decided that the two existing organizations will be responsible for architectural
and operational control over the components within its domain.

Figure 9-2 on page 154 shows the two ESBs and their exposed services. The
business requirement for this scenario is to integrate these two ESBs.
 Chapter 9. Directly Connected homogeneous ESBs 153

Figure 9-2 The multiple ESBs and their exposed services

9.1.2 Selecting ESB integration patterns
We can apply the ESB integration patterns to the business scenario. The ESB
integration patterns are described in more detail in Chapter 6, “Integrating ESBs”
on page 87.

Selecting an ESB Topology pattern
The ESB Topology patterns describes network relationships between ESBs. To
help us select the appropriate ESB Topology pattern, we should select the
business and IT drivers that apply to our scenario, as described in 6.3.1, “ESB
Topology patterns overview” on page 90.

Our scenario requires the following business driver:

� Limited interaction between different enterprise governance zones

Our scenario requires the following IT drivers:

� Route requests between two ESBs

� Only basic interactions

Therefore, based on these requirements for a simple, routing-based connection
we select the Directly Connected ESBs runtime pattern. This pattern, shown in
Figure 9-3 on page 155, describes a simple point-to-point connection between
the two ESBs.

ESB

SCM UI

Retailer

Warehouse

Logging

ESB

ManufacturerA

ManufacturerB

ManufacturerC

ESBESB

SCM UI

Retailer

Warehouse

Logging

SCM UISCM UI

RetailerRetailer

WarehouseWarehouse

Logging

ESBESB

ManufacturerAManufacturerA

ManufacturerBManufacturerB

ManufacturerCManufacturerC
154 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-3 Directly Connected ESBs runtime pattern

This simple connection is easy to integrate, as the two ESBs are implemented in
homogeneous products. Therefore the Directly Connected ESBs pattern meets
the primary business requirement that the integration of organizations is
achieved quickly.

Product mapping for the Directly Connected ESBs pattern
Figure 9-4 shows the Product mapping for the Directly Connected ESBs pattern.

Figure 9-4 Product mapping for homogeneous Directly Connected ESBs

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

HubHub HubHub App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

App Server/
Services

<Service Consumer>

Business
Service

Directory Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

HubHub HubHub App Server/
Services

Business
Service

Directory

•Service Integration Bus
(part of WebSphere
Application Server Network
Deployment V6.0.2)
•DB2 Universal Database
V8.2.5 App Server/

Services

<Service Provider>

WebSphere Administration
(part of WebSphere
Application Server
Network Deployment
V6.0.2)

WebSphere Application Server
Network Deployment V6.0.2

WebSphere Administration
(part of WebSphere
Application Server
Network Deployment
V6.0.2)

WebSphere
Application
Server Network
Deployment
V6.0.2

<Service Provider>

WebSphere
Application
Server Network
Deployment
V6.0.2

<Service Provider>•Service Integration Bus
(part of WebSphere
Application Server Network
Deployment V6.0.2)
•DB2 Universal Database
V8.2.5

IBM HTTP Server V6
 Chapter 9. Directly Connected homogeneous ESBs 155

In this Product mapping, the WebSphere Application Server Network
Deployment V6.0 product is used to implement most aspects of both ESBs. Two
ESBs are deployed in the same cell using the service integration bus component.
The service integration bus can be administered through the administration
capability of WebSphere Application Server Network Deployment V6. Each
service integration bus is hosted on its own WebSphere Application Server node.

Service consumers and providers connect to each ESB using SOAP over HTTP
enabled through the service integration bus of WebSphere Application Server
Network Deployment V6.0.

The Business Service Directory is supported by an IBM HTTP Server, which is
used to host the WSDL descriptions of each Web service used with the ESBs.

The database used needs to support distributed access in a multiple ESB
scenario. DB2 Universal Database V8.2 is used to store the Service Data
Objects (SDO) repository as it provides robust distributed database capability.

Other ESB integration patterns
The other ESB integration patterns do not apply to this simple scenario. Each
ESB in the Directly Connected ESBs pattern is governed separately.

The Direct Connection link between the ESBs uses HTTP. As both ESBs are
implemented using the same product set, and both support HTTP connections,
neither a Connector or Boundary Service is required to enable this connection.

9.2 Development guidelines
This section discusses the development guidelines for building an integrated
ESB solution using two WebSphere Application Server V6 servers. This solution
can be built without any changes to development code, therefore this section
does not contain any step-by-step instructions.

This section describes:

� How the scenario is implemented as a set of J2EE enterprise applications
� The choices for retargeting Web service client bindings

9.2.1 Scenario implementation
The scenario that this book uses is based on the WS-I sample application. This
scenario is described more fully in Chapter 7, “The business scenario used in
this book” on page 117.
156 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

This book uses a J2EE implementation of this business scenario. Each Web
service is implemented as a J2EE enterprise application. Figure 9-5 on page 157
shows these applications and the interactions made between them.

Figure 9-5 WS-I sample application architecture

Figure 9-5 shows how the application has been written and how it interacts with
other components. This includes the enterprise applications (blue boxes in the
first and third columns), the Web services (white boxes), and the operations (the
small white boxes coming out of the larger white boxes). It also shows whether
the operation in question is a one-way or request-response Web service
interaction or a JMS operation. All arrows connecting cogs to operations indicate

LoggingFacility

logEventLoggingFacility

Retailer

Retailer

Warehouse

Warehouse

Warehouse
Callback

SCMSampleUI

SCMSampleUI

shipGoods

logEvent

logEvent

submitPO

logEvent

getEvents

getCatalog

submitOrder

ESB01

getEvents

getCatalog

submitOrder

shipGoods

submitSN

errorPO

Key:

Indicates a one-way operation
Indicates a request/response operation

Indicates a Web service request

Indicates a JMS related operation

A Web service operation
or onMessageOperation name

Manufacturer

Manufacturer MDB

logEvent

submitSN

errorPO

Manufacturer

submitPO

onMessage

ESB02
 Chapter 9. Directly Connected homogeneous ESBs 157

a Web service invocation, and lines decorated by an envelope designate a SOAP
over JMS invocation. All other invocations are SOAP over HTTP.

The application interacts as follows:

1. The SCMSampleUI application:

a. Provides a Web user interface.

b. Invokes the Retailer Web service to obtain a list of all items that can be
purchased.

c. Invokes the Retailer Web service to order an item.

d. Invokes the LoggingFacility to track an order.

2. Retailer Web service when order is submitted:

a. Invokes the LoggingFacility to log events that occur in the order.

b. Invokes the Warehouse to find out whether the order can be shipped and,
if so, have it shipped.

3. When a request to ship goods is made, the Warehouse Web service:

a. Determines whether there is enough in stock to ship the order.

• If there is not enough in stock, refuse to ship order

• If there is enough in stock, ship the order

b. Determines whether more should be ordered.

• If more should be ordered, submit a purchase order to the relevant
manufacturer.

• If there is enough in stock, do nothing.

4. When a purchase order is submitted, the Manufacturer Web service sends a
JMS message to a queue.

5. The Manufacturer message-driven bean, when triggered:

a. If the purchase order can be filled

• Invokes submitSN on the WarehouseCallback.

• Invokes LoggingFacility to log that the item has been shipped.

b. If the purchase order cannot be filled

• Invokes errorPO on the WarehouseCallback.

• Invokes LoggingFacility to indicate that the item cannot be shipped.

6. The WarehouseCallback Web service, when invoked, calls the
LoggingFacility to indicate whether the purchase order was filled or not.
158 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

9.2.2 Retargeting Web service client bindings
A Web service client contains a reference to the location of a Web service
endpoint. When an ESB is added, Web service clients are retargeting to point to
the ESB rather than directly to the Web service endpoint.

There are two different approaches to achieve this Web service retargeting:

� Redevelop the client.

The Web service client can be rebuilt in a development tool such as Rational
Application Developer. This process is described in Patterns: SOA with an
Enterprise Service Bus in WebSphere Application Server V6, SG24-6494.

The regeneration of a Web service client will mean that the application using
the Web service client will need to go through a testing process if it were to be
deployed in a full production environment.

� Modify the endpoint URL.

When Web service clients are deployed to WebSphere Application Server,
the Web service client bindings can be overridden using the WebSphere
Application Server administrative console.

By specifying the name of an endpoint URI that is used to override the current
endpoint, a client uses this endpoint instead of the endpoint specified in the
WSDL file. If an assembled application contains a Web service client that is
statically bound, the client is locked into using the implementation (service
end point) identified in the WSDL file used during development. Overriding
the endpoint is an alternative to configuring the deployed WSDL attribute. The
overridden endpoint URI attribute is specified on a per-port basis. It does not
require an alternative WSDL file within the module. The overridden endpoint
URI takes precedence over the deployed WSDL attribute. The client uses this
value for the service end point URI or SOAP address, instead of the value in
the static client bindings.

The process for overriding the endpoint URL is described in “Editing the client
bindings to call inbound services” on page 226.

9.3 Runtime guidelines
The following section provides a high-level overview and summary of the steps
required to build both ESB implementations and integrate them, including:

� Software requirements

� Steps to complete the scenario

� Building the WebSphere Application Server Network Deployment
infrastructure
 Chapter 9. Directly Connected homogeneous ESBs 159

� Building the service integration bus infrastructure

� Deploying and building the WS-I scenario

� Testing the scenario

For additional information on the steps described in this section, consult the
following documents:

� Patterns: Implementing an SOA using an Enterprise Service Bus in
WebSphere Application Server, SG24-6494

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

� “Configure a Service Integration Bus In a network deployment environment”

http://www.ibm.com/developerworks/webservices/library/ws-sibus/

� WebSphere Application Server V6 information center (section on the service
integration bus)

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.
websphere.pmc.nd.doc/concepts/cjw_epl_port.html

9.3.1 Software requirements
This scenario requires the following levels of software:

� WebSphere Application Server Network Deployment V6

� WebSphere Application Server Version 6.0 Refresh Pack 2, also known as
Version 6.0.2

� IBM HTTP Server powered by Apache V6

� DB2 Universal Database V8.2 with FixPack 5

This scenario is logically built on two host systems: one called
ITSOESB01.itso.ral.ibm.com and one called ITSOESB02.itso.ral.ibm.com.
These two host systems can be physically located on a single machine, or across
two machines with a network connection. The instructions in this chapter assume
that both systems will be located on the same machine, but the instructions can
equally be applied to using two host systems.

Note: In our example, we installed WebSphere Application Server Network
Deployment into c:\WAS\AppServer and not the default location of c:\Program
Files\WebSphere\AppServer. This was because there is a limit on file names
of around 260 characters, which prevents J2EE applications from installing.
160 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/developerworks/webservices/library/ws-sibus/
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.pmc.nd.doc/concepts/cjw_epl_port.html

This scenario assumes that although WebSphere Application Server Network
Deployment is installed, neither the deployment manager profile or application
server profiles have been created.

9.3.2 Steps to complete the scenario
This chapter describes how to build the ESB infrastructure described in the
business scenario and how to integrate the ESBs using the Directly Connected
ESB pattern.

This section summarizes the implementation steps required to implement this
solution. The remainder of the chapter contains step-by-step instructions for
implementing the scenario.

Building the WebSphere Application Server Network
Deployment infrastructure

This section describes how to create deployment manager and application
server profiles for WebSphere Application Server Network Deployment V6, as
well as the required network host file changes, in these sections:

� Creating a hosts file
� Starting the profile creation wizard
� Creating the deployment manager profile
� Creating the application server profiles

Building the service integration bus infrastructure
This section describes the configuration necessary in both WebSphere
Application Server instances relating to the service integration bus (used to
perform the majority of the ESB functionality in this scenario). It describes how to
create, configure, and link service integration buses:

� Setting up the messaging engine repositories
� Setting up the SDO repository
� Setting up the messaging engines and SDO repositories
� Installing the SDO repository application
� Installing service integration bus applications and resources
� Installing endpoint listener applications
� Creating a service integration bus
� Adding a bus member
� Creating a second service integration bus and bus member
� Creating a foreign bus
� Creating the mirror foreign bus
� Creating a service integration bus link
� Creating a mirror service integration bus link
 Chapter 9. Directly Connected homogeneous ESBs 161

Deploying and building the WS-I scenario
This section describes how to deploy the WS-I sample scenario into each of the
WebSphere Application Server servers. It describes the messaging support
required by the Manufacturer J2EE enterprise applications, the creation of
inbound and outbound services in the service integration buses, and modifying
Web service client bindings to use the ESB. It contains the following sections:

� Creating the destinations
� Creating a JMS connection factory
� Creating the JMS queues
� Creating the JMS activation specifications
� Hosting the WSDL files
� Modifying a virtual host for ITSOESB02.itso.ral.ibm.com
� Installing the applications
� Creating the endpoint listeners
� Creating the outbound services
� Routing service requests between buses
� Creating inbound services
� Editing the client bindings to call inbound services

Testing the scenario
This section contains step-by-step instructions for testing the application by
running the SCMSampleUI Web application.

9.3.3 Building the WebSphere Application Server Network
Deployment infrastructure

This scenario requires an infrastructure with two nodes, and a WebSphere
Application Server Network Deployment server instance running in each node,
as shown in Figure 9-6 on page 163.
162 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-6 WebSphere Application Server Network Deployment infrastructure

Note the following characteristics shown in Figure 9-6:

� The cell for the entire infrastructure is called ITSOESBCell01.

� The cell contains a deployment manager with a profile name of Dmgr01.

� Two nodes are registered with the deployment manager: ITSOESB01Node01
and ITSOESB02Node01.

� Each node contains a single application server. There are two application
servers in total, with the profile names of ITSOESB01 and ITSOESB02.

� Each node and application server pair run on their own logical machine which
are assigned IP host names of ITSOESB01.itso.ral.ibm.com and
ITSOESB02.itso.ral.ibm.com.

� The deployment manager also runs on ITSOESB01.itso.ral.ibm.com.

This section describes how to build this infrastructure. We provide step-by-step
instructions for building this infrastructure on both a single machine and on two
separate machines with their own IP addresses.

For more in-depth instructions about building WebSphere Application Server
Network Deployment infrastructures, refer to WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451.

DMgr01

Deployment
Manager

Node:
ITSOESB01Node01

Node Agent

Application Server:
Server1

Node:
ITSOESB02Node01

Node Agent

Application Server:

Cell:

ITSOESBCell01
DMgr01

Deployment
Manager

DMgr01

Deployment
Manager

Deployment
Manager

Node:
ITSOESB01Node01

Node AgentNode Agent

Application Server:
Server1

Application Server:
Profile: ITSOESB01

Name:Server1

Node:
ITSOESB02Node01

Node AgentNode Agent

Application Server:

Cell:
ITSOESBCell01

Application Server:
Profile: ITSOESB02

Name: Server1

ITSOESB01.itso.ral.ibm.com ITSOESB01.itso.ral.ibm.com
 Chapter 9. Directly Connected homogeneous ESBs 163

Creating a hosts file
The guidelines in this chapter use the host names ITSOESB01.itso.ral.ibm.com
and ITSOESB02.itso.ral.ibm.com. You need to map these host names to the
actual machine or machines you are using.

In a Windows environment this can be achieved by modifying the hosts file with a
standard text editor:

1. Navigate to <Windows_home>\system32\drivers\etc and open the hosts file
in a text editor.

2. Add the following entries to map the host names required by the scenario to
your local machine:

127.0.0.1 ITSOESB01.itso.ral.ibm.com
127.0.0.1 ITSOESB02.itso.ral.ibm.com
127.0.0.1 appsrv1a.itso.ral.ibm.com

3. Save the file. You should now be able to ping any of these host names and
have them resolve to your local machine as shown in Example 9-1.

Example 9-1 Ping of ITSOESB01.itso.ral.ibm.com

C:\>ping ITSOESB01.itso.ral.ibm.com

Pinging ITSOESB01.itso.ral.ibm.com [127.0.0.1] with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Note: appsrv1a.itso.ral.ibm.com is required by the WS-I sample
scenario to locate WSDL files from an HTTP server. You will configure
the HTTP server in a later step.

Note: If you choose to use two separate machines to implement this scenario,
you should define the following.

In the hosts file of the first machine:

127.0.0.1 ITSOESB01.itso.ral.ibm.com
127.0.0.1 appsrv1a.itso.ral.ibm.com

In the hosts file of the second machine:

127.0.0.1 ITSOESB02.itso.ral.ibm.com
127.0.0.1 appsrv1a.itso.ral.ibm.com
164 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Starting the profile creation wizard
The first steps for creating a profile are the same regardless of the type of profile
you will create. (This section specifically creates the deployment manager
profile.) You can start the profile creation wizard in one of the following ways:

� From the Start menu in Windows only, select:

Start → Programs → IBM WebSphere → Application Server Network
Deployment v6 → Profile creation wizard

� Use the platform-specific command in the <was_home>/bin/ProfileCreator
directory:

– Windows: pctWindows.exe
– AIX®: pctAIX.bin

� Check the box directly after installation from the install wizard to launch the
profile creation wizard.

Creating the deployment manager profile
This section summarizes the steps required to create the deployment manager
profile.

1. Start the profile creation wizard as described above. Click Next on the
Welcome window to move to the Profile type selection screen.

2. Select Create a deployment manager profile and click Next.

3. Type the profile name Dmgr01. Click Next to continue.

4. Accept the default location and click Next.

Attention: These steps must be completed on the
ITSOESB01.itso.ral.ibm.com host system.
 Chapter 9. Directly Connected homogeneous ESBs 165

5. For this scenario we simplify the node and cell names. Specify the following
values (Figure 9-7 on page 166):

Node name ITSOESBCellManager01

Host name ITSOESB01.itso.ral.ibm.com

Cell name ITSOESBCell01

Figure 9-7 Profile create wizard: setting the node, host, and cell names

6. Accept the default port assignments. Click Next.
166 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

7. Choose whether to Run the application server process as a Windows
service and click Next.

Figure 9-8 Profile create wizard: Windows service definition

8. Click Next on the Profile Summary window to create the deployment manager
profile.

9. When the profile wizard informs you that the profile creation is complete,
de-select the Launch First steps console check box and click Finish.

10.After the deployment manager profile has been created, start the manager.
On the deployment manager machine:

a. Change the directory to the <profile_home>/bin directory of the Network
Deployment installation.

b. Use the startManager command to start the deployment manager.

If you are successful, you will see the process ID for the deployment
manager process displayed in the command window, as shown in
Example 9-2.

Tip: As we had no requirement to start/stop the server through the
Microsoft Management Console, we decided not to Run the application
server process as a Windows service.
 Chapter 9. Directly Connected homogeneous ESBs 167

Example 9-2 Starting the deployment manager from the command line

C:\WAS\AppServer\profiles\Dmgr01\bin>startmanager
ADMU0116I: Tool information is being logged in file
 C:\WAS\AppServer\profiles\Dmgr01\logs\dmgr\startServer.log
ADMU0128I: Starting tool with the Dmgr01 profile
ADMU3100I: Reading configuration for server: dmgr
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server dmgr open for e-business; process id is 1544

Creating the application server profiles
Two WebSphere Application Server application servers are required: one for the
ITSOESB01 host system and one for ITSOESB02. Create these application
servers by generating profiles from the deployment manager, then federate their
nodes to a cell:

1. Start the profile creation wizard, as described in “Starting the profile creation
wizard” on page 165.

2. When you start the wizard, you first see the Welcome window. Click Next to
move to the Profile type selection screen.

3. Select Create an application server profile and click Next.

4. Type the profile name ITSOESB01. You may choose to select the Make this
profile the default check box, but this will depend on how you plan to
manage the configuration after it is installed. Click Next to continue.

5. Accept the default location and click Next.

6. Accept the defaults for node and host names. Click Next.

7. Accept the default port assignments. Click Next.

8. Choose whether to Run the application server process as a Windows
service and click Next.

9. Click Next on the Profile Summary to create the application server profile.

10.When the profile wizard informs you that the profile creation is complete,
de-select the Launch First steps console check box and click Finish.

Tip: The default profile is the default target for commands issued from the
bin directory in the product installation root.

Tip: We decided not to run the application server process as a Windows
service because we will not use the Microsoft MMC Services interface to
start and stop our servers.
168 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

After the application server profile has been created, you are ready to federate
the node to the cell. In our scenario we federated the node using the command
line. Perform the following steps:

1. Ensure that the deployment manager is started.

2. Open a command window on the system where you created the application
server profile for this node. Switch to the <profile_home>\bin directory by
typing:

cd WAS\appserver\profiles\ITSOESB01\bin

3. Run the addNode command with the host name of the deployment manager
and potentially the SOAP connector port number in this form:

addNode <dmgrhost> <dmgr_soap_port>

To add ITSOESB01 to the deployment manager, enter:

addNode ITSOESB01.itso.ral.ibm.com

Example 9-3 shows the sample output.

Example 9-3 Adding the node

C:\WAS\AppServer\profiles\ITSOESB01\bin>addNode ITSOESB01.itso.ral.ibm.com
ADMU0116I: Tool information is being logged in file
C:\WAS\AppServer\profiles\ITSOESB01\logs\addNode.log
ADMU0128I: Starting tool with the ITSOESB01 profile
ADMU0001I: Begin federation of node ITSOESB01Node01 with Deployment Manager at
ITSOESB01.itso.ral.ibm.com:8879.
ADMU0009I: Successfully connected to Deployment Manager Server:
ITSOESB01.itso.ral.ibm.com:8879
...
...
ADMU0003I: Node ITSOESB01Node01 has been successfully federated.

4. Repeat the previous steps to create a second host system called
ITSOESB02. This host system could be created on a separate physical
machine from the deployment manager and the ITSOESB01 profiles, or it can
be hosted on the same host system.

a. Use the profile creation wizard to create an application server profile,
specifying the following values:

Profile name ITSOESB02

Node name ITSOESB02Node01

Host name ITSOESB02.itso.ral.ibm.com

b. After the profile is created, federate it by changing to the bin directory of
the profile and running the addNode command:

addNode ITSOESB02.itso.ral.ibm.com
 Chapter 9. Directly Connected homogeneous ESBs 169

9.3.4 Building the service integration bus infrastructure
Now that the WebSphere Application Server Network Deployment cell is
configured you can start to build the service integration bus infrastructure.

The service integration bus installation and configuration is a post-install exercise
that requires a certain amount of planning. Two data stores are required for
service integration bus operation:

� The SDO repository, which holds the registered service WSDL information.

� The messaging engine repository/repositories. The underlying messaging
layer requires persistence of the internal message data format.

These data stores are created, and their use is transparent to the user of a
stand-alone server, as the server and databases are all resident on the same
machine. For a network-deployed implementation, it is necessary for each of the
servers within the cell that participate on a service integration bus to have access
to the data stores, and as such this cannot be configured transparently by the
service integration bus install process. The administrator needs to configure this
prior to installation.

Figure 9-9 displays the architecture deployed for this scenario showing that two
service integration buses are created and linked. Each service integration bus
has a single bus member (application server) connected via its messaging
engine.

Figure 9-9 Infrastructure of buses and messaging engines

ITSOESBBus01

DMgr01

Deployment
Manager

Node:
ITSOESB01Node01

Node Agent

Application Server:
Server1

Messaging Engine
me01

Node:
ITSOESB02Node01

Node Agent

Application Server:
Server1

Messaging Engine
me02

ITSOESBBus02

Cell:
ITSOESBCell01

ITSOESBBus01ITSOESBBus01

DMgr01

Deployment
Manager

DMgr01

Deployment
Manager

Deployment
Manager

Node:
ITSOESB01Node01

Node AgentNode Agent

Application Server:
Server1

Messaging Engine
me01

Application Server:
Server1

Messaging Engine
me01

Messaging Engine
me01

Node:
ITSOESB02Node01

Node AgentNode Agent

Application Server:
Server1

Messaging Engine
me02

Application Server:
Server1

Messaging Engine
me02

Messaging Engine
me02

ITSOESBBus02ITSOESBBus02

Cell:
ITSOESBCell01
170 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The following steps are required to set up the service integration bus
infrastructure.

Set up the messaging engine repositories
An individual message store table is required for each of the servers shown in
Figure 9-9 on page 170. WebSphere Application Server automatically handles
the table and schema creation. Therefore, you can either set up separate
databases for each server or set up a single database with separate schemas for
each server. In our example, we set up separate databases named me01 and
me02.

1. From a DB2 Command Window on host system ITSOESB01.itso.ral.ibm.com
enter the following commands:

db2 create database me01

db2 create database me02

Set up the SDO repository
1. The Service Data Objects (SDO) repository is used to store and serve WSDL

definitions for the service integration bus. The SDO repository supports a
wide variety of databases. By default the SDO repository uses embedded
Cloudscape but in this scenario we use DB2 Universal Database.

Create a database named sdodb:

a. From the same DB2 Command Window, enter:

db2 create database sdodb

db2 connect to sdodb

db2 create schema sdorep

db2 create table sdorep.bytestore (name varchar(250) not null, bytes
blob(1G), timestamp1 bigint not null)

db2 disconnect sdodb

2. Now with the databases and tables created, configure connectivity to them
from WebSphere Application Server. On each of the host systems a
homogenous directory structure should be created into which the client JAR
files for DB2 Universal Database should be placed. This is to ensure that
WebSphere Application Server can connect to the database through the
drivers supplied by the database. In our example, db2jcc.jar,

Note: Individual schemas for each messaging engine and tables are created
when the messaging engines are created.
 Chapter 9. Directly Connected homogeneous ESBs 171

db2jcc_license_cu.jar, and db2jcc_license_cisuz.jar are placed in
a new directory named c:/WAS/AppServer/db2udb.
a. From a Command Prompt or from Windows Explorer, navigate to

c:\WAS\AppServer and create a subdirectory named db2udb.

b. Copy these three JAR files from C:\Program Files\IBM\SQLLIB\java to
c:\WAS\AppServer\db2udb:

db2jcc.jar
db2jcc_license_cu.jar
db2jcc_license_cisuz.jar

Set up the messaging engines and SDO repositories
1. The data source used by the SDO repository requires a component-managed

authentication alias, which is used to allow the same user ID and password
combination to be used in many different places. In this case the DB2
database has security configured, so specify the same user ID and password
as created during the DB2 install. Complete these steps to create an alias:

a. Access the admin console at the following URL and log in.

http://ITSOESB01.itso.ral.ibm.com:9060/ibm/console

b. In the navigation panel, click Security → Global Security

c. Under Authentication, expand JAAS Configuration and click J2C
Authentication data → New. (See Figure 9-10.)

Figure 9-10 Setting the J2C authentication data
172 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

– Alias

The name by which this alias will be known in the admin console.

In this case we specify the name DB2ESBAlias but it can be anything you
like.

– User ID

The user ID that will be used to log in. A value must be specified.

Specify the same value as the ID created when installing DB2. In this case
we specify the name db2admin

– Password

The password associated with the user ID. A value must be specified.

Specify the same value as the password created when installing DB2.

d. Click OK and save the changes to the master configuration by clicking
Save.

2. Create a JDBC provider for IBM DB2 Universal Database V8.2.

The next step is to configure the service integration buses to access the SDO
repository database using DB2. To do this, you must define a new JDBC
provider. Because the JDBC provider will be used by multiple (two) service
integration buses running on separate nodes we decided to create the JDBC
provider at the Cell Scope. In the administration console, complete the
following steps to create a JDBC provider:

a. In the navigation panel click Resources → JDBC Providers.

b. Clear the Node entry field and click Apply (Figure 9-11).

Figure 9-11 Setting the scope to Cell level
 Chapter 9. Directly Connected homogeneous ESBs 173

c. With Cell scope now applied, on the same window click New to create the
JDBC provider.

d. Enter some general information about the type of database and the
connection mechanism as shown in Figure 9-12. Note that the pull-down
boxes will be disabled until the values in the preceding boxes have been
filled in.

Figure 9-12 Specifying properties for DB2 JDBC provider

Select the database type: This is used to specify the type of database
the JDBC provider will connect to. In this case choose DB2.

Select the provider type: This is used to specify how the database will be
accessed. In this case choose DB2 Universal JDBC Driver Provider.

Select the implementation type: This is used to specify how the provider
will be implemented. In this case choose XA data source.

e. Click Next.

f. Modify the following JDBC provider properties panel:

i. Remove the existing Class path entries and add the three DB2 classes
you copied to the c:\WAS\AppServer\db2udb directory in the previous
section.

ii. Clear the Native library path field.

iii. The completed panel is shown in Figure 9-13 on page 175. Accept all
other defaults and click OK.
174 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-13 Specifying additional properties for DB2 JDBC provider

g. Save the changes to the master configuration by clicking Save.

3. Create the JDBC data sources.

The next step is to create the JDBC data sources for accessing the SDO and
messaging engine tables in DB2. Assuming that you are at the JDBC

Note: The screen capture below is restricted to showing two of the
three DB2 classes. Ensure you enter all three.

Also, ensure that you enter the class path entries using the forward
slash (/) to delimit directories.
 Chapter 9. Directly Connected homogeneous ESBs 175

providers panel from the preceding step, complete the following steps to
create the JDBC data sources:

a. Select DB2 Universal JDBC Driver Provider (XA) → Data sources →
New.

b. Enter the details for the new data source used for the SDO repository. The
panel is a long, scrolling, browsing panel. The top half should look like
Figure 9-14.

Figure 9-14 Specifying the SDO data source parameters: part 1

The bottom half of the same panel should look like Figure 9-15 on
page 177.
176 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-15 Specifying the SDO data source parameters: part 2

– Name

The name is just an administrative entity that has meaning only within the
administrative console.

This can be specified as anything you like. In our example we used SDODB
Datasource

– JNDI Name

Applications pick up the data source from the JNDI name.

Specify a value of jdbc/com.ibm.ws.sdo.config/SdoRepository

– Component-managed authentication alias

The alias to be used when making connections to the database where the
application-managed authentication is being used by the application.

Select the value that ends in DB2ESBAlias.
 Chapter 9. Directly Connected homogeneous ESBs 177

– DB2 Universal data source properties

The path to the SDO DB2 database.

i. Database name

The name of the SDO database. Enter SDODB.

ii. Driver type

Change to driver type 4.

iii. Server name

The host name where the DB2 server is running. Enter
ITSOESB01.itso.ral.ibm.com

c. Leave all other values as default. Click OK.

d. Create the data sources for the two messaging engines following the same
procedure, using the modifications below:

i. First messaging engine data source:

Name me01 datasource

JNDI Name jdbc/com.ibm.ws.sib/me01

Database Name me01

ii. Second messaging engine data source:

Name me02 datasource

JNDI Name jdbc/com.ibm.ws.sib/me02

Database Name me02

e. Save the changes to the master configuration by clicking Save.

f. To ensure that the data sources have been created successfully, check all
three datasources and click Test connection from the JDBC
providers → DB2 Universal JDBC Driver Provider (XA) → Data
sources panel. You should see confirmation of three successful
connections.

Installing the SDO repository application
The service integration bus Web services support stores the WSDL and
schemas for the Web services in the SDO repository. When WebSphere
Application Server is installed, it does not install the SDO repository. This must
be installed manually and is completed using the installSdoRepository.jacl script.

Note: Type 4 JDBC drivers are direct-to-database pure Java drivers
(“thin” drivers).
178 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The SDO repository is backed by a database and can use a wide variety of
databases. In our scenarios we use DB2 Universal Database Enterprise Edition.

1. Open a Command Prompt window on your deployment manager host system,
in this example on ITSOESB01. The installSdoRepository.jacl script is
provided in the <install_root>/bin directory, where install_root is the root
directory for the installation of WebSphere Application Server. In our example,
navigate to c:\WAS\appserver\bin.

Example 9-4 shows the format of the installSdoRepository script.

Example 9-4 Format of the installSdoRepository script

<install_root>/bin/wsadmin.sh
-conntype SOAP
-port 8879
-f $<install_root>/bin/installSDORepository.jacl
<nodename>
<server>

If you are running on the deployment manager host system with default port
settings, no parameters are required. On a host system that does not host the
deployment manager, the nodename and server parameters may be required:

nodename ITSOESBCellManager01 (the deployment manager node
name)

server dmgr (the deployment manager server name)

2. Run the command (partial output shown in Example 9-5):

wsadmin -f installSDORepository.jacl ITSOESBCellManager01 dmgr

Example 9-5 Installing the SDO repository application

C:\WAS\AppServer\bin>wsadmin -f c:/WAS/AppServer/bin/installSDORepository.jacl
ITSOESBCellManager01 dmgr
WASX7209I: Connected to process "dmgr" on node ITSOESBCellManager01 using SOAP
connector; The type of process is: DeploymentManager
WASX7303I: The following unrecognized options are passed to the scripting
environment and are available as argument that is stored in the argv variable:
"[ITSOESBCellManager01, dmgr]"
CWSJO0016I: Installing SDO repository on node ITSOESBCellManager01, server
dmgr.
CWSJO0021I: Installing SDO repository EJB application.
CWSJO0052I: Using datasource backend ID: CLOUDSCAPE_V5
...
...
ADMA5013I: Application SDO Repository installed successfully.
CWSJO0022I: Saving configuration.
CWSJO0023I: SDO repository installation completed successfully.
 Chapter 9. Directly Connected homogeneous ESBs 179

3. Change the SDO data source backend type. A list of backend database types
can be found in directory <install_root>/util/SDORepository:

wsadmin -f installSDORepository.jacl -editBackendId DB2UDB_V82

4. Finally, the SDO repository application has to be installed on all application
servers that will use a service integration bus. Run the following commands:

wsadmin -f installSdoRepository.jacl ITSOESB02Node01 server1
wsadmin -f installSdoRepository.jacl ITSOESB01Node01 server1

Installing service integration bus applications and resources
A service integration bus is a logical entity that has a physical manifestation in
the form of several enterprise applications, a resource adapter, and an activation
specification. As part of the WebSphere Application Server post-install process,
these applications must be installed and started before any service integration
bus creation and configuration activities can take place. The application
installation is achieved by using a JACL script that is shipped with WebSphere
Application Server in the <install_root>/util directory, and it is called
sibwsInstall.jacl.

The sibwsInstall.jacl script must be run multiple times: once for every application
and resource required by the service integration bus support.

1. Before you can install any resources, use the startNode tool to start the
ITSOESB01 and ITSOESB02 profiles. In the <install_root>/bin directory, run
the following two commands:

startNode -profileName ITSOESB01
startNode -profileName ITSOESB02

2. Install the resource adapter. This must be installed before the other resources
and is required. To install the resource adapter, navigate to the
<install_root>/bin directory and execute the following command:

wsadmin -f <install_root>/util/sibwsInstall.jacl INSTALL_RA -installRoot
<install_root> -nodeName NODE_NAME

<install_root> is the directory in which you installed WebSphere Application
Server, and NODE_NAME is the name of the application server node.

Note: The output from the installSDORepository.jacl script indicates that
the SDO will use Cloudscape as the backend data source, although we
use DB2. Do not worry about this as the backend data source will be
changed in the next step.
180 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

In our example the commands entered were as shown in Example 9-6.

Example 9-6 Install the service integration bus resource adapter

wsadmin -f c:/was/appserver/util/sibwsInstall.jacl INSTALL_RA -installRoot
"C:/WAS/AppServer" -nodeName ITSOESB01Node01

wsadmin -f c:/was/appserver/util/sibwsInstall.jacl INSTALL_RA -installRoot
"C:/WAS/AppServer" -nodeName ITSOESB02Node01

3. Install the Web services support application onto each server. This can be
done from the <install_root>/bin directory by executing the following
command:

wsadmin -f <install_root>/util/sibwsInstall.jacl INSTALL -installRoot
<install_root> -nodeName NODE_NAME -serverName server1

<install_root> is the directory in which you installed WebSphere Application
Server; the second <install_root> uses forward slashes rather than back
slashes; and NODE_NAME is the name of the application server node.

In our example the commands entered were as shown in Example 9-7.

Example 9-7 Install the service integration bus enterprise application

wsadmin -f c:/was/appserver/util/sibwsInstall.jacl INSTALL -installRoot
"C:/WAS/AppServer" -nodeName ITSOESB01Node01 -serverName server1

wsadmin -f c:/was/appserver/util/sibwsInstall.jacl INSTALL -installRoot
"C:/WAS/AppServer" -nodeName ITSOESB02Node01 -serverName server1

Installing endpoint listener applications
Install the endpoint listener applications for HTTP and JMS to all service
integration bus servers.

While the Web services enterprise application support has now been installed it
is not until an endpoint listener application is installed that it can be used. There
are two different endpoint listener applications, one for SOAP over HTTP and

Important: The second <install_root> must have elements in the path
separated by a forward slash (/) even on Windows systems. So a path of
c:\WAS\AppServer becomes c:/WAS/AppServer.

Note: The output from the commands above and similar JACL scripts will
show an informational message, WASX7303I, suggesting unrecognized
options. This is normal.
 Chapter 9. Directly Connected homogeneous ESBs 181

one for SOAP over JMS. For this scenario we install only the SOAP over HTTP
application to the servers at this point. The HTTP endpoint listener is installed
using the following command:

wsadmin -f <install_root>/util/sibwsInstall.jacl INSTALL_HTTP -installRoot
<install_root> -nodeName NODE_NAME -serverName server1

The JMS endpoint listener is installed using the following command:

wsadmin -f <install_root>/util/sibwsInstall.jacl INSTALL_JMS
-installRoot <install_root> -nodeName NODE_NAME -serverName server1

<install_root> is the directory in which you installed WebSphere Application
Server; the second <install_root> uses forward slashes rather than back slashes;
and NODE_NAME is the name of the application server node.

In our example the commands entered were as shown in Example 9-8.

Example 9-8 Install the SOAP over HTTP endpoint listener application

wsadmin -f c:/was/appserver/util/sibwsInstall.jacl INSTALL_HTTP -installRoot
"C:/WAS/AppServer" -nodeName ITSOESB01Node01 -serverName server1

wsadmin -f c:/was/appserver/util/sibwsInstall.jacl INSTALL_HTTP -installRoot
"C:/WAS/AppServer" -nodeName ITSOESB02Node01 -serverName server1

Creating a service integration bus
This scenario requires two service integration buses to be created and linked,
forming one logical bus infrastructure. The first step is to create the first service
integration bus to host the Retailer, Warehouse, and Logging Facility services.

Use the values shown in Table 9-1 to perform the following steps.

Table 9-1 Create service integration bus values

1. Access the WebSphere Application Server admin console at
http://itsoesb01.itso.ral.ibm.com:9060/ibm/console and log in.

2. Expand Service integration and click Buses.

3. Click New.

Item Value

bus_name ITSOESBBus01

bus_member ITSOESB01Node01:server1

jndi_name jdbc/com.ibm.ws.sib/me01
182 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

4. In the field labeled Name enter the bus_name value, as shown in Figure 9-16.
For the other values accept the defaults.

Figure 9-16 Create a service integration bus

5. Click OK and the bus will be created. Save your workspace changes to the
master configuration.

Adding a bus member
Creating a bus just creates an administrative entity. It does not create any
resources for messaging. In order to do this we need to add a bus member. This
will have the effect of creating a messaging engine. Perform the following:

1. Click the bus_name value to show its properties. Under Topologies, click Bus
members.

2. Click Add.

3. Complete the panel using the information below. On this page, you can
choose which server or cluster to add.

a. Select the bus_member server.

b. Set the Data source JNDI name to the jndi_name value.

c. Accept the remaining defaults. Click Next.

4. Click Finish on the Confirm page and the server will be added as a member
of the bus and a messaging engine created as shown in Figure 9-17 on
page 184.

5. Save your workspace changes to the master configuration.
 Chapter 9. Directly Connected homogeneous ESBs 183

Figure 9-17 After the service integration bus and messaging engine have been created

Creating a second service integration bus and bus member
The preceding section created the first service integration bus that will host the
Retailer, Warehouse, and Logging Facility services. A second service integration
bus is required to host the Manufacturer services.

1. Repeat the steps in “Creating a service integration bus” on page 182 and
“Adding a bus member” on page 183 using the values in Table 9-2.

Table 9-2 Create service integration bus values

When these steps are completed, the console at Service integration → Buses
will appear as shown in Figure 9-18 on page 185 and you will have created two
buses.

Item Value

bus_name ITSOESBBus02

bus_member ITSOESB02Node01:server1

jndi_name jdbc/com.ibm.ws.sib/me02

ITSOESBBus01

DMgr01

Deployment
Manager

Node:
ITSOESB01Node01

Node Agent

Application Server:
Server1

Messaging Engine
me01

Cell:
ITSOESBCell01

ITSOESBBus01ITSOESBBus01

DMgr01

Deployment
Manager

DMgr01

Deployment
Manager

Deployment
Manager

Node:
ITSOESB01Node01

Node AgentNode Agent

Application Server:
Server1

Messaging Engine
me01

Messaging Engine
me01

Cell:
ITSOESBCell01
184 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-18 Service integration buses

Creating a foreign bus
In order for the buses to communicate, you must define them to each other. Use
the replacement values in Table 9-3 in the following steps.

Table 9-3 Create service integration bus values

1. In the admin console navigate to Service integration → Buses and then
select the bus_name value.

2. Select [Topology] Foreign buses, and click New.

3. Enter the foreign_bus_name value in Name, and click Next.

4. The next page allows the routing type to be selected. There are three options:

– Direct, service integration bus link

– Direct, WebSphere MQ link

– Indirect

Click the Routing Type pull-down menu and select the default Direct, service
integration bus link, and click Next as shown in Figure 9-19 on page 186.

Item Value

bus_name ITSOESBBus01

foreign_bus_name ITSOESBBus02
 Chapter 9. Directly Connected homogeneous ESBs 185

Figure 9-19 Foreign bus routing definition

5. On the next page you could specify the user ID to be used for inbound and
outbound message authentication, but these can be ignored in our scenario
so click Next.

6. The last page is a summary page so just click Finish and the foreign bus will
be created.

Creating the mirror foreign bus
In order for the buses to communicate, define the first bus to the second bus:

1. Repeat the steps in “Creating a foreign bus” on page 185 using the
replacement values in Table 9-4.

Table 9-4 Create service integration bus values

2. Save your workspace changes to the master configuration.

Creating a service integration bus link
The next step is to create the service integration bus link for each bus. A service
integration bus link connects a messaging engine on one bus to a messaging
engine on another.

In the following steps, use the replacement values in Table 9-5 on page 187.

Item Value

bus_name ITSOESBBus02

foreign_bus_name ITSOESBBus01
186 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 9-5 Create service integration bus link values

1. Determine the SIB_ENDPOINT_ADDRESS port value:

a. In the admin console select Servers → Application Servers.

b. In the Application servers list, click server1 which corresponds to the node
foreign_node_name.

c. Under Communications, expand Ports. Note the value of
SIB_ENDPOINT_ADDRESS. In our scenario, this port value is 7278.

2. Go to the admin console and navigate to the bus details panel for bus_name.

3. Under Topology, click Messaging Engines.

4. Click the me_name.

5. Under Additional Properties click Service integration bus link.

6. Click New.

7. You should now have navigated to the following console page:

Buses → bus_name → Messaging engines → me_name → Service
integration bus link → New

Complete the window shown in Figure 9-20 on page 188, which defines the
service integration bus link.

Item Value

bus_name ITSOESBBus01

me_name ITSOESB01Node01.server1-ITSOESBBus01

foreign_node_name ITSOESB02Node01

foreign_link_name ITSOESBLink

foreign_bus_name ITSOESBBus02

foreign_me_name ITSOESB02Node01.server1-ITSOESBBus02

foreign_host_name ITSOESB02.itso.ral.ibm.com
 Chapter 9. Directly Connected homogeneous ESBs 187

Figure 9-20 Creating a new service integration bus link

Only the mandatory information has to be filled in on this page.

– Name

The name is an administrative entity. Enter the foreign_link_name value.

– Foreign bus

The foreign bus that this messaging engine will be linked to. This
pull-down list should contain a single entry. Select the foreign_bus_name
value.

– Remote messaging engine name

The name of the messaging engine on the foreign bus that this messaging
engine will be connected to. Enter the name of the messaging engine on
the foreign bus. We entered the foreign_me_name value.
188 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

– Bootstrap endpoints

The bootstrap endpoints specify where to find the messaging engine. It is
a comma-separated list of entries. Each entry consists of up to three parts;
if one part is missing it will assume a default value:

• Host name

The name of the host.

• Port number

The port number the messaging engine is listening on. Default: 7276.

• Protocol name

The symbolic name of the messaging protocol being used. There are
currently two: BootstrapBasicMessaging (the default) and
BootstrapSecureMessaging.

Because we have used default values, simply entering the host name that
the first ESB is hosted on is sufficient, and the port number. Use the port
number assigned to SIB_ENDPOINT_ADDRESS, which you noted in
step 1. We entered foreign_host_name:7278.

8. Click OK. The service integration bus link has been configured.

9. Save your workspace changes to the master configuration.

Creating a mirror service integration bus link
Repeat the process for the other ESB hosted on ITSOESB02.itso.ral.ibm.com.

1. Repeat the steps in “Creating a service integration bus link” on page 186,
using the replacement values in Figure 9-6.

Table 9-6 Create service integration bus link mirror values

2. Save your workspace changes to the master configuration.

Item Value

bus_name ITSOESBBus02

me_name ITSOESB02Node01.server1-ITSOESBBus02

foreign_node_name ITSOESB01Node01

foreign_link_name ITSOESBLink

foreign_bus_name ITSOESBBus01

foreign_me_name ITSOESB01Node01.server1-ITSOESBBus01

foreign_host_name ITSOESB01.itso.ral.ibm.com
 Chapter 9. Directly Connected homogeneous ESBs 189

9.3.5 Deploying and building the WS-I scenario
This section describes how to set up the service integration bus resources for the
WS-I application.

Creating the destinations
The Manufacturer enterprise application uses JMS to trigger some work to occur
asynchronously as shown in Figure 9-5 on page 157. This requires some
destinations to be created. These next steps describe how to create these
destinations and will use the values in Table 9-7.

Table 9-7 Create the first manufacturer destinations values

1. From the bus details page for bus_name under Destination resources, click
Destinations.

2. Click New.

3. The next page is for creating or selecting the type of destination. Accept the
default of Queue and click Next. This launches the Queue creation wizard.

4. The first page of the wizard, shown in Figure 9-21 on page 191, asks for an
identifier and description to be entered. The identifier is the name by which
the destination will be exposed to applications. Enter the value for
destination_identifier and click Next.

Item Value

bus_name ITSOESBBus02

destination_identifier ManufacturerASIBQ

bus_member_name ITSOESB02Node01.server1
190 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-21 New destination wizard

5. Specify which bus member to assign the destination to. The Manufacturer will
communicate via this queue through a bus member to the service integration
bus, and if you have followed this scenario there should only be one bus
member to choose. Select the bus_member_name as shown in Figure 9-22
and click Next.

Figure 9-22 Assign the queue to a bus member

6. The final page is just a summary, so click Finish and the destination will be
created.
 Chapter 9. Directly Connected homogeneous ESBs 191

7. We create two additional queue type destinations, one each for the other two
manufacturers. Repeat steps 2 on page 190 through step 6, once each using
the data in tables Table 9-8 on page 192 and Table 9-9 on page 192.

Table 9-8 Create second manufacturer destinations values

Table 9-9 Create third manufacturer destinations values

8. Save your workspace changes to the master configuration.

Creating a JMS connection factory
The next step is to create a JMS connection factory so the manufacturers can
connect to the service integration bus to send JMS messages.

Table 9-10 Create a JMS connection factory values

1. From the admin console expand Resources → JMS providers and click
Default messaging.

2. Because the JMS connection factory will be utilized only on the ITSOESB02
bus, we need to set the correct scope. Ensure that the Node entry field has
the node_scope_name value entered as shown in Figure 9-23 on page 193.

Item Value

bus_name ITSOESBBus02

destination_identifier ManufacturerBSIBQ

bus_member_name ITSOESB02Node01.server1

Item Value

bus_name ITSOESBBus02

destination_identifier ManufacturerCSIBQ

bus_member_name ITSOESB02Node01.server1

Item Value

node_scope_name ITSOESB02Node01

CF_name Manufacturer Connection Factory

CF_JNDI_name Sample/WSI/CF

bus_name ITSOESBBus02
192 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-23 Set scope for JMS definitions

3. Under Connection Factories, click JMS connection factory.

4. Click New.

5. The next page, shown in Figure 9-24 on page 194, enables you to specify the
properties for the JMS connection factory.

Most of the values on this page can be left as the defaults, but these are the
values that must be entered:

– Name

An administrative name used for locating the connection factory in the
admin console. Enter the CF_name value.

– JNDI Name

Where in the JNDI namespace to bind the connection factory. The
application resource reference will be bound to this. Enter the
CF_JNDI_name value.

Note: If the scope is set incorrectly, click Browse Nodes, select the
node_scope_name value from the list, and select OK to return to the original
panel shown in Figure 9-23.
 Chapter 9. Directly Connected homogeneous ESBs 193

– Bus name

The name of the bus to which the connection factory should connect. This
is specified by a pull-down of all of the buses in the cell. It also allows an
arbitrary value to be entered by choosing other. Select the bus_name
value from the pull-down menu.

Figure 9-24 Create new JMS connection factory page

6. Click OK and save your workspace changes to the master configuration.
194 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Creating the JMS queues
Now we create some JMS queues, one for each of the service integration bus
queue type destinations we defined in “Creating the destinations” on page 190.

Table 9-11 Create a JMS queue values for Manufacturer A

1. From the admin console expand Resources → JMS providers and click
Default messaging.

2. As before, ensure the scope is set to the node_scope_name value.

3. Under Destinations, click JMS queue.

4. Click New.

5. The next page, shown in Figure 9-25 on page 196, allows you to specify the
values for the queue.

– Name

An administrative name used for locating the JMS queue in the admin
console. Enter the value for jmsQ_name.

– JNDI Name

Where in the JNDI namespace to bind the JMS queue. The applications
message reference will be bound to this. Enter the jmsQ_JNDI_name
value.

– Bus name

The name of the bus you are connecting to. Select the value of bus_name.
This causes the page to be reloaded with the Queue names list filled in.

– Queue name

This field specifies the service integration bus queue type destination that
will be used to store the messages sent to this JMS queue. Select the
value of Q_name.

Click OK.

Item Value

node_scope_name ITSOESB02Node01

jmsQ_name ManufacturerJMSQ

jmsQ_JNDI_name Sample/WSI/Manufacturer

bus_name ITSOESBBus02

Q_name ManufacturerASIBQ
 Chapter 9. Directly Connected homogeneous ESBs 195

Figure 9-25 Create a new JMS queue page

6. Repeat steps 4 and 5 to create two other JMS queues, once each using the
data in Table 9-12 and Table 9-13 on page 197.

Table 9-12 Create a JMS queue values for Manufacturer B

Item Value

node_scope_name ITSOESB02Node01

jmsQ_name ManufacturerBJMSQ

jmsQ_JNDI_name Sample/WSI/ManufacturerB

bus_name ITSOESBBus02

Q_name ManufacturerBSIBQ
196 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 9-13 Create a JMS queue values for Manufacturer C

You should now have three JMS queues defined as shown in Figure 9-26.

Figure 9-26 JMS queues defined for the scenario

7. Save your workspace changes to the master configuration.

Creating the JMS activation specifications
Now we create three activation specifications, one for each JMS queue we
created in “Creating the JMS queues” on page 195. Use the values in Table 9-14
on page 198.

Item Value

node_scope_name ITSOESB02Node01

jmsQ_name ManufacturerCJMSQ

jmsQ_JNDI_name Sample/WSI/ManufacturerC

bus_name ITSOESBBus02

Q_name ManufacturerCSIBQ
 Chapter 9. Directly Connected homogeneous ESBs 197

Table 9-14 Create a JMS activation specification for Manufacturer A

1. From the admin console, expand Resources → JMS providers and click
Default messaging.

2. As before, ensure that the scope is set to the node_scope_name value.

3. Under Activation Specifications, click JMS activation specification.

4. Click New.

5. On the next page, shown in Figure 9-27, specify the values for the activation
specification. Most of the values can keep their default values, but you must
specify the following values.

– Name

An administrative name used for locating the JMS activation specification
in the admin console. Enter a value of as_name.

– JNDI name

Where in the JNDI namespace to bind the JMS activation specification.
The Manufacturer application’s message-driven beans will be bound to
this for message delivery. Enter a value of as_JNDI_name.

– Destination type

The type of JMS destination that will be used to deliver messages to the
message-driven bean. Accept the default of Queue.

– Destination JNDI name

The location in JNDI of the JMS destination that should be used to receive
messages from. Enter a value of jmsQ_JNDI_name.

– Bus name

The name of the bus from which the JMS destination will receive messages.
This is not required, but for consistency select the value of bus_name.

Click OK.

Item Value

node_scope_name ITSOESB02Node01

as_name ManufacturerAS

as_JNDI_name Sample/WSI/ManufacturerAS

jmsQ_JNDI_name Sample/WSI/Manufacturer

bus_name ITSOESBBus02
198 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-27 Create a new JMS activation specification

6. Repeat steps 4 and 5 to create two other activation specifications, once each
using the data in Table 9-15 and Table 9-16.

Table 9-15 Create a JMS activation specification for Manufacturer B

Item Value

node_scope_name ITSOESB02Node01

as_name ManufacturerBAS

as_JNDI_name Sample/WSI/ManufacturerBAS

jmsQ_JNDI_name Sample/WSI/ManufacturerB

bus_name ITSOESBBus02
 Chapter 9. Directly Connected homogeneous ESBs 199

Table 9-16 Create a JMS activation specification for Manufacturer C

7. Save your workspace changes to the master configuration.

Hosting the WSDL files
Each Web service client in the WS-I sample application references WSDL files
containing port type and binding information. Import statements dictate the
location of these files. For example, the SCMSampleUI enterprise application
contains a WSDL file that references the Retailer port type and binding by using
the following import:

<wsdl:import location="http://appsrv1a.itso.ral.ibm.com/wsdl/Retailer.wsdl"
namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/
2002-08/Retailer.wsdl"/>

It is therefore necessary to host an HTTP server where these files can be
retrieved. Furthermore, this HTTP server must be assigned the address of
appsrv1a.itso.ral.ibm.com.

We installed IBM HTTP Server V6, which is shipped with the WebSphere
Application Server V6 installation. The WSDL and XSD files to be hosted on this
HTTP server are provided with the additional materials supplied with this book.
For information about obtaining the additional materials, see Appendix A,
“Additional material” on page 317.

1. From the additional material, copy the contents of the \Beth scenario\wsdl
directory to the following directory in the HTTP server:

<HTTP_Server_home>\htdocs\en_US\wsdl

2. Perform a similar process on the second host system
(ITSOESB02.itso.ral.ibm.com) if you are not using the same physical
machine.

3. Make sure the HTTP server is started, then test whether the WSDL is
available by entering the following URL into a Web browser. It should show
the WSDL for the Retailer Web service:

http://appsrv1a.itso.ral.ibm.com/wsdl/Retailer.wsdl

Item Value

node_scope_name ITSOESB02Node01

as_name ManufacturerCAS

as_JNDI_name Sample/WSI/ManufacturerCAS

jmsQ_JNDI_name Sample/WSI/ManufacturerC

bus_name ITSOESBBus02
200 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Modifying a virtual host for ITSOESB02.itso.ral.ibm.com
If you have host names ITSOESB01.itso.ral.ibm.com and
ITSOESB02.itso.ral.ibm.com running on the same host system, modify the
default_host virtual host to associate port 9081 with
ITSOESB02.itso.ral.ibm.com.

1. In the WebSphere Application Server admin console, expand Environment
and click Virtual Hosts.

2. Click the default_host virtual host.

3. Under Additional Properties, click Host Aliases.

4. Click the host name associated with port 9081.

5. Change the host name to ITSOESB02.itso.ral.ibm.com (Figure 9-28).

Figure 9-28 Modifying the host name for port 9081

6. Click OK then save the changes.

Note: Skip this section if ITSOESB01 and ITSOESB02 are running on
separate host systems.
 Chapter 9. Directly Connected homogeneous ESBs 201

Installing the applications
The final step to getting a base version of the scenario up and running is to install
the scenario enterprise applications. This scenario uses the enterprise
applications provided specifically for this scenario. Use the values in Table 9-17.

Table 9-17 Install the SCMRetailerLogging application values

1. From the WebSphere Application Server admin console, expand
Applications and click Install New Application.

2. The enterprise applications required for this scenario are located in the
Scenario1\ears directory of the additional material supplied with this book.
Enter the location of the app_name file on your local file system by either
entering it directly or clicking Browse and navigating to the file in the open file
dialog. Click Next.

3. On the next page, check the Generate Default Bindings check box, accept
the remaining defaults, and click Next.

4. The next page to open is step 1 in the wizard. Click Next.

5. In installation step 2, on the Map modules to servers panel, specify the server
on which the application will run. In this case select the node server_name,
select all checkboxes for every module row and click Apply. The output
should resemble Figure 9-29 on page 203. Click Next.

Item Value

server_name ITSOESB01Node01

app_name UIRetailerLogging.ear
202 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-29 Select the node to install the SCMRetailerLogging application

6. The remainder of the application is fully configured and deployed, so the
defaults on each page should be used. Click the last step, labeled Summary,
then click Finish. Ignore any warnings.

7. When the application installation completes, save your changes.

8. Repeat steps 2 to 7 for the Manufacturer applications, once each using the
data in Table 9-18, Table 9-19 on page 204, and Table 9-20 on page 204.

Table 9-18 Install the Manufacturer application values

Item Value

server_name ITSOESB02Node01

app_name ManufacturerA.ear
 Chapter 9. Directly Connected homogeneous ESBs 203

Table 9-19 Install the ManufacturerB application values

Table 9-20 Install the ManufacturerC application values

9. Be sure all changes are saved, then start the two application servers. In a
Command Prompt, change to the bin directory of each profile and run the
startserver command:

c:\WAS\AppServer\profiles\ITSOESB01\bin\startserver server1
c:\WAS\AppServer\profiles\ITSOESB02\bin\startserver server1

Creating the endpoint listeners
The next task is to create some endpoint listeners, which listen for incoming Web
service requests and forward them onto the relevant inbound services. Inbound
services get bound to an endpoint listener when they are created. We create an
HTTP endpoint listener on each server on each node. Use the values in
Table 9-21.

Table 9-21 Create the endpoint listeners for the first service integration bus

1. Access the admin console at
http://ITSOESB01.itso.ral.ibm.com:9060/ibm/console and log in.

2. Expand Servers and click Application Servers.

3. Click server1 for node node_name.

4. Under Communications, expand Ports and note the port value of
WC_defaulthost. We refer to this value as port_number.

Item Value

server_name ITSOESB02Node01

app_name ManufacturerB.ear

Item Value

server_name ITSOESB02Node01

app_name ManufacturerC.ear

Item Value

node_name ITSOESB01Node01

host_name ITSOESB01.itso.ral.ibm.com

URL_name http://ITSOESB01.itso.ral.ibm.com

bus_name ITSOESBBus01
204 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

5. Under Additional Properties, click Endpoint Listeners.

6. Click New.

7. The next panel (Figure 9-30) enables the creation of an endpoint listener.

– Name

The name of the endpoint listener. It must be SOAPHTTPChannel1.

– URL root

The base URL for Web service requests into this endpoint listener. The
URLs used for making Web service requests to the service integration bus
have this at the beginning. Set this to:

URL_name:port_name/wsgwsoaphttp1

For example:

http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1

– WSDL serving HTTP URL root

This corresponds to the location where you access the servlet that hosts
WSDL for this endpoint, and is used by the service integration bus when
generating URLs to access the WSDL representing an inbound service
(for example, when publishing services to UDDI). Set this to:

URL_name:port_name/sibws/wsdl

For example:

http://ITSOESB01.itso.ral.ibm.com:9080/sibws/wsdl

Click Apply.
 Chapter 9. Directly Connected homogeneous ESBs 205

Figure 9-30 Create an endpoint listener

8. Under Additional Properties, click Connection Properties.

9. Click New.

10.In the Bus name pull-down menu select the bus_name value (Figure 9-31)
and click OK.

Figure 9-31 Connection properties for an endpoint listener

11.Repeat steps 2 to 11 for the second node/server using the data in Table 9-22
and save your workspace changes to the master configuration.
206 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 9-22 Create the endpoint listeners for the second service integration bus

Creating the outbound services
Outbound services define Web service requests that leave the service
integration bus and are received by a service provider.

Creating the LoggingFaclityService outbound service
We define an outbound service for the LoggingFacilityService Web service (on
the first ESB because that is where the service actually resides) using the values
in Table 9-23.

Table 9-23 Create the outbound service for LoggingFacilityService

Item Value

node_name ITSOESB02Node01

host_name ITSOESB02.itso.ral.ibm.com

URL_name http://ITSOESB02.itso.ral.ibm.com

bus_name ITSOESBBus02

Item Value

bus_name ITSOESBBus01

ent_app UIRetailerLogging

app_name
port_name

LoggingFacility

wsdl_root http://ITSOESB01.itso.ral.ibm.com:9080/LoggingFacility/servic
es/LoggingFacility?wsdl

host_name ITSOESB01.itso.ral.ibm.com

wsdl_loc http://ITSOESB01.itso.ral.ibm.com:9080/LoggingFacility/servic
es/LoggingFacility/wsdl/LoggingFacility_Impl.wsdl

outbound_name
wsdl_service_name
service_dest_name

LoggingFacilityService

port_dest_name LoggingFacilityService:LoggingFacility

member_name ITSOESB01Node01:server1

Tip: Ensure that the UIRetailerLogging, Manufacturer, ManufacturerB, and
ManufacturerC applications are started.
 Chapter 9. Directly Connected homogeneous ESBs 207

1. From the admin console, expand Service integration and click Buses.

2. Click bus_name.

3. Under Services, click Outbound Services.

4. Click New.

5. The first page of the wizard (Figure 9-32) requires you to specify a URL or
UDDI repository where a WSDL definition of the service can be found. In our
case we use a URL. The URL option enables you to specify an HTTP URL or
a file system path. Enter the wsdl_loc value in the WSDL location field.

Figure 9-32 Locate the target WSDL

a. It is recommended that you open a separate browser window at
http://ITSOESB01.itso.ral.ibm.com:9060/ibm/console/ (logging in as a
different user) because you will need to cut and paste from two
WebSphere Application Server admininstration console panels.

b. From the second admin console browser window, expand Application →
Enterprise Applications

c. Select ent_app.

d. Under Additional Properties, select Publish WSDL files.

e. Select <ent_app> WSDLfiles.zip as shown in Figure 9-33 and open the
file with a zip file editor.

Tip: Where does the value of wsdl_loc come from? See the sub-bullets below
starting at item a.
208 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-33 Publish WSDL files

f. Edit the app_name_Impl.wsdl file (LoggingFacility_Impl.wsdl, for
example). If there is a choice of files, ensure that you choose the EJB
module for the app_name.

g. Copy to the clipboard the location item for the <wsdl:service> definition as
shown in Figure 9-34.

Figure 9-34 Select the WSDL location name

h. Paste the location into your browser’s address field, appended with ?wsdl.
An example of this URL is defined as wsdl_root in Table 9-23 on page 207.

i. Copy the redirected address (Figure 9-35).

Tip: Ensure that the deployment manager, nodes, and servers are
started.
 Chapter 9. Directly Connected homogeneous ESBs 209

Figure 9-35 Copy the WSDL address location

j. Paste the address into the WSDL location field in the original browser
window shown in Figure 9-36 on page 210 - where you are defining the
outbound service.

Figure 9-36 Paste the WSDL location

6. In the original browser window, click Next to continue.

7. The next panel displays the available services defined in the WSDL file. On
this page, you select which service you wish to create an outbound service
for. In our case there is only the wsdl_service_name service. Click Next.
210 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

8. The next panel displays the ports defined for the selected service. There is
only one port in our service so check port_name and click Next as shown in
Figure 9-37 on page 211.

Figure 9-37 Port selection page

9. On the next page, you change the name of the outbound service, service
destination name, and port destination name. We decided to modify some of
these parameters to make it simpler.

– Outbound service name

outbound_name

– Service destination name

Shorten this to just the last part of the pre-filled entry field:

service_dest_name

– Port destination name

Shorten this to just the last part of the pre-filled entry field:
port_dest_name
 Chapter 9. Directly Connected homogeneous ESBs 211

Figure 9-38 Name the outbound service and destinations

10.Click Next.

11.On the final page, select the bus member to assign the outbound service to.
Select member_name and click Finish. The outbound service will be created.

Creating the Retailer and Warehouse outbound services
You also need to create outbound services on ITSOESB01.itso.ral.ibm.com for
the Retailer, Warehouse, and WarehouseCallBack services. Assuming you are
using the default port of 9080, complete the fast track instructions below to create
an outbound service for the Retailer, using the values in Table 9-24.

Table 9-24 Create the outbound service for RetailerService

12.Click Service Integration → Buses and click bus_name.

13.Under Services, click Outbound Services, then click New.

14.In the WSDL location field enter wsdl_loc and click Next.

Item Value

bus_name ITSOESBBus01

wsdl_loc http://itsoesb01.itso.ral.ibm.com:9080/Retailer/services/Retail
er/wsdl/Retailer_Impl.wsdl

outbound_name
service_dest_name

RetailerService

port_dest_name RetailerService:Retailer
212 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

15.In the Select a service window, the correct service is selected, so click Next.

16.In the Select Ports window, the correct port is selected, so click Next.

17.Enter the following information:

a. Set Outbound service name to outbound_name.

b. Set Service destination name to service_dest_name.

c. Set Port destination name to port_dest_name.

18.Click Next then click Finish to create the outbound service.

19.Repeat steps 12 to 18 to create outbound services for the Warehouse (using
values in Table 9-25) and the WarehouseCallBack (using values in
Table 9-26) services.

Table 9-25 Create the outbound service for WarehouseService

Table 9-26 Create the outbound service for WarehouseCallBackService

Creating the Manufacturer outbound services
Outbound services must be created for the three Manufacturer services. These
services are located on ITSOESBBus02, so the outbound services must be
defined on ITSOESBBus02.

Item Value

bus_name ITSOESBBus01

wsdl_loc http://itsoesb01.itso.ral.ibm.com:9080/Warehouse/services/W
arehouse/wsdl/Warehouse_Impl.wsdl

outbound_name
service_dest_name

WarehouseService

port_dest_name WarehouseService:Warehouse

Item Value

bus_name ITSOESBBus01

wsdl_loc http://itsoesb01.itso.ral.ibm.com:9080/Warehouse/services/W
arehouseCallBack/wsdl/WarehouseCallBack_Impl.wsdl

outbound_name
service_dest_name

WarehouseCallBackService

port_dest_name WarehouseCallBackService:WarehouseCallBack
 Chapter 9. Directly Connected homogeneous ESBs 213

20.To create an outbound service for ManufacturerA, repeat steps 12 to 19,
using the values in Table 9-27.

Table 9-27 Create the outbound service for ManufacturerAService

21.To create an outbound service for ManufacturerB, repeat steps 12 to 19,
using the values in Table 9-28.

Table 9-28 Create the outbound service for ManufacturerBService

22.To create an outbound service for ManufacturerC, repeat steps 12 to 19,
using the values in Table 9-29 on page 215.

Note: The following instructions assume that the server running on
ITSOESB02.itso.ral.ibm.com uses port 9081 for WC_defaulthost. To
determine the WC_defaulthost port being used, perform the following:

� Click Servers → Application Servers and click on the server assigned to
the node ITSOESB02Node01.

� Under Communications, expand Ports. This shows the value of
WC_defaulthost.

Attention: If the value of WC_defaulthost is different from 9081, use this value
in place of 9081 in the instructions below.

Item Value

bus_name ITSOESBBus02

wsdl_loc http://ITSOESB02.itso.ral.ibm.com:9081/Manufacturer/service
s/Manufacturer/wsdl/Manufacturer_Impl.wsdl

outbound_name
service_dest_name

ManufacturerService

port_dest_name ManufacturerService:Manufacturer

Item Value

bus_name ITSOESBBus02

wsdl_loc http://ITSOESB02.itso.ral.ibm.com:9081/ManufacturerB/servic
es/ManufacturerB/wsdl/ManufacturerB_Impl.wsdl

outbound_name
service_dest_name

ManufacturerBService

port_dest_name ManufacturerBService:ManufacturerB
214 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 9-29 Create the outbound service for ManufacturerCService

23.Save your changes to the master configuration.

Routing service requests between buses
Next we route service requests between the two service integration buses. For
this, we need to have destinations on the local bus that route requests to the
target (or intermediary) bus.

These destinations will be used to route messages between inbound services on
one bus and outbound services on another bus, as shown in Figure 9-39.

Figure 9-39 Service invocations crossing the buses

Item Value

bus_name ITSOESBBus02

wsdl_loc http://ITSOESB02.itso.ral.ibm.com:9081/ManufacturerC/servic
es/ManufacturerC/wsdl/ManufacturerC_Impl.wsdl

outbound_name
service_dest_name

ManufacturerCService

port_dest_name ManufacturerCService:ManufacturerC
 Chapter 9. Directly Connected homogeneous ESBs 215

Routing paths
A routing path defines a sequential list of intermediary bus destinations that
messages must pass through to reach a target bus destination. A routing path is
used to apply optional mediations configured on several destinations to
messages sent along the path.

A forward routing path identifies a list of bus destinations that a message should
be sent to from the producer to the last destination from which consumers
retrieve messages. The reverse routing path is constructed automatically for
request/reply messages and identifies the list of destinations that any reply
message should be sent to from the consumer back to the producer. Use of
reverse routing path enables a reply message to optionally take a different route
back to the producer, and therefore have more mediations applied.

When a message arrives at a destination in the path, mediations can manipulate
the entries in the forward routing path, to change the sequence of destinations
through which messages pass. If a mediation manipulates the forward routing
path, and the reverse routing path has been set (for a request message that
expects a reply), then the mediation is responsible for making any corresponding
changes to the reverse routing path.

Configuring forward routing destinations
1. Create three queue type destinations. Initially create a destination for

ManufacturerA using the values in Table 9-30.

Table 9-30 Create destination and routing path for ManufacturerA

2. From the admin console expand Service integration and click Buses.

3. Click local_bus_name.

4. From the bus details page for local_bus_name under Destination resources,
click Destinations.

5. Click New.

Item Value

local_bus_name ITSOESBBus01

dest_bus_name ITSOESBBus02

destination_identifier ManufacturerA

bus_member_name ITSOESB01Node01:server1

forward_routing_path ITSOESBBus02:ManufacturerService
216 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

6. The next page enables creation and selection of the type of destination.
Accept the default Queue and click Next to launch the Queue creation
wizard.

7. The first page of the wizard, shown in Figure 9-40, asks for an identifier and
description to be entered. The identifier is the name by which the destination
will be exposed to applications. Enter destination_identifier and click Next.

Figure 9-40 New destination for ManufacturerA on local bus

8. On the next page, specify which bus member to assign the destination to. The
Manufacturer will communicate via this queue through a bus member to the
service integration bus. Select bus_member_name and click Next as shown
in Figure 9-41.

Figure 9-41 Select bus member to store and process messages for the queue

9. On the final page, a summary, click Finish and the destination will be created.
 Chapter 9. Directly Connected homogeneous ESBs 217

With the destination created, route the inbound service requests to the
destination (or intermediate) bus.

10.In the list of destinations, click destination_identifier.

11.On this panel, shown in Figure 9-42, we are going to set up a default forward
routing path.

Figure 9-42 Configuring the forward routing path

A default forward routing path is applied to messages sent to a destination if
the forward routing path of that message is available. This means that
messages sent to the destination_identifier (ManufacturerA) destination on
local_bus_name (ITSOESBBus01) can be routed elsewhere, in our case to
the second ESB at dest_bus_name (ITSOESBBus02). The format of this box
is a comma-separated list of qualified destination names (a bus name and a
destination name separated by a colon). The bus name is optional if the
destination is on the current bus.

Enter the forward_routing_path value and click OK. Requests now sent to the
ManufacturerService will be forwarded to the second ESB.

12.Repeat steps 2 to 11 for the ManufacturerB destination using the values in
Table 9-31.

Table 9-31 Create destination and routing path for ManufacturerB

13.Repeat steps 2 to 11 for the ManufacturerC destination using the values in
Table 9-32 on page 219.

Item Value

local_bus_name ITSOESBBus01

dest_bus_name ITSOESBBus02

destination_identifier ManufacturerB

bus_member_name ITSOESB01Node01:server1

forward_routing_path ITSOESBBus02:ManufacturerBService
218 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 9-32 Create destination and routing path for ManufacturerB

14.Repeat steps 2 to 11 for the WarehouseCallBack destination using the values
in Table 9-33 on ITSOESBBus02.

Table 9-33 Create destination and routing path for WarehouseCallBackService

15.Repeat steps 2 to 11 for the WarehouseCallBack destination using the values
in Table 9-34 on ITSOESBBus02, and save all of your changes.

Table 9-34 Create destination and routing path for LoggingFacilityService

Item Value

local_bus_name ITSOESBBus01

dest_bus_name ITSOESBBus02

destination_identifier ManufacturerC

bus_member_name ITSOESB01Node01:server1

forward_routing_path ITSOESBBus02:ManufacturerCService

Note: The WarehouseCallBack (and LoggingFacility) destinations must be
created on the second ESB (ITSOESBBus02). This is because the
applications that call these services are running on a server that attaches only
to this bus. The destination then forwards the requests to the remote bus.

Item Value

local_bus_name ITSOESBBus02

dest_bus_name ITSOESBBus01

destination_identifier WarehouseCallBackService

bus_member_name ITSOESB02Node01:server1

forward_routing_path ITSOESBBus01:WarehouseCallBackService

Item Value

local_bus_name ITSOESBBus02

dest_bus_name ITSOESBBus01

destination_identifier LoggingFacilityService

bus_member_name ITSOESB02Node01:server1

forward_routing_path ITSOESBBus01:LoggingFacilityService
 Chapter 9. Directly Connected homogeneous ESBs 219

Creating the inbound services
An inbound service is defined to allow Web service clients to connect into the
bus. An inbound service converts an incoming Web service request into a
message and places it on a destination. The message can then be routed,
transformed, and processed. Inbound services can be invoked using SOAP over
JMS or SOAP over HTTP by associating the service with the relevant endpoint
listener. In this scenario all inbound services requests are performed using
SOAP over HTTP.

Inbound services define how Web service consumers communicate with the
service integration bus. Outbound services define how the service integration
bus communicates with the Web service providers. An inbound and outbound
service must be defined for each Web service routed through the service
integration bus.

Therefore, the next task is to create the inbound services so that Web service
requests can be made into the bus.

Creating inbound services on the first ESB
The first inbound service to be defined on the first ESB (ITSOESBBus01) will be
for the LoggingFacilityService using the values defined in Table 9-35.

Table 9-35 Create the inbound service for RetailerService

1. From the admin console expand Service integration and click Buses.

2. Click bus_name.

3. From the bus details page under Services, click Inbound Services.

4. Click New.

Item Value

bus_name ITSOESBBus01

service_dest_name RetailerService

wsdl_loc http://ITSOESB01.itso.ral.ibm.com:9080/Retailer/services/Ret
ailer/wsdl/Retailer_Impl.wsdl

inbound_name RetailerServiceInboundService

endpoint_name ITSOESB01Node01:server1:SOAPHTTPChannel1
220 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

5. In the first window (Figure 9-43), select the Service destination name and
supply the template WSDL service definition, then click Next:

– Service destination name

This field is for specifying the destination that inbound service requests
should be placed on. In our case we enter the service destination that was
designated while creating the outbound service definition described in
“Creating the outbound services” on page 207.

Select the value of service_dest_name.

– Template WSDL location

This field is for specifying the WSDL definition for the Web service to be
invoked. Enter the value of wsdl_loc.

Figure 9-43 Service destination and template WSDL settings page

6. Select the service from the WSDL. Our WSDL has only one entry so accept
the defaults and click Next.

7. The page shown in Figure 9-44 on page 222, requires you to enter the
inbound service name and endpoint listener.

– Inbound service name

The name of the inbound service. This will be the name of the service in
the WSDL and affects the code that is generated by the tooling. By default
it is based on the service destination name with InboundService at the
end. We will accept the default of inbound_name.
 Chapter 9. Directly Connected homogeneous ESBs 221

– Endpoint listeners

The endpoint listener defines what mechanism will be used to get Web
service requests into the inbound service. There should only be one
endpoint listener available for selection: endpoint_name.

Click Next.

Figure 9-44 Specify inbound service name and endpoint listener

8. The final page enables UDDI-specific properties to be specified. As we are
not using UDDI, accept the defaults and click Finish.

9. Repeat steps 1 to 8 for the LoggingFacility inbound service using the values in
Table 9-36.

Table 9-36 Create the inbound service for LoggingFacility

Note: The LoggingFacility service will also be defined later as an inbound
service on ITSOESBBus02 as it is called by applications that are hosted on
that host system.

Item Value

bus_name ITSOESBBus01

service_dest_name LoggingFacilityService

wsdl_loc http://ITSOESB01.itso.ral.ibm.com:9080/LoggingFacility/servic
es/LoggingFacility/wsdl/LoggingFacility_Impl.wsdl

inbound_name LoggingFacilityServiceInboundService

endpoint_name ITSOESB01Node01:server1:SOAPHTTPChannel1
222 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

10.Repeat steps 1 to 8 for the Warehouse inbound service using the values in
Table 9-37.

Table 9-37 Create the inbound service for Warehouse

11.Repeat steps 1 to 8 for the ManufacturerA inbound service using the values in
Table 9-38.

Table 9-38 Create the inbound service for ManufacturerA

Item Value

bus_name ITSOESBBus01

service_dest_name WarehouseService

wsdl_loc http://ITSOESB01.itso.ral.ibm.com:9080/Warehouse/services/
Warehouse/wsdl/Warehouse_Impl.wsdl

inbound_name WarehouseServiceInboundService

endpoint_name ITSOESB01Node01:server1:SOAPHTTPChannel1

Note: The Manufacturer services are hosted as outbound services on the
second service integration bus (ITSOESBBus02). However, they are called by
the Warehouse application that will make their service requests to the first
service integration bus (ITSOESBBus01). Therefore, inbound services are
required on ITSOESBBus01.

Also note, these instructions assume that ITSOESBBus02 is using a
WC_defaulthost port of 9081.

Item Value

bus_name ITSOESBBus01

service_dest_name ManufacturerA

wsdl_loc http://ITSOESB02.itso.ral.ibm.com:9081/Manufacturer/service
s/Manufacturer/wsdl/Manufacturer_Impl.wsdl

inbound_name ManufacturerAInboundService

endpoint_name ITSOESB01Node01:server1:SOAPHTTPChannel1
 Chapter 9. Directly Connected homogeneous ESBs 223

12.Repeat steps 1 to 8 for the ManufacturerB inbound service using the values in
Table 9-39.

Table 9-39 Create the inbound service for ManufacturerB

13.Repeat steps 1 to 8 for the ManufacturerC inbound service using the values in
Table 9-40.

Table 9-40 Create the inbound service for ManufacturerC

14.That completes the inbound service creation steps for the first ESB. Save
your changes to the master configuration.

Creating inbound services on the second ESB
Follow the procedures in the previous section, using steps 1 to 8 from “Creating
the inbound services” on page 220.

1. The first inbound service to be defined on the second ESB (ITSOESBBus02)
is the LoggingFacilityService using the values defined in Table 9-41 on
page 225.

Item Value

bus_name ITSOESBBus01

service_dest_name ManufacturerB

wsdl_loc http://ITSOESB02.itso.ral.ibm.com:9081/Manufacturer/service
s/Manufacturer/wsdl/Manufacturer_Impl.wsdl

inbound_name ManufacturerBInboundService

endpoint_name ITSOESB01Node01:server1:SOAPHTTPChannel1

Item Value

bus_name ITSOESBBus01

service_dest_name ManufacturerC

wsdl_loc http://ITSOESB02.itso.ral.ibm.com:9081/Manufacturer/service
s/Manufacturer/wsdl/Manufacturer_Impl.wsdl

inbound_name ManufacturerCInboundService

endpoint_name ITSOESB01Node01:server1:SOAPHTTPChannel1
224 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 9-41 Create the inbound service for LoggingFacility

2. Repeat step 1 on page 220 to step 8 on page 222 for the WarehouseCallBack
inbound service using the values defined in Table 9-42.

Table 9-42 Create the inbound service for WarehouseCallBack

3. Save your changes to the master configuration.

Item Value

bus_name ITSOESBBus02

service_dest_name LoggingFacilityService

wsdl_loc http://ITSOESB01.itso.ral.ibm.com:9080/LoggingFacility/servic
es/LoggingFacility/wsdl/LoggingFacility_Impl.wsdl

inbound_name LoggingFacilityServiceInboundService

endpoint_name ITSOESB02Node01:server1:SOAPHTTPChannel1

Note: The LoggingFacility service is hosted as an outbound service on the
first service integration bus (ITSOESBBus01). However, it is called by the
Manufacturer MDB application that will make its service request to the second
service integration bus (ITSOESBBus02). Therefore, inbound services are
required on ITSOESBBus02. Also, the LoggingFacility service is also defined
as an inbound service on ITSOESBBus01 as it is called by applications that
are hosted on that host system as well.

Item Value

bus_name ITSOESBBus02

service_dest_name WarehouseCallBackService

wsdl_loc http://ITSOESB01.itso.ral.ibm.com:9080/Warehouse/services/
WarehouseCallBack/wsdl/WarehouseCallBack_Impl.wsdl

inbound_name WarehouseCallBackServiceInboundService

endpoint_name ITSOESB02Node01:server1:SOAPHTTPChannel1

Note: The WarehouseCallBack service is hosted as an outbound service on
the first service integration bus (ITSOESBBus01). However, it is called by the
Manufacturer MDB application that will make its service request to the second
service integration bus (ITSOESBBus02). Therefore, inbound services are
required on ITSOESBBus02.
 Chapter 9. Directly Connected homogeneous ESBs 225

Editing the client bindings to call inbound services
We have now defined outbound services that point to underlying Web services,
and we have defined inbound services that map to the outbound services. The
final task is to modify the WS-I applications so they are retargeted to invoke
services through the service integration bus inbound services. This is done by
overriding the target endpoint in the Web service client bindings of the WS-I
application EJB and Web modules.

The client bindings define the WSDL file name and preferred ports. The relative
path of a Web service in a module is specified within a WSDL file that contains
the actual URL to be used for requests. The address is needed only if the original
WSDL file did not contain a URL, or when a different address is needed.

By specifying the name of an endpoint URI that is used to override the current
endpoint, a client uses this endpoint instead of the endpoint specified in the
WSDL file. If an assembled application contains a Web service client that is
statically bound, the client is locked into using the implementation (service end
point) identified in the WSDL file used during development. Overriding the
endpoint is an alternative to configuring the deployed WSDL attribute. The
overridden endpoint URI attribute is specified on a per-port basis. It does not
require an alternative WSDL file within the module. The overridden endpoint URI
takes precedence over the deployed WSDL attribute. The client uses this value
for the service endpoint URI or SOAP address instead of the value in the static
client bindings.

Editing client bindings for the second ESB
Three enterprise applications are installed in the server running on
ITSOESB02.itso.ral.ibm.com: ManufacturerA, ManufacturerB, and
ManufacturerC. Each of these enterprise applications contain two Web service
clients: a Web service client for LoggingFacilityService and a Web service client
for WarehouseCallBack. All of these Web service clients must be redirected to
point to the relevant inbound service.

For example, ManufacturerA needs both Web service clients redirected as
shown in Figure 9-45 on page 227.
226 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-45 Web service client bindings to modify for ManufacturerA

Initially we retarget the WarehouseCallBackService Web service client in
ManufacturerA using the values in Table 9-43.

Table 9-43 Edit bindings for WarehouseCallBackService from ManufacturerA

Note: The following instructions assume that the server running on
ITSOESB02.itso.ral.ibm.com uses port 9081 for WC_defaulthost. To
determine the WC_defaulthost port being used, perform the following:

� Click Servers → Application Servers and click on the server assigned to
the node ITSOESB02Node01.

� Under Communications, expand Ports. This shows the value of
WC_defaulthost.

If the value of WC_defaulthost is other than 9081, you should use this value in
place of 9081 in the instructions that follow.

Item Value

app1_name Manufacturer

EJB1_name ManufacturerEJB.jar

web_service_name WarehouseCallBackService

port_name WarehouseCallBack

ITSOESB02.itso.ral.ibm.com

Applications Inbound Services

ManufacturerA

ManufacturerB

ManufacturerC

WarehouseCallBackServiceInboundService

LoggingFacilityServiceInboundService
 Chapter 9. Directly Connected homogeneous ESBs 227

1. Open 2 admin console windows.

2. In the first admin console window, expand Applications and click Enterprise
Applications.

3. Select app1_name.

4. From the Enterprise Application configuration panel under Related Items,
click EJB Modules.

5. Select EJB1_name.

6. Under Additional Properties, select Web services client bindings.

7. In the web_service_name row, select Edit in the Port Information column as
shown in Figure 9-46.

Figure 9-46 Select port information

8. In the second admin console window, expand Service Integration and click
Buses.

9. Select bus_name.

10.Under Additional properties, click Inbound Services.

11.Select inbound_name.

12.Under Additional Properties, select Publish WSDL files to zip file.

bus_name ITSOESBBus02

inbound_name WarehouseCallBackServiceInboundService

publish_WSDL_name WarehouseCallBackServiceInboundService.zip

WSDL_file_name ITSOESBBus02.WarehouseCallBackServiceInboundServic
eService.wsdl

location_name http://ITSOESB02.itso.ral.ibm.com:9081/wsgwsoaphttp1/so
aphttpengine/ITSOESBBus02/WarehouseCallBackServiceI
nboundService/ITSOESB02Node01_server1_SOAPHTTPC
hannel1_InboundPort

Item Value
228 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

13.Select publish_WSDL_name (Figure 9-47) and open it with a zip file editor.

Figure 9-47 Publish WSDL file

14.Open the wsdl_file_name file.

15.Copy the location_name from the address location tag in the WSDL file as
shown in Figure 9-48.

Figure 9-48 Copy the service location

16.Back in the first admin console window, paste the location_name into the
Overridden Endpoint URL column entry of the port_name row, and click OK.

Figure 9-49 Override the endpoint URL
 Chapter 9. Directly Connected homogeneous ESBs 229

The LoggingFacilityService Web client also must be updated. You can determine
the URL for the LoggingFacilityService using the method described above, but for
brevity, we fast-track this process by providing you with this URL. Complete the
following steps to edit the LoggingFacilityService Web service client bindings,
using the values defined in Figure 9-44.

Table 9-44 Edit client bindings for LoggingFacilityService from ManufacturerA

17.Expand Applications and click Enterprise Applications. Click app_name.

18.Click module_type, then click module_name.

19.Under Additional Properties, click Web services client bindings.

20.Click Edit under the Port Information column for the Web service
web_service_name.

21.In the Overridden Endpoint URL field enter location_name and click OK.

The other two Manufacturer enterprise applications must be updated similarly, as
shown in Figure 9-50.

Item Value

app_name Manufacturer

module_type EJB Modules

module_name ManufacturerEJB.jar

web_service_name LoggingFacilityService

location_name http://ITSOESB02.itso.ral.ibm.com:9081/wsgwsoaphttp1/soa
phttpengine/ITSOESBBus02/LoggingFacilityServiceInbound
Service/ITSOESB02Node01_server1_SOAPHTTPChannel1
_InboundPort
230 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-50 Web service client bindings to modify for Manufacturers B and C

22.Edit the Web service bindings for ManufacturerB by repeating steps 17 to 21.
There are two bindings to change; use the values in Table 9-45 and
Table 9-46.

Table 9-45 Edit client bindings for WarehouseCallBackService from ManufacturerB

Table 9-46 Edit client bindings for LoggingFacilityService from ManufacturerC

Item Value

app_name ManufacturerB

module_type EJB Modules

module_name ManufacturerEJB.jar

web_service_name WarehouseCallBackService

location_name http://ITSOESB02.itso.ral.ibm.com:9081/wsgwsoaphttp1/soa
phttpengine/ITSOESBBus02/WarehouseCallBackServiceInb
oundService/ITSOESB02Node01_server1_SOAPHTTPChan
nel1_InboundPort

Item Value

app_name ManufacturerC

module_type EJB Modules

ITSOESB02.itso.ral.ibm.com

Applications Inbound Services

ManufacturerA

ManufacturerB

ManufacturerC

LoggingFacilityServiceInboundService

WarehouseCallBackServiceInboundService
 Chapter 9. Directly Connected homogeneous ESBs 231

Editing client bindings for the first ESB
All Web service clients hosted on the first ESB (ITSOESB01) also have to be
edited to point to the relevant inbound services. All of these Web service clients
are hosted in a single enterprise application: UIRetailerLogging. This enterprise
application contains the SCMSampleUI, Retailer, Warehouse, and
LoggingFacility applications.

Figure 9-51 shows the client bindings to be edited for these applications.

Figure 9-51 Web service client bindings to modify for UIRetailerLogging

module_name ManufacturerEJB.jar

web_service_name LoggingFacilityService

location_name http://ITSOESB02.itso.ral.ibm.com:9081/wsgwsoaphttp1/soa
phttpengine/ITSOESBBus02/LoggingFacilityServiceInboundS
ervice/ITSOESB02Node01_server1_SOAPHTTPChannel1_I
nboundPort

Item Value

ITSOESB01.itso.ral.ibm.com

Applications Inbound Services

SCMSampleUI

Retailer

Warehouse

LoggingFacility

LoggingFacilityServiceInboundService

RetailerServiceInboundService

WarehouseServiceInboundService

ManufacturerAInboundService

ManufacturerBInboundService

ManufacturerCInboundService
232 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

23.Update each Web service client by repeating steps 17 to 21 in the previous
section. There are eight Web service clients to update in total. Use the values
in tables Table 9-47 through Table 9-54 on page 235, then save your changes
to the master configuration.

Table 9-47 Edit client bindings for RetailerService from SCMSampleUIWeb

Table 9-48 Edit client bindings for LoggingFacilityService from SCMSampleUIWeb

Item Value

app_name UIRetailerLogging

module_type Web module

module_name SCMSampleUIWeb.war

web_service_name RetailerService

location_name http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1/s
oaphttpengine/ITSOESBBus01/RetailerServiceInboundSe
rvice/ITSOESB01Node01_server1_SOAPHTTPChannel1
_InboundPort

Item Value

app_name UIRetailerLogging

module_type Web module

module_name SCMSampleUIWeb.war

web_service_name LoggingFacilityService

location_name http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1/s
oaphttpengine/ITSOESBBus01/LoggingFacilityServiceInb
oundService/ITSOESB01Node01_server1_SOAPHTTPC
hannel1_InboundPort
 Chapter 9. Directly Connected homogeneous ESBs 233

Table 9-49 Edit client bindings for LoggingFacilityService from RetailerWeb

Table 9-50 Edit client bindings for WarehouseService from RetailerWeb

Table 9-51 Edit client bindings for LoggingFacilityService from WarehouseService

Item Value

app_name UIRetailerLogging

module_type Web module

module_name RetailerWeb.war

web_service_name LoggingFacilityService

location_name http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1/s
oaphttpengine/ITSOESBBus01/LoggingFacilityServiceInb
oundService/ITSOESB01Node01_server1_SOAPHTTPC
hannel1_InboundPort

Item Value

app_name UIRetailerLogging

module_type Web module

module_name RetailerWeb.war

web_service_name WarehouseService

location_name http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1/s
oaphttpengine/ITSOESBBus01/WarehouseServiceInboun
dService/ITSOESB01Node01_server1_SOAPHTTPChan
nel1_InboundPort

Item Value

app_name UIRetailerLogging

module_type EJB Modules

module_name WarehouseEJB.jar

web_service_name LoggingFacilityService

location_name http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1/s
oaphttpengine/ITSOESBBus01/LoggingFacilityServiceInb
oundService/ITSOESB01Node01_server1_SOAPHTTPC
hannel1_InboundPort
234 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 9-52 Edit client bindings for ManufacturerService from WarehouseService

Table 9-53 Edit client bindings for ManufacturerBService from WarehouseService

Table 9-54 Edit client bindings for ManufacturerCService from WarehouseService

Item Value

app_name UIRetailerLogging

module_type EJB Modules

module_name WarehouseEJB.jar

web_service_name ManufacturerService

location_name http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1/s
oaphttpengine/ITSOESBBus01/ManufacturerAInboundSer
vice/ITSOESB01Node01_server1_SOAPHTTPChannel1_
InboundPort

Item Value

app_name UIRetailerLogging

module_type EJB Modules

module_name WarehouseEJB.jar

web_service_name ManufacturerBService

location_name http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1/s
oaphttpengine/ITSOESBBus01/ManufacturerBInboundSer
vice/ITSOESB01Node01_server1_SOAPHTTPChannel1_
InboundPort

Item Value

app_name UIRetailerLogging

module_type EJB Modules

module_name WarehouseEJB.jar

web_service_name ManufacturerCService

location_name http://ITSOESB01.itso.ral.ibm.com:9080/wsgwsoaphttp1/s
oaphttpengine/ITSOESBBus01/ManufacturerCInboundSer
vice/ITSOESB01Node01_server1_SOAPHTTPChannel1_
InboundPort
 Chapter 9. Directly Connected homogeneous ESBs 235

9.3.6 Testing the scenario
The scenario can now be tested. The WS-I sample application can be tested by
entering the following URL in a Web browser on the machine that is hosting the
application server:

http://ITSOESB01.itso.ral.ibm.com:9080/SCMSampleUI/

This should start the Supply Chain Management Sample Application (Figure 9-52).

Figure 9-52 SCM Sample Application

The following steps describe how to use the application:

1. To retrieve a list of products, click Place New Order. This displays a list of 10
products, as shown in Figure 9-53.
236 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-53 SCM Sample product listing

2. You can order multiple quantities of each product. If the warehouse has
sufficient stock for the product, an order will be placed. If the placement of the
order causes the warehouse’s stock level of that product to drop below a
certain threshold, then a reorder request is sent to the manufacturer of the
product.

The warehouse stock level is stored in the org.ws_i.www.Impl.WarehouseImpl
class in the WarehouseEJB project. For example, Table 9-55 shows the stock
level for the first three products.

Table 9-55 Warehouse stock levels

Product number Current level Minimum level Maximum level

605001 10 5 25

605002 7 4 20

605003 15 10 50
 Chapter 9. Directly Connected homogeneous ESBs 237

If the current stock level falls below the minimum stock level, the stock is
reordered so that, after the reorder has arrived, the stock will be at maximum
stock level. For example, you order six items of 605001. This reduces the
current stock level to four (10 - 6). A reorder will be made for 21 new items.

Each manufacturer only manufactures certain products. For example,
ManufacturerA manufacturers products 605001, 605004, and 605007.

3. Place orders for multiple products in the sample application by entering
quantities and pressing Submit Order. For example, order three items of
product 605001 and six items of product 605002. This triggers a reorder of
product 605002 with ManufacturerB.

4. The order status window (Figure 9-54) shows which orders were placed and
which orders were not placed due to insufficient stock.

Figure 9-54 SCM Sample order status page

5. Click Track Order to see the entries that were written to the LoggingFacility.
As new entries are added to the Logging Facility, you must refresh this screen
by clicking Order Status and then clicking Track Order again. Figure 9-55 on
page 239 shows the results of an order in which products 605001 and 605002
were shipped and a reorder for 19 units of product 605002 was placed with
ManufacturerB.
238 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 9-55 SCM Sample track order page

6. To start a new order, click Configure. At this point, all state is lost, and the
warehouse stock levels return to their default values.

7. To test calls to all manufacturers, enter a quantity of 6 against products
605001, 605002, and 605003 as shown in Figure 9-56.

Figure 9-56 Enter quantity values

By entering these values, a replenishment request will be sent to each of the
three manufacturers between the two ESBs, with logging and callback requests
flowing in reverse. Figure 9-57 on page 240 shows the output from this request.
 Chapter 9. Directly Connected homogeneous ESBs 239

Figure 9-57 Output from an order causing replenishment from all manufacturers
240 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Chapter 10. Directly Connected
heterogeneous ESBs

In this chapter, we expand the Directly Connected ESB pattern to show how to
integrate two heterogeneous ESB implementations. On a technology and product
level, this chapter describes the use of the WebSphere MQ Link to federate a
WebSphere Application Server V6 hosted ESB with a WebSphere Business
Integration Message Broker V5 ESB.

In this chapter, the following points are discussed:

� Design guidelines and business needs addressed by the sample scenario,
and selection of the relevant ESB integration patterns.

� Development guidelines that describe how to create a mediation in Rational
Application Developer to run in WebSphere Application Server, and how to
create message flows and message sets for WebSphere Business Integration
Message Broker.

� Runtime guidelines to create and integrate two ESBs, one implemented in
WebSphere Application Server and one implemented in WebSphere
Business Integration Message Broker.

10
© Copyright IBM Corp. 2005. All rights reserved. 241

The IBM Enterprise Service Bus strategy:

In September 2005, IBM announced two products intended to be the primary
solution for building ESBs:

� WebSphere Enterprise Service Bus V6

Delivers an ESB with Web services connectivity and data transformation.

� WebSphere Message Broker V6

Delivers an advanced ESB with universal connectivity and data
transformation.

At the time this book was written, WebSphere Enterprise Service Bus was not
generally available. In lieu of this product, the service integration bus of
WebSphere Application Server V6 is used in this chapter to build ESB
solutions.

For more information about the IBM ESB strategy see:

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb
242 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb

10.1 Design guidelines
This section discusses sample business needs for linking two heterogeneous
ESBs that belong to different organizations. It maps these business requirements
to the sample scenario and to the appropriate ESB integration patterns.

10.1.1 Business scenario
The business scenario implemented in this chapter represents a variation of the
WS-I sample business scenario as defined in Chapter 7, “The business scenario
used in this book” on page 117. It defines a supply chain management process
that is split across two organizations, as seen in Figure 10-1.

Figure 10-1 High-level business context showing the existing infrastructure

High-level business context
The business context for this scenario is the same as the business context
described in Chapter 9, “Directly Connected homogeneous ESBs” on page 149.
It describes a supply chain management scenario in which customers access an
electonics retailer’s Web site, review a catalog of available products, and place
orders at a warehouse for items such as televisions, DVD players, and video
cameras. The stock of the warehouse is replenished by placing orders with the
relevant manufacturer. The manufacturing systems reside in a different
organization from the other components in the supply chain management
scenario.

Intranet

Manufacturer
Manufacturer

Manufacturer

Logging
Facility

WarehouseRetail
System

SCM
Application

Organization A

Organization B
 Chapter 10. Directly Connected heterogeneous ESBs 243

Organizational overview
As a result of the acquisition of the manufacturers, the company has two
separate organizations, each containing its own functional components:

� Organization A

– Internet based e-commerce systems (SCM application)

– Retail system

– Warehouse and delivery

� Organization B

– Manufacturing capability

Organization A contains bespoke software applications linked together using the
Enterprise Service Bus technology in WebSphere Application Server V6.

Organization B contains three stand-alone divisional systems known as
ManufacturerA, ManufacturerB, and ManufacturerC.

Integration of organizations
The manufacturing conglomerate itself has grown over time and actually
currently encompasses three separate divisions of systems, known as
ManufacturerA, ManufacturerB, and ManufacturerC. The Manufacturers have not
yet embraced the J2EE paradigm and respond to fulfillment orders using
messages that have an XML physical format and which are transported using
WebSphere MQ as a JMS provider. In order to conduct business with external
buyers (such as the warehouse of Organization A) the manufacturing company
has previously linked the manufacturers using IBM WebSphere Business
Integration Message Broker. This product provides a SOAP over JMS (with
WebSphere MQ as the JMS provider) interface for enterprises wishing to get
orders fulfilled by the Manufacturer.

The ESB built-in WebSphere Application Server will use the SOAP over JMS
capabilities of WebSphere Business Integration Message Broker to integrate the
two ESBs.
244 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

10.1.2 Selecting ESB integration patterns
We can apply the ESB integration patterns to the business scenario. The ESB
integration patterns are described in more detail in Chapter 6, “Integrating ESBs”
on page 87.

Selecting an ESB Topology pattern
The ESB Topology patterns describe network relationships between ESBs. To
help us select the appropriate ESB Topology pattern, we should select the
business and IT drivers that apply to our scenario, as described in 6.3.1, “ESB
Topology patterns overview” on page 90.

Our scenario requires the following business drivers:

� Limited interaction between different enterprise governance zones

Our scenario requires the following IT drivers:

� Route requests between two ESBs
� Only requires basic interactions

Therefore, based on these requirements for a simple, routing-based connection,
we select the Directly Connected ESBs runtime pattern (Figure 10-2). This
pattern describes a simple point-to-point connection between the two ESBs.

Figure 10-2 Directly Connected ESBs runtime pattern

This connection between the two ESBs will require an ESB Adapter Connector to
connect the two ESBs together. The selection of the relevant ESB Adapter
Connector is described later in this chapter.

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

HubHub HubHub App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory
 Chapter 10. Directly Connected heterogeneous ESBs 245

Product mapping for the Directly Connected ESBs pattern
Figure 10-3 shows the Product mapping for the Directly Connected ESBs
pattern.

Figure 10-3 Product mapping for heterogeneous Directly Connected ESBs

In this Product mapping, one ESB is implemented in WebSphere Application
Server Network Deployment V6, and the other is implemented in WebSphere
Business Integration Message Broker V5.

ESB based on WebSphere Application Server
WebSphere Application Server Network Deployment V6 is used in single-server
mode in this scenario to create a single WebSphere Application Server profile.
The use of Network Deployment enables this solution to be customized later to
support clustering and failover support.

The Hub of the ESB is implemented using the service integration bus feature of
WebSphere Application Server Network Deployment. The service integration bus
can be administered through the administration capability of WebSphere
Application Server Network Deployment V6.

Service consumers and providers connect to the service integration bus using
SOAP over HTTP and SOAP over JMS.

The Business Service Directory is supported by an IBM HTTP Server, which is
used to host the WSDL descriptions of each Web service used with the ESB4.

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration &
Security
Services

App Server/
Services

App Server/
Services

<Service Consumer>

Business
Service

Directory
Zone:

Enterprise Service Bus

Namespace
Directory

Administration &
Security
Services

HubHub HubHub App Server/
Services

Business
Service

Directory

•Service Integration Bus
(part of WebSphere
Application Server Network
Deployment V6.0.2)
•Network Cloudscape

App Server/
Services

<Service Provider>

IBM HTTP Server V6

WebSphere Administration
(part of WebSphere
Application Server
Network Deployment
V6.0.2)

•WebSphere Business
Integration Message
Broker V5
•DB2 Universal
Database V8.2.5

WebSphere
Application
Server Network
Deployment
V6.0.2

<Service Provider>

Legacy
Java program

<Service Provider>

WebSphere Business
Integration Message
Brokers Toolkit V5

•DB2 Universal
Database V8.2.5

IBM HTTP Server V6
246 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Network Cloudscape is used to store the Service Data Objects (SDO) repository.
In a production environment, a more powerful and reliable data store should be
used to host the SDO repository such as DB2 Universal Database.

ESB based on WebSphere Business Integration Message Broker ESB
The Hub node for the second ESB is implemented as a combination of
WebSphere Business Integration Message Broker V5, DB2 Universal Database
V8.2.5, and WebSphere MQ.

The Namespace Directory containing the endpoint locations of the Manufacturers
is stored in a table in DB2 Universal Database. This enables the endpoint locations
to be changed without having to change the message flows in WebSphere
Business Integration Message Broker that contain the ESB routing functionality.

The Hub receives SOAP over JMS messages, modifies the message format, and
sends non-SOAP formatted JMS messages to the legacy manufacturers. These
manufacturers are implemented as legacy Java applications.

The ESB is centrally administered using the WebSphere Business Integration
Message Brokers Toolkit. The Business Service Directory is supported by an
IBM HTTP Server, which is used to host the WSDL descriptions of each Web
service used with the ESB.

Selecting an ESB Adapter Connector pattern
The ESB Adapter Connector patterns can be applied to the ESB Topology
patterns to describe how calls between ESBs are implemented. The two Adapter
patterns are:

� Adapter Connector pattern

Service behaviors for the interaction determined at build time.

� Boundary Services Adapter Connector pattern

Service behaviors for the integration determined at runtime.

Using the business and IT drivers for the ESB Adapter Connector pattern (as
described in 6.3.3, “ESB Adapter Connector patterns overview” on page 93), we
can determine whether a Adapter Connector or Boundary Services Adapter
Connector pattern, or a combination of the two, is required in our scenario.

In our scenario, we have the following IT driver requirements:

� Primary requirement: Translate between otherwise incompatible technologies.
� Binding of service request context to ESB capabilities is done at build time.

Specifically, we need to mediate a technology mismatch between the SOAP/JMS
messages produced by WebSphere Application Server and the SOAP/JMS
 Chapter 10. Directly Connected heterogeneous ESBs 247

messages consumed by WebSphere Business Integration Message Broker.
These products use different JMS implementations. Conformance with the JMS
specification does not promise or provide for interoperability. We need an
intermediary to mediate the incompatibility between different JMS
implementations by acting as a compatible JMS client for each side of the
interaction. The ESB Adapter Connector pattern, shown in Figure 10-4,
addresses this requirement.

Figure 10-4 ESB Adapter Connector pattern

We use an ESB Adapter Connector pattern to connect the two ESB Hub nodes.
When a service consumer on the first ESB tries to invoke a service provider on
the second ESB, this connection is sent through the Connector node. The
Connector node transforms the SOAP/JMS message from WebSphere
Application Server to WebSphere Business Integration Message Broker.

10.2 Development guidelines
The development guidelines for this scenario describe the development steps
required to build an ESB in WebSphere Application Server, an ESB in
WebSphere Business Integration Message Broker, and all attached service
consumers and providers.

10.2.1 ESB based on WebSphere Application Server
This section describes the development of an ESB based on WebSphere
Application Server and its associated service consumers and providers.

Enterprise

Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory Zone:
Enterprise Service Bus

Namespace
Directory

Administration
& Security
Services

HubHub HubHub App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>

Business
Service

Directory

Connector
Adapter

Connector
248 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Message transformation mediation
This mediation converts a SOAP request originating from WebSphere Business
Integration Message Broker into one that can be processed using WebSphere
Application Server. This conversion adds JMS headers to the message, and
forwards the message on to the correct JMS queue.

Implementing the mediation
1. Create a new Enterprise Application Project in Rational Application

Developer:

a. Start the New Enterprise Application Project Wizard (File → New →
Project → J2EE → Enterprise Application Project).

b. Specify the name as BrokerJMSProcessor.

c. Add a new module:

i. Deselect Create default module projects.

ii. Select Enterprise Java Bean.

iii. Specify the name as BrokerJMSProcessorEJB.

d. Complete the New Enterprise Application Project Wizard.
 Chapter 10. Directly Connected heterogeneous ESBs 249

2. Create a new Java class called BrokerJMSProcessor in the com.ibm.itso.ral
package with an interface of
com.ibm.websphere.sib.mediation.handler.MediationHandler within the
source folder BrokerJMSProcessorEJB/ejbModule. See Figure 10-5.

Figure 10-5 Creating a new Java class

3. Edit the Deployment Descriptor for the EJB BrokerJMSProcessorEJB. In the
J2EE Perspective, select the correct deployment descriptor (Figure 10-6 on
page 251).

a. Select the Mediation Handlers pane.
250 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 10-6 Edit the Deployment Descriptor for the EJB BrokerJMSProcessorEJB

b. Add a new mediation handler (Figure 10-7 on page 251):

• The Name of the Mediation Handler: BrokerJMSProcessor

• The Handler class: com.ibm.itso.ral.BrokerJMSProcessor

Figure 10-7 Defining a new Mediation Handler
 Chapter 10. Directly Connected heterogeneous ESBs 251

4. Complete the Define Mediation Handler property page, then save the
changes to the deployment descriptor. Figure 10-8 on page 252 shows the
completed property page.

Figure 10-8 The defined mediation handler

5. Write the mediation code.

a. There are two utility methods in the handler. One parses the endpointURL
into its constituent properties, the other retrieves the definition of a JMS
queue from JNDI (Example 10-1).
252 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Example 10-1 Utility methods to parse the endpointURL and retrieve a JMS Queue from
JNDI

final private static Properties getProperties(URL endpoint)
throws UnsupportedEncodingException {

Properties result = new Properties();

StringTokenizer tokenizer = new StringTokenizer(endpoint.getQuery(),
"|&");

while (tokenizer.hasMoreTokens()) {
String property = tokenizer.nextToken();

int index = property.indexOf('=');
String key, value;
if (index != -1) {

key = property.substring(0, index);
value = property.substring(index + 1);

} else {
key = property;
value = "";

}

key = URLDecoder.decode(key, "UTF-8");
value = URLDecoder.decode(value, "UTF-8");
result.put(key, value);

}
System.out.println("getProperties" + result);
return result;

}
final private static JmsQueue getDestination(String jndiReference) {

JmsQueue result;
try {

InitialContext initContext = new InitialContext();

Object objResult = initContext.lookup(jndiReference);

if (objResult == null) {
result = null;

} else {
if (objResult instanceof JmsQueue) {

result = (JmsQueue) objResult;

} else {
result = null;

}

 Chapter 10. Directly Connected heterogeneous ESBs 253

}

} catch (Exception ex) {
ex.printStackTrace();
result = null;

}
return result;

}

b. Next, write the handle method, which will be called each time a message
is handled by this mediation.

To retrieve the message that is being handled, the getSIMessage() method
is called in the handle method (Example 10-2).

Example 10-2 Obtaining a message object inside a mediation

SIMessageContext siMsgContext = ((SIMessageContext) arg0);
SIMessage siMessage = siMsgContext.getSIMessage();

c. Next we reference the user property endpointURL. This will be set by
WebSphere Business Integration Message Broker and contains all of the
properties that are necessary to invoke a SOAP over JMS message. We
complete this and following calls within a try-catch block (Example 10-3).

Example 10-3 Getting the JMS user property endpointURL

try {
String endpointURL = (String) siMessage.getUserProperty("endpointURL");

d. The endpointURL is then parsed into its properties and the targetService
JMS user property set (Example 10-4).

Example 10-4 Setting the targetService JMS user property

URL endpoint = new URL(endpointURL);
Properties properties = getProperties(endpoint);

String targetService = (String) properties.getProperty(
"targetService", null);

if (targetService != null && targetService.length() != 0) {

Note: To resolve the correct packages for the classes used in Example 10-1,
use the Source → Organize Imports feature of Rational Application
Developer. Where multiple packages are offered, choose:

� java.util.Properties
� java.net.URL
254 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

siMessage.setUserProperty("targetService", targetService);
}

e. The destination property from the endpointURL is found, and this is used
to do a JNDI lookup for the JMS Queue of the service provider. This JMS
Queue is then used to generate a SIDestinationAddress, which can be
set on the Forward Routing Path of a message (Example 10-5).

Example 10-5 Finding the destination and create a SIDestinationAddress

String destinationName = (String) properties.getProperty(
"destination", null);

JmsQueue dest = getDestination(destinationName);
SIDestinationAddress address = null;
if (dest != null) {

address = SIDestinationAddressFactory.getInstance()
.createSIDestinationAddress(dest.getDestName(),

dest.getBusName());
}

The destination of the service provider is then added to the Forward Routing
Path of the message. We will also catch any exceptions here (Example 10-6).

Example 10-6 Updating the Forward Routing Path

List frp = siMessage.getForwardRoutingPath();
frp.add(address);
siMessage.setForwardRoutingPath(frp);

} catch (Exception ex) {
ex.printStackTrace();

}

Mediation handlers should return true if the message is to continue
processing or false if the message should be delivered to the exception
destination,

6. The Enterprise Application Project BrokerJMSProcessor can now be exported
to an EAR file.

Note: To resolve the correct packages for the classes used in Example 10-5,
use the Source → Organize Imports feature of Rational Application
Developer. Where multiple packages are offered, choose:

� java.util.List
 Chapter 10. Directly Connected heterogeneous ESBs 255

10.2.2 ESB based on WebSphere Business Integration Message Broker
This section describes the development of an ESB based on WebSphere
Business Integration Message Broker and its associated service consumers and
providers.

All messages exchanged between the two ESBs use a SOAP over JMS protocol.
Messages sent between the WebSphere Business Integration Message Broker
ESB and the legacy manufacturers use native WebSphere MQ messages (MQ
message body data is not SOAP, and the application does not use the
WebSphere MQ JMS API). Five message flows are provided in order to mediate
messages from the ESB built in WebSphere Application Server and the legacy
manufacturer service providers attached to the WebSphere Business Integration
Message Broker ESB. The message flows are named:

� PurchaseOrderRequest
� PurchaseOrderResponse
� WarehouseCallbackRequest
� WarehouseCallbackResponse
� LogEvent

In order to mediate messages, WebSphere Business Integration Message
Broker receives data in a physical wire format and parses the information into
what is commonly referred to as the logical tree. Users of WebSphere Business
Integration Message Broker may select this parser using a message domain.
Available message domains include BLOB (Binary Large OBject), MRM
(Message Repository Manager), XML, and XMLNS (XML NameSpace). Of these
alternatives, the MRM domain is the only method that implements a parser to
check on the wire messages against a pre-defined format. In such circumstances
the message is said to be validated against the provided message dictionary.
When users select the message domain to be used, the decision should take into
account:

� Whether the message data itself will be manipulated by a mediation.

� The requirements of validation.

� The level of expected performance (when conducting any kind of tree-walk or
validation, a certain degree of performance overhead should be expected).

For the purpose of this book, the scenarios were implemented to demonstrate
message flows that implemented parsing using the MRM domain. Parts of the
ESQL code provided in the following chapter are based on techniques used in
the following SupportPac™:

� IA81: WebSphere Business Integration Message Broker and Web Services

Version 3 of this SupportPac only provides code that creates a logical tree
compatible with the XMLNS domain, so the ESQL has changed significantly.
256 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The main functional purpose of this ESB in the scenario is to add and remove
SOAP Envelopes from the data passing between service consumers and the
legacy manufacturer service providers. Figure 10-9 shows the main message
flows and the sequence in which they are typically called in the scenario.

Figure 10-9 WebSphere Business Integration Message Broker Message Flows

When the Retailer application requests products from the Warehouse through
the WebSphere Application Server ESB, such that the remaining stock in the
Warehouse falls below a minimum threshold, the scenario requires the
Warehouse to re-order stock from the Manufacturer. This is the first time in the
business scenario when cross-bus messaging is required. A PurchaseOrder
request message is sent using a SOAP over JMS message using the
WebSphere MQ Link to the WebSphere Business Integration Message Broker
ESB. The WebSphere MQ Link presents a facade to both the WebSphere
Application Server service integration bus messaging engine and the
WebSphere MQ queue manager. The service integration bus equivalent of an
WebSphere MQ queue manager is a messaging engine.

Messaging engines can send and receive WebSphere MQ messages to and
from queue managers using defined sender and receiver channels. In order to be
bi-directional, a channel must have two parts, each of which has a definition at

WMQ

WMQ

PurchaseOrderRequest Message Flow

LogEvent Message Flow

WarehouseCallbackRequest Message Flow

WarehouseCallbackResponse Message Flow

PurchaseOrderResponse Message Flow

PO.REQ.IN

MQBROKERLINK

MQBROKERLINK

ReplyDetermined

ReplyDetermined

MANX.PO

LOG.IN

WHCB.REQ.IN

ReplyDetermined

ReplyDetermined

M
anufacturer A

WMQ

M
anufacturer B

M
anufacturer C
 Chapter 10. Directly Connected heterogeneous ESBs 257

each end of the channel. So to create a bi-directional WebSphere MQ Link
between a queue manager and a messaging engine, a sender and receiver
channel must be defined on the messaging engine and on the queue Manager.
Each end of the channel is given the same name. In this scenario, the channel
definitions were made as shown in Figure 10-10.

Figure 10-10 Naming convention employed for WebSphere MQ Link

Creation and import of Buildtime artifacts
In order to fully implement the WebSphere Business Integration Message Broker
runtime ESB, development of the required broker artifacts must be carried out
within the WebSphere Business Integration Message Broker Buildtime tooling
component. The message broker requires two different kinds of artifact: Message
Flows and Message Sets. Each of these kind of resources has an associated
project type within the Message Broker Toolkit. The rest of this section provides
instructions for the creation of all required Buildtime resources in order to run the
scenario.

The required message flows are supplied in a pre-built message flow project as
additional materials with this book. The instructions in “Import the message flow
project” on page 259 describe how to import these message flows into the toolkit.

Full functional descriptions of these flows and the ESQL code that they contain
are then provided in the sections that follow.

After this, full instructions are provided for the creation of the Message Set
components. These instructions are provided in a step-by-step format. If you
prefer, a complete version of the message set project is also provided in the
additional materials accompanying this book.

All additional materials for this chapter can be downloaded as described in
Appendix A, “Additional material” on page 317.

WebSphere Application Server V6
Messaging Engine

WebSphere MQ V5.3
Queue Manager

ITSOESB03

Sender Channel of WebSphere MQ Link

ITSOESB03.TO.ITSOESB04

Receiver Channel of WebSphere MQ Link

ITSOESB04.TO.ITSOESB03

Receiver Channel of Queue Manager

ITSOESB03.TO.ITSOESB04

Sender Channel of Queue Manager

ITSOESB04.TO.ITSOESB03

ITSOESB04
258 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Import the message flow project
1. Download the samples provided with this book, and copy the

mfp_Manufacturer directory.

2. Paste the mfp_Manufacturer folder into your message broker workspace. If
you installed the WebSphere Business Integration Message Broker Toolkit in
the default location, this will be C:\Program Files\IBM\WebSphere Business
Integration Message Brokers\eclipse\workspace.

3. Repeat these two steps for the soaplib project.

4. Start the WebSphere Business Integration Message Broker Toolkit.

5. Import the message flow project into the eclipse environment:

a. Click File → Import → Message Set Project.

b. Select Existing Project into Workspace and click Next.

c. Click Browse and locate the mfp_Manufacturer directory under your
workspace directory, and click Finish.

6. Import the soaplib project in the same way.

All message flows used in this scenario are located within this message flow
project. You may seem some warnings after these two projects have been
imported. These can be ignored, and will be addressed when the message sets
are built.

PurchaseOrderRequest message flow
The PurchaseOrderRequest Message Flow routes messages from the ESB built
in WebSphere Application Server to the legacy manufacturer component within
the overall architecture. Its primary purpose is to translate SOAP over JMS
(provided by WebSphere MQ) messages into legacy XML over WebSphere MQ
messages.

The logic in the PurchaseOrderRequest message flow could all have been
contained in a single Compute node (for better performance), but to more clearly
separate the logical units of code, three functional nodes have been used:

Compute node: RemoveSOAP
Compute node: Transform
Reset Content Descriptor node: RCD
 Chapter 10. Directly Connected heterogeneous ESBs 259

Figure 10-11 PurchaseOrderRequest message flow

Compute node: RemoveSOAP
The primary purpose of this node is to remove the SOAP Envelope from around
the message. Before calling any of the library routines to carry out this function,
the Reply information from the MQMD header is saved into the MQRFH2 header.

Example 10-7 RemoveSOAP: saving reply information

CALL CopyMessageHeaders();
-- Save Reply destination information so it can be reinstated by the
-- PurchaseOrderResponse message flow once the Legacy Manufacturer
-- has responded to the WBIMB ESB.
SET OutputRoot.MQRFH2.usr.FinalReplyToQ = InputRoot.MQMD.ReplyToQ;
SET OutputRoot.MQRFH2.usr.FinalReplyToQMgr = InputRoot.MQMD.ReplyToQMgr;

The MQMD Reply fields are given new values later in the flow in order to make
the Legacy Manufacturer application direct its response back to the correct
message flow (PurchaseOrderResponse). When the response message comes
back to the Broker, this response flow reinstates this information as the
destination that the WebSphere Business Integration Message Broker ESB must
direct the message to on the message bus of the ESB built in WebSphere
Application Server.

The next stage of the ESQL calls three library ESQL procedures (Example 10-8).

Example 10-8 RemoveSOAP: setting valid operations and headers

-- Initialise Service Configuration Data
CALL soaplib_service_init(Environment,'Intermediary','

www.itso.ral.ibm.com','PurchaseOrderRequest');
-- Declare valid operations and headers in the Environment tree
CALL soaplib_set_validop(Environment,'PurchaseOrder');
CALL soaplib_set_validhdr(Environment,'Configuration');
CALL soaplib_set_validhdr(Environment,'StartHeader');
260 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

The message flow project named soaplib contains the broker schema
soapbrschema, in which the ESQL file soaplib.esql contains all of the library
procedures. Note that ESQL modules are granted access to library procedures
located in different files using PATH statements at the top of their files. The role of
the soaplib_service_init procedure is to declare the SOAP ServiceName, SOAP
ServiceRole, and SOAP ServiceActor in the Environment tree. If a SOAP fault is
thrown by later code, these values will be used to construct the fault and
therefore identify where in the service provider and consumer interaction the
failure occurred.

The role of the soaplib_set_validop procedure is to declare the allowed
operations for the SOAP message that has been received by the message flow.
These valid operations are written into the Environment tree so that values from
the message may be compared against them.

The role of the soaplib_set_validhdr procedure is to declare the allowed headers
for the SOAP message which has been received by the message flow. These
valid headers are written into the Environment tree so that values from the
message may be compared against them.

Example 10-9 shows the code to decode the SOAP and save the headers.

Example 10-9 RemoveSOAP: Decoding the SOAP and saving the SOAP headers

DECLARE Status CHAR;
-- Remove the SOAP Envelope from the message
CALL soaplib_decode(InputRoot,OutputRoot,Environment,Status);
-- Save away SOAP Headers for use when constructing Legacy body later
DECLARE soap11 NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';
DECLARE InRef REFERENCE TO InputRoot.MRM.soap11:Header;
MOVE InRef FIRSTCHILD;
CREATE FIELD Environment.SOAP.Headers;
DECLARE Headers REFERENCE TO Environment.SOAP.Headers;
WHILE LASTMOVE(InRef) DO

CREATE LASTCHILD OF Headers FROM InRef;
MOVE InRef NEXTSIBLING;

END WHILE;
-- Check for SOAP errors, and if necessary encode the fault from data in
-- Environment and then throw the fault
IF Status = 'Error' THEN

CALL soaplib_encode_fault(OutputRoot,Environment,InputExceptionList);
throw user exception VALUES ('soaplib_decode_request returned Error

status');
END IF;

The role of the soaplib_decode procedure is to check the format of the incoming
logical tree and then remove the SOAP Envelope. The ESQL has been coded
 Chapter 10. Directly Connected heterogeneous ESBs 261

specifically with correlation names that refer to a tree constructed in the MRM
domain. Branched code could be implemented to deal with both MRM and
XMLNS input domain scenarios. In the interests of describing coding approaches
not demonstrated in previous redbook publications, the code samples provided
deal exclusively with the MRM domain. The soaplib_decode procedure ensures
that the incoming logical tree contains a maximum of one SOAP Header, which
must precede the SOAP Body element. It also checks that only a single SOAP
Body exists. The SOAP V1.1 standard allows for the existence of additional
children of the SOAP Envelope, but the Basic Profile does not. In line with the
Basic Profile, the ESQL provided rejects the Logical Tree if more than one direct
child of the Envelope exists.

If any of the error conditions discussed above are triggered by the library
procedures, the character variable named Status returns an error value to the
parent routine.

Compute node: Transform
The second compute node in the message flow, Transform, receives the logical
tree (which no longer includes SOAP) and adjusts the outgoing logical tree to the
layout expected by the Legacy Manufacturers. The first part of the ESQL for this
is shown in Example 10-10.

Example 10-10 Transform: creating the output body from the ServiceData

-- The SOAP has been removed, now transform message into the format
-- expected by the Legacy Manufacturer
CREATE LASTCHILD OF OutputRoot DOMAIN 'MRM';
CREATE FIRSTCHILD OF OutputRoot.MRM NAMESPACE man NAME 'PurchaseOrder';
DECLARE Ref REFERENCE TO InputRoot.MRM.ServiceData;
MOVE Ref FIRSTCHILD;
WHILE LASTMOVE(Ref) DO

CREATE LASTCHILD OF OutputRoot.MRM.man:PurchaseOrder FROM Ref;
MOVE Ref NEXTSIBLING;

END WHILE;
-- The data originally included in SOAP Headers is expected in the main
-- message body by the Manufacturer
DECLARE HdrRef REFERENCE TO Environment.SOAP.Headers;
MOVE HdrRef FIRSTCHILD;
WHILE LASTMOVE(HdrRef) DO

CREATE LASTCHILD OF OutputRoot.MRM FROM HdrRef;
MOVE HdrRef NEXTSIBLING;

END WHILE;

The values of the fields in the message remain unchanged in the scenario but
several elements, although given the same names, reside in different
namespaces to the original message. The ESQL of Example 10-11 on page 263
262 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

alters the namespace property of several name-value pairs in the logical tree
without re-creating the entire element.

Example 10-11 Transform: changing the namespace of elements in output message

-- Many elements in the message expected by the Legacy Manufacturer
-- reside in a different namespace.
-- This ESQL changes the namespace of elements in the logical tree
SET OutputRoot.MRM.man:PurchaseOrder.*:orderNum NAMESPACE = po;
SET OutputRoot.MRM.man:PurchaseOrder.*:customerRef NAMESPACE = po;
SET OutputRoot.MRM.man:PurchaseOrder.*:items NAMESPACE = po;
SET OutputRoot.MRM.man:PurchaseOrder.po:items.*:Item NAMESPACE = po;
DECLARE I INTEGER 1;
WHILE I <=

CARDINALITY(OutputRoot.MRM.man:PurchaseOrder.po:items.po:Item[]) DO
SET OutputRoot.MRM.man:PurchaseOrder.po:items.po:Item[I].*:ID

NAMESPACE = po;
SET OutputRoot.MRM.man:PurchaseOrder.po:items.po:Item[I].*:qty

NAMESPACE = po;
SET OutputRoot.MRM.man:PurchaseOrder.po:items.po:Item[I].*:price

NAMESPACE = po;
SET I = I + 1;

END WHILE;
SET OutputRoot.MRM.man:PurchaseOrder.*:total NAMESPACE = po;
SET OutputRoot.MRM.*:Configuration NAMESPACE = man;
SET OutputRoot.MRM.*:StartHeader NAMESPACE = man;
SET OutputRoot.MRM.*:StartHeader.*:conversationID NAMESPACE = man;
SET OutputRoot.MRM.*:StartHeader.*:callbackLocation NAMESPACE = man;

The ESQL of Example 10-12 shows how to reset the MessageType field of the
Properties folder of the logical tree. This automatically updates the equivalent
property of the mcd folder in the MQRFH2 header. This property is examined by
the broker when the logical tree is converted to a bitstream (commonly written to
a WebSphere MQ queue by an MQOutput node). The code extract also shows
how the broker consults its routing database over ODBC to discover the queue
and queue manager to which outbound messages should be sent. These values
are set dynamically using a destination list, which is later consulted by the
message flow’s MQOutput node.

Example 10-12 Transform: setting message name and consult Routing Directory

-- Reset the message name now that SOAP Envelope has been removed
SET OutputRoot.Properties.MessageType = 'Manufacturer';
-- Examine the Routing Directory, to locate the destination for
-- the which Manufacturer and set the destination list accordingly.
-- The role of a naming directory for the WBIMB ESB is assumed by a DB2

data source named SVCDIR
-- Values are taken from this database using ODBC calls from this ESQL
 Chapter 10. Directly Connected heterogeneous ESBs 263

SET OutputLocalEnvironment.Destination.MQ.DestinationData[1].queueName =
RTRIM (THE (SELECT ITEM A.QUEUE FROM Database.ROUTE AS A WHERE A.SERVICE =
InputRoot.MQRFH2.usr.targetService));

SET
OutputLocalEnvironment.Destination.MQ.DestinationData[1].queueManagerName =
RTRIM (THE (SELECT ITEM A.QUEUEMGR FROM Database.ROUTE AS A WHERE A.SERVICE =
InputRoot.MQRFH2.usr.targetService));

-- Set up the reply information so that the Legacy Manufacturer service
-- returns the acknowledgment message (ready for soapification) to the
-- correct response message flow
SET OutputRoot.MQMD.ReplyToQ = 'PO.RES.IN';
SET OutputRoot.MQMD.ReplyToQMgr = 'QM1';

Reset Content Descriptor node: RCD
The final part of the message flow utilizes a ResetContentDescriptor node. This
node is present in order to avoid having to make the Legacy Manufacturers alter
the MQRFH2 headers of the messages they receive. The Manufacturer simply
copies the MQRFH2 header portion of the messages they receive into the output
messages, which are sent back to the ESB. This means that the mcd folder,
which is used by the broker to decide on which message domain (and therefore
parser and writer) should be used when interpreting the message on the wire, is
simply copied as well. If the MRM domain message were written directly to the
wire, then when received by the MQInput node of the PurchaseOrderResponse
message flow, the values held in the mcd folder would not match with the (now
altered) message body data output by the Manufacturer. This would cause the
messages to fail to be parsed.

The ResetContentDescriptor node in the PurchaseOrderRequest message flow
converts the output message to the BLOB domain before writing it to the wire.
This does not change the rendering of the message in any way, but means that
when the PurchaseOrderResponse message flow receives the reply message, it
can be parsed using the BLOB domain before an equivalent
ResetContentDescriptor node switches the message domain back to the MRM
domain. This changing of message domain would be avoided in most real-world
scenarios because the back-end application would actively change values in the
MQRFH2 header. When messages are received by an MQInput node, the mcd
folder of the MQRFH2 header takes precedence in determining which parser to
invoke, over any hard-coded properties on the Default properties tab of the node.

PurchaseOrderResponse Message Flow
The PurchaseOrderResponse Message flow’s primary purpose is to route
responses from the Manufacturer back to the ESB built in WebSphere
Application Server in the correct format (essentially converting non-SOAP, XML
WebSphere MQ messages into SOAP over JMS WebSphere MQ messages).
The message flow contains similar error-handling nodes, named FaultPrepare
264 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

and FaultNotification, as discussed in detail in “PurchaseOrderRequest message
flow” on page 259. The main functional nodes are:

Rest Content Descriptor node: RCD
Compute node: AddSOAP
Reset Content Descriptor node: RCD1

The individual function of each node is discussed following the diagram of the
PurchaseOrderResponse message flow depicted in Figure 10-12.

Figure 10-12 PurchaseOrderResponse message flow

Reset Content Descriptor node: RCD
When input messages arrive on the PurchaseOrderResponse message flow’s
input queue, they are parsed by the BLOB domain. Effectively, this choice of
message domain ignores the message body’s content and treats the entire
structure as a single object. The RCD node that follows instantiates the MRM
domain using the XML wire format parser. This creates a logical tree that the
AddSOAP compute node can more easily manipulate. The response message
generated by the legacy Manufacturer application contains an MQRFH2 header,
which is identical to the original inbound message to the Manufacturer. This
header describes the message body as BLOB, which overrides any setting made
on the MQInput node. With a more sophisticated application, it would be possible
to alter this header and use settings on the Default properties sheet of the
MQInput node in order to dictate the method of parsing to WebSphere Business
Integration Message Broker.

Compute node: AddSOAP
The primary purpose of this node is to add the SOAP Envelope around the
message body, ready to be dispatched to the ESB built in WebSphere
Application Server. Example 10-13 shows the first part of the ESQL code.

Example 10-13 AddSOAP: Setting the Destination for the message

-- Declare the data types of the variables which will be used
DECLARE endpointURL,destination,jndiDirectoryLocation CHAR;
DECLARE LocaterString,QueueName,QueueManagerName CHAR;
 Chapter 10. Directly Connected heterogeneous ESBs 265

DECLARE SeparatorPoint,destinationstartpos,destinationendpos INT;
-- Set the destination on the WAS ESB using the reply information which
-- was saved in the input message in the usr folder of the MQRFH2 header
SET LocaterString = InputRoot.MQRFH2.usr.FinalReplyToQMgr || ':' ||

InputRoot.MQRFH2.usr.FinalReplyToQ;
-- Set the WAS required SOAP over JMS Headers
CALL

JMSPropsSetter(endpointURL,LocaterString,0,OutputRoot,QueueName,QueueManagerNam
e);

-- Set Destination List which will be referred to by the MQOutput node
SET OutputLocalEnvironment.Destination.MQ.DestinationData[1].queueName =

QueueName;
SET

OutputLocalEnvironment.Destination.MQ.DestinationData[1].queueManagerName =
QueueManagerName;

The JMSPropsSetter procedure that is called demonstrates how to set the JMS
Header properties (which are placed in the MQRFH2 header of the outbound
WebSphere MQ message) such that the WebSphere Application Server SOAP
over JMS client code can interpret the reply successfully. This routine takes the
variables for endpointURL and LocaterString as input values. Typically these
values could be taken by a remote look-up in an ESB’s JNDI naming directory. In
the example code supplied here, the LocaterString variable is constructed from
within the ESQL code. Example 10-14 shows the code to add the SOAP
envelope.

Example 10-14 AddSOAP: Adding the SOAP Envelope, and restructuring output

DECLARE Status CHAR;
-- Clear the service parameters from any previous requests
CALL soaplib_reset_service_params(Environment);
-- Set the operation for RPC style service, which will be used by the
-- soaplib_encode_response
CALL soaplib_set_out_op(Environment,'Response','PurchaseOrderResponse');
-- soaplin_encode_response takes references to InputRoot and constructs
an OutputRoot with a SOAP envelope.

 CALL soaplib_encode(InputRoot,OutputRoot,Environment,Status);
-- Set the contents of the message using the input message
-- This slightly different technique is required by the use of a
-- message on input which has composition "Empty"
-- Please see the Redbook text for further details regarding
SET OutputRoot.MRM.*:Body.*:ackPO1 VALUE = FIELDVALUE(InputRoot.MRM);
-- Reset the output message name, now that a SOAP Envelope
-- has been constructed in the logical tree
SET OutputRoot.Properties.MessageType = 'Envelope';
SET OutputRoot.MQMD.CorrelId = OutputRoot.MQMD.MsgId;
SET OutputRoot.MQRFH2.mcd.Msd = 'jms_bytes';
266 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

WarehouseCallbackRequest Message Flow
The WarehouseCallbackRequest Message Flow mediates messages from the
Legacy Manufacturer to the ESB built in WebSphere Application Server. It
contains two main functional components: compute nodes named Transform and
AddSOAP. This function could have been placed within a single node, but was
separated to provide a logical distinction in the function of each node.
Figure 10-13 shows the message flow.

Figure 10-13 WarehouseCallbackRequest message flow

Compute node: Transform
The information that arrives inside the sections of the message named
Configuration and CallbackHeader must be moved to a SOAP Header when the
ShipmentNotice message is constructed for dispatch to the ESB built in
WebSphere Application Server. In preparation for this, the data is moved to the
Environment, as shown in Example 10-15.

Example 10-15 Transform ESQL

CALL CopyMessageHeaders();
-- Before adding the SOAP Envelope, the message needs transforming into
-- the format expected by the WAS ESB. Information contained in the body
-- of the message from the Manufacturer must eventually be placed in a
-- SOAP Header.
-- These statements move the information into the Environment, ready to
-- be accessed by generic SOAP Header creation routines in next node
SET Environment.SOAP.Out.Hdrs.*[1] = InputRoot.MRM.*:CallbackHeader;
SET Environment.SOAP.Out.Hdrs.*[1] NAMESPACE =

'http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufactu
rer/CallBack';

SET Environment.SOAP.Out.Hdrs.*[1].conversationID NAMESPACE =
'http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufactu
rer/CallBack';

SET Environment.SOAP.Out.Hdrs.*[2] = InputRoot.MRM.*:Configuration;
SET Environment.SOAP.Out.Hdrs.*[2] NAMESPACE =

'http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Configura
tion.xsd';
 Chapter 10. Directly Connected heterogeneous ESBs 267

-- The overall wrapper for the main SOAP Body takes a different name
-- to the message outputted by Legacy Manufacturer
SET OutputRoot.MRM = InputRoot.MRM.*:ShipmentNotice;
-- Reset the name of the message so that the routines in the next node
-- recognise it
SET OutputRoot.Properties.MessageType =

FIELDNAMESPACE(InputRoot.MRM.*:ShipmentNotice) || ':' || 'ShipmentNotice';

Note that the namespace of the elements in the output message are different to
the incoming message, hence the lines of code in the latter half of the procedure.

Compute node: AddSOAP
The AddSOAP compute node and ESQL are directly equivalent to the node of
the same name contained in the PurchaseOrderResponse message flow. Refer
to “PurchaseOrderResponse Message Flow” on page 264 for further details.

WarehouseCallbackResponse Message Flow
The WarehouseCallbackResponse Message Flow routes messages that arrive
from the WarehouseCallback service hosted on the ESB build in WebSphere
Application Server to the legacy Manufacturers. For normal execution, the flow’s
critical path contains a single functional node, named AddSOAP. Figure 10-14
shows the message flow.

Figure 10-14 WarehouseCallbackResponse message flow

LogEvent Message Flow
The LogEvent Message Flow routes messages from the WebSphere Business
Integration Message Broker ESB to the ESB built in WebSphere Application
Server. No response message is expected from the LoggingFacility. For this
reason, the LogEvent Message Flow is the only message flow that does not have
a partner response flow. For normal execution, the flow’s critical path contains a
single functional node, named AddSOAP. Figure 10-15 shows the message flow.
268 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 10-15 LogEvent message flow

Compute node: AddSOAP
The logic in this message flow is the simplest of all the required message flows.
The only transformation that is required on messages received from the Legacy
Manufacturer is the addition of a SOAP Envelope. “PurchaseOrderResponse
Message Flow” on page 264 has further details about the node and ESQL,
extracts of which appear in Example 10-13 on page 265 and Example 10-14 on
page 266.

Create the Manufacturer message set
The message flows that carry out the routing and transformation of messages
flowing through the ESB rely on metadata to parse data over the wire into a
logical tree structure. A message set provides a holder for a collection of
message definition files. Message definition files are valid XML schema that
describe the structural content of XML messages. In addition to standard
schema vocabulary, they also contain annotations (comments) that provide wire
formatting information specific to WebSphere Business Integration Message
Broker. This additional data means that message definition files can also
describe a wide array of fixed-length and tagged delimited wire formats. Message
definition files can make use of definitions contained in other message definitions
files (using the schema import and include functions). This means that a single
message set can contain definitions for multiple messages. XML schema does
not have a concept of a message (the top-level field in a hierarchy describing an
XML document), but uses global elements for this purpose. WebSphere
Business Integration Message Broker places restrictions on message artefacts
beyond those implied by the status of being a global element in an XML schema.
One such restriction is that the name of the message must be unique (regardless
of namespace) within the message set.

The legacy manufacturer and other service requesters and providers exchange
messages that have the same name but different structures. The uniqueness of
messages within a message set requirement necessitated the creation of two
message sets.
 Chapter 10. Directly Connected heterogeneous ESBs 269

Creating the message sets and importing the schema definitions
The following instructions create the message sets and import the schema
definitions:

1. Start the WebSphere Business Integration Message Broker Toolkit.

2. Ensure that you are in the Broker Application Development perspective.
Select Window → Open Perspective → Broker Application Development
from the menu.

3. Create a new Message Set Project.

a. Click File → New → Message Set Project.

b. Enter msp_Manufacturer in Project name and click Next.

c. Enter ms_Manufacturer in Message Set Name, check Use namespaces,
and click Next.

d. Check XML Wire Format Name, set the wire format name to XML (from
XML1), and click Finish.

This creates a message set within a message set project. It also creates a file
called messageset.mset, which opens in the main editor of the toolkit.

4. In the main editor, customize the wire format (Figure 10-16 on page 271):

a. In the Properties Hierarchy section, select Physical Properties → XML.

b. Check Suppress DOCTYPE under XML document type settings. DTD
declarations are not needed, as the system is schema-based rather than
DTD-based.

c. Set Root Tag Name to blank by deleting the default value MRM. Web
services use SOAP messages, where the root tag name must be
Envelope.

d. Close the messageset.mset window and save the contents.
270 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 10-16 messageSet.mset settings for ms_Manufacturer

The SOAP V1.1 XML schema must be imported into the message set so that it
can be used to model SOAP messages. This schema can be found at:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/envelope-2000-04-18.xml

You also must import the XML schemas that define the SOAP Header and SOAP
Bodies of the messages exchanged by the WebSphere Business Integration
Message Broker ESB. These are the files:

� soap11.xsd
� ManufacturerCallbackMessage.xsd
� Manufacturer.xsd
� ManufacturerPO_Legacy.xsd
� ManufacturerSN.xsd
� WarehouseCallbackMessage.xsd
� Configuration.xsd
 Chapter 10. Directly Connected heterogeneous ESBs 271

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/envelope-2000-04-18.xml

Import these files into message set project msp_Manufacturer (see the additional
material supplied with this redbook for these files):

1. Select the msp_Manufacturer project in the Resource Navigator.

2. Select File → Import from the menu.

3. Select File system and click Next.

4. Click Browse to the right of the Directory field and navigate to the directory to
which you downloaded the additional material supplied with this book. Click
OK.

5. Check soap11.xsd, Manufacturer.xsd,
ManufacturerCallbackMessage.xsd, ManufacturerPO_Legacy.xsd,
ManufacturerSN.xsd, WarehouseCallbackMessage.xsd and
Configuration.xsd. Click Finish.

Figure 10-17 Resource Navigator pane after import of XML schema files

Creating Message Definition Files
Next, create a Message Definition File based on the soap11.xsd file you just
imported:

1. Select File → New → Message Definition File. This starts the new message
definition file wizard.

2. Click XML schema file and click Next.

3. Select file soap11.xsd from project msp_Manufacturer and click Next.

4. Select ms_Manufacturer in project msp_Manufacturer and click Next.

5. Click Envelope and Fault, and click Finish.

During this import, the global element Envelope is defined as a message. This
means that message flows can nominate this message as the one to be
272 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

processed. The global element Fault is also defined as a message. This is
because Fault is a child of the element Body. In the following customization, the
complex type of Body will be amended to be of composition message. This
enables children of Body to be defined as messages.

Several warnings are generated in the task list as a result of importing this
schema. These can be eliminated by measures described later in this chapter.

Before any further customization of the SOAP message definition file occurs, you
must create new message definitions based on the other XML schemas you
have imported. Repeat the instructions above, creating a message definition file
from each of the XML schema files that you imported into the msp_Manufacturer
project:

� Configuration.xsd

When asked about creation of messages from global elements, do not select
any.

� ManufacturerPOLegacy.xsd

When asked about creation of messages from global elements, select
PurchaseOrderLegacy.

� ManufacturerCallback.xsd

When asked about creation of messages from global elements, do not select
any.

� Manufacturer.xsd

When asked about creation of messages from global elements, select
Manufacturer.

� ManufacturerSN.xsd

When asked about creation of messages from global elements, select
ShipmentNotice and submitSNFault.

� WarehouseCallbackMessage.xsd

When asked about creation of messages from global elements, select
WarehouseCallbackMessage.

After all of the message definition files have been created, the Resource
Navigator should look similar to Figure 10-18 on page 274.
 Chapter 10. Directly Connected heterogeneous ESBs 273

Figure 10-18 Resource Navigator Pane after message definition file creation

Removing warnings
At this stage, several additional task list warnings will be in your toolkit (unless
you have suppressed these warnings using the Filter function). To get rid of these
warnings:

1. Remove Wildcard Elements from soap11.mxsd. Doing this removes the
Wildcard Element warnings generated by the Message Broker Toolkit.

a. In the Resource Navigator, expand msp_Manuacturer →
org.xmlsoap.schemas.soap.envelope and double-click soap11.mxsd.

b. In the Outline view, expand Elements and Attribute.

c. Expand Envelope, select Wildcard Element, and press Delete.

d. Also delete the Wildcard Element for the elements Header, Body, and
Fault detail (detail is a child of the Fault element).

2. Set the Content Validation of the Envelope complex type to Open. This
means that any elements and attributes are allowed as children of Envelope.
Envelope still has explicitly defined children named Header and Body. This
274 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

closely matches the business requirement for the SOAP Envelope while still
satisfying the wildcard element removal.

a. Select Envelope under Elements and Attributes in the Outline view.

b. Click the Properties tab in the main editing window.

c. Click the Goto Type Definition link at the top.

d. Change the Content Validation from Closed to Open using the pull-down
menu.

3. Similarly set the Content Validation of the Header complex type and the
detail complex type (note that a detail element is also a child of the Fault
element) to Open. This means that any elements and attributes are allowed
as children of Header and detail. This closely matches the business
requirement for the SOAP Header and Fault detail while still satisfying the
wildcard element removal.

4. For each of the elements Envelope, Header, Body, and Fault detail under
Elements and Attributes in the Outline view, remove the namespaces from
Wildcard Attributes. This removes warnings generated by the Message
Broker Toolkit. To do this, for each element:

a. Select Wildcard Attribute in the Outline view.

b. Remove the entry in the Namespace field (##other) in the main editing
view (Figure 10-19).

Figure 10-19 Wildcard Attribute properties before delete of Namespace entry

5. Remove the pattern facet of the mustUnderstand global attribute as follows.
It is not required and its deletion removes a warning generated by the
Message Broker Toolkit.

a. Select mustUnderstand in Outline view.

b. Click the Goto Type Definition link in the main editing window and select
Value Constraints in Property Hierarchies.
 Chapter 10. Directly Connected heterogeneous ESBs 275

c. Select 0/1 in Patterns and click Delete (Figure 10-20).

Figure 10-20 Value Constraint removal

6. Save your changes to soap11.mxsd by pressing Ctrl+S.

Creating a new message
This newly created message set (msp_Manufacturer) provides all of the
metadata required to describe the messages that are exchanged between the
WebSphere Business Integration Message Broker and the Legacy Manufacturer
application. Note that the Legacy Manufacturer application that is supplied with
this redbook’s additional materials communicates using XML messages that do
not have a SOAP envelope. This is designed to demonstrate the use of
WebSphere Business Integration Message Broker as providing a SOAP facade
for legacy applications; performing the addition and removal of SOAP envelopes.

You may have noticed that despite the Legacy Manufacturer not using SOAP in
its messages, the soap11 schema file was imported into the ms_Manufacturer
message set. The reason is so the schema file named Configuration.xsd (whose
definitions are reused in both the Manufacturer.xsd and WarehouseCallback.xsd
schemas) has a dependency on the soap11.xsd schema. Because the
Manufacturer application does not use SOAP messages, there is no need to add
any further messages as children of the Body element. In the next message set
you create, you need to add five possible children to the Body element that relate
to the five possible embedded messages that will be used by the message flows
when communicating with the ESB built in WebSphere Application Server.

The schema file named ManufacturerPO.xsd contained a definition for a global
element to describe the acknowledgement message sent back to the Warehouse
from the Manufacturer after the order has been processed. This global element is
of Boolean type, so on the wire it can take the value true or false. WebSphere
Business Integration Message Broker can only create messages from global
elements that are based on complex types. This means that when importing the
schema as a message definition file, there was no option presented to you to
create a message from this particular global element. You must create a
276 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

message to define this acknowledgement so that it can be used by the broker to
parse the acknowledgement received from the Manufacturer application.

We model this message using a complex type that has a base type of Boolean:

1. Open the message definition file ManufacturerPO_Legacy.mxsd (to see it,
expand msp_Manufacturer →
com.ibm.itso.www.sampleapplications.manufacturer.manufacturerpole
gacyxsd).

2. In the Outline view, expand the Elements and Attributes folder to locate the
global element named ackPO. Select ackPO and press the Delete key.

3. In the Outline view, right-click Types → Add Complex Type.

4. Rename the type you have just created from complexType1 to ackPOType.

5. In the main editor view, click the Properties tab.

6. Click the Base Type pull-down menu and select xs:boolean.

7. Save your changes by pressing Ctrl+S.

8. In the Outline view, right-click Elements and Attributes → Add Global
Element.

9. In the main editor view, click the Properties tab.

10.Enter ackPO in Name, replacing the default globalElement1.

11.Click the Type pull-down menu and select (More...).

12.In the Type Selection pop-up window, select ackPOType and click OK
(Figure 10-21 on page 278).
 Chapter 10. Directly Connected heterogeneous ESBs 277

Figure 10-21 Type Selection pop-up window for new global element ackPO

13.In the Outline view, right-click Messages → Add Message From Global
Element.

14.Select ackPO.

15.Save your changes by pressing Ctrl+S.

The message you just created, named ackPO, resides in a different namespace
(http://www.itso.ibm.com/SampleApplications/Manufacturer/ManufacturerPO_Le
gacy.xsd) from the message that is also called ackPO in namespace
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Man
ufacturerPO.xsd, which will be created in the second message set for the
scenario. The existence of two separate messages of the same name (even
though they have different namespaces) requires us to use two message sets for
the scenario.

Create the other Message Set
Now create the second message set for the scenario. This message set holds
definitions that will be used to parse messages coming over the WebSphere MQ
Link to the WebSphere Business Integration Message Broker ESB from the ESB
built in WebSphere Application Server. It will also be used for writing messages
that will be sent in the opposite direction. The procedure to follow is basically the
278 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

same as has previously been described, so the following instructions have been
kept intentionally brief:

1. Ensure that you are in the Broker Application Development perspective.
Select Window → Open Perspective → Broker Application Development
from the menu.

2. Create a new Message Set Project named msp_Other to contain a message
set named ms_Other. The message set should be namespace-enabled and
have an XML wire format layer named XML. As before, you should check
Suppress DOCTYPE and remove the Root Tag Name.

3. Import the following XML schema files into the ms_Other message set project:
soap11.xsd, LoggingFacility.xsd, ManufacturerPO.xsd,
ManufacturerSN.xsd, Callback.xsd, and Configuration.xsd. Create a
message definition file from each XML schema:

– LoggingFacility.xsd (When asked about creation of messages from
global elements, select all.)

– ManufacturerPO.xsd (When asked about creation of messages from
global elements, select all.)

– ManufacturerSN.xsd (When asked about creation of messages from
global elements, select all.)

– Configuration.xsd (When asked about creation of messages from global
elements, select all.)

– Callback.xsd (When asked about creation of messages from global
elements, select all.)

– soap11.xsd (When asked about creation of messages from global
elements, select Envelope and Fault.)

After creating the message definition files, remove the warnings that have been
generated in the Task List. Follow the instructions from the previous message
set, for soap11.xsd:

1. From LoggingFacility.mxsd, delete the Wildcard Element that is a child of the
complex type named logEventRequestType. Select the Wildcard Element and
press the Delete key. In place of the Wildcard element, amend the complex
type Content validation to be Open. Doing this removes the Wildcard Element
warnings generated by the Message Broker Toolkit, but maintains the allowed
messages, should you choose to take advantage of validation.

2. Expand the getEventsResponseType and find the ANONYMOUS complex
type that is defined as a child of the element LogEntry. Delete the Wildcard
Element that is a child of the ANONYMOUS complex type. Amend the
complex type’s Content validation to be Open.
 Chapter 10. Directly Connected heterogeneous ESBs 279

3. Save the changes to LoggingFacility.mxsd. This should remove the remaining
warnings for LoggingFacility.mxsd.

The schema file named ManufacturerPO.xsd contains a definition for a global
element to describe the acknowledgement message sent back to the Warehouse
from the Manufacturer after the order has been processed. WebSphere Business
Integration Message Broker can only create messages from global elements that
are based on complex types. As in the previous message set, we must create a
definition for the acknowledgement.

We model this message using a complex type that has a base type of Boolean:

1. Open the ManufacturerPO.mxsd message definition file.

2. In the Outline view, expand the Elements and Attributes folder to locate the
global element named ackPO. Select ackPO and press the Delete key.

3. As before, create a complexType named ackPOType with a base type of
xs:boolean.

4. Using this complexType, add a global element named ackPO.

5. Add a message from this global element, which will also be named ackPO.

6. Save your changes by pressing Ctrl+S.

Unlike the message created in the ms_Manufacturer message set, the message
that you have just created in the ms_Other message set has a namespace of
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Man
ufacturerPO.xsd.

In a similar manner to the instructions above, open the message definition file
named ManufacturerSN.mxsd and delete the global element named ackSN
(Figure 10-22 on page 280).

Figure 10-22 ManufacturerSN.mxsd with ackSN highlighted before deletion

1. Create a complextype named ackSNType, with a base type of xs:boolean.
280 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

2. Use this complex type to add a new global element named ackSN.

3. Add a message from this global element, which will also be named ackSN.

4. Save your changes by pressing Ctrl+S.

Having created a set of stand-alone schema, you must now customize the SOAP
message definition file. Import the message definition files representing the Web
services into the SOAP message definition file. This is the initial step in building a
message hierarchy. At the top of this hierarchy is SOAP, and the Web services
are subordinate.

1. Open the SOAP message definition file soap11.mxsd.

2. In the Outline view, click soap11.mxsd.

3. In the main editor pane, click the Properties tab.

4. In the main editor, right-click Imports → Add import in Properties Hierarchy.
A wizard to select a message definition file appears.

5. Select LoggingFacility.mxsd from the hierarchy (msp_Other →
ms_Other → org → wsi → www → sampleapplications →
supplychainmanagement → _200208 → loggingfacilityxsd) and click
Finish (Figure 10-23 on page 281).

Figure 10-23 Select Message Definition file to import
 Chapter 10. Directly Connected heterogeneous ESBs 281

6. Repeat this process for importing ManufacturerSN.mxsd in the
soap11.mxsd message definition file.

7. Repeat this process for importing ManufacturerPO.mxsd in the
soap11.mxsd message definition file.

8. Repeat this process for importing Configuration.mxsd in the soap11.mxsd
message definition file.

9. Repeat this process for importing Callback.mxsd in the soap11.mxsd
message definition file.

10.Save soap11.mxsd by pressing Ctrl+S.

11.The Broker will process the content of the SOAP Envelope as a message in
its own right, so you must change the Body complex type to a Content
composition of Message. This means that one and only one of Body’s child
elements must be present on the wire, and that each possible child must be
defined as a message:

a. In the Outline view, expand Elements and Attributes and select Body.

b. In the main editor view, click the Properties tab.

c. In the main editor view, click the Goto Type Definition link at the top. You
are presented with details of Body’s complex type.

d. Click the Composition pull-down menu and select message (changing it
from sequence).

e. Note that the Content validation setting is Closed. This will affect later
customization.

f. Delete the Wildcard Attribute and Wildcard Element children of the Body
complex type.

g. Save soap11.mxsd by pressing Ctrl+S.

In our scenario, the SOAP Body may contain (at various stages in the message
sequences) one of the following messages: PurchaseOrder, ackPO,
ShipmentNotice, ackSN, logEventRequestElement, or a SOAP Fault message.
These must be added as children to the SOAP Body element because:

� The Content validation setting of Body’s type is set to Closed. This means that
only children explicitly defined to Body are allowed.

� Having explicitly defined children enables the message bodies to be used in
the ESQL editor’s Content Assist when developing message flows.

To add the elements as children to the SOAP Body element:

1. If it is still open, close the soap11.mxsd message definition file.
282 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

2. Re-open soap11.mxsd (making sure you open it from within the correct
message set, ms_Other) to ensure that all imported schema are recognized.

3. In the Outline view, expand Elements and Attributes and select Body.

4. In the main editor view, click the Overview tab.

5. In the main editor, right-click Body and select Add Element Reference.

6. From the pull-down menu, select log:logEventRequestElement
(Figure 10-24 on page 283).

Figure 10-24 Adding Element References to the SOAP Body

7. Repeat the two previous steps, selecting po:PurchaseOrder, po:ackPO,
sn:ShipmentNotice, and soap11:Fault

Also in this system, the SOAP Header may contain a Configuration element and
a StartHeader element. These must be added as children of the SOAP Header
element. To do this:

1. In the Outline view, expand Elements and Attributes and select Header.

2. In the main editor view, click the Overview tab.

3. In the main editor, right-click Header and select Add Element Reference.

4. From the pull-down menu, select tns:Configuration.

5. Repeat the last two steps, this time selecting cb:StartHeader.

6. Save soap11.mxsd.

To remove the remaining errors from soap11.mxsd, perform the following:

1. Ensure soap11.mxsd is still open. In the Outline view expand Messages →
Envelope and click Wildcard Attribute. In the Properties view in the main
menu, clear the entry in the Namespace field (it will be set to ##other).

2. Repeat this for the Wildcard Attributes under the Header and detail types.

3. Delete the Wildcard Element for the Envelope message and the Header
and detail types.
 Chapter 10. Directly Connected heterogeneous ESBs 283

4. Under Elements and Attributes, expand mustUnderstand and click
xs:boolean. In the Properties view, expand Logical properties and click
Value constraints. In the Patterns box, select 0|1 and click Delete.

5. Save your changes using Ctrl+S.

Add the message set projects to the message flow
References must be created between the message set projects and the
message flow. Complete the following steps:

1. In the Resource Navigator, right-click mfp_Manufacturer and select
Properties.

2. Select Project References.

3. Check msp_Manufacturer and msp_Other.

4. Click OK.

10.2.3 Legacy manufacturer application
The manufacturer application is a stand-alone Java application. The application
communicates with external systems as a WebSphere MQ messaging client. The
main aim of the application is to simulate a legacy system and show the
integration of legacy systems into a Web service scenario. The legacy system
does not leverage any open standard, such as JMS. Therefore, simple
WebSphere MQ XML messages are used for communication with external
systems. XML schemas provide a common method of describing the messages
that are exchanged.

The application’s architecture is depicted in the Figure 10-25 on page 285. The
application is message driven and its business logic is depicted as a light green
box on the right of the figure. The implementation of the business logic was
adopted from the Manufacturer service implementation shipped with the IBM
Redbook Patterns: Implementing an SOA using an Enterprise Service Bus in
WebSphere Application Server V6, SG24-6495.
284 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Figure 10-25 High-level design of Manufacturer application

The Warehouse client triggers the Manufacturer’s execution by sending a
message into the input queue [MANUFACTURER]. The message is represented
by ManufacturerSchema.xsd and is received by the MQ receiver component of
the legacy application. The MQ receiver component receives incoming
messages and transforms them into an internal object format. The SDO data
graph was chosen as the internal object format. Hereafter, the application’s
internal components work only with the internal object representation and are
unaware of the WebSphere MQ message format.

During data processing, the business logic must communicate with an external
application, and it sends messages to achieve this. Business logic remains
independent of the messaging transport. Objects are serialized as WebSphere
MQ messages by the MQ Sender component.

All communication from the Manufacturer service is conducted with the
WebSphere Business Integration Message Broker ESB, and not with the
services themselves, which reside on the separate ESB built in WebSphere
Application Server. The first call-out from the application is carried out by the MQ
Sender component sending a one-way message to the log service [LOGGING
FACILITY]. The application code then sends a message back to the warehouse
[WAREHOUSE] and waits for a reply [MANUFACTURER]. Following the
 Chapter 10. Directly Connected heterogeneous ESBs 285

transmittal of a further log message, the transaction completes by sending a final
acknowledgement message back to the warehouse [WAREHOUSE]. The
delivery address for the message is taken from the original request. If no
destination address is specified, the application throws an exception.

Generally, there are two types of communication:

� One-way calls

No response address is sent in messages that use the one-way call
communication style. No response message is expected.

� Request-response calls

Sending of request-response messages requires knowledge of a response
address. Response addresses can be obtained in two ways:

– Static response address

A static response address is taken from the configuration file and is not
changed during the lifetime of the application’s execution.

– Dynamic response address

A dynamic response address is set using the request message’s header.
Request messages must contain reply address information.

Detailed communication sequence
From a messaging point of view, the communication sequence in the
Manufacturer application is as follows:

1. The Manufacturer application receives a message from the Warehouse
service.

The message format is defined by the schema Manufacturer.xsd and the root
element is named Manufacturer. The MQMD message header contains
information about the reply location (ReplyToQ and ReplyToQMgr).

2. The Manufacturer application sends a message to the LoggingFacility
service.

The message format is defined by the schema LoggingFacility.xsd, and the
root element is named logEventRequestElement. The message is a one-way
message and has contains no reply location information.

3. The Manufacturer application sends a message to the Warehouse service to
submit a shipment notice.

The message format is defined by the schema
ManufacturerCallbackMessage.xsd, and the root element is named
WareHouseCallbackMessage. The MQMD message header has ReplyToQ
value set to the input queue name of the other receiver component of the
Manufacturer application.
286 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

4. The Manufacturer application sends a message to the LoggingFacility
service.

5. The Manufacturer application receives a response message from the
Warehouse service.

The message format is defined by the schema ManufacturerSN.xsd and the
root element is named ackSN.

6. The Manufacturer application sends a message to the LoggingFacility
service.

7. The Manufacturer application sends an acknowledgement message back to
the original Warehouse service.

The message format is defined by the schema ManufacturerPO_Legacy.xsd and
the root element is named ackPO.

10.3 Runtime guidelines for ESB based on WebSphere
Application Server

This section describes the runtime administration of the ESB built in WebSphere
Application Server and its associated service consumers and providers.

10.3.1 Building the WebSphere Application Server infrastructure
The ESB built in WebSphere Application Server hosts the following applications:

� LoggingFacility
� Retailer
� Warehouse
� SCMSampleUI

This section describes the runtime configuration steps that are required to
produce an architectural topology as depicted in Figure 10-26 on page 288.
 Chapter 10. Directly Connected heterogeneous ESBs 287

Figure 10-26 WebSphere Application Server scenario architecture

To produce the WebSphere Application Server infrastructure:

1. Install WebSphere Application Server Version 6.
2. Create an Application Server profile.
3. Create a bus.
4. Create a bus member and associated messaging engine.
5. Create a foreign bus.
6. Set the foreign bus destination defaults.
7. Create receiver queue destinations.
8. Attach a mediation to the receiver queue destination.
9. Create JMS resources.

The following instructions assume that the installation of the product has already
been performed. It is also assumed that the following software requirements
have already been installed on the system that is to host the ESB built in
WebSphere Application Server:

� WebSphere Application Server Version 6.0.2
� IBM HTTP Server powered by Apache V6

Service
Consumer

Service
ProviderR

et
ai

l S
ys

te
m

Destination
(type Web Service)

Destination
(type Web Service)

Destination
(type Port)
Destination
(type Port) MDB

Outbound Service

Destination
(type Web Service)

Destination
(type Web Service)

Destination
(type Port)
Destination
(type Port) MDB

Outbound Service

SOAP/JMS

Endpoint Listener
SOAP/JMS

SOAP/SDO

Foreign
Destination

Foreign
Destination

SOAP/SDO

Service Provider

S
O

A
P

/J
M

S

E
nd

po
in

t L
is

te
ne

r
S

O
A

P
/J

M
S

S
er

vi
ce

 P
ro

vi
de

r
S

er
vi

ce
 P

ro
vi

de
r

Lo
gg

in
g

Fa
ci

lit
y

SOAP/HTTP

SOAP/HTTP

S
O

A
P

/H
TT

P

Service Consumer

Warehouse

SOAP/HTTP

WebSphere MQ Link
288 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Create a profile
Note that the scenario could be implemented using WebSphere Application
Server Version 6 or, alternatively, the Network Deployment edition. Network
Deployment function is used in many of the scenarios in this book, so for the
sake of simplicity, the following instructions reference a Network Deployment
Manager profile.

Note that this scenario does not explicitly require any function beyond the base
Application Server version of the product. There is no functional reason why
either product could not be used in this circumstance.

It is assumed that the full software stack listed above has been installed, but an
application server profile has not yet been created. If you have completed the
other scenarios in this book, it is possible that you may already have a server
profile that can be reused, and some of the WebSphere Application Server
infrastructure specified in the following sections may already exist. Instructions
for the full installation of the topology are provided in case they are required.

The rest of this section describes the steps that are required to create a
deployment manager profile. For a fuller description of profiles, see WebSphere
Application Server V6 System Management and Configuration Handbook,
SG24-6451.

Start the profile creation wizard:

1. From the Start menu (in Windows only), select:

Start → Programs → IBM WebSphere → Application Server Network
Deployment v6 → Profile creation wizard

2. When you start the wizard, you see the Welcome window. Click Next to move
to the Profile type selection window.

3. Select Create an application server profile and click Next.

4. Type the profile name ITSOESB03. You may chose to select the Make this
profile the default checkbox, but this will depend on how you plan to manage
the configuration after it is installed. Click Next to continue.

5. Accept the default location and click Next.

6. Set the node name to ITSOESB03Node01and the host name to
ITSOESB03.itso.ral.ibm.com then click Next.

7. Accept the default port assignments. Click Next.

Attention: In this scenario the discussion assumes that you are running
commands, scripts, and GUI applications on a host system named
ITSOESB03.itso.ral.ibm.com.
 Chapter 10. Directly Connected heterogeneous ESBs 289

8. Choose whether to Run the application server process as a Windows
service and click Next.

9. Click Next on the Profile Summary to create the application server profile.

Now, map ITSOESB03.itso.ral.ibm.com to point to your local computer. To do this
on a Windows system, perform the following:

1. Navigate to <Windows_home>\system32\drivers\etc and open the hosts file
in a text editor.

2. Add the following entries to map the host names required by the scenario to
your local machine:

127.0.0.1 ITSOESB03.itso.ral.ibm.com
127.0.0.1 appsrv1a.itso.ral.ibm.com

3. Add an additional entry for ITSOESB04 that points to the IP address where
the WebSphere Business Integration Message Broker ESB is running; for
example:

1.2.3.4 ITSOESB04.itso.ral.ibm.com

4. Save the file. You should now be able to ping any of these host names and
have them resolve to your local machine.

Create a service integration bus and bus member
Create a new service integration bus called ITSOESBBus03 as follows:

1. Access and log on to the WebSphere Application Server administrative
console (the server must be running) at:

http://localhost:9060/ibm/console

2. Expand Service integration and click Buses.

3. Click New.

4. In the field labeled Name, enter ITSOESBBus03. For the other values, accept
the defaults.

5. Click Apply, and the bus is created. Save the changes.

Tip: We decided not to Run the application server process as a Windows
service. This was done to ensure that Windows booted correctly in the
unlikely event that there was a problem with this service.

Note: appsrv1a.itso.ral.ibm.com is required by the WS-I sample scenario
to locate WSDL files from an HTTP server. You will configure the HTTP
server in a later step.
290 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Creating a bus just creates an administrative entity. It does not create any
resources for messaging. To create a resource, we need to add a bus member,
which has the effect of creating a messaging engine. To add a bus member:

1. Click ITSOESBBus03 to show its properties. Under Topology, click Bus
members.

2. Click Add. Accept the defaults, and click Next.

3. Click Finish. The server is added as a member of the bus, and a messaging
engine is created.

4. Save the changes.

Define messaging resources for the JMS endpoint listener
To support inbound Web service requests via SOAP over JMS, some JMS
resources have to be created. These resources are used by the JMS endpoint
listener, which you will create later. To create the JMS resources:

1. Create two service integration bus queue type destinations. Use the
administrative console to create the queues (Service integration →
Buses → ITSOESBBus03 → Destinations).

The queue type destinations should be called wsqmjmsQ1 and wsqmjmsQ2.

2. Create two JMS queue connection factories (Resources → JMS
Providers → Default messaging → JMS queue connection factory). Use
the settings that are specified in Table 10-1 and Table 10-2.

Table 10-1 JMS queue connection factory settings

Table 10-2 JMS queue connection factory settings

Attention: Be sure to select JMS queue connection factory, not JMS
connection factory.

Field Value

Name SOAPJMSConnFac1

JNDI name jms/SOAPJMSFactory1

Bus name ITSOESBBus03

Field Value

Name SOAPJMSConnFac2

JNDI name jms/SOAPJMSFactory2

Bus name ITSOESBBus03
 Chapter 10. Directly Connected heterogeneous ESBs 291

3. Create two JMS queues that point to the service integration bus queue type
destinations that you created in step 1 (Resources → JMS Providers →
Default messaging → JMS queue). Use the settings that are specified in
Table 10-3 and Table 10-4.

Table 10-3 JMS queue settings

Table 10-4 JMS queue settings

4. Create two activation specifications (Resources → JMS Providers →
Default messaging → JMS activation specification). Use the settings that
are specified in Table 10-5 and Table 10-6 on page 293.

Table 10-5 JMS activation specification settings

Field Value

Name SOAPJMSQueue1

JNDI Name jms/SOAPJMSQueue1

Bus name ITSOESBBus03

Queue name wsqmjmsQ1

Field Value

Name SOAPJMSQueue2

JNDI Name jms/SOAPJMSQueue2

Bus name ITSOESBBus03

Queue name wsqmjmsQ2

Field Value

Name SOAPJMSChannel1

JNDI name eis/SOAPJMSChannel1

Destination type Queue

Destination JNDI name jms/SOAPJMSQueue1

Bus name ITSOESBBus03
292 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 10-6 JMS activation specification settings

5. Save the changes.

Prepare the Web services support
To use Web services with the service integration bus of WebSphere Application
Server V6, you have to complete the following tasks:

� Install an SDO repository.
� Install service integration bus applications and resources.
� Define JMS resources for the JMS endpoint listener.
� Install the endpoint listener applications.

Install an SDO repository
The service integration bus Web services support stores the WSDL and
schemas for the Web services in the SDO repository. When WebSphere
Application Server is installed it does not install the SDO repository, so this step
must be performed manually.

The SDO repository uses a database to store its information. The SDO
repository supports a wide variety of databases. In this scenario, we use
embedded Cloudscape database. The SDO repository installation script
automatically sets up the relevant resources for the database configuration.

To install the SDO repository:

1. In a command prompt window, navigate to the <install_root>/bin directory,
where <install_root> is the directory where you installed WebSphere
Application Server.

2. Run the following command:

wsadmin -f installSdoRepository.jacl -createDb

Install service integration bus applications and resources
A service integration bus is a logical entity that has a physical manifestation in
the form of several enterprise applications, a resource adapter, and an activation

Field Value

Name SOAPJMSChannel2

JNDI name eis/SOAPJMSChannel2

Destination type Queue

Destination JNDI name jms/SOAPJMSQueue2

Bus name ITSOESBBus03
 Chapter 10. Directly Connected heterogeneous ESBs 293

specification. As part of the WebSphere Application Server post-install process,
these applications must be installed and started before any service integration
bus creation and configuration activities can take place. The application
installation is achieved by using a JACL script that is shipped with WebSphere
Application Server in the <install_root>/util directory, and it is called
sibwsInstall.jacl.

The sibwsInstall.jacl script must be run multiple times, once for every application
and resource required by the service integration bus support.

1. Install the resource adapter. This must be installed before the other resources
and is required. To install the resource adapter, navigate to <install_root>/bin
directory and execute the following command:

wsadmin -f <install_root>/util/sibwsInstall.jacl INSTALL_RA -installRoot
<install_root> -nodeName ITSOESB03Node01

install_root is the directory where you installed WebSphere Application Server.

2. The next task is to install the Web services support application. This can be
done from the <install_root>/bin directory by executing the following
command:

wsadmin -f <install_root>/util/sibwsInstall.jacl INSTALL -installRoot
<install_root> -nodeName ITSOESB03Node01 -serverName server1

Install the endpoint listener applications
Install the endpoint listener applications for HTTP and JMS to the service
integration bus server.

Although the Web services enterprise application support has now been installed
it cannot be used until an endpoint listener application is installed. There are two
different endpoint listener applications: one for SOAP over HTTP and one for
SOAP over JMS. For this scenario, we install both endpoint listeners.

1. Install the HTTP endpoint listener using the following command:

wsadmin -f <install_root>/util/sibwsInstall.jacl INSTALL_HTTP
-installRoot <install_root> -nodeName ITSOESB03Node01 -serverName
server1

Important: The second <install_root> must have elements in the path
separated by a forward slash (/) even on a Windows system, so a path of
c:\WAS\AppServer becomes c:/WAS/AppServer.
294 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

2. Install the JMS endpoint listener using the following command:

wsadmin -f <install_root>/util/sibwsInstall.jacl INSTALL_JMS
-installRoot <install_root> -nodeName ITSOESB03Node01 -serverName
server1

Create endpoint listeners
Endpoint listeners listen for incoming Web service requests and forward them
onto the relevant inbound services. Inbound services get bound to an endpoint
listener when they are created. We need to create an HTTP and JMS endpoint
listener. These are the steps:

1. Expand Servers and click Application Servers.

2. Click server1.

3. Under Additional Properties click Endpoint Listeners.

4. Click New.

5. Enter the following details:

– Name: SOAPHTTPChannel1

– URL root: http://ITSOESB03.itso.ral.ibm.com:9080/wsgwsoaphttp1

– WSDL serving HTTP URL:
http://ITSOESB03.itso.ral.ibm.com:9080/sibws/wsdl

6. Click Apply.

7. Under Additional Properties click Connection Properties.

8. Click New.

9. In the Bus name pull-down menu, select ITSOESBBus03 and click OK.

10.Repeat these steps to create an endpoint listener for JMS using the following
settings:

– Name: SOAPJMSChannel1

– URL root:
jms:/queue?destination=jms/SOAPJMSQueue1&connectionFactory=jms/SO
APJMSFactory1&

– WSDL serving HTTP URL:
http://ITSOESB03.itso.ral.ibm.com:9080/sibws/wsdl

11.Save your changes.

Hosting WSDL files
Each Web service client in the WS-I sample application references WSDL files
containing port type and binding information. Import statements dictate the
 Chapter 10. Directly Connected heterogeneous ESBs 295

location of these files. Configure an HTTP server as described in “Hosting the
WSDL files” on page 200.

Create a foreign bus
In order for the ESB built in WebSphere Application Server to exchange
messages with the WebSphere Business Integration Message Broker ESB, it is
necessary to establish a communication link between the messaging engine on
the first ESB with the queue manager on the second ESB. The definition of this
communication link requires the creation of a foreign bus. A foreign bus is a
property of a service integration bus. It is used to represent another service
integration bus, with which it can exchange messages. This representation may
be of another service integration bus (as in the previous scenario) or, as in this
case, a WebSphere MQ network. You need to create a foreign bus to represent
the queue manager, which will be connected to using the WebSphere MQ Link.

1. In the navigation pane, click Service integration → Buses →
ITSOESBBus03 → Foreign buses, and click New.

2. Enter QM1 in Name, and click Next.

3. Click the Routing Type pull-down menu and select Direct, WebSphere MQ
Link, and click Next.

4. Accept the defaults and click Next.

5. Click Finish, and save your workspace changes to the master.

Set the foreign bus destination defaults
When messages are sent across the WebSphere MQ Link from the ESB built in
WebSphere Application Server to the WebSphere Business Integration Message
Broker ESB, it is necessary for an MQRFH2 header to be included with the
messages. This header contains the JMS properties used by the bus, and it
enables the routing of messages to the correct eventual service provider. On the
foreign bus definition, set a property to make sure that MQRFH2 headers are
always copied by default when messages are sent to the WebSphere Business
Integration Message Broker ESB:

1. In the navigation pane, click Service integration → Buses →
ITSOESBBus03 → Foreign buses → QM1 → Destination defaults →
Context properties, and click New.

2. Enter _MQRFH2Allowed in Name

3. Leave the Context type pull-down menu as the default Boolean.

4. Enter true in Context value, and click OK.

5. Save your workspace changes to the master configuration.
296 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Create receiver queue destinations
All request messages received over the WebSphere MQ Link from the
WebSphere Business Integration Message Broker ESB are interpreted as Web
service requests destined for one of the service providers attached to the ESB
built in WebSphere Application Server. A destination of type queue must be
created to receive these messages; we name it WEBSERVICE.BROKER.REQUEST.
This destination has no service provider attached to it. Instead, a mediation
processes messages placed on the destination queue and forwards them to the
correct service provider. See “Attach a mediation to the receiver queue
destination” on page 297 for further details about the implementation of this
mediation.

Create the queue destination named WEBSERVICE.BROKER.REQUEST:

1. In the navigation pane, click Service integration → Buses →
ITSOESBBus03 → Destinations, and click New.

2. Select the destination type of Queue, and click Next.

3. Enter WEBSERVICE.BROKER.REQUEST in Name, and click Next..

4. Leave the Bus member pull-down menu setting as default and click Next.

5. Click Finish, and save your workspace changes to the master configuration.

Repeat this process to create a queue destination called SOAPJMSQueue1.

Attach a mediation to the receiver queue destination
A mediation is attached to a destination and processes messages arriving there.
We must create a mediation that is attached to the queue destination named
WEBSERVICE.BROKER.REQUEST. The purpose of the mediation is to use the
information within the endpointURL property supplied in the JMS user-defined
property of the MQRFH2 header, to determine the service provider for which the
message is intended and route it there. The endpointURL is parsed into a
targetService and a JMS destination reference. The JMS destination reference is
used to consult the local WebSphere Application Server JNDI directory to locate
a destination name and bus name (an SIDestinationAddress object). This
destination address is added to the forward routing path and when the mediation
completes its processing, the message is forwarded there.

Create the mediation:

1. In the navigation pane, click Service integration → Buses →
ITSOESBBus03 → Mediations, and click New.

2. Enter BROKERJMSPROCESSOR in Name. The Mediation Handler List specifies the
Java classes that make up the mediation, and the order in which they should
be applied to the message. Every mediation has a single Mediation Handler
 Chapter 10. Directly Connected heterogeneous ESBs 297

List (which is deployed inside the deployment descriptor for the mediation
EJB). Enter BrokerJMSProcessor in Handler List name, and click OK.

Attach the mediation you have just created to the destination named
WEBSERVICE.BROKER.REQUEST:

1. In the navigation pane, click Service integration → Buses →
ITSOESBBus03 → Destinations, select
WEBSERVICE.BROKER.REQUEST, and click Mediate.

2. Select BROKERJMSPROCESSOR in Name, and click Next.

3. Leave The mediation to apply to this destination the pull-down menu as the
mediation that you just created, BROKERJMSPROCESSOR, and click Next.

4. Leave the bus member where the mediation point is assigned as the default
setting and click Next.

5. Click Finish, and save your workspace changes to the master configuration.

Deploy the mediation as an application to server1:

1. In the navigation pane, click Applications → Enterprise Applications, and
click Install.

2. Browse to the location of the enterprise archive file for the mediation named
BrokerJmsProcessor.ear, which you created earlier in the chapter (a copy is
also supplied with this book’s additional materials), and click Next.

3. Select Generate Default Bindings, and click Next.

4. There is no need to change any further settings from their default values.

5. Select the final step and click Finish.

6. When installation is complete, save your changes to the master configuration.

7. In the navigation pane, click Applications → Enterprise Applications,
select BrokerJmsProcessor, and click Start.

8. Repeat this process to install the UIRetailerLogging.ear file, which contains
the Retailer, LoggingFacility, SCMSampleUI, and Warehouse applications.

9. Start the mediation point.

In the navigation pane, click Service integration → Buses →
ITSOESBBus03 → Destinations → WEBSERVICE.BROKER.REQUEST →
Mediation Points. Select the mediation and click Start.

Create JMS resources
JMS queues are used as a destination for point-to-point messaging. Inbound
messages that are initiated from the WebSphere Business Integration Message
Broker ESB (which are not responses to previous messages) and sent to the
298 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

WebSphere Application Server service integration bus are placed on a queue
destination named WEBSERVICE.BROKER.REQUEST. The mediation that was
discussed in the previous section processes these messages and uses the JMS
queue information, which is held in the endpointURL property of the message, to
locate the physical local queue referenced by the JMS queue definition, named
SOAPJMSQueue1. Service providers attached to the ESB, for whom these
messages are destined, also require the JMS queue definitions in order to locate
the physical queue.

All JMS resources are defined within the WebSphere Application Server
administrative console with a scope. The scope of a definition specifies the level
at which the resource is visible. The scope of the resources created in this
scenario is chosen to be Node level. This means that all executing code defined
on the node (physical machine) can access the JMS resources defined.

Create a JMS queue with Node scope:

1. In the navigation pane, click Resources → JMS Providers → Default
messaging, and select Node:ITSOESB03Node01, then click Apply.

2. Select JMS queue, and click New.

3. Enter LOCALQ1JMS in Name.

4. Enter jms/localq1jms in JNDI name.

5. Click the Bus name pull-down menu and select ITSOESBBus03.

6. Click the Queue name pull-down menu and select SOAPJMSQueue1.

7. Click OK, and save your workspace changes to the master configuration.

10.3.2 Linking the bus using the WebSphere MQ Link
Communication between the ESB built in WebSphere Application Server and the
WebSphere Business Integration Message Broker ESB is achieved by flowing
point-to-point messages across the architectural component known as the
WebSphere MQ Link. A WebSphere MQ Link is defined on a messaging engine
within a service integration bus. Configuration steps are also required on the
WebSphere MQ queue manager to which messaging engine is connected. This
scenario requires the flow of messages in both directions between the two ESBs,
which means that the link must be configured with a sender and a receiver
channel.

Create an alias destination
Before we configure the WebSphere MQ Link, we must define an alias
destination in the service integration bus. This alias destination will point to the
 Chapter 10. Directly Connected heterogeneous ESBs 299

queue PO.REQ.IN running on the remote WebSphere MQ manager. Perform the
following steps:

1. In the navigation pane, click Service integration → Buses →
ITSOESBBus03 → Destinations and click New.

2. Select a destination type of Alias and click Next.

3. Enter the following information then click Next:

– Set the Identifier field to PO.REQ.IN

– Select the Bus field as ITSOESBBus03.

– Select the Target Bus (the bus where the real queue lives) as QM1.

– Select the Target Identifier to other, please specify and specify a value of
PO.REQ.IN@QM1 (this represents the name of the target queue, and the
name of the WebSphere MQ queue manager on which it is running).

4. In the next window, click Finish.

Create a JMS queue for the alias destination
With the alias defined, we can create a JMS queue that points to this destination.
Perform the following steps:

1. In the navigation pane, click Resources → JMS Providers → Default
messaging.

2. Select JMS queue, and click New.

3. Enter poreqin in Name.

4. Enter jms/poreqin in JNDI name.

5. Click the Bus name pull-down menu and select ITSOESBBus03.

6. Click the Queue name pull-down menu and select PO.REQ.IN.

7. Click OK, and save your workspace changes to the master configuration.

Create a WebSphere MQ Link
Perform the following to create a WebSphere MQ Link:

1. In the navigation pane, click Service integration → Buses →
ITSOESBBus03 → Messaging engines →
ITSOESBBus03Node01.server1-ITSOESBBus03 → WebSphere MQ
links, and click New.

2. Enter QM1LINK in Name.

3. Click the Foreign bus name pull-down menu and select QM1.
300 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

4. Enter ITSOESBBus03 in Queue Manager Name, and click Next.

This setting determines the queue manager name that will be used to
populate the ReplyToQMgr and JMS ReplyTo fields in the MQMD and
MQRFH2 headers of messages sent across the link to WebSphere MQ.

5. Enter ITSOESBBus03.TO.QM1 in Sender MQ channel name. The name of this
channel must be the same as the name of the corresponding receiver
channel on the Queue Manager.

6. Enter ITSOESB04.itso.ral.ibm.com in Host Name. This is the host name of
the Queue Manager to which the sender link connects.

7. Check that the wizard has 1414 in Port Number. This is the port used by the
WebSphere MQ Listener of the Queue Manager to which the sender link
connects.

8. Click the Transport chain pull-down menu, select OutboundBasicMQLink,
and click Next.

9. Enter QM1.TO.ITSOESBBus03 in Receiver MQ channel name, and click Next..
The name of this channel must be the same as the name of the
corresponding sender channel on the Queue Manager.

10.Click Finish, and save your workspace changes to the master configuration.

11.Restart the server so the WebSphere MQ link can be started.

10.3.3 Adding services to the bus
Optionally you could add inbound and outbound services to the service
integration bus for each Web service call. This is recommended for building a full
ESB solution. To do this, follow the instructions in “Creating the outbound
services” on page 207 and “Creating the inbound services” on page 220. In
terms of building a working sample application, this is optional.

At a minimum, however, you must override the Web service client bindings for the
Warehouse enterprise application. In order for the Warehouse Service (acting as
a consumer) to send a message to the Manufacturer service providers located
on the WebSphere Business Integration Message Broker ESB, over the
WebSphere MQ Link, it is necessary to alter the Web Services Client bindings for
those particular services in the deployment descriptor of the Warehouse’s EJB.

Alter the Web Services client bindings Port Information:

1. In the navigation pane, click Applications → Enterprise Applications →
UIRetailerLogging → EJB Modules → WarehouseEJB.jar → Web
 Chapter 10. Directly Connected heterogeneous ESBs 301

services client bindings. For ManufacturerService, click the Edit link under
Port information and enter the following in the Overridden Endpoint URL field:

jms:/queue?destination=jms/poreqin&connectionFactory=jms/SOAPJMSF
actory1|targetService=ITSOESB04/MANUFACTURERA

2. Click OK.

10.4 Runtime guidelines for ESB based on WebSphere
Business Integration Message Broker

This section describes how to deploy the WebSphere Business Integration
Message Broker artefacts necessary to run this scenario. The five message
flows that contribute to form the WebSphere Business Integration Message
Broker ESB could all be deployed to a single (e.g. default) execution group.
Production systems often choose to divide message flows between several
different execution groups for performance reasons or organizational concerns.
In order to demonstrate how this can be achieved, the following instructions
choose to deploy the message flows between three execution groups. These
runtime guidelines will carry out the following operations:

� Configuring WebSphere MQ queues and channels
� Connect the toolkit to the configuration manager
� Create execution groups
� Create and deploy Broker archive files
� Create database resources

10.4.1 Configuring WebSphere MQ queues and channels
You must define several resources in WebSphere MQ for the default queue
manager QM1, which we use as a single queue manager for supporting the
configuration manager and runtime broker:

1. Create a new WebSphere MQ Listener, listening on port 1414 using the TCP
protocol, then start this listener.

2. Create a WebSphere MQ sender channel with the following attributes:

– Channel Name: QM1.TO.ITSOESBBus03

– Transmission Protocol: TCP/IP

– Connection Name: ITSOESB03.itso.ral.ibm.com(5558)
302 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

– Transmission Queue: ITSOESBBus03

3. Create a WebSphere MQ receiver channel called ITSOESBBus03.TO.QM1 with
a Transmission Protocol of TCP/IP.

4. Create a transmission queue called ITSOESBBus03.

5. Create the following local queues:

– LOG.IN

– PO.REQ.IN

– PO.RES.IN

– WHCB.REQ.IN

– WHCB.RES.IN

– MANA.PO

– MANB.PO

– MANC.PO

– MANA.WHCB

– MANB.WHCB

– MANC.WHCB

10.4.2 Connect the toolkit to the configuration manager
In order to deploy build time artefacts (message sets and message flows) to the
runtime broker, the WebSphere Business Integration Message Broker Toolkit
must communicate with the runtime Configuration Manager. The toolkit uses a
WebSphere MQ client connection to do this. The following instructions assume
that you have already created a runtime configuration manager, and a runtime
broker named BK1.

If you have not already done so, open the WebSphere Business Integration
Message Broker Toolkit that was used to create the resources in the
Development section of this scenario.

1. Open the Broker Administration perspective by selecting Window → Open
Perspective → Broker Administration.

2. Right-click the Domain Connections folder in the Broker Administration
Navigator and select New → Domain.

Note: This Connection Name setting assumes that
ITSOESB03.itso.ral.ibm.com can be resolved to the host system where
the WebSphere Application Server ESB is running.
 Chapter 10. Directly Connected heterogeneous ESBs 303

3. Enter QM1 in Queue Manager Name, localhost in Host and 1414 in Port, and
click Next. These settings assume that you installed the WebSphere
Business Integration Message Broker Toolkit on the same physical machine
as the runtime components.

4. Enter Servers in Server Project and Domain1 in Connection Name, and click
Finish. This creates a Server Project named Servers and stores the
configuration manager connection information you specified within the project
inside a file named Domain1.configmgr.

5. Having connected to the configuration manager, create a representation of
your runtime broker within the Toolkit topology that is shown in the Domains
view. This adds the runtime broker to the topology that is controlled by the
configuration manager, and enables you to deploy to the runtime broker from
the Toolkit. Right-click the Broker Topology level of the hierarchy displayed in
the Domains view and select New → Broker.

6. Enter BK1 in Broker name and QM1 in Queue Manager Name, and click Finish.

When the action successfully completes, you will see a broker named BK1
appear in the hierarchy of the Domains view, beneath the Broker Topology level.
The BK1 broker will have a single execution group as a child, named default.

10.4.3 Create execution groups
The following instructions describe the creation of separate execution groups,
which will be used to organize the deployed message sets and message flows:

1. Right-click the broker BK1 in the Domains view and select New → Execution
Group.

2. Enter PurchaseOrder in the Execution Group name, and click Finish.

3. The new execution group should appear beneath the broker BK1.

4. Right-click the broker BK1 in the Domains view and select New → Execution
Group.

5. Enter Log in the Execution Group name, and click Finish.

6. The new execution group should appear beneath the broker BK1.

7. Right-click the broker BK1 in the Domains view and select New → Execution
Group.

8. Enter WarehouseCallback in the Execution Group name, and click Finish.

9. The new execution group should appear beneath the broker BK1.
304 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

10.4.4 Create and deploy Broker archive files
Three Broker Archive Files are used (one for each execution group) to deploy the
message flows and message sets. Note that message dictionaries (the runtime
term for a deployed message set) are not shared between separate execution
groups, so they must be deployed separately to each execution group that needs
access to this metadata.

1. Right-click the Broker Archives folder in the Broker Administration Navigator
and select New → Message Broker Archive.

2. Select the Servers project and enter PurchaseOrder in File Name, then click
Finish.

3. Click the Add icon in the main editing window.

4. Check the msp_Manufacturer message set project, check the msp_Other
message set project, and click OK to add it to the PurchaseOrder.bar file.
Click OK in the response dialog window.

5. Save the PurchaseOrder.bar file by pressing Ctrl+S.

6. Click the Add icon in the main editing window.

7. Click on the message flow project name mfp_Manufacturer, and the
available message flows will appear in the panel on the right of the dialog.
Select the message flows named PurchaseOrderRequest.msgflow and
PurchaseOrderResponse.msgflow and click OK to add it to the
PurchaseOrder.bar file. Click OK in the response dialog window.

8. Save the PurchaseOrder.bar file by pressing Ctrl+S.

9. If the domain is not already connected, connect it now. In the Domains view,
connect to the Broker by right-clicking and selecting Connect.

10.Deploy the PurchaseOrder.bar file by dragging it from the Broker
Administration Navigator view to the execution group named PurchaseOrder
under the broker BK1 in the Domains view.

11.Click OK to acknowledge the response message from the Configuration
Manager.

12.Double-click the Event log in the Domains view, and watch for the two
successful messages with a current timestamp.

The message sets and message flows for the PurchaseOrder are now deployed
and ready for use. Now deploy the rest of the WebSphere Business Integration
Message Broker message flows and sets:

Deploy to the Log execution group:

1. Create a Broker Archive File named Log.bar.
 Chapter 10. Directly Connected heterogeneous ESBs 305

2. Add message flow LogEvent.msgflow and message set msp_Other.
(Check the message set project named msp_Other.)

3. Deploy Log.bar to the execution group named Log under broker BK1.

Deploy to the WarehouseCallback execution group:

1. Create a Broker Archive File named WarehouseCallback.bar.

2. Add message flows WarehouseCallbackRequest.msgflow and
WarehouseCallbackResponse.msgflow and message sets msp_Other
(check the message set project named msp_Other) and msp_Manufacturer
(check the message set project named msp_Manufacturer).

3. Deploy WarehouseCallback.bar to the execution group named
WarehouseCallback in broker BK1.

10.4.5 Create database resources
The PurchaseOrderRequest flow uses a database lookup to find out the queue
and queue manager name of the location it should send its messages to. It finds
these values by issuing an SQL select statement that uses the name of the target
service from the MQRFH2 header of the input message sent from WebSphere
Application Server.

In this section you will create this database in DB2 Universal Database, and
define an ODBC data source for it.

Create the SVCDIR database
We will create a database and table in DB2 Universal Database to link the
Manufacturer’s service queues to the target service property in the input
message from the ITSOESB03 (WebSphere Application Server) ESB.

The following steps create a table called SVCDIR and a table called ROUTE:

1. Start the DB2 Command Window.

2. Enter the following commands in the DB2 Command Window (these
instructions assume you are logged in as user admin):

db2 create database SVCDIR

db2 connect to SVCDIR

db2 create table ROUTE(SERVICE varchar(100), QUEUE varchar(100),
QUEUEMGR varchar(100))

db2 insert into ROUTE
values('ITSOESB04/MANUFACTURERA','MANA.PO','QM1')
306 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

db2 insert into ROUTE
values('ITSOESB04/MANUFACTURERB','MANB.PO','QM1')

db2 insert into ROUTE
values('ITSOESB04/MANUFACTURERC','MANC.PO','QM1')

Create the ODBC data source
Perform the following to create an ODBC data source for this database:

1. In Windows select Control Panel → Administrative Tools → Data Sources
(ODBC).

2. Click the System DSN tab.

3. Click Add to create a new system data source.

4. In the Create a New Data Source window, select IBM DB2 ODBC DRIVER
and click Finish.

5. In the ODBC IBM DB2 Driver window enter a Data source name of SVCDIR
and set the Database alias to SVCDIR. Click OK to create the data source.

10.5 Runtime guidelines for legacy manufacturer
application

The Manufacturer application is a stand-alone Java application that uses the
WebSphere MQ API to communicate with the outer world. One application is
provided that can be run as a Manufacturer A or B or C.

The same application code is designed to be run as three separate instances at
the same time. Therefore the Manufacturer application has five parameters to
control its operation. The Manufacturer application can be run by opening a
command prompt and typing:

java -jar ManufacturerApplication.jar config\SubmitPO_receiver.properties
config\SubmitSN_receiver.properties config\SubmitSN_sender.properties
config\LogEvent_sender.properties A

The Table 10-7 on page 308 describes the meaning of the runtime parameters.
 Chapter 10. Directly Connected heterogeneous ESBs 307

Table 10-7 ManufacturerApplication runtime parameters

The Table 10-8 describes the format of the property files.

Table 10-8 Description of properties used in configuration files

Parameter
position

Parameter name Description

1 SubmitPO_receiver.properties Properties for purchase order
receiver. Queue name and
associated properties specify the
input queue, where request
messages (defined by
Manufacturer.xsd) arrive.

2 SubmitSN_receiver.properties Properties for shipment notice
acknowledgement receiver. Queue
name and associated properties
specify the input queue where
acknowledgment messages arrive.

3 SubmitSN_sender.properties Properties for shipment notice
sender. Queue name and
associated properties specify the
output queue where shipment
notice messages are sent.

4 LogEvent_sender.properties Properties for log events sender.
Queue name and associated
properties specify the output queue
where log messages are sent.

5 Manufacturer Type Type of manufacturer application.
Manufacturer type has three
possible values: A, B, or C.

Property name Description

QUEUE_MANAGER_
NAME

Name of the WebSphere MQ Queue Manager

QUEUE_NAME Name of WebSphere MQ Queue

PORT Number of the port used by the WebSphere MQ Listener

HOSTNAME Hostname or IP address of the computer hosting the
WebSphere MQ Queue Manager

CHANNEL Name of WebSphere MQ channel being use for client
connection
308 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Table 10-9, Table 10-10 on page 309, and Table 10-11 on page 310 describe the
default configuration of the property files shipped with the sample applications.

Table 10-9 Application A property settings

Default properties for the ManufacturerA application are stored in the /config
directory and are named:

� LogEvent_sender.properties
� SubmitPO_receiver.properties
� SubmitSN_receiver.properties
� SubmitSN_sender.properties

Table 10-10 Application B property settings

Default properties for the ManufacturerB application are stored in the /config
directory and are named:

� LogEvent_senderB.properties
� SubmitPO_receiverB.properties

CCSID CCSID of WebSphere MQ Queue Manager

Property Value

QUEUE_MANAGER_NAME QM1

QUEUE_NAME MANA.PO

PORT 1414

HOSTNAME ITSOESB04

CHANNEL SYSTEM.DEF.SVRCONN

CCSID 1208

Property Value

QUEUE_MANAGER_NAME QM1

QUEUE_NAME MANB.PO

PORT 1414

HOSTNAME ITSOESB04

CHANNEL SYSTEM.DEF.SVRCONN

CCSID 1208

Property name Description
 Chapter 10. Directly Connected heterogeneous ESBs 309

� SubmitSN_receiverB.properties
� SubmitSN_senderB.properties

Table 10-11 Application C property settings

Default properties for the ManufacturerC application are stored in the /config
directory and are named:

� LogEvent_senderC.properties
� SubmitPO_receiverC.properties
� SubmitSN_receiverC.properties
� SubmitSN_senderC.properties

To simplify execution of the applications, three batch files that already reference
the predefined parameters discussed above, are stored in the /config directory.
You can run the batch files by opening a command prompt and typing:

ManufacturerAApplication.bat
ManufacturerBApplication.bat
ManufacturerCApplication.bat

10.6 Testing the application
To test the WS-I application, ensure that the following things are running:

� The WebSphere Application Server server instance with the ESB configured
as described in 10.3, “Runtime guidelines for ESB based on WebSphere
Application Server” on page 287.

� The WebSphere Business Integration Message Broker server with the ESB
configured as described in 10.4, “Runtime guidelines for ESB based on
WebSphere Business Integration Message Broker” on page 302.

� The three legacy manufacturer Java applications are started as described in
10.5, “Runtime guidelines for legacy manufacturer application” on page 307.

Property Value

QUEUE_MANAGER_NAME QM1

QUEUE_NAME MANC.PO

PORT 1414

HOSTNAME ITSOESB04

CHANNEL SYSTEM.DEF.SVRCONN

CCSID 1208
310 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

To test the complete scenario, open a Web browser on the machine hosting the
WebSphere Application Server ESB, and enter the following URL:

http://ITSOESB03.itso.ral.ibm.com:9080/SCMSampleUI

This invokes the WS-I sample application. Test the connection to the
manufacturers by placing orders for the first three products, ensuring a quantity
of at least 6 for each product. This triggers a call to the WebSphere Business
Integration Message Broker ESB and to each manufacturer. For more
information on how to test the WS-I sample application, see 9.3.6, “Testing the
scenario” on page 236.
 Chapter 10. Directly Connected heterogeneous ESBs 311

312 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2005. All rights reserved. 313

314 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

acronyms
ACID Automicity, Consistency,
Isolation, Durability

API Application Programming
Interface

BLOB Binary Large Object

CCI Common Client Interface

CICS Customer Information Control
System

COBOL Common Business-Oriented
Language

CORBA Common Object Request
Broker Architecture

COTS Commercial Off-The-Shelf

DBMS Database Management
System

DMZ Demilitarized Zone

DTD Document Type Definition

DVD Digital Video Disc

EAI Enterprise Application
Integration

EAR Enterprise Archive

EDI Electronic Data Interchange

EIS Enterprise Information
System

EJB Enterprise JavaBean

ERP Enterprise Resource
Planning

ESB Enterprise Service Bus

FTP File Transfer Protocol

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTP/S Hypertext Transfer Protocol
over Secure Sockets Layer

Abbreviations and
© Copyright IBM Corp. 2005. All rights reserved.
IDE Integrated Development
Environment

IIOP Internet Interoperable ORB
Protocol

IMS Information Management
System

ISBN International Standard Book
Number

ITSO International Technical
Support Organization

JAAS Java Authentication and
Authorization Service

JAR Java Archive

JAX-RPC Java API for XML-based
Remote Procedure Call

JDBC Java Database Connectivity

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JSP Java Server Page

MDB Message Driven Bean

OASIS Organization for the
Advancement of Structured
Information Standards

ODBC Open Database Connectivity

RMI Remote Messaging Interface

RPC Remote Procedure Call

SCM Supply Chain Management

SDK Software Development Kit

SDO Service Data Object

SOA Service Oriented Architecture

SQL Structured Query Language

SSL Secure Socket Layer

TCP/IP Transmission Control
Protocol / Internet Protocol
 315

UDDI Universal Description,
Discovery, and Integration

UML Unified Modeling Language

URI Universal Resource Identifier

URL Universal Resource Locator

WS-BPEL Web Services Business
Process Execution Language

WS-I Web Services Interoperability

WSDL Web Services Description
Language

XML Extensible Markup Language

XSD XML Schema Definition
316 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246773

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246773.

Using the Web material
The additional Web material that accompanies this book includes the following
file:

File name Description
SG246773.zip Zipped Code Samples

A

© Copyright IBM Corp. 2005. All rights reserved. 317

ftp://www.redbooks.ibm.com/redbooks/SG246773
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB for source material
Operating System: Windows operating system
Memory: 1.5 GB to run source material

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
318 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 322. Note that some of the documents referenced here may be available
in softcopy only.

� Patterns: Broker Interactions for Intra- and Inter-enterprise, SG24-6075

� Patterns: Direct Connections for Intra- and Inter-enterprise, SG24-6933

� Patterns: Serial and Parallel Processes for Process Choreography and
Workflow, SG24-6306

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application
Server V6, SG24-6494

� Patterns: Using Business Service Choreography In Conjunction With An
Enterprise Service Bus, REDP-3908

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

Other publications
These publications are also relevant as further information sources:

� Jonathan Adams, Srinivas Koushik, Guru Vasudeva, and George Galambos,
Patterns for e-business: A Strategy for Reuse, IBM Press, 2001, ISBN
1931182027

� WebSphere MQ Application Programming Guide, SC34-6064-03.
© Copyright IBM Corp. 2005. All rights reserved. 319

Online resources
These Web sites and URLs are also relevant as further information sources:

� Patterns for e-business Web site

http://www.ibm.com/developerWorks/patterns/

� IBM Enterprise Service Bus stategy

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb

� WebSphere Application Server

http://www.ibm.com/software/webservers/appserv/was/

� WebSphere Business Integration Message Broker

http://www.ibm.com/software/integration/wbimessagebroker

� WebSphere MQ

http://www.ibm.com/software/ts/mqseries

� WebSphere Enterprise Service Bus

http://www.ibm.com/software/integration/wsesb/

� Rational Application Developer

http://www.ibm.com/software/awdtools/developer/application

� DB2 Universal Database

http://www.ibm.com/software/data/db2/udb

� WebSphere Application Server benchmarks

http://www.spec.org/jAppServer2004/results/jAppServer2004.html

� Web Services Interoperability Organization

http://www.ws-i.org

� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

� First look at the WS-I Basic Profile V1.0

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html

� First look at the WS-I Usage Scenarios

http://www.ibm.com/developerworks/webservices/library/ws-iuse/

� Preview of WS-I sample application

http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/
320 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.ibm.com/developerWorks/patterns/
http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/integration/wbimessagebroker
http://www.ibm.com/software/ts/mqseries
http://www.ibm.com/software/integration/wsesb/
http://www.ibm.com/software/awdtools/developer/application
http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html
http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
http://www.ibm.com/developerworks/webservices/library/ws-iuse/
http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

� IBM Emerging Technologies Toolkit

http://www.alphaworks.ibm.com/tech/ettk

� Security in a Web Services World: a Proposed Architecture and Road map

http://www.ibm.com/developerworks/library/ws-secmap/

� Web Services Security: Moving up the stack

http://www.ibm.com/developerworks/webservices/library/ws-secroad/

� Updated: Web Services Reliable Messaging: A new protocol for reliable
delivery between distributed applications

http://www.ibm.com/developerworks/webservices/library/ws-rm/

� Implementation Strategies for WS-ReliableMessaging: How
WS-ReliableMessaging can interact with other middleware communication
systems

http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

� WS-BPEL specification

http://www.ibm.com/developerworks/library/ws-bpel/

� Business Processes with WS-BPEL, a series of introductory articles and
references

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

� WS-BPEL support in WebSphere Business Integration Server Foundation

http://www.ibm.com/software/integration/wbisf/features/

� WS-BPEL support in WebSphere Studio Application Developer Integration
Edition

http://www.ibm.com/software/integration/wsadie/features/

� WS-AtomicTransaction specification

http://www.ibm.com/developerworks/library/ws-atomtran/

� WS-BusinessActivity specification

http://www.ibm.com/developerworks/webservices/library/ws-busact/

� Transactions in the world of Web Services, part 1 and part 2

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

� WS-Coordination specification

http://www.ibm.com/developerworks/library/ws-coor/

� WS-Policy framework specification

http://www.ibm.com/developerworks/library/ws-polfram/
 Related publications 321

http://www.alphaworks.ibm.com/tech/ettk
http://www.ibm.com/developerworks/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secroad/
http://www.ibm.com/developerworks/webservices/library/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.ibm.com/software/integration/wbisf/features/
http://www.ibm.com/software/integration/wsadie/features/
http://www.ibm.com/developerworks/library/ws-atomtran/
http://www.ibm.com/developerworks/webservices/library/ws-busact/
http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/
http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-polfram/

� Web Services Policy Framework: New specifications improve WS-Security

http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.ht
ml

� Java specification for SDO

http://www.jcp.org/en/jsr/detail?id=235

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
322 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html
http://www.jcp.org/en/jsr/detail?id=235

Index

Numerics
128-bit encryption 111
256-bit encryption 111
80/20 situation 3

A
access control lists 43
Adapter Connector pattern 106
adapter connectors 38
advanced and future Web services standards 131

Business Process Execution Language for Web
Services 133
Web services security 131

WS-Policy 132
WS-Privacy 132
WS-Security 132
WS-Trust 132

Web services transactions 134
Web Services Policy Framework 134

WS-Policy 134
WS-AtomicTransaction 134
WS-BusinessActivity 134
WS-Coordination 134

WS-ReliableMessaging 132
alias destinations 140
Application patterns 4, 11
assured delivery 111
autonomic computing 29

B
Basic Profile 129
Basic Profile V1.0 130
Basic Profile V1.1 130
best practices 4, 16
bitstream 263
BLOB 24, 256
bootstrap endpoints 189
Boundary Services Adapter Connector pattern 109
Broker archive files 305
Broker Topology 304
Brokered ESBs pattern 97
BSC runtime pattern 43
© Copyright IBM Corp. 2005. All rights reserved.
App server / services 44
Persistence manager 45
Process manager 44

Branching 45
Correlation 45
Monitoring 45
Non-functional requirements 45
Process abstractions 45
Process definition standards 45

Product mappings 54
Rules directory 45

Business patterns 4, 7
Business Service Choreography 43
business service directory

UDDI directory 38

C
Cell Scope 173
CICS Transaction Server 35
COBOL 89
COBOL copybook 89
collaborations 113
Common Event Infrastructure 112
Component-managed authentication alias 177
Composite patterns 4, 10
Configuration manager 303
Content validation 282
custom profile 169

D
Data Graphs 144
Data Mediator Service 144
Data Objects 144
data warehouse 28
DB2 Connect 28
DB2 Universal Database 160
DB2 Universal Database Enterprise Server Edition
V8.2 28
Decentralized management 100
Destination resources 190
destinations 190
Direct Connection runtime pattern 32
Directly Connected ESBs pattern 95
 323

Domain Connections folder 303

E
Eclipse 30
Element Reference 283
encryption 107
Endpoint listeners 204
Enterprise Information Systems 143
Enterprise Resource Planning 143
Enterprise Service Bus

extended capability
infrastructure intelligence 61
integration 60
management and autonomic 61
message processing 61
modeling 61
quality of service 60
security 60
service level 61

integration attributes 62
capabilities of existing ESB 64
enterprise integration strategy 64
ESB technology allegiance 64
existing ESB technology 63
hardware and operating system 65
maturity of existing ESB implementation 63
programming model 65

minimum capability
integration 58
management and Autonomic 58
service interaction 58

multiple ESBs 82
alignment by organizational unit 83
business strategy 84
funding models 83
geography 84
multiple ESB technologies 84
multiple governance bodies 82

ESB Adapter Connector patterns 106
ESB Adapter pattern 247
ESB Gateway

App server / services 42
ESB 42
Gateway endpoint 43
Rules directory 42

ESB Gateway runtime pattern 41
Product mappings 53

ESB Governance patterns 101

ESB runtime pattern 34
administration and security services 37

administration 37
security 38

App server / services 35
business service directory 38
Connectors 38

Application adaptation 39
Legacy adaptation 40
path connectors 38
Technology adaptation 39

connectors
adapter connectors 38

Hub node 35
addressing 36
infrastructure intelligence 37
integration 36
message processing 37
messaging styles 36
modelling 37
quality of service 37
routing 36
service interface definition 36
service level 37
service messaging model 36
Transport protocols 36

Namespace directory 37
Product mappings 52

ESB Topology patterns 90
ESB, BSC composite pattern 46

BSC 47
ESB 48
Process manager 46
Repository nodes 46

ESQL 256
Execution groups 304
Exposed ESB Gateway runtime pattern

Product mappings 55
exposed ESB Gateway runtime pattern

App server / services 49
Connector 49
ESB 49
ESB Gateway 49

Exposed ESB Gateway, BSC composite pattern 50

F
Federated ESBs pattern 99
Federated Governance pattern 104
324 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

Food and Drug Administration 83
foreign bus 69, 185

direct service integration bus link 185
Direct WebSphere MQ link 185
indirect 185

foreign bus destination defaults 296
foreign destinations 140
forward routing path 216

G
Global Security 172
governance zones 101
government regulatory requirements 82
guidelines 4, 16

H
heterogeneous ESBs

design guidelines 243
business scenario 243
High-level business context 243
integration of organizations 244
Organizational overview 244

history tracking 144
homogeneous ESBs 149

design guidelines 151
business scenario 151

High-level business context 151
integration of organizations 153
Organizational overview 152

selecting ESB integration patterns 154
Product mapping 155
selecting an ESB Topology pattern 154

Host Aliases 201
Hosting the WSDL files 200
Hosts file 164
HTTP authentication 132
HTTP endpoint listener 182
HTTP over TLS 130
HTTP State Management Mechanism 130
Hub node 35
HyperText Transfer Protocol 130

I
IA81 256
IBM Emerging Technologies Toolkit 131
IBM HTTP Server 160
IMS Transaction Manager 35

Inbound services 220
installSdoRepository script 179
integrating ESBs 87
Integration 244
Integration patterns 4, 8
Intermediary Governance pattern 102
Internet X.509 Public Key Infrastructure Certificate
130

J
J2C Authentication data 172
J2EE Connector Architecture 143

Common Client Interface 143
Inbound adapters 143
Outbound adapters 143

JAAS Configuration 172
Java Message Service 135

Enterprise messaging API 137
JMS messages 136

Body 136
Header 136
Point-to-point 136
Properties 136
Publish subscribe 136

JDBC provider 173
JMS 192
JMS activation specifications 197
JMS connection factory 192
JMS endpoint listener 182, 291
JMS queues 195
JSR-235 144

K
Kerberos 38

L
Legacy adaptation 40
Local Governance pattern 102
location transparency 36
LogEvent 256, 268

AddSOAP 269

M
mediation points 141
mediations 249

attaching 297
implementing 249
 Index 325

message channels 27
Message Definition Files 272
Message Flows 258
Message Repository Manager 24, 256
message sets 258, 269
message-oriented middleware 135
messaging engine repository 170
messaging engines 257
messaging patterns 19
messaging provider 19
metadata 110, 144
Microsoft .NET 29
Microsoft Management Console 167
Multiple governance patterns 105
MustUnderstand attribute 275

N
Namespace directory 37
native library path 174
Network Cloudscape 247

O
OASIS 89
ODBC 263
ODBC data source 307
one- way calls 286
outbound services 207
OutboundBasicMQLink 301

P
path connectors 38
Patterns for e-business

Application patterns 4, 11
best practices 4, 16
Business patterns 4, 7
Composite patterns 4, 10
guidelines 4, 16
integrating ESBs 87

ESB Adapter Connector patterns 106
ESB Adapter patterns

Adapter Connector pattern 106
Boundary Services Adapter Connector
pattern 109
Composite 112

ESB Governance patterns 101
Federated Governance pattern 104
Intermediary Governance pattern 102

Local Governance pattern 102
Multiple governance patterns 105

ESB Topology patterns 90
Brokered ESBs pattern 97
Directly Connected ESBs pattern 95
Federated ESBs pattern 99

Integration patterns 4, 8
Product mappings 4, 15
Runtime patterns 4, 12
Web site 5

point-to-point communication model 27
port destinations 140
process management 47
Process Manager 44
Product 51
Product mappings 4, 15, 51

BSC runtime pattern 54
ESB Gateway runtime pattern 53
ESB runtime pattern 52
Exposed ESB Gateway runtime pattern 55

Profile creation wizard 165
Creating the application server profiles 168
Deployment manager profile 165

ProfileCreator 165
publication points 141
publish WSDL files 208
publish/subscribe communication model 27
PurchaseOrderRequest 256

RemoveSOAP 260
Reset Content Descriptor 264
Transform 262

PurchaseOrderResponse 256, 264
AddSOAP 265
Reset Content Descriptor 265

Q
queue definitions 27
queue destinations 140
queue manager 27, 304
queue points 141

R
Rational Application Developer 21
Rational Application Developer V6 29
Rational Software Development Platform 29
receiver queue destinations 297
Redbooks Web site 322

Contact us xv
326 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

relationship integrity 144
reliable message transport 20
request-response calls 286

Dynamic response address 286
Static response address 286

retargeting Web service client bindings 159
modify the endpoint URL 159
redevelop the client 159

Reverse routing path 216
router scenario

Runtime
creating endpoint listeners 204
creating outbound services 207

routing paths 216
Rules repository 33
Runtime patterns 4, 12, 32

BSC 43
Direct Connection 32
ESB 34
ESB Gateway 41
ESB, BSC composite 46
Exposed ESB Gateway, BSC composite 50

S
SDO data graph 285
SDO repository 170
Secure Sockets Layer Protocol 130
Security 73
sender channel 302
service binding 113
service bus

Simple 32
Service Data Objects 144, 171
service integration bus 139, 170

Adding a bus member 183
bootstrap endpoints 189
bus 139
bus member 140
Configuring forward routing destinations 216
Creating 182
Creating a foreign bus 185
Creating a JMS connection factory 192
Creating a mirror foreign bus 186
Creating a service integration bus link 186
Creating destinations 190
Creating endpoint listeners 204
Creating JMS queues 195
destination 140

Destinations
Web service destinations 140

destinations
alias destinations 140
foreign destinations 140
port destinations 140
queue destinations 140
topic space destinations 140

endpoint listener 141
Exception destinations 142
Foreign bus 142
Foreign bus link 142
Inbound services 220

Editing the client bindings 226
inbound services 141
Installing endpoint listener applications 181
Installing service integration bus applications
and resources 180
Installing the SDO repository application 178
Mediation

Augmenting messages 142
Disaggregation 142
Dynamically routing messages 142
Transforming a message 142

mediation 141
message point 141

mediation points 141
publication points 141
queue points 141

messaging engine 139
connection management 139
message management 139

outbound services 141, 207
routing paths 216
setting up the messaging engine repositories
171
setting up the messaging engines and SDO re-
positories 172
setting up the SDO repository 171

service level policies 43
service provisioning 38
service substitution 36
shared services 113
SIB_ENDPOINT_ADDRESS 187
Siebel 40
SOA profile

BSC 43
Direct Connection 32
ESB 34
 Index 327

ESB Gateway 41
ESB, BSC composite 46
Exposed ESB Gateway, BSC composite 50

SOAP 128
Envelope 128
Messages 128

SOAP ServiceActor 261
SOAP ServiceName 261
SOAP ServiceRole 261
SOAP with Attachments 130
soapbrschema 261
soaplib_service_init 261
soaplib_set_validhdr 261
soaplib_set_validop 261
SSL authentication 132
SSL encryption 132
startManager 167
startManager command 167

T
topic space destinations 140
Transmission Protocol 303
Transmission Queue 303
Transport Layer Security Protocol 130

U
U.S. government taxonomy 129
UDDI 129
UDDI directory 38
UML editing 29
URI 159

V
virtual hosts 201

W
W3C 89
WarehouseCallbackRequest 256, 267

AddSOAP 268
Transform 267

WarehouseCallbackResponse 256, 268
WC_defaulthost 214
Web service destinations 140
Web services 126

loose coupling 126
SOAP

body 128

header 128
UDDI 129
usage models 126

Basic callback 126
one-way 126
synchronous request/response 126

Web services standards 131
Business Process Execution Language for
Web Services 133
Web Services Policy Framework 134
Web services security 131
Web services transactions 134
WS-ReliableMessaging and SOAP/JMS
132

WSDL 128
Web services architecture

SOAP 128
Universal Description, Discovery, Integration
129
Web Services Description Language 128
Web services interoperability 129

Web Services Interoperability Organization
129

Basic Profile 129
Web services interoperability 129
Web Services Interoperability Organization 118,
129
Web services security 131
WebSphere Application Server 20–21, 248

Common Event Infrastructure 112
WebSphere Application Server Network Deploy-
ment 21
WebSphere Application Server Network Deploy-
ment V6 21
WebSphere Application Server V6 18

Highlights and benefits 19
Packaging for distributed platforms 20

WebSphere Application Server Network De-
ployment V6 21
WebSphere Application Server V6 20–21

WebSphere Business Integration Message Broker
247

Broker archive files 305
database resources 306
Execution groups 304
Import message flow projects 259
ODBC data source 307

WebSphere Business Integration Message Broker
V5 23
328 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

WebSphere Business Integration Message Brokers
Toolkit 247
WebSphere Integration Reference Architecture 65
WebSphere MQ 247, 302

Queue definitions 303
sender channel 302

WebSphere MQ Link 297, 299
create 300
create a JMS queue for the alias destination
300
create an alias destination

Alias destination 299
OutboundBasicMQLink 301

WebSphere MQ V5.3 27
Wildcard Attributes 283
Wildcard Elements 274
workload management 27
WS-AtomicTransaction 134
WS-BPEL 133
WS-BusinessActivity 134
WS-Coordination 134
WSDL 128, 159
WS-I sample application 118
WS-I Supply Chain Management Technical Archi-
tecture 118
WS-I Supply Chain Management Use Cases 118
WS-I usage scenarios 118
WS-Policy 37, 77, 132, 134
WS-Privacy 132
WS-Reliability 89
WS-Reliable Messaging 89
WS-ReliableMessaging 131–132
WS-Security 111, 132
WS-Transaction 77
WS-Trust 132

X
XA data source 174
XML data sources 144
XML NameSpace 256

Z
z/OS 19
 Index 329

330 Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Patterns: Integrating Enterprise Service Buses in a Service-Oriented Architecture

®

SG24-6773-00 ISBN 0738492930

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: Integrating
Enterprise Service Buses
in a Service-Oriented
Architecture
Integrate ESBs in
WebSphere V6 and
Message Broker V5

Patterns for
integrating ESBs

Learn by example
with practical
scenarios

The Patterns for e-business are a group of proven, reusable assets
that can be used to increase the speed of developing and deploying
e-business applications. This IBM Redbook focuses on how you can
integrate Enterprise Service Bus (ESB) implementations in a
service-oriented architecture (SOA). The book discusses patterns for
integrating ESBs and includes step-by-step instructions for
integrating ESBs implemented in WebSphere Business Integration
Message Broker V5 and WebSphere Application Server V6. However,
the ESB integration patterns and concepts apply to ESBs
implemented with any product.

Part 1 introduces SOA and ESB concepts, and discusses the ESB
capabilities of WebSphere Business Integration Message Broker V5
and WebSphere Application Server V6. It describes guidelines for
determining when integration of ESBs is necessary, and describes
patterns for integrating ESBs.

Part 2 describes the business scenario used in this book and explains
key technologies relevant to SOA and ESB.

Part 3 guides you through the process of integrating ESBs. Two
scenarios are described: integration of homogeneous ESBs and of
heterogeneous ESBs. The homogeneous ESB scenario describes the
integration of two ESBs implemented in WebSphere Application
Server V6. The heterogeneous ESB scenario describes integration
between an ESB implemented in WebSphere Application Server V6
and an ESB implemented in WebSphere Business Integration
Message Broker V5.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Patterns for e-business and SOA
	Chapter 1. Introduction to Patterns for e-business
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Selecting a Business, Integration, or Composite pattern, or a Custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Reviewing Product mappings
	1.2.5 Reviewing guidelines and related links

	1.3 Summary

	Chapter 2. Product descriptions
	2.1 Runtime product descriptions
	2.1.1 IBM WebSphere Application Server V6
	2.1.2 IBM WebSphere Business Integration Message Broker V5
	2.1.3 IBM WebSphere MQ V5.3
	2.1.4 IBM WebSphere Enterprise Service Bus V6
	2.1.5 IBM DB2 Universal Database Enterprise Server Edition V8.2

	2.2 Development product descriptions
	2.2.1 IBM Rational Application Developer V6

	Chapter 3. SOA runtime patterns and Product mappings
	3.1 Runtime patterns
	3.1.1 Direct Connection using a service bus
	3.1.2 ESB runtime pattern
	3.1.3 ESB Gateway runtime pattern
	3.1.4 BSC runtime pattern
	3.1.5 ESB, BSC composite pattern
	3.1.6 Exposed ESB Gateway runtime pattern
	3.1.7 Exposed ESB Gateway, BSC composite pattern

	3.2 Product mappings
	3.2.1 ESB runtime pattern::Product mappings
	3.2.2 ESB Gateway runtime pattern::Product mapping
	3.2.3 BSC runtime pattern::Product mapping
	3.2.4 Exposed ESB Gateway Product mapping

	Chapter 4. Technology capabilities for an additional ESB
	4.1 ESB capabilities and decision attributes
	4.1.1 Minimum ESB capabilities
	4.1.2 Extended ESB capabilities
	4.1.3 Softer attributes

	4.2 A review of ESB technologies
	4.2.1 WebSphere Integration Reference Architecture
	4.2.2 General capability discussion

	4.3 Examples of adding new ESB technology to an existing ESB infrastructure
	4.3.1 Scenario 1: Adding ESB capabilities to a WebSphere MQ infrastructure
	4.3.2 Scenario 2: Integrating ESBs in a J2EE and Web services-based infrastructure

	Chapter 5. To ESB but not two ESB?
	5.1 Tactical reasons for multiple ESBs
	5.1.1 Multiple governance bodies
	5.1.2 Funding models
	5.1.3 Alignment by organizational unit
	5.1.4 Geography
	5.1.5 Business strategy
	5.1.6 Multiple ESB technologies

	5.2 Conclusion

	Chapter 6. Integrating ESBs
	6.1 ESB capabilities
	6.2 ESB service request context translation
	6.3 Introduction to ESB integration patterns
	6.3.1 ESB Topology patterns overview
	6.3.2 ESB Governance patterns overview
	6.3.3 ESB Adapter Connector patterns overview

	6.4 ESB Topology patterns
	6.4.1 Directly Connected ESBs pattern
	6.4.2 Brokered ESBs pattern
	6.4.3 Federated ESBs pattern

	6.5 ESB Governance patterns
	6.5.1 Local Governance pattern
	6.5.2 Intermediary Governance pattern
	6.5.3 Federated Governance pattern
	6.5.4 Multiple governance patterns

	6.6 ESB Adapter Connector patterns
	6.6.1 Adapter Connector pattern
	6.6.2 Boundary Services Adapter Connector pattern
	6.6.3 Composite
	6.6.4 Comparing Adapter Connectors and Boundary Services

	Part 2 Business scenario and guidelines
	Chapter 7. The business scenario used in this book
	7.1 WS-I sample business scenario
	7.2 Sample business scenario used in this book
	7.2.1 Business context
	7.2.2 Applications in the supply chain management
	7.2.3 Example of using the sample application

	Chapter 8. Technology options
	8.1 Web services
	8.1.1 SOAP
	8.1.2 Web Services Description Language (WSDL)
	8.1.3 Universal Description, Discovery, Integration (UDDI)
	8.1.4 Web services interoperability
	8.1.5 WS-I Basic Profile V1.0
	8.1.6 WS-I Basic Profile V1.1
	8.1.7 Advanced and future Web services standards
	8.1.8 Web services security
	8.1.9 WS-ReliableMessaging and SOAP/JMS

	8.2 Messaging
	8.2.1 JMS
	8.2.2 WebSphere MQ messaging
	8.2.3 Service integration bus

	8.3 J2EE Connector Architecture
	8.4 Service Data Objects
	8.4.1 SDO architecture

	Part 3 Scenario implementation
	Chapter 9. Directly Connected homogeneous ESBs
	9.1 Design guidelines
	9.1.1 Business scenario
	9.1.2 Selecting ESB integration patterns

	9.2 Development guidelines
	9.2.1 Scenario implementation
	9.2.2 Retargeting Web service client bindings

	9.3 Runtime guidelines
	9.3.1 Software requirements
	9.3.2 Steps to complete the scenario
	9.3.3 Building the WebSphere Application Server Network Deployment infrastructure
	9.3.4 Building the service integration bus infrastructure
	9.3.5 Deploying and building the WS-I scenario
	9.3.6 Testing the scenario

	Chapter 10. Directly Connected heterogeneous ESBs
	10.1 Design guidelines
	10.1.1 Business scenario
	10.1.2 Selecting ESB integration patterns

	10.2 Development guidelines
	10.2.1 ESB based on WebSphere Application Server
	10.2.2 ESB based on WebSphere Business Integration Message Broker
	10.2.3 Legacy manufacturer application

	10.3 Runtime guidelines for ESB based on WebSphere Application Server
	10.3.1 Building the WebSphere Application Server infrastructure
	10.3.2 Linking the bus using the WebSphere MQ Link
	10.3.3 Adding services to the bus

	10.4 Runtime guidelines for ESB based on WebSphere Business Integration Message Broker
	10.4.1 Configuring WebSphere MQ queues and channels
	10.4.2 Connect the toolkit to the configuration manager
	10.4.3 Create execution groups
	10.4.4 Create and deploy Broker archive files
	10.4.5 Create database resources

	10.5 Runtime guidelines for legacy manufacturer application
	10.6 Testing the application

	Part 4 Appendixes
	Abbreviations and acronyms
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

