

ibm.com/redbooks

Draft Document for Review May 4, 2006 3:20 pm SG24-7212-00

Getting Started with
WebSphere Enterprise
Service Bus V6

Martin Keen
Bill Moore

Antonio Carvalho
Michael Hamann

Prasad Imandi
Ron Lotter

Philip Norton
Christian Ringler
Gabriel Telerman

Build ESB solutions using SCA and Web
services

Implement mediation flows in
WebSphere Integration Developer

Learn by example with
practical scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Getting Started with WebSphere Enterprise Service
Bus V6

April 2006

International Technical Support Organization

Draft Document for Review May 4, 2006 3:20 pm 7212edno.fm

SG24-7212-00

7212edno.fm Draft Document for Review May 4, 2006 3:20 pm

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2006)

This edition applies to WebSphere Integration Developer V6.0.1 and WebSphere Enterprise
Service Bus V6.0.1.

This document created or updated on May 4, 2006.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Draft Document for Review May 4, 2006 3:20 pm 7212TOC.fm
Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiv
Comments welcome. xiv

Part 1. Product overview . 1

Chapter 1. Welcome to this redbook . 1
1.1 An introduction to this document . 2
1.2 How to read this redbook . 2

Chapter 2. Key technologies and concepts . 5
2.1 Service-oriented architecture . 6

2.1.1 What is a service?. 7
2.2 Web services. 9

2.2.1 Core technologies of Web services. 9
2.2.2 Properties of Web services . 11
2.2.3 Web services and SOA . 12

2.3 Enterprise Service Bus . 13
2.3.1 Enterprise requirements for an ESB . 15
2.3.2 Minimum ESB capabilities. 17
2.3.3 Extended ESB capabilities . 19

2.4 Service Component Architecture. 21
2.4.1 Anatomy of SCA . 21

2.5 Service Data Objects. 26
2.5.1 SDO concepts . 26
2.5.2 Applying SDO to SCA . 27

Chapter 3. WebSphere Enterprise Service Bus overview and product
positioning. 29

3.1 Product overview. 30
3.1.1 IBM WebSphere Application Server V6.0 . 31
3.1.2 IBM WebSphere Enterprise Service Bus V6.0 34
3.1.3 IBM WebSphere Process Server V6.0 . 39
3.1.4 IBM WebSphere MQ V6.0. 41
3.1.5 IBM WebSphere Message Broker V6.0 . 42
© Copyright IBM Corp. 2006. All rights reserved. iii

7212TOC.fm Draft Document for Review May 4, 2006 3:20 pm
3.1.6 IBM WebSphere Adapters V6.0 . 43
3.2 ESB product positioning . 44

3.2.1 Comparing WebSphere Enterprise Service Bus to WebSphere Message
Broker . 46

3.2.2 Summary. 49
3.2.3 IBM SOA Foundation and Patterns for e-business 50

3.3 Development environment . 50
3.3.1 User roles . 51
3.3.2 Rational Application Developer V6.0. 52
3.3.3 WebSphere Integration Developer V6.0 . 52

Part 2. Configuration and usage . 55

Chapter 4. Setting up the development environment 57
4.1 Overview of development environment . 58

4.1.1 Hardware and software requirements . 58
4.1.2 Consider your current environment. 58

4.2 Planning for multiple development environments 59
4.2.1 Silent installation . 59
4.2.2 Roles . 60

4.3 Installing the development environment . 60
4.3.1 Installing WebSphere Integration Developer. 61
4.3.2 Using Rational Product Updater . 68
4.3.3 Starting WebSphere Integration Developer 72

4.4 Team development . 74
4.5 Integration test considerations . 81
4.6 Troubleshooting installation issues . 83

Chapter 5. Setting up the runtime environment . 85
5.1 Overview of the runtime environment . 86

5.1.1 Hardware and software requirements . 86
5.1.2 Consider your current environment. 86
5.1.3 What gets installed? . 87
5.1.4 What gets customized?. 91
5.1.5 What gets configured? . 92

5.2 Stand-alone server topology . 93
5.3 Network Deployment topology . 94
5.4 Extending WebSphere Application Server V6. 96

5.4.1 Installation . 96
5.4.2 Augmenting profiles . 97
5.4.3 Final configuration steps . 98

5.5 Installing WebSphere Enterprise Service Bus. 100
5.5.1 An initial runtime environment. 100
5.5.2 A common development integration test runtime environment 108
iv Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212TOC.fm
5.6 Guidelines for staged test and production environments 124
5.6.1 Development integration test environment 125
5.6.2 System test environment. 126
5.6.3 Quality Assurance (QA) environment . 127

5.7 Problem determination for runtime installation and customization 127

Chapter 6. WebSphere Enterprise Service Bus key concepts and related
technologies . 129

6.1 Product overview. 130
6.2 Key terms in WebSphere Enterprise Service Bus. 132
6.3 Structure of WebSphere Enterprise Service Bus 133

6.3.1 Mediations, service consumers and service providers 134
6.3.2 Mediation modules . 135
6.3.3 Mediation flow components. 136
6.3.4 Mediation flows . 137
6.3.5 Mediation primitives . 138

6.4 Related technologies. 140
6.4.1 Service message objects (SMO). 140
6.4.2 WebSphere Enterprise Service Bus bindings 143
6.4.3 Quality of service. 144
6.4.4 Common event infrastructure (CEI) . 149
6.4.5 Deployment of mediations. 150

Chapter 7. WebSphere Integration Developer key concepts and common
tasks. 153

7.1 Key terms and concepts . 154
7.1.1 User roles . 154
7.1.2 The workbench . 154
7.1.3 Workspaces . 156
7.1.4 Project types . 156
7.1.5 Perspectives . 157
7.1.6 Views. 158
7.1.7 Editors . 162
7.1.8 Mediation module . 164
7.1.9 Exports . 165
7.1.10 Imports . 165
7.1.11 Mediation flow components. 166
7.1.12 Mediation primitives . 166

7.2 Workspace configuration. 167
7.2.1 Creating the initial workspace . 168
7.2.2 Configuring desktop shortcuts. 169
7.2.3 Capabilities . 170

7.3 Interface definition . 172
 Contents v

7212TOC.fm Draft Document for Review May 4, 2006 3:20 pm
7.3.1 Importing a Project Interchange file . 172
7.3.2 Working with shared libraries . 174
7.3.3 Modeling business objects . 176
7.3.4 Defining interfaces . 182

7.4 Mediation module development . 185
7.4.1 Creating a new mediation module. 185
7.4.2 Creating a new mediation flow component 188
7.4.3 Working with exports and imports . 193

7.5 Running mediation modules . 197
7.5.1 Building and cleaning projects. 198
7.5.2 Managing test servers. 198
7.5.3 Deploying mediation modules . 211
7.5.4 Testing mediation modules . 212

7.6 Exporting resources . 213
7.6.1 Exporting to Project Interchange. 213
7.6.2 Exporting enterprise applications . 214

Part 3. Administration and testing . 217

Chapter 8. Testing, debugging and problem determination 219
8.1 Testing tools . 220

8.1.1 Integration Test Client . 220
8.1.2 Web Services Explorer . 226
8.1.3 TCP/IP Monitor . 231

8.2 Debugging tools . 233
8.2.1 Integration debugger . 233
8.2.2 Setting up to use the debugger . 234
8.2.3 Overview of the Debug perspective . 234
8.2.4 Using the Integrated Debugger . 236

8.3 Problem determination facilities . 244
8.3.1 Isolating problems with the WebSphere Integration Developer

installation. 244
8.3.2 Isolating problems with the WebSphere Enterprise Service Bus

installation. 244
8.3.3 Application logging and tracing . 244
8.3.4 Runtime logging and tracing . 245
8.3.5 Analyzing messages on queue points. 246
8.3.6 Using the CEI for problem determination . 247

Chapter 9. Administering WebSphere Enterprise Service Bus. 251
9.1 Administrative console . 252
9.2 Deploying mediation modules . 254

9.2.1 Configuring Web service bindings. 254
9.2.2 Configuring JMS bindings . 255
vi Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212TOC.fm
9.2.3 Methods to deploy service mediation modules 257
9.3 Mediation module administration. 261

9.3.1 Displaying SCA modules. 261
9.3.2 Displaying imports and exports . 263
9.3.3 Displaying interfaces and bindings . 264
9.3.4 Changing bindings . 266

Part 4. Development examples . 269

Chapter 10. Preparing for the development examples 271
10.1 An overview of the development examples in this book 272
10.2 Preparing your environment . 272

Chapter 11. Developing integration logic using mediation modules . . . 279
11.1 Importing services . 281

11.1.1 Bindings . 281
11.1.2 Importing an existing Web service . 282
11.1.3 Connect two modules using SCA binding 286
11.1.4 EIS binding to CICS . 294

11.2 Creating clients of mediation modules . 309
11.2.1 Web services client . 309
11.2.2 JMS client . 316
11.2.3 SCA client . 330

11.3 Using services with mediation modules . 337
11.3.1 Mapping bindings . 338
11.3.2 Request and response flows. 350
11.3.3 Fault handling . 360

Chapter 12. Developing mediation logic using mediation primitives. . . 369
12.1 XSL Transformation mediation primitive . 370
12.2 Database Lookup mediation primitive . 380
12.3 Message Filter mediation primitive . 393
12.4 Message Logger mediation primitive. 401
12.5 Stop mediation primitive . 411
12.6 Fail mediation primitive . 419
12.7 Custom mediation primitive . 426

Chapter 13. Configuring modules to provide quality of service 441
13.1 CEI events. 442
13.2 Security . 450
13.3 Transactions . 460

Part 5. Appendixes . 471
 Contents vii

7212TOC.fm Draft Document for Review May 4, 2006 3:20 pm
Appendix A. Additional material . 473
Locating the Web material . 473
Using the Web material . 473

How to use the Web material . 474

Appendix B. Hints and tips. 475
Resolving obstacles with WebSphere Integration Developer. 476

Force complete regeneration . 476
Update of business objects . 476
Renaming of resources . 476
Testing of a mediation flow component standalone 477
Incompatible target runtimes. 477

Abbreviations and acronyms . 481

Related publications . 483
IBM Redbooks . 483
Other publications . 483
Online resources . 483
How to get IBM Redbooks . 484
Help from IBM . 484

Index . 485
viii Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. ix

7212spec.fm Draft Document for Review May 4, 2006 3:20 pm
Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®
z/OS®
ClearCase®

Cloudscape™
CICS®
DB2 Universal Database™
DB2®
Everyplace®
IBM®

IMS™
Rational®
Redbooks™
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

EJB, Java, Java Naming and Directory Interface, JavaMail, JavaServer, JavaServer Pages, JDBC, JSP,
J2EE, Visual Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212pref.fm
Preface

IBM® WebSphere® Enterprise Service Bus is a flexible connectivity
infrastructure for integrating applications and services, designed to enable the
development of a service-oriented architecture (SOA).

This IBM Redbook guides you through the capabilities and product features of
WebSphere Enterprise Service Bus V6.0. It also contains many step-by-step
examples of building resources for WebSphere Enterprise Service Bus using
WebSphere Integration Developer.

Part 1 of this book introduces WebSphere Enterprise Service Bus and positions it
among IBM’s other SOA and Enterprise Service Bus product offerings.

Part 2 describes how to install and configure both WebSphere Enterprise Service
Bus and WebSphere Integration Developer, and explains how to perform key
concepts and tasks using these products.

Part 3 explains the administration and testing capabilities, including step-by-step
examples.

Part 4 provides a wealth of development examples showing step-by-step how to
develop solutions using mediation primitives, integrate with services, and deliver
qualities of service.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2006. All rights reserved. xi

7212pref.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 0-1 The redbook team (left-to-right): Martin, Prasad, Ron, Bill, Christian, Gabriel, Antonio, Phil,
Michael

Martin Keen is a Senior IT Specialist at the ITSO, Raleigh Center. He writes
extensively about WebSphere products, SOA, and Patterns for e-business. He
also teaches IBM classes worldwide about WebSphere, SOA, and business
process management. Before joining the ITSO, Martin worked in the EMEA
WebSphere Lab Services team in Hursley, UK. Martin holds a bachelor’s degree
in Computer Studies from Southampton Institute of Higher Education.

Bill Moore is a WebSphere specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively and teaches classes on
WebSphere and related topics. Before joining the ITSO, Bill was a Senior AIM
Consultant at the IBM Transarc laboratory in Sydney, Australia. He has 21 years
of application development experience on a wide range of computing platforms
and using many different coding languages. He holds a Master of Arts degree in
English from the University of Waikato, in Hamilton, New Zealand. His current
areas of expertise include application development tools, object-oriented
programming and design, and e-business application development.

Antonio Carvalho is a System Specialist at IBM Information Technology
Services Delivery in Brazil. He joined IBM in 1996 and has been working with
Problem Management solutions, and Web developing. He holds a degree in
Technology from (FASP) Faculdades Associadas de Sao Paulo in Sao Paulo,
Brazil. His areas of expertise include experience in object-oriented programming,
J2EE™, and application integration.

Michael Hamann is an IT Specialist at IBM Software Services for WebSphere,
Software Education in Germany. He holds a degree in Geography from the
University of Tuebingen, Germany. He has worked for IBM for 7 years. During
this time he worked as an instructor, course developer, and consultant. His areas
of expertise include WebSphere MQ, WebSphere Message Broker, WebSphere
Adapters, and WebSphere Process Server.
xii Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212pref.fm
Prasad Imandi is an Advisory Software Engineer in Level 2 support, AIM
organization in RTP, NC. He has worked for IBM for 11 years working with
WebSphere MQ, WebSphere Message Broker products, and lately been working
with the Process Choreography component. He holds a Master degree in
Computer Science and Engineering from Jadavpur University, India. His current
area of expertise is WebSphere Message Broker.

Ron Lotter is a Senior Software Engineer in the Software Services for
WebSphere organization in RTP, NC. He has worked for IBM for 23 years
holding various management and technical positions and has 7 years of
experience with the WebSphere product family. He holds a Masters degree in
Electrical Engineering from Case Western Reserve University in Cleveland,
Ohio. His areas of expertise include WebSphere Application Server on z/OS®,
and J2EE development.

Philip Norton is a Software Engineer in the WebSphere organization in Hursley,
UK. He has 4 years of experience servicing WebSphere MQ JMS and
developing WebSphere Enterprise Service Bus. He holds a degree in Computer
Science from the University of Kent at Canterbury. His areas of expertise include
WebSphere MQ, WebSphere ESB, Java™ programming, including JMS and
J2EE development and Application Integration.

Christian Ringler is a certified Senior IT architect and Senior Consultant at IBM
Business Consulting Services in Germany. He has worked for five years at IBM
Global Services. Before joining IBM he worked six years for Oracle Consulting.
He holds a masters degree in Computer Science from the Friedrich-Alexander
University of Erlangen-Nuremberg. His areas of expertise include J2EE
architectures, business process integration and the introduction of
service-oriented architecture concepts in client environments, particularly the
automotive industry.

Gabriel Telerman is an IT Specialist with IBM Software Services for WebSphere
in the UK. He has 7 years of experience with IBM. He holds a degree in
Computer Studies from Glasgow Caledonian University. His areas of expertise
include object-oriented programming, enterprise Java, Web development, Web
services, service-oriented architecture and enterprise application integration.

Thanks to the following people for their contributions to this project:

Chris Tomkins, Jon Martin, Calum Byrom, James Hodgson, Nigel Daniels, and
Amanda Watkinson
IBM Hursley Lab, UK

Simon Kapadia
IBM Software Group, UK
 Preface xiii

7212pref.fm Draft Document for Review May 4, 2006 3:20 pm
Sunita Chacko
IBM Toronto Lab, Canada

Geoffrey Beers
IBM Rochester Lab, USA

Wolfgang Berger
IBM Business Consulting Services, Germany

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xiv Getting Started with WebSphere Enterprise Service Bus V6

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Draft Document for Review May 4, 2006 3:20 pm 7212p01.fm
Part 1 Product
overview

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1

7212p01.fm Draft Document for Review May 4, 2006 3:20 pm
2 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch01-book-welcome.fm
Chapter 1. Welcome to this redbook

This chapter introduces this redbook to you, and provides guidelines for how to
read it. It contains the following sections:

� An introduction to this document

� How to read this redbook

1

© Copyright IBM Corp. 2006. All rights reserved. 1

7212ch01-book-welcome.fm Draft Document for Review May 4, 2006 3:20 pm
1.1 An introduction to this document
A warm welcome to this redbook, from the IBM Redbook team. We all
assembled for five intense weeks in Raleigh, North Carolina to put together this
resource. We hope you find it a useful read.

This redbook is aimed at integration developers, IT architects, and system
administrators. It discusses how WebSphere Enterprise Service Bus fits into
IBM’s SOA and Enterprise Service Bus strategy, and gives an in-depth overview
of the WebSphere Enterprise Service Bus product features.

We have also spent considerable time constructing a wealth of development
examples which provide you with step-by-step instructions for building almost
everything that WebSphere Enterprise Service Bus has to offer. You can follow
along with these examples, or import completed solutions from the additional
material supplied with this redbook.

1.2 How to read this redbook
As much as we would love you to read every page of this book cover-to-cover,
we anticipate you might not quite have the time! To help you locate the
information you need, and to provide guidance on which chapters are of most
interest to you, this section provides a short description of each chapter.

Part 1. Product overview
This part introduces readers to the WebSphere Enterprise Service Bus offerings,
and SOA related technologies in general.

� Chapter 1. Welcome to this redbook

� Chapter 2. Key technologies and concepts

Provides an overview of SOA, Web services, Enterprise Service Bus, Service
Component Architecture, and Service Data Objects.

� Chapter 3. WebSphere Enterprise Service Bus overview and product
positioning

Introduces the product features of WebSphere Enterprise Service Bus and
related products, and positions these product features alongside WebSphere
Message Broker.

Part 2. Configuration and usage
This part describes how to install and configure a development and runtime
environment and the key concepts, terminology, and tasks in using WebSphere
2 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch01-book-welcome.fm
Enterprise Service Bus and WebSphere Integration Developer. This part is
aimed primarily at integration developers and system administrators.

� Chapter 4. Setting up the development environment

Describes the installation options for WebSphere Integration Developer, and
discusses configuration issues including considerations for building an
environment for team development.

� Chapter 5. Setting up the runtime environment

Describes the installation options for WebSphere Enterprise Service Bus and
how to plan for test and production environments.

� Chapter 6. WebSphere Enterprise Service Bus key concepts and related
technologies

Explains the key terminology used in WebSphere Enterprise Service Bus,
focusing on the mediation capabilities. Defines terms such as mediation flow,
and mediation primitive.

� Chapter 7. WebSphere Integration Developer key concepts and common
tasks

Describes step-by-step how to use WebSphere Integration Developer to
complete common tasks, ranging from navigating the Business Integration
perspective, to building mediation flows.

Part 3. Administration and testing
This part explains many of the key system administration capabilities of
WebSphere Enterprise Service Bus, and the testing and debugging capabilities
of WebSphere Integration Developer.

� Chapter 8. Testing, debugging, and problem determination

Describes how to test and debug mediation flows, and solve runtime
problems.

� Chapter 9. Administering WebSphere Enterprise Service Bus

Describes the administration capabilities and tasks specific to WebSphere
Enterprise Service Bus, including the deployment and management of
mediation modules.

Part 4. Development examples
This part of the redbook provides step-by-step instructions for building solutions
in WebSphere Integration Developer for WebSphere Enterprise Service Bus.
Each WebSphere Enterprise Service Bus product feature is explained separately
in its own development example. This section is aimed at integration developers
who want in-depth hands-on instructions on how to build solutions for
WebSphere Enterprise Service Bus.
 Chapter 1. Welcome to this redbook 3

7212ch01-book-welcome.fm Draft Document for Review May 4, 2006 3:20 pm
� Chapter 10. Preparing for the development examples

The development examples all use a common set of services. You must
complete the steps in this chapter to prepare your WebSphere Integration
Developer workspace before attempting any of the development examples in
this redbook.

� Chapter 11. Developing integration logic using mediation modules

Step-by-step development examples for importing Web services, SCA
services, and Enterprise Information Systems into mediation modules.
Instructions for creating Web service, SCA, and JMS clients to mediation
modules. Examples of how to manipulate service calls in a mediation module
including changing bindings, request and response flows, and fault handling.

� Chapter 12. Developing mediation logic using mediation primitives

Step-by-step development examples for each of the mediation primitives
shipped with WebSphere Enterprise Service Bus. Includes development
examples for the XSL Transformation, Database Lookup, Message Filter,
Message Logging, Stop, Fail, and Custom mediation primitives.

� Chapter 13. Configuring modules to provide quality of service

Step-by-step development examples of how to configure and browse CEI
events, apply security, and use transactions.

Part 5. Appendixes
� Appendix A. Additional materials

Solutions are provided for each of the development examples in Part 4.
Additionally, many of the development examples require resources supplied
with this redbook. This appendix describes how to locate the redbook
additional material.

� Appendix B. Hints and tips

Lists a few obstacles the team ran into while creating the development
examples for this redbook and workarounds for them.
4 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
Chapter 2. Key technologies and
concepts

This chapter describes the key technologies and concepts that apply to
architecting and building solutions in WebSphere Enterprise Service Bus.

This chapter contains the following sections:

� Service-oriented architecture (SOA)

� Web services

� Enterprise Service Bus (ESB)

� Service Component Architecture (SCA)

� Service Data Objects (SDO)

2

© Copyright IBM Corp. 2006. All rights reserved. 5

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
2.1 Service-oriented architecture
Service-oriented architecture (SOA) is an approach to defining integration
architectures based on the concept of a service. Applications collaborate by
invoking each others services and services can be composed into larger
sequences to implement business processes.

Drivers for SOA
The main driver for SOA is to define an architectural approach that assists in the
flexible integration of IT systems. Organizations spend a considerable amount of
time and money trying to achieve rapid, flexible integration of IT systems across
all elements of the business cycle. The drivers behind this objective include:

� Increasing the speed at which businesses can implement new products and
processes, can change existing ones, or can recombine them in new ways

� Reducing implementation and ownership costs of IT systems and the
integration between them

� Enabling flexible pricing models by outsourcing more fine-grained elements of
the business than were previously possible or by moving from fixed to
variable pricing, based on transaction volumes

� Simplifying the integration work that is required by mergers and acquisitions

� Achieving better IT utilization and return on investment

� Achieving implementation of business processes at a level that is
independent from the applications and platforms that are used to support the
processes

SOA prescribes a set of design principles and an architectural approach to
achieve this rapid flexible integration. In the following sections we provide an
overview of some of the elements in SOA that achieve this aim.

Definition of SOA
SOA is an integration architecture approach based on the concept of a service.
The business and infrastructure functions that are required to build distributed
systems are provided as services that collectively, or individually, deliver
application functionality to either end-user applications or other services.

SOA specifies that within any given architecture, there should be a consistent
mechanism for services to communicate. That mechanism should be loosely
coupled and support the use of explicit interfaces.

SOA brings the benefits of loose coupling and encapsulation to integration at an
enterprise level. It applies successful concepts proved by Object Oriented
6 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
development, Component Based Design, and Enterprise Application Integration
technology to an architectural approach for IT system integration.

Services are the building blocks to SOA, providing function out of which
distributed systems can be built. Services can be invoked independently by
either external or internal service consumers to process simple functions, or can
be chained together to form more complex functionality and so to quickly devise
new functionality.

By adopting an SOA approach and implementing it using supporting
technologies, companies can build flexible systems that implement changing
business processes quickly, and make extensive use of reusable components
(Figure 2-1).

Figure 2-1 Mapping services with business tasks or functions

2.1.1 What is a service?
Having outlined SOA as being an architectural approach to defining integration
architectures based on services, it is important to define what is meant by a

Process Choreography Layer

Z

Input OutputProcedure
Business

View

Specific Business
Task of Function

Computer
Science

View

Published Service

Service is able
to attend one
Business Task

Service

Specific Application

Object Classes

E
ncapsulation

Business Process

Business
Task 1

Business
Task 2

Business
Task 3

The Process Choreography Layer is
responsible for connecting the Services
providing support to the Business Process

Result
 Chapter 2. Key technologies and concepts 7

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
"service" in this context in order to fully describe SOA and understand what can
be achieved by using it

A service can be defined as any discrete function that can be offered to an
external consumer. This can be an individual business function, or a collection of
functions that together form a process.

There are many additional aspects to a service that must also be considered in
the definition of a service within a SOA. The most commonly agreed-on aspects
are:

� Services encapsulate reusable business function

� Services are defined by explicit, implementation-independent interfaces

� Services are invoked through communication protocols that stress location
transparency and inter operability

Reusable function
A service can be any business function. In an SOA however it is preferable that
the function is genuinely reusable. The goal of a service in service-oriented
architecture is that it can be used and reused by one or more systems that
participate in the architecture. For example, while the reuse of a Java logging API
could be described as “design time” (when a decision is made to reuse an
available package and bind it into application code), the intention of
service-oriented architecture is to achieve the reuse of services at:

� Runtime

Each service is deployed in one place and one place only, and remotely
invoked by anything that must use it. The advantage of this approach is that
changes to the service (for example, to the calculation algorithm or the
reference data it depends on) need only be applied in a single place.

� Deployment time

Each service is built once but redeployed locally to each system or set of
systems that must use it. The advantage of this approach is increased
flexibility to achieve performance targets or to customize the service (perhaps
according to geography).

Explicit implementation independent interfaces
The use of explicit interfaces to define and encapsulate service function is of
particular importance to making services genuinely reusable. The interface
should encapsulate only those aspects of process and behavior that are used in
the interaction between the service consumer and the service provider. An
explicit interface definition, or contract, is used to bind a service consumer and a
service provider. It should specify only the mutual behavior required for the
8 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
interaction, and nothing about the implementation of the consumer or the
provider.

By explicitly defining the interaction in this way, those aspects of either system
(for example the platform they are based on) that are not part of the interaction
are free to change without affecting the other system. This allows either system
to change implementation or identity freely.

Communication protocols that stress location transparency
SOA does not specify that any specific protocol should be used to provide
access to a service. A key principle in SOA is that a service is not defined by the
communication protocol that it uses, but instead should be defined in a protocol
independent way that could allow different protocols to be used to access the
same service.

Ideally a service should only be defined once, through a service interface, and
have many implementations with different access protocols. This helps to
increase the reusability of any service definition.

2.2 Web services
This section describes the core technologies of Web services, as well as how
Web services are used in a service-oriented architecture.

2.2.1 Core technologies of Web services
Web services are self-contained, modular applications, that can be described,
published, located, and invoked over networks. Web services encapsulate
business functions, ranging from a simple request-reply to full business process
interactions. The services can be new or wrap around existing applications.
 Chapter 2. Key technologies and concepts 9

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 2-2 Main building blocks in an SOA approach based on Web services

Figure 2-2 shows the relationship between the core elements of Web services in
an SOA.

The following are the core technologies used for Web services.

� XML: Extensible Markup Language) is the markup language that underlies
most of the specifications used for Web services. XML is a generic language
that can be used to describe any kind of content in a structured way,
separated from its presentation to a specific device.

� SOAP: (Simple Object Access Protocol) is a network, transport, and
programming language and platform-neutral protocol that allows a client to
call a remote service. The message format is XML.

� WSDL: (Web Services Description Language) is an XML-based interface and
implementation description language. The service provider uses a WSDL
document in order to specify the operations a Web service provides and the
parameters and data types of these operations. A WSDL document also
contains the service access information.
10 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
� WSIL: (Web Services Inspection Language) is an XML-based specification
about how to locate Web services without the necessity of using UDDI.
However, WSIL can be also used together with UDDI, that is, it is orthogonal
to UDDI and does not replace it.

� UDDI: (Universal Description, Discovery, and Integration) is both a client-side
API and a SOAP-based server implementation that can be used to store and
retrieve information on service providers and Web services.

2.2.2 Properties of Web services
All Web services share the following properties:

� Web services are self-contained: On the client side, no additional software
is required. A programming language with XML and HTTP client support is
enough to get you started. On the server side, merely an HTTP server and a
SOAP server are required. It is possible to enable an existing application for
Web services without writing a single line of code.

� Web services are self-describing: The definition of the message format
travels with the message; no external metadata repositories or code
generation tools are required.

� Web services can be published, located, and invoked across the Web:
This technology uses established lightweight Internet standards such as
HTTP. It leverages the existing infrastructure. Some additional standards that
are required to do so include SOAP, WSDL, and UDDI.

� Web services are modular: Simple Web services can be aggregated to
more complex ones, either using workflow techniques or by calling
lower-layer Web services from a Web service implementation. Web services
can be chained together to perform higher-level business functions. This
shortens development time and enables best-of-breed implementations.

� Web services are language-independent and interoperable: The client
and server can be implemented in different environments. Existing code does
not have to be changed in order to be Web service enabled. Basically, any
language can be used to implement Web service clients and servers. In this
redbook we will only cover the use of Java for Web services.

� Web services are inherently open and standard-based: XML and HTTP
are the major technical foundation for Web services. A large part of the Web
service technology has been built using open-source projects. Therefore,
vendor independence and interoperability are realistic goals.

� Web services are loosely coupled: Traditionally, application design has
depended on tight interconnections at both ends. Web services require a
simpler level of coordination that allows a more flexible reconfiguration for an
integration of the services in question.
 Chapter 2. Key technologies and concepts 11

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
� Web services are dynamic: Dynamic e-business can become reality using
Web services, because with UDDI and WSDL, the Web service description
and discovery can be automated. In addition, Web services can be
implemented and deployed without disturbing clients that use them.

� Web services provide programmatic access: The approach provides no
graphical user interface; it operates at the code level. Service consumers
have to know the interfaces to Web services but do not have to know the
implementation details of services.

� Web services provide the ability to wrap existing applications: Already
existing stand-alone applications can easily be integrated into the
service-oriented architecture by implementing a Web service as an interface.

� Web services build on proven, mature technology: There are a lot of
commonalities, as well as a few fundamental differences, with other
distributed computing frameworks.

2.2.3 Web services and SOA
SOA represents a conceptual architecture of how to integrate applications. Web
services are a specific set of standards and specifications that are one method of
enabling SOA.

There are many logical links between Web services and SOA that suggest they
are complementary:

� Web services provide an open standard and machine-readable model for
creating explicit, implementation-independent descriptions of service
interfaces.

� Web services provide communication mechanisms that are
location-transparent and interoperable.

� Web services are evolving, through Business Process Execution Language
for Web Services (WS-BPEL), document-style SOAP, and Web services
Definition Language (WSDL), and technologies such as
WS-ResourceFramework, to support the technical implementation of
well-designed services that encapsulate and model reusable function in a
flexible manner.

Working together, Web services and SOA have the potential to address many of
the technical issues that are faced when trying to build an on demand
environment (Figure 2-3 on page 13).
12 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
.

Figure 2-3 Enterprise applications encapsulated as Web services

2.3 Enterprise Service Bus
The Enterprise Service Bus (ESB) is emerging as a middleware infrastructure
component that supports the implementation of SOA within an enterprise. The
need for an ESB can be seen by considering how it can support the concepts of
SOA implementation by:

� Decoupling the consumer’s view of a service from the actual implementation
of the service

� Decoupling technical aspects of service interactions

� Integrating and managing services in the enterprise

This is achieved by replacing direct connections between service consumers and
providers, with a hub and spoke architecture (Figure 2-4 on page 14).

Web Service Interfaces

Existing enterprise applications

Enterprise application functions encapsulated as Web Services
 Chapter 2. Key technologies and concepts 13

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 2-4 Direct connection and central hub integration styles

The ESB can be used to perform some of the following middleware functions:

� Map service requests from one protocol and address to another

� Transform data formats

� Support a variety of security and transactional models between service
consumers and service providers and recognize that consumers and
providers may support or require different models

� Aggregate or disaggregate service requests and responses

� Support communication protocols between multiple platforms with
appropriate qualities of service

� Provide messaging capabilities such as message correlation and publish /
subscribe, to support different messaging models such as events and
asynchronous request/response

Direct Connection

Hub and Spoke

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Hub:
ESB
14 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
2.3.1 Enterprise requirements for an ESB
Using an ESB to implement an SOA has a number of advantages. In an SOA
services should, by definition, be reusable by a number of different consumers,
so the benefits of reduced connections are achieved. In addition the ESB:

� Supports high volumes of individual interactions.

� Support more established integration styles, such as message-oriented and
event-driven integration, to extend the reach of the SOA. The ESB should
allow applications to be SOA enabled either directly or through the use of
adapters.

� Support centralization of enterprise-level qualities of service and
manageability requirements into the hub.

Figure 2-5 shows a high-level view of the ESB.

Figure 2-5 The Enterprise Service Bus

Mediation support
The ESB is more than just a transport layer. It must provide mediation support to
facilitate service interactions (for example, to find services that provide
capabilities that a consumer is asking for, or to take care of interface mismatches
between consumers and providers that are compatible in terms of their
capabilities). It must support a variety of ways to get on and off the bus, such as
adapter support for legacy applications or business connections that enable
external partners in business to business interaction scenarios. To do this it must
support service interaction with a wide variety of service endpoints. It is likely that
 Chapter 2. Key technologies and concepts 15

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
each endpoint will have its own integration techniques, protocols, security
models and so on. This level of complexity should be hidden from service
consumers.They need to be offered a simpler model. In order to achieve this, the
ESB is required to mediate between the multiple interaction models understood
by service providers and the simplified view provided to consumers.

Protocol independence
Services can be offered by a variety of sources. Without an ESB infrastructure
any service consumer that needed to invoke a service would need to connect
directly to a service provider using the protocol, transport and interaction pattern
used by the provider. With an ESB the infrastructure shields the consumer from
the details of how to connect to the provider.

In an ESB there is no direct connection between the consumer and provider.
Consumers access the ESB to invoke services and the ESB acts as an
intermediary, passing the request to the provider using the appropriate protocol,
transport and interaction pattern for the provider. This enables the ESB to shield
the consumer from the infrastructure details of how to connect to the provider.
The ESB should support several integration mechanisms all of which could be
described as invoking services through specific addresses and protocols, even if
in some cases the address is the name of a CICS® transaction and the protocol
is a J2EE resource adapter integrating with the CICS Transaction Gateway. By
using the ESB the consumers are unaware of how the service is invoked on the
provider.

As the ESB removes the direct connection between service consumer and
providers, an ESB enables the substitution of one service implementation by
another with no effect to the consumers of that service. This means an ESB
allows the reach of an SOA to extend to non-SOA enabled service providers. It
can also be used to support migration of the non-SOA providers to using an SOA
approach without impacting the consumers of the service.

Support for multiple interaction patterns
To fully support the variety of interaction patterns that are required in a
comprehensive service-oriented architecture (for example, request / response,
publish / subscribe and events), the ESB must support in one infrastructure the
three major styles of Enterprise Integration:

� Service-oriented architectures in which applications communicate through
reusable services with well-defined, explicit interfaces. Service-oriented
interactions leverage underlying messaging and event communication
models.

� Message-driven architectures in which applications send messages through
the ESB to receiving applications.
16 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
� Event-driven architectures in which applications generate and consume
messages independently of one another.

The ESB does this while providing additional capabilities to mediate or transform
service messages and interactions, enabling a wide variety of behaviors and
supporting the various models of coupling interaction.

2.3.2 Minimum ESB capabilities
In this section we discuss the minimum capabilities an ESB must have to support
the requirements of an SOA enabling infrastructure component. This will allow us
to assess the suitability of individual technologies or products for implementing
an ESB by analyzing the functionality they offer to support the minimum ESB
capabilities.

In discussions on ESB the most commonly agreed elements for defining an ESB
are:

� The ESB is a logical architectural component that provides an integration
infrastructure consistent with the principles of service-oriented architecture

� The ESB may be implemented as a distributed, heterogeneous infrastructure

� The ESB provides the means to manage the service infrastructure and the
capability to operate in a distributed, heterogeneous environment

The minimum capabilities that an ESB should have in order to provide an
infrastructure consistent with these elements, and so consistent with the benefits
of service-oriented architecture, are summarized in Table 2-1 and discussed in
more detail in subsections below.

Table 2-1 Minimum capabilities of a ESB

Category Capabilities Reasons

Communications � Routing
� Addressing
� At least one

messaging style
(request / response,
pub/sub)

� At least one transport
protocol that is or can
be made widely
available

Provide location
transparency and support
service substitution
 Chapter 2. Key technologies and concepts 17

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Communication
The ESB needs to supply a communication layer to support service interactions.
It should support communication through a variety of protocols. It should provide
underlying support for message and event oriented middleware and integrate
with existing HTTP infrastructure and other enterprise application integration
(EAI) technologies. As a minimum capability the ESB should support at least the
protocols that make sense given the requirements of a specific situation.

The ESB should be able to route between all these communication technologies
through a consistent naming and administration model.

Service interaction
The ESB needs to support SOA concepts for the use of interfaces and support
declaration service operations and quality of service requirements.

The ESB should also support service messaging models consistent with those
interfaces, and be capable of transmitting the required interaction context, such
as security, transaction or message correlation information.

Integration
The ESB should support linking to a variety of systems that do not directly
support service-style interactions so that a variety of services can be offered in a
heterogeneous environment.

This includes legacy systems, packaged applications and other EAI
technologies. Integration technologies might be protocols (for example JDBC™,

Integration � Several integration
styles or adapters

� Protocol
transformation

Support integration in
heterogeneous
environments and support
service substitution

Service interaction � Service interface
definition

� Service messaging
model

� Substitution of service
implementation

Support service-oriented
architecture principles,
separating application
code from specific service
protocols and
implementations

Management � Administration
capability

� A point of control over
service addressing and
naming

Category Capabilities Reasons
18 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
FTP, EDI) or adapters such as the J2EE Connector Architecture resource
adapters or WebSphere Business Integration Adapters. It also includes service
client invocation through client APIs for various languages (Java, C++, C#) and
platforms (J2EE, .Net), CORBA and RMI.

Management
As with any other infrastructure component the ESB needs to have
administration capabilities to allow it to be managed and monitored and so to
provide a point of control over service addressing and naming.

In addition it should be capable of integration into systems management
software.

2.3.3 Extended ESB capabilities
The minimum capabilities described in 2.3.2, “Minimum ESB capabilities” on
page 17 can help assess the suitability of individual technologies or products for
implementing an ESB, however it will only establish which technologies are
candidates. The detailed requirements of any particular scenario drive additional
ESB capabilities that can then be used to select specific appropriate products.

In particular, the following types of requirements are likely to lead to the use of
more sophisticated technologies, either now or over time:

� Non-functional requirements such quality of service demands and
service-level capabilities

� Higher-level service-oriented architecture concepts, such as a service
directory, and transformations

� Advanced management capabilities such as system management and
autonomic capabilities and intelligent capabilities

� Truly heterogeneous operation across multiple networks, multiple protocols,
and multiple domains of disparate ownership

Table 2-2 on page 20 extends the ESB capabilities described in 2.3.2, “Minimum
ESB capabilities” on page 17 to include additional ESB capabilities.
 Chapter 2. Key technologies and concepts 19

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Table 2-2 Categorized ESB capabilities

Communication Service interaction

� Routing
� Addressing
� Protocols and standards (HTTP,

HTTPS)
� Publish / subscribe
� Response / request
� Fire & forget, events
� Synchronous and asynchronous

messaging

� Service interface definition (WSDL)
� Substitution of service implementation
� Service messaging models required

for communication and integration
(SOAP, XML, or proprietary
Enterprise Application Integration
models)

� Service directory and discovery

Integration Quality of service

� Database
� Legacy and application adapters
� Connectivity to enterprise application

integration middleware
� Service mapping
� Protocol transformation
� Data enrichment
� Application server environments

(J2EE and .Net)
� Language interfaces for service

invocation (Java, C/C++/C#)

� Transactions (atomic transactions,
compensation, WS-Transaction)

� Various assured delivery paradigms
(WS-ReliableMessaging or support
for Enterprise Application Integration
middleware)

Security Service level

� Authentication
� Authorization
� Non-repudiation
� Confidentiality
� Security standards (Kerberos,

WS-Security)

� Performance (response time,
throughput and capacity)

� Availability
� Other continuous measures that might

form the basis of contracts or
agreements

Message processing Management and autonomic

� Encoded logic
� Content-based logic
� Message and data transformations
� Message / service aggregation and

correlation
� Validation
� Intermediaries
� Object identity mapping
� Service / message aggregation
� Store and forward

� Administration capability
� Service provisioning and registration
� Logging
� Metering
� Monitoring
� Integration to systems management

and administration tooling
� Self-monitoring and self-management
20 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
2.4 Service Component Architecture
Service Component Architecture (SCA) was developed to simplify the integration
between business applications and the development of new services. SOA is an
abstract way to interpret the services and his correlations, SCA is defined as the
implementation of the SOA architecture. Its standards allow the creation of
services and the integration between them.

SCA separates application business logic and the implementation details. It
provides a model that defines interfaces, implementations, and references in a
technology neutral way, letting you then bind these elements to any technology
specific implementation. The ability to separate business logic from
infrastructure logic reduces the IT resources needed to build an enterprise
application, and gives developers more time to work on solving a particular
business problem rather than focusing on the details of which implementation
technology to use.

2.4.1 Anatomy of SCA
SCA provides an abstraction that covers stateless session EJBs, Web services,
POJOs, WS-BPEL processes, database access, Enterprise Information System
(EIS) access, and so on. SCA separates business logic from infrastructure logic
so that application programmers can focus on the business problem. SCA covers
both the usage of services and the development of services. It provides a
uniform model for application programmers and for tools.

SCA is a universal model for business services that publish or operate on
business data. Service Data Objects (SDO) provide the universal model for
business data.

Figure 2-6 shows the main terms of an SCA component:

� Interface
� Implementation
� Reference

Modeling Infrastructure Intelligence

� Object modeling
� Common business object models
� Data format libraries
� Public versus private models for

business-to-business integration
� Development and deployment tooling

� Business rules
� Policy-driven behavior, particularly for

service level, security and quality of
service capabilities (WS-Policy)

� Pattern recognition
 Chapter 2. Key technologies and concepts 21

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 2-6 Service component: overview

A service interface is defined by a Java interface or WSDL Port Type. Arguments
and return values are described with Java classes, simple Java types, or XML
schema. SDO generated Java classes are the preferred form of Java class
because of their integration with XML technologies. Arguments described in XML
schema are exposed to programmers as SDOs.

A component exposes business-level interfaces to its application business logic
so that the service can be used or invoked. The interface of a component defines
the operations that can be called and the data that is passed, such as input
arguments, returned values, and exceptions. An import and export also has
interfaces so that the published service can be invoked.

All components have interfaces of the WSDL type. Only Java components
support Java-type interfaces. If a component, import or export, has more than
one interface, all interfaces must be the same type.

A component can be called synchronously or asynchronously; this is
independent of whether the implementation is synchronous or asynchronous.
The component interfaces are defined in the synchronous form and
asynchronous support is also generated for them. You can specify a preferred
interaction style as synchronous or asynchronous. The asynchronous type
advertises to users of the interface that it contains at least one operation that can
take a significant amount of time to complete. As a consequence, the calling
service must avoid keeping a transaction open while waiting for the operation to
complete and send its response. The interaction style applies to all the
operations in the interface.

Human
Task

Human
TaskJavaJava WS_BPELWS_BPEL Business

Rule
Business

Rule SelectorSelectorState
Machine

State
Machine

Implementation Types

Java

WSDL
Port Type Interface Reference

JavaJava

WSDL
Port Type

Component

Implementation

Mediation
Flow

Mediation
Flow
22 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
You can also apply a role-based permission qualifier to an interface so that only
authorized applications can invoke the service with that interface. If the
operations require different levels of permission for their use, you must define
separate interfaces to control their access.

A service can be implemented in a range of languages (for example Java,
WS-BPEL, state-machine definitions, and so on). When implementing a service,
the focus is on the business purpose and less on infrastructure technology.

SCA and non-SCA services can use other service components in their
implementations. They do not hard code the other services they use. They
declare soft links called service references. Service wires resolve service
references. You can use SCA wiring to create SCA applications by component
assembly.

Figure 2-7 on page 24 shows a service component and a number of references.
When a component wants to use the services of another component, it must
have a partner reference or simply a reference. We can consider an in-line
reference, which means that the referenced service component is defined within
the same scope of the referencing component. In other words, both components
are defined within the same module.

Applications that are not defined as SCA components (for example,
JavaServer™ Pages™ (JSPs)) can still invoke SCA components; they do so
through the use of stand-alone references. Stand-alone references contain
partner references that identify the components to call. Alone, stand-alone
references do not have any implementation or interface.
 Chapter 2. Key technologies and concepts 23

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 2-7 Service component and references

Components are assembled in a module (Figure 2-8): either a service module or
a mediation module (which is specific to WebSphere Enterprise Service Bus).

.

Figure 2-8 Service module: overview

The implementations of components that are used in a module assembly might
reside within the module. Components that belong to other modules can be used
through imports. Components in different modules can be wired together by

Used by a non-SCA component or
another component within the module

Stand-alone Reference

Used only by the component in which
the reference is defined

In-line reference

Identifies the target service component
or import for the reference definition

Wire

Import

Export

Standalone
Reference

Service
Component

Service
Component

Service Module

Wire
24 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
publishing the services as exports that have their interfaces and dragging the
exports into the required assembly diagram to create imports.

When wiring components, you can also specify quality of service qualifiers on the
implementations, partner references, and interfaces of the component.

An import allows you to use functions that are not part of the module that you are
assembling. Imports can be from components in other modules or non-SCA
components such as stateless session EJBs and Web services. Available
function (or business logic) that is implemented in remote systems (such as Web
services, EIS functions, EJBs, or remote SCA components) is modeled as an
imported service (Figure 2-9).

Imports have interfaces that are the same as or a subset of the interfaces of the
remote service that they are associated with so that those remote services can
be called. Imports are used in an application in exactly the same way as local
components. This provides a uniform assembly model for all functions,
regardless of their locations or implementations. The import binding does not
have to be defined at development time; it can be done at deployment time.

Figure 2-9 Service component and import

An export is a published interface from a component (Figure 2-10) that offers the
component business service to the outside world, for example, as a Web service.
Exports have interfaces that are the same as or a subset of the interfaces of the
component that they are associated with so that the published service can be
called. An export dragged from another module into an assembly diagram
automatically creates an import.

An import is a valid target for a wire

Describes how the external service is
bound to the current module

JMS Binding

Web
Service

Service
Component

Stateless
Session Bean

JMS
 Chapter 2. Key technologies and concepts 25

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 2-10 Service component and export

2.5 Service Data Objects
Business data that is exchanged in an integrated application in WebSphere
Enterprise Service Bus is represented by business objects. The objects are
based on Service Data Objects (SDO), which is a new data access technology.

2.5.1 SDO concepts
There are a a few key SDO concepts that can provide a framework for
understanding business object architecture, including the design and use of
business objects in WebSphere Enterprise Service Bus.

The fundamental concept in the SDO architecture is the data object. In fact, the
term SDO is often used interchangeably with the term data object. A data object
is a data structure that holds primitive data, multi-valued fields (other data
objects), or both. The data object also has references to metadata that provide
information about the data found in the data object. In the SDO programming
model, data objects are represented by the commonj.sdo.DataObject Java
interface definition. This interface includes method definitions that allow clients to
obtain and set the properties associated with DataObject.

As an example, consider modeling customer data with an SDO data object. The
properties associated with the customer might be firstName (String), lastName
(String), and customerID (long). The following pseudo code shows how you
might use the DataObject API to obtain and set properties for the customer data
object:

Describes how the service is
bound externally

esbBinding

Identifies the component to be exported

Target

Web
Service

Service
Component JMS
26 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch02-technology-overview.fm
DataObject customer = …
customer.setString("firstName","John");
customer.setString("lastName","Doe");
customer.setInt("customerID", 123);
int id = customer.getInt(“customerID”);

Another important concept in the SDO architecture is the data graph. A data
graph is a structure that encapsulates a set of data objects. From the top level
data object in the graph, all other data objects can be reached by traversing the
references from the root data object. In the SDO programming model, data
graphs are represented by the commonj.sdo.DataGraph Java interface
definition.

2.5.2 Applying SDO to SCA
Both SCA and SDO (the basis of business objects) have been designed to be
complimentary service oriented technologies. Figure 2-11 illustrates how SCA
provides the framework to define service components and to compose these
services into integrated applications, and it further shows that business objects
represent the data that flows between each service. Whether the interface
associated with a particular service component is defined as a Java interface or a
WSDL port type, the input and output parameters are represented by business
objects.

Figure 2-11 Exchanging data in an SCA runtime

Service Module

BO

BO BO

BO

BO

BO = Business Object

Web

Web
 Chapter 2. Key technologies and concepts 27

7212ch02-technology-overview.fm Draft Document for Review May 4, 2006 3:20 pm
28 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
Chapter 3. WebSphere Enterprise
Service Bus overview and
product positioning

This chapter gives a general product overview of WebSphere Enterprise Service
Bus and related products. The products discussed here are:

� WebSphere Application Server V6.0
� WebSphere Enterprise Service Bus V6.0
� WebSphere Process Server V6.0
� WebSphere MQ V6.0
� WebSphere Message Broker V6.0
� WebSphere Adapters V6.0
� Rational Application Developer V6.0
� WebSphere Integration Developer V6.0

Additionally, this chapter compares the ESB capabilities of WebSphere
Enterprise Service Bus and WebSphere Message Broker to help you to
determine which product may be appropriate in your situation.

3

© Copyright IBM Corp. 2006. All rights reserved. 29

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
3.1 Product overview
This section provides an overview of the functions of WebSphere Enterprise
Service Bus and other related WebSphere products.

The IBM SOA Reference Architecture defines the IT services required to support
an SOA. It includes development environment, services management,
application integration, and runtime process services. The capabilities of the
architecture can be implemented on a build-as-you-go basis as new
requirements are addressed over time.

Figure 3-1 shows the IBM SOA reference architecture and the supporting
software.

Figure 3-1 IBM SOA Reference Architecture with product mapping

In this chapter we concentrate on the two products providing the ESB capabilities
for an SOA and their related products:

1. WebSphere Enterprise Service Bus provides ESB functions for SOAs built
on open standards. It is based on WebSphere Application Server Network
Deployment and inherits its build-in messaging provider and quality of
services. WebSphere Process Server is built on top of WebSphere Enterprise
Service Bus and adds a business process runtime.

2. WebSphere Message Broker provides advanced ESB functionality for
universal support of messaging applications. It is based on WebSphere MQ
and takes advantage of the services provided by its messaging infrastructure.

Interaction Services
WebSphere Portal

Server

Process Services
WebSphere Process

Server

Information Services
WebSphere

Information Integration

Partner Services
WebSphere

Partner Gateway

Business App Services
WebSphere

Application Server

Access Services
WebSphere Business
Integration Adapters/

WebSphere Adapters/HATS

Infrastructure Services

WebSphere Enterprise Service Bus WebSphere Message BrokerESB

Rational
Application
Developer

WebSphere
Integration
Developer

WebSphere
Business
Modeler

Business Innovation & Optimization Services
WebSphere Business Monitor

IBM Tivoli
Composite
Application

Manager

D
ev

el
op

m
en

t
Se

rv
ic

es

IT
 S

er
vi

ce
s

M
an

ag
em

en
t

30 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
Figure 3-2 shows the two main ESB products, their foundation and relationship.

Figure 3-2 IBM ESB offerings

3.1.1 IBM WebSphere Application Server V6.0
The foundation of the WebSphere brand is the application server, which provides
the runtime environment and management tools for J2EE and Web services
based applications. WebSphere Application Server provides qualities of service
such as clustering, failover, scalability, and security. It also includes a built-in
messaging provider which can be configured to connect to an existing
WebSphere MQ network.

WebSphere Application Server is available in three packages:

� WebSphere Application Server - Express

The Express package is geared to those who need to get started quickly with
e-business. It is specifically targeted at medium-sized businesses or
departments of a large corporation, and is focused on providing ease of use
and ease of application development. It contains full J2EE 1.4 support but is
limited to a single-server environment. WebSphere Application Server -
Express is bundled with the Rational Web Developer application development
tool.

WebSphere Process
Server
• Business Process
runtime

WebSphere Enterprise
Service Bus
• ESB functions

WebSphere Application
Server
• J2EE Applications
• Messaging provider

WebSphere Message
Broker
• Advanced ESB
functions

WebSphere MQ
• Messaging
provider

Business
Process

Enterprise
Service
Bus

Foundation
and Messaging
Infrastructure
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 31

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
� WebSphere Application Server

The WebSphere Application Server package provides the next level of server
infrastructure. Though the server is functionally equivalent to the server
shipped with Express, this package differs slightly in packaging and licensing.
The development tool included is a trial version of Rational Application
Developer, a full J2EE 1.4 compliant development tool.

� WebSphere Application Server Network Deployment

WebSphere Application Server Network Deployment is an even higher level
of server infrastructure in the WebSphere Application Server family. It
extends the WebSphere Application Server base package to include
clustering capabilities, Edge components, and high availability for distributed
configurations. These features become more important at larger enterprises,
where applications tend to service a larger customer base, and more
elaborate performance and availability requirements are in place.

WebSphere Application Server V6 provides full support for the J2EE 1.4
specification. The J2EE specification defines the concept of containers to provide
runtime support for applications. There are three types of containers in the
application server implementation:

� Web container

The Web container processes HTML, servlets, JSP™ files and other types of
server-side includes. It provides infrastructure support like Web container
transport chains, session management and Web services engine.

� EJB™ container

The EJB container provides all the runtime services that are needed to deploy
and manage enterprise beans. Is is a server process that handles requests
for both session and entity beans. The container provides low-level services
including threading and transaction support.

� Client container

The client container is a separately installed component on the client’s
machine. It allows the client to run applications in an environment that is
compatible with J2EE.

In addition to the definition of containers as a runtime environment for application
components, the application server supports the following features, prescribed
by the J2EE:

� J2EE Connector Architecture

� Java Naming and Directory Interface™ (JNDI) name space

� Security: J2EE security, Java 2 security, JAAS
32 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
� JMS provider: WebSphere messaging (default messaging provider),
WebSphere MQ JMS provider, generic JMS providers.

� Web services engine: WS-I Basic Profile, WS-Security, JAX-RPC, JAXR,
SAAJ, UDDI.

With Network Deployment, clustering application servers automatically enables
plug-in workload management for the application servers and the servlets they
host. The routing is based on weights associated with the cluster members. If all
cluster members have identical weights, the plug-in sends equal requests to all
members of the cluster. Workload management for EJB containers can be
performed by configuring the Web container and EJB containers on separate
application servers. Multiple application servers with the EJB containers can be
clustered, enabling the distribution of EJB requests between the EJB containers.

WebSphere Application Server Network Deployment also provides high
availability features. The following is a quick overview of the failover capabilities:

� Web container failover

The Web server plug-in in the Web server is aware of the configuration of all
Web containers and can route around a failed Web container in a cluster.
Sessions can be persisted to a database or in-memory using data replication
services.

� EJB container failover

Client code and the ORB plug-in can route to the next EJB container in the
cluster.

� Critical services failover

Hot standby and peer failover for critical services (such as workload
management routing, PMI aggregation, JMS messaging, transaction
manager, and so on) is provided through the use of high availability domains.
A high availability domain defines a set of WebSphere processes (core group)
that provides high availability function to each other.

One or more members of the core group can act as a high availability
coordinator, managing the high availability activities within the core group
processes. If a high availability coordinator server fails, another server in the
core group takes over the duties of that coordinator. High availability policies
define how the failover occurs. Workload management information is shared
between core members and failover of critical services is done among them in
a peer-to-peer fashion. Little configuration is necessary, and in many cases,
this function works with the defaults that are created automatically as you
create the processes.

� JMS messaging failover
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 33

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
The messaging engine keeps messages in a remote database. When a
server in a cluster fails, WebSphere selects an online server to run the
messaging engine and the workload manager routes JMS connections to that
server.

WebSphere Application Server provides a browser-based administrative console
for administration. Command-line and scripting administration is also provided.

You can find more information about the WebSphere Application Server at:

� WebSphere Application Server home page:

http://www.ibm.com/software/webservers/appserv/was/

3.1.2 IBM WebSphere Enterprise Service Bus V6.0
WebSphere Enterprise Service Bus is designed to provide an Enterprise Service
Bus (ESB) for IT environments built around open standards and SOA. It delivers
easy to use functionality built on the messaging and Web services technologies
of WebSphere Application Server.

WebSphere Application Server is the foundation for WebSphere Enterprise
Service Bus, providing not only the required quality of service, the J2EE runtime
environment and the messaging engine but also by providing broad support
regarding open standards and Web services. WebSphere Enterprise Service
Bus is built on the Network Deployment package, providing a wide range of
capabilities for large enterprise networks, including clustering, failover, and
scalability features.

The development tool for WebSphere Enterprise Service Bus is WebSphere
Integration Developer.

Architecture
WebSphere Enterprise Service Bus provides uniform invocation and
data-representation programming models and monitoring capabilities for
components running on WebSphere Enterprise Service Bus.

Service Component Architecture (SCA)
On top of the infrastructure provided by WebSphere Application Server,
WebSphere Enterprise Service Bus implements a mediation layer consisting of a
mediation base and mediation functions. The newly provided mediation
framework is different from the one implemented by WebSphere Application
Server as it is based on the Service Component Architecture (SCA). It allows
enhanced flexibility, encapsulation and reuse. Mediations implemented for
WebSphere Application Server can still be used together with WebSphere
34 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
Enterprise Service Bus but the new tooling provided for WebSphere Enterprise
Service Bus does not support the modification of these mediations.

Service Data Objects (SDO)
Mediation components are typically concerned with the flow of messages
through the infrastructure and not just with the business content of the message.
The information that governs their behavior is often held in headers flowing with
the business message. Therefore the Service Message Object (SMO) pattern for
Service Data Objects is introduced to support this pattern. Service Message
Objects are enhanced Service Data Objects, providing an abstraction layer for
processing and manipulating messages exchanged between services.

Common Event Infrastructure (CEI)
WebSphere Enterprise Service Bus uses the Common Event Infrastructure (CEI)
to provide event management services, such as event generation, transmission,
persistence, and consumption. The format of those events is defined by the
Common Base Event (CBE) specification.

Mediations
Mediations are provided by SCA and Service Message Objects (SMO). SCA
supports the description of every mediation module through a technology-neutral
interface. SMO is based on SDO and supports the representation of a
binding-specific data format in a common, neutral way. The application of this
SCA/SMO based programming model allows for the configurable assembly of
different mediation modules containing the mediation flow, thus enabling a very
flexible and encapsulated solution.

Mediation functions are built upon the mediation base and consist of one or more
mediation modules. An SCA/SMO based mediation module is composed of
different parts such as imports representing providers, exports representing
service consumers and a mediation flow component representing integration and
mediation functionality.

Figure 3-3 shows a mediation module acting on the flow of services requests
between service consumers and providers.
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 35

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 3-3 WebSphere Enterprise Service Bus mediation module

WebSphere Enterprise Service Bus provides prebuilt components called
mediation primitives that can be used in mediation flows to perform XSLT
message transformation, logging, routing, and database lookup. It also supports
the implementation of custom mediation primitives.

WebSphere Enterprise Service Bus supports different binding types for imports
and exports, thus allowing the connection of different kinds of service consumers
and providers. Supported binding types are JMS binding, Web services binding,
WebSphere adapter binding, EJB binding, as well as SCA binding used for
module to module communication.

The mediation framework and its mediation modules separate the processing of
requests from the processing of replies. They allow the mediation flow
components to pass a potentially modified request from a service consumer to a
service provider and to pass a potentially modified reply from a service provider
to a service consumer. The request processing within a mediation flow
component can send a reply back to the consumer without necessarily needing
to contact a service provider.

Figure 3-4 shows a service consumer sending a request over the ESB. The ESB
passes the request to the service provider. The service provider runs the service,
then, optionally sends a reply to the consumer.

WebSphere Enterprise Service Bus

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Service
Consumer

Service
Consumer

Service
Consumer

Mediation Module

ImportsExport
36 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
Figure 3-4 ESB passing request from consumer to provider

Clients
J2EE clients from WebSphere Application Server Network Deployment, including
Web services clients, EJB clients, and JMS clients can be used to extend
connectivity of the ESB. Additionally WebSphere Enterprise Service Bus
provides Message Service Clients for C/C++ and .NET, Web services clients for
C++, and SCA clients for Java.

WebSphere Enterprise Service Bus

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Service
Consumer

Service
Consumer

Service
Consumer Reply

(optional)

Request
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 37

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
You can find more information about the WebSphere Enterprise Service Bus at:

� WebSphere Enterprise Service Bus home page:

http://www.ibm.com/software/integration/wsesb/

Mediation functions in WebSphere Enterprise Service Bus versus
WebSphere Application Server

Before the announcement of WebSphere Enterprise Service Bus, the service
integration bus in WebSphere Application Server was often positioned as a
basic ESB. Though this is still a useful strategy for development
environments, WebSphere Enterprise Service Bus is now the recommended
solution for environments where the service integration bus was used.

WebSphere Enterprise Service Bus adds the following functionality to the
service integration bus.

� Easy to build mediation layer

� Simplified administration

� Pre-built mediation functions

� Broad connectivity

Mediation functions in WebSphere Enterprise Service Bus are service
intermediaries that:

� Operate on interactions between service endpoints (consumer and
provider)

� Are administered as part of WebSphere Enterprise Service Bus

� Are created using visual tooling exploiting supplied and custom mediation
functions

� Have access to binding specific header data like SOAP and JMS headers

Mediation handlers in the WebSphere Application Server service integration
bus are message handlers that:

� Operate on messages traversing the bus

� Are administered as part of the bus

� Are created by implementing Java programs

� Allow access to the full WebSphere messaging header information
38 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
3.1.3 IBM WebSphere Process Server V6.0
WebSphere Process Server is built on WebSphere Enterprise Service Bus, thus
providing it with the mediation functionality of WebSphere Enterprise Service Bus
and the qualities of service that WebSphere Application Server provides, for
example clustering, failover, scalability, and security. To this, WebSphere
Process Server adds the ability to build business processes that orchestrate
multiple services to achieve a business goal.

The WebSphere Process Server architectural model consists of the three layers,
as shown in Figure 3-5.

Figure 3-5 Architectural model of WebSphere Process Server

Above the infrastructure provided by WebSphere Application Server,
WebSphere Process Server implements the SOA core layer, also used by
WebSphere Enterprise Service Bus, that includes the following:

� Service Component Architecture (SCA)

� Business objects

� Common Event Infrastructure

On top of this SOA Core layer lies the service components and supporting
services layers. WebSphere Process Server implements a number of
components and services that can be used in an integration solution. In the
service components layer you will find the following:

� Business processes

Service Component
Architecture

WebSphere Application Server Network Deployment (J2EE Runtime)

Business
Objects

Common Event
Infrastructure

Business
State

Machines

Business
Processes

Human
Tasks

Business
Rules

Interface
Maps

Business
Object
Maps

Relation-
ships

Service
Components

Supporting
Services

SOA Core

Mediation
(ESB)

Dynamic
Service

Selection
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 39

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
The business process component in WebSphere Process Server implements
a WS-BPEL compliant process engine.

� Human tasks

Human tasks in WebSphere Process Server are standalone components
which can be used to assign work to employees or to invoke any other
service.

� Business state machines

A business state machine provides another way of modeling a business
process. This enables businesses to represent their business processes
based on states and events/

� Business rules

Business rules are a means of implementing and enforcing business policy
through externalizing of business function. This enables dynamic changes of
a business process.

These components can use the features of a number of supporting services in
WebSphere Process Server. Most of these can be classified as some form of
transformation. There are a number of transformation challenges when
connecting components and external services, each of which is being addressed
by a component of WebSphere Process Server:

� Interface maps

Very often interfaces of existing components match semantically but not
syntactically. Interface maps allow the invocation of these components by
translating these calls. Additionally business object maps can be used to
translate the actual business object parameters of a service invocation.

� Business object maps

A business object map is used to translate one type of business object into
another type of business object.

� Relationships

In business integration scenarios it is often necessary to access the same
data in various backend systems for example an ERP system and a CRM
system. A common problem for keeping business objects in sync is that
different backend systems use different keys to represent the same objects.
The relationship service in WebSphere Process Server can be used to
establish relationship instances between objects in these disparate backend
systems. These relationships are accessed from a business object map when
translating one business object format into another.

� Dynamic service selection
40 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
A selector component allows dynamic selection and invocation of different
services, which all share the same interface.

� Mediation

This component is inherited from WebSphere Enterprise Service Bus.

The primary development tool for WebSphere Process Server is WebSphere
Integration Developer. This is the same tool used for WebSphere Enterprise
Service Bus development tasks.

You can find more information about IBM WebSphere Process Server V6 at:

� WebSphere Process Server home page:

http://www.ibm.com/software/integration/wps/

3.1.4 IBM WebSphere MQ V6.0
IBM WebSphere MQ is an established and reliable message queuing
middleware platform. A message queuing infrastructure built upon WebSphere
MQ technology can provide an available, reliable, scalable, secure and
maintainable transport for messages with exactly once delivery assurance.

The Message Queuing Interface (MQI) is the core API provided by WebSphere
MQ. It is a procedural API suitable for applications developed within procedural
programming languages. Procedural languages like C and COBOL most likely
utilize MQI directly whereas object oriented languages like Java and C++ are
supported with object oriented APIs built upon MQI.

WebSphere MQ also supports Java Message Service (JMS) and WebSphere
message client API (XMS), a programming API that allows access from C, C++,
and .NET applications.

WebSphere MQ provides features to assure security of access, authentication of
identity and security and integrity of communication. The Object Authority
Manager (OAM) is the default authorization service for command and object
management. All actions performed by an application connected to a queue
manager, are authenticated by the OAM.

WebSphere MQ provides high availability through workload balancing and
failover capabilities. Administration of WebSphere MQ is typically done using
control commands or the Eclipse-based WebSphere MQ Explorer administration
tool (Windows® or Linux® only).

You can find more information about IBM WebSphere MQ at:

� WebSphere MQ home page:
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 41

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
http://www.ibm.com/software/integration/wmq/

3.1.5 IBM WebSphere Message Broker V6.0
WebSphere Message Broker enhances the flow and distribution of information
by enabling the transformation and intelligent routing of messages without the
need to change either the applications that are generating the messages or the
applications that are consuming them.

Figure 3-6 shows a high level architectural view of WebSphere Message Broker.

Figure 3-6 Architectural model of WebSphere Message Broker

The broker is a set of application processes that host and run message flows
consisting of a graph of nodes that represent the processing needed for
integrating applications. The broker also hosts message sets containing
message models for predefined message formats.

When a message from a business application arrives at the broker, the broker
processes the message before passing it on to one or more other business
applications. The broker routes, transforms, and manipulates messages
according to the logic that is defined in message flow applications. A broker uses
WebSphere MQ as the transport mechanism both to communicate with the
Configuration Manager, from which it receives configuration information, and to
communicate with any other brokers to which it is associated. Each broker has a

Configuration
Manager

W ebSphere MQ

Configuration
Manager
Database

User Name
Server

Broker

Execution Group

Message Flow

Broker Domain
42 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
database in which it stores the information that it needs to process messages at
run time.

Execution groups enable message flows within the broker to be grouped
together. Each broker contains a default execution group. Additional execution
groups can be created as long as they are given unique names within the broker.
Each execution group is a separate operating system process and, therefore, the
contents of an execution group remain separate from the contents of other
execution groups within the same broker. This can be useful for isolating pieces
of information for security because the message flows execute in separate
address spaces or as unique processes. Message flow applications are
deployed to a specific execution group. To enhance performance, the same
message flows and message sets can be running in different execution groups.

The Configuration Manager is the interface between the Message Brokers
Toolkit and the brokers in the broker domain. The Configuration Manager stores
configuration details for the broker domain in an internal repository, providing a
central store for resources in the broker domain. The Configuration Manager is
responsible for deploying message flow applications to the brokers and
delivering reports on the progress of the deployment and on the status of the
broker. When the Message Brokers Toolkit connects to the Configuration
Manager, the status of the brokers in the domain is derived from the
configuration information stored in the Configuration Manager’s internal
repository.

WebSphere Message Broker together with WebSphere MQ provide high
availability features. This is quite important since WebSphere Message Broker
acts as a hub and therefore needs to be eliminated as a single point of failure.

Load balancing and high availability can be achieved by providing multiple broker
instances serving the same logical hub with each instance is mapped to its own
WebSphere MQ queue manager. The different broker instances could reside on
different machines.

WebSphere Message Broker provides the Message Broker Toolkit, a graphical
environment for developing and deploying message flow applications.

You can find more information about IBM WebSphere Message Broker at:

� WebSphere Message Broker home page:

http://www.ibm.com/software/integration/wbimessagebroker/v6/

3.1.6 IBM WebSphere Adapters V6.0
Not all applications provide a Web service or messaging interface. In these
instances, adapters can be used to link applications to the ESB.
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 43

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
WebSphere Adapters are compliant to the Java 2 Platform, Enterprise Edition
Connector Architecture version 1.5. They enable inbound and outbound
connectivity between enterprise information systems and SCA based
applications hosted by WebSphere Enterprise Service Bus or WebSphere
Process Server. The WebSphere Adapters are deployed as part of an J2EE
application, as an embedded resource adapter.

IBM also offers WebSphere Business Integration Adapters. They are not
standard based and they reside outside of the application server. The server
communicates with these adapters using a JMS transport layer.

3.2 ESB product positioning
The product you select to implement an ESB depends on the requirements of
your solution. We have introduced two strategic products that provide ESB
capabilities:

� WebSphere Enterprise Service Bus

� WebSphere Message Broker

Now, we give you a quick comparison of the two.

WebSphere Enterprise Service Bus is designed to provide the core functionality
of an ESB for a predominantly Web services based environment. It is built on
WebSphere Application Server, which provides the foundation for the transport
layer. WebSphere Enterprise Service Bus adds a mediation layer based on the
SCA programming model on top of this foundation to provide intelligent
connectivity. If the customer has a lot of Web services in their environment,
WebSphere Enterprise Service Bus is likely to be the better product to use.

WebSphere Message Broker provides a more advanced ESB solution with
advanced integration capabilities such as universal connectivity and any-to-any
transformation for data-centric deployments. It can handle services integration as
well as integration with non-services applications. WebSphere MQ provides the
transport backbone for messaging applications. Typically, customers who need a
higher performance and throughput product in a message-centric environment
would use WebSphere Message Broker.

Both products can also be used in combination. There are two main scenarios,
where a combination can be used:

� Both ESB products are connected to provide a enterprise wide ESB
combining the features to support all Web services technologies and
integration for messaging applications. Figure 3-7 shows this setup.
44 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
Figure 3-7 Combining WebSphere Message Broker and WebSphere Enterprise Service Bus

� WebSphere Message Broker acts as the central ESB, while WebSphere
Enterprise Service Bus enables message processing to be efficiently
deployed into branches, warehouses, stores, and so on. Having ESB
functionally available locally adds flexibility, as branches can run
independently from the central hub if connectivity is limited. Figure 3-8 shows
this scenario.

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

WebSphere Enterprise Service Bus

WebSphere Message Broker

Messaging
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 45

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 3-8 WebSphere Enterprise Service Bus complementing WebSphere Message Broker

3.2.1 Comparing WebSphere Enterprise Service Bus to WebSphere
Message Broker

For a comparison of WebSphere Enterprise Service Bus and WebSphere
Message Broker ESB capabilities see Table 3-1.

Service
Consumer

WebSphere
Message
Broker

WebSphere
Enterprise

Service Bus

WebSphere
Enterprise

Service Bus

WebSphere
Enterprise

Service Bus

Service
Consumer Service

Consumer

Service
Consumer

Service
Provider Service

Provider

Service
Provider

Service
Provider
46 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
Table 3-1 WebSphere Enterprise Service Bus vs. WebSphere Message Broker

WebSphere Enterprise
Service Bus V6.0

WebSphere Message Broker
V6.0

Connectivity � TCP/IP, SSL, HTTP(S),
IIOP

� JMS V1.1 (point-to-point,
pub/sub)

� JMS/MQ (using MQLINK
configuration)

� TCP/IP, SSL, HTTP(S)
� JMS V1.1 (point-to-point,

pub/sub)
� Native WebSphere MQ
� Supports WebSphere MQ

Transport, WebSphere MQ
Everyplace® Transport,
Multicast Transport,
Real-time Transport,
SCADA Transport, Web
Services Transport, JMS
Transport

� CICS, VSAM using
SupportPacs

� Files using WebSphere
Message Broker File
Extender

Web services
support

� SOAP/HTTP(S),
SOAP/JMS, WSDL 1.1

� Supports WS-I Basic Profile
V1.1

� UDDI V3.0 Service Registry
� WS-Security, WS-Atomic

Transactions
� Client support: J2EE client,

Message client for C/C++
and .NET, Web services
client

� SOAP/HTTP(S),
SOAP/JMS, WSDL 1.1

� Supports WS-I Basic Profile
V1.0

� Client support: JMS client,
Message client for C/C++
and .NET, Web services
client, MQI client

Adapter support � WebSphere Adapters and
WebSphere Business
Integration Adapters

� WebSphere Business
Integration Adapters

Message
logging

� Provides prebuilt mediation
primitives for message
logging

� Provides prebuilt message
flow nodes for message
logging
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 47

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
Message
transformation

� Protocol transformation
between HTTP, JMS, IIOP

� Custom transformation logic
can be implemented in
Java, XSLT

� Supports transformation of
XML, SOAP, JMS message
data format (many more if
used with adapters)

� Protocol transformation
between any protocols
available as input or output
nodes (HTTP, JMS, MQ,
and more)

� Custom transformation logic
can be implemented in
Java, ESQL, or XSLT

� Supports transformation of
self defined messages
(XML), built-in predefined
messages (SOAP, MIME,
and more), and custom
predefined messages
(MRM)

Message
routing

� Content and
transport/protocol based
routing

� Provides prebuilt mediation
primitive for message
routing, or custom build
mediation using Java

� Supported through SCA

� Content and
transport/protocol based
routing

� Custom routing logic can be
implemented in Java or
ESQL

Data
enrichment

� Built-in database lookup
mediation primitive

� Built-in nodes for database
access (ESQL, Java,
graphical mapping)

Validation � Validation of the input
message against its schema
by configuration of
primitives

� Validation of input and
output message against its
schema definition.

Event-driven
processing

� Supports event-driven
processing by leverage
adapters for capture and
dissemination of business
events

� Supports complex event
processing (processing of
events formed by several
earlier ones)

Security � HTTPS support
� Authentication and

authorization as part of
J2EE

� Support for WS-Security

� HTTPS support
� Authentication and

authorization by the
operating system
environment

WebSphere Enterprise
Service Bus V6.0

WebSphere Message Broker
V6.0
48 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
3.2.2 Summary
In conclusion, consider the following:

� WebSphere Enterprise Service Bus

Building an ESB that is based entirely on WebSphere Enterprise Service Bus
is an option when Web services support is critical and the service provider
and consumer environment is predominantly built on open standards.
WebSphere Enterprise Service Bus is most suitable for environments that are
based on Web services standards and provides facilities to integrate services
that are offered through enterprise application integration messaging and
other sources. However, if integration with non-Web service standards-based
services is a major requirement then WebSphere Enterprise Service Bus may
not be the right choice.

� WebSphere Message Broker

WebSphere Message Broker is suitable where advanced ESB functionality is
required. WebSphere Message Broker is an option when Web services
support is not critical and quality-of-service requirements demand the use of

Quality of
service

� Assured delivery support by
service integration bus

� Transaction support
provided by WebSphere
Application Server

� Configurative within SCA
module components

� Assured delivery support by
WebSphere MQ

� Transaction support by
WebSphere MQ (limited for
JDBC connections)

� Configurative within node
properties

Management � High availability and
scalability provided by
WebSphere Application
Server environment

� Built-in administration tools
� Import bindings can be

modified using the
administration console

� CEI support. Entry, exit and
failure events can be
activated on all SCA
components within the
mediation modules

� Common Base Event
browser for viewing events
from the CEI

� A high level of availability
can be achieved using
multiple brokers in
combination with
WebSphere MQ clustering

� Built-in administration tools

WebSphere Enterprise
Service Bus V6.0

WebSphere Message Broker
V6.0
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 49

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
mature middleware. WebSphere Message Broker can support the majority of
the ESB capabilities that WebSphere Enterprise Service Bus does but is not
limited to open standards. However, in comparison with WebSphere
Enterprise Service Bus, it lacks the sophistication of Web services support
that might be required in an ESB implementation which makes extensive use
of these standards.

3.2.3 IBM SOA Foundation and Patterns for e-business
The IBM SOA Foundation is a reference architecture used to build new, or
extend existing, applications and business processes. The IBM SOA Foundation
includes an integration architecture, best practices, patterns, and SOA scenarios
to help simplify the packaging and use of IBM open standards-based software.

The IBM Patterns for e-business and are a group of proven, reusable assets that
can be used to increase the speed of developing and deploying On Demand
business applications. The Patterns for e-business approach enables architects
to implement successful e-business solutions through the reuse of components
and solution elements from proven successful experiences.

Using a combined SOA process identified by IBM, both the SOA Foundation and
Patterns for e-business can be used to help select the appropriate architecture
and products to build ESB solutions. WebSphere Enterprise Service Bus and
WebSphere Message Broker both fit into the Service Connectivity SOA scenario.

Please consult the following resources for more information:

� IBM SOA Foundation and the Service Connectivity SOA scenario

– Patterns: SOA Foundation - Service Creation Scenario, SG24-7240

– Patterns: SOA Foundation - Service Connectivity Scenario, SG24-7228

� IBM Patterns for e-business

– http://www.ibm.com/developerworks/patterns

3.3 Development environment
Some products provide specific development environments. For example
WebSphere Message Broker provides a Eclipse-based graphical administration
and development tools.

All WebSphere Application Server-based product provide built-in administration
tools but for developers there is a set of development products, packaged for
different user roles.
50 Getting Started with WebSphere Enterprise Service Bus V6

http://www.ibm.com/developerworks/patterns

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
3.3.1 User roles
A user role is an abstract collection of skills, needs, and responsibilities. User
roles do not necessarily map to a specific person. Individuals will assume a user
role, determined by the activity they are involved in. Dependent of the phase of
the process a person is working on, a single person can assume many roles.

For the life cycle of an SOA the ESB user roles are shown in Figure 3-9.

Figure 3-9 SOA life cycle role mapping

The line of business manager and the business analyst are responsible for
modeling the solution. While the line of business manager is concentrating on the
strategy, the business analyst models the solution that supports the strategy.
The integration developer and the application developer assemble the solution
and work together with the administrators and deployers to deploy the solution.
Then the administrators are responsible for managing the solution.

Here we will concentrate on the two roles involved in the assembly phase:

Integration developer
The integration developer focuses on the SOA solutions. This role needs some
programming experience, but expects the tools to simplify and abstract
advanced implementation details. This role develops SCA-based applications,
such as mediation modules, using existing components.

Model Assemble Deploy Manage

• Business
Analyst

• Line of
Business
Managers

• Integration
Developer

• Application
Developer

• Server
Administrator

• Solution
Administrator

• Solution
Deployer

• Integration
Developer

• Application
Developer

• Server
Administrator

• Solution
Administrator
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 51

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
The integration developer uses WebSphere Integration Developer for all the
tasks in this role.

Application developer
The application developer focuses on development of components and services
used by the SOA solution. This includes developing Web services, resource
adapters, and custom mediations.

The application developer uses Rational Application Developer for development.

3.3.2 Rational Application Developer V6.0
For J2EE application developers IBM offers Rational Application Developer for
WebSphere software. It is based on the Rational Software Development
Platform. It includes all features of Rational Web Developer included in
WebSphere Application Server - Express and additionally provides EJB and Web
service development tools. So all components to be deployed to WebSphere
Application Server and WebSphere Application Server Network Deployment can
be developed using Rational Application Developer.

For developers using modeling language technologies for creating Java and
service-oriented applications, Rational Software Architect adds modeling
features to the functions available in Rational Application Developer.

3.3.3 WebSphere Integration Developer V6.0
In WebSphere Integration Developer the integration developer can create all
components to be deployed to WebSphere Enterprise Service Bus and
WebSphere Process Server.

WebSphere Integration Developer provides editors to work on SCA modules,
interfaces, data types, and all kinds of SCA components. It also supports
integrated debugging for modules and components, a unit test environment, and
a end-to-end framework.

WebSphere Integration Developer supports the top-down and the bottom-up
development approach. It is designed to hide the complexity of WSDL, XSD,
XPath and XSLT. So integration developers do not need to have deep skills in
these technologies to create a solution. Wherever the supplied mediation
primitives do not meet the needs, custom mediation primitives can be created
visually or by writing Java code. These more advanced task are typically
performed by more advanced integration developers or application developers.
52 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch03-positioning-WESB.fm
The relationship between WebSphere Integration Developer and the other
Rational® Software Development Platform products is shown in Figure 3-10 on
page 53.

Figure 3-10 Development tools overview

WebSphere Integration Developer includes most functions provided by Rational
Application Developer, but not all of them. For example the Crystal Report tools
and WebSphere Portal development tools are not included in WebSphere
Integration Developer, but in Rational Application Developer. Because both
products are based on the Rational Software Development Platform, they can be
combined in a single development environment.

If a single user assumes both the integration developer role and the application
developer role, he can either use the J2EE development tools in WebSphere
Integration Developer, or use both development products, WebSphere
Integration Developer and Rational Application Developer.

IBM Rational
Software Architect V6

IBM Rational
Application Developer V6

IBM Rational
Web Developer V6

Rational Software Development Platform
(Eclipse 3.0)

IBM WebSphere
Integration

 Developer V6
 Chapter 3. WebSphere Enterprise Service Bus overview and product positioning 53

7212ch03-positioning-WESB.fm Draft Document for Review May 4, 2006 3:20 pm
54 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212p02.fm
Part 2 Configuration
and usage

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 55

7212p02.fm Draft Document for Review May 4, 2006 3:20 pm
56 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
Chapter 4. Setting up the development
environment

This chapter discusses the WebSphere Enterprise Service Bus development
environment, WebSphere Integration Developer V6.0.1.

This chapter discusses the following topics:

� Overview of the development environment

� Planning for multiple development environments

� Installing the development tool

� Team development

� Integration test considerations

� Troubleshooting installation issues

4

© Copyright IBM Corp. 2006. All rights reserved. 57

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
4.1 Overview of development environment
WebSphere Integration Developer V6.0.1 is the development environment for
WebSphere Enterprise Service Bus V6.0 and WebSphere Process Server
V6.0.1. It provides an environment for building and testing integrated applications
based on a services-oriented architecture.

The application development in WebSphere Integration Developer V6.0.1 is
based on Service Component Architecture. Besides developing Service
Component Architecture components and modules, WebSphere Integration
Developer is also used to assemble mediations, components using mediation
primitives, and to create mediation modules. WebSphere Integration Developer
includes an integrated unit test environment for WebSphere Process Server and
WebSphere Enterprise Service Bus, allowing developers to deploy their modules
to the integrated test server and perform unit testing using the integration test
client.

4.1.1 Hardware and software requirements
The WebSphere Integration Developer product Web site provides the list of
minimum hardware and software required. This information can be found at:

http://www.ibm.com/software/integration/wid/sysreqs

4.1.2 Consider your current environment
WebSphere Integration Developer is based on Rational Software Development
Platform which is shared by several IBM products. The list of IBM products that
are based on Rational Software Development Platform can be found at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/c
om.ibm.wbit.help.install.doc/topics/cinsdp.html

Note that Rational Software Development Platform is installed only once when
the first product is installed. Subsequent products use the common user interface
and add product specific functionality that is provided by the plug-ins.

If your current environment has any existing Rational Software Development
Platform products installed, the installation of WebSphere Integration Developer
will integrate into the existing Rational Software Development Platform.

WebSphere Integration Developer V6.0.1 is based on Rational Software
Development Platform V6.0.1 and is only compatible with other products that are
based on this level. If you have a product that uses an earlier version of Rational
Software Development Platform, you will be required to upgrade that product or
uninstall it, so WebSphere Integration Developer V6.0.1 can be installed.
58 Getting Started with WebSphere Enterprise Service Bus V6

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.install.doc/topics/cinsdp.html
http://www.ibm.com/software/integration/wid/sysreqs

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
WebSphere Integration Developer can co-exist with WebSphere Studio
Application Developer Integration Edition V5.1.1 and previous releases.
WebSphere Integration Developer V6.0.1 cannot coexist with WebSphere
Integration Developer V6.0

4.2 Planning for multiple development environments
When setting up multiple WebSphere Integration Developer environments,
ensure that each developer workstation has sufficient disk space for the
installation. WebSphere Integration Developer installation requires about 5.5 GB
of disk space for the install directory as well as 1 GB of disk space for temporary
files.

While it might be convenient to install on multiple workstations from a network
installation image, due to the size of the install image, it is recommended that the
install image be copied to the local drive of the workstation before starting the
WebSphere Integration Developer installation. This will ensure the installation
completes successfully, and does not get affected by network issues.

Information on creating a network installation image can be found at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/c
om.ibm.wbit.help.install.doc/topics/tinstnet.html

When installing on Windows operating systems, WebSphere Integration
Developer by default gets installed in C:\Program Files\IBM\WebSphere\ID\6.0.
Its recommended the installation directory be changed to a short fully qualified
directory name to avoid problems with path length exceeding 256 characters on
Windows. When setting up multiple development environment, it helps to use a
standard directory name for install, for ease of management.

4.2.1 Silent installation
Instead of using the installation wizard, it is possible to install WebSphere
Integration Developer non-interactively, using a response file. Silent installation
could be very useful when setting up multiple development environments.

Note that installing WebSphere Integration Developer silently using the provided
response file will install the default features. It will install the Integrated
Development Environment, and will not install the Integrated Test Environment.

Prior to performing a silent install, you must:

1. Configure the response file used for the installation.

2. Check the workstation for any issues related to co-existence or upgrade
 Chapter 4. Setting up the development environment 59

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.install.doc/topics/tinstnet.html

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
3. Ensure the workstation has sufficient disk space for the install.

The sample response file is called responsefile.txt and is located in the \disk1\util
directory. Based on your development environment requirements, it is
recommended you make a copy of the response file and modify it accordingly.

If your developers intend to work mainly on developing mediation flow
components, and test only applications created by the mediation flow editor, you
can modify the response file and select WebSphere Enterprise Service Bus
server only as the unit test server for install and do not have to install WebSphere
Process Server.

Information on configuring the response file and starting a silent install can be
found at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/c
om.ibm.wbit.help.install.doc/topics/thushadditional.html

4.2.2 Roles
WebSphere Integration Developer supports several user roles for different
activities and functionality. WebSphere Integration Developer hides product
features based on the role selected. A specific user role can be enabled or
disabled from the Welcome page on WebSphere Integration Developer. The
hidden features can be enabled when first accessed or through Window ->
Preferences -> Workbench -> Capabilities. Integration Developer is primary
role used for developing mediation modules and build SOA solutions.

For more information on user roles, see 3.3.1, “User roles” on page 51.

4.3 Installing the development environment
This section describes how to install WebSphere Integration Developer, and
essential product updates. It assumes a Windows environment.

This section contains the following sections:

� Installing WebSphere Integration Developer

� Using Rational Product Updater

� Starting WebSphere Integration Developer
60 Getting Started with WebSphere Enterprise Service Bus V6

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.install.doc/topics/thushadditional.html

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
4.3.1 Installing WebSphere Integration Developer
This section walks you through all the steps of installing a default configuration of
WebSphere Integration Developer V6.0.1. Before beginning the installation,
ensure that you are logged in as a user with administrative privileges, then
perform the following:

1. Start the launchpad.exe from disk1 of the installation CDs. This opens the
launchpad shown in Figure 4-1. It is recommended you review the readme file
and release notes as they contain late breaking information.

Figure 4-1 Install wizard - Launchpad

2. Click Install IBM WebSphere Integration Developer V6.0.1 to start the
installation.

3. The IBM WebSphere Integration Developer V6.0.1 Installer will launch
(Figure 4-2). Click Next.

Note: Installation time will vary, and may extend up to two hours if both
WebSphere Enterprise Service Bus and WebSphere Process Server test
environments are installed.
 Chapter 4. Setting up the development environment 61

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 4-2 Install wizard - Welcome screen

4. The Software License Agreement will be displayed. Accept the agreement,
then click Next.

5. Specify an installation directory as shown in Figure 4-3, then click Next.

Note: Its recommended the installation directory be changed to a short
fully qualified directory name to avoid problems with path length exceeding
256 characters on Windows.
62 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
Figure 4-3 Install wizard - Install directory

6. The installation of WebSphere Integration Developer is divided into two parts.
The first part is to install the Integrated Development Environment. This part
is required. The second part is the Integrated Test Environment which allows
you to deploy, run, and test artifacts you have built in the Integrated
Development Environment. This part is optional but strongly recommended if
you want to unit test your artifacts. Click Integrated Test Environment and
click Next (Figure 4-4).
 Chapter 4. Setting up the development environment 63

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 4-4 Install wizard - Integrated Test Environment

7. The Integrated Test Environment of WebSphere Integration Developer offers
two server types: WebSphere Process Server and WebSphere Enterprise
Service Bus. We recommend installing both. Select WebSphere Enterprise
Service Bus in addition to WebSphere Process Server and click Next
(Figure 4-5).

Figure 4-5 Install wizard - Select Integration Test Environment
64 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
8. The next screen shows a summary of installation and shows the disk space
required depending on the options selected (Figure 4-6). Click Next to start
the installation.

Figure 4-6 Install wizard - Summary and disk space required

9. At the end of the installation, a summary is shown along with the status for
each of the component as shown in Figure 4-7. Click Next.
 Chapter 4. Setting up the development environment 65

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 4-7 Install wizard - Complete install summary

10.You will be asked if you wish to view the readme file containing late-breaking
information. Click Next, then Next again.

11.Finally you will be asked if you wish to launch the Rational Product Updater.
You can use this tool to apply interim fixes and product updates. 4.3.2, “Using
Rational Product Updater” on page 68 provides more information on this tool.
We recommend you select Launch Rational Product Updater (Figure 4-8).
Click Finish.
66 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
Figure 4-8 Install wizard - Launch product updater

12.The directory structure from a WebSphere Integration Developer installation
is as shown in Figure 4-9 on page 68.
 Chapter 4. Setting up the development environment 67

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 4-9 Directory structure of WebSphere Integration Developer installation

4.3.2 Using Rational Product Updater
Rational Product Updater is the tool provided to install maintenance updates for
WebSphere Integration Developer as well as other products based on Rational
Software Development Platform. This tool accesses the update server on the
internet, locates and installs product updates as well as optional new features

After completing a successful install, it is strongly recommended to check for
product updates, so you can install fixes, and prevent encountering known
problems.

Note: You can create stand-alone server profiles using the
esbpcatWindows.exe utility, located in:

<WID_INSTALL_DIR>\runtimes\bi_v6\bin\ProfileCreator_wbi
68 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
Rational Product Updater can be launched from the install wizard, or from Start
-> Programs -> IBM WebSphere -> Integration Developer V6.0.1 -> Rational
Product Updater.

It is possible to change the update site preference within Rational Product
Updater, so updates can be installed from a local or a network drive rather than
from the internet update server. You will need to download the updates to a local
driver and change the update site preference.

Recommended updates for WebSphere Integration Developer can be
downloaded from:

http://www-1.ibm.com/support/docview.wss?rs=2308&uid=swg27006685

Further information on changing the update site preference can be found at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/c
om.ibm.orca.updater.doc/topics/tupdatesites.html

While you can modify the update policy as required, you can also use the update
policy that is shipped with each fixpack. This can be found in the WID directory
after unzipping the fixpack and the filename is policy_601_interim_fixnnn.xml
where nnn is the fix number.

After completing WebSphere Integration Developer install, we installed updates
using Rational Product Updater. We have downloaded the updates and used the
update policy shipped with the fix. Below is each step in installing an update
using Rational Product Updater.

1. If the Rational Product Updater s not running, launch it from Start ->
Programs -> IBM WebSphere -> Integration Developer V6.0.1 -> Rational
Product Updater. This opens the Rational Software Development Platform
Product Updates screen as shown in Figure 4-10.
 Chapter 4. Setting up the development environment 69

http://www-1.ibm.com/support/docview.wss?rs=2308&uid=swg27006685
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.orca.updater.doc/topics/tupdatesites.html

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 4-10 Rational Product Updater

2. If you wish to provide a local update policy file instead of downloading one
using the default internet update server, perform the following:

a. Click on Preferences -> Update Sites.

b. Use Browse to locate your policy name as shown in Figure 4-11.

c. Click OK.

Figure 4-11 Provide your update policy

3. Under the Installed Products tab, highlight IBM WebSphere Integration
Developer and click Find Updates.

4. Once the updates have been located (either locally or using the internet) the
Product Updater will switch to the Updates view (Figure 4-12 on page 71).

Highlighting each update shown in the update window will provide a brief
description of that update in the Description box, and detailed information
70 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
about that update in the Detailed information box. You can select or deselect
an update to install using the check box. After completing selections, click on
the Install Updates button to start the install.

Figure 4-12 Selecting the updates to install

5. After installation is complete, the installed updates will show on the Installed
Products pane as shown in Figure 4-13.
 Chapter 4. Setting up the development environment 71

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 4-13 Install updates

4.3.3 Starting WebSphere Integration Developer
To start WebSphere Integration Developer, perform the following:

1. Click Start -> Programs -> IBM WebSphere -> Integration Developer
V6.0.1 -> WebSphere Integration Developer V6.0.1.

2. This will launch the Workspace Launcher window (Figure 4-14 on page 73).
Enter a path where a workspace should be created and click OK.

Note: We recommend using short path names for the workspace directory,
to minimize the chances of exceeding the 256 character path length limit
on Windows operating systems.
72 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
Figure 4-14 Workspace Launcher

3. WebSphere Integration Developer will start and open the Welcome page
(Figure 4-15). Depending on the development activity, a specific role, or roles
can be selected on this Welcome page. Roles can enable or disable using the
button at bottom right corner on this page.

Figure 4-15 WebSphere Integration Developer welcome page
 Chapter 4. Setting up the development environment 73

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
4.4 Team development
A typical development environment could involve multiple developers working
collectively on a project. WebSphere Integration Developer provides the ability to
share common artifacts across modules through a library project.

Besides the ability to share common artifacts using a library project, WebSphere
Integration Developer V6.0.1 provides team development functionality from the
Business Integration perspective and has integrated support for IBM Rational
ClearCase® and CVS source code management systems. All Rational Software
Development Platform based products include a CVS Repository Exploring
perspective and a Team Synchronizing perspective. In addition, WebSphere
Integration Developer’s Business Integration perspective directly supports team
development functionality.

The Business Integration perspective in WebSphere Integration Developer
V6.0.1 supports the following operations for team development support.

� Share a project

� Synchronize changes between the local application and source code
repository

� Commit local changes to source code repository

� Update local workspace artifacts with the version on source code repository

You must configure a connection to the CVS server using CVS Repository
Exploring perspective. For information on CVS server configuration and
implementation, and how to connect a CVS client to it, see Chapter 26 of the
redbook Rational Application Developer V6 Programming Guide, SG24-6449.

The primary artifact that will be managed in a team development environment is
a module. While WebSphere Integration Developer generates several staging
projects when each application project is built, these generated projects are
marked as derived. By default, CVS will not commit any files or folders from the
generated staging projects marked as derived. The staging projects will get
regenerated once a user extracts the module from CVS, as WebSphere
Integration Developer by default has the Build Automatically flag checked.

Note: This section assumes the CVS source code management system as
the source code repository.

Note: If the default of Build Automatically is modified, you must build the
project by clicking on Project -> Build Project, after check out from CVS.
74 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
From more information on packaging in WebSphere Integration Developer refer
to:

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0512_p
han2/0512_phan2.html

Developers can share the project by checking it into a CVS repository. This can
be done from Business Integration perspective using the following instructions.

1. Right click a mediation module and select Team -> Share Project.

2. The next screen requires you to select the repository plug-in that will be used
for source code management system. Select CVS and click Next
(Figure 4-16).

Figure 4-16 Select the repository plug-in

3. You can select an existing repository location that has been setup, or create a
new repository location as shown in Figure 4-17 on page 76. Click Next.
 Chapter 4. Setting up the development environment 75

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0512_phan2/0512_phan2.html

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 4-17 Select repository location

4. Provide the module name that this project will be known as in the CVS
repository. Its important you check the radio button Use project name as
module name as shows in Figure 4-18. In WebSphere Integration Developer
the module file depends on the module name, and any changes in the module
name will result in naming errors.

Figure 4-18 Module name
76 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
5. The next panel shows the all the files for the module that will be checked into
CVS repository as shown in Figure 4-19. Click Finish.

Figure 4-19 Share project resources

6. You will notify that there are uncommitted changes that are yet to be shared
as shown in Figure 4-20. Click Yes.

Figure 4-20 Commit changes

7. You will next be presented with a window that shows you the number of files
that are will be added to CVS repository. Click Details to see the list of files
that will be added (Figure 4-21 on page 78). Since the entire module is being
added to CVS repository, all the files will be selected. Click Yes.
 Chapter 4. Setting up the development environment 77

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 4-21 Number of resources

8. You can add an optional comment on version tracking as shown in
Figure 4-22. Click OK.

Figure 4-22 Version

9. All the files and folders for the module will be uploaded to the CVS repository
and the module will be available for check out. In the workspace, the module
and the artifacts within the module that have been shared will be marked with
a small disk decorator as shown in Figure 4-23 on page 79, to indicate that
they are now shared resources. Also note, the CVS repository name will
appear in brackets next to the module name. This will help differentiate local
projects and shared projects.
78 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
Figure 4-23 Shared resources

Users that have access to this CVS repository can now check out this module to
their local workspace. This can be done from the CVS Repository Exploring
perspective:

1. Open the CVS Repository Exploring perspective

2. Expand the HEAD repository location.

3. Select the module to check out, right click and select Check Out
(Figure 4-24).

Figure 4-24 Checking out a module
 Chapter 4. Setting up the development environment 79

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
It is not required to create a module in the workspace before it is checked out
from the CVS repository. The check out will extract the entire service module
from CVS and WebSphere Integration Developer will build this project generating
all the staging projects. The module will appear in the Business Integration
perspective.

There are a few known issues when using team development functionality with a
CVS repository as discussed below.

� After check out a module, you may get an error in the module that the gen/src
folder is missing. The gen/src folder contains derived files generated by
WebSphere Integration Developer when building the project. Since CVS does
not commit derived files on check in, the gen/src folder will get committed as
an empty folder structure, CVS by default will prune empty folders when the
module is checked out to the local workspace. You can disable the directory
pruning option from Window -> Preferences -> Team -> CVS and uncheck
Prune empty directories option as shown in Figure 4-25.

Figure 4-25 Prune empty directories

� During a team development project, it is possible for several users to check
out the same modules and make modifications. Its highly recommended that
users synchronize often to identify content discrepancies between local and
remote versions of the artifact. By synchronizing often, it will be possible to
80 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
identify conflicts as early as possible. Its a good practice to avoid having two
or more people develop the same artifact at the same time.

Synchronizing between local workspace and CVS repository can be
performed from the Business Integration perspective by right clicking on a
project and selecting Team -> Synchronize with repository.

� Eclipse provides the option of committing files to CVS repository without
synchronizing the workspace first. This can be done by right-clicking on a
project, and selecting Team -> Commit from the context menu. This is not
recommended as all the local changes will be committed to the server and will
overwrite any existing conflicts between the local workspace and the CVS
repository. It is recommended to perform a Synchronize with repository first
and check the conflicts if any before committing the local workspace to CVS.

� If synchronize with repository shows conflicts between the local workspace
and the repository, it is recommended you check the conflicts, and
accordingly either Update the local workspace with the remote version on
CVS, or Commit the local workspace version to CVS.

� Besides service modules, it is possible to manage library projects using a
CVS repository. It should be noted that module projects could be dependant
on a library, and changes to artifacts in the library can affect these module
projects.

4.5 Integration test considerations
This section refers to the development environment not just as a software tool or
a development workstation, but as a complete stage in the integration
development life cycle.

Typically, a development project consists of a number of integration developers
building a solution. Each developer is responsible for a set of deliverables and
need not be concerned with the specifics of how one module connects to
another.

Integration developers write mediation modules, unit test their components using
the Integration Test Client and commit their modules to a source repository, such
as CVS.

Note: For more in-depth information about team development, see:

� Team development with WebSphere Integration Developer and
WebSphere Process Server: Developing applications using CVS

http://www.ibm.com/developerworks/websphere/library/techarticles/0604_bee
rs/0604_beers.html
 Chapter 4. Setting up the development environment 81

http://www.ibm.com/developerworks/websphere/library/techarticles/0604_beers/0604_beers.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0604_beers/0604_beers.html

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Assembling the complete solution by specifying bindings between modules is the
responsibility of the integration specialist. Figure 4-26 shows the typical topology
of a development environment.

Figure 4-26 Development environment

The need for an integration workspace
Integration developers will typically write and test their components against
interfaces which are available in shared libraries. This means that integration
developers may not have the complete solution in their individual workspaces,
and therefore may not be equipped to resolve the relationships between their
modules and other modules.

The integration specialist is responsible for making sure the solution builds
correctly, is properly assembled, and passes a set of basic tests before it can be
promoted to external test environments and eventually production.

The tasks performed by the integration specialist include:

� Managing code versions

� Checking out modules from code repository

� Building modules

� Assembling inter-module connections

� Testing the solution

User Acceptance
Test

Performance
Test

System
TestBuild/Integration Specialist

(WebSphere Integration
Developer)

Source Control Repository
(CVS)

Integration Developer
(WebSphere Integration Developer)

Integration Developer
(WebSphere Integration Developer)
82 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch05-development-environment.fm
� Exporting EAR files

� Shipping code to external environments

The integration specialist works with WebSphere Integration Developer, the
same tool used by integration developers to write components.

Periodically, the integration developer will enforce a code freeze, check all
modules out from the source code repository, ensure all modules build without
errors, make sure the bindings between modules are set correctly, smoke-test
the solution, tag all modules with a version level and export the complete solution
as a set of EAR files to be promoted to external test environments.

It is common, at the start of an integration project, to allocate integration test
activities to a member of the development team. However, as the project grows
and the number of activities increases, you will need a dedicated resource to
own these tasks and manage communications between the development
environment and other external environments.

Given the nature of integration projects, you should plan for a dedicated resource
to fulfill the role of integration specialist.

4.6 Troubleshooting installation issues
The final panel of WebSphere Integration Developer installation provides a
detailed summary of the installation. This panel shows all the components that
were selected for installation and shows the status of the installation for each of
these components. This panel also shows the directory name where logs are
located.

The logs are located in <WID_INSTALL_DIR>\logs. If any of the components
show a status of failure, review the logs for further information.

Depending on the components selected for installation, an installation of
WebSphere Integration Developer may also install a complete WebSphere
Process Server V6.0.1 and WebSphere Enterprise Service Bus V6.0.1
environment to be used as integration test servers.

The servers will be installed in <WID_INSTALL_DIR>\runtimes\bi_v6 directory.
The logs for the server installation are located in
<WID_INSTALL_DIR>\runtimes\bi_v6\logs directory.

If the installation summary shows a failure when installing the server, you will
need to check the logs for the server.
 Chapter 4. Setting up the development environment 83

7212ch05-development-environment.fm Draft Document for Review May 4, 2006 3:20 pm
Besides logs, further debugging for installation can be enabled by starting the
install using below command.

<disk1>\setup\setup.exe -log # !C:\install-log.txt @ALL

For silent installation using a response file, further debugging can be started
using the below command

<..disk1\setup>\setup.exe -silent -options c:\myresponsefile.txt -log #
!C:\install-log.txt @ALL

Its always recommended to check the WebSphere Integration Developer support
Web site for any known issues.

http://www-306.ibm.com/software/integration/wid/support/
84 Getting Started with WebSphere Enterprise Service Bus V6

http://www-306.ibm.com/software/integration/wid/support/

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Chapter 5. Setting up the runtime
environment

This chapter discusses the WebSphere Enterprise Service Bus runtime
environment. We provide an overview of the runtime environment, and a
description of the runtime topologies that can be configured. We also provide
details of the runtime environments we installed. Finally, we discuss some
considerations for establishing various test and production environments that
address common requirements.

In this chapter, the following topics are discussed:

� Overview of the runtime

� Stand-alone server topology

� Network Deployment topology

� Extending WebSphere Application Server Network Deployment V6

� Installing WebSphere Enterprise Service Bus

� Planning for multiple test and production environments

� Performing problem determination of runtime installation and customization

5

© Copyright IBM Corp. 2006. All rights reserved. 85

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
5.1 Overview of the runtime environment
In this section we discuss the runtime environment in general terms, so that you
can get an understanding of what is involved in establishing the runtime
environments needed for development, test, and production activities. If you are
familiar with WebSphere Application Server V5, the terminology and
configuration topologies are identical to those you’ve already encountered. If you
have experience with WebSphere Application Server V6, you are already
acquainted with the idea of a profile, and it is used in the same way for
WebSphere Enterprise Service Bus.

5.1.1 Hardware and software requirements
It is always best to consult the WebSphere Enterprise Service Bus product Web
site to obtain the most up-to-date information regarding supported hardware and
software. This information can be found at:

http://www.ibm.com/software/integration/wsesb/sysreqs

5.1.2 Consider your current environment
WebSphere Enterprise Service Bus V6.01 is based on WebSphere Application
Server Network Deployment V6.0.2.3. Your first decision when planning the
runtime environment, is between extending your current WebSphere Application
Server Network Deployment environment by adding WebSphere Enterprise
Service Bus to it, or creating separate WebSphere Enterprise Service Bus
servers.

If you have WebSphere Application Server Network Deployment V6 installed and
configured to support your development, test and production requirements, you
will most likely want to extend these environments by adding WebSphere
Enterprise Service Bus to them. We discuss more about how to do that in section
5.4, “Extending WebSphere Application Server V6” on page 96.

If you do not have an existing WebSphere Application Server Network
Deployment V6 runtime environment, then you will want to create new servers to
run WebSphere Enterprise Service Bus. This is the approach we took, and we
discuss the installation and customization steps we took in detail in section 5.5,
“Installing WebSphere Enterprise Service Bus” on page 100.

The following sections describe installation and customization steps you will take
when you do not have an existing WebSphere Application Server Network
Deployment V6 installation, or if you do, in the case where you chose to not
extend that installation with the WebSphere Enterprise Service Bus libraries.
86 Getting Started with WebSphere Enterprise Service Bus V6

http://www.ibm.com/software/integration/wsesb/sysreqs

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
5.1.3 What gets installed?
When you install WebSphere Enterprise Service Bus on a target machine, the
installation wizard will perform a set of checks against your system. If the checks
pass, it will first install WebSphere Application Server Network Deployment
V6.0.2.3. When that is complete, the WebSphere Enterprise Service Bus product
is installed into the same set of directories as were used for the first step. Finally,
a set of profiles need to be created in order to customize the installation and
allow you to start servers.

When using the Installation wizard, you will have the option to perform a
Complete installation or a Custom installation. A Complete installation will
automatically create a default profile which corresponds to a stand-alone server
topology. If you choose the Custom installation, this profile is not created and you
can use the First Steps dialog, or the start menu options to continue with profile
creation.

Lets look first at the results of a Complete installation performed on a Windows
machine. The directory structure shown in Figure 5-1 on page 87 is the result of
the installation steps.

Figure 5-1 Installation directories created

Look at both panes of the Windows Explorer output in Figure 5-1 on page 87 to
see the full set of subdirectories created. This resembles very closely the set of
directories created by a WebSphere Application Server Network Deployment V6
installation, but it does have some important additions.
 Chapter 5. Setting up the runtime environment 87

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Lets first look at the samples subdirectory. Notice there is an
ESBSamplesGallery and an ESBStockQuoteSample directory available which
are shown in Figure 5-2 on page 88.

Figure 5-2 Samples available after installation

When you choose the Complete installation, these samples are deployed for you
automatically and the required database and server configuration is done for
you. After your server is started, you can launch the samples from the First Steps
menu item accessed from your default profile on the Windows Start options. See
Figure 5-21 on page 108 for a view of the start option menu items. Alternatively
there is a Samples Gallery option available on the default profile menu. When
you launch the samples gallery, you will see the browser page shown in
Figure 5-3 on page 89.
88 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-3 The WebSphere Enterprise Service Bus Samples Gallery

Looking a bit deeper at the installation directory, we see a two more
subdirectories that are specific to WebSphere Enterprise Service Bus.

The first is the CEI subdirectory, as shown in Figure 5-4 on page 89.

Figure 5-4 CEI subdirectory after installation
 Chapter 5. Setting up the runtime environment 89

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
CEI is the Common Events Infrastructure that is used by WebSphere Enterprise
Service Bus components to log execution activity. You will become more familiar
with CEI as you examine the functions of WebSphere Enterprise Service Bus.

A second subdirectory of interest appears in the \util directory, named
EsbLoggerMediation, shown Figure 5-5 on page 90.

Figure 5-5 EsbLoggerMediation directory

This directory is a unique part of WebSphere Enterprise Service Bus and its
contents will help you to configure a more advanced persistence mechanism for
components that use the Logger mediation primitive. Initially, Cloudscape™ is
used for this purpose and its already configured for you, yet as you move to more
advanced stages of the test cycle, you will probably want to use a relational
database for this purpose.

Finally, you should notice a number of subdirectories named logs. These
directories contain files generated during installation and customization that
capture the activities performed during those steps. If your installation completed
successfully, it is sufficient to simply know that the logs exist, and if you are very
inquisitive, you may want to go and browse the files there. If you have problems
with installation, the logs will be needed to diagnose what went wrong, and we
discuss this in more detail in section 5.7, “Problem determination for runtime
installation and customization” on page 127.
90 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
5.1.4 What gets customized?
Generally the process of customization is one that modifies the product
installation libraries so that a working version is created. For WebSphere
Enterprise Service Bus the customization process is encapsulated by the tasks
performed to create profiles. This is a set of directories and files on the machine
specific to a given server. You can have multiple profiles on a machine, each
representing a different server, its configuration, and commands to interact with
it. These profiles make use of the product installation libraries as though they
were in read-only mode. Files that must be updated for a particular server are
copied and kept as part of the profile.

As mentioned above, if you choose a Complete installation, a default profile is
created for you, which provides a customized stand-alone server. You can
continue to create other profiles for a Deployment Manager and a Custom Node,
which we discuss in detail in section 5.5.2, “A common development integration
test runtime environment” on page 108. If you choose to perform a Custom
installation, no profiles are created automatically and you have full control over
that process using the First Steps dialog.

All of the profiles can coexist on a given machine, although depending on what
kind they are, and how they were built (using common or unique TCP/IP ports, for
example) the servers associated with them may not all be started at the same
time.

Profiles are commonly kept in the profiles directory for the installed copy of
WebSphere Enterprise Service Bus. You can see in Figure 5-6 on page 92 the
results of the customization steps we took after installation. We created a default,
a Deployment Manager and a Custom profile on our machine.
 Chapter 5. Setting up the runtime environment 91

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 5-6 Profiles resulting from installation customization

5.1.5 What gets configured?
After installation and customization, which tend to be one-time kinds of tasks, is
the task of configuring the runtime environment.

When you do a Complete installation, all configuration steps required to have an
operational server are done for you. You can begin to deploy your mediation
modules to this runtime immediately and begin testing.

The WebSphere Enterprise Service Bus Profile Creation wizard performs all of
the configuration steps for you when you choose the Complete installation, or
when you use the wizard to create additional stand-alone server profiles. If you
start the server and log onto the administrative console, you can see evidence of
the following configuration steps having been completed:

� A service integration bus named SCA.SYSTEM.cell_name.Bus has been
configured. This is a standard service integration bus which will have bus
destinations added when SCA modules are deployed. These destinations are
used to hold messages that are being processed for components of a
mediation module that uses asynchronous interactions. The bus will be
configured to have your server as a bus member and a messaging engine will
be created on your server.

� A second service integration bus named
SCA.APPLICATION.cell_name.Bus is configured with the server as a bus
92 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
member and a messaging engine. This service integration bus is used to
define JMS queue destinations (and other JMS resources) for modules
deployed with JMS bindings.

� A third service integration bus named CommonEventInfrastructure _Bus is
configured, again with the server as a bus member and messaging engine
provider. This bus is used by the CEI service.

� The three service integration buses are set up to use Cloudscape for
message persistence.

� An enterprise application named sca.sib.mediation is deployed to the
server. This application collaborates with your mediation modules and the
runtime to provide the mediation services required.

� The CEI service is configured to use the Cloudscape database for
persistence.

� A database and datasource are configured for use by any mediation logger
components that are deployed inside mediation modules.

For a Deployment Manager cell topology, you will use the administrative console
to add servers to a managed node. When you do this, there will be a template for
an ESBServer, and if you use it only the two SCA buses are configured, however
they have no bus members initially. For this topology you need to do much of the
configuration work described above, yourself, since the configuration of these
resources in a cell with potentially numerous servers or clusters of servers offers
many options beyond those of a stand-alone server environment. We discuss
how to accomplish these steps in section 5.4.3, “Final configuration steps” on
page 98.

5.2 Stand-alone server topology
This is the simplest configuration to create and we recommend building one at
least once to familiarize yourself with the basic product and its configuration.

With a stand-alone server topology, you will have a fully functional product on a
single server. You can administer the server using the administration console, or
with the scripting interface, yet it is completely separate from all other servers.

You can have as many instances of a stand-alone server as you require. If you
intend to install multiple instances of a stand-alone server on a single machine,
you should make certain there are sufficient resources available to support the
workload. You should also take care to use unique TCP/IP ports for each
stand-alone server, if you intend to run them concurrently.
 Chapter 5. Setting up the runtime environment 93

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
When you install WebSphere Enterprise Service Bus, you are copying the
product libraries to the target machine, and they are not modified afterward,
except through the installation of maintenance to the product. Installation only
needs to happen once for any machine that will run WebSphere Enterprise
Service Bus, in any topology.

In order to create a customized runtime server, you create a profile. If you intend
to customize multiple servers on a single machine, the names of the profiles
must be unique. Figure 5-7 on page 94 illustrates a stand-alone server with the
default profile.

Figure 5-7 Stand-alone server topology

There are occasions when you may want to install WebSphere Enterprise
Service Bus more than once on a given machine. Consider a situation where you
want to create a system integration test (SIT) environment, and a quality
assurance (QA) environment on the same machine. You could install the product
twice, and create two profiles to support the two test environments. You would
also have the flexibility to install maintenance for WebSphere Enterprise Service
Bus into the SIT environment without disturbing the QA environment. When fully
tested, the service could subsequently be installed to the QA environment.

5.3 Network Deployment topology
In a Network Deployment topology, a set of servers is organized into a cell for the
purpose of having a central place for administration. Each cell is comprised of
two or more nodes which each contain one or more servers. Just like with the
stand-alone server, the WebSphere Enterprise Service Bus product is only

Tip: Installing WebSphere Enterprise Service Bus a second time on the same
machine gives you the ability to run servers at different maintenance levels.

Machine A

WebSphere Application Server

WebSphere Enterprise Service Bus

Core product files
(System files)

Profile, default

Server
server1
94 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
installed once on each machine that will be hosting a server. Unlike a
stand-alone server, you will create two distinct profiles:

� One profile will be created for the Deployment Manager. This server provides
the administration for the cell. The administrative console runs in this server
and can be used to manage the configuration of all the servers in the cell.
Most often administrative scripts are executed against a running Deployment
Manager, whose job is to distribute the updates throughout affected nodes in
the cell. The deployment manager runs in its own node, which is a logical
grouping of managed servers.

� The second profile is known as a custom node. A custom node is a profile
that represents an empty node. Once you create a custom node, you will
invoke a process known as federation, which brings the custom node into the
cell managed by the Deployment Manager. Within a custom node is a
process known as a node agent, which is responsible for managing the
servers and their configuration. When a node has a node agent, it is
considered a managed node. Figure 5-8 on page 95 illustrates a Network
Deployment topology.

Figure 5-8 Network Deployment topology

Machine C

WebSphere Application Server

WebSphere Enterprise Service Bus

Custom 02
(Managed node)

server1server1server1

ClusterX

Node
agent

Machine B

WebSphere Application Server

WebSphere Enterprise Service Bus

Custom 01
(Managed node)

server1 Node
agent

Machine A

WebSphere Application Server

WebSphere Enterprise Service Bus

Dmgr01
(Deployment

manager)

Dmgr
 Chapter 5. Setting up the runtime environment 95

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Since the custom node is initially empty (except for the node agent), you will
need to add servers to the node after it is federated. Adding servers to a node is
a task which is completed using the administrative console or the wsadmin
scripting interface. Servers must be added to a custom node before applications
or mediation modules can be deployed.

The Deployment Manager can be used to start and stop servers in the cell,
however, you must start the node agent(s) before those tasks can be performed.
The Deployment Manager cannot start node agents. You can use the startNode
batch file or shell script to start a node agent.

You can configure a cell with multiple nodes that all exist on one physical
machine, or they can span multiple machines. Each node in the cell exists only
on one physical machine. You can see that there are a number of topology
choices available which allow the cell to meet scalability and fail-over
requirements.

5.4 Extending WebSphere Application Server V6
In the sections that follow we will discuss how you can use an existing
WebSphere Application Server Network Deployment V6 and extend it to
incorporate the features and functions of WebSphere Enterprise Service Bus.
We will cover:

� Installation
� Augmenting profiles
� Final configuration steps

5.4.1 Installation
If you have WebSphere Application Server Network Deployment V6 already
installed and configured, you can use it as the basis of your WebSphere
Enterprise Service Bus installation. During the install of WebSphere Enterprise
Service Bus, the wizard will detect the presence of WebSphere Application
Server and ask if you want to do a completely new install or extend your current
version 6.0x installation. If you chose to extend your current installation, the
following will occur:

� Your WebSphere Application Server service level will be upgraded to version
6.0.2.3.

� The product libraries for WebSphere Enterprise Service Bus will be installed
in the same directories as your product libraries for WebSphere Application
Server Network Deployment.
96 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Extending your current WebSphere Application Server Network Deployment
environment with WebSphere Enterprise Service Bus allows you to manage only
one set of product libraries making application of maintenance and procedures
for backup and recovery more straightforward.

5.4.2 Augmenting profiles
Once you have completed the installation of WebSphere Enterprise Service Bus,
you will need to augment the profiles associated with your WebSphere
Application Server Network Deployment configuration. Augmenting the profiles
adds the required additional configuration for WebSphere Enterprise Service Bus
to your existing profiles.

For a Stand-alone server configuration this is a single step performed with the
server stopped. Launch the Profile creation wizard. Select a Stand-alone
Application Server, and the wizard will detect your existing profiles of that type
and ask which one you would like augment. Completing the wizard will result in
an updated profile that has all of the original configuration information as well as
the new configuration elements for WebSphere Enterprise Service Bus.

If you have a Deployment Manager cell, the process requires several more steps
as outlined below:

1. Stop all of the servers and node agents in the cell.

2. Stop the Deployment Manager.

3. Launch the Profile creation wizard and augment the Deployment Manager
profile.

4. Start the Deployment Manager.

5. Unfederate each managed node in the cell. You can use the removeNode
command found in the \bin directory of the custom profile for the node.

6. Launch the Profile creation wizard and augment the custom profile associated
with the unfederated node.

7. Federate the node back into the cell. You can use the addNode command in
the \bin directory of the custom profile for the node.

Note: Use caution when unfederating and federating managed nodes.
Options on the command will allow you to preserve existing servers and
application deployments, but they may be lost if not specified properly. Use
the WebSphere Enterprise Service Bus InfoCenter to find details on the
addNode and removeNode commands.
 Chapter 5. Setting up the runtime environment 97

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
5.4.3 Final configuration steps
After you augment the profiles, there remain two final configuration steps.

First, you must enable the server to host SCA modules. If you look at the server
before you start this process, you will notice that it has the two SCA buses
defined to it, but has not associated them with a messaging engine (there are no
bus members).

You will need to configure the persistence mechanism used by the buses, and
configure their bus members. Fortunately there is a helper dialog to help you
with this task the first time the server gains ESB capabilities.

1. In the administrative console, select Servers-> Application servers->
your_server and the Advanced Configuration link under the Business
Integration heading.

2. In the Service Component Architecture section of the pane, select Default
Destination Location if you want to be able to deploy mediation modules to
this server and if you want to use the messaging resources of this server.
Also select the checkbox indicating you want to use the default datasource
values for message persistence, which is Cloudscape. By choosing this
option, the service integration bus will automatically create the Cloudscape
datasources and tables required for the bus members. These selections are
shown in Figure 5-9 on page 99.
98 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-9 Configuring the server to host SCA modules

There are many alternatives to the combination of settings we chose here. It is
possible to disable the deployment of SCA modules to this server if you select Do
not configure to host SCA applications. Also, you can configure the server so that
SCA applications can be deployed to it, but it will use the messaging resources of
a remote server for the destinations and activation specifications required by any
mediation module you deploy. Setting a remote server adds it as a member of
the two SCA buses. Similarly, there are numerous alternatives for the
persistence datasource, and you should be sure your choice here is consistent
with the intended purpose of your server.

Note that the helper dialog can only be executed a single time. If you make
changes and save them, subsequent attempts to use the helper dialog will show
the message which appears in Figure 5-10 on page 99.

Figure 5-10 Advanced configuration helper is only enabled for one-time usage
 Chapter 5. Setting up the runtime environment 99

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Note also, that if you revisit the helper dialog after having made updates, the
status of the SCA configuration may not be displayed properly. In order to
determine the actual status, you must look at the buses and datasources directly.

The second configuration task is for the Common Event Infrastructure (CEI)
service and its datasource, (notice that CEI is automatically configured for you if
you are augmenting a Stand-alone server). This can be accomplished most
easily in the above pane as well, if you want to again use the default Cloudscape
database and configuration for CEI. In that case select None from the dropdown
named Emitter Factory Profile JNDI Name.

When you have made the necessary selections in this dialog, click OK and save
your changes.

5.5 Installing WebSphere Enterprise Service Bus
This section details the steps we took to install the product and configure two
runtime environments we expect to be common start-up configurations.

5.5.1 An initial runtime environment
This section describes a common initial WebSphere Enterprise Service Bus
installation. It describes the steps to install a Stand-alone server topology, using
the Complete installation option.

To install the product in the quickest and most straightforward way, follow these
steps:

1. To begin installation, start the Launchpad from the product distribution media.
You will see the screen shown in Figure 5-11 on page 101.
100 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-11 Installation Launchpad

2. If you haven’t already done so, we strongly recommend that you review the
Getting Started Guide to make sure your operating system is set up properly
for installation to succeed. You will also find the InfoCenter to be a valuable
resource, and might want to bookmark it in your browser.

3. Click on Launch the installation wizard for WebSphere ESB.

4. Make sure the prerequisite checking completes successfully, as shown in
Figure 5-12 on page 102 and click Next.
 Chapter 5. Setting up the runtime environment 101

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 5-12 Installation Wizard - prerequisite check

5. Review the results of checking for an existing WebSphere Enterprise Service
Bus, as shown in Figure 5-13 on page 103 and click Next.

Note: This installation was done on a workstation that also had
WebSphere Integration Developer installed, and the checks for existing
products found the runtime installed there. Since we will not run the
WebSphere Integration Developer Test Environment concurrently with the
WebSphere Enterprise Service Bus server, we chose to not modify the
default port assignments.
102 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-13 Installation Wizard - checking for existing installation

6. Review the results of checking for an existing WebSphere Application Server,
as shown in Figure 5-14 on page 103, and click Next.

Figure 5-14 Installation Wizard - checking for existing installation
 Chapter 5. Setting up the runtime environment 103

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
7. Enter or browse to the location where you want to install the product and click
Next (Figure 5-15 on page 104). On Windows platforms, keep the directory
path short to avoid any issues with excessive path lengths.

Figure 5-15 Installation Wizard - installation directory

8. For this case, we want to do a complete installation, so select the Complete
installation and click Next (Figure 5-16 on page 105).
104 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-16 Installation Wizard - installation type

9. Review the summary before the installation actually starts. When it is correct,
click Next (Figure 5-17 on page 105).

Figure 5-17 Installation Wizard - summary
 Chapter 5. Setting up the runtime environment 105

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
10.Review the results of the installation and click Finish (Figure 5-18 on
page 106).

Figure 5-18 Installation status

11.After successful installation, the First Steps menu is displayed, as shown in
Figure 5-19 on page 107.
106 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-19 First Steps menu

12.At this point, you should select the Start the server option in the First Steps
dialog. This option will cause a command window to open and you will be able
to see the status of the processing. If the window goes away, the server has
been successfully started. If the window persists, it will show any errors
associated with starting the server.

13.Next, click the Installation verification option on the First Steps dialog to run
the test. We did that and received the results shown in Figure 5-20 on
page 108.
 Chapter 5. Setting up the runtime environment 107

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 5-20 Results of successful IVT

These tests verify the basic functioning of the Application Server. If you want to
see WebSphere Enterprise Service Bus in action, launch the Samples Gallery
and invoke the sample Stock Quote application. This will further verify your
installation of WebSphere Enterprise Service Bus.

For our Windows environment, after we closed the First Steps dialog, we used
the Start menu options to control the operation of the runtime environment. To
start and stop the default stand-alone server we used Start -> All Programs ->
IBM WebSphere -> Enterprise Service 6.0 -> Profiles -> default as shown in
Figure 5-21 on page 108.

Figure 5-21 Windows Start menu options

5.5.2 A common development integration test runtime environment
In this section we describe a runtime environment that uses the Network
Deployment topology. This configuration could support multiple developers doing
108 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
integration test activities. Since we configure a cell with multiple servers,
common application packaging and deployment scenarios can be used. For
example, it is good practice to deploy Web service providers in a server separate
from Web service consumers, and this configuration would support that, while
still providing a single point of administrative control.

We have already done the installation steps described in the previous section,
and we are going to configure our cell on a single machine, so we only have
customization and configuration tasks to complete. We proceeded through the
following sequence of steps:

1. Create a new WebSphere Enterprise Service Bus deployment manager
profile.

2. Start the deployment manager server.

3. Create a new WebSphere Enterprise Service Bus custom profile.

4. Federate the custom node to the deployment manager.

5. Add a server to the new managed node.

6. Configure the SCA service integration buses in the new server.

7. Configure the CEI service in the new server.

In order to customize WebSphere Enterprise Service Bus for a Network
Deployment topology, follow these steps, which are described in more detail
below.

Creating a Deployment Manager profile
To create a new Deployment Manager profile, perform the following:

1. Launch the Profile Creation Wizard, which is shown in Figure 5-22 on
page 110.
 Chapter 5. Setting up the runtime environment 109

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 5-22 Profile creation wizard

2. Click Next to continue, select Deployment manager profile and click Next
(Figure 5-23 on page 110).

Figure 5-23 Profile creation wizard - type selection
110 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
3. Enter a name for the profile. We used the default name for a Deployment
Manager profile. (Figure 5-24 on page 111). Click Next.

Figure 5-24 Profile creation wizard- deployment manager name

4. Enter the target directory for the profile (Figure 5-25 on page 111). Click Next.

Figure 5-25 Profile creation wizard - directory name
 Chapter 5. Setting up the runtime environment 111

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
5. Take the default values for the Host, Node and Cell names, as shown in
Figure 5-26 on page 112, or modify them to meet your requirements. Click
Next.

Figure 5-26 Profile creation wizard - node, host and cell names

6. Review the port value assignments. We let these default, as shown in
Figure 5-27 on page 113. When you are satisfied with the port value
assignments, click Next.
112 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-27 Profile creation wizard - port value assignment

7. Select how to run the Deployment Manager server. We chose to manually
start the server as a Windows process. Our selections are shown in
Figure 5-28 on page 114. Click Next.

Note: Notice the port values we used here are not the standard values. In our
case that is due to the fact that we already have a default profile for the
stand-alone server on this machine. We could have modified them to the
standard if we never intend to have the stand-alone server and deployment
manager server running at the same time on this machine.
 Chapter 5. Setting up the runtime environment 113

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 5-28 Profile creation wizard - Windows service definition

8. Chose whether to run the service integration bus in secured mode. We chose
to leave this unsecured, as shown in Figure 5-29 on page 115. Click Next.
114 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-29 Profile creation wizard - system integration bus security

9. Review the Profile summary(Figure 5-30 on page 115). When you click Next,
the new Deployment Manager profile is created.

Figure 5-30 Profile creation wizard - summary
 Chapter 5. Setting up the runtime environment 115

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
10.When the wizard completes, it displays the results of the processing, as
shown in Figure 5-31 on page 116.

Figure 5-31 Profile creation wizard - results

11.Start the Deployment Manager server.

12.Start the administrative console and verify that you can log on. Log off and
close the browser. You can leave the Deployment Manager server running.

13.For our Windows environment we used the Start menu options to control the
operation of the runtime environment. We used Start -> All Programs -> IBM
WebSphere -> Enterprise Service 6.0 -> Profiles-> Dmgr01 to start and
stop the deployment manager, and to open the administration console.

Figure 5-32 Windows Start menu options
116 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Creating a Custom node profile
Once we have a Deployment Manager server configured and started we can
create a profile representing a managed node which we will add to the cell. To do
this, perform the following:

1. Start the Profile Creation wizard in order to create the Custom profile
(Figure 5-33 on page 117). Click Next.

Figure 5-33 Profile creation wizard

2. Select Custom profile (Figure 5-34 on page 117) and click Next.

Figure 5-34 Profile creation wizard - type selection
 Chapter 5. Setting up the runtime environment 117

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
3. You can generally take the defaults for hostname and SOAP port, as we did in
Figure 5-35 on page 118. Notice also, that we have left the checkbox
Federate this node later using the addNode command unchecked. This
instructs the wizard to federate the new managed node into our deployment
manager cell. Click Next after you make any updates.

Figure 5-35 Profile creation wizard - federation

4. Enter a name for the profile. We took the default (Figure 5-36 on page 118),
and clicked Next.

Figure 5-36 Profile creation wizard - profile name
118 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
5. Chose a directory for the generated profile (Figure 5-37 on page 119), and
click Next.

Figure 5-37 Profile creation wizard - directory name

6. Enter the host and node names. We used the defaults, as seen in Figure 5-38
on page 119. Click Next after you make any desired updates.

Figure 5-38 Profile creation wizard - node and host names

7. Click Next and review the port assignments. Notice that we accepted the port
assignments generated by the wizard, although they are not the default
values (Figure 5-39 on page 120). Since we have a stand-alone server
 Chapter 5. Setting up the runtime environment 119

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
already configured on this machine, the wizard generated port values that
would not conflict with that configuration. Click Next.

Figure 5-39 Profile creation wizard - port value assignments

8. Review the summary information for accuracy. When you click Next, the
profile is created (Figure 5-40 on page 120).

Figure 5-40 Profile creation wizard - summary
120 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
9. The final pane of the dialog reports the results of the profile creation, as
shown in Figure 5-41 on page 121. Click Finish when your review is
complete.

Figure 5-41 Profile creation wizard - results

10.Now that you have the custom profile created, you should start the node
agent for the managed node. In the Windows Explorer, browse to the
directory where you created the profile. From there, open the bin directory
and you will find the startNode.bat command file. Run the command to start
the node agent.

Creating a new server
With the Deployment Manager started and the node agent for the Custom node
started, you can now add a server to the topology, which will be able to host your
mediation modules. To do this, perform the following:

1. Log into the administrative console.

2. Create a new server by selecting Servers -> New and follow the steps in the
dialog. Enter a name for the server (Figure 5-42 on page 122). We named
ours systest1. Click Next.
 Chapter 5. Setting up the runtime environment 121

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 5-42 Create server - server name

3. Select the defaultESBServer template, as shown in Figure 5-43 on
page 122, and click Next.

Figure 5-43 Create server - server template

4. Make sure the check box to generate unique HTTP ports is checked
(Figure 5-44 on page 123) and click Next.
122 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
Figure 5-44 Create server - properties

5. Review the summary information (Figure 5-45 on page 123) and click Finish
when you have confirmed your entries.

Figure 5-45 Create server - confirmation
 Chapter 5. Setting up the runtime environment 123

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
6. Click Save changes and make sure the check box to Synchronize changes
with Nodes is checked, as in Figure 5-46 on page 124. This tells the
deployment manager to update the configuration of the managed node by
interacting with the node agent.

Figure 5-46 Create server - save changes to master

You now have a managed node with an application server. You can use the
administrative console to start and stop the server. If you intend to deploy
mediation modules to the server, you will need to perform the final two
configuration steps discussed in 5.4.3, “Final configuration steps” on page 98.

5.6 Guidelines for staged test and production
environments

Planning for multiple staged test environments for WebSphere Enterprise
Service Bus is very much like doing the same activity for WebSphere Application
Server. You will want to establish numerous test environments to meet various
requirements of the test cycle. If you have a set of existing WebSphere
Application Server test environments, then it is very likely those can simply be
extended to provide similar test stages for WebSphere Enterprise Service Bus. If
those environments do not exist today, then you will want to consider the factors
discussed in the following sections as you plan for multiple test stages.
124 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
5.6.1 Development integration test environment
The requirement for a development integration test environment is essentially to
extend what each developer has on their desktop inside of WebSphere
Integration Developer to a formal test stage allowing all of the components in a
solution to be deployed and tested together. With the Unit Test Environment
(UTE) inside of WebSphere Integration Developer developers can fully unit test
all of the code they have developed, but will often emulate other components in
the solution for expediency. The development integration test environment
should be one that facilitates the task of testing the integrated components, and
adds very little additional complexity to the testing. The following guidelines
should be evaluated to meet your specific test requirements at this stage:

� A stand-alone server topology should meet the needs of this test stage.

� If possible, attempt to minimize the security requirements on your application
during this phase. Certainly do not add additional requirements over those
included in the UTE.

� Message persistence continues to be a quality of service that is frequently not
critical to the test results in this phase. You can use the same configuration as
was used in the UTE, which most commonly is Cloudscape.

� The behavior of the Common Event Infrastructure (CEI) can continue to be
the same as it was in the UTE. Again, you can continue to use Cloudscape for
persisting CEI events.

� If you are using the message logger mediation primitive, then Cloudscape
should continue to provide the functions required in this test stage.

� You may want to allow developers to attach the integration debugger
remotely to this environment to perform problem determination and to isolate
code problems.

� Be sure the maintenance level of WebSphere Enterprise Service Bus is at
least as high as that used in development and take steps to keep service at a
very high level in both environments.

� Typically, the developers will be more than willing to perform administration
responsibilities for this environment.

The value of this test stage is to the developers, as it affords them a test
environment very similar to the UTE where they can extend their test scope to
the entire application. Moreover, as they perform (possibly repeated)
configuration updates to the server, they will begin to think about automating
aspects of server configuration and application deployment.
 Chapter 5. Setting up the runtime environment 125

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
5.6.2 System test environment
Moving to a system test environment begins to introduce many of the
complexities of a real production environment, with perhaps the exception of
scale. The application is now tested at a functional level and all of its components
have been tested in the packaging scheme that is likely to exist in a production
environment. So the requirements of this test stage are more those of moving the
runtime toward a real production environment. The testing will include a higher
load than was applied in the prior test phase, and many of the test cases dealing
with security, failure and recovery may only be attempted now for the first time.

Consider the following:

� A Network Deployment topology will most likely be required since the need to
administer the cell from a single point of control will probably be a high priority.
Also, the throughput requirements may be such that a single messaging
engine may not handle the load.

� Global security should be turned on for the cell to control access to the
administrative console as well as to perform test cases dealing with
authentication and authorized access to parts of the application.

� Message persistence should be configured to use a relational data store,
such as DB2® Universal Database™. Also, the default settings for
persistence may need to be modified to represent production requirements.
Losing messages in a production environment is rarely acceptable.

� If the CEI events are to be enabled, then a relational database should be
configured for these as well.

� There will be a need to run various utilities against the newly defined
databases in this environment. For example, clean-up utilities may need to be
run against the CEI database. Scripts are provided for DB2 Universal
Database V8.1 and V8.2.1 which invoke the runstats and reorg DB2 utilities.
Use runstats to update the database statistics after a large number of
records have been purged from the database, or inserted into it. Also, after
using the reorg script or adding/removing indexes from a table, runstats
should be executed. The scripts are found in the
install_root/event/dbscripts/db2 directory.

� Configure a relational database datasource if your mediation modules are
using the logger primitive.

� Consider using automated scripts to configure the servers and deploy the
applications into this test stage to make sure they will support the production
environment.

� Use the problem determination facilities of your application and the
WebSphere Enterprise Service Bus runtime to isolate problems.
126 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch06-runtimes.fm
� Consider modifying the configuration of the queue points and activation
specification options to enable them to sustain higher loads.

� Consider configuring additional bus topologies, for example a foreign bus or
MQLink to an existing WebSphere MQ network. A service integration bus
must be wholly contained in a single cell. You can, however have more than
one bus in a cell and you can connect buses with a foreign link whether they
are in the same cell or different cells.

� The maintenance level of WebSphere Enterprise Service Bus should be the
same as the maintenance level used to exit development integration testing,
although service may not be applied as frequently to this environment

The system test environment is intended to support all of the possible test cases
developed for the application.

5.6.3 Quality Assurance (QA) environment
The Quality Assurance environment is often configured to match as closely as
possible the actual production environment. With the exception that the
databases and back-end systems accessed will still not be those used for
production, virtually everything else should be identical. This environment is
commonly used for early user testing and frequently used to measure application
performance, throughput and end user response time.

Generally this environment is built to scale in the same manner as a production
environment, so the size and number of servers configured should match very
closely with those in production. The configuration may be enhanced over that
used in a system test environment to allow for additional clustering, fail-over, and
workload balancing.

The maintenance level of WebSphere Enterprise Service Bus in this environment
should match that on which system testing exited. Most often the maintenance
level will match that being used in production with the possible exception of some
very small windows where service updates are applied here and quick
regression testing is done, prior to the service being rolled into production.

5.7 Problem determination for runtime installation and
customization

Although the wizards that direct you through initial product installation and
customization worked well for us, there may be cases where you encounter
problems in your environment.
 Chapter 5. Setting up the runtime environment 127

7212ch06-runtimes.fm Draft Document for Review May 4, 2006 3:20 pm
The online InfoCenter for WebSphere Enterprise Service Bus is an excellent
resource for helping to identify the cause of an installation or customization
failure. The URL for the InfoCenter is:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp

Under the topic Installing is the sub-topic Troubleshooting installation which
should help you through the problem determination steps.

Generally problem determination will be broken down into three basic areas, as
follows:

� Did installation of WebSphere Application Server Network Deployment
complete successfully?

� Did installation of WebSphere Enterprise Service Bus complete successfully?

� Did profile creation or augmentation complete successfully?

The tasks you perform to do problem determination will depend on which of
these three activities caused the problem.

In general, you should understand that each of the installation and customization
steps you perform has associated with it a set of logs that capture the events that
occur during that phase. The InfoCenter contains a table that describes each
type of log and the kind of information it contains. If you can find the log file that
contains the events that were being processed during the portion of installation
or customization which failed, you should browse it to see if you can determine
the error. The logs, however, are not all that easy to read or interpret, so if you
find they are not helpful, you should contact IBM support to help diagnose your
problem. The logs will most likely be requested by the support team, so be sure
you can find them and that they correspond to the state of your installation which
was known to have the error.

As always, paying careful attention to the system prerequisites can help to avoid
installation problems, and when provided, always capture error messages that
appear at the user interface.
128 Getting Started with WebSphere Enterprise Service Bus V6

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
Chapter 6. WebSphere Enterprise
Service Bus key concepts
and related technologies

This chapter explains the key concepts of WebSphere Enterprise Service Bus
and explores some of the most important related technologies. First we will give
a short feature overview of the product and explain the key terms. Then, we will
break down the product structure in a top-down fashion. In addition to that, the
following complementary technology viewpoints will be discussed:

� The data view (Service Data Objects)
� The external interfaces view (Bindings)
� The system management view (Common Event Infrastructure)
� The deployment view

6

© Copyright IBM Corp. 2006. All rights reserved. 129

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
6.1 Product overview
WebSphere Enterprise Service Bus delivers an Enterprise Service Bus (ESB)
infrastructure to enable connecting applications that have standards based
interfaces (typically a Web service interface described in a WSDL file). It
provides mechanisms to process request and response messages from service
consumers and service providers connecting to the ESB.

WebSphere Enterprise Service Bus is the mediation layer that runs on top of the
transport layer within WebSphere Application Server. As such, WebSphere
Enterprise Service Bus provides prebuilt mediation functions and easy to use
tools to enable rapid construction and implementation of an ESB as a value-add
on top of WebSphere Application Server.

Figure 6-1 gives an overview of what WebSphere Enterprise Service Bus is - the
components in the product, its features and functions associated with the
product. If you start in the center of the picture, you can see that WebSphere
Enterprise Service Bus is built on top of WebSphere Application Server.
WebSphere Enterprise Service Bus leverages WebSphere Application Server
Network Deployment qualities of service, with its clustering, failover, scalability,
security and a built-in messaging provider.

Along with these qualities, WebSphere Enterprise Service Bus also includes a
number of key WebSphere Application Server related features, including UDDI
as a service registry, the Web services gateway, Tivoli® Access Manager, DB2
Universal Database, and Edge components.
130 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
Figure 6-1 WebSphere Enterprise Service Bus at a glance

Moving outward in Figure 6-1 we can see the value that WebSphere Enterprise
Service Bus adds to the application server:

� Providing built-in mediation functions, which can be used together to create
integration logic for connectivity.

� The SCA programming model supports rapid development of mediation flow
components.

� WebSphere Integration Developer is an easy to use tool that supports
WebSphere Enterprise Service Bus.

� Leveraging WebSphere Application Server, WebSphere Enterprise Service
Bus offers JMS messaging and WebSphere MQ interoperability for
messaging, as well as a comprehensive clients package for connectivity.

� Support for J2EE Connector Architecture based WebSphere Adapters.

To implement an SOA properly, it is necessary to have a single invocation model
and a single data model. Service Component Architecture (SCA) is this
invocation model – every integration component is described through an
interface. These services can then be assembled in a component assembly
editor thus enabling a very flexible and encapsulated solution.

WebSphere Enterprise Service Bus

Mediation
Function

Custom
Mediation

XSLT Message
Logger

Message
Router

DB
Lookup

WebSphere Application Server
Tivoli Access Manager

Edge Components UDDI
DB2 Universal Database

Web Services Gateway
SOAP/
HTTP

SOAP/
JMS WS-* UDDI

Registry 3.0 SMO SDO

SCA

MQ
Interoperability

JMS 1.1 C++
Client

.Net
Client

Java and C/C++
Web Services

Client

WebSphere
Integration
Developer

WebSphere
Adapter
Support

Clients:Messaging:

Web
Services:

SCA
Programming
Model:
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 131

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
WebSphere Enterprise Service Bus introduces a new component type to the
SCA model, namely the mediation flow component. From the perspective of
SCA, a mediation flow component is not different to any other service
component.

Business Objects are the universal data description. They are used as data
objects passed between services and are based on the Service Data Object
(SDO) standard. In WebSphere Enterprise Service Bus a special type of SDO is
introduced, the Service Message Object (SMO).

Also part of the infrastructure is the Common Event Infrastructure (CEI) which is
the foundation for monitoring applications. IBM uses this infrastructure
throughout its product portfolio, and monitoring products from Tivoli as well as
WebSphere Business Monitor exploit it. The event definition (Common Business
Event) is being standardized through the OASIS standards body, so that other
companies as well as customers can use the same infrastructure to monitor their
environment.

6.2 Key terms in WebSphere Enterprise Service Bus
This section summarizes the key terms in the context of WebSphere Enterprise
Service Bus introduced in this chapter. These key terms are defined in Table 6-1.

Table 6-1 Key terms relating to WebSphere Enterprise Service Bus

Term Explanation

Mediation A service request interception by an ESB. It typically
centralizes logic like routing, transformation, and data
handling.

Mediation module The basic building block in WebSphere Enterprise
Service Bus for creating mediations.

Export Exposes the interfaces of an mediation module and
contains the bindings.

Stand-alone reference The external publishing of an interface for SCA clients
only (without a WSDL description).

Import Represent the service providers that are invoked by a
mediation module.

Binding The protocols and transports assigned to exports and
imports.

Mediation flow component The container for mediation logic inside a mediation
module. It provides interfaces and uses references.
132 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
6.3 Structure of WebSphere Enterprise Service Bus
This section explores the structure of WebSphere Enterprise Service Bus by
working through the different layers of the product architecture in a top-down
manner.

It describes the following:

� Mediations, service consumers and service providers

� Mediation modules

� Mediation flow components

� Mediation flows

� Mediation primitives

Interface Interfaces define access points and are defined using
WSDL.

Operation Operations represent interactions that can be one-way
(only input parameters) and two-way (input and output
parameters)

Partner reference The declaration of the referenced interfaces of an
mediation flow component.

Wire An association between components inside a
mediation module and exports/imports/stand-alone
references.

Mediation flow The processing steps defined for each interface in form
of a request flow and usually a response flow.

Mediation primitive Units of message processing inside a mediation flow
providing different terminals.

Service message object
(SMO)

A data object that represents the context, the content
and the header information of an application message
created during a mediation flow.

Business object Data type definitions (specified in XML schema) which
can be used for input/output parameters.

Term Explanation
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 133

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
6.3.1 Mediations, service consumers and service providers
A service interaction in SOA defines both service consumers and service
providers. The role of WebSphere Enterprise Service Bus is to intercept the
requests of service consumers and fulfill additional tasks in mediations in order
to support loose coupling. When the mediation completes, the relevant service
provider(s) should be invoked. The mediation tasks include:

� Centralizing the routing logic so that service providers can be exchanged
transparently

� Performing tasks like protocol translation and transport mapping

� Acting as a facade in order to provide different interfaces between service
consumers and providers

� Adding logic to provide tasks such as logging

As shown in figure 6-2 mediations can not only customize the protocol and the
details of a request, but they can also modify the results of the reply.

Figure 6-2 Enterprise Service Bus and mediations

WebSphere Enterprise Service Bus can interconnect a variety of different
service consumers and providers using standard protocols including:

� JMS
� SOAP over HTTP (for Web services)
� SOAP over JMS (for Web services)

For back-end applications (such as SAP) several IBM WebSphere Adapters
(based on JCA) are available.
134 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
WebSphere Enterprise Service Bus supports diverse messaging interaction
models to meet your requirements, including the following models:

� One-way interactions
� Request-reply
� Publish/subscribe

6.3.2 Mediation modules
The mediation module is a new type of SCA component, which can process or
mediate service interactions.

As illustrated in Figure 6-3 the mediation module is externalized or made
available through an export which specifies the interfaces that are exposed.
These are defined in a WSDL document. Stand-alone references provide the
externalized interface only for SCA clients. They do not define a WSDL
document, instead they specify the interface declaration in Java (called a
reference).

The mediation module will typically invoke other service providers. These are
declared with the creation of an import, which is representing an external service
to be invoked.

Figure 6-3 Mediation modules

For each export and import an interface needs to be specified. Each interface
has multiple operations, which in turn can have multiple input and output
parameters associated with either simple data types or business objects. A
one-way operation has only input parameters.
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 135

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Every export and import has to be associated with a binding. A binding identifies
a specific type of invocation for a service consumer or provider. WebSphere
Enterprise Service Bus supports several bindings:

� JMS binding leveraging the JMS V1.1 delivered in WebSphere Application
Server V6 using the service integration bus

� Web services using SOAP/HTTP and SOAP/JMS

� JCA compliant WebSphere Adapters

� SCA bindings, which is the default binding used for communication between
SCA modules.

� Enterprise Java Beans (EJB), which are only valid for import bindings.

Finally, data types (business objects) and interfaces can be defined on the
module level, but they can also be defined and referenced in libraries in order to
centralize them.

6.3.3 Mediation flow components
Inside a mediation module there can be one mediation flow component.
Mediation flow components offer one or more interfaces and use one or more
partner references. Both get resolved assigning them to exports or imports via
wires as shown in Figure 6-4.

Note: Wiring of SCA components can been done either at development
time within WebSphere Integration Developer or administrators can
dynamically modify those bindings using the WebSphere Enterprise
Service Bus administrative console to rewire component interactions (see
9.3.4, “Changing bindings” on page 266)

Important: You should not try to compare the notions and semantics of
components and interfaces of the Java programming language with the ones
in WebSphere Enterprise Service Bus model, since this is not applicable in
several cases.
136 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
Figure 6-4 Mediation flow component

In addition to the mediation flow component inside a mediation module one or
more Java components can be created using custom mediation
implementations.

6.3.4 Mediation flows
Mediation flows (figure 6-5) contain the high-level mediation logic. This means
the different processing steps of a request are declared in a graphical way. In
WebSphere Enterprise Service Bus, the processing of requests is separated
from processing of responses. Therefore, we distinguish between a request flow
and a response flow. In both directions, logic can be added or modifications be
applied.

Restriction: WebSphere Integration Developer does not stop you from
creating more than one mediation flow component per mediation module, but
only one is allowed (as described in the product documentation). Therefore,
there is a one-to-one relationship between a mediation module and a
mediation flow component.

Note: Mediation flows need to be defined for every operation that gets
exposed via an export of a mediation module. For those operations which do
not need any additional functionality to the wrapped interface you just wire
them from input to input response.
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 137

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 6-5 Mediation flows

Mediation flows consist of a sequence of processing steps that are executed
when an input message is received. A request flow begins with a single input for
the source operation and can have multiple callouts. If a message is to be
returned to the source directly after processing, it can be wired to an input
response in the request flow. If fault messages are defined in the source
operation, an input fault is also created.

A response flow begins with one or more callout responses and ends with a
single input response (and optionally a callout fault). Both a request flow and a
response flow are associated with a mediation flow. The request flow can map
data to a correlation context and the transient context.

In terms of the actual data WebSphere Enterprise Service Bus introduces the
Service Message Object (SMO). It is a special kind of a service data object that
represents the content of an application message as it passes through a
mediation flow component. As well as the payload in the body it contains context
and header information, which can be accessed and acted upon inside the
mediation flows.

6.3.5 Mediation primitives
Mediation primitives (figure 6-6) are the smallest building blocks in WebSphere
Enterprise Service Bus and they are wired and configured inside mediation
flows. They let you change the format, content or target of service requests, log
messages, do database lookups, and so forth.
138 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
Figure 6-6 Mediation primitives (in the complete overview)

The following standard mediation primitives are provided with WebSphere
Integration Developer and WebSphere Enterprise Service Bus V6.0.1:

� The MessageLogger primitive logs a copy of a message to a database for
future retrieval or audit. The integration developer can customize the primitive
by, for example, naming the database.

� The DatabaseLookup primitive retrieves values from a database to add them
to a message.

� The MessageFilter primitive compares the content of a message to
expressions configured by the developer, and routes the message to the next
mediation primitive based on the result.

� The XSLT primitive transforms messages according to transformations
defined by an XSL style sheet.

� The Fail primitive throws an exception and terminates the path through the
mediation flow.

� The Stop primitive silently terminates the path through the mediation flow.

� The Custom mediation primitive allows the user to implement their own
mediate method using Java. The Custom mediation, like the other primitives,
receives a Service Message Object and returns a Service Message Object. It
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 139

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
can be used to perform tasks that cannot be performed by using the other
mediation primitives.

Mediation primitives have three types of terminal:

� In terminal: All mediation primitives have an in terminal that can be wired to
accept a message.

� Out terminal: Most mediation primitives have one or more out terminals that
can be wired to propagate a message (exceptions are the stop and the fail
primitive).

� Fault terminal: If an exception occurs during the processing of an input
message, then the fail terminal propagates the original message, together
with any exception information.

6.4 Related technologies
This section explores some of the accompanying features of WebSphere
Enterprise Service Bus in more detail. It describes:

� Service message objects (SMO)

� WebSphere Enterprise Service Bus bindings

� Quality of service

� Common event infrastructure (CEI)

� Deployment of mediations

6.4.1 Service message objects (SMO)
Messages can come from a variety of sources, so the payload has to be able to
carry a number of different types of messages. Mediation primitives need to be
able to operate on these messages and SMO represents the common
representation that is needed for that.

The kinds of messages handled by WebSphere Enterprise Service Bus include:

� SDO data object

� SDO data graph

� SCA component invocation message (request, reply or exception)

� SOAP message

� JMS message
140 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
The SMO model is extensible so could support other message types in the future
such as COBOL structures. SMO extends SDO with additional information to
support the needs of a messaging subsystem.

SMO structure
All SMOs have the same basic structure, defined by an XML schema. An SMO
has three major sections. The body contains the application data (payload) of the
message, particularly the input or output values of an operation. The headers
contain the information relevant to the protocol used to send the message. The
context covers the data specific to the logic of a flow or failure information.
Figure 6-7 shows a sample SMO when calling the stock quote sample provided
with WebSphere Enterprise Service Bus.

.

Figure 6-7 Sample SMO

Data section
The data carried in the SMO body is the operation defined by the interface
specification and the inputs/outputs/faults specified in the message parts set in
the business object definition. This is shown in Figure 6-8.
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 141

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 6-8 Content of the SMO body

Context section
The context includes the correlation and transient context information.
Correlation is used to maintain data across a request/response flow, whereas
transient maintains data only in one direction.

Both of these are used to pass application data between mediation primitives.
They are described as business objects, which contain XML schema described
data objects and are specified on the mediation flows input node properties.

The context also includes the failInfo, which is added to the SMO when a fault
terminal flow is used. The information provided includes the failureString (nature
of the failure), origin (mediation primitive in which the failure occurred),
invocationPath (the flow taken through the mediation) and predecessor (previous
failure).

Header section
The header section of a SMO contains the following supplemental information:

� SMOHeader: information about the message (message identifier, SMO
version)

� JMSHeader: used when there is a JMS import or export binding

� SOAPHeader: used when there is a Web services import or export binding

� SOAPFaultInfo: contains information about SOAP faults

� Properties[]: arbitrary list of name value pairs (for example JMS user
properties)
142 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
SMO manipulation
During the execution of mediation flows the active mediation primitives can
access and manipulate the SMO. There are three different ways to access
SMOs:

� XPath V1.0 expressions
This is the primary mechanism used by all mediation primitives.

� XSL stylesheets
They can be used by the XSLT mediation primitive and are the common way
to modify the SMO type within a flow. It can also be used to modify the SMO
without changing the type (using XSLT function and logical processing with
XSL choose statements).

� Java code
Using the Custom Mediation primitive you can access the SMO either using
the generic DataObject APIs (commonj.sdo.DataObject, which is loosely
typed) or the SMO APIs (com.ibm.websphere.sibx.smobo, strongly typed).

6.4.2 WebSphere Enterprise Service Bus bindings
Bindings identify a specific type of invocation for a service consumer or provider.
Bindings can be applied to mediation module imports or exports. Exports let a
mediation module offer a service to consumers. They define interactions
between SCA modules and service consumers. Export bindings define the
specific way that an SCA module is accessed by others.

Imports let a mediation module access external services (services that are
outside the SCA module) in a transparent manner. Imports define interactions
between SCA modules and service providers. Import bindings define the specific
way that an external service is accessed.

WebSphere Enterprise Service Bus supports the following bindings:

� Web service binding

Using a Web service binding on an export it exposes the module as a Web
service. To invoke an external Web service an import with a Web service
binding is used. This binding always uses SOAP messages and two
transports are available:

– SOAP/HTTP
– SOAP/JMS

� SCA binding

– SCA bindings connect SCA modules with each other.

– This is the default binding.
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 143

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
� WebSphere Adapter binding

– WebSphere Adapters enable interaction with Enterprise Information
Systems (EIS).

– The Enterprise Service Discovery tool can be used to create import and
exports representing applications on EIS systems. To use EIS bindings a
resource adapter is needed.

� Java Message Service (JMS) V1.1 binding

– JMS can exploit various transport types, including TCP/IP and HTTP(S).

– There are predefined JMS bindings that support JMS text messages
containing Business Object (BO) XML. The predefined JMS bindings also
support JMS object messages containing serialized Java Business
Objects.

– You can use JMS custom bindings to support other types of JMS
messages. However, custom bindings require some coding to translate
the message.

– If you want a module to receive a JMS message from a queue or topic,
you need to use an export with a JMS binding. If you want a module to
send a JMS message, you use an import with a JMS binding.

� EJB bindings (only for imports)

– An import component can have a stateless session EJB binding.

6.4.3 Quality of service
Qualifiers in SCA allow developers to place quality of service requirements on
the SCA runtime. There are several different categories of qualifiers available in
SCA. These are:

� Security

� Transactions (with ActivitySessions as a special type)

� Reliable Messaging

Each qualifier has a particular scope within the Service Component Definition
Language (SCDL) specification for a SCA component where the qualifier can be
added (interface, implementation, partner reference).

Note: The Publish/Subscribe interaction model can be applied in
WebSphere Enterprise Service Bus using the JMS binding.
144 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
For example some qualifiers can be specified at the partner reference level, while
others may only be valid at the interfaces or implementation level. Figure 6-9
shows the conceptual model for SCA service qualifiers.

.

Figure 6-9 SCA quality of service qualifier model

In the following subsections we briefly describe the various qualifiers that are
available and the valid scope for each will be examined.

Security
In WebSphere Integration Developer you specify security attributes for mediation
flow components in the properties view at the boundaries and the
implementation of an component.

At the interface level you can define the permission for every operation
(Figure 6-10). At the mediation flow component implementation level you can
define under which identity the component gets executed (initiating a
role-change) as shown in Figure 6-11.

Partner
Reference
Qualifier

Interface
Qualifier

Implementation
Qualifier
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 145

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 6-10 Security permission qualifier on interfaces

Use the security permission qualifier to specify a role, which is a semantic
grouping of permissions that a given type of users must have to use an operation
in an interface. The identity of the caller must have this role in order to be
permitted to call the interface or operation. If no security permission is specified,
then no permissions are checked and all callers are permitted to call the interface
or operation.

The security identity qualifier is a privilege specification that you can use to
provide a logical name for the identity under which the implementation executes
at run time (Figure 6-11). An implementation has to be created for this qualifier to
be specified. If this qualifier is not specified, then the implementation executes
under the identity of its caller. Alternatively it is executed under the hosting
container’s identity if no caller identity is present. Roles are associated with the
identity and the roles dictate whether the implementation is authorized to invoke
other components.
146 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
Figure 6-11 Security identity qualifier for mediation components

Depending on the bindings you have created, WebSphere Enterprise Service
Bus will generate the relevant J2EE artifacts. In order to integrate remote clients
(for example using the Web service security specifications) with the J2EE
application infrastructure, a proper distributed security infrastructure needs to be
built. For additional information of securing Web Services, see the redbook
WebSphere Version 6 Web Services Handbook Development and Deployment,
SG24-6461

Activity sessions
This qualifier determines if the components processing will be executed under an
activity session, which provides an alternate unit-of-work scope to the one
provided by global transaction contexts. An activity session context can have a
longer lifetime global transaction context and can encapsulate global
transactions.

You can specify the activity session qualifier at all three levels:

� Interface level

Can optionally join a propagated (client) activity session.

Note: Activity sessions are an extension of J2EE introduced with WebSphere
Application Server V5. See the Infocenter documentation for more information
on this topic:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websp
here.base.doc/info/aes/ae/welc6tech_as.html
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 147

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_as.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_as.html

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
� Implementation level

For the implementation the qualifier specifies if the component can run under
an established activity session. The default is that if an activity session has
been propagated from the client, the runtime environment will dispatch
methods from the component in the activity session. Otherwise, the
component will not run under any activity session.

� Partner reference level

By default, activity session context is always propagated to a target
component when it is invoked using the synchronous programming model. If
the client does not want a target component to federate with the client’s
activity session, further qualification of the partner reference is required using
the suspend activity session qualifier.

Transactions
This qualifier determines the logical unit of work that the component processing
executes. For a logical unit of work, all of the data modifications made during a
transaction are either committed together as a unit or rolled back as a unit.

� On an interface level the join transaction qualifier determines if the hosting
container will join any propagated transaction.

� On a implementation level the transaction qualifier can be set either to global
(where multiple resource managers are required), local (default) (running in a
local transaction) or any (dispatching the global transaction context if
existent).

� For a partner reference you can specify the Suspend transaction qualifier,
which can be set to false (so the synchronous invocations run completely
within any global transaction) and true (where synchronous invocations occur
outside any client global transaction).

In addition the asynchronous invocation determines if asynchronous invocations
should occur as part of any client transaction. When set to call (default) the
asynchronous invocations using the partner reference will occur immediately,
whereas with commit the partner reference will be transacted as part of any client
global transaction or extended local transaction which postpones the availability
of the request.

Note: The different combinations of the interface and implementation
qualifiers define the behavior for the target component. Not all
combinations are allowed.
148 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
Asynchronous reliability
To support asynchronous invocation of components, asynchronous reliability
qualifiers can be specified for the partner reference only. They take effect when
asynchronous programming calls are used by the client to invoke a service. The
reliability qualifier specifications are:

� Reliability:

The reliability qualifier determines the quality of an asynchronous message
delivery. In general, better performance usually means less reliable message
delivery. With an assured specification, the client application cannot tolerate
the loss of a request or response message. With a best effort specification,
the client application can tolerate the possible loss of the request or response
message.

� Request expiration (milliseconds)

Request expiration is the length of time after which an asynchronous request
will be discarded if it has not been delivered, beginning from the time when
the request is issued. Zero denotes an indefinite expiration.

� Response expiration (milliseconds)

Response expiration is the length of time that the runtime environment must
retain an asynchronous response or provide a callback, beginning from the
time when the request is issued. Zero denotes an indefinite expiration.

6.4.4 Common event infrastructure (CEI)
The CEI is a core component of WebSphere Enterprise Service Bus leveraged
from WebSphere Application Server and provides facilities for the runtime
environment to persistently store and retrieve events from different programming
environments. This section briefly introduces the basic event-related concepts:

� Common Event Infrastructure (CEI)

� Common Base Events (CBE)

Common Event Infrastructure
In WebSphere Enterprise Service Bus, the CEI is used to provide basic event
management services, such as event generation, transmission, persistence, and
consumption. CEI was developed to address industry-wide problems in
exchanging events between incompatible systems, many of which employed
different event infrastructures, event formats, and data stores.

Common Base Event
Although CEI provides an infrastructure for event management, it does not define
the format of events. This is defined by the Common Base Event specification,
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 149

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
which provides a standard XML-based format for business events, system
events, and performance information. Application developers and administrators
can use the Common Base Event specification for structuring and developing
event types.

The key concept in the Common Base Event model is the situation, which is any
occurrence that happens anywhere in the computing system, such as a user
login or a scheduled server shutdown. The Common Base Event model defines a
set of standard situation types, such as StartSituation and CreateSituation, that
accommodate most of the situations that might arise.

In the Common Base Event model, an event is a structured notification that
reports information related to a situation. An event reports three kinds of
information:

� The situation that has occurred

� The identity of the affected component

� The identity of the component that is reporting the situation, which might be
the same as the affected component

In the WebSphere Integration Developer editors the specification of event
monitoring is based on the operation level.

6.4.5 Deployment of mediations
WebSphere Integration Developer creates J2EE artifacts which are stored in
EAR files. Logically, mediation modules can be thought of as one entity. In
reality, SCA modules are defined by a number of XML files (stored in one JAR
file later on), which are the basis for the generation of the J2EE artifacts.

J2EE staging projects
For any given module project there will be up to four J2EE staging projects
generated with naming conventions that are based on the modules project name
(in the following called MyModule). In the Business Integration view of
WebSphere Integration Developer you will not be able to see these projects. To
view these you will need to change to another perspective such as the J2EE
perspective.

A module may implement the following staging projects

� MyModuleApp - the enterprise application staging project

Enterprise application projects contain artifacts and metadata for an entire
enterprise application. It includes information such as the name of the EJB
projects contained within the enterprise application, and the context root for
the Web modules within the enterprise application.
150 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch07-WESB-overview.fm
� MyModuleEJB - the EJB staging project

EJB projects contain artifacts and metadata for Enterprise Java Beans. This
project holds generated EJBs that represent the runtime artifacts that make
components. For example, an SCA export results in a generated stateless
session EJB.

� MyModuleEJBClient - the EJB client staging project

EJB Client projects contain artifacts that represent the client-side for the EJBs
in the EJB projects. For example they include stubs for remote and home
interfaces so that clients of EJBs can interact with the EJBs.

� MyModuleWeb - the dynamic Web staging project

Dynamic Web projects contain artifacts that represent Web components such
as servlets and JSPs. In particular the Web project contains a servlet that
represents an HTTP router for inbound HTTP traffic.

Deployment of mediation modules
Mediation modules are created using WebSphere Integration Developer, and
deployed to WebSphere Enterprise Service Bus inside an EAR (Enterprise
Archive) file. Therefore, a mediation module is deployed to WebSphere
Enterprise Service Bus in the same way you deploy any enterprise application.

A high-level overview of deployment is shown in Figure 6-12. When a generated
EAR is deployed to a server, it gets bound to several J2EE resources including
data sources, JMS destinations, and J2EE Connector Architecture resource
adapters.

Note: It is advisable to package a significant amount of mediation logic into
one module, otherwise you might end up with an enormous number of
enterprise applications on your server.
 Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies 151

7212ch07-WESB-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 6-12 Deployment of mediation modules
152 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Chapter 7. WebSphere Integration
Developer key concepts and
common tasks

WebSphere Integration Developer is the development environment for building
integrated business applications targeted for WebSphere Enterprise Service Bus
and WebSphere Process Server. One of the primary purposes of WebSphere
Integration Developer is to provide the appropriate tools to easily build and test
SCA based applications.

This chapter discusses WebSphere Integration Developer key concepts and
common tasks in terms of mediation module development for deployment to
WebSphere Enterprise Service Bus.

Figure 7-1 presents an overview of the common tasks. It shows the main stages
in the mediation module development process and provides assistance
navigating this chapter.

Figure 7-1 Common tasks

7

© Copyright IBM Corp. 2006. All rights reserved. 153

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
7.1 Key terms and concepts
WebSphere Integration Developer is built on the Rational Software Development
Platform (RSDP), which is based on Eclipse 3.0 technology.

Each IBM product built on RSDP will coexist and share plugins and features with
other RSDP based products. RSDP is installed once per system with the first
product that is installed. As other products built on this platform are installed on
the system only the necessary plugins are installed.

This section introduces some of the basic terms and concepts used in
WebSphere Integration Developer. Many of these terms and concepts are
common to all RSDP products.

7.1.1 User roles
Two user roles are associated with WebSphere Integration Developer:

� integration developer

� application developer

The integration developer is the primary role. It focuses on building
service-oriented solutions. This user role expects the tooling to simplify and
abstract advanced IT implementation details. The integration developer is
familiar with basic programming constructs such as loops, conditions and string
manipulation.

The application developer is knowledgeable in development platforms like J2EE,
understands service-oriented architecture, Web services and Java. Application
developers implement application specific business logic and expose it as a
service.

This chapter focuses on tools used by the integration developer.

7.1.2 The workbench
When you first start a new workspace you will see the Welcome screen
(Figure 7-2). From this screen you can access information such as the product
overview, cheat sheets, tutorials, samples, migration information and Web
resources.

Note: For more information about Eclipse and tutorials visit
http://www.eclipse.org and explore the Getting Started pages.
154 Getting Started with WebSphere Enterprise Service Bus V6

http://www.eclipse.org

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-2 Welcome screen

Clicking the arrow labelled Workbench closes the Welcome screen and opens
the Business Integration perspective.

The workbench (Figure 7-3) is where you will spend most of your time developing
mediation modules. It offers the developer a choice of perspectives and an array
of toolbars and menu items which are used to accomplish a variety of tasks.
These are introduced and explained later in this chapter.

Tip: If you close the Welcome screen you can access it again by selecting
Help → Welcome from the menu bar.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 155

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-3 The workbench

7.1.3 Workspaces
A workspace is a directory where your work is stored. You can create many
workspaces and choose which one to work on at any time. A common scenario is
to have separate workspaces for different projects you may be working on. This
lets you organize you work efficiently, keep backups of entire workspaces and
share your workspace with other developers.

7.1.4 Project types
There are two important project types when working with WebSphere Integration
Developer: module projects and shared libraries.

Tip: To switch workspaces select File → Switch Workspace from the menu
bar.
156 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Module project
A module project represents a single deployable unit and encapsulates SCA
components, J2EE projects, Java projects and required libraries. When
deploying to WebSphere Enterprise Service Bus your choice of module type is
limited to mediation modules.

Shared library
A shared library is another type of business integration project. Unlike modules,
libraries are not deployable units. Shared libraries hold resources that are shared
between module projects. At run time, libraries are not shared but are deployed
with the module that depends on it.

If you are deploying to WebSphere Enterprise Service Bus, you can only create
two types of artifacts in a shared library: business objects and interfaces. The
Mapping folder only applies to WebSphere Process Server projects.

Additionally, you can use shared libraries to hold WSDL bindings in a Web
Service Bindings folder which is created when you copy WSDL files into your
library.

7.1.5 Perspectives
A perspective is a role-based collection of views and editors.

Perspectives are very useful because they offer users the tools that are most
needed to perform their current job. Perspectives are fully customizable; views
and editors can be added, removed and rearranged.

The primary WebSphere Integration Developer perspective is the Business
Integration perspective. We will use this perspective almost exclusively because
it contains all the tools we need to create, develop and manage business
integration projects. Figure 7-3 on page 156 shows the Business Integration
perspective on the workbench.

Tip: Libraries can be added to the dependency list for a module from the
Module Dependency editor. To open this editor right click on the module folder
and select Open Dependency Editor.

Tip: To restore any perspective to its default layout select Window → Reset
Perspective from the menu bar.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 157

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Another useful perspective is the Debug perspective which is used during testing
to specify breakpoints and inspect variables and messages to determine and fix
problems.

7.1.6 Views
A view is used to present information about a resource. Views are also used for
navigating the information in the workspace.

Views might appear by themselves or stacked with other views in a tabbed
notebook.

Business Integration view
This is the primary Business Integration perspective view. The Business
Integration view is used to navigate workspace resources. It provides a logical
grouping of resources and hides artifacts that are not essential for business
integration development. It is initially by itself on the top left area of the Business
Integration perspective (Figure 7-4).

Figure 7-4 Business Integration view

Physical Resources view
The Physical Resources (Figure 7-5) view by default is not open in the Business
Integration perspective. This view shows the physical resources that are hidden
in the Business Integration view. For example, the individual SCA resources that
make up the elements of your module. You can also use this view to learn more
about the artifacts that are generated when creating integration modules.

Tip: You can use the Show files context menu from the Business Integration
view to open the Physical Resources view.
158 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-5 Physical Resources view

References view
The References view (Figure 7-6) is used in association with the Business
Integration view. The contents of the References view is based on the artifact that
is selected in the Business Integration view. For example, if a business object is
selected in the Business Integration view, the References view will show other
objects that are referenced by the selected object.

Figure 7-6 References view

Tip: You can open and navigate to resources directly from the References
view.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 159

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Outline view
The Outline view (Figure 7-7) lets you navigate resources within a single module.
This view has two modes: tree and overview. The tree mode shows resources
grouped by resource type in expandable folders and lets you select elements.
The outline view shows the full assembly diagram and lets you quickly scroll to a
particular area of the assembly that might not be visible in the Assembly Diagram
editor. A shaded marquee surrounds the portion of the diagram currently visible
in the Assembly Diagram editor.

Figure 7-7 Outline view, tree and overview

Visual Snippets view
The Visual Snippets view (Figure 7-8) lists Java snippets that can be used to
visually build code. Both standard snippets that come with the product and
custom snippets are shown in this view and are available for drag and drop
support in the various visual code editors.

Figure 7-8 Visual Snippets view
160 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Properties view
The Properties view (Figure 7-9) displays information about the currently
selected object. It is stacked with the Problems and Servers view at the bottom
right area of the workbench.

Figure 7-9 Properties view stacked in a tabbed notepad

Problems view
The Problems view displays all compilation errors and warnings. You can use
filters to customize the amount and type of information shown (Figure 7-10).

Figure 7-10 Applying filters to the Problems view
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 161

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Servers view
The Servers view lets you manage the integrated test environment. From this
view you can start, stop and publish modules to your test server. Please refer to
the section 7.5.2, “Managing test servers” on page 198 for more information
about managing servers and the Servers view.

7.1.7 Editors
An editor is a tool to create and modify files. Depending on the type of file that
you are editing, the appropriate editor opens in the center or main pane of the
workbench.

For example, a text editor opens when you double click a text file and business
objects open in the Business Object editor.

Assembly Diagram editor
Use this editor to compose your mediation module. Typically you drop into the
canvas SCA components like Mediation Flow components, imports and exports,
specify their interfaces and bindings, and wire them together using the Assembly
Diagram editor (Figure 7-11).

Figure 7-11 Assembly Diagram editor

Business Object editor
The Business Object editor (Figure 7-12) is used to build and edit business
objects and business graphs.

Use this editor to add, delete and reorder attributes and to change the type of an
attribute.

Note: An asterisk (*) preceding the object name on the editor tab indicates
that the resource being edited has unsaved changes.
162 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-12 Business Object editor

Interface editor
The Interface editor (Figure 7-13) is used to build WSDL Port Type interfaces
used to define some SCA components. You use this editor to add and remove
operations and specify operation’s inputs and outputs.

Figure 7-13 Interface editor

Visual Java Snippet editor
The Visual Java™ Snippet editor (Figure 7-14) is used to compose custom
snippets visually. You can create your own custom visual snippets and add them
to the snippet editor or you can use the standard snippets that come with the
product.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 163

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-14 Visual Snippet editor

7.1.8 Mediation module
A mediation module (Figure 7-15) is a Business Integration project. It is used to
intercept and modify messages between service consumers (exports) and
service providers (imports).

The mediation module contains exports, imports, a new type of SCA component
called mediation flow component, and SCA Java components.

Figure 7-15 Mediation module

You will soon be able to recognize the different graphical representations for the
mediation module elements. Refer to Table 7-1 to identify them easily on module
assembly diagrams.

Table 7-1 Elements of a mediation module

Tip: You can double click on a view or editor tab to maximize it. Double click it
again to restore it.

Mediation module element Symbol

Import

Export
164 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
7.1.9 Exports
An export represents a service consumer outside the scope of the module.
Exports in mediation modules are like normal SCA Exports with all the supporting
bindings including the default SCA, JMS and Web services.

Use Table 7-2 as a reference of Export icons and their bindings.

Table 7-2 Export icons

7.1.10 Imports
An import represents a service provider outside the scope of the module.
Imports in mediation modules are like normal SCA Imports with all the supporting

Mediation flow component

SCA Java component

Mediation module element Symbol

Export icon Description

Export with no interface and no binding

Export with interface and no binding

Export with interface and JMS binding

Export with interface and SCA binding

Export with interface and Web service
binding

Export with EIS binding
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 165

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
bindings including the default SCA, JMS and Web services. Use Table 7-3 as a
reference of Import icons and their bindings.

Table 7-3 Import icons

7.1.11 Mediation flow components
A mediation flow component contains logic for how the message is processed
between the input and output of the flow.

Functions like routing, transformation, augmentation, logging or any other
custom processing of messages occur within the mediation flow component.

7.1.12 Mediation primitives
Mediation primitives are building blocks used to build mediation flows.
WebSphere Integration Developer supplies a set of built-in primitives and a
Custom primitive used to execute user defined mediation logic.

Table 7-4 lists all primitives and their toolbar icon and description.

Import icon Description

Import with no interface and no binding

Import with interface and no binding

Import with interface and JMS binding

Import with interface and SCA binding

Import with interface and Web service
binding

Import with EIS binding

Note: Only one mediation flow component can exist in a mediation module.
166 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Table 7-4 Mediation primitive types

7.2 Workspace configuration
This is the initial stage in the development process (Figure 7-16). This section
introduces basic workspace configuration tasks.

Figure 7-16 Workspace configuration stage

Mediation primitives Symbol Description

Message Logger To log message
information to a database

Message Filter To filter messages
selectively forwarding
them on to output terminals
based on a simple
condition expression.

Database Lookup To access information in a
database and store it in the
message

XSLT To manipulate or transform
messages using XSL
transformation

Stop To stop a path in the flow
without generating an
exception

Fail To stop a path in the flow
and generate an exception

Custom For custom processing of a
message. Uses a custom
SCA Java component for
custom message
processing
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 167

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
7.2.1 Creating the initial workspace
When WebSphere Integration Developer is launched, you will see a dialog that
allows you to specify the workspace location (Figure 7-17).

Figure 7-17 Workspace launcher dialog

It is a good idea to have separate workspaces for projects which belong together.
This dialog lets you choose an existing workspace or create a new one. If the
directory specified does not exist, a new workspace will be created.

Tip: If you enable the Use this as default and do not ask again checkbox but
want the Workspace Launcher to start prompting again, go to Window →
Preferences → Workbench → Startup and Shutdown and check the option
called Prompt for workspace on startup (Figure 7-18).
168 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-18 Prompt for workspace on startup checkbox

7.2.2 Configuring desktop shortcuts
A convenient way to launch workspaces is to have dedicated desktop shortcuts,
each associated with a different workspace:

1. Create a copy of your WebSphere Integration Developer desktop shortcut.

2. Rename the new shortcut.

3. Right-click the shortcut and select Properties from the context menu.

4. In the Target field, after the executable name append -data followed by the
workspace path, as illustrated in Figure 7-19.

Attention: On Windows systems, because of path length restrictions, keep
the workspace path as short as possible.

Tip: You can use Java style paths for the workspace location.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 169

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-19 Desktop shortcut properties

7.2.3 Capabilities
Capabilities are way to hide certain product features based on the user role. For
example, Web services tools and wizards can be hidden by disabling the Web
services capability.

By using Capabilities the user interface is simplified by only displaying the
features that are most relevant to the current role.

Capabilities that are not enabled can be enabled the first time the feature is
accessed. Capabilities can also be enabled from the menu bar by selecting
Window → Preferences, expand Workbench and select Capabilities
(Figure 7-20).
170 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-20 Capabilities

Note: Capabilities are associated with a given workspace and it is important to
be aware that it might be necessary for you to turn on certain capabilities in
order to make sure that the features you typically use during your developing
activities are visible to you.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 171

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
7.3 Interface definition
In preparation to creating mediations you may want to define or import the
interfaces your mediation modules will reference and expose (Figure 7-21).

Figure 7-21 Interface definition stage

Although the tooling is not prescriptive about the order in which these common
tasks are performed, you should have your interfaces defined before you move
on to developing mediation modules.

The interfaces, along with the data types they refer to, may already be defined, in
which case you can import them as a shared library into your workspace.

This section describes the basics of importing workspace resources using the
Project Interchange file format, working with shared libraries, and the tools and
editors used to define interfaces and business objects (data types).

7.3.1 Importing a Project Interchange file
1. From the menu bar select File → Import

2. In the Import dialog box select Project Interchange (Figure 7-22).
172 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-22 Choosing Project Interchange import source

3. Click Next.

4. On the Import Project Interchange Contents dialog, click the Browse button
and navigate to the Project Interchange zip file’s location in the file system.

5. Select the projects you wish to import and click Finish (Figure 7-23).
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 173

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-23 Importing Project Interchange contents

7.3.2 Working with shared libraries
A shared library is a special type of Business Integration project that holds
resources shared between modules.

Creating a new library
1. To create a new shared library right-click the Business Integration view and

select New → Library from the context menu.

2. Name the library and click Finish.

Adding libraries to a mediation module dependency list
1. To add a dependent library to a module double click on the modules’ top level

project folder to open the Module Dependency editor

2. Click Add on the libraries section and select the library to add (Figure 7-24).

3. Click OK.

Note: Only business objects and interfaces can exist in a WebSphere
Enterprise Service Bus shared library. The mapping folder only applies to
WebSphere Process Server projects. An additional Web Service Bindings
folder is created automatically if you store WSDL files in a library.
174 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-24 Adding a library to a module dependency list

4. The library is now listed under Configured libraries. Click on the library and
verify that the Deploy with Module checkbox under Advanced is checked
(Figure 7-25). At runtime a library is not shared but deployed with each
module that depends on it.

Figure 7-25 Library configured and deployed with module
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 175

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
7.3.3 Modeling business objects
Business objects (data types) can be created in mediation modules or shared
libraries. If the business object is to be shared between modules then it should
be created in a library.

Creating a business object
1. To create a new business object right-click your module or library and select

New → Business Object.

2. Specify the business object name, verify the module name and optionally
define a folder name. If the Default checkbox by the Namespace field is
checked the folder name will become part of the new object’s namespace
(Figure 7-26).

Figure 7-26 Defining the new business object

3. Click Finish. A new business object opens in the Business Object editor.
Business objects are created in the Data Types folder in your module or
library (Figure 7-27).

Figure 7-27 New business object
176 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Adding business object attributes
1. Right-click the object and select Add attribute from the context menu.

Alternatively click the Add an attribute to a business object button on the
business object editor toolbar (Figure 7-28).

Figure 7-28 Add attribute tool

2. Attributes are created with a default name of attribute1 and a default type of
string. Add as many attributes as you need. The attribute names will keep
incrementing to attribute2, and so forth.

3. Rename the attributes by overtyping their names.

Business object attribute types
1. To change attribute types, click on its type field (initially string) and select a

new type from the context list (Figure 7-29).

Figure 7-29 Changing an attribute’s type
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 177

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
2. From the type list you can choose simple types like int and float, or any
complex data type (business object) defined in the module or a library
configured in the Module Dependency editor. A complex type field is shown
as a link to the actual business object (Figure 7-30).

Figure 7-30 Complex attribute type

Business object attribute properties
1. To inspect and modify attribute properties select the attribute and click the

Properties view.

From the Properties view you can change the attribute’s name and type. You
can also specify if the attribute’s value is mandatory and make the attribute an
array. Click on the Array checkbox (Figure 7-31) to make the attribute an
array.

Depending on the attribute, further type checking can be performed. For
example, ranges and enumerations can be defined for integers and strings.
178 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-31 List of addresses

Figure 7-32 Table view of a business object

Using supersets
You can define a business object as a superset of another. To do this you need to
inherit your new object from another one. You can define object inheritance at
object creation time or later on the object Properties view.

Tip: You can view basic properties of all attributes by clicking the Table view
button in the business object editor toolbar (Figure 7-32).
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 179

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
On the New Business Object wizard, use the Inherit from drop down list to
specify the parent object (Figure 7-33).

Figure 7-33 Creating a superset business object

You can add attributes to specialize the new object. For example the RedBook
business object is a superset of Book. It inherits all attributes from the Book
business object and defines the RedBook specific ITSOnumber (Figure 7-34).

Figure 7-34 Business object inheritance
180 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Deriving business object attributes
Another way to reuse attributes from existing business objects is to specify
derived attributes in your new object. This method, rather than inheriting from an
existing object, lets you copy selected attributes from one or more objects into
your object.

This is a quick way to copy attributes from other objects when creating your new
object.

1. To do this click Next (in the previous examples we clicked Finish) after
completing the first page on the new business object wizard.

In this example (Figure 7-35) we are creating a new object which includes the
name and creditCardNum attributes from the Profile object in the
BookOrderResources library and the age attribute from the SampleObject
created in “Creating a business object” on page 176.

Figure 7-35 Deriving attributes

2. Click Finish and the new object will be created (Figure 7-36). You can add
more attributes to it as normal.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 181

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-36 Derived business object

7.3.4 Defining interfaces
Interfaces can be created in mediation modules or shared libraries. If the
interface is to be shared between modules then it should be created in a shared
library.

1. To create a new interface right-click the module or library and select New →
Interface from the context menu.

2. Name the interface and optionally specify a folder which will be used as part
of the namespace if default namespaces are used (Figure 7-37).

Important: Deriving business object attributes is a way to populate the new
business object with attributes from one or more existing business objects.
There is no connection between the new object and the objects used to copy
attributes from.
182 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-37 New interface wizard

3. Click Finish and the new interface is created in the Interfaces folder of your
module or library. The Interface editor opens automatically and you will use its
toolbar to add operations and operation parameters (Figure 7-38).

Figure 7-38 New interface in interface editor

Adding one way operations
1. Use the Add One Way Operation button in the Interface editor toolbar to add

one way operations (Figure 7-39).

2. Rename the operation as required.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 183

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-39 Add one way operation

Adding operation input parameters
1. Use the Add Input button in the Interface editor toolbar to add input

parameters (Figure 7-40).

2. Change the parameter name by typing over it and set the parameter type by
clicking on it and selecting a type from the list.

Figure 7-40 Add operation input parameter

Adding request response operations
1. Use the Add Request Response Operation button (Figure 7-41).

2. Rename the operation by typing over its name.

3. Add required input parameters as normal.

Figure 7-41 Adding a request response operation

Adding operation output parameters
1. Add an output parameter using the Add Output button (Figure 7-42).
184 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
2. Rename the output parameter and select its type from the list of available
types.

Figure 7-42 Add operation output parameter

7.4 Mediation module development
This stage is where the actual mediation module development takes place
(Figure 7-43).

In this section we discuss mediation modules, mediation flow components and
the mediation flow editor. We also explain imports and exports.

Figure 7-43 Mediation module development stage

7.4.1 Creating a new mediation module
1. Right-click the Business Integration view and select New → Mediation

Module.

2. On the first page of New Mediation Module wizard give the module a name
and leave the default values for all other items, making sure the target runtime
is set to WebSphere ESB Server and a mediation flow component is created
(Figure 7-44). Click Next.

Note: Use the Delete tool to remove inputs, outputs and operations.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 185

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-44 New mediation module wizard

3. The last New Mediation Module wizard page (Figure 7-45) lets you specify
any number of shared libraries that you want to refer to within your mediation
module. Shared libraries included in this page will be deployed as part of the
module.
186 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-45 Selecting libraries

4. Click the Finish button and the new mediation module will be created and
displayed expanded in the Business Integration view (Figure 7-46).

Figure 7-46 New mediation module

5. Double click on the module project (the top level folder) to open the Module
Dependency editor (Figure 7-47). Under Libraries you should see any library
that was added to the module at creation time.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 187

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-47 Module dependencies

7.4.2 Creating a new mediation flow component
Mediation flow components are shown in the mediation module assembly
diagram and a single mediation flow component is created by default when
creating the module as seen in 7.4.1, “Creating a new mediation module” on
page 185.

To manually create a mediation flow component, in the assembly diagram editor
click the Mediation Flow tool and then click the canvas to drop the new
component (Figure 7-48).

Figure 7-48 New mediation flow component

Adding an interface to a mediation flow component
1. Select the mediation flow component, the corners on the component become

blue dots and a bubble toolbar appears over it. Select the Add Interface tool.
Alternatively right click on the mediation flow component and select Add →
Interface from the context menu.

2. Select the required interface from the dialog box and click OK. The added
interface will be displayed on the left side of the mediation flow component
(Figure 7-49).

Note: Only one mediation flow component can be added and implemented in
the mediation module.
188 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-49 Adding interface to mediation flow component

Adding a reference to a mediation flow component
1. This is the same as adding an interface but selecting the Add Reference tool

from the bubble toolbar or Add → Reference from the context menu
(Figure 7-50).

2. Choose the interface your reference is to be associated with and click OK.
The reference is added to the right side of the mediation flow component.

Figure 7-50 Add reference to mediation flow component

Implementing mediation flow components
1. A mediation flow component is created with no implementation. To implement

the mediation flow right click on the component and select Generate
Implementation from the context menu (Figure 7-51).

Figure 7-51 Generating mediation flow implementation

2. Select the folder where to generate the implementation and click OK. The
Mediation Flow editor opens.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 189

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
The Mediation Flow editor
Figure 7-52 shows the Mediation Flow editor with its three main panels, the
Operation connections, the mediation flow and the Properties view.

We use this editor to connect operations, add mediation primitives to the
mediation flow and wire mediation primitive terminals with requests and
responses.

Figure 7-52 The Mediation Flow Editor

Wiring interface/reference operations
To wire operations, on the Operation connections panel, drag the source
operation on the interface to the target operation on the reference (Figure 7-53).

Figure 7-53 Connecting operations
190 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Adding mediation primitives to the canvas
Use the toolbar on the left hand side of the mediation flow pane to select the
required primitive and drop it into the canvas (Figure 7-54).

Figure 7-54 Adding a mediation flow primitive

Wiring a mediation flow (request/response)
Wiring the mediation flow defines the sequence in which mediation primitives are
executed and assigns their terminal’s message type.

Request flow
1. First we add a mediation primitive to the canvas. In this case we are adding a

Message Logger. At this point the terminals on the primitive have no assigned
type (Figure 7-55).

Figure 7-55 MessageLogger primitive added

2. Next we wire the input node of your mediation flow to the input terminal of
your mediation primitive. The input node represents the entry point to the
mediation flow component on the request flow. At this point the input terminal
is assigned the message type (Figure 7-56).

Figure 7-56 Wiring the input terminal
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 191

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
3. Now wire the output terminal from the mediation primitive to the callout node
(Figure 7-57). The callout node represents the service provider. At this point
the output terminal is assigned the message type.

Figure 7-57 Wiring the output terminal

Response flow
1. Click on the Response tab on the mediation flow pane to wire the response

flow.

2. Connect the callout response node to the mediation primitive input terminal.
The callout response node represents the entry point to the mediation flow
component on the response flow.

3. Connect the mediation primitive’s output terminal to the input response node.
The input response node represents the service consumer. All terminals are
assigned a message type once they are wired (Figure 7-58).

Figure 7-58 Wiring the response flow

Mediation primitive properties
Use the Properties view to change a mediation primitive’s properties.

You can use the Description tab to change a mediation primitive’s display name
and description. The Terminal tab lets you change the message type for the in,
out and fail terminals.

Use the Details tab to change properties that are specific to the mediation
primitive type, for example, for an XSLT mediation primitive you use the Details
192 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
tab of the Properties view to assign the message root, edit and regenerate XSL,
or pick an existing XSL file.

In the case of a database lookup mediation primitive, use the Details tab to
specify the data source name, table name, key column name and the location in
the message of the key value (Figure 7-59).

Figure 7-59 Database lookup mediation primitive’s properties

7.4.3 Working with exports and imports
This section explains the basics of exports, imports, their interfaces, references
and bindings.

Creating exports
Exports can be generated complete with interface and bindings from an existing
SCA component, such as a mediation flow component.

However, you will not always have a mediation flow component to export. Maybe
you want a service consumer request to pass through the bus for added
flexibility, like protocol and transport mapping, without performing any mediation
logic.

For those cases, you need to create and define the export manually.

1. Select the Export tool from the Assembly Diagram editor toolbar
(Figure 7-60).
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 193

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-60 Export tool

2. Click on the Assembly Diagram canvas to create the Export component
(Figure 7-61).

Figure 7-61 Export created

3. The export will be selected and the Add Interface tool will be visible, if not
make sure the export is selected. Click the Add Interface tool.

4. Now you need to decide which binding to use.

a. Right-click the export and hover the mouse over the Generate Binding
context menu item.

b. Select a binding, for example SCA Binding.

5. At this point your export component has an interface and can be invoked over
SCA.

Creating exports from mediation flow components
To expose a mediation flow component as a service that can be invoked by other
modules and clients you must export it.

Tip: You can always right-click the export and select Add Interface.
194 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
1. Right-click the component and select Export then select your binding choice
from the context menu (Figure 7-62). This will add the export to the assembly
diagram and wire it to the mediation flow component.

Figure 7-62 Generating export with SCA bindings

2. The export is generated on the assembly diagram and can be also located in
the Business Integration view (Figure 7-63).

3. At this point your mediation flow component can be invoked over SCA.

Figure 7-63 Generating mediation component export

Creating imports
An import represents a service outside of our module.

Imports can be created automatically from another module’s export or a WSDL
service definition, however we can also manually create imports in our assembly
diagram.

1. Select the Import tool from the assembly diagram toolbar (Figure 7-64).

Tip: The export listed in the Business Integration view can be dragged and
dropped into the canvas of another module’s assembly diagram creating an
import.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 195

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-64 Import tool

2. Click on the assembly diagram to create the import (Figure 7-65).

Figure 7-65 Import created in assembly diagram

3. Add an interface to the import by using the Add Interface tool or the context
menu.

4. Generate bindings using the context menu:

a. Right-click the import and hover the mouse over the Generate Binding
context menu item.

b. Select a binding, for example SCA Binding.

Creating imports from existing services
For the mediation flow component to invoke services, the service providers need
to be imported into the assembly diagram as imports.

We can create imports automatically by dragging and dropping external exports
or WSDL service definitions into our assembly diagrams.

1. Consider a mediation flow component already implementing an interface and
wired to an export. This mediation now needs to be associated to a service
provider.

2. In the Business Integration view we locate the service provider export
(Figure 7-66).
196 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-66 Locating the target Export

3. Now we drag this export into our diagram and we choose to create an import
with SCA binding at the Component Creation dialog. This action creates an
import component in the diagram (Figure 7-67).

Figure 7-67 Import created

4. Rename this import and drag a wire from the mediation flow component to the
import. Note that this action creates a matching reference on the mediation
flow component (Figure 7-68).

Figure 7-68 Import wired and reference created

5. At this point the basic structure of a mediation flow module is complete.

7.5 Running mediation modules
This section is about building, running and testing mediation modules
(Figure 7-69).

We discuss the basics of building and cleaning projects, managing test servers,
publishing mediation modules and working with the integration test client.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 197

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-69 Mediation module running stage

7.5.1 Building and cleaning projects.

Build automatically
Your development environment is by default configured to build automatically
when you make any code changes, check out code from a source repository or
import projects from an external source like a Project Interchange file.

This option can be disabled by selecting Project → Build Automatically from
the menu bar.

Cleaning the workspace
You can force a clean build by cleaning your workspace. Performing a
workspace clean deletes all derived artifacts and staging projects, forcing an
automatic build and regeneration to occur.

1. Select Project → Clean... from the menu bar.

2. Select Clean all projects and click OK (Figure 7-70).

Figure 7-70 Cleaning the workspace

7.5.2 Managing test servers
This section discusses the details of the test environment included in IBM
WebSphere Integration Developer, how to setup different server configurations
and the tools used to publish applications.

We also discuss how the development environment works with the server
configurations.
198 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Server profiles
A server profile is a configuration that describes the runtime environment and
includes all of the files required by the server at runtime. Creating profiles
enables multiple servers to be configured from a single install of WebSphere
Enterprise Service Bus.

There are three types of profile:

� Stand alone - This profile hosts mediation modules and is the default
WebSphere Enterprise Service Bus profile type.

� Managed node - A managed node performs the same function as a
stand-alone server but all administrative tasks for this profile are managed by
a deployment manager.

� Deployment manager - Used to administer all managed nodes in a
multi-node, multi-machine group, known as a cell.

For information on configuring each of these server profile types see Chapter 5,
“Setting up the runtime environment” on page 85.

Server configuration modes
The workspace does not contain the test environment configuration information.
Instead, pointers are created to the test environment.

Three WebSphere Integration Developer server configuration modes are
supported:

� Local test environments

� Local separate installations of WebSphere Enterprise Service Bus

� Remote test environments

Local test environment (default)
At installation time you have the option of installing the integrated test
environment and associated profiles. In our install we created both the
WebSphere Process Server and WebSphere Enterprise Service Bus profiles.
See 4.3.1, “Installing WebSphere Integration Developer” on page 61.

Each workspace that you start will have a pointer to these profiles. The server
profile is independent of the workspace and all you have in the workspace is
essentially a pointer to the profile.

This means that you may see applications show up in the test server that are in
different workspaces.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 199

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Local separate installation
You can also use a separate installation of the runtime as your test environment.

If you have installed a separate instance of WebSphere Enterprise Service Bus
or WebSphere Process Server on your local machine, you can create a new
workspace server configuration within WebSphere Integration Developer that
points at the profile of your choice.

Remote test environment
When configuring a test environment, the server can be either a local integrated
server or a remote server. Once the server itself is installed and configured, the
server definition within WebSphere Integration Developer is very similar for local
and remote servers.

Creating a new server configuration
Local test environment
These are the steps to recreate your default local test server configuration.

1. Right-click the Servers view and select New → Server.

2. Next you will need to define the new server. Leave the host name as
localhost and select WebSphere ESB Server v6.0 (Figure 7-71).

Figure 7-71 Define new sever

3. Next define the new server settings to use the esb profile (Figure 7-72).
200 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-72 New server settings

4. The next step lets you add workspace projects to your new server
configuration. Select projects from the available projects pane and click Add
to add them to the Configured Projects pane. When you are done click Finish
(Figure 7-73).
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 201

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-73 Add projects to new server configuration

5. You can now double click on the server configuration to open the Server
Configuration editor and review the server settings (Figure 7-74).

Figure 7-74 Server configuration details
202 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Local separate installation
To add a local installation of WebSphere Enterprise Service Bus to your
WebSphere Integration Developer server configurations, first you need to add
the server to the Installed Runtimes.

1. From the menu select Window → Preferences, then expand Servers and
select Installed Runtimes (Figure 7-75).

Figure 7-75 Installed runtimes list

2. Click the Add button and on the next screen choose WebSphere ESB
Server v6.0, then click Next (Figure 7-76).

Tip: A running server will continue to run, even after exiting WebSphere
Integration Developer. To avoid this, check the box called Terminate server
on workbench shutdown and save the configuration.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 203

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-76 New server runtime

3. On the following screen give the server a name of your choice and locate the
separate runtime’s install root directory (Figure 7-77).

Figure 7-77 New server runtime name and location

4. Click Finish and your new server runtime will be part of the installed runtime
environments (Figure 7-78).
204 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-78 New runtime added

5. Now you can repeat the steps as for adding a new local server configuration
with the following differences:

While defining a new server, when you select WebSphere ESB Server v6.0
as the server type, now you have a choice of runtimes, including the one just
added to the installed server runtime environments (Figure 7-79).
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 205

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-79 Server runtime choice

6. Select the separate WebSphere Enterprise Service Bus runtime and click
Next. You will now have a choice of profiles from the profiles created for this
separate runtime (Figure 7-80).
206 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-80 Separate runtime profile choice

7. Choose a profile and click Next. At the next screen optionally add workspace
projects to the new server configuration and click Finish. The new server
configuration will be listed on the Servers view (Figure 7-81).

Figure 7-81 New server configuration
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 207

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Remote test environment
1. The steps for adding a remote test environment are the same as for adding a

locally installed runtime with the exception that you need to specify the host
name of the remote machine (Figure 7-82).

Figure 7-82 Adding a remote server configuration

2. Once the server is created it will be listed on the Servers view. Note that the
hostname/IP address is part of the server configuration name (Figure 7-83).

Figure 7-83 Remote server configuration

Note: After adding a separate local or remote server it is important to open the
server configuration editor and review the server connection type and admin
port settings. For remote servers we recommend you use the more reliable
SOAP connector.
208 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Commands to manage test servers
Once the server is configured, there are a few key commands to be aware of
used to manage the test servers.

� Debug: only available for local test servers.

� Start: only available for local test servers.

� Restart: available on all active servers.

– Can restart in different modes (normal, debug, and profile).

� Stop

Figure 7-84 Servers view toolbar

Starting and stopping the server
Starting the server
1. In the Servers view, right-click the server you want to start and select Start.

2. The console view comes to the foreground and displays logging information.

3. Wait until the Server server1 open for e-business message appears in the
console and the server status in the Servers view is Started (Figure 7-85).

Figure 7-85 Server status

Stopping the server
1. In the Servers view, right click on the server you want to stop and select Stop

2. Wait until the server status is Stopped in the Servers view.

Tip: Most commonly used server commands can be accessed from the
Servers view toolbar (Figure 7-84)

Note: You might see a system error about the system not being able to find
the file cell-wbi.xml. This error can be safely ignored.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 209

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Starting the server in debug mode
If you want to debug code deployed to your test server you need to start the
server in debug mode.

1. Click the Debug tool on the Servers view toolbar or right-click the server and
select Debug.

2. Once the operation completes the server status in the Servers view should be
Debugging (Figure 7-86).

Figure 7-86 Server started in debug mode

For more information about debugging, refer to 8.2, “Debugging tools” on
page 233.

Running the administrative console
You can run the administrative console for a running server from within
WebSphere Integration Developer.

1. Right-click the server and select Run administrative console from the
context menu.

2. Click the Log In button to enter the console. Security is not enabled in the test
environment.

3. Scroll to the bottom of the welcome page and use the Task filtering selector to
apply available filters (Figure 7-87). For example, the Application Integration
filter does not include tasks to manage servers. If you need to modify port
numbers you need the server tasks available to you:

a. Click Server and Bus.

b. Click Apply.

Tip: If the server is already running, a quick way to switch to debug mode is to
right-click the server and select Restart → Debug.

Tip: You can change the filter at any time by going back to the welcome page.
Click the Welcome link at the top of the administrative console menu.
210 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-87 Filter administrative tasks

For more information about administering WebSphere Enterprise Service Bus
resources see Chapter 9, “Administering WebSphere Enterprise Service Bus” on
page 251.

7.5.3 Deploying mediation modules
In order to test your mediation modules you must run them on the test server.
This section describes how to add and remove projects to the test server.

Adding projects to the test server
1. Right-click the server and select Add and remove projects

2. Add the required projects from the Available projects pane to the Configured
projects pane (Figure 7-88). Add projects individually by selecting them and
clicking the Add > button. You can add all workspace projects by using the
Add All >> button.

3. Once the list is complete click Finish.

Note: Calling up the Add and Remove Projects dialog is a convenient way to
check which modules are published to the test server, as they show up in the
Configured projects pane.

However, you cannot use this method to see projects that were published to
the test server from a different workspace. If in doubt, run the administrative
console and verify which applications are running on the test server.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 211

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-88 Add and remove projects

Removing projects from the test server
To remove projects from the test server follow the same steps as for adding
projects but use the < Remove or << Remove All buttons.

7.5.4 Testing mediation modules
Once the module is deployed or published to the test server you can test it with
the Integration Test Client.

Typically you will perform module tests and component tests.

Module test
In the Business Integration view, right-click the module and select Test → Test
Module. This will launch the Integration Test Client with all emulation disabled.

Important: It is a good practice to always remove all projects and stop the
server before switching workspaces or exiting WebSphere Integration
Developer. Projects that you add from a given workspace are not visible from
another one but those modules are still installed and will be started when the
the server starts.
212 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Component test
In the module assembly diagram, right-click the mediation flow component and
select Test Component. This will launch the Integration Test Client with
emulators configured to emulate any component references so you can test the
component in isolation.

For more infomation about testing, refer to 8.1, “Testing tools” on page 220.

7.6 Exporting resources
This section describes the basics of exporting workspace resources
(Figure 7-89).

We discuss exporting resources to Project Interchange files and to EAR files.

Figure 7-89 Exporting resources stage

Project Interchange files are typically used by developers to share modules and
libraries between workspaces.

Enterprise Archive (EAR) files are deployable units to be installed and run on
target runtimes.

7.6.1 Exporting to Project Interchange
1. From the menu bar select File → Export

2. On the Export Project Interchange Information dialog, select the module you
wish to export (Figure 7-90).

Note: There are four staging projects associated with each Business
Integration module: an Enterprise Application, EJB, EJBClient and Web
project. These are generated by WebSphere Integration Developer and need
not be exported.
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 213

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 7-90 Export module to Project Interchange file

3. Click the Browse button and navigate to the target location in the file system.

4. Choose a filename and click Save.

5. Click Finish.

7.6.2 Exporting enterprise applications
To deploy a mediation module anywhere other than your integrated test
environment, you need to export the module as an EAR file.

1. To do this, right-click the module, select Export, choose EAR file from the
selection of export destinations and click Next.

2. On the EAR Export dialog, select the EAR project to export and a destination
for the EAR file. You can optionally export source code and workspace
metadata with the EAR file (Figure 7-91). Click Finish.

3. This creates an EAR file which will include the selected module and its
required libraries.
214 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch08-WID-overview.fm
Figure 7-91 EAR Export
 Chapter 7. WebSphere Integration Developer key concepts and common tasks 215

7212ch08-WID-overview.fm Draft Document for Review May 4, 2006 3:20 pm
216 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212p04.fm
Part 3 Administration
and testing

Part 3
© Copyright IBM Corp. 2006. All rights reserved. 217

7212p04.fm Draft Document for Review May 4, 2006 3:20 pm
218 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Chapter 8. Testing, debugging and
problem determination

This chapter discusses the techniques and tools available to test the artifacts you
develop for WebSphere Enterprise Service Bus and to perform troubleshooting
in the runtime environment. We will look at the test tools in WebSphere
Integration Developer and techniques for isolating code problems in
development. We will also discuss how you can perform problem determination
in the more advanced test stages and in the production environment, using the
capabilities of the WebSphere Enterprise Service Bus runtime. We will cover the
following areas:

� Integration Test Client

� Web Services Explorer

� TCP/IP Monitor

� Integration debugger

� Problem determination tools and techniques

8

© Copyright IBM Corp. 2006. All rights reserved. 219

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
8.1 Testing tools
The role of the integration developer naturally includes responsibilities for unit
testing the components being developed in WebSphere Integration Developer.
We review three of the key tools available to support this activity in the sections
that follow:

� Integration Test Client

� Web Services Explorer

� TCP/IP Monitor

8.1.1 Integration Test Client
This section discusses the Integration Test Client available in WebSphere
Integration Developer, which is the recommended tool to test your mediation
components.

Testing modules
To test an entire mediation module, right click on a mediation module and select
Test -> Test Module. This will launch the Integration Test Client (Figure 8-1 on
page 221).
220 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Figure 8-1 Integration Test Client

When the test client starts, pay particular attention to the selected Component
under Detailed Properties. You can also specify which interface and operation to
invoke from the component.

You enter the data to send in a request message in the Initial request parameter
section. When you have entered the data, click Continue.

At this point you will be asked to specify a deployment location (Figure 8-2 on
page 222). This determines which server will be used to run the test. In our case
we selected the WebSphere Enterprise Service Bus server and clicked Finish.
 Chapter 8. Testing, debugging and problem determination 221

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 8-2 Deployment location

The Integration Test Client will invoke the operation you specified. You can follow
the request and response messages generated during the test in the Events
section (Figure 8-3 on page 223). Highlight any event to see the message data
used.
222 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Figure 8-3 Integration Test Client

If we want to run the test a second time, simply click the Invoke button in the
upper right portion of the pane.

Other testing functions
The Integrated Test Client provides four buttons for testing, as shown in Table 8-1
on page 223.

Table 8-1 Test Client Buttons

Button Name / Function Icon

Invoke
Generates an Invoke event in the Events
area

Attach
Attaches the Integration Test Client
directly to a test configuration module
 Chapter 8. Testing, debugging and problem determination 223

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
The Invoke button sends an event to the selected component in order to initiate
the test.

If you do not need an event to start your test, but rather will drive it from an
external source, for example put a message on a JMS queue, or make a Web
service request, then the Attach facility is useful. When you attach the test client
to your configuration module, the client will show all the events processed after
the external invocation.

If the operation you are testing has a fairly large number of attributes on the
request message, you may want to use the Data Pool to save them after you
have entered them once. Also, if you switch to the Configurations tab, shown in
Figure 8-4 on page 225, at the bottom of the Test Client, you can save the test
configuration, and load it later to speed your testing.

Data Pool
Opens the data pool editor, which enables
you to view, edit, select, and use the
saved data pool values

Stop
Generates a Stopped event in the Events
area and detaches the integration test
client from the server

Button Name / Function Icon
224 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Figure 8-4 Test Client configuration tab

Emulation
Another useful function of the Test Client is the capability to emulate components
in your module. When a component is emulated, the Test Client will intercept the
message as it flows to the component, display the input parameters, and provide
a form for entering the output parameters, allowing you to continue your test.
This is valuable when other components are not yet developed, or when you
want to focus your testing on one component specifically, possibly driving
various code paths by varying the output that you enter.

There is a way to launch the Test Client that will add emulators to the test
configuration automatically. While in the assembly diagram editor, if you select a
component, right-click and select Test Component, emulators are added for any
references in the component under test (Figure 8-5 on page 226).
 Chapter 8. Testing, debugging and problem determination 225

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 8-5 Emulating components

The configuration editor also allows you to add and remove emulators, and to
configure programmatic emulators as well.

8.1.2 Web Services Explorer
The Web Services Explorer in WebSphere Integration Developer allows you to
invoke Web services using SOAP over HTTP, and view the SOAP request and
response messages used in this Web services interaction.

We examine these capabilities in this section using the ProfileService Web
service example.

To test the Web Services Explorer, perform the following:

1. Deploy the ProfileService Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add ProfileServiceEAR.

d. Click Finish.

Note: In order to follow along with the step-by-step instructions in this section
you will need to have prepared a WebSphere Integration Developer
workspace with the necessary resources as described in Chapter 10,
“Preparing for the development examples” on page 271.
226 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
2. In the Business Integration view, right click on the BookOrderResources
project and select Show Files. This opens the Physical Resources view.

3. Select ProfileServiceBinding.wsdl as shown in Figure 8-6 on page 227.

Figure 8-6 BookOrderResources

4. Right-click and select Web Services -> Test with Web Services Explorer.

5. The Web Services Explorer is launched, and the WSDL file is parsed. You
can see from Figure 8-7 that the explorer has listed the Web service endpoint
as well as the operations defined in the WSDL.

Note: You must enable Web Service Development in your workspace
capabilities in order for the Web Services menu item to appear.
 Chapter 8. Testing, debugging and problem determination 227

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 8-7 Web Services Explorer opened on ProfileService

6. Click on the Add link to initialize an add operation to the Web service.

7. For each attribute that you want to set in the Web service request, click on the
Add link next to the attribute and enter an appropriate value, as shown in
Figure 8-8 on page 229.
228 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Figure 8-8 Setting attributes on the request

8. Click on the Add link next to the lastUpdate attribute, but leave the field blank.

9. Click Go and notice the error message that displays in the Status portion of
the page (Figure 8-8 on page 229).
 Chapter 8. Testing, debugging and problem determination 229

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 8-9 Understanding validation errors

10.The explorer has used the XML schema definition of the request message to
validate the inputs, and has displayed a red asterisk next to the field that was
in error. In this case, the attribute is defined as a Date field and so cannot be
blank.

11.Check the empty value for lastUpdate, then click on the Remove link next to
lastUpdate to remove the attribute from the request message. The schema
allows for this attribute to be absent from the request.

12.Click Go to execute the Web service.

13.You can view the content of the request SOAP message sent to the Web
service and the response SOAP messages returned from the Web service by
clicking Source in the Status view (Figure 8-10 on page 231).

Note: You can double click the task bar of the Actions pane or the Status
pane to maximize them.
230 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Figure 8-10 SOAP request

14.Remove ProfileServiceEAR from the server.

8.1.3 TCP/IP Monitor
The TCP/IP Monitor allows you to view the content of TCP/IP messages as they
flow across a network. This is often particularly useful for monitoring HTTP
messages, including SOAP/HTTP Web service message.

Additionally, the TCP/IP Monitor is used to redirect requests to an alternative
port. For example, we built a mediation module which used an Import component
to access a Web service. Although the Web service was deployed to the test
server which was listening for HTTP requests on port 9080, the Import
component had been built to request the Web service at port 9081, causing our
test to fail. We used the TCP/IP Monitor to listen for requests on port 9081, and
forward them to port 9080.

To perform this, we completed the following:

1. Select Window -> Preferences, expand Internet and select TCP/IP Monitor
(Figure 8-11 on page 232)
 Chapter 8. Testing, debugging and problem determination 231

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 8-11 Configuring the TCP/IP monitor

2. To add a port to listen on, click Add.

3. The New Monitor dialog shown in Figure 8-12 on page 232 is displayed. To
configure the monitor to listen on port 9081 and forward to port 9080, perform
the following:

a. Set Local monitoring port to 9081.

b. Set Host name to localhost.

c. Set Port to 9080.

d. Set Type to HTTP.

e. Click OK.

Figure 8-12 Creating a new TCP/IP monitor

4. Once you have configured the monitor, select it and click the Start button.
232 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
In addition to forwarding TCP/IP messages, the TCP/IP Monitor shows the
content of the messages as they pass through the TCP/IP Monitor, and the
responses (if any) to these messages.

When a message passes through the TCP/IP Monitor, the TCP/IP Monitor view
will become visible. To manually view it, select Window -> Show View -> Other
-> Debug, select TCP/IP Monitor and click OK.

To view the content of a TCP/IP interaction, highlight it in the TCP/IP Monitor
view. The request and response messages will be visible (Figure 8-13).

.

Figure 8-13 TCP/IP Monitor details

8.2 Debugging tools
In this section we describe the Integration debugger that is part of WebSphere
Integration Developer and how it can be used to debug your mediation modules.

8.2.1 Integration debugger
The Integration debugger can be used with the test server in your WebSphere
Integration Developer workspace, or can be used to debug a mediation module
 Chapter 8. Testing, debugging and problem determination 233

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
on a remote server. We focus on the first usage, as it should be the most
prevalent. The InfoCenter has details on setting up to debug a remote server.
See:

http://publib.boulder.ibm.com/infocenter/rtnl0600/index.jsp?topic=/org.ecli
pse.jdt.doc.user/concepts/cremdbug.html

If you have any experience using the debugger that ships with Rational
Application Developer, you will find the Integration debugger to be very intuitive,
but you will notice some very important enhancements that make debugging
mediation flows very straightforward.

8.2.2 Setting up to use the debugger
There are two key tasks required to set up for a debugger session:

1. You must start your test server in Debug mode, which can be done from the
pop-up menu on the server or using the debug icon in the server pane of the
Business Integration perspective.

2. You should set breakpoints on the components you are debugging. This can
be done from the mediation flow editor by right clicking the component where
you would like to add the breakpoint and selecting Add Breakpoint from the
context menu. To remove a breakpoint, use the same context menu and
select Remove Breakpoint.

Once the server is started in debug mode, and your breakpoints are set, you can
drive your test case. The Integration Test Client is a good way to do this. When
the debugger process gains control, a pop-up is displayed asking if you want to
switch to the debug perspective, as shown in Figure 8-14 on page 234.

Figure 8-14 Switching to the Debug perspective

8.2.3 Overview of the Debug perspective
Looking first at the Debug perspective as a whole, you can see four main
sections of the window, which are numbered in Figure 8-15 on page 235 to
match the following:
234 Getting Started with WebSphere Enterprise Service Bus V6

http://publib.boulder.ibm.com/infocenter/rtnl0600/index.jsp?topic=/org.eclipse.jdt.doc.user/concepts/cremdbug.html

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
1. Debug / Servers view - this pane has tabs for the Debug view and the Servers
view. The latter, you are already familiar with, as it is the same view that
exists in the Business Integration perspective. The Debug view is used to
control the execution of component instances and alter their state at runtime.

2. Breakpoint / Variable view - in this view, the Breakpoint tab lists all the
breakpoints that have been set. You can disable and enable the breakpoints
here, or remove them all together. The Variable view displays all the
variables, messages and associated values for a component.

3. Component view - this view is the same view as the upper right pane in the
Business Integration perspective. In the Debug perspective, it can be used to
trace execution through a mediation flow, add and remove breakpoints from
the components in the mediation view, and review the execution status by
component.

4. Console view - this is the same view as is available in the Business
Integration perspective, and is convenient to have in the Debug perspective
as you can view messages displayed by the server and the application during
the test.

Figure 8-15 Debug perspective
 Chapter 8. Testing, debugging and problem determination 235

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
At the top of the Debug view, there is a button bar that you use to direct the
execution of the component instance. The buttons that you are most likely to use
frequently are shown in Table 8-2.

Table 8-2 Most useful debug view buttons

The Resume button will be enabled whenever the execution of the module has
been suspended. Clicking this button will cause execution to continue until the
next breakpoint is reached, or until the thread terminates.

The Step Over button is also frequently used This will cause execution to
continue to the next component in the mediation flow, where it will again be
suspended. If you want to trace through every component in a mediation flow,
this button is useful, yet if you are trying to get to a specific component quickly,
setting an explicit breakpoint and using Resume can be a much quicker
approach.

8.2.4 Using the Integrated Debugger
We examine the details of the various views in the Integrated debugger in the
following sections We will use it to debug a successful invocation of the
StockQuoteService enterprise application, which is a sample application shipped
with WebSphere Enterprise Service Bus.

To follow these steps you will need to install and configure the
StockQuoteService enterprise application. For information on how to do this,
select Help -> Samples Gallery, and in the Samples Gallery expand
Application samples -> Business Integration and select Stock quote for
mediation flows.

Button Name / Function Icon

Resume
Continues component instance execution
until the next breakpoint or until exit

Stop
Terminates the component instance
execution

Step Over
Continues component instance execution
until next component is entered, at which
time execution is suspended
236 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
1. Open the mediation flow editor on the StockQuote_MediationFlow. Select
the connection between the two operations, so that the request and response
flows are displayed at the bottom of the pane.

2. Set breakpoints on the following components:

a. StockQuoteService_getQuote_Input

b. Lookup

c. Filter

d. TransformToRealtime

e. RealtimeServicePortTypePartner_getQuote_Callout

f. RealtimeServicePortTypePartner_getQuote_CalloutResponse

3. In the Test Client, select StockQuoteService as the component and enter
the following values for the attributes of the request message:

a. Symbol: AAA

b. Customer: CustomerB

4. Click Continue, and allow the perspective to switch to the Debug
perspective.

5. Look at the list of breakpoints, in the Breakpoints view. It should match those
listed in Figure 8-16.

Figure 8-16 Breakpoint view

6. In the Debug view, notice that execution has stopped in the
StockQuoteService_getQuote_Input (Figure 8-17 on page 238).
 Chapter 8. Testing, debugging and problem determination 237

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 8-17 Break in StockQuoteService_getQuote_Input

7. In the Component view, notice the icon on the
StockQuoteService_getQuote_Input. Use your mouse to hover over the
orange debug icon. The text says that the breakpoint has popped. This is
another good way to determine where the execution has been suspended
(Figure 8-18).

Figure 8-18 StockQuoteService_getQuote_Input icons updated

8. In the Variables view, inspect the Body of the message. You will see the
contents of the request message (Figure 8-19).

Figure 8-19 Variables in StockQuoteService_getQuote_Input

9. Now click the Resume button in the Debug view.

10.Execution stops in the Lookup mediation primitive (Figure 8-20 on page 239).
238 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Figure 8-20 Break in Lookup

11.The icons in the Component view have changed again. We see that the
breakpoint in Lookup has been reached. We also see two new icons on the
connections between the first three components. The purple circle with a
check mark indicates the path that is being taken through the mediation flow
(Figure 8-21).

Figure 8-21 Lookup icons updated

12.In the Variables view, if we inspect the Context, we see the subscriptionLevel
attribute of the Correlation is null(Figure 8-22).

Figure 8-22 Variables in Lookup

13.Click Resume in the Debug view.

14.Execution is suspended in the Filter mediation primitive (Figure 8-23).
 Chapter 8. Testing, debugging and problem determination 239

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 8-23 Break in Filter

15.Again, in the Component view, notice the breakpoint has popped in the Filter
component and we have successfully traversed the connection from the
Lookup to the Filter(Figure 8-24).

Figure 8-24 Filter icons updated

16.In the Variables view, inspect the Context again, and this time we see the
value for the subscriptionLevel has changed to premium. This validates the
processing done inside of Lookup (Figure 8-25).

Figure 8-25 Variables in Filter

17.Click Resume in the Debug view.

18.Execution suspends in the TransformToRealtime component (Figure 8-26).
240 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Figure 8-26 Break in TransformToRealtime

19.Now in the Component view, we again see where the breakpoint has been
reached, and we again see the connection that was traversed (Figure 8-27).
This is particularly helpful, since there were two possible paths that might
have been taken.

Figure 8-27 TransformToRealtime icons updated

20.In the Variables view, we see there has been no change yet to the message
body (Figure 8-28).

Figure 8-28 Variables in TransformToRealtime

21.Click Resume in the Debug view.

22.Execution is suspended in the
RealtimeServicePortTypePartner_getQuote_Callout (Figure 8-29).
 Chapter 8. Testing, debugging and problem determination 241

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 8-29 Break in getQuote_Callout

23.Again, the icons show us where the breakpoint popped and the path we used
to arrive there (Figure 8-30).

Figure 8-30 getQuote_Callout icons updated

24.In the Variables view, inspect the Body, and notice that the transform has
modified the message. It simply carries a single attribute (symbol) now
(Figure 8-31).

Figure 8-31 Variables in getQuote_Callout

25.Click Resume in the Debug view.

26.Execution suspends in the getQuote_CalloutResponse (Figure 8-32 on
page 243).
242 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
Figure 8-32 Break in getQuote_CalloutResponse

27.Notice the Component view has been updated to display the response flow,
and the icon indicates where the breakpoint popped (Figure 8-33).

Figure 8-33 getQuote_CalloutResponse icons updated

28.In the Variables view, we can see the value being returned from the service
(Figure 8-34).

Figure 8-34 Variables in getQuote_CalloutResponse

29.Click Resume in the Debug view. The test completes and the thread
terminates.

Of course, there are many more capabilities of the Integration debugger that we
have not discussed here, but those we have looked at should give you a very
 Chapter 8. Testing, debugging and problem determination 243

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
good start at debugging your mediation modules. You might want to experiment
with some of the other functions, for example:

� Use the Variables view to actually change the value of a variable.

� Use the Step Over button in the Debug view, to avoid having to set
breakpoints in every component in the flow.

8.3 Problem determination facilities
Once your mediation modules are deployed to a production environment it is not
likely that you will want to use the Integration debugger to diagnose a problem. It
is generally not reasonable to stop a thread and view the state of variables, or
single step through the code. In many cases, due to the level of multiprocessing
in a production environment, a debugger cannot isolate an application or runtime
problem.

It is often necessary to test the problem determination functionality of your
applications prior to deploying them to a production environment. Typically, in the
later stages of testing, the techniques of debugging an application used in early
testing are abandoned in favor of collecting problem determination data to isolate
a problem.

8.3.1 Isolating problems with the WebSphere Integration Developer
installation

If you have problems successfully installing WebSphere Integration Developer,
there are a number of approaches to performing problem determination. See 4.6,
“Troubleshooting installation issues” on page 83 for details.

8.3.2 Isolating problems with the WebSphere Enterprise Service Bus
installation

If you have problems setting up your WebSphere Enterprise Service Bus runtime
environment, see 5.7, “Problem determination for runtime installation and
customization” on page 127 for problem determination actions you can take to
isolate and resolve them.

8.3.3 Application logging and tracing
The standard logging API provided by Java is found in the java.util.logging
package and provides a mechanism for a Java application to write messages
and trace entries to a log. For mediation modules, this approach is not very
244 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
useful, unless you want to use this API to instrument any Java code you write in a
custom mediation.

The good news is that your mediation module is already instrumented for you,
and you simply have to turn on the CEI events, as described in 8.3.6, “Using the
CEI for problem determination” on page 247.

Enabling the CEI events in a production environment will have some impact on
performance, so it is not recommended to have them always enabled purely for
problem determination purposes. A better approach when using CEI for problem
determination is to selectively enable events on specific modules during the
execution of a problem scenario, and then to turn the events off, while doing
analysis. This is also discussed in 8.3.6, “Using the CEI for problem
determination” on page 247

8.3.4 Runtime logging and tracing
The WebSphere Enterprise Service Bus runtime environment makes use of Java
logging to provide various levels of messages and traces for the server runtime.
You can enable the trace through the administrative console or manually.

Steps to enable trace using the administrative console
Follow these steps to modify the trace settings for your server using the
administrative console:

1. Open the administrative console and log in.

2. Expand Troubleshooting in the navigation frame.

3. Click Logs and Trace

4. Select the server you want to modify

5. Under General Properties, click Change Log Detail Levels

6. Paste the following string into the text box:

=info:com.ibm.ws.sibx.=fine:com.ibm.wsspi.sib.*=all:com.ibm.websphere.
sib.*=all

The trace will be sent to the same location as identified above, although you can
modify the location by clicking Diagnostic Trace Service after you have
selected the server you want to modify. Update the File Name field in the dialog
to specify the directory and file name you want to be created.
 Chapter 8. Testing, debugging and problem determination 245

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Steps to enable trace manually
Follow these steps to manually modify the trace settings for your server:

1. Stop your WebSphere Enterprise Service Bus server.

2. Open the file
<esb_install_dir>/profiles/<profile_name>/config/cells/<cell_name>/nodes/<n
ode_name>/servers/<server_name>/server.xml

3. Search for the string startupTraceSpecification.

4. Replace its current value with

=info:com.ibm.ws.sibx.=fine:com.ibm.wsspi.sib.*=all:com.ibm.websphere.
sib.*=all

5. Save the file and start the server

The trace will be output to
<esb_install_dir>/profiles/<profile_name>/logs/<server_name>/trace.log

8.3.5 Analyzing messages on queue points
In addition to logs and traces, you may find you need to view the content of a
message entering or leaving WebSphere Enterprise Service Bus.

In the administrative console, when you look at a destination on the service
integration bus, you can switch to the Runtime tab, and the current message
depth is displayed. The same technique can be used to look at any Queue point
on the bus.

Both SCA buses (Application and System) also have a
SYSTEM.Exception.Destination defined and so looking at the depth of those
Queue Points may also be useful for problem determination. These destinations

Note: When using the administrative console to update trace settings, you will
find both a Configuration tab and a Runtime tab. If you make updates in the
Runtime tab, they will be made active immediately. Making updates in the
Configuration tab requires you to stop and restart the server for the new trace
settings to be in effect.

Note: If you are running a Network Deployment topology, the manual
procedure is not recommended as the Deployment Manager controls the
master copy of the server.xml file. It is best to use the administrative console
in this case.
246 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
are used to handle messages that cannot be delivered to their intended
destinations. There is also an Exception destination associated with the
messaging engine, for cases where no explicit exception destination is
associated with a bus.

8.3.6 Using the CEI for problem determination
You can enable the generation of CEI events in your mediation module. Use the
Event Monitor tab in the Details of the Properties view for a given component.
CEI events can be enabled on mediation flows, imports and exports. You need to
select the interface and the operation, then the configuration pane for the CEI is
shown, as in Figure 8-35 on page 247.

Figure 8-35 Enabling CEI events

Once the events are enabled, when your module executes, they will be written to
the database associated with the CEI datasource. In the development
environment that is typically Cloudscape.

To view the data, you can launch the Cloudscape viewer, located in the
<install_root>\runtimes\bi_v6\cloudscape\bin directory. The databases are
located in the directory associated with the server profile. So, for a typical
WebSphere Integration Developer installation that would be
<install_root>\pf\esb\events. In a stand-alone server runtime environment, you
will find an events subdirectory in the profile directory for the server. Viewing the
raw event data in the Cloudscape viewer can be quite complicated, requiring you
to understand the schema to find the data you are interested in.

An alternative to viewing the raw data is to launch the CBE Event Browser.
Select the test server in WebSphere Integration Developer, right-click and select
Launch -> CBE Event Browser. This is disabled for an WebSphere Enterprise
 Chapter 8. Testing, debugging and problem determination 247

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
Service Bus server, but you can still invoke the application from a Web browser
with the following URL:

http://localhost:9060/ibm/console/cbebrowser

The CBE Event Browser can be used to display the list of events and the event
detail as shown in Figure 8-36 on page 248.

Figure 8-36 CBE Event Browser

Click the Get Events link in the upper left corner of the page, to retrieve all of the
events that are recorded in the database. The selections in the navigation pane
are then used to work with the list of events that have been retrieved.

The CEI information may be useful to trace through the flow of your mediation
module. By using the entry and exit events you can determine the path taken
during execution. In an integration test environment, setting failure events on can
aid problem determination. You may also be able to gain some initial
performance metrics for each of the components that are invoked in a mediation
module, as the entry and exit events contain a timestamp.

In the runtime environment, an administrator can make changes to CEI event
recording. This is accomplished in the administrative console by expanding
Troubleshooting in the navigation pane. Select logs and trace ->
your_server-> Change Log Detail Levels. You can make changes in the
Configuration, which will be effective the next time the server is started, or you
can make changes in the Runtime, which will become effective immediately.
248 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch10-testing.fm
When the details screen is displayed, scroll down and expand
WBILocationMonitor.CEI.SCA.* and then expand
WBILocationMonitor.CEI.SCA.com.*. The list of deployed modules that can
have their CEI event recording changed is displayed, as shown in Figure 8-37.

Figure 8-37 Changing CEI event recording

When you click on any of the modules, the context menu displayed in Figure 8-38
is displayed. To turn events on click all, and to turn them off, click off.

Figure 8-38 Trace detail levels
 Chapter 8. Testing, debugging and problem determination 249

7212ch10-testing.fm Draft Document for Review May 4, 2006 3:20 pm
The behavior of CEI event recording is dependent on the combination of what is
specified in WebSphere Integration Developer and the state of event recording in
the runtime.

In Figure 8-35 on page 247, we saw how an integration developer can explicitly
turn on specific CEI events for the components. Notice in that figure that the On
checkbox is checked. If the module is deployed with those events checked, they
will always be recorded, regardless of what the administrator attempts to do. In
some cases, that is desirable. If the events are needed for monitoring or other
processing, then it is a good idea to explicitly turn them on and make sure the
checkbox is checked. However, the purpose of this discussion is problem
determination, generally it would be best to be able to keep the event recording
off until needed. In that case, deploy your modules with None or All (leaving the
On checkbox unchecked), as shown in Figure 8-39 on page 250.

Figure 8-39 Allowing CEI events recording to be changed in the runtime

Note: In our testing, when we modified the event recording for an Export
component, it had no effect. Events were not recorded.

Tip: Deploy mediation modules to production runtime environments with
monitor setting of None if you intend for the runtime administrator to have full
control over enabling and disabling event recording.
250 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
Chapter 9. Administering WebSphere
Enterprise Service Bus

This chapter discusses the administration aspects of WebSphere Enterprise
Service Bus V6.0.1.

WebSphere Enterprise Service Bus V6.0.1 is based on the WebSphere
Application Server platform foundation and is built on top of WebSphere
Application Server Network Deployment. WebSphere Enterprise Service Bus
inherits all of the administration functionality from WebSphere Application Server
Network Deployment including clustering, fail-over and security. Besides this,
WebSphere Enterprise Service Bus introduces new administration tasks to
deploy, administer and manage mediation modules, and service integration
applications.

This chapter focuses only on the new administration tasks introduced in
WebSphere Enterprise Service Bus. For information on administration tasks
common to WebSphere Application Server Network Deployment and high
availability, consult the following redbooks:

� WebSphere Application Server V6: System Management and Configuration
Handbook, SG24-6451

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

9

© Copyright IBM Corp. 2006. All rights reserved. 251

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
9.1 Administrative console
The WebSphere Enterprise Service Bus administrative console provides a way
for system administrators to configure WebSphere Enterprise Service Bus.

For simplifying administration in WebSphere Enterprise Service Bus, the
Welcome screen in administrative console presents a way to filter administrative
tasks. You can choose to select All, Application Integration or Server and Bus
(Figure 9-1). This helps reduce the complexity of administrative console by hiding
functionality that is not applicable to a specific administrator’s task. The filter can
be modified at any time from the Welcome screen.

Figure 9-1 Task filter

The filters are:

� Application Integration filter

Shows the options to deploy and manage mediation modules and service
integration applications.

� Server and Bus filter

Provides the ability to configure buses, servers, and resources, besides
deploying and managing mediation modules and service integration
applications.

� All

Shows all the capabilities of the administrative console.

The main areas in the administrative console where WebSphere Enterprise
Service Bus resources and services can be administered are as shown in
Figure 9-2 on page 253.
252 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
Figure 9-2 Areas of administration

Mediation modules use the resources provided by the service integration
technology in WebSphere Application Server. Administration of these resources
is the same as in WebSphere Application Server. WebSphere Enterprise Service
Bus can also be administered from the command line using the command
wsadmin.

Most of the functionality shown in Figure 9-2, is the same as for WebSphere
Application Server. SCA Modules under Applications allows the administrator to
manage mediation modules.

Clicking on SCA Modules provides an administrator with features to manage
mediation modules and perform functions such as:

� Listing mediation modules that are deployed to WebSphere Enterprise
Service Bus

� Starting or stopping mediation modules

� Inspecting module components like imports and exports

� Dynamically changing wiring between modules at runtime without a need to
restart the server.
 Chapter 9. Administering WebSphere Enterprise Service Bus 253

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
These features are further discussed in 9.3, “Mediation module administration”
on page 261

Clicking on Advanced Configuration under Business Integration allows the
administrator to configure the server to host SCA applications. This is discussed
in detail in 5.4.3, “Final configuration steps” on page 98.

9.2 Deploying mediation modules
Depending on the mediation module, an administrator may have some tasks to
complete before deploying the module. This will ensure a successful deployment
and a working application. This section discusses some of the common tasks to
consider before a deployment.

9.2.1 Configuring Web service bindings
If the mediation module being deployed is using a Web service binding on an
Import, an administrator must be ensure the Web service binding is using the
correct host name and port number on which the Web service provider has been
bound.

While a mis-match in the port will not affect the deployment, it will lead to failure
of the service integration solution. It is possible to change the Web service
binding at runtime after the mediation module is deployed. This is done using
administrative console by clicking on Applications -> Enterprise Applications
-> <application_instance> -> EJB modules -> <module_instance> -> Web
services client bindings as shown in Figure 9-3 on page 255.
254 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
Figure 9-3 Change Web services client binding

The new Web service binding can be selected from the drop down box if its
already existing on the server, or can be provided by clicking on Edit under Port
Information.

9.2.2 Configuring JMS bindings
If the mediation module being deployed uses JMS bindings or SOAP over JMS
bindings, the JMS resources required for the module should be defined on either
your own bus, or on the default SCA.APPLICATION.esbCell.Bus bus (Figure 9-4
on page 256). These resources must also be defined as JMS resources for the
respective JMS provider.
 Chapter 9. Administering WebSphere Enterprise Service Bus 255

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 9-4 Defining destinations

The JMS resources required depend on where and how JMS binding is being
used by a mediation module:

� JMS binding on an Import

The JMS resources that need to be created for an Import are:

– A queue destination on the bus.

– A queue connection factory resource that is used to connect to the bus
hosting the queue destination.

– A queue resource that provides the JNDI name for the queue destination
on the bus.

� JMS binding on an Export

The JMS resources that need to be created for an Export depend on the type
of operation being used on the interface.

If the operation is a one way operation, the JMS resources that need to be
created are similar to the resources needed for JMS binding on an Import (as
discussed above). In addition an activation specification needs to be created
that can be used by the mediation module to register the queue with a
message listener in the mediation module.

If the operation is a request response operation, the following resources are
required:

– A queue destination for the request

– A queue destination for the response
256 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
– JNDI resources for the queue connection factory resource that is used to
connect to the bus hosting these queue destinations, and the queue
resources that provides the JNDI name for the request and response
queue destination on the bus.

Besides these resources, you will also have to create an activation
specification that is used by the mediation module to register the input queue
with the message listener in the mediation module.

� SOAP over JMS binding

The JMS resources needed for this type of binding are similar to the
resources needed for a JMS binding on an Import as discussed above.

9.2.3 Methods to deploy service mediation modules
Depending on the environment, a mediation module can be deployed in one of
the following ways:

� From WebSphere Integration Developer by right clicking on a server in the
Servers view and selecting Add and remove projects.

� By exporting a deployable EAR file from WebSphere Integration Developer
and installing it into WebSphere Enterprise Service Bus using the
administrative console

� By exporting a deployable EAR file from WebSphere Integration Developer
and installing it into WebSphere Enterprise Service Bus using the wsadmin
command line utility.

� By exporting a deployable EAR file from WebSphere Integration Developer
and installing it into WebSphere Enterprise Service Bus using the
serviceDeploy command line utility.

Installing a mediation module using wsadmin
Installing the mediation module EAR file is similar to installing a WebSphere
Application Server application. Use the wsadmin command line utility.
Example 9-1 shows an example of usage.

Example 9-1 Install using wsadmin

wsadmin -c “$AdminApp install StockQuote.ear”

Installing a mediation module using the administrative console
A mediation module can be installed using administrative console as follows:
 Chapter 9. Administering WebSphere Enterprise Service Bus 257

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
1. Log into the administrative console, expand Applications, and click Install
New Application.

2. Browse to the location of your EAR file (Figure 9-5) then click Next.

Figure 9-5 Install application

3. Check the box Generate Default Bindings to use default bindings and click
Next.

4. The following screens allow you to specify deployment options for the
installation. In our example, this screens shows there are eight steps to install
a mediation module (see Figure 9-6).
258 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
Figure 9-6 Install steps

5. Complete (or bypass) each step until your read the Summary page
(Figure 9-7 on page 260).
 Chapter 9. Administering WebSphere Enterprise Service Bus 259

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 9-7 Install summary

6. Click Finish to start the install of the enterprise application containing the
mediation module. This will start creating and configuring all the resources
needed for the application. A report will show the status of the application
install. After successful completion of install a message will be generated as
shown in Example 9-2.

Example 9-2 Install message

ADMA5013I: Application StockQuoteApp installed successfully.

Application StockQuoteApp installed successfully.

7. You must save the changes to the server configuration before starting the
application.
260 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
Installing a mediation module using service deploy
WebSphere Enterprise Service Bus provides a command line utility called
serviceDeploy that can be used to build deployable mediation modules from zip
or jar files containing service components. A mediation module can be exported
from WebSphere Integration Developer to be used later by the serviceDeploy
command for generation of deployable EAR file.

If a mediation module is exported from WebSphere Integration Developer as a
zip file or a jar file, it will not contain any deployable code, only files that describe
the module and it’s components.

Running serviceDeploy will generate an installable EAR file, containing all the
deployable code required for the module to run as a service application, on
WebSphere Enterprise Service Bus. An example of using serviceDeploy is
shown in Example 9-3.

Example 9-3 Using Service Deploy

serviceDeploy.bat c:\temp\MyModule.zip -outputApplication MyModule.ear

The utility serviceDeploy is commonly used by development teams using a
version control system. After developers check in their mediation module
projects into a source code repository, the modules can be extracted and built
into installable EAR files using serviceDeploy. This can be useful for deploying
the application in a system test environment or a production environment. Using
this method ensures the runtime code is not checked in but generated when
required.

9.3 Mediation module administration
WebSphere Enterprise Service Bus allows users to view deployed mediation
modules in the administrative console or using the command line. Details of the
components inside that module, such as imports and exports, can also be
displayed. SCA bindings defined in a mediation module import can be modified
at runtime to change the flow of messages through the bus.

9.3.1 Displaying SCA modules
A mediation module is a type of SCA module, therefore in the administrative
console, mediation modules can be found under Applications -> SCA Modules
(Figure 9-8).
 Chapter 9. Administering WebSphere Enterprise Service Bus 261

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 9-8 SCA modules in the administrative console

To list the mediation modules deployed to WebSphere Enterprise Service Bus
using wsadmin run the command $AdminTask listSCAModules. An example is
shown in Example 9-4 on page 262

Example 9-4 listSCAModules

wsadmin -c “$AdminTask listSCAModules”
WASX7209I: Connected to process "server1" on node esbNode using SOAP connector;
 The type of process is: UnManagedProcess
SCABindingSample1Module:SCABindingSample1ModuleApp
StockQuote:StockQuoteApp
MessageLoggerSample1Module:MessageLoggerSample1ModuleApp
MapBindingSample1Module:MapBindingSample1ModuleApp

You can display more information about the mediation module by clicking on the
module name in the administrative console, or by using the wsadmin and run the
command $AdminTask showSCAModule specifying the moduleName as shown in
Example 9-5 on page 262.

Example 9-5 showSCAModule

wsadmin -c “$AdminTask showSCAModule {-moduleName StockQuote}”
WASX7209I: Connected to process "server1" on node esbNode using SOAP connector;
 The type of process is: UnManagedProcess
name:StockQuote
262 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
description:null

9.3.2 Displaying imports and exports
In the administrative console, clicking on a module lists its components. In the
case of a mediation module this will include its imports and exports (Figure 9-9).

Figure 9-9 Imports and exports in the administrative console

To display a mediation modules imports using wsadmin run the command
$AdminTask listSCAImports specifying the moduleName. An example is shown
in Example 9-6 on page 263.

Example 9-6 listSCAImports

wsadmin -c “$AdminTask listSCAImports {-moduleName StockQuote}”
WASX7209I: Connected to process "server1" on node esbNode using SOAP connector;
 The type of process is: UnManagedProcess
DelayedService
RealtimeService

To display a mediation modules exports using wsadmin run the command
$AdminTask listSCAExports specifying the moduleName. An example is shown
in Example 9-7 on page 264
 Chapter 9. Administering WebSphere Enterprise Service Bus 263

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
Example 9-7 listSCAExports

wsadmin -c “$AdminTask listSCAExports {-moduleName StockQuote}”
WASX7209I: Connected to process "server1" on node esbNode using SOAP connector;
 The type of process is: UnManagedProcess
StockQuoteService

To display more information about an import run the command $AdminTask
showSCAImport specifying the module name and the import. An example is
shown in Example 9-8 on page 264.

Example 9-8 showImport

wsadmin -c “$AdminTask showSCAImport {-moduleName StockQuote -import
DelayedService}”
WASX7209I: Connected to process "server1" on node esbNode using SOAP connector;
 The type of process is: UnManagedProcess
import:name=DelayedService,description=null
interface:type=WSDLPortType,portType=ns1:DelayedServicePortType

To display more information about an export run the command $AdminTask
showSCAExport specifying the module name and the export. An example is
shown in Example 9-9 on page 264.

Example 9-9 showExport

wsadmin -c “$AdminTask showSCAExport {-moduleName StockQuote -export
StockQuoteService}”
WASX7209I: Connected to process "server1" on node esbNode using SOAP connector;
 The type of process is: UnManagedProcess
export:name=StockQuoteService,description=null
interface:type=WSDLPortType,portType=ns1:StockQuoteService

9.3.3 Displaying interfaces and bindings
In the administrative console, imports and exports can be expanded to view their
interfaces and bindings (Figure 9-10 on page 265).
264 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
Figure 9-10 Interfaces and bindings in the administrative console

To display an import binding using wsadmin run the command $AdminTask
showSCAImportBinding specifying the module name and import. An example is
shown in Example 9-10 on page 265

Example 9-10 showSCAImportBinding

wsadmin -c “$AdminTask showSCAImportBinding {-moduleName StockQuote -import
DelayedService}”
WASX7209I: Connected to process "server1" on node esbNode using SOAP connector;
 The type of process is: UnManagedProcess
importBinding:type=WebServiceImportBinding,endpoint=http://localhost:9080/Delay
edService/services/DelayedServiceSOAP,port=ns1:DelayedServiceSOAP,service=ns1:D
elayedService

To display an export binding using wsadmin run the command $AdminTask
showSCAExportBinding specifying the module name and export. An example is
shown in Example 9-11 on page 265

Example 9-11 showSCAExportBinding

wsadmin - c “$AdminTask showSCAExportBinding {-moduleName StockQuote -export
StockQuoteService}”
WASX7209I: Connected to process "server1" on node esbNode using SOAP connector;
 The type of process is: UnManagedProcess
exportBinding:type=WebServiceExportBinding,port=_:StockQuoteService_StockQuoteS
erviceJmsPort,service=_:StockQuoteService_StockQuoteServiceJmsService
 Chapter 9. Administering WebSphere Enterprise Service Bus 265

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
9.3.4 Changing bindings
Using the administrative console or wsadmin it is possible to modify a module’s
SCA import bindings, giving the administrator the ability to change a deployed
flow. It effectively allows a flow of mediation modules to be rewired at runtime,
eliminating the need for a developer to use WebSphere Integration Developer to
modify, export and redeploy, and also does not require a server restart.

To modify SCA binding using the administrative console, expand Applications,
click on SCA Modules -> <module_instance>, expand Imports, expand
<import>, expand Binding and click on the SCA binding you wish to modify.

This displays the properties of the SCA binding including the module and the
export that this binding refers to (Figure 9-11 on page 266).

Figure 9-11 An SCA binding in the administrative console

In the target section of the properties panel the drop down lists can be used to
change the SCA import to use a different export from the same module, or
change modules and select a new export (Figure 9-12 on page 267).

Tip: The binding type is shown in square brackets after the name of the
binding.
266 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch11-administration.fm
Figure 9-12 Changing an SCA binding using the administrative console

Once the required modifications have been made, save the changes and they
will take effect immediately.

To change an SCA binding using wsadmin run the command $AdminTask
modifySCAImportSCABinding specifying the moduleName, import,
targetModule and targetExport. An example is shown in Example 9-12 on
page 267

Example 9-12 modifySCAImportSCABinding

wsadmin -c “$AdminTask modifySCAImportSCABinding {-moduleName StockQuote
-import StockQuoteService -targetModule ModuleB -targetExport Export1}”

Tip: It is not currently possible to modify binding types other than SCA using
this method.
 Chapter 9. Administering WebSphere Enterprise Service Bus 267

7212ch11-administration.fm Draft Document for Review May 4, 2006 3:20 pm
268 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212p03.fm
Part 4 Development
examples

Part 4
© Copyright IBM Corp. 2006. All rights reserved. 269

7212p03.fm Draft Document for Review May 4, 2006 3:20 pm
270 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-deveopment-intro.fm
Chapter 10. Preparing for the
development examples

This chapter describes the steps necessary to prepare your workspace for the
development examples described in:

� Chapter 12, “Developing mediation logic using mediation primitives” on
page 369

� Chapter 11, “Developing integration logic using mediation modules” on
page 279

� Chapter 13, “Configuring modules to provide quality of service” on page 441

Complete this chapter before attempting any of the development samples. This
chapter assumes WebSphere Integration Developer V6.0.1 has been installed. It
contains the following:

� An overview of the development examples in this book

� Preparing your environment

10
© Copyright IBM Corp. 2006. All rights reserved. 271

7212ch09-deveopment-intro.fm Draft Document for Review May 4, 2006 3:20 pm
10.1 An overview of the development examples in this
book

Part 3 of this redbook describes a number of development examples, each of
which provides step-by-step instructions that explain how to implement specific
functions within WebSphere Enterprise Service Bus.

The development examples are grouped logically into three sections:

� Developing mediation logic using mediation primitives

Describes how to use the mediation primitives features of WebSphere
Enterprise Service Bus to build mediation flows. Each mediation primitive is
described, and individual step-by-step instructions are provided.

These development examples are located in Chapter 12, “Developing
mediation logic using mediation primitives” on page 369.

� Developing integration logic using mediation modules

Describes how to import services into an ESB, expose services on the ESB to
clients, and how to map services on an ESB. Step-by-step instructions are
provided.

These development examples are located in Chapter 11, “Developing
integration logic using mediation modules” on page 279.

� Configuring modules that provide quality of service

Provides step-by-step instructions for configuring quality of service settings,
including CEI events, security, and transactions.

These development examples are located in Chapter 13, “Configuring
modules to provide quality of service” on page 441.

For detailed information on how to perform basic tasks in WebSphere Integration
Developer, refer to Chapter 7., “WebSphere Integration Developer key concepts
and common tasks” on page 153.

10.2 Preparing your environment
This section describes the configuration you must complete before following any
of the development examples. This section assumes you are running an empty
workspace in WebSphere Integration Developer V6.0.1

It contains the following sections:

� Importing the book ordering resources

� Enabling the Web Services Developer capability
272 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-deveopment-intro.fm
� Checking the default host port and changing Web service endpoints

Importing the book ordering system resources
Most of the development examples in this redbook are based on a book ordering
system. The resources required to build them have been included as Project
Interchange files and will need to be imported into your workspace. These
include:

� A shared library called BookOrderResources

This contains all the required business objects and interfaces and is required
for the majority of the samples. The project interchange file is
BookOrderResources.zip.

� A Web service called BookOrderService

This is a simple Web service that implements the BookOrderService
interface. The project interchange file is BookOrderService.zip.

� A Web service called ProfileService

This is a simple Web service that implements the ProfileService interface.
The project interchange file is ProfileService.zip

These project interchange files are shipped with the additional material
accompanying this redbook. See Appendix A, “Additional material” on page 473
for instructions on how to obtain this code.

From an empty WebSphere Integration Developer workspace use File -> Import
-> Project Interchange to import each of these projects. All three zip files are
located in the \BookOrder directory of the additional material.

Enabling the Web Service Developer capability
Some of the samples require you to use Web Service Developer functions of
WebSphere Integration Developer. This is disabled by default so requires
enabling. To enable it, perform the following

1. Click Window -> Preferences.

Note: The Web service project interchange files contain two projects, an EAR
and a Web project. Be sure to select both when importing into your
workspace.

Also note once imported, the Web services projects will not be visible in the
Business Integration view. To view them, right click in the Business Integration
view and select Show files. The Web services projects will now be visible in
the Physical Resources view.
 Chapter 10. Preparing for the development examples 273

7212ch09-deveopment-intro.fm Draft Document for Review May 4, 2006 3:20 pm
2. In the Preferences panel select Workbench -> Capabilities.

3. Expand the Web Service Developer role and check all of the check boxes
(Figure 10-1 on page 274)

Figure 10-1 Enabling Web Service Developer capability

4. Click OK. The Web Service Developer capabilities are now enabled.

Checking the default host port
The resources describing the Web service bindings in the BookOrderResources
project use a default host port 9081. This is the default if you chose to install the
WebSphere Enterprise Service Bus and WebSphere Process Server integrated
test environments. If the default host port of your server is different then the
SOAP address will need to be changed in the Web service definition.

To check which default host port you are using, perform the following:

1. Start the WebSphere Enterprise Service Bus integrated test environment
server.

2. Right click the server and click Run administrative console.

3. Log in to the console.
274 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-deveopment-intro.fm
4. Under Filter Administrative Tasks select All and click Apply. (Figure 10-2)

Figure 10-2 Filter administrative tasks

5. In the navigation expand Servers and click Application servers.

6. Click server1.

7. Under Communications click Ports.

8. A list of ports is displayed. Check the value of WC_defaulthost. (Figure 10-3
on page 275)

Figure 10-3 Default host port number
 Chapter 10. Preparing for the development examples 275

7212ch09-deveopment-intro.fm Draft Document for Review May 4, 2006 3:20 pm
If the port is not 9081, you will need to modify the port number used for the Web
services in the BookOrderResources project. To do this, perform the following:

1. In the Business Integration view, expand the BookOrderResources project,
expand Web Service Ports (Figure 10-4 on page 276).

Figure 10-4 Web Service Ports

2. Right-click on BookOrderServiceSOAP and click Open With -> WSDL
Editor.

3. In the WSDL Editor under Services expand BookOrderService ->
BookOrderServiceSOAP and select soap:address (Figure 10-5 on
page 277).

Note: The WSDL Editor will only be available if you turned on the Web
Service Developer capability, as described in “Enabling the Web Service
Developer capability” on page 273.
276 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-deveopment-intro.fm
Figure 10-5 WSDL Editor

4. In the Properties view, notice the value the location property is set to
(Figure 10-6):

http://localhost:9081/BookOrderService/services/BookOrderServiceSOAP

Figure 10-6 The location property

5. Modify the location property to use your server’s default host port number. For
example if the WC_defaulthost port is 9082, change the location property to:

http://localhost:9082/BookOrderService/services/BookOrderServiceSOAP.

6. Save and close the WSDL file.

7. Repeat this process for the ProfileServiceSOAP Web Service Port.
 Chapter 10. Preparing for the development examples 277

7212ch09-deveopment-intro.fm Draft Document for Review May 4, 2006 3:20 pm
278 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Chapter 11. Developing integration logic
using mediation modules

This chapter provides step-by-step instructions on how to build basic integration
logic in mediation modules for WebSphere Enterprise Service Bus. It contains
the following three sections:

� 11.1, “Importing services” on page 281

Describes how to import and use an existing Web service into a mediation
module, link two mediation modules using an SCA binding, and how to bind to
an Enterprise Information System such as CICS Transaction Server.

� 11.2, “Creating clients of mediation modules” on page 309

Describes how to build clients that invoke mediation modules. Three clients
are built: Web services, JMS, and SCA. Each client is built with a JSP
front-end.

� 11.3, “Using services with mediation modules” on page 337

Describes how to perform protocol transformation in a mediation module by
mapping bindings, build a mediation flow to manipulate a request and
response message, and how to handle faults.

These development examples assume you have configured your WebSphere
Integration Developer workspace as described in Chapter 10, “Preparing for the
development examples” on page 271.

11
© Copyright IBM Corp. 2006. All rights reserved. 279

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
You may find it useful to refer to Chapter 7, “WebSphere Integration Developer
key concepts and common tasks” on page 153 for more detailed information on
how to perform specific tasks in WebSphere Integration Developer.
280 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
11.1 Importing services
This section introduces how to import resources into mediation module, for use
by an ESB. It discusses importing Web services, importing and exporting SCA
modules, and importing an Enterprise Information System (EIS) such as CICS
Transaction Service.

Each of the development examples in this section can be imported as Project
Interchange files from the additional material supplied with this redbook in the
\ImportingServices\Solutions directory.

11.1.1 Bindings
Both imports and exports require binding information, specifying the means of
transport from and to the module. WebSphere Enterprise Service Bus supports
the following bindings:

� SCA
� Web service
� EIS
� JMS
� EJB (import only)

We use many of this bindings in the development examples in this redbook, as
described below.

Web service binding
The Web service binding is used in many of our samples, for example in 11.1.2,
“Importing an existing Web service” on page 282 (import) and 11.3.1, “Mapping
bindings” on page 338 (export).

JMS binding
The JMS binding is used in 11.3.1, “Mapping bindings” on page 338 (import) and
in 11.2.2, “JMS client” on page 316 (export).

There is no example of a JMS custom binding in this book, but you will find
information about it in the following article:

http://www.ibm.com/developerworks/websphere/techjournal/0602_tost/0602_tost
.html

SCA binding
How to use SCA bindings is shown in 11.1.3, “Connect two modules using SCA
binding” on page 286.
 Chapter 11. Developing integration logic using mediation modules 281

http://www.ibm.com/developerworks/websphere/techjournal/0602_tost/0602_tost.html
http://www.ibm.com/developerworks/websphere/techjournal/0602_tost/0602_tost.html
http://www.ibm.com/developerworks/websphere/techjournal/0602_tost/0602_tost.html
http://www.ibm.com/developerworks/websphere/techjournal/0602_tost/0602_tost.html

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
EJB binding
There is no sample of an import with an EJB binding in this book.

EIS binding
Look at 11.1.4, “EIS binding to CICS” on page 294 for an example on an import
with an EIS binding.

11.1.2 Importing an existing Web service
This sample demonstrates how to invoke an existing Web service from a
mediation module.

In many cases there will be existing Web services that you will want to make
available to your ESB. Importing existing services makes them available to
components that reside on the ESB.

This sample involves:

� Building a mediation module that imports an existing Web service.

� Using the Integration Test Client to send requests to the module.

The completed sample demonstrates that a book order request can be sent to a
mediation module which forwards it to a Web service. The Web service returns a
confirmation to the module that the book order was successful.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Uncheck the box to create a mediation flow component

c. Set the Module Name to ImportServiceSample1Module and click Next.

d. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

2. Open the assembly diagram for the ImportServiceSample1Module module.

3. Expand the BookOrderResources library in the Business Integration view.
Drag and drop the BookOrderServiceSOAP from the Business Integration
view into the assembly diagram of the ImportServiceSample1Module module
(Figure 11-1).
282 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-1 Drag WSDL into the assembly diagram

4. This will open the Component Creation window. Select Import with Web
Service Binding and click OK.

5. Rename the newly created import Import1 in the assembly diagram to
BookOrderServiceImport.

6. Select BookOrderServiceImport. In the Properties view and select the
Binding tab. Review the settings, taken from the WSDL of the service
(Figure 11-2).
 Chapter 11. Developing integration logic using mediation modules 283

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-2 Import binding properties

7. Save the module.

8. Switch to the Servers view. Start your WebSphere Enterprise Service Bus
server, if not already running.

9. Deploy the module and the Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add ImportServiceSample1ModuleApp and BookOrderServiceEAR.

10.Click Finish.

11.Start the Integration Test Client by right-clicking the
BookOrderServiceImport import in the assembly diagram and select Test
Component. The BookOrderServiceImport_Test view opens.

12.Select the order operation and enter test data in the Initial request
parameters section (Figure 11-3).

Attention: You can overwrite the settings here, but it has no effect, as the
content of the WSDL file, rather than the properties of the import is used at
build time. So make sure the WSDL file of the service you want to use is
configured correctly before you create the import.
284 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-3 Test start settings

13.Click the Continue button. Select your WebSphere Enterprise Service Bus
server as the deployment location. The test should finish returning a
confirmationId (Figure 11-4).

Figure 11-4 Test result
 Chapter 11. Developing integration logic using mediation modules 285

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
14.Congratulations! You successfully invoked an existing Web service from a
mediation module.

15.Remove the projects from the test server.

11.1.3 Connect two modules using SCA binding
This sample demonstrates how to use SCA bindings to link SCA modules.

This sample involves:

� Creating a mediation module with an SCA Import.

� Creating a mediation module with an SCA Export and a Java component.

� Using the Integration Test Client to use one module to call the other.

The completed sample demonstrates how a mediation module can forward a
book order request to another mediation module to handle.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Uncheck the box to create a mediation flow component.

c. Set the Module Name to SCABindingSample1Module and click Next.

d. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

2. Open the assembly diagram editor for SCABindingSample1Module.

3. Add an import to the assembly diagram by using .

4. Rename Import1 to SCABindingSample2ModuleImport.

Tip: Instead of dragging the WSDL file of the service into the assembly
diagram, you can also create an import in the assembly diagram, add the
interface, and then generate a Web service binding. After that you need to
browse for the correct service binding WSDL file in the imports properties
bindings section.

No matter which method is used to set up the Web service binding, the WSDL
file must exist in the modules project or in a dependent library.

Typing in the bindings information manually is supported by the tooling, but it
will show an error indicating the port attribute entered cannot be resolved. You
can still deploy that module, but at runtime it will fail when trying to invoke the
service.
286 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
5. Right-click SCABindingSample2ModuleImport and select Add Interface.

6. Select the BookOrderService interface and click OK.

7. Right-click the import and click Generate Binding → SCA Binding.

8. Save the module.

9. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Uncheck the box to create a mediation flow component.

c. Set the Module Name to SCABindingSample2Module and click Next.

d. In the Select Required Libraries dialog tick the BookOrderResources
library and click Finish.

10.Open the assembly diagram editor for SCABindingSample1Module.

11.Add an Export to the assembly diagram by using .

12.Rename Export1 to SCABindingSample1ModuleExport.

13.Right-click SCABindingSample1ModuleExport and select Add Interface.

14.Select the BookOrderService interface and click OK.

15.Right-click SCABindingSample1ModuleExport and select Generate
Binding -> SCA Binding.

16.For testing purposes add a Java component to the assembly editor using .

17.Right-click on Component1 and select Add -> Interface.

18.Select the BookOrderService interface and click OK.

19.Wire SCABindingSample1ModuleExport to Component1 (Figure 11-5 on
page 287).

Figure 11-5 SCABindingSample2Module assembly diagram

20.Save the module.

21.Switch back to the SCABindingSample1Module assembly diagram.
 Chapter 11. Developing integration logic using mediation modules 287

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
22.Select the SCABindingSample2ModuleImport import and select the
Binding tab in the Properties view.

23.Click Browse and select the SCABindingSample1ModuleExport in the
Matches section of the SCA Export Selection window. Click OK (Figure 11-6
on page 288).

Figure 11-6 SCA binding settings

24.Save the module.

25.Deploy both modules to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add SCABindingSample1ModuleApp and
SCABindingSample2ModuleApp.

d. Click Finish.

26.In the Business Integration view right-click the SCABindingSample1Module
module and select Test → Test Module.

27.In the test view select the Configurations tab.

28.Click Add. Select Module and click Next (Figure 11-7).
288 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-7 Add module to test

29.Select Test Configuration Default Module Test and click Next
(Figure 11-8).

Figure 11-8 Select test configuration

30.Select the SCABindingSample2Module module and click Finish
(Figure 11-9).
 Chapter 11. Developing integration logic using mediation modules 289

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-9 Select module

31.Back in the test view, select the Events tab.

32.Select the order operation and enter test data (Figure 11-10 on page 291).
290 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-10 Test start settings

33.Click the Continue button.

34.The Deployment Location dialog will open. We need to deploy each module
to our WebSphere Enterprise Service Bus server (Figure 11-11 on
page 292):

a. Click on SCABindingSample1Module and click Select Location.

b. In the dialog that opens, expand WebSphere ESB Server v6.0, click
WebSphere ESB Server v6.0 and click Finish.

c. Repeat this process, this time selecting SCABindingSample1Module
and selecting the location to again be WebSphere ESB Server v6.0.

d. Click Finish to start the deployment.
 Chapter 11. Developing integration logic using mediation modules 291

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-11 Selecting WebSphere Enterprise Service Bus as the deployment location

35.The test stops at the emulation of the Java component. Enter any string value
in the confirmationId output parameter and click Continue (Figure 11-12 on
page 293).
292 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-12 Component emulation

36.The test view should show the confirmationId value you entered as the test
return parameter (Figure 11-13 on page 294).
 Chapter 11. Developing integration logic using mediation modules 293

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-13 Test result

Congratulations you have successfully demonstrated how to use SCA bindings
to allow mediation modules to communicate. This demonstrates that the request
entered for the import in SCABindingSample1Module was passed to the export
in SCABindingSample2Module and that the response was sent back.

37.Remove all projects from the test server.

11.1.4 EIS binding to CICS
This sample illustrates how to use WebSphere Integration Developer to develop
a mediation module which contains a component that accesses a CICS
commarea transaction.

This sample involves:

� Creating a resource adapter.

� Creating a mediation module with an EIS binding to a J2EE Connector
Architecture (J2C) connector using the Enterprise Service Discovery wizard.

� Using the Web Services Explorer to test the module using a Web service
request.

The completed sample demonstrates how a mediation module can use a Web
service request to access a J2C interface to CICS.
294 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
For our sample, we will use the EC01 transaction which ships as a sample with
the CICS Transaction Gateway. The transaction expects and returns a
commarea that is defined by the following copybook, which we will use during the
generation of the component.

01 DFHCOMMAREA.
 02 ECIDATE PIC X(8).
 02 FILLER PIC X(1).
 02 ECITIME PIC X(8).
 02 FILLER PIC X(3).

1. Start your WebSphere Enterprise Service Bus server.

2. Right-click on the server and select Run administrative console and log in.

3. Click Resources -> Resource Adapters and the Install RAR button.

4. Click Browse, locate your <WID_INSTALL>/Resource Adapters/cics15
directory, select the cicseci601.rar file, click Open, click Next and click OK.

5. A new resource adapter named ECIResourceAdapter will now appear in the
list. Click it.

6. Select J2C Connection Factories under Additional Properties.

7. Click the New button.

8. Create a new J2C Connection Factory.

a. Set the Name to CICS01.

b. Set JNDI Name to eis/CICS.

c. Click OK.

9. Click the new connection factory CICS01.

10.Under Additional Properties select Custom Properties. You will have to set a
minimum of 3 properties:

a. Select ConnectionURL and set the value to the DNS name or IP address
of the system running the CICS Transaction Gateway V6. Click OK.

b. Select PortNumber and set the value to port number CICS Transaction
Gateway is listening on (default is 2006). Click OK.

c. Select ServerName and set the value to the name configured in the CTG
for the particular CICS address space that is running the transaction you
want to invoke. Click OK.
 Chapter 11. Developing integration logic using mediation modules 295

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
11.Click the Save link and confirm the changes by clicking the Save button.

12.Log out the Administrative console and restart the test server.

With the J2C Connection Factory configured in the server, we are ready to start
building the mediation module.

13.Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to CICSSample1Module and click Finish.

Invoke the Enterprise Service Discovery wizard.

14.Right-click the new module CICSSample1Module and select New -> Other.

15.Select Business Integration -> Enterprise Service Discovery
(Figure 11-14).

16.Click Next.

Figure 11-14 Selecting the Enterprise Service Discovery wizard

17.When the Enterprise Service Discovery wizard opens, click the Import
Resource Adapter button (Figure 11-15). We have done this for the test
server but now must do it for the development environment.

Note: If you do not have the CICS Transaction Gateway configured,
you can still continue through this sample to gain an understanding of
the function of the wizard and the generated components. You can
enter any values you like above, or leave them blank all together. The
resultant Import component will, off course, fail if you attempt to test it.
296 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-15 Importing the ECI Resource Adapter

18.Browse to your <WID_INSTALL>/Resource Adapters/cics15 directory and
select the cicseci601.rar file.

19.Ensure the Target server is set to your WebSphere Enterprise Service Bus
server and click Finish (Figure 11-16).

Figure 11-16 Importing the connector project

20.When asked if you want to switch to the J2EE perspective, click No.

21.Now with the ECIResourceAdapter selected in the wizard, click Next.
 Chapter 11. Developing integration logic using mediation modules 297

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
22.Set the JNDI Lookup Name to eis/CICS and click Next (Figure 11-17).

Figure 11-17 Setting the JNDI Lookup Name of the connection factory

23.In the Add Operations page, click the Add button.

24.Set the Operation Name to getTimeStamp.

25.Set the Input type by pressing the New button and browsing to ecidate.cpy
(the name of the copybook on your local system that defines the commarea
layout for the transaction). Click Next.

26.Change the Platform to z/OS and click Apply. This causes the wizard to read
the copybook file and display the 01 level data structures it finds. In our case
there is only one.

27.Select DFHCOMMAREA in the list and click Next (Figure 11-18 on
page 299).

Note: The ecidate.cpy file is delivered with the additional material
supplied with this redbook. You can find it in the directory:

\ImportingServices\Resources\CICSImport
298 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-18 Importer compile options

28.The Properties for the Import will look like Figure 11-19. Click Finish.

Figure 11-19 Saving the generated data type
 Chapter 11. Developing integration logic using mediation modules 299

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
29.Back in the Add Operation page, select the radio button Use the same type
for output as input.

30.Click Finish (Figure 11-20).

Figure 11-20 Create a new operation

31.In the next Add Operations page, we need to enter the name of the CICS
program that we want to invoke. In our system, set Function name to EC01
and click Next (Figure 11-21 on page 301).
300 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-21 Specify the CICS program name

32.On the Generate Artifacts dialog, create a new folder named
com/ibm/itso/esb/cics

33.Set the name of the artifact to TimeStamp.

34.Click Finish (Figure 11-22).
 Chapter 11. Developing integration logic using mediation modules 301

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-22 Saving the generated artifacts

35.Examine the contents of the mediation module after the wizard finishes.
Notice a new data type and interface were created (Figure 11-23).

Figure 11-23 Looking at what was generated

36.Open the assembly diagram editor by double-clicking . for
CICSSample1Module.

37.Click on the TimeStamp import and in the Properties view. Notice this
component is an EIS Binding import. Click the Binding tab and notice the
JNDI Name. This is how the component will find the connection factory to
obtain its connection to the CICS Transaction Gateway and CICS.

38.To test the TimeStamp component, right-click on Timestamp and select Test
Component. This opens the Integration Test Client.

39.Select getTimeStamp from the Operation drop down menu.
302 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
40.Click the Continue button.

41.If your CICS Transaction Gateway is listening, the response will be the
current date and time.

WebSphere Integration Developer makes it very easy to build and test an
SCA-enabled component that wraps the JCA interface to CICS. So, why did we
build this component and what can WebSphere Enterprise Service Bus do with
it? The rest of this sample illustrates one option, and hopefully will help you to
understand the power of using the tooling to generate mediation components
that access IMS™ and CICS back end systems.

Let’s assume we wanted to make this component accessible as a Web service.
We could do the following:

42.In the Business Integration view, expand CICSSample1Module, right-click on
Data Types and select New -> Business Object.

43.Set the Name field to TimeStampBO and click Finish.

44.Add two attributes to the business object (Figure 11-24).

a. Click the Add Attribute button and name it date.

b. Click the Add Attribute button again and name it time.

c. Save the business object, and close the business object editor.

Figure 11-24 The business object

45.In the Business Integration view, expand CICSSample1Module, right click on
Interfaces and select New -> Interface.

46.Set the name of the interface to TimeStamp and click Finish.

47.Define the interface (Figure 11-25 on page 304).

a. Add a new two way operation by clicking the Add Request Response
Operation button . Name it getStamp.
 Chapter 11. Developing integration logic using mediation modules 303

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
b. Add an input by clicking the Add Input button . and set the Type to
TimeStampBO.

c. Add an output by click the Add Output button .and set the Type to
TimeStampBO.

Figure 11-25 The TimeStamp interface

48.Save and close the interface

49.Add an export to the CICSSample1Module assembly diagram by using .

50.Rename Export1 to TimeStampServiceExport.

51.Rename Mediation1 to CICSMediation.

52.Right-click TimeStampServiceExport and select Add Interface.

53.Select the TimeStamp interface and click OK.

54.Wire the components together: TimeStampServiceExport to CICSMediation
to TimeStamp (Figure 11-26).

Figure 11-26 Using the import in the assembly diagram

55.Right click on TimeStampServiceExport and select Generate Binding ->
Web Service Binding.

56.In the Binding File Generation dialog select Yes, and in the Transport
Selection dialog select soap/http and click OK.
304 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
57.Double-click on CICSMediation to generate an implementation for the
mediation flow component. In the Open dialog click Yes, then in the Generate
Implementation dialog click OK.

58.In the Operation connections panel, wire the getStamp operation on the
TimeStampService interface to the getTimeStamp operation on the
TimeStampPartner reference.

59.Add an XSL Transform mediation primitive to the request flow.

60.Wire the request flow (Figure 11-27).

a. Wire TimeStampService_getStamp_Input to the in terminal of
XSLTransformation1.

b. Wire the out terminal of XSLTransformation1 to
TimeStampPartner_getTimeStamp_Callout.

Figure 11-27 A sample mediation request flow

61.Click XSLTransform1 and in the Properties view select the Details tab.

62.Click the New button to create a new mapping and in the New XSLT Mapping
dialog click Finish to accept the default message types.

63.Create the mapping (Figure 11-28 on page 306).

Note: The soap address generated in the binding WSDL uses a default
port of 9080. If you WebSphere Enterprise Service Bus server uses a
default host port of 9081 (or any other value) you will either need to modify
the WSDL file to reflect this, or use the TCP/IP Monitor.
 Chapter 11. Developing integration logic using mediation modules 305

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
a. In the source panel select body -> getStamp -> input1 -> date.

b. In the target panel select body -> getTimeStamp ->
tns_1:getTimeStampInput -> xsd1:ecidate.

c. In the source panel right-click on date and select Create Mapping.

d. In the source panel select body -> getStamp -> input1 -> time.

e. In the target panel select body -> getTimeStamp ->
tns_1:getTimeStampInput -> xsd1:ecitime.

f. In the source panel right-click on time and select Create Mapping.

g. Save the mapping file and close it.

Figure 11-28 A simple XSLT transformation

64.Click the Regenerate XSL button.

65.In the mediation flow editor click on the Response tab.

66.Add an XSL Transform mediation primitive to the response flow.

67.Wire the response flow (Figure 11-29 on page 307).

a. Wire TimeStampServicePartner_getTimeStamp_CalloutResponse to the
in terminal of XSLTransformation1.

b. Wire the out terminal of XSLTransformation1 to
TimeStamp_getStamp_InputReponse.
306 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
I

Figure 11-29 A sample mediation response flow

68.Click XSLTransform1 and in the Properties view select the Details tab.

69.Click the New button to create a new mapping and in the New XSLT Mapping
dialog click Finish to accept the default message types.

70.Create the mapping.

a. In the source panel select body -> getTimeStampResponse ->
tns_1:getTimeStampOutput -> xsd1:ecidate.

b. In the target panel select body -> getStampResponse -> output1 ->
date.

c. In the source panel right-click on xsd1:ecidate and select Create
Mapping.

a. In the source panel select body -> getTimeStampResponse ->
tns_1:getTimeStampOutput -> xsd1:ecitime.

b. In the target panel select body -> getStampResponse -> output1 ->
time.

c. In the source panel right-click on xsd1:ecitime and select Create
Mapping.

d. Save the mapping file and close it.

71.Click the Regenerate XSL button.

72.Save the mediation flow and the mediation module.

73.Deploy the module to the server.
 Chapter 11. Developing integration logic using mediation modules 307

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add CICSSample1Module if it is not already added.

d. Click Finish.

74.Open the Physical Resources view by right-clicking on the
CICSSample1Module module and selecting Show Files.

75.In the CICSSample1Module project right-click on
TimeStampServiceExport_TimeStampServiceHttp_Service.wsdl and
select Web Services -> Test with Web Services Explorer (Figure 77).

Figure 11-30 Web Services Explorer

76.In the Web Services Explorer, click on the getStamp operation.

77.Next to Date, click Add and add the date 01-01-2006.

78.Next to Time, click Add and add the time 00:01.
308 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
79.Click the Go button and check the returned value which should come from
CICS.

80.Remove the project from the server.

Congratulations, you have successfully built and tested a module that takes in a
Web service request and calls a J2C connector.

11.2 Creating clients of mediation modules
This section describes how to build clients that invoke mediation modules. Three
clients are built:

� Web services client

� JMS client

� SCA client

Each client is invoked from a custom JSP page.

Each of the development examples in this section can be imported as Project
Interchange files from the additional material supplied with this redbook in the
\Clients\Solutions directory.

11.2.1 Web services client
This example demonstrates how to create a Web services client with a JSP front
end, capable of communicating with a mediation module.

A Web services client uses Java to locate a service and invoke it.

This sample involves:

� Modifying a mediation module to accept Web service requests.

� Generating a Java Web service client.

� Creating a JSP page to invoke the Web service client.

� Using the generated client to invoke a Web service.

The completed sample demonstrates a Web services client making a request to
create a new customer profile. The mediation module converts this request and
invokes a Web service that creates a profile. The Web services client receives
confirmation that a customer profile has been created.

1. Import the XSL Transformation mediation primitive development example into
your workspace.
 Chapter 11. Developing integration logic using mediation modules 309

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
a. Click File -> Import -> Project Interchange and click Next.

b. Click Browse next to From zip file, and select XSLTransformation.zip
which is located in the \MediationPrimitives\Solutions directory in the
additional material supplied with this redbook.

c. Select XSLTSample1Module and click Finish.

2. Open XSLTSample1Module in the Assembly Editor using (Figure 11-31).

Figure 11-31 Mediation module from XSLTransform sample

3. Add an Export to the assembly diagram by using and rename it CSExport.

4. Wire CSExport to CustomerMediation (Figure 11-32 on page 310).

Figure 11-32 Wired module

5. Right-click on CSExport and select Generate Binding -> Web Service
Binding.

6. When asked whether to automatically generate WSDL click Yes.

7. In the Select Transport dialog select soap/http and click OK.

8. Save the module.

Note: We cannot name the Export CustomerServiceExport because the file
name of the generated WSDL becomes too large and causes a URI is greater
than the Windows limit exception during deploy.
310 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
9. Open the Physical Resources view by right-clicking on the
XSLTSample1Module module and selecting Show Files.

10.Right click CSExport_CustomerServiceHttp_Service.wsdl from the
WSClientSample1Module project and select Open With -> WSDL Editor.

11.Navigate to the soap address of the service (Figure 11-33).

Figure 11-33 Service soap address

12.In the Properties view, if required, change the port number in the location
property to the default host port used by your server (Figure 11-34). In our
environment, this was port 9081.

Figure 11-34 Service soap address location URL

13.Save the WSDL file and close the WSDL Editor.

14.Copy CSExport_CustomerServiceHttp_Service.wsdl from the
WSClientSample1Module project to the BookOrderResources project.

Note: When generating a Web services client, the WSDL describing the
interface and the WSDL describing the binding must be in the same project.
 Chapter 11. Developing integration logic using mediation modules 311

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
15.In the BookOrderResources project, right-click on
CSExport_CustomerServiceHttp_Service.wsdl and select Web services
-> Generate client.

16.On the Web service client dialog click Next.

17.On the Web service selection page click Next.

18.Complete the client environment configuration panel (Figure 11-35 on
page 312).

a. Ensure the server is set to your WebSphere Enterprise Service Bus
server.

a. Select Web as the client type.

a. Set the Client Project to WebServicesClient.

b. Set the EAR project to WebServicesClientEAR.

Figure 11-35 Client environment configuration

19.Click Finish.

20.In the Physical Resources view expand the new project WebServicesClient,
right click on the WebContent directory and select New -> Other.

21.In the New panel select Web -> JSP File and click Next.

22.Set the File Name to Customer.jsp and click Finish (Figure 11-36 on
page 313).
312 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-36 New JSP dialog

23.The JSP will be opened in the Page Designer editor. Replace the contents
with Example 11-1, then save and close the Page Designer editor.

Example 11-1 Customer.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta name="GENERATOR" content="IBM Software Development Platform" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="theme/Master.css" rel="stylesheet"

type="text/css" />
<title>Customer.jsp</title>

Note: The code for Customer.jsp is also available in the additional material
supplied with this redbook in the directory:

\Clients\Resources\WebServices
 Chapter 11. Developing integration logic using mediation modules 313

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
</head>
<body>
<div style="text-align: center">
<h1>Add a Customer Web services Client</h1>

<form method="get" action="Customer.jsp">
<table>

<tr>
<td>Name:</td>
<td><input type="text" name="name"/></td>

</tr>
<tr>

<td>Street:</td>
<td><input type="text" name="street"/></td>

</tr>
<tr>

<td>City:</td>
<td><input type="text" name="city"/></td>

</tr>
<tr>

<td>Country:</td>
<td><input type="text" name="country"/></td>

</tr>
<tr>

<td>Credit Card Number:</td>
<td><input type="text" name="creditCardNumber"/></td>

</tr>
</table>

<input name="create" type="submit" value="Create Customer"/>

</form>
</div>
<div style="text-align: center; font-weight: bolder;">

<!-- Create an instance of the proxy for our Customer Service -->
<jsp:useBean id="customerServiceProxy" scope="session"
class="BookOrderResources.CustomerServiceProxy"/>
<!-- Create an instance of a Customer requied for the CustomerService -->
<jsp:useBean id="customer" scope="session"
class="BookOrderResources.Customer"/>
<%
if (request.getParameter("name") != null) {

try {
//Fill in the fields of the customer
customer.setName(request.getParameter("name"));
customer.setStreet(request.getParameter("street"));
customer.setCity(request.getParameter("city"));
customer.setCountry(request.getParameter("country"));
customer.setCreditCardNum(request.getParameter("creditCardNumber"));
314 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
customer.setLastUpdate(new java.util.Date());

//Call the addCustomer operation on the CustomerService Web service
String confirmation = customerServiceProxy.addCustomer(customer);
//Display the confirmation ID
out.println("<p>Order complete. Confirmation Id: "+confirmation+"</p>");

}
catch (Exception e) {

out.println(e);
}

}
%>
</div>
</body>
</html>

24.Deploy the module the Web service and the client to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add ProfileServiceEAR, XSLTSample1ModuleApp and
WebServiceClientEAR.

d. Click Finish.

25.Open a Web browser and enter the URL
http://localhost:9081/WebServicesClient/Customer.jsp (the port number
may vary depending on your install).

26.Fill in all the fields and click Create Customer.

27.A message is displayed containing the confirmation ID returned by the
module (Figure 11-37).
 Chapter 11. Developing integration logic using mediation modules 315

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-37 Customer.jsp confirmation

Congratulations you have successfully demonstrated how to create a Web
services client that communicates with a mediation module.

28.Remove the projects from the test server.

11.2.2 JMS client
This sample demonstrates how to create a JMS client, capable of
communicating with a mediation module, using an export with a JMS binding.

A JMS client uses the Java Messaging Service to send a message to JMS
queue. The message contains all the information required to invoke a messaging
service.

This sample involves:

� Defining server JMS resources required by the client and module.

� Creating a mediation module to accept JMS request messages and call a
Web service.

� Writing a JMS client to send request messages and wait for a response
message.

� Using the JMS client to invoke a Web service.
316 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
The completed sample demonstrates a JMS client making a request to create a
new profile. The mediation module converts the JMS request message to a Web
services request message and invokes a Web service that creates a profile. The
module then converts the Web service response message to a JMS response
message. The JMS client receives the response message containing
confirmation that a customer profile has been created.

There are four JMS resources that are required for a mediation module to
exchange messages with a JMS client.

� Input queue - This is used by the mediation module to receive request
messages.

� Output queue - This is used by the mediation module to send response
messages.

� QueueConnectionFactory - This is used by the mediation module to connect
to the bus hosting the input and output queues.

� ActivationSpec - This is used by the mediation module to register the input
queue with the mediation module’s message listener.

Create these resources using the administrative console.

1. In the Servers view, right-click on the WebSphere Enterprise Service Bus
server and select Run administrative console.

2. Log in to the console.

3. First we need to create the physical queues on the bus. Click Service
Integration -> Buses.

4. Select SCA.APPLICATION.esbCell.Bus.

5. In the Destination resources section, click Destinations.

6. Click New, and click Next to create a new Queue.

7. Set the Identifier field to profileServiceExportIn.

8. Click Next to see the Assign Queue to Bus member panel.

9. Click Next to see the Confirm queue creation panel.

10.Click Finish.

Attention: This sample requires WebSphere Enterprise Service Bus Fixpack1

Note: If your WebSphere Enterprise Service Bus cell is not named esbCell
then the bus name will reflect your own cell name.
 Chapter 11. Developing integration logic using mediation modules 317

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
11.Create another new queue using the same method, called
profileServiceExportOut.

12.You should see both queues in the list of destinations (Figure 11-38).

Figure 11-38 List of destinations

We need to add references to these queues in JNDI so the client and module can
access them.

13.Click Resources -> JMS Providers -> Default messaging.

14.Under Destinations, click JMS queue.

15.Click New to create a new queue (Figure 11-39).

a. Set the name field to profileServiceExportIn.

b. Set the JNDI name field to jms/profileServiceExportIn.

c. Select the SCA.APPLICATION.esbCell.Bus bus from the Bus name drop
down menu.

d. Select profileServiceExportIn from Queue name drop down menu.
318 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-39 Administrative Console defining a queue.

16.Click OK.

17.Click New to create another new queue.

e. Set the name field to profileServiceExportOut.

f. Set the JNDI name field to jms/profileServiceExportOut.

g. Select the SCA.APPLICATION.esbCell.Bus bus from the Bus name drop
down menu.

h. Select queue profileServiceExportOut from the Queue name drop down
menu.

18.Click OK.

Now we need to create the QueueConnectionFactory so the client and the
module can access the bus hosting the input and output queues.

19.Click Resources -> JMS Providers -> Default messaging.
 Chapter 11. Developing integration logic using mediation modules 319

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
20.Under Connection Factories, click JMS queue connection factory.

21.Click New to create a queue connection factory (Figure 11-40).

a. Set the name field to sampleQCF.

b. Set the JNDI name field to jms/sampleQCF.

c. Select the SCA.APPLICATION.esbCell.Bus bus from the Bus name drop
down menu.

Figure 11-40 Creating a new queue connection factory

22.Click OK.

Now we need to create the activation specification so the module can register the
input queue with its message listener.

23.Click Resources -> JMS Providers -> Default messaging.

24.Under Activation Specifications, click JMS activation specification.

25.Click New to create an activation specification (Figure 11-41).

a. Set the name field to sampleAS.

b. Set the JNDI name field to jms/sampleAS.

c. Select the destination type as Queue.

d. Set the Destination JNDI name to jms/profileServiceExportIn.

e. Select the SCA.APPLICATION.esbCell.Bus bus from the Bus name drop
down menu.
320 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-41 Creating a new activation specification

26.Click OK.

27.Click the Save link at the top of the console.

28.Press the Save button to confirm the save.

29.Log out and close the administrative console.

30.At this point you will need to restart your server for the new resources to take
effect.

Next we must create a mediation module that will listen for JMS messages on the
input queue profileServiceExportIn, call a Web service and return a JMS
response message to the queue profileServiceExportOut.

31.Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to JMSClientSample1Module and click Next.

c. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

32.Open the module in the Assembly Editor.

33.Add an export to the assembly diagram and name it ProfileServiceExport.

34.Right-click on ProfileServiceExport and select Add Interface.

35.Select the ProfileService interface and click OK.

36.Add an import to the assembly diagram and name it ProfileServiceImport.

37.Right-click on ProfileServiceImport and select Add Interface.

38.Select the ProfileService interface and click OK.
 Chapter 11. Developing integration logic using mediation modules 321

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
39.Rename the mediation flow component Mediation1 to
MyMediationFlowComponent.

40.Wire the components together (Figure 11-42).

a. Wire ProfileServiceExport to MyMediationFlowComponent.

b. Wire MyMediationFlowComponent to ProfileServiceImport.

Figure 11-42 JMSClientSample1Module

41.Right-click on ProfileServiceImport and select Generate Binding -> Web
Service Binding.

42.Click on ProfileServiceImport and in the Properties view, select the Binding
tab and click Browse.

43.From the project BookOrderResources select ProfileServiceBinding.wsdl
and click OK. The binding should now look like Figure 11-43.

Figure 11-43 SOAP/HTTP import binding

44.Right-click ProfileServiceExport and select Generate Binding -> JMS
Binding.

45.In the JMS Export Binding attributes selection dialog, select Text from the
Select how data is serialized between Business Object and JMS Message
drop down menu and click OK (Figure 11-44 on page 323).
322 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-44 JMS Export Binding attributes selection

46.Select the ProfileServiceExport and in the Properties view, select the Binding
tab.

47.In the displayed panel select the JMS Export Binding tab. These properties
allow us to define how the module will connect to the input and output queues
(Figure 11-45).

a. Set the Connection JNDI Lookup Name for the input queue to
jms/sampleAS.

b. Set the Response Connection JNDI Lookup Name to for the output queue
to jms/sampleQCF.

Figure 11-45 JMS Export binding

48.Select the JMS Destinations tab and expand the Send Destination
Properties. This will be the queue used by the export to send response
messages.
 Chapter 11. Developing integration logic using mediation modules 323

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
49.Set the JNDI Lookup Name to jms/profileServiceExportOut.

50.Expand the Receive Destination Properties. This will be the queue used by
the mediation module to receive request messages.

51.Set the JNDI Lookup Name to jms/profileServiceExportIn (Figure 11-46).

Figure 11-46 JMS Export binding destination properties

52.Select the Method Bindings tab.

53.Under Bound Methods click add.

54.Select com.ibm.websphere.sca.jms.data.impl.JMSDataBindingImplXML
from the In Data Type drop down menu.

55.Select com.ibm.websphere.sca.jms.data.impl.JMSDataBindingImplXML
from the Out Data Type drop down menu.

56.Back in the assembly diagram, right-click MyMediationModule and select
Generate Implementation then click OK to accept the default destination.
This opens the Mediation Flow Editor.

57.In this sample we are only concerned with the add operation so wire that add
operation on the ProfileService interface to the add operation on the
ProfileServicePartner reference (Figure 11-47).
324 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
58.Add a Message Logger mediation primitive to the request flow.

59.Wire the request flow (Figure 11-47 on page 325).

a. Wire ProfileService_add_Input to the in terminal of MessageLogger1.

b. Wire the out terminal of MessageLogger1 to
ProfileServicePartner_add_Callout.

Figure 11-47 Mediation flow for MyMediationFlowComponent

60.Click on the Response tab to display the response flow.

61.Wire the response flow (Figure 11-48).

a. Wire ProfileServicePartner_add_CalloutResponse to
ProfileService_add_InputResponse.

b. Wire ProfileServicePartner_CalloutFault to ProfileService_InputFault.
 Chapter 11. Developing integration logic using mediation modules 325

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-48 Response Flow

62.Save the mediation flow and the module.

Now we have a module that listens for incoming request messages and returns
response messages. Now lets create a JMS client capable of sending request
messages to the module and receiving responses. We will use a JSP so we can
easily enter our profile information and print the response to a Web browser.

63.In the Business Integration view right click JMSClientSample1Module and
click Show Files to open the Physical Resources view. In the Physical
Resources view, right-click JMSClientSample1Module and select New ->
Other.

64.Select Web -> Dynamic Web Project and click Next.

65.Enter the name as JMSClientSample1.

66.Click the Show Advanced button and ensure the Target server is set to your
WebSphere Enterprise Service Bus server.

67.Click Finish. If asked to switch to the Web perspective click No.

68.In the new JMSClientSample1 project right-click on the WebContent
directory and select New -> Other.

69.Select Web -> JSP File and click Next.

70.Name the JSP Profile.jsp and click Finish.

71.The contents of Profile.jsp are displayed in the Page Designer. Replace the
contents with code shown in Example 11-2 on page 327, then save and close
the Page Designer.

Note: The code for Profile.jsp is also available in the additional material
supplied with this redbook in the following directory:

\Clients\Resources\JSP
326 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Example 11-2 Profile.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
<head>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<meta name="GENERATOR" content="IBM Software Development Platform">
<title>Profile.jsp</title>
</head>
<body>

<div style="text-align: center">
<h1>Add a Profile JMS Client</h1>
<form method="get" action="Profile.jsp">

<table>
<tr>

<td>Name:</td>
<td><input type="text" name="name"/></td>

</tr>
<tr>

<td>Street:</td>
<td><input type="text" name="street"/></td>

</tr>
<tr>

<td>City:</td>
<td><input type="text" name="city"/></td>

</tr>
<tr>

<td>Country:</td>
<td><input type="text" name="country"/></td>

</tr>
<tr>

<td>Credit Card Number:</td>
<td><input type="text" name="creditCardNumber"/></td>

</tr>
</table>

<input name="create" type="submit" value="Create Profile"/>

</form>

<%
if (request.getParameter("name") != null) {

//The Initial Context Factory
String icf = "com.ibm.websphere.naming.WsnInitialContextFactory";
//the Provider URL
 Chapter 11. Developing integration logic using mediation modules 327

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
String url = "iiop://localhost:2810/";
//The Queue Connection Factory used to connect to the bus
String sampleQCF = "jms/sampleQCF";
//The Queue used to send requests to the mediation module
String sampleSendQueue = "jms/profileServiceExportIn";
//The Queue used to receive responses from the mediation module
String sampleReceiveQueue = "jms/profileServiceExportOut";
//The XML representation of a Profile which is the Business Object required

by the add operation
//on the ProfileService Interface
String message = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>";
message += "<xs1:Profile xmlns:xs1=\"http://BookOrderResources\">";
message += "<name>"+request.getParameter("name")+"</name>";
message += "<xs2:Address xmlns:xs2=\"http://BookOrderResources\">";
message += "<street>"+request.getParameter("street")+"</street>";
message += "<city>"+request.getParameter("city")+"</city>";
message += "<country>"+request.getParameter("country")+"</country>";
message += "</xs2:Address>";
message +=

"<creditCardNum>"+request.getParameter("creditCardNum")+"</creditCardNum>";
message += "<lastUpdate>2006-02-16</lastUpdate>";
message += "</xs1:Profile>";

try {
//Create the Initial Context

 java.util.Hashtable env = new java.util.Hashtable();
 env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY, icf);
 env.put(javax.naming.Context.PROVIDER_URL, url);
 javax.naming.Context ctx = new
javax.naming.directory.InitialDirContext(env);

 //Lookup the ConnectionFactory
 javax.jms.ConnectionFactory factory =
(javax.jms.ConnectionFactory)ctx.lookup(sampleQCF);

//Create a Connection
 javax.jms.Connection connection = factory.createConnection();
 //Start the Connection
 connection.start();
 //Create a Session
 javax.jms.Session jmsSession = connection.createSession(false,
javax.jms.Session.AUTO_ACKNOWLEDGE);
 //Lookup the send Destination
 javax.jms.Destination sendQueue = (javax.jms.Destination)
ctx.lookup(sampleSendQueue);
 //Create a MessageProducer
 javax.jms.MessageProducer producer =
jmsSession.createProducer(sendQueue);
 //Create the TextMessage that will hold out profile as text
 javax.jms.TextMessage sendMessage = jmsSession.createTextMessage();
328 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
 //Set the content of the message to be the XML defined Profile
 sendMessage.setText(message);
 //Set the operation to call on the ProfileService interface to be add
 sendMessage.setStringProperty("TargetFunctionName", "add");
 //Send the message
 producer.send(sendMessage);

 //Lookup the receive Destination
 javax.jms.Destination receiveQueue = (javax.jms.Destination)
ctx.lookup(sampleReceiveQueue);
 //Create a MessageConsumer
 javax.jms.MessageConsumer consumer =
jmsSession.createConsumer(receiveQueue);
 //Wait 15 seconds to receieve the response
 javax.jms.TextMessage receiveMessage = (javax.jms.TextMessage)
consumer.receive(15000);
 //If we receive a response print the contents of the message to the
screen
 String confirmation = "Profile creation failed.";
 if (receiveMessage != null) {
 //The contents of the message will be a Confirmation object that
contains a String.
 confirmation = "Profile created.
Confirmation Id:
"+receiveMessage.getText();
 }

out.println("<p>"+confirmation+"</p>");

//Close the Connection
 connection.close();

}
catch (Exception e) {

out.println(e);
}

}

%>
</div>
</body>
</html>

To test the client, mediation module and Web service you need to deploy all
three enterprise applications to the WebSphere Enterprise Service Bus server.

72.Deploy the mediation module, Web service and JMS client to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.
 Chapter 11. Developing integration logic using mediation modules 329

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
c. Add JMSClientSample1ModuleApp, ProfileServiceEAR and
JMSClientSample1EAR.

d. Click Finish.

73.Open a Web browser and enter the URL
http://localhost:9081/JMSClientSample1/Profile.jsp (the port number
may vary depending on your install).

74.Fill in all the fields and click Create Profile.

75.You should see a message containing the confirmation Id returned by the
module (Figure 11-49).

Figure 11-49 Profile.jsp confirmation

Congratulations you have successfully demonstrated how to create a JMS client
and mediation module allowing this client to communicate with a Web service.

76.Remove the projects from the test server.

11.2.3 SCA client
This sample demonstrates how to use the SCA programming model to create a
client capable of communicating with a mediation module.
330 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
An SCA client uses the Java SCA programming model to communicate with an
SCA component.

This sample involves:

� Creating a mediation module to accept SCA calls and return a response.

� Writing an SCA client to send requests and receive responses.

� Using the SCA client to invoke an operation on the SCA module.

The completed sample demonstrates an SCA client making a request to order a
book. The mediation module uses a Java component to return a confirmation of
the order. The client receives a confirmation that the order was successful.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to SCAClientSample1Module and click Next.

c. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double clicking .

3. Right-click on Mediation1 and select Delete. The mediation flow component
is not required to test the SCA client.

Next we need to create a stand-alone reference. This allows an SCA client to
communicate with the module.

4. In the Assembly Editor add a stand-alone reference to the assembly
diagram.

5. Right-click on the stand-alone reference and select Add Reference.

6. Select the BookOrderService and click OK.

7. If asked to convert the WSDL interface to a Java interface click Yes.

8. Add a Java Component to the assembly diagram.

9. Right-click the Java component and select Add -> Interface.

10.Click the Show WSDL radio button, select the BookOrderService interface
and click OK.

11.Wire the stand-alone reference to the Java component (Figure 11-50).

Note: We will use a Java component to implement the BookOrderService.
 Chapter 11. Developing integration logic using mediation modules 331

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-50 Wiring stand-alone reference to java component

12.Right-click on the Java component Component1 and select Generate
Implementation.

13.Click OK to create in the default package.

14.The default implementation is fine, so save the file and close it.

15.Create a new dynamic Web project.

a. Open the Physical Resources view by right-clicking on the
SCAClientSample1Module module and selecting Show Files.

a. Right-click SCAClientSample1Module and select New -> Other.

b. In the New Project wizard select Web -> Dynamic Web Project and click
Next.

c. Enter the name of the project as SCAClientSample1.

d. Click the Show Advanced button.

e. Set the Target server to your WebSphere Enterprise Service Bus server.

f. Uncheck the Add module to EAR project check box.

g. Click Finish.

h. If asked to switch to the Web perspective, click No.

16.In the SCAClientSample1 project, right-click the WebContent directory and
select New -> Other.

17.Select Web -> JSP File and click Next.

18.Set the File Name to BookOrder.jsp and click Finish.

Note: For visual purposes, this sample uses a JSP to provide a Web-based
front end to the mediation module. However the SCA programming model can
be used to access mediation modules from any Java component such as an
EJB or Web project.
332 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
19.Replace the contents of the JSP with Example 11-3, then save and close the
Page Designer.

Example 11-3 BookOrder.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta name="GENERATOR" content="IBM Software Development Platform" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="theme/Master.css" rel="stylesheet"

type="text/css" />
<title>BookOrder.jsp</title>
</head>
<body>
<%@ page import="com.ibm.websphere.sca.ServiceManager" %>
<%@ page import="com.ibm.websphere.sca.Service" %>
<%@ page import="commonj.sdo.DataObject" %>
<%@ page import="com.ibm.websphere.bo.BOFactory" %>

<div style="text-align: center">
<h1>Book Order Client</h1>
<form method="get" action="BookOrder.jsp">

<table>
<tr>

<td>CustomerId:</td>
<td><input type="text" name="customerId"/></td>

</tr>
<tr>

<td>Title:</td>
<td><input type="text" name="title"/></td>

</tr>
<tr>

<td>Author:</td>
<td><input type="text" name="author"/></td>

</tr>
<tr>

Note: The code for BookOrder.jsp is also available in the additional
material supplied with this redbook in the following directory:

\Clients\Resources\SCA
 Chapter 11. Developing integration logic using mediation modules 333

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
<td>Description:</td>
<td><input type="text" name="description"/></td>

</tr>
<tr>

<td>Quantity:</td>
<td>

<select name="quantity">
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>

</select>
</td>

</tr>
</table>

<input name="order" type="submit" value="Order"/>

</form>
</div>
<div style="text-align: center; font-weight: bolder;">
<%
if (request.getParameter("customerId") != null &&

request.getParameter("title") != null &&
request.getParameter("author") != null &&
request.getParameter("description") != null) {

try {
// First lets get the Service we will be using
ServiceManager serviceManager = new ServiceManager();
Service service = (Service)

serviceManager.locateService("BookOrderServicePartner");

// we can get the BOFactory via its 'well known' location name
// com/ibm/websphere/bo/BOFactor
BOFactory bofactory = (BOFactory)

serviceManager.locateService("com/ibm/websphere/bo/BOFactory");

// Create an input message by specifying it's element type
DataObject order =

bofactory.createByElement("http://BookOrderResources/BookOrderService",
"order");

// Get the part of message, in this case a BookOrder
DataObject bookOrder = order.createDataObject("bookOrder");

// Set it's fields from the values entered in the web form
bookOrder.setString("customerId", request.getParameter("customerId"));
bookOrder.setString("quantity", request.getParameter("quantity"));
334 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
// Create a data object of type Book (as defined in the BookOrder)
DataObject book = bookOrder.createDataObject("book");

// Set it's fields
book.setString("title", request.getParameter("title"));
book.setString("author", request.getParameter("author"));
book.setString("description", request.getParameter("title"));

// Add the Book to the BookOrder
bookOrder.setDataObject("book", book);

// Now we can invoke an operation order whih returns a string
String confirmationId = (String)service.invoke("order", bookOrder);
// Finally put it on the browser page
out.println("<p> Order complete. Confirmation Id: " + confirmationId +

"</p>");

} catch (Exception e) {
out.println(e);

}
}
%>
</div>
</body>
</html>

Example 11-3 on page 333 shows how Java DataObjects are used to build a
BookOrder business object. This is used as the input to the invoke of the order
operation. The order operation returns a String which is displayed on the Web
page.

In order for the SCAClientSample1 Web project to access the
BookOrderServicePartner we need to add it as a Module dependency.

20.In the Business Integration view, double click on the
SCAClientSample1Module project to open the dependency editor.

21.Expand J2EE and click the Add button.

22.Select the SCAClientSample1 Web project and click OK (Figure 11-51 on
page 336).
 Chapter 11. Developing integration logic using mediation modules 335

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-51 Adding module dependencies

23.Save and close the dependencies editor.

Now we will test the JSP.

24.Deploy the module to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add SCAClientSample1ModuleApp.

d. Click Finish.

25.Enter the URL http://localhost:9081/SCAClientSample1/BookOrder.jsp
into a Web browser (the port number may vary depending on your install).
This will display the JSP which should look like Figure 11-52 on page 337.
336 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-52 Book Order JSP

26.Enter values into each of the fields.

27.Click the Order button. A message is displayed confirming the order and
containing the string from the Java component:

Order complete. Confirmation Id: Result from calling the order(DataObject
bookOrder) method.

Congratulations you have successfully demonstrated how to create and test a
SCA client.

28.Remove the project from the test server.

11.3 Using services with mediation modules
This section describes some of the ways you can use services with mediation
modules. Three development examples are provided, to demonstrate:

� How to perform mapping of bindings allowing transport protocol mapping
between a client to a mediation module, and a reference from a mediation
module.

� Mediation on the request flow of a service and the response flow of a service
by using two mediation primitives.

� Fault handling in a mediation module.
 Chapter 11. Developing integration logic using mediation modules 337

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Each of the development examples in this section can be imported as Project
Interchange files from the additional material supplied with this redbook in the
\UsingServices\Solutions directory.

11.3.1 Mapping bindings
This sample shows that different bindings can easily be mapped by wiring an
export using one binding with an import using another binding. In this sample we
will map a SOAP/HTTP request to a JMS request. This provides protocol
transformation, which is a common functionality of ESBs.

Bindings can be defined on an import or export. On an export they describe how
a client or SCA component communicates with the mediation module. On an
import they describe how the mediation module communicates with the defined
service.

This sample involves:

� Creating a business object.

� Creating an interface

� Creating a mediation module with an export using SOAP/HTTP connected
directly to the import using JMS.

� Using the Integration Test Client to test the protocol mapping.

The completed sample demonstrates how a mediation module can be used to
transcode a request that uses a different transport protocol to that used by the
service being invoked.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Uncheck the box to create a mediation flow component.

c. Set the Module Name to MapBindingSample1Module and click Finish.

2. In the Business Integration view, expand MapBindingSample1Module,
right-click on Data Types and select New -> Business Object.

3. Set the Name to SimpleBook and click Finish.

4. In the business object editor, click the Add Attribute button .

5. Name the new attribute title and leave its type as string.

6. Save the business object (Figure 11-53 on page 339) and close the editor.
338 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-53 SimpleBook business object

7. In the Business Integration view, expand MapBindingSample1Module,
right-click on Interfaces and select New -> Interface.

8. In the New Interface wizard set Name to SendBook and click Finish.

9. In the Interface editor click the Add One Way Operation button .

10.Name the operation sendBook.

11.Click the Add Input button .

12.Name the input book and give it a type of SimpleBook.

13.Save the interface (Figure 11-54) and close the interface editor.

Figure 11-54 SendBook interface

14.Open the assembly diagram of the MapBindingSample1Module by double
clicking .

15.Add an export to the assembly diagram by using .

16.Rename Export1 to SOAPHTTPExport.

17.Right-click SOAPHTTPExport and select Add Interface.

18.Select the SendBook interface and click OK.
 Chapter 11. Developing integration logic using mediation modules 339

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
19.Right-click SOAPHTTPExport and select Generate Binding -> Web service
binding.

20.When prompted, if a WSDL file should be generated automatically, click Yes
(Figure 11-55 on page 340).

Figure 11-55 WSDL auto generation

21.Select soap/http as the transport in the Select Transport window, then click
OK.

22.In the Business Integration view, you should now see the automatically
created Web service port for the export (Figure 11-56).

Figure 11-56 Web service port

23.We need to change the HTTP port specified in this WSDL file to represent the
default host port used by your WebSphere Enterprise Service Bus server.

a. Right click SOAPHTTPExport_SendBookHttpPort and select Open
With -> WSDL Editor.

b. In the Services area, expand SOAPHTTPExport_SendBookHttpService
-> SOAPHTTPExport_SendBookHttpPort and click soap:address.

c. In the Properties view, change the port of the location property to the
default host port used by your server (Figure 11-57). In our environment
this was port 9081.
340 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-57 SOAP address port change

d. Save the WSDL file and close the editor.

24.Back in the assembly diagram add an import to the module by using .

25.Rename Import1 to JMSImport.

26.Right-click JMSImport and select Add Interface.

27.Select the SendBook interface and click OK.

28.Right-click JMSImport and select Generate Binding -> JMS binding.

29.In the JMS Import Binding attributes selection window, select Text as the
serialization method. Click OK (Figure 11-58).

Figure 11-58 JMS import binding attributes selection

30.Wire the SOAPHTTPExport to the JMSImport (Figure 11-59).

Figure 11-59 Wired module
 Chapter 11. Developing integration logic using mediation modules 341

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
31.Switch to the Servers view and start your WebSphere Enterprise Service Bus
server, if not already running.

32.Right-click on the server and select Run the administrative console and log
in.

33.Select Service integration → Buses.

34.Click on the SCA.APPLICATION.esbCell.Bus link. The Configuration
window for that bus is displayed.

35.Under Destination resources on the right, click on Destinations.

36.You will see two pre-defined destinations, a topic and a queue.

37.Click New to create a new destination on the bus.

38.The next screen shows four types of destination that can be specified. Select
Queue and click Next.

39.The queue attributes screen is displayed. Enter JMSImportOut as the identifier
(Figure 11-60) then click Next.

Figure 11-60 Enter queue name

40.On the next screen, accept the queue assignments to a bus member and
click Next.

41.On the confirmation screen, click Finish to create the new queue. The queue
should now appear in the destinations list (Figure 11-61).
342 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-61 Save new queue

42.In the navigation menu on the left, select Resources → JMS Providers →
Default messaging.

43.Under Connection Factories, click JMS queue connection factory.

44.On the following screen, click New.

45.Fill in the properties of the queue connection factory (Figure 11-62).

a. Set the Name as sampleBindingQCF.

b. Set the JNDI Name to jms/sampleBindingQCF.

c. From the drop down list for Bus name, choose
SCA.APPLICATION.esbCell.Bus.

d. Click OK at the bottom of the screen.
 Chapter 11. Developing integration logic using mediation modules 343

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-62 Create new queue connection factory

46.n the navigation menu on the left, select Resources → JMS Providers →
Default messaging.

47.On the right, under Destinations, click JMS queue and then click New.

48.Create the queue.

a. Set the Name to JMSImportOut.

b. Set the JNDI Name to jms/JMSImportOut.

c. Select SCA.APPLICATION.esbCell.Bus from the Bus Name drop down
menu.

d. Select JMSImportOut from the Queue Name drop down menu.

e. Click OK at the bottom of the screen

49.Click the Save link at the top of the console and confirm the changes to the
master configuration by clicking the Save button.

50.Log out of the administrative console.

51.Switch back to the assembly diagram of the MapBindingSample1Module
module. Select the JMSImport import. In the Properties view, select the
Binding tab.
344 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
52.In the JNDI Lookup Name text field for the Connection enter
jms/sampleBindingQCF (Figure 11-63).

Figure 11-63 Queue connection factory JNDI name

53.Still in the Properties view, select the JMS Destinations tab and expand the
Send Destination Properties.

54.In the JNDI Lookup Name text field enter jms/JMSImportOut (Figure 11-64).

Figure 11-64 Queue JNDI name

55.Save the module.

56.Deploy the module to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add MapBindingSample1ModuleApp.
 Chapter 11. Developing integration logic using mediation modules 345

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
d. Click Finish.

57.Right-click the MapBindingSample1Module in the Business Integration view
and select Test → Test Module.

58.Right click the Invoke event in the Events view and click Remove.

59.Click the Attach icon in the test view to create an Attach, then click Continue
(Figure 11-65).

60.Select your WebSphere Enterprise Service Bus server in the Deployment
Location window and click Finish.

Figure 11-65 Attached test client

61.Open the Physical Resources view by right-clicking on the
MapBindingSample1Module module and selecting Show Files.

62.Right-click the SOAPHTTPExport_SendBookHttp_Service.wsdl file in the
MapBindingsSample1Module folder and select Web Services → Test with
Web Services Explorer. The Web Service Explorer opens in a Web Browser
view (Figure 11-66 on page 347).
346 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-66 Web service explorer start view

63.Click the sendBook operation link.

64.Click the Add link next to title (Figure 11-67).

Figure 11-67 Add input parameter in the Web service explorer

65.Enter any text in the Values text box and click Go (Figure 11-68 on page 348).
 Chapter 11. Developing integration logic using mediation modules 347

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-68 Web service explorer test settings

66.Switch to the Test view. You should see the request sent from the export to
the import (Figure 11-69).

Figure 11-69 Test result

67.In the Servers view, right-click your WebSphere Enterprise Service Bus
server and select Run administrative console and log in.

Attention: Although the request is only sent once from the export to the
import, the attached test tool displays it twice.
348 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
68.Select Service integration → Buses →
SCA.APPLICATION.esbCell.Bus → Destinations → JMSImportOut →
Queue points →
JMSImportOut@esbNode.server1-SCA.APPLICATION.esbCell.Bus.

69.Click on the Runtime tab. Current message depth should show 1
(Figure 11-70).

Figure 11-70 Output queue properties

70.Click on the Messages link under Additional Properties (Figure 11-71).

Figure 11-71 Output queue content

71.Click on the message identifier link. In the next screen click on the Message
body link. You should see the serialized business object containing your text
(Figure 11-72 on page 350).
 Chapter 11. Developing integration logic using mediation modules 349

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-72 Message content

72.Log out of the administrative console.

73.Switch to the test view. Right-click the Attach event and select Detach.

74.Remove the project from the server.

Congratulations you have successfully demonstrated how to build a module that
converts a request message to use a different transport protocol.

11.3.2 Request and response flows
In this sample, we will create a module to demonstrate a request and response
flow. The flows are implemented using mediation primitives.

The request flow is used to handle service request messages. In this example
the request flow will store information about the order in the correlation context.

The response flow is used to handle service response messages. In this sample
the response flow will log the order and confirmation ID.

This sample involves:

� Building a mediation module containing an import with a Web service binding.

� Implementing the request flow using an XSL Transform mediation.

� Implementing the response flow using a Message Logger mediation.
350 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
The completed sample invokes a book order Web service, which returns a
confirmation ID. The mediation module is used to log the book order and the
corresponding confirmation ID to a database.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to ReqResSample1Module and click Next.

c. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double clicking .

3. Rename Mediation1 to BookOrderMediation.

4. In the BookOrderResources project expand Web Service Ports. Drag and
drop BookOrderServiceSOAP onto the assembly diagram. The Component
Creation dialog will open (Figure 11-73).

Figure 11-73 Component creation

5. Select Import with Web Service Binding and click OK.

6. Rename Import1 to BookOrderServiceImport.

7. Right-click BookOrderMediation and select Add -> Interface.

8. Select the BookOrderService interface and click OK.

9. Wire BookOrderMediation to BookOrderServiceImport (Figure 11-74 on
page 352). When asked whether to add a reference to the mediation flow
component click Yes.
 Chapter 11. Developing integration logic using mediation modules 351

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-74 ReqResSample1Module

Now we are going to implement the BookOrderMediation flow component.

10.Right-click on BookOrderMediation and select Generate Implementation.

11.In the Generate Implementation dialog click OK to create the implementation
in the default location.

The Mediation Flow Editor displays two panels, the first one is used to map
operations in the interface to operations in the reference. The second panel is
used to implement the request and response flows.

12.In the Operation connections panel wire the order operation on the
BookOrderService interface to the order operation on the
BookOrderServicePartner reference (Figure 11-75).

Figure 11-75 Operation connections

The request flow will use the correlation context to store the book order from the
request message. Using the correlation context makes the book order available
to the response flow.

13.Click on BookOrderService_order_Input, and click the Details tab in the
Properties view.
352 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
14.Next to Correlation context click the Browse button (Figure 11-76 on
page 353).

Figure 11-76 Correlation context browse

Now we need to choose what type of business object we will store in the
correlation context.

15.In the Data Type Selection dialog choose the BookOrder data type and click
OK (Figure 11-77).

Figure 11-77 Data type selection

16.Add an XSLTransform mediation primitive to the request flow by using .

17.Wire the request flow (Figure 11-78 on page 354).
 Chapter 11. Developing integration logic using mediation modules 353

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
a. Wire BookOrderService_order_Input to the in terminal of
XSLTransform1.

b. Wire the out terminal of XSLTransform1
BookOrderServicePartner_order_Callout.

Figure 11-78 Request flow

18.Click on XSLTransform1 and click the Details tab in the Properties view.

19.In the Root drop down menu select / (Figure 11-79).

20.Click the New button.

Figure 11-79 Creating an new mapping

21.In the New XSLT Mapping dialog click Finish.

22.In the XML Map Editor create the mapping (Figure 11-80 on page 355).

a. Expand the source and target tns:smo tree.

b. Select headers in both the source and target panels.

c. Right-click on headers in the source panel and select Match Mapping.

d. Select body in both the source and target panels.

e. Right-click on body in the source panel and select Match Mapping.

f. In the source panel select body -> order -> bookOrder -> book.
354 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
g. In the target panel select context -> correlation -> book.

h. Right-click on book in the source panel and select Match Mapping.

i. In the source panel select body -> order -> bookOrder -> quantity.

j. In the target panel select context -> correlation -> quantity.

k. Right-click on quantity in the source panel and select Create Mapping.

l. In the source panel select body -> order -> bookOrder -> customerId.

m. In the target panel select context -> correlation -> customerId.

n. Right-click on customerId in the source panel and select Create
Mapping.

o. Save and close the mapping file.

Figure 11-80 Mapping book order to the context
 Chapter 11. Developing integration logic using mediation modules 355

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
23.In the Properties view click the Regenerate XSL button.

24.When the XSL regenerated dialog appears click OK.

The mapping file we created mapped the headers and body of the incoming
message directly to headers and body of the outgoing message. We also
mapped the contents of the book order in the incoming message to the
correlation context.

Now we create the response flow that will retrieve the book order object from the
correlation context and log it with the confirmation id from the response
message.

25.In the Mediation Flow Editor, click on the Response tab.

26.Add a Message Logger mediation primitive to the response flow using .

27.Click MessageLogger1 and select the Details tab in the Properties view.

28.From the Root drop down menu select / (Figure 11-81).

Figure 11-81 Message logger properties

29.Wire the response flow (Figure 11-82).

a. Wire BookOrderServicePartner_order_CalloutResponse to the in
terminal of MessageLogger1.

b. Wire the out terminal of MessageLogger1 to
BookOrderService_order_InputResponse.
356 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-82 Response flow

30.Save the mediation flow and the module.

The module is now complete. The Integration Test Client is used to test the
module.

31.Deploy the module and the Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add BookOrderServiceEAR and ReqResSample1ModuleApp.

d. Click Finish.

32.Right-click on ReqResSample1Module and select Test -> Test Module.

33.Ensure BookOrderMediation is selected in the Component drop down
menu.

34.Select order from the Operation drop down menu.

35.Enter values for the BookOrder and click Continue (Figure 11-83).
 Chapter 11. Developing integration logic using mediation modules 357

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-83 Integration test client

36.In the Deployment Location dialog select the WebSphere Enterprise Service
Bus server and click Finish.

37.A confirmation ID will be returned and displayed

The module has been tested, now lets check the logging database for the
message.

38.In the Servers view right click the WebSphere Enterprise Service Bus server
and click Stop. This unlocks the logging database so we can open it for
viewing.

39.Run the Cloudscape viewer cview.bat which is available in the
<WID_INSTALL>\runtimes\bi_v6\cloudscape\bin\embedded directory.

40.Click on File -> Open and open the CloudScape database EsbLogMedDB
which is in the directory <WID_INSTALL>\pf\esb\databases.

41.Expand Tables and select MSGLOG.

42.Click on Data tab to show the records in the table (Figure 11-84).
358 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-84 CloudScape database MSGLOG table

43.Select the message in the MESSAGE column, and click on the Text Editor
icon (Figure 11-85).

Figure 11-85 Text Editor to view message

44.You should see the context of the Service Message Object contains the
BookOrder and the body contains the confirmationId (Figure 11-86).
 Chapter 11. Developing integration logic using mediation modules 359

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-86 Message logged in the database

Congratulations, you have successfully created a module that demonstrates a
request and a response flow.

45.Remove the projects from the test server and close Cview.

11.3.3 Fault handling
This sample demonstrates how to handle faults in a mediation flow.

A fault occurs when an exception is raised and thrown in a service. We need two
basic elements to illustrate fault handling:

1. An interface that includes a fault as part of its definition

2. A component that raises an exception of the kind defined by the fault.

This sample involves:
360 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
� Building a mediation module containing an import with a Web service binding.

� Implementing a mediation flow component to handle fault messages.

� Modifying a Web service to throw an exception, creating a fault message.

The completed sample demonstrates an attempt to call a service that creates a
new profile. The request fails and the fault condition is handled by the mediation
module.

1. First expand BookOrderResources, and Interfaces and open the
ProfileService interface by double-clicking on it. Notice that both the add and
update operations define a fault as part of the interface, as shown in
Figure 11-87. Thus, our first requirement is met, and we will be using this
interface and the ProfileService Web service in the remainder of this sample.

Figure 11-87 Profile service interface includes fault definitions

2. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to FaultSample1Module and click Next.

c. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

3. Open the module in the Assembly Editor by double clicking .

4. Rename Mediation1 to HandleFaultMediation, as shown in Figure 11-88.
 Chapter 11. Developing integration logic using mediation modules 361

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 11-88 HandleFaultMediation

5. Right click HandleFaultMediation and select Add -> Interface.

6. Choose the ProfileService interface and click OK.

7. Right click HandleFaultMediation and select Add -> Reference.

8. Choose the ProfileService interface and click OK. The
HandleFaultMediation should now appear as shown in Figure 11-89 on
page 362.

Figure 11-89 HandleFaultMediation component

9. Save the module.

Now we have a mediation flow component with an interface and a reference lets
generate the mediation flow.

1. Right click HandleFaultMediation and select Generate Implementation.

2. Click OK to store the implementation in the default folder. This opens the
Mediation Flow editor.

3. In the Operation connections section of this view, wire the add method on the
ProfileService Interface to the add method of the ProfileServicePartner
Reference (Figure 11-90).
362 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
Figure 11-90 Operation connection

4. In the request flow, wire ProfileService_add_Input to the input terminal of
ProfileServicePartner_add_Callout, as shown in Figure 11-91 on page 363.

Figure 11-91 Request flow wiring

5. Click the Response tab, and in the response flow wire
ProfileServicePartner_add_CalloutResponse to the input terminal of
ProfileService_add_InputResponse.

6. Wire ProfileServicePartner_CalloutFault to the input terminal of
ProfileService_InputFault. Your response flow should look like Figure 11-92

Figure 11-92 Response flow wiring

7. Save the mediation flow.

8. Expand the BookOrderResources library in the Business Integration view,
and the Web Service Ports.
 Chapter 11. Developing integration logic using mediation modules 363

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
9. Drag and drop the ProfileServiceSOAP from the Business Integration view
into the assembly diagram of the FaultSample1Module module.

10.This will open the Component Creation window. Select Import with Web
Service Binding and click OK.

Figure 11-93 Component creation selection

11.Select the newly created import Import1 in the assembly diagram and
rename it to ProfileServiceImport.

12.Wire the WSDL reference from the HandleFaultMediation to the interface on
ProfileServiceImport. Your assembly diagram should match Figure 11-94.

Figure 11-94 FaultSample1Module assembly diagram

13.Save the mediation module.

14.Open the Physical Resources view in the Business Integration perspective by
right-clicking on any module and selecting Show Files.
364 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
15.Expand ProfileService, then JavaSource, then BookOrderResources, as
shown in Figure 11-95 on page 365.

Figure 11-95 Select the web service java implementation

16.Open ProfileServiceSOAPImpl.java, by double-clicking on it.

17.Look at the code, and notice the add method throws two exceptions. The one
we are interested in is the BookOrderResources.Profile exception.

18.At the bottom of the add method, comment out the following line of code:

return confirmation;

19.Add the following line of code just before the return statement:

throw profile;

20.Make sure the code matches that in Example 11-4.

Example 11-4 add method of ProfileServiceSOAPImpl

public BookOrderResources.Confirmation add(BookOrderResources.Profile profile)
throws java.rmi.RemoteException, BookOrderResources.Profile {
 String id = Integer.toString(new Random().nextInt(100));
 while (profiles.containsKey(id)) {
 id = Integer.toString(new Random().nextInt(100));
 }
 profiles.put(id, profile);
 Confirmation confirmation = new Confirmation();
 confirmation.setId(id);
 throw profile;
 //return confirmation;
 Chapter 11. Developing integration logic using mediation modules 365

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
 }

21.Save the updated Java class.

We are now ready to test the mediation module. We use the Integration Test
Client to perform the test. Follow these steps:

1. Start your WebSphere Enterprise Service Bus server.

2. Deploy the module and the Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add ProfileServiceEAR and FaultSample1ModuleApp.

d. Click Finish.

3. In the Business Integration view, right click FaultSample1Module and select
Test -> Test Module.

4. Set the Component to HandleFaultMediation.

5. Select the add operation from the Operation drop down menu.

6. Enter any test data that you like as shown in Figure 11-96.

Figure 11-96 Test input
366 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.1.fm
7. Click Continue.

8. Select your WebSphere Enterprise Service Bus server and click Finish in the
Deployment Location dialog

9. You will see the mediation flow returns the add_fault as shown in
Figure 11-97.

Figure 11-97 Fault returned

10.Notice the fault data returned is identical to the input data that was supplied,
as shown in Figure 11-98 on page 367.

Figure 11-98 Fault data

Congratulations you have successfully built and tested a mediation module that
properly handles a fault condition from a Web service.

11.Remove the projects from the test server.
 Chapter 11. Developing integration logic using mediation modules 367

7212ch09-development-9.1.fm Draft Document for Review May 4, 2006 3:20 pm
Note: In this sample when we modified the Web service to throw the
exception, we took a very simple approach. More commonly the logic in the
Web service would be such that it would try the add operation, and if it failed,
the exception would be thrown.

Note: In this sample the fault data was not very descriptive as to the cause of
the error. More commonly another business object would be built to contain
detailed information about the fault condition, and would be used in the
interface definition.
368 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Chapter 12. Developing mediation logic
using mediation primitives

This chapter provides step-by-step instructions for using each of the mediation
primitives provided by WebSphere Enterprise Service Bus. These are:

� XSL Transformation mediation primitive
� Database Lookup mediation primitive
� Message Filter mediation primitive
� Message Logger mediation primitive
� Stop mediation primitive
� Fail mediation primitive
� Custom mediation primitive

These development examples assume you have configured your WebSphere
Integration Developer workspace as described in Chapter 10, “Preparing for the
development examples” on page 271.

You may find it useful to refer to Chapter 7, “WebSphere Integration Developer
key concepts and common tasks” on page 153 for more detailed information on
how to perform specific tasks in WebSphere Integration Developer.

You can import completed Project Interchange projects for each mediation
primitive development example from the additional material supplied with this
redbook in the \MediationPrimitives\Solutions directory.

12
© Copyright IBM Corp. 2006. All rights reserved. 369

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
12.1 XSL Transformation mediation primitive
This sample demonstrates how to use an XSL Transformation mediation
primitive to map messages between two incompatible interfaces.

The XSL Transformation mediation primitive uses XSL stylesheets to transform
the Service Message Object received on its input terminal. The transformed
message is then output to the output terminal.

This sample involves:

� Creating a mediation module to communicate with a Web service.

� Implementing a mediation flow component using an XSL Transformation
mediation primitive.

� Testing the module using the Integration Test Client.

The completed sample demonstrates a client making a request to create a new
customer profile. The mediation module converts this request to the required
format and invokes a Web service that creates a profile. The client receives
confirmation that a customer profile has been created.

Perform the following:

1. Create a new Mediation Module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to XSLTSample1Module and click Next.

c. In the Select Required Libraries dialog tick the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double-clicking .

3. Rename the component Mediation1 to CustomerMediation (Figure 12-1).

Figure 12-1 CustomerMediation component

4. Add the CustomerService interface to CustomerMediation.

a. Right-click CustomerMediation and select Add -> Interface.
370 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
b. Select the CustomerService interface and click OK (Figure 12-2).

Figure 12-2 Adding CustomerService interface to mediation flow component

5. Add the ProfileService interface as a reference to CustomerMediation.

a. Right-click CustomerMediation and select Add -> Reference.

b. Select the ProfileService interface and click OK (Figure 12-3).
 Chapter 12. Developing mediation logic using mediation primitives 371

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-3 Adding ProfileService reference to mediation flow component

6. Right-click CustomerMediation and select Generate Implementation. In
the Generate Implementation dialog, click OK. This will open the Mediation
Flow editor.

7. Wire the addCustomer operation on the CustomerService interface to the
add operation on the ProfileService reference (Figure 12-4).

Figure 12-4 Wiring operations

8. Add an XSL Transformation primitive to the request flow (Figure 12-5).
372 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-5 XSL Transformation primitive

9. Wire the request flow (Figure 12-6).

a. Wire CustomerService_addCustomer_Input to the XSLTransformation1
in terminal.

b. Wire the XSLTransformation1 out terminal to
ProfileServicePartner_add_Callout.

Figure 12-6 Wiring primitive terminals

10.Select XSLTransformation1 and click the Details tab in the Properties view.

11.Click the New button to create a new mapping file (Figure 12-7).

Figure 12-7 Create new mapping file

12.Leave the message types unchanged (Figure 12-8). We do not need to
specify them because the terminals in the mediation primitive were already
wired and their message types assigned. Click Finish.
 Chapter 12. Developing mediation logic using mediation primitives 373

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-8 Specify message types

13.Now we will graphically develop the XSL Transformation by mapping
elements from the source SMO to the target SMO. Expand the source and
target messages in order to see all individual components (Figure 12-9).

Figure 12-9 Source and target message types

14.Drag the name attribute of the customer element to the name attribute of the
profile element.

15.Drag the street attribute of the customer element to the street attribute of the
address element. The address element is a child of the profile element.
374 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
16.Drag all other attributes from the customer source element until the mapping
is complete and all attributes have an associated source and target
(Figure 12-10).

Figure 12-10 Complete mapping

17.Save and close the mapping file.

18.Back in the Mediation Flow editor, on the Details tab of the Properties view
click the Regenerate XSL button (Figure 12-11).

Figure 12-11 Regenerate XSL

19.Click OK on the confirmation pop-up window. The Associated XSL field will
be populated (Figure 12-12).
 Chapter 12. Developing mediation logic using mediation primitives 375

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-12 XSL Generation complete

20.Now click the Response tab of the Mediation Flow editor’s center pane to
compose the response flow.

21.Add an XSL Transformation primitive to the response flow.

22.Wire the response flow (Figure 12-13).

a. Wire ProfileServicePartner_add_CalloutResponse to the
XSLTransformation1 in terminal.

b. Wire the out terminal of XSLTransformation1 to
CustomerService_addCustomer_InputResponse.

Figure 12-13 Wiring the response flow

23.Click on XSLTransformation1 and in the Properties view select the Details
tab.

Important: Every time you edit the XSL mapping you must click the
Regenerate XSL button.
376 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
24.Create a new mapping file by clicking on the New button, leave the default
message types, and click Finish.

25.Map the id attribute of the profileId element on the source SMO to the
customerId attribute on the target SMO (Figure 12-14).

Figure 12-14 Response flow mapping

26.Save and close the XSL Transformation.

27.Regenerate the XSL mapping file by clicking the Regenerate XSL button.

28.Save and close the mediation flow editor.

29.Add the ProfileService Web service as an import component on the
XSLT1Sample1Module assembly diagram, and wire it to the
CustomerMediation component as follows:

a. In the Business Integration view, expand the BookOrderResources library.
Locate ProfileServiceSOAP under Web Service Ports and drag it into the
assembly diagram.

b. In the Component Creation dialog box choose Import with Web Service
Binding and click OK.

c. Rename the import to ProfileServiceImport.

d. Wire the reference on the CustomerMediation component to the interface
on the ProfileServiceImport component (Figure 12-15).

e. Save the assembly diagram.
 Chapter 12. Developing mediation logic using mediation primitives 377

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-15 Mediation flow component wired to web service import

Now we are going to test our mediation using the Integration Test Client.

30.Deploy the module and Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add ProfileServiceEAR and XSLTSample1ModuleApp.

d. Click Finish.

31.In the Business Integration view, right-click the XSLTSample1Module project
and select Test → Test Module.

32.On the Events tab of the Integration Test Client verify the Detailed Properties
are correct (Figure 12-16).

a. Ensure the Component is set to CustomerMediation.

b. Ensure the Interface is set to CustomerService.

c. Select addCustomer from the Operation drop down menu.

33.Populate the message data (Figure 12-16) and click Continue.

Note: By testing the module instead of the component we suppress all
emulation.
378 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-16 Test component event

34.In the Deployment Location dialog select WebSphere ESB Server v6.0 and
click Finish (Figure 12-17).

Figure 12-17 Deployment location
 Chapter 12. Developing mediation logic using mediation primitives 379

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
35.The response from the ProfileService Web service is a Confirmation message
containing an id. We mapped this id attribute to our customerId string. We will
see the response containing this customerId in the Return parameters pane
(Figure 12-18).

Figure 12-18 Return parameters

Congratulations! You successfully built and tested a mediation flow that
transforms both the request and the response messages between two
incompatible interfaces.

36.Once the testing is complete remove the projects from the server.

12.2 Database Lookup mediation primitive
This sample demonstrates how to use a Database Lookup mediation primitive to
update a message with a value from a database.

The Database Lookup mediation primitive is used to search for values in a
database. It takes a key which will be part of the Service Message Object and
searches for that key in a database. If the key is found then a value associated
with it is returned, and this can then be used to update the Service Message
Object before forwarding it on.

This sample involves:

� Creating a Cloudscape database containing keys and values.

� Building a mediation module containing an import with a Web service binding.

� Implementing a mediation flow component using a Database Lookup
mediation primitive.

� Testing the module using the Integration Test Client.
380 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
The completed sample invokes a book order Web service, which returns a
confirmation ID. The mediation module is used to add a country to the
description of the book, contained in the book order, before forwarding it to the
Web service.

Perform the following:

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to DatabaseLookupSample1Module and click Next.

c. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double-clicking .

3. Rename mediation1 to RareBookLookupMediation. (Figure 12-19 on
page 381)

Figure 12-19 RareBookLookupMediation

4. Right-click on RareBookLookupMediation, and select Add -> Interface.

5. Choose the BookOrderService interface then click OK.

6. Right-click on RareBookLookupMediation, select Add -> Reference.

7. Choose the BookOrderService reference then click OK.

8. In the BookOrderResources project, under Web Service Ports, drag
BookOrderServiceSOAP onto the Assembly Editor palette.

9. Select an Import with Web service binding and click OK.

10.Rename the import to BookOrderService.

11.Wire RareBookLookupMediation to BookOrderService (Figure 12-20 on
page 382).
 Chapter 12. Developing mediation logic using mediation primitives 381

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-20 RareBookLookup Mediation Flow Component

12.Save the module.

We need to create a database of rare books for the DatabaseLookup mediation
primitive to search.

13.Run the Cview.bat tool, this can be found in

<WID_INSTALL>/runtimes/bi_v6/cloudscape/bin/embedded

14.Create a new database called BookOrderDatabase (Figure 12-21 on
page 383) and add a table to it.

a. Click File -> New -> Database, name the database BookOrderDatabase
and click Directory to specify where the database will be created. Click
OK.

b. Create a new table called RAREBOOKS

c. Create a column called BOOKID of type VARCHAR and length 10.

d. Create a column called LOCATION of type VARCHAR and length 100.

e. Click OK to save the table.

Note: Remember where you create the database as we will need to refer to it
later.
382 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-21 RAREBOOKS Database Table

15.Switch to the Data tab.

16.Add BookId’s 1, 2, 3, 4 with locations of USA, CHINA, GERMANY, UK respectively
(Figure 12-22 on page 384).
 Chapter 12. Developing mediation logic using mediation primitives 383

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-22 BookOrderDatabase

17.Click OK and close Cview.

For the Database Lookup primitive to access the database we need to define a
data source on the server.

18.In WebSphere Integration Developer, in the Server view, right-click your
WebSphere Enterprise Service Bus server and select Run administrative
console.

19.Log in to the console and click Resources -> JDBC Providers.

20.Choose the Server radio button and click Apply. This will show the JDBC
providers defined on our server (Figure 12-23 on page 385).
384 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-23 JDBC Providers

21.Click Cloudscape JDBC Provider.

22.Click Data sources.

23.Press the New button to create a new data source (Figure 12-24 on
page 386).

a. Set Name to BookOrderDataSource.

b. Set JNDI name to jdbc/BookOrderDataSource.

c. Set Database name to the location of your database, for example:

C:\WID\runtimes\bi_v6\cloudscape\databases\BookOrderDatabase
 Chapter 12. Developing mediation logic using mediation primitives 385

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
.

Figure 12-24 BookOrder DataSource

24.Click OK and save the changes.

Now we have the database and data source, we can create the mediation flow.

25.In the Assembly Diagram editor, right-click on RareBookLookupMediation
and select Generate Implementation.
386 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
26.Click OK to store the mediation flow in the default location. The Mediation
Flow editor will open.

27.Under Operation connections, connect the order operation on the
BookOrderService interface to the order operation on the
BookOrderServicePartner reference (Figure 12-25 on page 387).

Figure 12-25 Operation connections

We use a DatabaseLookup mediation primitive to check for a key in the
database. The key can be defined as any part of the message. If the key is
found, we update the message with the value associated with that key and the
message is passed to the default output terminal. If the key is not found the
message is unmodified and passed to the KeyNotFound output terminal.

28.Add a Database Lookup mediation primitive to the palette by using .

29.Rename it to RareBookLookup.

30.Wire the request flow (Figure 12-26).

a. Wire BookOrderService_order_Input to the in terminal of
RareBookLookup.

b. Wire the out terminal and the KeyNotFound terminal of RareBookLookup
to BookOrderServicePartner_order_Callout.

Figure 12-26 RareBookLookup mediation flow
 Chapter 12. Developing mediation logic using mediation primitives 387

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
31.On the Details tab of RareBookLookup properties panel enter the following
settings (Figure 12-27 on page 389).

a. Data source name: jdbc/BookOrderDataSource

b. Table name: RAREBOOKS

c. Key column name: BOOKID

d. Click the Custom XPath button, enter Key path
/body/order/bookOrder/book/id and click OK.

e. Add the Data element:

i. Value column name: LOCATION

ii. Message value type: java.lang.String

iii. Message element: /body/order/bookOrder/book/description
388 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-27 Database Lookup mediation primitive properties

32.Click the Response tab, and in the response flow wire
BookOrderServicePartner_order_CalloutResponse directly to
BookOrderService_order_InputResponse (Figure 12-28 on page 390).
 Chapter 12. Developing mediation logic using mediation primitives 389

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-28 Repsonse Flow

33.Save the mediation flow component and the module.

The development of the mediation module is complete. Now we test the module
using the Integration Test Client.

34.In the Request view, right-click on
BookOrderServicePartner_order_Callout and select Add Breakpoint
(Figure 12-29).

Figure 12-29 Adding a breakpoint

Note: By adding a breakpoint to BookOrderServicePartner_order_Callout
the flow will stop when the message reaches this point and the contents
will be displayed. This allows us to view the changes made by the
DatabaseLookup mediation primitive.
390 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
35.Right-click on the WebSphere Enterprise Service Bus server and select
Debug.

36.Deploy the module and the Web service.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add BookOrderServiceEAR and DatabaseLookupSample1Module.

d. Click Finish.

37.In the Business Integration view, right-click on
DatabaseLookupSample1Module and click Test -> Test Module to open
the Integration Test Client.

38.Select the RareBookLookupMediation component and the order operation
from the drop down menus.

39.Enter a book ID of 1 (Figure 12-30 on page 391).

Figure 12-30 Testing DatabaseLookupSample1Module

Note: If the server is running you will need to stop it now.
 Chapter 12. Developing mediation logic using mediation primitives 391

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
40.Press Continue.

41.Select the WebSphere Enterprise Service Bus server and press Finish.

42.This will prompt open the Debug perspective. In the variables view expand
the body of the message to check the value from the database has been
added to the description (Figure 12-31 on page 392).

Figure 12-31 Debugging DatabaseLookupSample1module

43.Click the resume button to continue the flow. A confirmation message is
returned.

Try using values 2, 3 and 4 for the book ID to see other values from the database.

Try setting the book ID to a value we know isn’t in the database such as x and
running the test again. You will see the purple tick on the wire from the
KeyNotFound output terminal instead of the default output terminal
(Figure 12-32).
392 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-32 Database Lookup KeyNotFound

44.Once the testing is complete remove the projects from the server.

Congratulations, you have successfully built and tested a mediation module
containing a DatabaseLookup mediation primitive.

12.3 Message Filter mediation primitive
This sample demonstrates how to create a Message Filter mediation primitive to
route messages based on message content.

The Message Filter mediation primitive routes messages based on conditions
that are defined on it’s out terminals. Multiple out terminals can be defined and
each has an XPath expression associated with it. If the Service Message Object
entering the primitive satisfies the XPath expression the message may be routed
to that terminal. Messages may be routed to the first terminal to match it’s
expression or to all terminals that match their expressions.

This sample involves:

� Building a mediation module containing two imports with a Web service
bindings.

� Implementing the request flow using a Message Filter mediation primitive.

� Testing the module using the Integration Test Client.

The completed sample invokes a book order Web service, which returns a
confirmation ID. The mediation module is used to check for a specific bookid and
route book orders using that id to a rare-book ordering service.

1. Create a new mediation module.

Note: The Database Lookup mediation primitive is commonly used in
conjunction with the Message Filter mediation primitive. Using the
DatabaseLookup a value can be obtained from a database and stored in the
transient or correlation context. The MessageFilter can then filter messages
using this value by defining an XPath expression to the context.
 Chapter 12. Developing mediation logic using mediation primitives 393

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to MessageFilterSample1Module and click Next.

c. In the Select Required Libraries dialog tick the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double-clicking .

3. Rename Mediation1 to FilterRareOrdersMediation (Figure 12-33).

Figure 12-33 FilterRareOrdersMediation

4. Right-click FilterRareOrdersMediation and select Add -> Interface.

5. Select the BookOrderService interface and click OK.

6. In this example we are going to use Java components to represent Web
services. They will return a unique string so we can identify which service was
invoked. Add a Java component to the assembly editor by using .

7. Rename it to StandardBookOrderService.

8. Add another Java component to the palette and rename it to
RareBookOrderService (Figure 12-34).

Figure 12-34 Adding Java components to MessageFilterSample1Module

9. Wire FilterRareOrdersMediation to StandardBookOrderService.
394 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
10.In the Add Reference dialog select BookOrderService and click OK.

11.Wire FilterRareOrdersMediation to RareBookOrderService.

12.On the Add Reference dialog select BookOrderService and click OK
(Figure 12-35).

Figure 12-35 Wired Java Components in MessageFilterSample1Module

13.Click FilterRareOrdersMediation and in the Properties view, select the
Details tab.

14.Expand the References tree.

15.Click on the BookOrderServicePartner reference and set its name to
StandardBookOrderServicePartner.

16.Click on the BookOrderServicePartner1 reference and set its name to
RareBookOrderServicePartner (Figure 12-36 on page 396).

Note: Renaming the references makes it clearer when wiring the mediation
flow.
 Chapter 12. Developing mediation logic using mediation primitives 395

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-36 Renaming references

17.In the assembly diagram right-click on StandardBookOrderService and
select Generate Implementation.

18.In the Generate Implementation dialog click OK to use the default package.

19.The Java editor displays the content of StandardBookOrderImpl.java. Find
the order method and replace it with Example 12-1.

Example 12-1 Java code for order method in StandardBookOrderImpl.java

public String order(DataObject bookOrder) {
return "Confirmation of Standard book order";

}

20.Save and close StandardBookOrderImpl.java.

21.Right-click on RareBookOrderService and select Generate
Implementation.

22.In the Generate Implementation dialog click OK to use the default package.

23.The Java editor displays the content of RareBookOrderImpl.java. Find the
order method and replace it with Example 12-2.

Example 12-2 Java code for order method in RareBookOrderImpl.java

public String order(DataObject bookOrder) {
return "Confirmation of Rare book order";

}

24.Save and close RareBookOrderImpl.java.

We have two book ordering services but only need to invoke one. To decide
which service handles the request a Message Filter mediation is used.
396 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
25.Right-click FilterRareOrdersMediation and select Generate
Implementation.

26.In the Generate Implementation dialog click OK to create the implementation
in the default location. The Mediation Flow Editor is displayed.

27.In the Operation connections panel wire the order operation on
BookOrderService to the order operation on
StandardBookOrderServicePartner.

28.Also wire the order operation on BookOrderService to the order operation on
RareBookOrderServicePartner (Figure 12-37).

Figure 12-37 Wiring operations

29.Add a Message Filter mediation primitive to the mediation flow by using .

30.Rename the Message Filter to FilterRareBooks.

When first created the Message Filter mediation primitive only has one output
terminal. This default terminal is fired when a message does not match the
requirements specified on the other output terminals. Therefore the default
behavior of the Message Filter mediation primitive is to forward messages. We
need to check whether to use the standard or rare book service so another
output terminal is required.

31.Right-click on FilterRareBooks and select Add Output Terminal.

32.On the New Dynamic Terminal dialog set the Terminal name to RareBook and
click OK.

33.Wire the request flow (Figure 12-38 on page 398).

a. Wire BookOrderService_order_Input to the in terminal of
FilterRareBooks.

b. Wire the default terminal of FilterRareBooks to
StandardBookOrderServicePartner_order_Callout.
 Chapter 12. Developing mediation logic using mediation primitives 397

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
c. Wire the RareBook terminal of FilterRareBooks to
RareBookOrderServicePartner_order_Callout.

Figure 12-38 Wiring the request mediation flow

34.Save the mediation flow.

35.Click FilterRareBooks and in the Properties view, select the Details tab.

36.The default distribution mode is set to First. This will send the message to the
first output terminal that satifies its filter. Click the Add button, to add a filter.

37.Fill in the Add/Edit properties panel. (Figure 12-39)

a. Select the Terminal name to be RareBook

b. Set the Pattern field to /body/order/bookOrder/book[id="1"]

c. Click Finish.

Note: The error on FilterRareBooks indicates we need to define a filter for the
RareBook output terminal.

Note: This expression states that the RareBook output terminal will fire if the
id attribute of the book, contained in the BookOrder is equal to 1.
398 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-39 Adding a filter

38.Switch to the Response tab.

39.Wire the response flow (Figure 12-40 on page 399).

a. Wire StandardBookOrderServicePartner_order_CalloutResponse to
BookOrderService_order_InputResponse.

b. Wire RareBookOrderServicePartner_order_CalloutResponse to
BookOrderService_order_InputResponse.

Figure 12-40 Wiring the response flow

40.Save the mediation flow and the module.
 Chapter 12. Developing mediation logic using mediation primitives 399

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
The development of the mediation module is complete. Now we test the module
using the Integration Test Client.

41.Deploy the module to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add MessageFiterSample1Module.

d. Click Finish.

42.Right-click MessageFiterSample1Module and select Test Module. This
opens the Integration Test Client.

43.Ensure the Component is FilterRareOrdersMediation.

44.Select the order operation from the Operation drop down menu.

45.Set the book id to 5 (Figure 12-41 on page 400).

Figure 12-41 Testing MessageFilterSample1Module

Note: By entering a book ID of 5 we cause the expression on RareBook
terminal on the MessageFilter mediation primitive to be false. Therefore the
message is sent to the standard book order service.
400 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
46.Press the Continue button.

47.Select the WebSphere Enterprise Service Bus server and click Finish. The
response should look like (Figure 12-42 on page 401).

Figure 12-42 Response from bookid of 5

48.Repeat the test but use 1 as the book Id. You should see the response
coming back from the RareBookOrderService.

49.Once the testing is complete remove the project from the server.

Congratulations you have successfully built and tested a mediation module that
demonstrates the Message Filter mediation.

12.4 Message Logger mediation primitive
This sample demonstrates how the Message Logger mediation primitive is used
to store a message in a database.

The Message Logger mediation primitive is used to log Service Message Objects
to a database.

Note: On the Message Filter mediation primitive we can set the distribution
mode to All. This would fire all matching output terminals resulting in requests
being sent to multiple services. This in turn would result in multiple responses
being returned, and this would need to be handled by the response flow.
Remember only one response can be returned to the service consumer
otherwise a ServiceRuntimeExcpetion occurs.
 Chapter 12. Developing mediation logic using mediation primitives 401

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
This sample involves:

� Building a mediation module containing an import with a Web service binding.

� Implementing the request flow using a Message Logger mediation primitive.

� Testing the module using the Integration Test Client.

The completed sample invokes a book order Web service, which returns a
confirmation ID. The mediation module is used to log the book order sent to the
Web service.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to MessageLoggerSample1Module and click Next.

c. In the Select Required Libraries dialog tick the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double clicking .

3. Rename Mediation1 to LogMessageMediation (Figure 12-43).

Figure 12-43 LogMessageMediation

4. Right-click LogMessageMediation and select Add -> Interface.

5. Select the BookOrderService interface and click OK.

6. Right-click LogMessageMediation and select Add -> Reference.

7. Select the BookOrderService interface and click OK. (Figure 12-44 on
page 403).
402 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-44 LogMessageMediation flow component

8. Expand the BookOrderResources library in the Business Integration view
and select BookOrderServiceSOAP from Web Service Ports (Figure 12-45
on page 403).

Figure 12-45 Select BookOrderServiceSOAP

9. Drag and drop the BookOrderServiceSOAP into the assembly diagram of
the MessageLoggerSample1Module.

10.This will open the Component Creation window. Select Import with Web
Service Binding and click OK.

11.Rename Import1 to BookOrderServiceImport.

12.Wire the reference BookOrderServicePartner on LogMessageMediation to
the BookOrderServerInterface on the import BookOrderServiceImport
(Figure 12-46 on page 403).

Figure 12-46 Assembly Diagram
 Chapter 12. Developing mediation logic using mediation primitives 403

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
13.Save the module.

Now we have a mediation flow component with an interface and a reference, lets
generate the mediation flow.

14.Right-click LogMessageMediation and select Generate Implementation.

15.Click OK to store the implementation in the default folder. This opens the
mediation flow editor.

16.In the Operation connections section of this view, wire the order method on
the BookOrderService Interface to the order method of the
BookOrderServicePartner reference, as shown in Figure 12-47.

Figure 12-47 Operation connection

17.Add a Message Logger mediation primitive to the assembly editor by using
.

18.Rename it to LogMessage.

19.Wire the request flow (Figure 12-48).

a. Wire BookOrderService_order_Input to the in terminal of LogMessage.

b. Wire the out terminal of LogMessage to
BookOrderServicePartner_order_Callout.

Figure 12-48 Messagelogger mediation flow

20.Select LogMessage and in the Properties view, select the Details tab.
404 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
21.View the Data source name, the XPath expression selected to log and the
Transaction mode (Figure 12-49).

Figure 12-49 Messagelogger properties

This sample uses the default Cloudscape database EsbLogMedDB that is
configured with the complete installation. It is possible to log messages to other
relational databases using the Message Logger primitive. The
jdbc/mediation/messageLog data source will be already defined in WebSphere
Enterprise Service Bus.

The Root shows the XPath expression defining the data from the Service
Message Object to log to the database. This can be customized using the
Custom XPath button.

The default Transaction mode is set to Same. This will commit the message to
the database within the flow’s transaction. Setting the Transaction mode to New
will commit the message to the database immediately using a new transaction.

22.Click the Response tab in the mediation flow editor.

23.Wire BookOrderServicePartner_order_CalloutResponse to
BookOrderService_order_InputResponse (Figure 12-50).

Figure 12-50 Response flow

24.Save the mediation flow and the mediation module.
 Chapter 12. Developing mediation logic using mediation primitives 405

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
To test the flow we use the Integration Test Client to show the flow logging a
message to the database EsbLogMedDB.

25.Deploy the module and the Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add BookOrderServiceEAR and MessageLoggerSample1ModuleApp.

d. Click Finish.

26.Right-click MessageLoggerSample1Module and select Test -> Test
Module. This opens the Integration Test Client.

27.Set the Component to LogMessageMediation.

28.Select order from the Operation drop down menu.

29.Enter values for all the fields in the order operation (Figure 12-51).

Figure 12-51 Enter values for the order operation in the Integration Test Client

30.Click Continue.

31.Select the WebSphere ESB Server v6.0 server as deployment location and
click Finish.

32.The test should finish returning a confirmationId (Figure 12-52 on page 407).
406 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-52 Test result

33.Stop the WebSphere Enterprise Service Bus server to release the lock on the
EsbLogMedDB database.

34.Check the Cloudscape database to ensure the message is logged. This can
be done using a utility called cview.bat which is available in the directory:

<WID_INSTALL>/runtimes/bi_v6/cloudscape/bin/embedded

35.Run the utility cview.bat. Figure 12-53 shows the Cview utility startup.
 Chapter 12. Developing mediation logic using mediation primitives 407

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-53 Cview utility

36.Click File -> Open and open the Cloudscape database EsbLogMedDB
which is in the directory <WID_INSTALL>/pf/esb/databases.

37.This will open the database. Expand Tables and select MSGLOG.

38.Click on the Data tab to show the records in the table (Figure 12-54).
408 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-54 CloudScape database MSGLOG table

39.Select the message in the MESSAGE column and click on the Text Editor
icon (Figure 12-55).
 Chapter 12. Developing mediation logic using mediation primitives 409

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-55 Text Editor to view message

40.You should see the contents of the message logged to the database
(Figure 12-56).

Figure 12-56 Message logged in the database

41.Close the Cview tool.

42.Once the testing is complete remove the projects from the server.
410 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Congratulations you have successfully built and tested a mediation module that
uses a Message Logger primitive.

12.5 Stop mediation primitive
This sample demonstrates how the stop mediation primitive is used to stop a
flow, by consuming messages sent from an output or fault terminal of another
mediation primitive.

The Stop mediation primitive stops the flow through a mediation flow component.
If connected to a fault terminal of another primitive it will stop the flow and
suppress exceptions.

This sample involves:

� Building a mediation module containing an import with a Web service binding.

� Implementing the request flow using the Message Filter and Stop mediation
primitives.

� Testing the module using the Integration Test Client.

The completed sample invokes a profile creation Web service, which returns a
profile ID. The mediation module is used to only send valid profiles to the Web
service while ignoring invalid profiles.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to StopSample1Module and click Next.

c. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double clicking .

3. Rename Mediation1 to FilterValidProfilesMediation (Figure 12-57).
 Chapter 12. Developing mediation logic using mediation primitives 411

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-57 FilterValidProfilesMediation

4. Right-click FilterValidProfilesMediation and select Add -> Interface.

5. Select the ProfileService interface and click OK.

6. Right-click FilterValidProfilesMediation and select Add -> Reference.

7. Choose the ProfileService interface and click OK (Figure 12-58).

Figure 12-58 FilterValidProfiles Mediation Flow Component

8. In the BookOrderResources project expand Web Service Ports. Drag and
drop ProfileServiceSOAP onto the assembly editor. The Component
Creation dialog will open. Select Import with Web Service Binding and click
OK.

9. Wire FilterValidProfilesMediation to the import (Figure 12-59).

Figure 12-59 Stop Sample Module

10.Save the module.
412 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Now we have a mediation flow component with an interface and a reference lets
generate the mediation flow.

11.Right-click FilterValidProfilesMediation and select Generate
Implementation.

12.Click OK to store the implementation in the default folder. This opens the
mediation flow editor.

13.In the Operation connections section of this view, wire the add method on the
ProfileService interface to the add method of the ProfileServicePartner
reference. (Figure 12-60)

Figure 12-60 Operation connections

14.Add a Message Filter mediation primitive to the request flow using .

15.Rename the Message Filter mediation primitive to ValidProfileFilter.

16.Wire the request flow (Figure 12-61 on page 413).

a. Wire ProfileService_add_Input to the in terminal of ValidProfileFilter.

b. Wire the default terminal of ValidProfileFilter to
ProfileServicePartner_add_Callout.

Figure 12-61 Stop sample mediation flow

17.Right-click ValidProfileFilter and select Add Output Terminal.
 Chapter 12. Developing mediation logic using mediation primitives 413

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
18.Name the terminal InvalidProfile. Click OK.

19.Click on the new terminal and select the Details tab in the Properties view.

20.Click the Add button.

21.Fill in the filter properties (Figure 12-62).

a. Set Pattern to /body/add/profile[name=”null”].

b. Select InvalidProfile from the Terminal name drop down menu.

c. Click Finish.

Figure 12-62 InvalidProfile output terminal

22.Add a Stop mediation primitive to the request flow using .

23.Wire the InvalidProfile out terminal of ValidProfileFilter to the Stop mediation
primitive (Figure 12-63).

Figure 12-63 Completed Mediation Flow for Stop Sample 1

24.Click the Response tab in the mediation flow editor.

25.Wire the response flow (Figure 12-64 on page 415).

a. Wire ProfileServicePartner_add_CalloutResponse to
ProfileService_add_InputResponse.

b. Wire ProfileServicePartner_CalloutFault to ProfileService_InputFault.
414 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-64 Stop sample response flow

26.Save the mediation flow and mediation module.

To test the flow we use the Integration Test Client. This will show the flow being
stopped by the Stop mediation primitive.

27.Deploy the module and the Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add ProfileServiceEAR and StopSample1ModuleApp.

d. Click Finish.

28.Right-click the StopSample1Module project and select Test -> Test
Module.

29.Set the Component to FilterValidProfilesMediation.

30.Select the add operation from the Operation drop down menu.

31.Enter values into the request parameters table (Figure 12-65 on page 416).
 Chapter 12. Developing mediation logic using mediation primitives 415

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-65 Entering request parameters

32.Click Continue.

33.Select the WebSphere ESB Server v6.0 server as deployment location and
click Finish.

34.You will see a confirmation ID returned from the Web service (Figure 12-66 on
page 417).
416 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-66 Returned confirmation ID

35.Re-run the test but this time enter null into the name field (Figure 12-67 on
page 417).

Figure 12-67 Entering a null name into the Integration Test Client

36.Click Continue.
 Chapter 12. Developing mediation logic using mediation primitives 417

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
37.You will see the mediation flow is stopped and the profileId is null
(Figure 12-68 on page 418). The ProfileService Web service was not invoked.

Figure 12-68 Null profileId

38.Once the testing is complete remove the projects from the server.

Congratulations, you have successfully built and tested a mediation module that
uses a Stop mediation primitive.

Note: In this sample, if the default terminal of ValidProfileFilter is not
connected to a Stop mediation primitive the flow would behave in the same
way. However, using the Stop mediation primitive clarifies the intention of the
flow. It also removes the output terminal not connected warnings from
WebSphere Integration Developer.
418 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
12.6 Fail mediation primitive
This sample demonstrates how the Fail mediation primitive is used to raise a
FailFlowException.

The Fail mediation primitive stops the flow through a mediation flow component
and raises an exception. Any existing transaction will be rolled back and the
module throws a FailFlowException.

This sample involves:

� Building a mediation module containing an import with a Web service binding.

� Implementing the request flow using the Message Filter and Fail mediation
primitives.

� Testing the module using the Integration Test Client.

The completed sample invokes a profile creation Web service, which returns a
profile ID. The mediation module is used to only send valid profiles to the Web
service while raising an exception when a profile is invalid.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to FailSample1Module and click Next.

c. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double clicking .

3. Rename Mediation1 to CatchInvalidProfilesMediation (Figure 12-69).

Note: The Stop mediation primitive can also be wired to the fail terminal of
another primitive. In this case, if an exception occurs, the Stop primitive will
suppress it and the flow will stop cleanly.
 Chapter 12. Developing mediation logic using mediation primitives 419

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-69 CatchInvalidProfilesMediation flow component

4. Right-click CatchInvalidProfilesMediation and select Add -> Interface.

5. Select the ProfileService interface and click OK.

6. Right-click CatchInvalidProfilesMediation and select Add -> Reference.

7. Select the ProfileService interface and click OK (Figure 12-70).

Figure 12-70 Added interface and reference

8. In the BookOrderResources project expand Web Service Ports. Drag and
drop ProfileServiceSOAP onto the palette. The Component Creation dialog
will open. Select Import with Web Service Binding and click OK.

9. Wire CatchInvalidProfilesMediation to the import (Figure 12-59).

Figure 12-71 Wired Import

10.Save the module.
420 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Now we have a mediation flow component with an interface and a reference, let’s
generate the mediation flow.

11.Right-click CatchInvalidProfilesMediation and select Generate
Implementation.

12.Click OK to store the implementation in the default folder. This opens the
Mediation Flow Editor.

13.In the Operation connections section of this view, wire the add method on the
ProfileService interface to the add method of the ProfileServicePartner
reference (Figure 12-72 on page 421).

Figure 12-72 Operation connections

14.Add a Message Filter mediation primitive to the request flow using .

15.Rename the Message Filter mediation primitive to InvalidProfileFilter.

16.Wire the request flow (Figure 12-73).

a. Wire ProfileService_add_Input to the in terminal of InvalidProfileFilter.

b. Wire the default terminal of InvalidProfileFilter to
ProfileServicePartner_add_Callout.

Figure 12-73 Request flow

17.Right-click InvalidProfileFilter and select Add Output Terminal. Name the
terminal InvalidProfile. Click OK.
 Chapter 12. Developing mediation logic using mediation primitives 421

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
18.Click on the new InvalidProfile terminal and select the Details tab in the
Properties view.

19.Click on the Add button.

20.Fill in the filter properties (Figure 12-74)

a. Set Pattern to /body/add/profile[name=”null”].

b. Select InvalidProfile from the Terminal name drop down menu.

c. Click Finish.

Figure 12-74 InvalidProfile output terminal

21.Add a Fail mediation primitive to the request flow using .

22.Click on the Fail mediation primitive and in the Properties view, select the
Details tab.

23.Set the error message to Profile name is null (Figure 12-75 on page 422).

Figure 12-75 Setting the error message on a fail mediation primitive

24.Wire the InvalidProfile terminal to the in terminal of the Fail mediation
primitive. (Figure 12-76 on page 423)

Note: The Fail mediation primitive is found by expanding the Stop
mediation primitive icon.
422 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-76 Completed mediation flow for the Fail sample

25.Click the Response tab in the mediation flow editor.

26.Wire the response flow (Figure 12-64 on page 415).

a. Wire ProfileServicePartner_add_CalloutResponse to
ProfileService_add_InputResponse.

b. Wire ProfileServicePartner_CalloutFault to ProfileService_InputFault.

Figure 12-77 Response flow

27.Save the mediation flow and the mediation module.

To test the flow we use the Integration Test Client to check that when the name
field in the profile is set to null a FailFlowException is raised.

28.Deploy the module and the Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add ProfileServiceEAR and FailSample1ModuleApp.

d. Click Finish.

29.Right-click the FailSample1Module and select Test -> Test Module.

30.Set the Component to CatchInvalidProfilesMediation.

31.Select the add operation from the Operation drop down menu.
 Chapter 12. Developing mediation logic using mediation primitives 423

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
32.Enter values into the request parameters table (Figure 12-78 on page 424).

Figure 12-78 Enter values into request parameters

33.Click Continue.

34.You will see a profileId returned by the Web service (Figure 12-79 on
page 424).

Figure 12-79 Returned confirmation ID
424 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
35.Re-run the test, but this time enter null into the name field (Figure 12-80 on
page 425).

Figure 12-80 Entering a null name in the Integration Test Client

36.Click Continue.

37.You will see a FailFlowException is raised, containing the message we
defined (Figure 12-81 on page 426).
 Chapter 12. Developing mediation logic using mediation primitives 425

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-81 Testing the Fail mediation primitive

38.Once the testing is complete remove the projects from the server.

Congratulations, you have successfully created and tested a module containing
a Fail mediation primitive.

12.7 Custom mediation primitive
This sample demonstrates Custom mediation primitives. It also introduces the
use of the mediation flow’s correlation context.

The Custom mediation primitive allows the user to implement their own mediate
method using Java. The Custom mediation, like the other primitives, receives a
Service Message Object and returns a Service Message Object. It can be used
to perform tasks that cannot be performed by using the other mediation
primitives.

This sample involves:

� Building a mediation module containing an import.

� Implementing the request flow using an XSL Transform mediation primitive.

� Implementing the response flow using a Custom mediation primitive.

� Implementing the Custom mediation primitive using the JavaMail™ API and a
properties file.

Note: If a transaction is in progress, when the mediation flow is stopped by a
fail mediation primitive, the transaction is rolled back and the
FailFlowException is stored in the transient context.
426 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
� Testing the module using the Integration Test Client.

The completed sample emulates a book order Web service, which returns a
confirmation ID. The mediation module is used to persist the book order in the
correlation context and then once a response is received, a copy of the order
along with the confirmation ID is sent in an email.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to CustomSample1Module and click Next.

c. In the Select Required Libraries dialog check the BookOrderResources
library and click Finish.

2. Open the module in the Assembly Editor by double clicking .

3. Create a properties file to store the SMTP server host name.

a. In the Business Integration view, right-click the mediation module and
select New → Other from the context menu.

b. Expand Simple, select File and click Next.

c. Select CustomSample1Module as the parent folder, name the file
smtp_host.properties and click Finish.

d. The text editor will open. Type the SMTP server hostname key/value using
the format smtp_host=<servername>. Replace <servername> with the
hostname of your SMTP server (Example 12-3).

e. Save and close the file.

Example 12-3 smtp server hostname properties file

smtp_host=NA.relay.ibm.com

4. In the Business Integration view, expand CustomSample1Module, right-click
on Data Types and select New -> Business Object.

5. Set the Name to EmailCorrelationContext and click Finish.

6. Create the business object (Figure 12-82).

f. Click the Add Attribute button .

g. Set the name of the attribute to email_to.

h. Click the Add Attribute button .

i. Set the name of the attribute to bookname.

j. Save and close the business object.
 Chapter 12. Developing mediation logic using mediation primitives 427

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-82 Correlation context business object

7. In the assembly diagram right-click Mediation1 and select Add -> Interface.

8. Select the BookOrderService interface and click OK.

9. Right click Mediation1 and select Add -> Reference.

10.Select the BookOrderService interface and click OK.

11.Add an import into the assembly diagram using .

12.Wire Mediation1 to Import1. This will create a matching interface on the
import.

13.Right-click Import1 and choose Generate Binding → SCA Binding from the
context menu.

14.In the assembly diagram, right-click Mediation1 and select Generate
Implementation. Click OK to choose the default folder for implementation
location.

15.In the Operation connections panel wire the order operation from the
BookOrderService interface to the order operation on the
BookOrderServicePartner reference.

16.In the Mediation flow editor add an XSL Transformation mediation primitive to
the request flow using .

17.Wire the request flow (Figure 12-83).

a. Wire BookOrderService_order_Input to the in terminal of
XSLTransformation1.

b. Wire the out terminal of XSLTransformation1 to
BookOrderServicePartner_order_Callout.

Note: We will not use this import to invoke any service provider. We need
the Import to be present to successfully test the mediation flow component.
428 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-83 Operation connections and XSLT primitive

18.Specify the Correlation context business object (Figure 12-84).

a. Click the BookOrderService_order_Input.

b. Click the Details tab in the Properties view.

c. On the Correlation Context line click Browse.

d. Select the EmailCorrelationContext business object.

e. Click OK.

Figure 12-84 Correlation context object

19.Create a new XSL Transformation mapping.

a. Click the XSLTransformation1 primitive to select it.

b. Click the Details tab in the Properties view.

c. In the Root drop-down menu select /.
 Chapter 12. Developing mediation logic using mediation primitives 429

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
d. Click the New button.

e. Leave the input and output messages unchanged (orderRequestMsg) and
click Finish.

20.Define the XSL Mapping (Figure 12-85 on page 431).

a. Propagate the headers element by selecting the headers element on the
source SMO, then selecting the headers element on the target SMO.

b. Right-click the headers element in the source panel and select Match
Mapping from the context menu.

c. Propagate the body element by selecting the body element on the source
SMO, then selecting the body element on the target SMO.

d. Right-click the body element in the source panel and select Match
Mapping from the context menu.

e. Store the required values in the correlation context.

i. Drag body -> order -> bookOrder -> book -> title in the source SMO
to context -> correlation -> bookname in the target SMO.

ii. Drag body -> order -> bookOrder -> customerId in the source SMO
to context -> correlation -> email_to in the target SMO.

Note: In this sample we will use the customer’s e-mail address as the
customer id.
430 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-85 SMO Mapping

21.Save and close the XSL transformation.

22.Click the Regenerate XSL button on the mediation flow editor’s Details tab in
the Properties view.

At this point we have finished building our request flow and we have stored the
information we need in the correlation context. We can now start building the
response flow.

23.Click the Response tab in the Mediation Flow editor

24.Add a Custom mediation primitive to the response flow using .

25.Wire the response flow (Figure 12-86).
 Chapter 12. Developing mediation logic using mediation primitives 431

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
a. Wire BookOrderServicePartner_order_CalloutResponse to the in
terminal of CustomMediation1.

b. Wire the out terminal of CustomMediation1 to
BookOrderService_order_InputResponse.

Figure 12-86 Response flow

26.Click on CustomMediation1 and select the Details tab in the Properties view.

27.Click Define (Figure 12-87).

Figure 12-87 Define custom mediation

28.Make sure Create a new interface with implementation is selected and
click Next (Figure 12-88 on page 433).
432 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-88 Define custom mediation

29.At the Specify Message Types dialog select / as the message root and leave
the message types unchanged (Figure 12-89). Click Next.

Figure 12-89 Specify message types

30.At the Create a new interface screen verify the module name is
CustomSample1Module and click Next. You may specify a different folder in
which to create the new interface (Figure 12-90).
 Chapter 12. Developing mediation logic using mediation primitives 433

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-90 Create new interface

31.At the Generate Java Implementation screen choose Specify the
implementation manually as Java Component or Import in the Assembly
Editor, default Java implementation will not be generated (Figure 12-91).
Click Finish.

Figure 12-91 Generate Java implementation

32.Save the mediation flow. Review your mediation flow and compare it with
Figure 12-92.

Note: This creates a new Java SCA component which appears in the
assembly diagram.
434 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-92 Mediation flow

33.Save the assembly diagram. In the assembly diagram, you will see there is an
error on the Mediation1 mediation flow component. This is because you just
generated a new Java SCA component in your module and your assembly
needs to be synchronized to reflect this.

a. Right-click Mediation1 and select Merge Implementation.

b. Click OK on the next two dialog boxes.

c. Save the assembly diagram.

d. Now you should have no errors and a new SCA component will be wired
to your mediation flow component. This new component will implement the
custom mediation logic (Figure 12-93).
 Chapter 12. Developing mediation logic using mediation primitives 435

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 12-93 New SCA component created

34.Right-click the new Java SCA component CustomMediation1Partner and
select Generate Implementation from the context menu.

35.In the Generate Implementation window click OK.

36.The Java editor opens up. Insert the required imports as in Example 12-4.

Example 12-4 Class imports

import java.util.Date;
import java.util.Properties;
import java.util.ResourceBundle;

import javax.mail.*;
import javax.mail.internet.*;

import commonj.sdo.DataObject;
import com.ibm.websphere.sca.ServiceManager;
import com.ibm.websphere.sibx.smobo.ContextType;
import com.ibm.websphere.sibx.smobo.ServiceMessageObject;

37.Locate the mediate method and replace its implementation with the code in
Example 12-5

Example 12-5 mediate method implementation

public DataObject mediate(DataObject input1) {

/*
* get the smtp server host name from the properties file
*/
ResourceBundle bundle = ResourceBundle.getBundle("smtp_host");

Note: The entire code for this Java class can be found in the additional
material supplied with this redbook in the following location:

\MediationPrimitives\Resources\Custom\CustomMediation1Partner_1Impl.java
436 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
String smtp_host = bundle.getString("smtp_host");

/*
* get the book name and email address from the correlation context
*/
ServiceMessageObject smo = (ServiceMessageObject)input1;
ContextType ctx = smo.getContext();
DataObject correlationCtx = (DataObject)ctx.getCorrelation();
String bookname = correlationCtx.getString("bookname");
String email_to = correlationCtx.getString("email_to");

/*
* get the confirmation ID from the response message
* note that the 'order' operation will respond with an
* 'orderResponse' message from which we can retrieve
* the confirmationId string
*/
DataObject body = (DataObject)smo.getBody();
DataObject response = (DataObject)body.getDataObject("orderResponse");
String confirmation = response.getString("confirmationId");

/*
* create properties for the mail session get
* the mail session instance and send the email
* using the data items retrieved from the smo
*/
Properties props = new Properties();
props.put("mail.smtp.host", smtp_host);
Session session = Session.getInstance(props, null);
session.setDebug(true);
try {

MimeMessage msg = new MimeMessage(session);
msg.setFrom(new InternetAddress("service@itsobooks.com"));
msg.addRecipients(Message.RecipientType.TO,email_to);
msg.setSubject("Your book order confirmation");
msg.setSentDate(new Date());
StringBuffer buffer =

new StringBuffer("Hello from your bookstore!\n\n");
buffer.append("Your book: ").append(bookname)

.append(", has been ordered.\n");
buffer.append("Your order confirmation number is: ")

.append(confirmation);
msg.setText(buffer.toString());
Transport.send(msg);

} catch (MessagingException mex) {
System.out.println(mex.getMessage());

}
return input1;
 Chapter 12. Developing mediation logic using mediation primitives 437

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
}

38.Save the Java implementation.

39.Save the assembly diagram.

40.Deploy the module to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add CustomSample1ModuleApp.

d. Click Finish.

41.Right-click Mediation1 on the assembly diagram and select Test
Component.

42.Click on the Configurations tab of the Integration Test Client remove the
CustomMediation1Partner emulator (Figure 12-94).

When testing a component, the Integration Test Client tries to emulate every
reference out of the component but this particular one is the custom mediation
logic we just defined in the mediate method.

Figure 12-94 Remove mediation partner emulator

43.Click the Events tab select order from the Operation drop down menu.

44.Populate the bookOrder data items (Figure 12-95).

Note: Make sure customerId is a valid E-mail address.
438 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.3.fm
Figure 12-95 Invoking the book order service

45.Click Continue.

46.Select WebSphere ESB Server v6.0 as the Deployment Location and click
Finish.

You will need to emulate the response.

47.On the Output parameters panel populate confirmationId with a value of your
choice (Figure 12-96). Click Continue.

Figure 12-96 Emulate confirmation response

48.At this point the Custom Mediation primitive performs the following tasks:

a. Retrieves information from the properties file.

b. Retrieves information from the correlation context.

c. Retrieves the confirmationId from the response message.

d. Sends an email using the JavaMail API.
 Chapter 12. Developing mediation logic using mediation primitives 439

7212ch09-development-9.3.fm Draft Document for Review May 4, 2006 3:20 pm
e. All interaction with the SMTP server is logged to the Console view.
(Figure 12-97). You should also receive an email at the email address you
specified.

Figure 12-97 Mail session in Console view

49.Once the testing is complete remove the project from the server.

Congratulations, You built a request response flow that stores information in the
correlation context using an XSL Transformation primitive during the request
flow, and uses a Custom mediation primitive on the response flow to retrieve
information from various sources and send an email using the JavaMail API.
440 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Chapter 13. Configuring modules to
provide quality of service

This chapter describes how to add quality of service functions to mediation
modules. It describes three step-by-step examples

� 13.1, “CEI events” on page 442

Describes how to add CEI events to a mediation flow, and how to browse CEI
events.

� 13.2, “Security” on page 450

Describes how to apply security to mediation modules.

� 13.3, “Transactions” on page 460

Describes how to add transactional scopes to mediation modules.

These development examples assume you have configured your WebSphere
Integration Developer workspace as described in Chapter 10, “Preparing for the
development examples” on page 271.

Each of the development examples in this section can be imported as Project
Interchange files (except for the transactions example) from the additional
material supplied with this redbook in the \QualityOfService\Solutions
directory.

13
© Copyright IBM Corp. 2006. All rights reserved. 441

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
13.1 CEI events
Common Event Infrastructure (CEI) provides basic event management services,
such as event generation, transmission, persistence, and consumption.

This sample explores the CEI events by specifying event logging in a simple
mediation flow, executing the flow and viewing the logged messages in the
database.

This sample involves:

� Building a mediation module containing an export with a Web service
bindings.

� Implementing the request flow using a Stop mediation primitive.

� Use the Event Monitor to enable CEI events.

� Testing the module using the Integration Test Client.

� Use the CBE Event Browser to view events

� View events in a Cloudscape database.

The completed sample will create a CEI event when the foo method is called on
the FooInterface.

1. Create a new mediation module.

a. In the Business Integration view, right-click and select New -> Mediation
Module.

b. Set the Module Name to CEISample1Module and click Finish.

2. In the Business Integration view, in the CEISample1Module, right-click on
Interfaces and select New -> Interface.

3. Name the interface FooInterface and click Finish.

4. Create the interface (Figure 13-1 on page 443).

a. Click on the Add One Way Operation button .

b. Name the operation foo.

c. Click on the Add Input button .

d. Name the input dummy and leave the type as string.
442 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Figure 13-1 FooInterface

5. Save and close the Interface editor.

6. Open the module in the Assembly Editor by double-clicking .

7. Create an export by dragging FooInterface onto the assembly diagram.

8. Choose Export with WebService Binding and click OK.

9. When asked if the bindings should be created automatically click Yes.

10.Choose transport soap/http in the Select Transport dialog and click OK.

11.Rename Export1 to FooExport.

12.Rename the mediation flow component Mediation1 to FooMediation.

13.Wire FooExport to FooMediation (Figure 13-2).

Figure 13-2 CEISample1Module

14.Right-click on FooMediation and choose Generate Implementation and
click OK to generate the implementation in the default location.

15.In the mediation flow editor, under Operation connections select the foo
operation to display the mediation request flow.

16.Add a Stop mediation primitive to the request flow using .

17.Wire FooInterface_foo_Input to the in terminal of the Stop (Figure 13-3 on
page 444).
 Chapter 13. Configuring modules to provide quality of service 443

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-3 Minimal mediation flow for the CEI sample

18.Save and close the Mediation Flow editor.

Now that we have a mediation flow we are to ready to specify a event that will be
created and logged.

19.In the assembly diagram, select FooMediation

20.In the Properties view, select the Details tab.

21.Expand FooInterface and select the foo operation (Figure 13-4 on
page 445).
444 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Figure 13-4 Foo operation in properties view

In WebSphere Integration Developer you have to specify which operations
(associated with elements of the assembly editor, such as imports, exports,
mediation flow components and Java components) should create events. After
you selected an operation applicable for creating custom events you have to
change the setting from None either to All or to Selected, to specify which of the
predefined events should be generated at runtime.

22.Select the Event Monitor tab and change the radio button from None to All
(Figure 13-5).

Note: When you save you will notice that the mediation component in the
assembly editor shows a little yellow flag in order to indicate that there is a
custom event specified.
 Chapter 13. Configuring modules to provide quality of service 445

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-5 Event Monitor tab

23.Save the module.

Having specified the event the module can be deployed to the test environment.

24.Deploy the module to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add CEISample1Module.

d. Click Finish.

25.Right-click on the CEISample1Module module and select Test -> Test
Module.

26.Ensure the Component selected is FooExport.

27.Enter a value for the dummy request parameter (Figure 13-6 on page 447).
446 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Figure 13-6 Testing CEISample1Module

28.Click Continue.

29.In the Deployment Location dialog select your WebSphere Enterprise Service
Bus server and click Finish.

The Integration Test Client will execute the mediation flow and result in an output
as shown in Figure 13-7 on page 448.
 Chapter 13. Configuring modules to provide quality of service 447

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-7 Executing the mediation flow component with the testing facility

Having successfully executed the mediation flow you can now go and find the
logged events for this execution. With the installation of WebSphere Integration
Developer and the WebSphere Enterprise Service Bus test environment a
default CEI repository is created during the installation.

A common way to view CEI events is to use the CBE Event Browser.

30.Start a Web browser and enter the following URL
http://localhost:9061/ibm/console/cbebrowser/events

The number of events displayed is currently 0.

31.Click the Get Events button. The number of events should increase to 2, as
shown in Figure 13-8 on page 449.

Attention: The port number 9061 may vary depending on your install of
WebSphere Enterprise Service Bus.
448 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Figure 13-8 Number of events

32.In the Event Views box, click All Events. This will list the two events
(Figure 13-9).

Figure 13-9 All events

33.Click on the first event (using the link in the Creation Time column) to view it.
In the Event Data you can see the input data we provided (Figure 13-10 on
page 450).
 Chapter 13. Configuring modules to provide quality of service 449

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-10 Event Data showing the input arguments we provided

34.This completes the testing. Remove the project from the server.

Congratulations, you have successfully showed how CEI events can be defined
at development time for mediation flow components on an operation level.

13.2 Security
This sample demonstrates how to enabled security within a mediation module.

There are two quality-of-service qualifiers relevant for security in SCA
components in WebSphere Enterprise Service Bus. These qualifiers for security
are:

� Security permission (the required J2EE role to invoke an operation).

� Security identity (the J2EE role under which the component will be executed -
regardless of the invoking J2EE role).
450 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
This sample involves:

� Importing a mediation module containing a stand-alone reference and a Java
component.

� Enabling security on a Java component.

� Testing security by using an SCA client to access the module.

The completed sample uses a client to attempt to make a book order to a
secured service (mediation module). The client receives an exception warning
that permission is denied.

Perform the following:

1. Import the SCA client module and the SCA client using Project Interchange:

a. Click File -> Import, select Project Interchange, and click Next.

b. Browse to SCAClient.zip which you can find in the additional material
supplied with this redbook in the \Clients\Solutions directory.

c. Click Select All then click Finish.

2. In the Business Integration view, expand SCAClientSample1Module and
open the assembly editor.

3. Assign a security identity qualifier to the mediation (Figure 13-11 on
page 452).

a. In the assembly editor select the SCA component Component1.

b. In the Properties view select the Implementation tab.

c. Select the Qualifiers tab from the Properties view.

d. Press the Add button.

e. From the Add Qualifier dialog select Security identity as the Quality of
Service qualifier and click OK.

f. From the Properties view select Security identity and enter the Privilege
name of TestIdentityRole.

Note: It is beyond the scope of this redbook to configure a complete
end-to-end sample with security, but we want to explore briefly what gets
generated in order to give an idea of how to proceed after the declaration has
been done.

Usually, you would not be required to deal with the generated J2EE artifacts.
In this case we make an exception, because we do not want to configure a
complete security infrastructure.
 Chapter 13. Configuring modules to provide quality of service 451

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-11 Adding a security identity to a mediation implementation

4. Assign a security permission qualifier to the order operation (Figure 13-12 on
page 453).

a. In the assembly editor select the Java component Component1.

b. In the Properties view select the Details tab.

c. Expand the Interfaces tree and select the order operation on the
BookOrderService interface.

d. Select the Qualifiers tab and click the Add button.

e. From the Add Qualifier dialog, select Security permission and click OK.

f. In the Properties view select Security permission and enter the Role
PrivilegedRole.

g. Save the module.
452 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Figure 13-12 Specifying a security permission qualifier for operations

Now let’s go and locate the output of the generation process. We need to switch
to the J2EE perspective to view the required resources.

5. Select from the menu bar Window -> Open Perspective -> Other.

6. From the Select Perspective dialog select J2EE and click OK.

7. Open the deployment descriptor in the SCAClientSample1ModuleEJB, under
EJB Projects (Figure 13-13 on page 454).
 Chapter 13. Configuring modules to provide quality of service 453

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-13 J2EE deployment descriptor

8. In the EJB Deployment Descriptor editor, select the Access tab to view the
associated security identity (Figure 13-13).

Figure 13-14 Run-as specification in the deployment description

As far as the security permission qualifier is concerned the generation process
does not map the role directly to the method level of the components in the
deployment descriptor, since Enterprise Java Beans have generic interfaces.
454 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Therefore only a role reference gets generated, which is verified in the generated
code. Example 13-1 shows the relevant part of the deployment descriptor
source.

Example 13-1 Generated J2EE role reference in the deployment descriptor

...
<security-role-ref>

<description>PrivilegedRole</description>
<role-name>PrivilegedRole</role-name>
<role-link>PrivilegedRole</role-link>

</security-role-ref>
</session>
...

9. Deploy the module to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add SCAClientSample1Module.

d. Click Finish.

To test the security we have enabled on the module we must enable global
security on our WebSphere Enterprise Service Bus server.

10.In the Servers view, right-click on the WebSphere Enterprise Service Bus
server and select Run administrative console.

11.Log into the console.

12.Click Security -> Global Security.

13.Under User Registries click Local OS.

14.Enter a user ID and password for accessing the server.

15.Click OK. You are returned to the Global Security properties panel.

16.Under Authentication, expand JAAS configuration and click J2C
Authentication data.

You will see three entries (Figure 13-15 on page 456).

Note: The username and password you enter must be the username and
password you used to log onto the machine.
 Chapter 13. Configuring modules to provide quality of service 455

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
The entries to authenticate with the messaging engine (SCA_Auth_Alias) and
the CEI topics and queues (esbNode/CommonEventInfrastructureJMSAuthAlias)
currently use a user Id of wid. We need to change this to our user ID.

Figure 13-15 J2C authentication data

17.Click on SCA_Auth_Alias.

18.Enter your username and password and click OK.

19.Click on esbNode/CommonEventInfrastructureJMSAuthAlias.

20.Enter your username and password and click OK.

21.Return to the Global Security panel.

22.Under General Properties, check the Enable global security check box. The
Enforce Java 2 security check box will also become checked.

23.Ensure the Active User registry drop down menu is set to Local OS
(Figure 13-16 on page 457). Click OK.
456 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Figure 13-16 Enabling security

24.Save the changes by clicking the Save link and confirm by pressing the Save
button. When saved, close the administrative console.

25.In the Servers view double click on your WebSphere Enterprise Service Bus
server to open the Server Overview panel.

26.Expand the Security section and check the Security is enabled on this
server check box.

27.Enter the username and password you just specified into the relevant fields
and save the changes (Figure 13-17 on page 458).
 Chapter 13. Configuring modules to provide quality of service 457

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-17 Server overview panel

When the enterprise application gets deployed on the server, the J2EE roles are
mapped and resolved to the local security infrastructure.

28.Now restart the server for the security changes to be persisted.

29.Open a browser and enter the URL:

Note: When restarting the server you may find that a error occurs indicating
that a server may already be running. If this occurs the server stop has failed
and you will need to kill the java process using Task Manager or the kill
command.

Note: When using the global security and starting the server from WebSphere
Integration Developer you will find that although you see the message server
open for e-business, the Servers view still shows the server as starting. This
prevents you from accessing the server from WebSphere Integration
Developer but it can still be accessed through the administrative console at:

http://localhost:9061/ibm/console
458 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
http://localhost:9081/SCAClientSample1/BookOrder.jsp.

30.Enter values into the fields and click the Order button.

You should see an exception is returned stating that permission has been denied
(Figure 13-18 on page 459).

Figure 13-18 Sample output of an unauthorized access

31.Once testing is complete enter the URL http://localhost:9061/ibm/console
into your browser and log in to the console.

32.From here disable global security by clicking Security -> Global Security
and unchecking the Enable global security check box and the Enforce
Java 2 security check box.

33.Click OK and save the changes.

34.In WebSphere Integration Developer in the Servers view, double click on your
WebSphere Enterprise Service Bus server. Expand Security and uncheck
Security is enabled on this server. Save and close the editor.

35.Restart the server and remove the deployed module.

Congratulations, you have successfully demonstrated how to enable security on
a mediation module.
 Chapter 13. Configuring modules to provide quality of service 459

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
For more information
� For a detailed walkthrough (including authentication) on the application of

security qualifiers see the following article:

Defining a J2EE role on Service Component Architecture components with
WebSphere Integration Developer 6.0.1

http://www-128.ibm.com/developerworks/websphere/library/techarticles/060
2_charpentier/0602_charpentier.html

� For more information on the security model of WebSphere Process Server
(mostly applicable to WebSphere Enterprise Service Bus):

WebSphere Process Server security overview

http://www-128.ibm.com/developerworks/websphere/library/techarticles/060
2_khangoankar/0602_khangaonkar.html

� For general information on J2EE security in WebSphere Application Server
V6 and how to setup security refer to the redbook WebSphere Application
Server V6 Security Handbook, SG24-6316.

13.3 Transactions
This sample shows how to control transactional behavior in mediation modules
and mediation primitives.

A transaction is used to group units of work together. If an exception occurs
during a transaction every unit of work performed within that transaction will be
rolled-back, otherwise they are all committed.

This sample involves:

� Importing a mediation module.

� Specifying transaction qualifiers on a mediation module.

� Defining transaction scope on a Message Logger mediation primitive.

� Testing a completed transaction.

� Testing a rolled-back transaction.

� Viewing whether messages where logged to a Cloudscape database.

The completed sample will demonstrate ordering a book, in one instance the
order is successful and a confirmation ID is returned. In the other case the
transaction is rolled-back and no confirmation ID is returned.
460 Getting Started with WebSphere Enterprise Service Bus V6

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0602_charpentier/0602_charpentier.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0602_khangoankar/0602_khangaonkar.html

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
1. Import existing resources:

a. From the menubar select File -> Import. Click Project Interchange and
click Next.

b. Browse to TransactionSampleResources.zip which is located in the
additional material supplied with this redbook in the
\QualityOfService\Resources\Transactions directory.

c. Click Select All then click Finish.

d. Switch to the J2EE perspective

i. From the menubar select Window -> Open Perspective -> Other.

ii. Select J2EE and click OK.

e. Expand the EJB Projects folder.

f. You will see an error on the SCATranSample1EJB project.

g. Expand SCATranSample1EJB → Deployment Descriptor → Session
Beans.

h. Right-click Default Session and select Deploy. This will resolve the error.

2. Review the transaction settings of TransactionSample1Module.

a. Switch back to the Business Integration perspective.

b. Open the Assembly Diagram of TransactionSample1Module using .

c. Select Stand-alone References. In the Properties view, select the
Qualifiers tab.

d. Select the Suspend transaction qualifier. The value should show false,
indicating that the clients transaction is not suspended here Figure 13-19
on page 462.

Note: Rather than building modules from scratch, we will concentrate on
reviewing the transaction settings and test the transactional behavior.
 Chapter 13. Configuring modules to provide quality of service 461

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-19 Suspend transaction set to false

e. In the Assembly Diagram, select the LogWithinTransaction mediation
flow component. In the Properties view review the transaction settings for
the Interface, Reference, and the Implementation.

f. Now, select the import and review the quality of service settings of its
interface.

3. Review the transaction settings of TransactionSample2Module using the
Assembly Diagram.

4. Review the transaction settings of the Message Logger mediation primitives
in the mediation flow components.

a. In TransactionSample1Module open the LogWithinTransaction mediation
flow.

b. Select the MessageLogger1 mediation primitive.

c. In the Properties view select the Details tab.

d. The transaction mode is set to Same, indicating that the database access
to log the message body is performed in the same transaction used in the
SCA layer (Figure 13-20 on page 463).
462 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Figure 13-20 Message logger primitive transaction settings

a. In TransactionSample2Module open the LogWithinTransaction2
mediation flow.

b. Select the MessageLogger1 primitive.

c. In the Properties view select the Details tab.

d. The transaction mode is also set to Same here.

Note: The filter primitive checks if the book title is rollback. If yes, the
message is passed to the fail1 primitive, which throws an exception. We
added this logic for testing purposes. If the book title sent is any string
but rollback, the transaction will commit. If it is rollback the transaction
will rollback, because the exception is thrown before the transaction is
completed.
 Chapter 13. Configuring modules to provide quality of service 463

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
For an overview of the transaction settings in all the components of the two
modules used, see Figure 13-21.

Figure 13-21 Transaction settings overview

We wanted to achieve either all mediation steps are executed, including the
logging of the message, or none of them.

We start a transaction in the clients EJB. As we set Suspend transaction to false
in the stand-alone reference, this transaction is used within Module1. We do not
suspend the transaction at the reference of the mediation flow component within
it and the import still joins the transaction, so the transaction context is passed
over to the second module. At the reference of the second module’s mediation
flow component we then suspend the transaction. Therefore sending the SOAP
request to the Web service is outside of the transaction scope.

For the implementation of both mediation flow components we set the
transaction to global. That results in the database accesses in the message
logger primitives to take part in the transaction. So either the message is logged
twice, or not at all.
464 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
5. Deploy the modules and Web service to the server.

a. Switch to the Servers view.

b. Right-click on your WebSphere Enterprise Service Bus server and select
Add and remove projects.

c. Add BookOrderServiceEAR, TransactionSample1ModuleApp and
TransactionSample2ModuleApp.

d. Click Finish.

6. Test the transactional behavior.

e. Open a Web browser and enter the following URL:

http://localhost:9081/SCATranClientSample1Web/BookOrder.jsp

f. In the BookOrder.jsp enter some test data. For the Title use the string no
rollback (Figure 13-22).

Figure 13-22 Start first test

g. Click the Order button.

h. The Web browser should display the order number created in the
BookOrder Web service (Figure 13-23).

Note: In our test client we call the EJB directly from a JSP, but this is not good
practice. When you develop a client, it should use the Model, View, Controller
pattern.
 Chapter 13. Configuring modules to provide quality of service 465

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-23 Result of first test

i. While the request was sent from the JSP to the Web service the message
was logged twice to the database. Now enter the Title rollback and click
on the Order button (Figure 13-24 on page 466).

Figure 13-24 Start second test with rollback

j. The text in the browser now indicates that no Confirmation Id was sent
back (Figure 13-25 on page 467).
466 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
Figure 13-25 Result of second test

k. The request was prepared to be logged twice to the database, but as a
exception was thrown, before the transaction was committed, the
database entries should be rolled back.

Lets check the messages that have been logged to the database.

7. Stop the server.

8. Run the utility cview.bat, which is available in
<WID_INSTALL>/runtimes/bi_v6/cloudscape/bin/embedded directory.

9. Click on File -> Open and open the Cloudscape database EsbLogMedDB
which is in the directory <WID_INSTALL>/pf/esb/databases.

10.This will open the database. Expand Tables and select MSGLOG.

11.Click on the Data tab to show the records in the table (Figure 13-26 on
page 468).
 Chapter 13. Configuring modules to provide quality of service 467

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
Figure 13-26 Log database entries

12.Verify that there are only two entries in the timeframe of the two test runs.

13.Select the latest message in the MESSAGE column and click the Text Editor
button.

14.You should see the book title you entered for the first test (Figure 13-27).

Figure 13-27 Message content logged in the database

15.Also look at the content of the second last message and verify that the book
title is the one from the first test.
468 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212ch09-development-9.4.fm
16.Close the cview.bat utility.

17.Start the server and remove all projects from the server.

Note: The request message from the second test were also prepared to
be written to the database twice, but as the log primitives participate in
the global transaction started by the client and the transaction was
rolled back they were not finally written.
 Chapter 13. Configuring modules to provide quality of service 469

7212ch09-development-9.4.fm Draft Document for Review May 4, 2006 3:20 pm
470 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212p05.fm
Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2006. All rights reserved. 471

7212p05.fm Draft Document for Review May 4, 2006 3:20 pm
472 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212addm.fm
Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247212

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247217.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG247212.zip Zipped Code Samples

A

© Copyright IBM Corp. 2006. All rights reserved. 473

ftp://www.redbooks.ibm.com/redbooks/SG247212
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

7212addm.fm Draft Document for Review May 4, 2006 3:20 pm
This ZIP file contains all of the resources required to complete the development
examples in this redbook. It contains resources that you will need to import for
certain development examples. It also contains solutions to each development
example, stored in Project Interchange ZIP files.

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
474 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212add_ll.fm
Appendix B. Hints and tips

This chapter lists a few obstacles the team ran into while creating the samples for
this redbook and workarounds for them accordingly. You may not necessarily
observe these behaviors in subsequent releases of the product.

This section covers the following hints:

� Force complete regeneration

� Update of business objects

� Renaming of resources

� Testing of a mediation flow component standalone

� Incompatible target runtimes

B

© Copyright IBM Corp. 2006. All rights reserved. 475

7212add_ll.fm Draft Document for Review May 4, 2006 3:20 pm
Resolving obstacles with WebSphere Integration
Developer

Each hint in this section describes the scenario where we encountered an issue,
where the behavior occurred, and how we resolved the issue.

Force complete regeneration
You have developed a module and added the project to the server.

Observed behavior
You observe a stack trace in the Console view when executing the mediation
module warning that a WSDL file cannot be found.

Resolution
Force a clean regeneration and deployment:

1. Remove the project from the server

2. Run a project clean (Project -> Clean)

3. Add the project again to the server.

Update of business objects
You have developed a module and added the project to the server. Now you
change the business objects used by the module (for example, you add
attributes).

Observed behavior
The changes are not reflected in your test environment even if you redeploy the
project.

Resolution
The objects are cached so you will need to restart the server.

Renaming of resources
When you have developed a complete mediation module and you change the
name of an element such as an interface.

Note: In some cases you may need to stop the server after step 1) and start
the server after step 2).
476 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212add_ll.fm
Observed behavior
Sometimes the changes are not propagated to all references of that element, so
a number of errors appear in the Problems view.

Resolution
Go through all references of the changed element manually and make sure that
the references are updated properly. This can be achieved by removing
references and rewiring the module. Run a project clean (Project -> Clean).

Testing of a mediation flow component standalone
You create a mediation flow component with a reference containing a business
object. The reference is not wired to an import. You want to test this component
with the Integration Test Client.

Observed behavior
You experience an exception in the Integration Test Client (Example B-1).

Example: B-1 Exception reported by the Integration Test Client

com.ibm.wsspi.sibx.mediation.flow.MediationRuntimeException: CWSXM1025E: An
unexpected exception occurred during flow invocation: index=0, size=0

at
com.ibm.wsspi.sibx.mediation.flow.ejb.MediationFlowBean.invokeRequestFlow(Media
tionFlowBean.java:200)
...

Resolution
Add an import to the Assembly Editor, wire it to the reference of the mediation
flow and generate a binding. The Integration Test Client should run successfully
and can be used to emulate the import.

Incompatible target runtimes
You create a new Web project, for example for creating a client application that
accesses a mediation module. You have multiple test environments and you did
not explicitly set WebSphere ESB to be the default test environment.

Observed behavior
When you try to generate the Java client from the WSDL file you can run into
problems and the wizards complain that the associated test environment is not
compatible with the target one (Figure B-1 on page 478).
 Appendix B. Hints and tips 477

7212add_ll.fm Draft Document for Review May 4, 2006 3:20 pm
Figure B-1 Mismatch of associated test server environment

Resolution
By default (sometimes only visible when you expand the Advanced section in a
wizard) the WebSphere Process Server test environment gets associated with a
new project in WebSphere Integration Developer. Therefore you need to change
the associated test environment:

1. Go the J2EE perspective

2. In the Project Explorer view open the tree of Enterprise Applications and
right-click on your project name.

3. Choose Properties and change the target runtime for your project under the
Server category to WebSphere ESB.
478 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212add_ll.fm
Figure B-2 Changing the projects target runtime
 Appendix B. Hints and tips 479

7212add_ll.fm Draft Document for Review May 4, 2006 3:20 pm
480 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212abrv.fm

acronyms
BO Business Object

CBE Common Base Events

CEI Common Event Infrastructure

EAI Enterprise Application
Integration

EAR Enterprise Archive

EIS Enterprise Information
System

EJB Enterprise Java Beans

ESB Enterprise Service Bus

J2C J2EE Connector Architecture

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JSP JavaServer Pages

MQI Message Queuing Interface

OAM Object Authority Manager

QA Quality Assurance

RSDP Rational Software
Development Platform

SCA Service Component
Architecture

SCDL Service Component Definition
Language

SDO Service Data Object

SIT System Integration Test

SMO Service Message Object

SOA Service-oriented architecture

UTE Unit Test Environment

WSDL Web services Description
Language

Abbreviations and
© Copyright IBM Corp. 2006. All rights reserved.
 481

7212abrv.fm Draft Document for Review May 4, 2006 3:20 pm
482 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 484. Note that some of the documents referenced here may be available
in softcopy only.

� Rational Application Developer V6 Programming Guide, SG24-6449

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

� WebSphere Application Server V6: System Management and Configuration
Handbook, SG24-6451

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

� WebSphere Application Server V6 Security Handbook, SG24-6316

Other publications
These publications are also relevant as further information sources:

� Patterns for e-business: A Strategy for Reuse, by Jonathan Adams, Srinivas
Koushik, Guru Vasudeva, and George Galambos, ISBN 1931182027

Online resources
These Web sites and URLs are also relevant as further information sources:

� WebSphere Enterprise Service Bus home page:

http://www.ibm.com/software/integration/wsesb/

� WebSphere Application Server home page:

http://www.ibm.com/software/webservers/appserv/was/

� WebSphere Process Server home page:
© Copyright IBM Corp. 2006. All rights reserved. 483

7212bibl.fm Draft Document for Review May 4, 2006 3:20 pm
http://www.ibm.com/software/integration/wps/

� WebSphere MQ home page:

http://www.ibm.com/software/integration/wmq/

� WebSphere Message Broker home page:

http://www.ibm.com/software/integration/wbimessagebroker/v6/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
484 Getting Started with WebSphere Enterprise Service Bus V6

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Draft Document for Review May 4, 2006 3:20 pm 7212IX.fm
Index

A
Activity Sessions 147
Adapters 43
Administration 251
Administration console 252
Application developer 52
Application server 31
Assemble mediations 58
assembly diagram 25
Asynchronous reliability 149

B
Binding 143
Binding type 36
Bindings 82

EIS binding 282, 294
JMS binding 281, 316
JMS bindings 338
JMS custom binding 281
SCA binding 286
SCA bindings 281
SOAP/HTTP binding 338
Web service binding 281, 350, 361, 380, 402,
411

Breakpoint 390
Broker 42
Building and cleaning projects 198
Business Integration perspective 75
Business object 39, 338
Business object map 40
Business Objects 176

Attributes 177
Creating 176
Deriving 181
Supersets 179

business problem 21
Business process 39
Business rule 40
business service 21

universal model 21
Business state machine 40
© Copyright IBM Corp. 2006. All rights reserved.
C
CBE Event Browser 247, 442
CEI 442
CEI repository 448
CICS 294
CICS Transaction Gateway 295
Client container 32
Clients 37

JMS 316
SCA 331
Web services 309

Cloudscape 380, 405, 442, 460
Commarea 295
Common Base Event 35, 149
Common Event Infrastructure 35, 442, 460
common event infrastructure 149
CommonEventInfrastructure _Bus 93
Communication 20
Configuration manager 43
Correlation context 350, 356, 393
Custom node 95
Custom profile 117
CVS repository 75
CVS Repository Exploring perspective 74
CVS server 74
CVS source code management system 74

D
data graph 27

See also business graph
data object 26
Database 380, 401
database 442
Default configuration 61
Default terminal 397
DefaultESBServer template 122
Deployment 150

J2EE staging projects 150
Development environment 50, 57
Distribution mode 398, 401
dynamic

Web services 12
 485

7212IX.fm Draft Document for Review May 4, 2006 3:20 pm
E
e-business 12
Editors 162

Assembly Diagram 162
Business Object 162
Interface 163
Visual Java snippet 163

EJB container 32
Emulate 225
Emulation 378
Enabling security 451
Enterprise Information System (EIS) 21
Enterprise Service Bus

Capabilities
Communication 20
Infrastructure Intelligence 21
Integration 20
Management and Autonomic 20
Message Processing 20
Modeling 21
Quality of Service 20
Security 20
Service Interaction 20
Service Level 20

Mediate 17
Minimum capability

Heterogeneous infrastructure 17
Integration 18
Logical architectural component 17
Manage the service infrastructure 17
Management and Autonomic 18
Service Interaction 18

Substitution 16
Transform 17

Enterprise Service Discovery wizard 294
ESB

ESB products 31
ESBSamplesGallery 88
Event driven architectures 17
Event logging 442
Event Monitor 442
Exception 360
Exceptions 411
Execution group 43
Export 35, 286
Exporting resources 213

Enterprise Applications 214
Project Interchange 213

Exports 165

Creating 193
exports 263
Extensible Markup Language

see XML

F
FailFlowException 419
Fault condition 361, 368
Fault data 368
Fault handling 360
Fault message 361
Fault terminal 411
Faults 360
First Steps 106

G
Getting Started Guide 101

H
Helper dialog 98
High availability 33
Human task 40

I
IBM SOA reference architecture 30
Import 35, 286
Imports 165

Creating 195
imports 263
IMS 303
Infrastructure Intelligence 21
Install fixes 68
Install Updates 71
Installation 59

Complete 87
Custom 87

Installation directory 59
Installation verification 107
Installation wizard 59, 87
Integrated Development Environment 63
Integrated Test Environment 64
Integration 20
Integration Debugger 233
Integration developer 51
Integration specialist 83
Integration Test Client 282, 286, 338, 357, 366,
370, 380, 393, 402, 411, 419, 427, 442
486 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212IX.fm
Integration test client 220
Interface 136, 338, 360
Interface map 40
Interfaces 172

Adding one way operations 183
Adding request response operations 184
Defining 182
Importing 172

interoperable 11

J
J2EE roles 458
Java class 22

preferred form 22
Java component 286, 331, 394
Java Message Service (JMS) 41
Java Messaging Service 316
JavaMail 426
JCA connector 294
JMS 316
JMS bindings 255
JMS resources 316
JSP 326, 332

K
Key 380, 387
Key technologies 5
Key terms 132
KeyNotFound 387

L
language-independent 11
Launchpad 61
Library 157

Adding to module 174
Creating 174

listSCAExports 263
listSCAImports 263
listSCAModules 262
Log 350, 402
loosely coupled 11

M
Manage mediation modules 252
Management and Autonomic 20
Mapping 356
Mediate 17

Mediation 134
Mediation base 35
Mediation flow component 35
Mediation functions 35
Mediation module 35
Mediation primitives 36

Mediation flow 137
Callout 138
Callout response 138
Input 138
Input fault 138
Input response 138
Request flow 137
Response flow 137

Mediation Flow component 132, 136
Interface 136
Partner reference 136
Wiring 136

Mediation flow component 361, 380, 411, 419
Mediation flow components 166

Creating 188
Implementing 189

Mediation module 135, 282, 286, 309, 331, 338,
350, 361, 370, 380, 393, 402, 411, 419, 426, 442,
450, 460
Mediation modules 81
Mediation primitive 138

Fault terminal 140
Input terminal 140
Output terminal 140

Mediation primitives 166, 350, 460
Adding 191
Custom 426
Database Lookup 380
Fail 419
Message Filter 393
Message Logger 401
Properties 192
Stop 411, 442
XSL Transformation 370

Mediations
Message Logger 350
XSL Transformation 350

Message brokers toolkit 43
Message driven architectures 16
Message flow 42
Message Processing 20
Message Queuing Interface (MQI) 41
messaging provider 31
 Index 487

7212IX.fm Draft Document for Review May 4, 2006 3:20 pm
Modeling 21
modifySCAImportSCABinding 267
modular 11
Module 157

Mediation module 164
Creating 185
Running 197

Modules
Mediation modules

Testing 212

N
Network Deployment 94

O
Output terminal 397

P
Partner reference 136
Payload 138
Perspectives 157

Business Integration 157
Primitives

Message Logger 460
Product overview 130
Profile Creation Wizard 109
Profile Creation wizard 117
Profiles 91

augmenting 97
programmatic access 12

Q
Qualifiers 460
Quality of Service 20, 144, 450

Activity Sessions 147
Asynchronous reliability 149
Security 145
Transactions 148

R
Rational Application Developer 52
Rational Product Updater 66
Rational Software Architect 52
Rational Software Development Platform 58
Rational Web Developer 31
Redbooks Web site 484

Contact us xiv

Reference 135
Relationship 40
Request flow 137, 191, 350
Resource adapter 294
Response file 59
Response flow 137, 192, 350
Routing 393
Runtime environment 85

S
SCA 21
SCA client 451
SCA component 21

main terms 21
SCA Modules 253
SCA programming model 330, 332
SCA.APPLICATION.cell_name.Bus 92
SCA.SYSTEM.cell_name.Bus 92
SDO

data graph 27
data object 26

Security 20, 145, 450
Security identity 450
Security permission 450
Selector 41
self-contained 11
self-describing 11
Servers

Administrative console 210
Commands 209
Configuration 199
Creating 200
Debugging 210
Deploying 211
Local test environments 199
Managing 198
Profiles 199
Remote test environments 199
Starting 209
Stopping 209

Service component 39
Service Component Architecture 21, 34, 58
Service consumers 134
Service Data Objects 35
Service integration bus 38
Service Interaction 20
Service Level 20
Service Message Object 35, 132, 138–140, 370,
488 Getting Started with WebSphere Enterprise Service Bus V6

Draft Document for Review May 4, 2006 3:20 pm 7212IX.fm
380, 393, 401, 426
Manipulation 143
Structure 141

Context section 142
Data section 141
Header section 142

Service providers 134
serviceDeploy 257
Service-oriented architecture 16

Component Based Design 7
Drivers

Flexible pricing 6
Increasing speed 6
Reducing costs 6
Return on investment 6
Simplifying integration 6

Object Oriented development 6
Service

Deployment time 8
Implementation-independent 8
Loosely bound 8
Reusable 8
Runtime 8

Share Project 75
showSCAExport 264
showSCAExportBinding 265
showSCAImportBinding 265
showSCAModule 262
Silent install 60
Simple Object Access Protocol

see SOAP
SOAP 10
SOAP over JMS bindings 255
Stand-alone reference 135, 451
Stand-alone server 93
Supporting service 39

T
Team development 57, 74
Team Synchronizing perspective 74
Testing security 451
Trace settings 245
Transaction 426, 460
Transaction mode 405
Transactional behavior 460
Transactions 148
Transcode 338
Transform 17

Transient context 393
Transport protocol 338
Troubleshooting

Installation issues 57

U
UDDI 11
Unit of work 460
Unit test server 60
Universal Description, Discovery, and Integration

see UDDI
Update policy 69
URI 310
User role 51
User roles 60

V
Views 158

Business Integration 158
Business Integration view 282
Outline 160
Physical Resources 158
Problems 161
Properties 161
References 159
Servers 162
Visual Snippets 160

W
Web browser 326
Web container 32
Web service 282, 309, 316, 351, 370, 402, 419,
442
Web service bindings 254
Web services

core technologies 10
Web Services Description Language

see WSDL
Web Services Explorer 226, 294
Web Services Inspection Language

see WSIL
WebSphere Application Server 31
WebSphere Application Server - Express 31
WebSphere Application Server Network Deploy-
ment 32, 251
WebSphere Enterprise Service Bus 34, 251

Administration 251
 Index 489

7212IX.fm Draft Document for Review May 4, 2006 3:20 pm
WebSphere Integration Developer 52, 58, 153
WebSphere Message Broker 42
WebSphere MQ 41
WebSphere Process Server 39
Wiring a mediation flow 191
Workbench 154
Workload management 33
Workspace 156

Capabilities 170
Configuration 167
Creating 168
Shortcuts 169

wrap applications 12
Wsadmin 253
wsadmin 262
WSDL 10, 284, 286, 305
WSIL 11

X
XML 10
XPath 393, 405
XSL mapping 376
XSL stylesheets 370
490 Getting Started with WebSphere Enterprise Service Bus V6

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 M

ay 4, 2006 3:20 pm
7212sp

in
e.fm

491

(0.1”spine)
0.1”<

->
0.169”

53<
->

89 pages

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

Getting Started w
ith W

ebSphere Enterprise Service Bus V6

Getting Started w
ith W

ebSphere
Enterprise Service Bus V6

Getting Started w
ith

W
ebSphere Enterprise

Service Bus V6

Getting Started w
ith W

ebSphere Enterprise Service Bus V6

(2.0” spine)
2.0” <

->
 2.498”

1052 <
->

 1314 pages

(2.5” spine)
2.5”<

->
nnn.n”

1315<
->

 nnnn pages

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 M

ay 4, 2006 3:20 pm
7212sp

in
e.fm

492

Getting Started w
ith

W
ebSphere Enterprise

Service Bus V6

Getting Started w
ith

W
ebSphere Enterprise

Service Bus V6

®

SG24-7212-00 ISBN

Draft Document for Review May 4, 2006 3:20 pm

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Getting Started with
WebSphere Enterprise
Service Bus V6

Build ESB solutions
using SCA and Web
services

Implement
mediation flows in
WebSphere
Integration
Developer

Learn by example
with practical
scenarios

IBM WebSphere Enterprise Service Bus is a flexible connectivity
infrastructure for integrating applications and services, designed to
enable the development of a service-oriented architecture (SOA).

This IBM Redbook guides you through the capabilities and product
features of WebSphere Enterprise Service Bus V6.0. It also contains
many step-by-step examples of building resources for WebSphere
Enterprise Service Bus using WebSphere Integration Developer.

Part 1 of this book introduces WebSphere Enterprise Service Bus and
positions it among IBM’s other SOA and Enterprise Service Bus
product offerings.

Part 2 describes how to install and configure both WebSphere
Enterprise Service Bus and WebSphere Integration Developer, and
explains how to perform key concepts and tasks using these
products.

Part 3 explains the administration and testing capabilities, including
step-by-step examples.

Part 4 provides a wealth of development examples showing
step-by-step how to develop solutions using mediation primitives,
integrate with services, and deliver qualities of service.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Product overview
	Chapter 1. Welcome to this redbook
	1.1 An introduction to this document
	1.2 How to read this redbook

	Chapter 2. Key technologies and concepts
	2.1 Service-oriented architecture
	2.1.1 What is a service?

	2.2 Web services
	2.2.1 Core technologies of Web services
	2.2.2 Properties of Web services
	2.2.3 Web services and SOA

	2.3 Enterprise Service Bus
	2.3.1 Enterprise requirements for an ESB
	2.3.2 Minimum ESB capabilities
	2.3.3 Extended ESB capabilities

	2.4 Service Component Architecture
	2.4.1 Anatomy of SCA

	2.5 Service Data Objects
	2.5.1 SDO concepts
	2.5.2 Applying SDO to SCA

	Chapter 3. WebSphere Enterprise Service Bus overview and product positioning
	3.1 Product overview
	3.1.1 IBM WebSphere Application Server V6.0
	3.1.2 IBM WebSphere Enterprise Service Bus V6.0
	3.1.3 IBM WebSphere Process Server V6.0
	3.1.4 IBM WebSphere MQ V6.0
	3.1.5 IBM WebSphere Message Broker V6.0
	3.1.6 IBM WebSphere Adapters V6.0

	3.2 ESB product positioning
	3.2.1 Comparing WebSphere Enterprise Service Bus to WebSphere Message Broker
	3.2.2 Summary
	3.2.3 IBM SOA Foundation and Patterns for e-business

	3.3 Development environment
	3.3.1 User roles
	3.3.2 Rational Application Developer V6.0
	3.3.3 WebSphere Integration Developer V6.0

	Part 2 Configuration and usage
	Chapter 4. Setting up the development environment
	4.1 Overview of development environment
	4.1.1 Hardware and software requirements
	4.1.2 Consider your current environment

	4.2 Planning for multiple development environments
	4.2.1 Silent installation
	4.2.2 Roles

	4.3 Installing the development environment
	4.3.1 Installing WebSphere Integration Developer
	4.3.2 Using Rational Product Updater
	4.3.3 Starting WebSphere Integration Developer

	4.4 Team development
	4.5 Integration test considerations
	4.6 Troubleshooting installation issues

	Chapter 5. Setting up the runtime environment
	5.1 Overview of the runtime environment
	5.1.1 Hardware and software requirements
	5.1.2 Consider your current environment
	5.1.3 What gets installed?
	5.1.4 What gets customized?
	5.1.5 What gets configured?

	5.2 Stand-alone server topology
	5.3 Network Deployment topology
	5.4 Extending WebSphere Application Server V6
	5.4.1 Installation
	5.4.2 Augmenting profiles
	5.4.3 Final configuration steps

	5.5 Installing WebSphere Enterprise Service Bus
	5.5.1 An initial runtime environment
	5.5.2 A common development integration test runtime environment

	5.6 Guidelines for staged test and production environments
	5.6.1 Development integration test environment
	5.6.2 System test environment
	5.6.3 Quality Assurance (QA) environment

	5.7 Problem determination for runtime installation and customization

	Chapter 6. WebSphere Enterprise Service Bus key concepts and related technologies
	6.1 Product overview
	6.2 Key terms in WebSphere Enterprise Service Bus
	6.3 Structure of WebSphere Enterprise Service Bus
	6.3.1 Mediations, service consumers and service providers
	6.3.2 Mediation modules
	6.3.3 Mediation flow components
	6.3.4 Mediation flows
	6.3.5 Mediation primitives

	6.4 Related technologies
	6.4.1 Service message objects (SMO)
	6.4.2 WebSphere Enterprise Service Bus bindings
	6.4.3 Quality of service
	6.4.4 Common event infrastructure (CEI)
	6.4.5 Deployment of mediations

	Chapter 7. WebSphere Integration Developer key concepts and common tasks
	7.1 Key terms and concepts
	7.1.1 User roles
	7.1.2 The workbench
	7.1.3 Workspaces
	7.1.4 Project types
	7.1.5 Perspectives
	7.1.6 Views
	7.1.7 Editors
	7.1.8 Mediation module
	7.1.9 Exports
	7.1.10 Imports
	7.1.11 Mediation flow components
	7.1.12 Mediation primitives

	7.2 Workspace configuration
	7.2.1 Creating the initial workspace
	7.2.2 Configuring desktop shortcuts
	7.2.3 Capabilities

	7.3 Interface definition
	7.3.1 Importing a Project Interchange file
	7.3.2 Working with shared libraries
	7.3.3 Modeling business objects
	7.3.4 Defining interfaces

	7.4 Mediation module development
	7.4.1 Creating a new mediation module
	7.4.2 Creating a new mediation flow component
	7.4.3 Working with exports and imports

	7.5 Running mediation modules
	7.5.1 Building and cleaning projects.
	7.5.2 Managing test servers
	7.5.3 Deploying mediation modules
	7.5.4 Testing mediation modules

	7.6 Exporting resources
	7.6.1 Exporting to Project Interchange
	7.6.2 Exporting enterprise applications

	Part 3 Administration and testing
	Chapter 8. Testing, debugging and problem determination
	8.1 Testing tools
	8.1.1 Integration Test Client
	8.1.2 Web Services Explorer
	8.1.3 TCP/IP Monitor

	8.2 Debugging tools
	8.2.1 Integration debugger
	8.2.2 Setting up to use the debugger
	8.2.3 Overview of the Debug perspective
	8.2.4 Using the Integrated Debugger

	8.3 Problem determination facilities
	8.3.1 Isolating problems with the WebSphere Integration Developer installation
	8.3.2 Isolating problems with the WebSphere Enterprise Service Bus installation
	8.3.3 Application logging and tracing
	8.3.4 Runtime logging and tracing
	8.3.5 Analyzing messages on queue points
	8.3.6 Using the CEI for problem determination

	Chapter 9. Administering WebSphere Enterprise Service Bus
	9.1 Administrative console
	9.2 Deploying mediation modules
	9.2.1 Configuring Web service bindings
	9.2.2 Configuring JMS bindings
	9.2.3 Methods to deploy service mediation modules

	9.3 Mediation module administration
	9.3.1 Displaying SCA modules
	9.3.2 Displaying imports and exports
	9.3.3 Displaying interfaces and bindings
	9.3.4 Changing bindings

	Part 4 Development examples
	Chapter 10. Preparing for the development examples
	10.1 An overview of the development examples in this book
	10.2 Preparing your environment

	Chapter 11. Developing integration logic using mediation modules
	11.1 Importing services
	11.1.1 Bindings
	11.1.2 Importing an existing Web service
	11.1.3 Connect two modules using SCA binding
	11.1.4 EIS binding to CICS

	11.2 Creating clients of mediation modules
	11.2.1 Web services client
	11.2.2 JMS client
	11.2.3 SCA client

	11.3 Using services with mediation modules
	11.3.1 Mapping bindings
	11.3.2 Request and response flows
	11.3.3 Fault handling

	Chapter 12. Developing mediation logic using mediation primitives
	12.1 XSL Transformation mediation primitive
	12.2 Database Lookup mediation primitive
	12.3 Message Filter mediation primitive
	12.4 Message Logger mediation primitive
	12.5 Stop mediation primitive
	12.6 Fail mediation primitive
	12.7 Custom mediation primitive

	Chapter 13. Configuring modules to provide quality of service
	13.1 CEI events
	13.2 Security
	13.3 Transactions

	Part 5 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Appendix B. Hints and tips
	Resolving obstacles with WebSphere Integration Developer
	Force complete regeneration
	Update of business objects
	Renaming of resources
	Testing of a mediation flow component standalone
	Incompatible target runtimes

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

