
Configuring and Deploying
Artix Solutions

Version 4.0, March 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 10-Apr-2006

Contents

List of Tables vii

List of Figures ix

Preface xi
What is Covered in this Book xi
Who Should Read this Book xi
How to Use this Book xii
The Artix Library xiii
Getting the Latest Version xvi
Searching the Artix Library xvi
Artix Online Help xvi
Artix Glossary xvii
Additional Resources xvii
Document Conventions xvii

Part I Configuring Artix

Chapter 1 Getting Started 3
Setting your Artix Environment 4
Artix Environment Variables 6
Customizing your Environment Script 10

Chapter 2 Artix Configuration 13
Artix Configuration Concepts 14
Configuration Data Types 18
Artix Configuration Files 19
Command-Line Configuration 23

Chapter 3 Artix Logging 25
Configuring Artix Logging 26
iii

CONTENTS
Logging for Subsystems and Services 34
Dynamic Logging 39
Configuring Log4J Logging 43
Configuring SNMP Logging 45

Chapter 4 Enterprise Performance Logging 53
Enterprise Management Integration 54
Configuring Performance Logging 56
Performance Logging Message Formats 61

Chapter 5 Using Artix with International Codesets 65
Introduction to International Codesets 66
Working with Codesets using SOAP 69
Working with Codesets using CORBA 70
Working with Codesets using Fixed Length Records 73
Working with Codesets using Message Interceptors 76
Routing with International Codesets 85

Part II Deploying Artix Services

Chapter 6 Deploying Services in an Artix Container 91
Introduction to the Artix Container 92
Generating a Plug-in and Deployment Descriptor 96
Running an Artix Container Server 101
Running an Artix Container Administration Client 104
Deploying Services on Restart 109
Running an Artix Container as a Windows Service 113

Chapter 7 Deploying an Artix Router 119
The Artix Router 120
Configuring an Artix Router 125
Defining Routes in an Artix Deployment Descriptor 129
Optimizing Router Performance 133

Chapter 8 Deploying an Artix Transformer 135
The Artix Transformer 136
 iv

CONTENTS
Standalone Deployment 139
Deployment as Part of a Chain 142

Chapter 9 Deploying a Service Chain 147
The Artix Chain Builder 148
Configuring the Artix Chain Builder 150

Chapter 10 Deploying High Availability 155
Introduction 156
Setting up a Persistent Database 159
Configuring Persistent Services for High Availability 160
Configuring Locator High Availability 164
Configuring Client-Side High Availability 167

Chapter 11 Deploying Reliable Messaging 175
Introduction 176
Configuring a WS-Addressing MEP 178
Enabling WS-ReliableMessaging 180
Configuring WS-RM Attributes 181

Part III Managing the Artix Runtime

Chapter 12 Monitoring and Managing an Artix Runtime with JMX 189
Introduction 190
Managed Bus Components 195
Managed Service Components 201

Artix Locator Service 206
Artix Session Manager Service 208

Managed Port Components 209
Configuring JMX in an Artix Runtime 213
Using Management Consoles and Adaptors 215
v

CONTENTS
Part IV Accessing Artix Services

Chapter 13 Publishing WSDL Contracts 223
Artix WSDL Publishing Service 224
Configuring the WSDL Publishing Service 226
Querying the WSDL Publishing Service 230

Chapter 14 Accessing Contracts and References 235
Introduction 236
Enabling Server and Client Applications 239
Accessing WSDL Contracts 243
Accessing Endpoint References 249
Accessing Artix Services 255

Chapter 15 Accessing Services with UDDI 257
Introduction to UDDI 258
Configuring UDDI Proxy 261
Configuring a jUDDI Repository 262

Chapter 16 Embedding Artix in a BEA Tuxedo Container 263
Embedding an Artix Process in a Tuxedo Container 264

Index 267
 vi

List of Tables

Table 1: Options to artix_env Script 4

Table 2: Artix Environment Variables 6

Table 3: Artix Logging Severity Levels 28

Table 4: Artix Logging Subsystems 34

Table 5: Performance Logging Plug-ins 56

Table 6: Artix log message arguments 61

Table 7: Orbix log message arguments 62

Table 8: Simple life cycle message formats arguments 63

Table 9: IANA Charset Names 67

Table 10: Configuration Variables for CORBA Native Codeset 70

Table 11: Configuration Variables for CORBA Conversion Codesets 71

Table 12: Required Arguments to wsdd 99

Table 13: Optional Arguments to wsdd 99

Table 14: Artix Endpoint Configuration 139

Table 15: Artix Service Configuration 151

Table 16: Configuration for Hosting the Artix Chain Builder 153

Table 17: Managed Bus Attributes 196

Table 18: Managed Bus Methods 197

Table 19: Managed Service Attributes 202

Table 20: serviceCounters Attributes 203

Table 21: Managed Service Attributes 204

Table 22: Locator MBean Attributes 206

Table 23: Session Manager MBean Attributes 208

Table 24: Supported Service Attributes 209
vii

LIST OF TABLES
 viii

List of Figures

Figure 1: Overview of an Artix and IBM Tivoli Integration 55

Figure 2: Routing Internationalized Requests 86

Figure 3: Artix Container Architecture 93

Figure 4: Installed Windows Service 116

Figure 5: Service Properties 117

Figure 6: Using Multiple Artix Routers for Single Routes 121

Figure 7: Using a Single Artix Router for Multiple Routes 122

Figure 8: Artix Transformer Deployed as a Servant 137

Figure 9: Artix Transformer Loaded by a Client 137

Figure 10: Artix Transformer Deployed with the Chain Builder 138

Figure 11: Chaining Four Servers to Form a Single Service 148

Figure 12: Artix Master Slave Replication 156

Figure 13: Web Services Reliable Messaging 176

Figure 14: Artix JMX Architecture 191

Figure 15: Managed Service in JConsole 216

Figure 16: Managed Port in JConsole 217

Figure 17: HTTP Adaptor Main View 218

Figure 18: HTTP Adaptor Bus View 219

Figure 19: Creating References with the WSDL Publishing Service 225
ix

LIST OF FIGURES
 x

Preface
What is Covered in this Book
Configuring and Deploying Artix Solutions explains how to configure and
deploy and Artix services in a runtime environment. It provides detailed
descriptions of the specific tasks involved in configuring and launching Artix
applications and services.

This book does not discuss the specifics of the different middleware and
messaging products that Artix interacts with. Any discussion about the
features of specific middleware products or transports relates to how Artix
interacts with these features. It is assumed that you have a working
knowledge of the specific middleware products and transports you are
using.

Who Should Read this Book
The main audience of Configuring and Deploying Artix Solutions is Artix
system administrators. However, anyone involved in designing a large scale
Artix solution will find this book useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions.

Note: When deploying Artix in a distributed architecture with other
middleware, please see the documentation for that middleware product.
You may require access to an administrator. For example, a Tuxedo
administrator is required to complete a Tuxedo distributed architecture.
xi

PREFACE
How to Use this Book
Part I, Configuring Artix

This part includes the following:

• Chapter 1 describes how to set an Artix system environment using the
artix_env script.

• Chapter 2 describes Artix configuration concepts such as configuration
scopes, namespaces, and variables. It also explains how to use
configuration files and commands to deploy your applications.

• Chapter 3 explains how to configure Artix logging. It also explains Artix
support for Java log4j and SNMP (Simple Network Management
Protocol).

• Chapter 4 explains how to configure integration with third-party
Enterprise Management Systems (EMS), such as IBM Tivoli and BMC
Patrol.

• Chapter 5 explains how to configure Artix support for
internationalization.

Part II, Deploying Artix Services

If you are deploying Artix services, you may want to read one or more of the
following:

• Chapter 6 explains how to use the Artix container to deploy and
manage Artix Web services.

• Chapter 7 explains how to use an Artix router to bridge between Web
service applications.

• Chapter 8 explains how to deploy the Artix transformer service.

• Chapter 9 explains how to deploy an Artix service chain.

• Chapter 10 explains how to deploy Artix high availability (for example,
server-side replication and client-side failover).

• Chapter 11 explains how to deploy reliable messaging in Artix.

Part III, Managing the Artix Runtime

Chapter 11 explains how to monitor and manage and Artix runtime using
Java Management Extensions (JMX).
 xii

PREFACE
Part IV, Accessing Artix Services

This part describes several different ways to access Artix services:

• Chapter 13 explains how to use the Artix WSDL Publishing service to
to publish WSDL contracts.

• Chapter 14 explains how to use Artix configuration to access Artix
WSDL contracts and endpoint references.

• Chapter 15 explains how to use Universal Description, Discovery and
Integration (UDDI).

• Chapter 16 describes how to deploy Artix into a BEA Tuxedo
environment.

The Artix Library
The Artix documentation library is organized in the following sections:

• Getting Started

• Designing Artix Solutions

• Configuring and Deploying Artix Solutions

• Using Artix Services

• Integrating Artix Solutions

• Integrating with Enterprise Management Systems

• Reference Documentation

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

Note: Tuxedo integration is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports Tuxedo integration.
xiii

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm

PREFACE
• Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

• Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

• Building Service-Oriented Architectures with Artix provides an overview
of service-oriented architectures and describes how they can be
implemented using Artix.

• Understanding Artix Contracts describes the components of an Artix
contract. Special attention is paid to the WSDL extensions used to
define Artix-specific payload formats and transports.

Developing Artix Solutions

The books in this section how to use the Artix APIs to build new services:

• Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

• Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

• Configuring and Deploying Artix Solutions discusses how to set up your
Artix environment and how configure and deploy Artix services.

Using Artix Services

The books in this section describe how to use the services provided with
Artix:

• Artix Locator Guide discusses how to use the Artix locator.

• Artix Session Manager Guide discusses how to use the Artix session
manager.
 xiv

../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm

PREFACE
• Artix Transactions Guide, C++ explains how to enable Artix C++
applications to participate in transacted operations.

• Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

• Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other
middleware technologies.

• Artix for CORBA provides information on using Artix in a CORBA
environment.

• Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft’s .NET technology, see the
documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a
range of enterprise management systems. They include:

• IBM Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

• BMC Patrol Integration Guide explains how to integrate Artix with BMC
Patrol.

• CA-WSDM Integration Guide explains how to integrate Artix with
CA-WSDM.

Reference Documentation

These books provide detailed reference information about specific Artix
APIs, WSDL extensions, configuration variables, command-line tools, and
terminology. The reference documentation includes:

• Artix Command Line Reference

• Artix Configuration Reference

• Artix WSDL Extension Reference

• Artix Java API Reference

• Artix C++ API Reference

• Artix .NET API Reference

• Artix Glossary
xv

../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm

PREFACE
Getting the Latest Version
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help
Artix Designer and the Artix Management Console include comprehensive
online help, providing:

• Step-by-step instructions on how to perform important tasks

• A full search feature

• Context-sensitive help for each screen

There are two ways that you can access the online help:

• Select Help|Help Contents from the menu bar. Sections on Artix
Designer and the Artix Management Console appear in the contents
panel of the Eclipse help browser.

• Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the
most important functionality in Artix Designer. To access these, select
Help|Cheat Sheets.
 xvi

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE
Artix Glossary
The Artix Glossary provides a comprehensive reference of Artix terminology.
It provides quick definitions of the main Artix components and concepts. All
terms are defined in the context of the development and deployment of Web
services using Artix.

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to .

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.
xvii

../glossary/index.htm
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying Conventions

This book uses the following keying conventions:

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
 xviii

Part I
Configuring Artix

In this part This part contains the following chapters:

Getting Started page 3

Artix Configuration page 13

Artix Logging page 25

Enterprise Performance Logging page 53

Using Artix with International Codesets page 65

CHAPTER 1

Getting Started
This chapter explains how to set your Artix system
environment.

In this chapter This chapter discusses the following topics:

Setting your Artix Environment page 4

Artix Environment Variables page 6

Customizing your Environment Script page 10
3

CHAPTER 1 | Getting Started
Setting your Artix Environment

Overview To use the Artix design tools and runtime environment, the host computer
must have several IONA-specific environment variables set. These variables
can be configured during installation, or later using the artix_env script, or
configured manually.

Running the artix_env script The Artix installation process creates a script named artix_env, which
captures the information required to set your host’s environment variables.
Running this script configures your system to use Artix. The script is located
in the Artix bin directory:

Command-line arguments

The artix_env script takes the following optional command-line arguments:

IT_PRODUCT_DIR\artix\Version\bin\artix_env

Table 1: Options to artix_env Script

Option Description

-compiler vc71 On Windows, enables support for Microsoft
Visual C++ version 7.1 (Visual Studio .NET
2003). By default, Artix is enabled with
support for Microsoft Visual C++ version
6.0.
 4

Setting your Artix Environment
-preserve Preserves the settings of any environment
variables that have already been set. When
this argument is specified, artix_env does
not overwrite the values of variables that are
already set. This option applies to the
following environment variables:

IT_PRODUCT_DIR
IT_LICENSE_FILE
IT_CONFIG_DIR
IT_CONFIG_DOMAINS_DIR
IT_DOMAIN_NAME
IT_ART_ADMIN_PATH
IT_IDL_CONFIG_FILE
CLASSPATH
PATH
LIBPATH (AIX)
LD_LIBRARY_PATH (Solaris, Linux)
LD_PRELOAD (Linux)
SHLIB_PATH (HP-UX)

For more detailed information, see “Artix
Environment Variables” on page 6.

Note: Before using the -preserve option,
always ensure that the existing environment
variable values are set correctly.

-verbose artix_env outputs an audit trail of all its
actions to stdout.

Table 1: Options to artix_env Script

Option Description
5

CHAPTER 1 | Getting Started
Artix Environment Variables

Overview This section describes the following environment variables in more detail:

• JAVA_HOME

• IT_PRODUCT_DIR

• IT_LICENSE_FILE

• IT_CONFIG_DIR

• IT_CONFIG_DOMAINS_DIR

• IT_DOMAIN_NAME

• IT_IDL_CONFIG_FILE

• IT_ART_ADMIN_PATH

• PATH

The environment variables are explained in Table 2:

Note: You do not have to manually set your environment variables. You
can configure them during installation, or set them later by running the
provided artix_env script.

Table 2: Artix Environment Variables

Variable Description

JAVA_HOME The directory path to your system’s JDK is
specified with the system environment
variable JAVA_HOME. This must be set to use
the Artix Designer GUI.

This defaults to the JVM installed with Artix
(IT_PRODUCT_DIR\jre). The Artix installer also
enables you to specify a previously installed
JVM.
 6

Artix Environment Variables
IT_PRODUCT_DIR IT_PRODUCT_DIR points to the top level of your
IONA product installation. For example, on
Windows, if you install Artix into the
C:\Program Files\IONA directory,
IT_PRODUCT_DIR should be set to that
directory.

Note: If you have other IONA products
installed and you choose not to install them
into the same directory tree, you must reset
IT_PRODUCT_DIR each time you switch IONA
products.

You can override this variable using the
-ORBproduct_dir command-line parameter
when running your Artix applications.

IT_LICENSE_FILE IT_LICENSE_FILE specifies the location of your
Artix license file. The default value is
IT_PRODUCT_DIR\etc\licenses.txt.

IT_CONFIG_DIR IT_CONFIG_DIR specifies the root configuration
directory. The default root configuration
directory on UNIX is /etc/opt/iona, and
IT_PRODUCT_DIR\artix\Version\etc on
Windows. You can override this variable using
the -ORBconfig_dir command-line parameter.

IT_CONFIG_DOMAINS_DIR IT_CONFIG_DOMAINS_DIR specifies the directory
where Artix searches for its configuration files.
The configuration domain’s directory defaults
to IT_CONFIG_DIR\domains. You can override
it using the -ORBconfig_domains_dir
command-line parameter.

Table 2: Artix Environment Variables

Variable Description
7

CHAPTER 1 | Getting Started
IT_DOMAIN_NAME IT_DOMAIN_NAME specifies the name of the
configuration domain used by Artix to locate
its configuration. This variable also specifies
the name of the file in which the configuration
is stored.

For example, the artix domain is stored in
IT_CONFIG_DIR\domains\artix.cfg. You can
override this variable with the
-ORBdomain_name command-line parameter.

IT_IDL_CONFIG_FILE IT_IDL_CONFIG_FILE specifies the
configuration used by the Artix IDL compiler. If
this variable is not set, you will be unable to
run the IDL to WSDL tools provided with Artix.
This variable is required for an Artix
Devopment installation.The default location is:

IT_PRODUCT_DIR\artix\Version\etc\idl.cfg

Note: Do not modify the default IDL
configuration file.

IT_ART_ADMIN_PATH IT_ART_ADMIN_PATH specifies the location of
an internal configuration script used by
administration tools. Defaults to
IT_CONFIG_DIR\admin.

Table 2: Artix Environment Variables

Variable Description
 8

Artix Environment Variables
PATH The Artix bin directories are prepended on the
PATH to ensure that the proper libraries,
configuration files, and utility programs (for
example, the IDL compiler) are used. These
settings avoid problems that might otherwise
occur if Orbix and/or Tuxedo (both include IDL
compilers and CORBA class libraries) are
installed on the same host computer.

The default Artix bin directory is:

UNIX

$IT_PRODUCT_DIR/artix/Version/bin

Windows

%IT_PRODUCT_DIR%\artix\Version\bin
%IT_PRODUCT_DIR%\bin

Table 2: Artix Environment Variables

Variable Description
9

CHAPTER 1 | Getting Started
Customizing your Environment Script

Overview The artix_env script sets the Artix environment variables using values
obtained from the Artix installer and from the script’s command-line options.
The script checks each one of these settings in sequence, and updates
them, where appropriate.

The artix_env script is designed to suit most needs. However, if you want
to customize it for your own purposes, please note the following points in
this section.

Before you begin You can only run the artix_env script once in any console session. If you
run this script a second time, it exits without completing. This prevents your
environment from becoming bloated with duplicate information (for
example, on your PATH and CLASSPATH).

In addition, if you introduce any errors when customizing the artix_env
script, it also exits without completing. This feature is controlled by the
IT_ARTIXENV variable, which is local to the artix_env script. IT_ARTIXENV is
set to true the first time you run the script in a console; this causes the
script to exit when run again.

Environment variables The following applies to the environment variables set by the artix_env
script:

• The JAVA_HOME environment variable defaults to the value obtained
from the Artix installer. If you do not manually set this variable before
running artix_env, it takes its value from the installer. The default
location for the JRE supplied with Artix is IT_PRODUCT_DIR\jre.

• The following environment variables are all set with default values
relative to IT_PRODUCT_DIR:
♦ JAVA_HOME

♦ IT_CONFIG_FILE

♦ IT_IDL_CONFIG_FILE

♦ IT_CONFIG_DIR

♦ IT_CONFIG_DOMAINS_DIR

♦ IT_LICENSE_FILE

♦ IT_ART_ADMIN_PATH
 10

Customizing your Environment Script
If you do not set these variables manually, artix_env sets them with
default values based on IT_PRODUCT_DIR. For example, the default for
IT_CONFIG_DIR on Windows is IT_PRODUCT_DIR\etc.

• The IT_IDL_CONFIG_FILE environment variable is a required only for an
Artix Development installation. All other environment variables are
required for both Development and Runtime installations.

• Before artix_env sets each environment variable, it checks if the
-preserve command-line option was supplied when the script was
run. This ensures that your preset values are not overwritten. Before
using the -preserve option, always check the existing values for these
variables are set correctly.
11

CHAPTER 1 | Getting Started
 12

CHAPTER 2

Artix Configuration
This chapter introduces the main concepts and components
in the Artix runtime configuration (for example, configuration
domains, scopes, variables, and data types). It also explains
how to use Artix configuration files and the command line to
manage your applications.

In this chapter This chapter includes the following sections:

Artix Configuration Concepts page 14

Configuration Data Types page 18

Artix Configuration Files page 19

Command-Line Configuration page 23
13

CHAPTER 2 | Artix Configuration
Artix Configuration Concepts

Overview Artix is built upon IONA’s Adaptive Runtime architecture (ART). Runtime
behaviors are established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code can be run, and can exhibit different
capabilities, in different configuration environments. This section includes
the following:

• Configuration domains.

• Configuration scopes.

• Specifying configuration scopes.

• Configuration namespaces.

• Configuration variables.

Configuration domains An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default Artix configuration domain file has the
following location:

The contents of this file can be modified to affect aspects of Artix behavior
(for example, logging or routing).

Configuration scopes An Artix configuration domain is subdivided into configuration scopes.
These are typically organized into a hierarchy of scopes, whose
fully-qualified names map directly to ORB names. By organizing
configuration variables into various scopes, you can provide different
settings for individual services, or common settings for groups of services.

Windows %IT_PRODUCT_DIR%\artix\Version\etc\domains\artix.cfg

UNIX $IT_PRODUCT_DIR/artix/Version/etc/domains/artix.cfg
 14

Artix Configuration Concepts
Local configuration scopes

Configuration scopes apply to a subset of services or to a specific service in
an environment. For example, the Artix demo configuration scope includes
example local configuration scopes for demo applications.

Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon, for example,
scopeNameTag {…};

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

In the artix.cfg file, there are several predefined configuration scopes. For
example, the demo configuration scope includes nested configuration scopes
for some of the demo programs included with the product.

Example 1: Demo Configuration Scope

demo
{
 fml_plugin
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "soap", "http", "G2", "tunnel",
 "mq", "ws_orb", "fml"];
 };
 telco
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop”, "iiop”, "G2", "tunnel"];
 plugins:tunnel:iiop:port = "55002";
 poa:MyTunnel:direct_persistent = "true";
 poa:MyTunnel:well_known_address = "plugins:tunnel";

 server
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop”, "ots", "soap", "http", "G2:,
 "tunnel"];
 plugins:tunnel:poa_name = "MyTunnel";
 };
 };
15

CHAPTER 2 | Artix Configuration
Specifying configuration scopes To make an Artix process run under a particular configuration scope, you
specify that scope using the -ORBname parameter. Configuration scope
names are specified using the following format

scope.subscope

For example, the scope for the telco server demo shown in Example 1 is
specified as demo.telco.server. During process initialization, Artix
searches for a configuration scope with the same name as the -ORBname
parameter.

There are two ways of supplying the -ORBname parameter to an Artix
process:

• Pass the argument on the command line.

• Specify the -ORBname as the third parameter to IT_Bus::init().

For example, to start an Artix process using the configuration specified in the
demo.tibrv scope, you can start the process using the following syntax:

Alternately, you can use the following code to initialize the Artix bus:

 tibrv
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "soap", "http", "tibrv"];

 event_log:filters = ["*=FATAL+ERROR"];
 };
};

Note: The orb_plugins list is redefined within each configuration scope.

Example 1: Demo Configuration Scope

<processName> [application parameters] -ORBname demo.tibrv

IT_Bus::init (argc, argv, “demo.tibrv”);
 16

Artix Configuration Concepts
If a corresponding scope is not located, the process starts under the highest
level scope that matches the specified scope name. If there are no scopes
that correspond to the ORBname parameter, the Artix process runs under the
default global scope. For example, if the nested tibrv scope does not exist,
the Artix process uses the configuration specified in the demo scope; if the
demo scope does not exist, the process runs under the default global scope.

Configuration namespaces Most configuration variables are organized within namespaces, which group
related variables. Namespaces can be nested, and are delimited by colons
(:). For example, configuration variables that control the behavior of a
plug-in begin with plugins: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts, set the following variable:

To set the location of the routing plug-in’s contract, set the following
variable:

Configuration variables Configuration data is stored in variables that are defined within each
namespace. In some instances, variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
company.operations.orb_plugins variable would override a
company.orb_plugins variable. Plug-ins specified at the company scope
would apply to all processes in that scope, except those processes that
belong specifically to the company.operations scope and its child scopes.

Further information For detailed information on Artix configuration namespaces and variables,
see the Artix Configuration Reference.

plugins:artix_service:iiop:port

plugins:routing:wsdl_url
17

../config_ref/index.htm

CHAPTER 2 | Artix Configuration
Configuration Data Types

Overview Each Artix configuration variable has an associated data type that
determines the variable’s value.

Data types can be categorized as follows:

• Primitive types

• Constructed types

Primitive types Artix supports the following three primitive types:

• boolean

• double

• long

Constructed types Artix supports two constructed types: string and ConfigList (a sequence
of strings).

• In an Artix configuration file, the string character set is ASCII.

• The ConfigList type is simply a sequence of string types. For
example:

orb_plugins = ["local_log_stream", "iiop_profile",
"giop","iiop"];
 18

Artix Configuration Files
Artix Configuration Files

Overview This section explains how to use Artix configuration files to manage
applications in your environment. It includes the following:

• “Default configuration file”.

• “Importing configuration settings”.

• “Working with multiple installations”.

• “Using symbols as configuration file parameters”.

Default configuration file The Artix configuration domain file contains all the configuration settings for
the domain. The default configuration domain file is found in the following
location:

You can edit the settings in an Artix configuration file to modify different
aspects of Artix behavior (for example, routing, or levels of logging).

Importing configuration settings You can manually create new Artix configuration domain files to
compartmentalize your applications. These new configuration domain files
can import information from other configuration domains using an include
statement in your configuration file.

This provides a convenient way of compartmentalizing your
application-specific configuration from the global ART configuration
information that is contained in the default configuration domain file. It also
means that you can easily revert to the default settings in the default Artix
configuration file. Using separate application-specific configuration files is
the recommended way of working with Artix configuration.

Windows %IT_PRODUCT_DIR%\artix\Version\etc\domains\artix.cfg

UNIX $IT_PRODUCT_DIR/artix/Version/etc/domains/artix.cfg
19

CHAPTER 2 | Artix Configuration
Example 2 shows an include statement that imports the default
configuration file. The include statement is typically the first line the
configuration file.

For complete working examples of Artix applications that use this import
mechanism, see the configuration files provided with Artix demos. These
demo applications are available from the following directory:

InstallDir\artix\Version\demos

Working with multiple
installations

If you are using multiple installations or versions of Artix, you can use your
configuration files to help manage your applications as follows:

1. Install each version of Artix into a different directory.

2. Install your applications into their own directory.

3. Copy the artix.cfg file from whichever Artix release you want to use
into another directory (for example, an application directory).

4. In your application’s local configuration file, include the artix.cfg file
from your copy location.

This enables you to switch between Artix versions by copying the
corresponding artix.cfg file into a common location. This avoids having to
update the directory information in your configuration file whenever you
want to switch between Artix versions.

Example 2: Configuration file include statement

include "../../../../../etc/domains/artix.cfg";

my_app_config {
...
}

 20

Artix Configuration Files
Using symbols as configuration
file parameters

You can define arbitrary symbols for use in Artix configuration files, for
example:

These symbols can then be reused as parameters in configuration settings,
for example:

You can use configuration symbols to customize your file depending on the
environment. This enables you to use the same basic configuration file in
different environments (for example, development, test, and production).

Using configuration symbols in a string

You can use symbols within a string using a syntax of %{SYMBOL_NAME}. For
example, if you define the following symbol:

This can be used within a string as follows:

You can also combine multiple symbols within a string as follows:

Configuration example

The configuration file in Example 3 contains some user-defined symbols:

SERVER_LOG = "my_server_log";

plugins:local_log_stream:filename = SERVER_LOG;

LOG_LEVEL = "FATAL+ERROR+WARNING+INFO_MED+INFO_HI";

event_log:filters = ["*=%{LOG_LEVEL}"];

plugins:local_log_stream:filename = "%{APP_NAME}-%{CLIENT_LOG}";

Example 3: Defining Configuration Symbols

#mydomain.cfg

INSTALL_CFG = "../../artix.cfg";

CLIENT_LOG = "my_client.log";
SERVER_LOG = "my_server.log";
APP_NAME = "myapp";
LOG_LEVEL = "FATAL+ERROR+WARNING+INFO_MED+INFO_HI";

include "template.cfg";
21

CHAPTER 2 | Artix Configuration
The configuration file in Example 4 uses the predefined symbols in
configuration variable settings:

This example shows a user-defined symbol in an include statement. It
shows a simple example of using a symbol in an configuration setting, and
more complex examples of using symbols in strings.

For details of using configuration symbols on the command line, see
“Command-Line Configuration” on page 23.

Example 4: Using Configuration Symbols

#template.cfg

include INSTALL_CFG

myapps {
 orb_plugins = ["local_log_stream", "soap", "http"];

 server {
 #Simple user-defined symbol.
 plugins:local_log_stream:filename = SERVER_LOG;

 #Using a symbol within a string.
 event_log:filters = ["*=%{LOG_LEVEL}"];
 }

 client {
 #Combining symbols within a string.
 plugins:local_log_stream:filename = "%{APP_NAME}-%{CLIENT_LOG}";
 };
};
 22

Command-Line Configuration
Command-Line Configuration

Overview This section explains how to configure the following on the command line:

• Configuration variables

• Configuration scopes

• User-defined configuration symbols

• Environment variables

• Location of WSDL and references

Setting configuration variables Artix enables you to override configuration variables at runtime by using
arguments on the command line. These arguments are then passed to the
Artix IT_Bus::init() call. Setting configuration variables on the command
line takes precedence over variables in a configuration file.

Command-line arguments for configuration variables take the following
format:

For example:

For detailed information on Artix configuration variable settings, see the Artix
Configuration Reference.

Setting configuration scopes You can specify configuration scopes when starting an application on the
command line using the -ORBname argument.

For example, to start a process using the configuration specified in the
demo.myapp scope, you would start the process with the following syntax:

For more details, see “Specifying configuration scopes” on page 16.

-ORBVariableName Value

client -ORBplugins:local_log_stream:filename client.log
-ORBorb_plugins ["local_log_stream","soap","http"]
-ORBevent_log:filters ["*=*"]

ProcessName [application parameters] -ORBname demo.myapp
23

../config_ref/index.htm
../config_ref/index.htm

CHAPTER 2 | Artix Configuration
Setting configuration symbols You can also override user-defined configuration symbols on the command
line. Setting configuration symbols on the command line takes precedence
over symbols in a configuration file.

For example, you can override the log file name in Example 3 using
command-line arguments as follows:

This successfully creates a log file named test2.logdate. For more details,
see “Using symbols as configuration file parameters” on page 21.

Setting environment variables You can use command-line arguments to pass the value of environment
variables to configuration files.

For example, you can specify the directory where Artix searches for its
configuration files using the -ORBconfig_domains_dir argument. For more
details on Artix environment variables, see Chapter 1.

Setting locations of WSDL and
references

You can specify the location of WSDL contracts and Artix references using
the following command-line arguments:

For example:

For more details, see Chapter 14.

client -ORBCLIENT_LOG test2.log

-BUSservice_contract URL
-BUSservice_contract_dir Directory
-BUSinitial_reference url

./server -BUSservice_contract ../../etc/hello.wsdl
 24

CHAPTER 3

Artix Logging
This chapter describes how to configure Artix logging. It shows
how to configure logging for specific Artix subsystems and
services, and how to control dynamic logging on the command
line. It also explains Artix support for Java log4j and SNMP
(Simple Network Management Protocol).

In this chapter This chapter includes the following sections:

Configuring Artix Logging page 26

Logging for Subsystems and Services page 34

Dynamic Logging page 39

Configuring Log4J Logging page 43

Configuring SNMP Logging page 45
25

CHAPTER 3 | Artix Logging
Configuring Artix Logging

Overview Logging in Artix is controlled by the event_log:filters configuration
variable, and by the log stream plug-ins (for example, local_log_stream
and xmlfile_log_stream). This section explains the following:

• “Configuring logging levels”.

• “Logging severity levels”.

• “Configuring logging output”.

• “Using a rolling log file”.

• “Buffering the output stream”.

• “Configuring message snoop”

Configuring logging levels You can set the event_log:filters configuration variable to provide a wide
range of logging levels. The event_log:filters variable can be set in your
Artix configuration file:

InstallDir\artix\Version\etc\domains\artix.cfg.

Displaying errors

The default event_log:filters setting displays errors only:

Displaying warnings

The following setting displays errors and warnings only:

Displaying request/reply messages

Adding INFO_MED causes all request/reply messages to be logged (for all
transport buffers):

event_log:filters = ["*=FATAL+ERROR"];

event_log:filters = ["*=FATAL+ERROR+WARNING"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_MED"];
 26

Configuring Artix Logging
Displaying trace output

The following setting displays typical trace statement output (without the
raw transport buffers):

Displaying all logging

The following setting displays all logging:

The default configuration settings enable logging of only serious errors and
warnings. For more exhaustive information, select a different filter list at the
default scope, or include a more expansive event_log:filters setting in
your configuration scope.

Logging severity levels Artix supports the following levels of log message severity:

• Information

• Warning

• Error

• Fatal error

Information

Information messages report significant non-error events. These include
server startup or shutdown, object creation or deletion, and details of
administrative actions.

Information messages provide a history of events that can be valuable in
diagnosing problems. Information messages can be set to low, medium, or
high verbosity.

Warning

Warning messages are generated when Artix encounters an anomalous
condition, but can ignore it and continue functioning. For example,
encountering an invalid parameter, and ignoring it in favor of a default value.

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI"];

event_log:filters = ["*=*"];
27

CHAPTER 3 | Artix Logging
Error

Error messages are generated when Artix encounters an error. Artix might be
able to recover from the error, but might be forced to abandon the current
task. For example, an error message might be generated if there is
insufficient memory to carry out a request.

Fatal error

Fatal error messages are generated when Artix encounters an error from
which it cannot recover. For example, a fatal error message is generated if
Artix cannot find its configuration file.

Table 3 shows the syntax used by the event_log:filters variable to
specify Artix logging severity levels.

Table 3: Artix Logging Severity Levels

Severity Level Description

INFO_LO[W] Low verbosity informational messages.

INFO_MED[IUM] Medium verbosity informational messages.

INFO_HI[GH] High verbosity informational messages.

INFO_ALL All informational messages.

WARN[ING] Warning messages.

ERR[OR] Error messages.

FATAL[_ERROR] Fatal error messages.

* All messages.
 28

Configuring Artix Logging
Configuring logging output In addition to setting the event log filter, you must ensure that a log stream
plug-in is set in your artix.cfg file. These include the local_log_stream,
which sends logging to a text file, and the xmlfile_log_stream, which
directs logging to an XML file. The xmlfile_log_stream is set by default.

Using text log files

To configure the local_log_stream, set the following variables in your
configuration file:

If you do not specify a text log file name, logging is sent to stdout.

Using XML log files

To configure the xmlfile_log_stream, set the following variables in your
configuration file:

You must ensure that your application can detect the configuration settings
for the log stream plug-ins. You can either set them at the global scope, or
configure a unique scope for use by your application, for example:

IT_Bus::init(argc, argv, "demo.myscope");

This enables you to place the necessary configuration in the demo.myscope
scope.

//Ensure these plug-ins exist in your orb_plugins list
orb_plugins = ["local_log_stream", ...];

//Optional text filename
plugins:local_log_stream:filename = "/var/mylocal.log";

//Ensure this plug-in is in your orb_plugins list
orb_plugins = ["xmlfile_log_stream", ...];

// Optional filename; can be qualified.
plugins:xmlfile_log_stream:filename = "artix_logfile.xml";

// Optional process ID added to filename (default is false).
plugins:xmlfile_log_stream:use_pid = "false";

Note: The xmlfile_log_stream plug-in is included in the default
orb_plugins list, but not in the orb_plugins lists in some demo
configuration scopes. To enable logging to an XML file for the applications
that you develop, include this plug-in your orb_plugins list.
29

CHAPTER 3 | Artix Logging
Using a rolling log file By default, a logging plug-in creates a new log file each day to prevent the
log file from growing indefinitely. In this model, the log stream adds the
current date to the configured filename. This produces a complete filename,
for example:

A new log file begins with the first event of the day, and ends each day at
23:59:59.

Specifying the date format

You can configure the format of the date in the rolling log file, using the
following configuration variables:

• plugins:local_log_stream:filename_date_format

• plugins:xmlfile_log_stream:filename_date_format

The specified date must conform to the format rules of the ANSI C
strftime() function. For example, for a text log file, use the following
settings:

On the 31st January 2006, this results in a log file named
my_log_2006_01_31.

The equivalent settings for an XML log file are:

/var/adm/my_artix_log.01312006

plugins:local_log_stream:rolling_file="true";
plugins:local_log_stream:filename="my_log";
plugins:local_log_stream:filename_date_format="_%Y_%m_%d";

plugins:xmlfile_log_stream:rolling_file="true";
plugins:xmlfile_log_stream:filename="my_log";
plugins:xmlfile_log_stream:filename_date_format="_%Y_%m_%d";
 30

Configuring Artix Logging
Disabling rolling log files

To disable rolling file behavior for a text log file, set the following variable to
false:

To disable rolling file behavior for an XML log file, set the following variable
to false:

Buffering the output stream You can also set the output stream to a buffer before it writes to a local log
file. To specify this behavior, use either of the following variables:

plugins:local_log_stream:buffer_file
plugins:xmlfile_log_stream:buffer_file

When set to true, by default, the buffer is output to a file every 1000
milliseconds when there are more than 100 messages logged. This log
interval and number of log elements can also be configured.

For example, the following configuration writes the log output to a log file
every 400 milliseconds if there are more than 20 log messages in the buffer.

Using text log files

Using XML log files

plugins:local_log_stream:rolling_file = "false";

plugins:xmlfile_log_stream:rolling_file = "false";

Note: To ensure that the log buffer is sent to the log file, you must always
shutdown your applications correctly.

plugins:local_log_stream:filename = "/var/adm/artix.log";
plugins:local_log_stream:buffer_file = "true";
plugins:local_log_stream:milliseconds_to_log = "400";
plugins:local_log_stream:log_elements = "20";

plugins:xml_log_stream:filename = "/var/adm/artix.xml";
plugins:xml_log_stream:buffer_file = "true";
plugins:xml_log_stream:milliseconds_to_log = "400";
plugins:xml_log_stream:log_elements = "20";
31

CHAPTER 3 | Artix Logging
Configuring message snoop Artix message snoop is a message interceptor that sends input/output
messages to the Artix log to enable viewing of the message content. This is a
useful debugging tool when developing and testing an Artix system.

Message snoop is enabled by default. It is automatically added as the last
interceptor before the binding to detect any changes that other interceptors
might make to the message. By default, message_snoop logs at INFO_HIGH in
the MESSAGE_SNOOP subsystem. You can change these settings in
configuration.

Disabling message snoop

Message snoop is invoked on every message call, twice in the client and
twice in the server (assuming Artix is on both sides). This means that it can
impact on performance. More importantly, message snoop involves risks to
confidentiality. You can disable message snoop using the following setting:

Setting a message snoop log level

You can set a message snoop log level globally or for a service port. The
following example sets the level globally:

The following example sets the level for a service port:

artix:interceptors:message_snoop:enabled = "false";

WARNING: For security reasons, it is strongly recommended that
message snoop is disabled in production deployments.

artix:interceptors:message_snoop:log_level = "WARNING";
event_log:filters = ["*=WARNING", "IT_BUS=INFO_HI+WARN+ERROR",

"MESSAGE_SNOOP=WARNING"];

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_level = "INFO_MED";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED"];
 32

Configuring Artix Logging
Setting a message snoop subsystem

You can set message snoop to a specific subsystem globally or for a service
port. The following example sets the subsystem globally:

The following example sets the subsystem for a service port:

If message snoop is disabled globally, but configured for a service/port, it is
enabled for that service/port with the specified configuration only. For
example:

Setting message snoop in conjunction with log filters is useful when you
wish to trace only messages that are relevant to a particular service, and you
do not wish to see logging for others (for example, the container, locator,
and so on).

artix:interceptors:message_snoop:log_subsystem = "MY_SUBSYSTEM";
event_log:filters = ["*=INFO_MED", "IT_BUS=",

"MY_SUBSYSTEM=INFO_MED"];

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_subsystem = "MESSAGE_SNOOP";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED"];

artix:interceptors:message_snoop:enabled = "false";

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_level = "WARNING";

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_subsystem = "MY_SUBSYSTEM";

event_log:filters = ["*=WARNING", "IT_BUS=INFO_HI+WARN+ERROR",
"MY_SUBSYSTEM=WARNING"];
33

CHAPTER 3 | Artix Logging
Logging for Subsystems and Services

Overview You can use the event_log:filters configuration variable to set
fine-grained logging for specified Artix logging subsystems. For example, you
can set logging for the Artix core, specific transports, bindings, or services.

Artix logging subsystems Artix logging subsystems are organized into a hierarchical tree, with the
IT_BUS subsystem at the root. Example logging subsystems include:

Table 4 shows a list of the available logging subsystems.

IT_BUS.CORE
IT_BUS.TRANSPORT.HTTP
IT_BUS.BINDING.SOAP

Table 4: Artix Logging Subsystems

Subsystem Description

IT_BUS Artix bus.

IT_BUS.BINDING All bindings.

IT_BUS.BINDING.COLOC Collocated binding.

IT_BUS.BINDING.CORBA CORBA binding.

IT_BUS.BINDING.CORBA.CONTEXT CORBA context.

IT_BUS.BINDING.FIXED Fixed binding.

IT_BUS.BINDING.SOAP SOAP binding.

IT_BUS.BINDING.TAGGED Tagged binding.

IT_BUS.CORE Artix core.

IT_BUS.SERVICE All Artix services.

IT_BUS.SERVICE.LOCATOR Artix locator service.

IT_BUS.SERVICE.PEER_MGR Artix peer manager service.
 34

Logging for Subsystems and Services
Subsystem filter syntax The event_log:filters variable takes a list of filters, where each filter sets
logging for a specified subsystem using the following format:

Subsystem is the name of the Artix subsystem that reports the messages;
while SeverityLevel represents the severity levels that are logged by that
subsystem. For example, the following filter specifies that only errors and
fatal errors for the HTTP transport should be reported:

In a configuration file, event_log:filters is set as follows:

The following entry in a configuration file explicitly sets severity levels for a
list of subsystem filters:

IT_BUS.SERVICE.SESSION_MGR Artix session manager service.

IT_BUS.TRANSPORT.HTTP HTTP transport.

IT_BUS.TRANSPORT.MQ MQ transport.

IT_BUS.TRANSPORT.TIBRV Tibrv transport.

IT_BUS.TRANSPORT.TUNNELL Tunnel transport.

IT_BUS.TRANSPORT.TUXEDO Tuxedo transport.

MESSAGE_SNOOP Message snoop.

Note: This is the recommended list of Artix logging subsystems. This list
may be subject to change in future releases.

Table 4: Artix Logging Subsystems

Subsystem Description

Subsystem=SeverityLevel[+SeverityLevel]...

IT_BUS.TRANSPORT.HTTP=ERR+FATAL

event_log:filters=["LogFilter"[,"LogFilter"]...]

event_log:filters=["IT_BUS=FATAL+ERROR",
 "IT_BUS.BINDING.CORBA=WARN+FATAL+ERROR"];
35

CHAPTER 3 | Artix Logging
Setting the Artix bus pre-filter The Artix bus pre-filter provides filtering of log messages that are sent to the
EventLog before they are output to the LogStream. This enables you to
minimize the time spent generating log messages that will be ignored. For
example:

In this example, only WARNING, ERROR and FATAL priority log messages are
sent to the EventLog. This means that no processing time is wasted
generating strings for INFO log messages. The EventLog then only sends
FATAL and ERROR log messages to the LogStream for the IT_BUS subsystem.

Setting logging for specific
subsystems

You can set logging filters for specific Artix subsystems. A subsystem with
no configured filter value implicitly inherits the value of its parent. The
default value at the root of the tree ensures that each node has an implicit
filter value. For example:

This means that all subsystems under IT_BUS have a filter of FATAL+ERROR,
except for IT_BUS.BINDING.CORBA which has WARN+FATAL+ERROR.

Setting multiple subsystems with
a single filter

Using the IT_BUS subsystem means you can adjust the logging for Artix
subsytems with a single filter. For example, you can turn off logging for the
tunnel transport (IT_BUS.TRANSPORT.TUNNEL=FATAL) and/or turn up logging
for the HTTP transport (IT_BUS.TRANSPORT.HTTP=INFO_LOW+...), as show in
the following example:

event_log:filters:bus:pre_filter = "WARN+ERROR+FATAL";

event_log:filters = ["IT_BUS=FATAL+ERROR", "IT_BUS.BINDING=*"];

Note: event_log:filters:bus:pre_filter defaults to * (all messages).
Setting this variable to WARN+ERROR+FATAL improves performance
significantly.

event_log:filters = ["IT_BUS=FATAL+ERROR",
 "IT_BUS.BINDING.CORBA=WARN+FATAL+ERROR"];

event_log:filters= ["IT_BUS=FATAL+ERROR",
 "IT_BUS.TRANSPORT.TUNNEL=FATAL",
 "IT_BUS.TRANSPORT.HTTP=INFO_LOW+INFO_HI+WARN"];
 36

Logging for Subsystems and Services
Configuring service-based logging You can use Artix service subsystems to log for Artix services, such as the
locator, and also for services that you have developed. This can be useful
when you are running many services, and need to filter services that are
particular noisy. Using service-based logging involves some performance
overheads and extra configuration. This feature is disabled by default.

To enable logging for specific services, perform the following steps:

1. Set the following configuration variables:

2. Set the event log filters as appropriate, for example:

In these examples, the service name must be specified in the following
format:

"{NamespaceURI}LocalPart"

For example:

Setting parameterized configuration

The following example shows setting service-based logging in your
application using the -ORBevent_log:filters parameter:

event_log:log_service_names:active = "true";

event_log:log_service_names:services = ["ServiceName1",
"ServiceName2"];

event_log:filters = ["IT_BUS=FATAL+ERROR",
 "ServiceName1=WARN+ERROR+FATAL", "ServiceName2=ERROR+FATAL",
 "ServiceName2.IT_BUS.BINDING.CORBA=INFO+WARN+ERROR+FATAL"
];

"{http://www.my-company.com/bus/tests}SOAPHTTPService"

const char* bus_argv[] = {"-ORBname", "my_spp_logging",
 "-ORBevent_log:filters", "{IT_BUS=ERR},
 {{http://www.my-company/my_app}SOAPHTTPService.IT_BUS.BINDING.SOAP=INFO}"
37

CHAPTER 3 | Artix Logging
Logging per bus For C++ applications, you can configure logging per bus by specifying your
logging configuration in an application-specific scope. However, you must
also specify logging per bus in your server code, for example:

• Include the
InstallDir/artix/Version/include/it_bus/bus_logger.h file.

• Pass a valid bus to the BusLogger (for example, using BusLogger
macros, such as IT_INIT_BUS_LOGGER_MEM).

For full details on how to specify that logging statements are sent to a
particular Artix bus, see Developing Advanced Artix Plug-ins in C++.

Programmatic logging
configuration

C++ and Java applications can use a logging API to query, add, or cancel
logging filters for subsystems, as well as adding and removing services from
per-service logging. For example, you can access a C++
IT_Bus::Logging::LoggingConfig class by calling
bus->get_pdk_bus()->get_logging_config().

For full details, see Developing Artix Applications in C++ or Developing
Artix Applications in Java
 38

http://www.iona.com/support/docs/artix/4.0/plugin_guide/wwhelp/wwhimpl/js/html/wwhelp.htm
../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

Dynamic Logging
Dynamic Logging

Overview At runtime, you can use it_container_admin commands to dynamically get
and set logging levels for specific subsystems and services. This section
explains how to use the it_container_admin -getlogginglevel and
-setlogginglevel options.

Getting logging levels The -getlogginglevel option gets the logging level for specified a
subsystem or service. This command has the following syntax:

Get logging for a specific subsystem

The following example gets the logging level for the CORBA binding only:

Get logging for multiple subsystems

The following example uses a wildcard to get the logging levels for all
subsystems:

This outputs a list of subsystems that have been explicitly set in a
configuration file or by -setlogginglevel.

For example, if IT_BUS.BINDING=LOG_INFO is output, this means that
IT_BUS.BINDING is set to LOG_INFO, and that no child subsystems of
IT_BUS.BINDING are explicitly set. In this case, all child subsystems inherit
LOG_INFO from their parent.

-getlogginglevel [-subsystem SubSystem] [-service
{Namespace}LocalPart]

it_container_admin -getlogginglevel -subsystem
IT_BUS.BINDING.CORBA

it_container_admin -getlogginglevel -subsystem *
39

CHAPTER 3 | Artix Logging
Get logging for a specific service

The following example gets the logging level for a locator service that is
running in a container:

Setting logging levels The -setlogginglevel option sets the logging level for a specified
subsystem. This command has the following syntax:

The possible logging levels are:

Set logging for a specific subsystem

The following example sets the logging level for the HTTP transport only:

Set logging for multiple subsystems

You can set logging for multiple subsystems by using the -propagate
option. The following example sets the logging level for all transports (IIOP,
HTTP, and so on):

it_container_admin -getlogginglevel -subsystem
IT_BUS.BINDING.SOAP -service
{http://ws.iona.com/locator}LocatorService

-setlogginglevel -subsystem SubSystem -level Level [-propagate]
[-service {Namespace}Localpart]

LOG_FATAL
LOG_ERROR
LOG_WARN
LOG_INFO_HIGH
LOG_INFO_MED
LOG_INFO_LOW
LOG_SILENT
LOG_INHERIT

it_container_admin -getlogginglevel -subsystem
IT_BUS.TRANSPORT.HTTP -level LOG_WARN

it_container_admin -setlogginglevel -subsystem IT_BUS.TRANSPORT
-level LOG_WARN -propagate true
 40

Dynamic Logging
Override child subsystem levels

You can use the -propagate option to override child subsystem levels that
have been set previously. For example, take the simple case where IT_BUS
is set to LOG_INFO, and no other subsystems are set. If the IT_BUS level is
changed, it is automatically propagated to all IT_BUS children.

However, take the case where IT_BUS.CORE is set to LOG_WARN, and
IT_BUS.TRANSPORT is set to LOG_INFO_LOW. Setting IT_BUS to LOG_ERROR
affects IT_BUS and all its children, except for IT_BUS.CORE and
IT_BUS.TRANSPORT. In this case, you can use -propagate true to override
the child subsystem levels set previously. For example:

Set logging for services

The following example sets the logging level for the SOAP binding when
used with the locator service:

The -propagate option can also be used when setting logging for service.
For example, if you have service-specific logging enabled for
IT_BUS.BINDING and IT_BUS.BINDING.SOAP, setting a service-specific log
level for IT_BUS.BINDING with -propagate true also sets the service level
for IT_BUS.BINDING.SOAP.

it_container_admin -setlogginglevel -subsystem IT_BUS -level
LOG_ERROR -propagate true

it_container_admin -setlogginglevel -subsystem
IT_BUS.BINDING.SOAP -level LOG_INFO_HIGH -service
{http://ws.iona.com/locator}LocatorService

it_container_admin -setlogginglevel -subsystem IT_BUS.BINDING
-level LOG_INFO_LOW -propagate true -service
{http://ws.iona.com/locator}LocatorService
41

CHAPTER 3 | Artix Logging
Inheriting a logging level You can use the LOG_INHERIT level to cancel the current logging level and
inherit from the parent subsystem instead.

For example, if the IT_BUS.CORE subsystem is set to LOG_INFO_LOW, and its
parent (IT_BUS) is set to LOG_ERROR, setting IT_BUS.CORE to LOG_INHERIT
results in IT_BUS.CORE logging at LOG_ERROR. This is shown in the following
example:

By default, all subsystems are effectively in LOG_INHERIT mode because they
inherit a level from their parent subsystem.

Silent logging You can use the LOG_SILENT level to specify that a given subsystem does not
perform any logging, for example:

Further information For more details on using the it_container_admin command, see
“Deploying Services in an Artix Container” on page 91.

For more details on subsystems, see “Logging for Subsystems and Services”
on page 34.

it_container_admin -setlogginglevel -subsystem IT_BUS.CORE
-level LOG_INHERIT

it_container_admin -setlogginglevel -subsystem
IT_BUS.TRANSPORT.TUNNEL -level LOG_SILENT
 42

Configuring Log4J Logging
Configuring Log4J Logging

Overview For Artix Java applications, you also have the option of using log4J, which is
a standard Java logging tool. This enables you to control Artix logging with
the same logging tool used by Java applications. This section includes the
following:

• “Specifying the log4j plug-in”.

• “Setting the log4j properties file”.

Specifying the log4j plug-in You must first add the log4j_log_stream plug-in to your Artix orb_plugins
list. For example:

The log4j_log_stream plug-in reroutes all Artix logging to log4j.

Setting the log4j properties file When using log4j with Artix, the LogConfig.properties file controls your
Artix logging settings. This file is located in the following directory:

InstallDir/artix/Version/etc

To enable log4j logging, delete the comment symbol (#) in the following
line:

In this file, all Artix logging is set to a root logger named com.iona. You can
not specify to log only DEBUG level messages like you can Artix logging.
Instead, specifying a logging level means to log all messages with that level
or higher. For example, setting the log level to DEBUG means to log all DEBUG,
WARNING, ERROR, and FATAL messages.

Note: log4j logging overrides Artix logging. Settings in the
LogConfig.properties file completely override settings in the artix.cfg
file.

orb_plugins = ["log4j_log_stream", "iiop_profile", "giop",
"iiop"];

#log4j.logger.com.iona=DEBUG
43

CHAPTER 3 | Artix Logging
Using log4j with your Java
applications

If you wish to combine the log4J logging in your Java application with log4j
logging in Artix, you must initialize log4j with the LogConfig.properties file
in your Java application code.

However, you can still use your own properties file to initialize log4j, and
you do no have to use LogConfig.properties.

Further information For more information about using log4j, see the Apache documentation at:

http://logging.apache.org/log4j/docs/documentation.html
 44

http://logging.apache.org/log4j/docs/documentation.htm

Configuring SNMP Logging
Configuring SNMP Logging

SNMP Simple Network Management Protocol (SNMP) is the Internet standard
protocol for managing nodes on an IP network. SNMP can be used to
manage and monitor all sorts of equipment (for example, network servers,
routers, bridges, and hubs).

The Artix SNMP LogStream plug-in uses the open source library net-snmp
(v.5.0.7) to emit SNMP v1/v2 traps. For more information on this
implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a
freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

Artix Management Information
Base (MIB)

A MIB file is a database of objects that can be managed using SNMP. It has
a hierarchical structure, similar to a DOS or UNIX directory tree. It contains
both pre-defined values and values that can be customized. The Artix MIB is
shown below:

Example 5: Artix MIB

IONA-ARTIX-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, Counter32,
 Unsigned32,
 NOTIFICATION-TYPE FROM SNMPv2-SMI
 DisplayString FROM RFC1213-MIB
;

-- v2 s/current/current

 iona OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) 3027 }

 ionaMib MODULE-IDENTITY
 LAST-UPDATED "200303210000Z"

 ORGANIZATION "IONA Technologies PLC"
45

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

CHAPTER 3 | Artix Logging
 CONTACT-INFO
 "
 Corporate Headquarters
 Dublin Office
 The IONA Building
 Shelbourne Road
 Ballsbridge
 Dublin 4 Ireland
 Phone: 353-1-662-5255
 Fax: 353-1-662-5244

 US Headquarters
 Waltham Office
 200 West Street 4th Floor
 Waltham, MA 02451
 Phone: 781-902-8000
 Fax: 781-902-8001

 Asia-Pacific Headquarters
 IONA Technologies Japan, Ltd
 Akasaka Sanchome Bldg.
 7F 3-21-16 Akasaka, Minato-ku,
 Tokyo, Japan 107-0052
 Tel: +81 3 3560 5611
 Fax: +81 3 3560 5612
 E-mail: support@iona.com
 "
 DESCRIPTION
 "This MIB module defines the objects used and format of SNMP traps that are generated
 from the Event Log for Artix based systems from IONA Technologies"

 ::= { iona 1 }

Example 5: Artix MIB
 46

Configuring SNMP Logging
 CONTACT-INFO
 "
 Corporate Headquarters
 Dublin Office
 The IONA Building
 Shelbourne Road
 Ballsbridge
 Dublin 4 Ireland
 Phone: 353-1-662-5255
 Fax: 353-1-662-5244

 US Headquarters
 Waltham Office
 200 West Street 4th Floor
 Waltham, MA 02451
 Phone: 781-902-8000
 Fax: 781-902-8001

 Asia-Pacific Headquarters
 IONA Technologies Japan, Ltd
 Akasaka Sanchome Bldg.
 7F 3-21-16 Akasaka, Minato-ku,
 Tokyo, Japan 107-0052
 Tel: +81 3 3560 5611
 Fax: +81 3 3560 5612
 E-mail: support@iona.com
 "
 DESCRIPTION
 "This MIB module defines the objects used and format of SNMP traps that are generated
 from the Event Log for Artix based systems from IONA Technologies"

 ::= { iona 1 }

Example 5: Artix MIB
47

CHAPTER 3 | Artix Logging

-- iona(3027)

-- |
-- ionaMib(1)
-- |
-- __
-- | | |
-- orbix3(2) IONAAdmin (3) Artix (4)
- |
-- --------------------
-- | |
-- ArtixEventLogMibObjects(0) ArtixEventLogMibTraps (1)
-- | |
-- -- -----------------------
-- |- eventSource (1) |- ArtixbaseTrapDef (1)
-- |- eventId (2)
-- |- eventPriority (3)
-- |- timeStamp (4)
-- |- eventDescription (5)

 Artix OBJECT IDENTIFIER ::= { ionaMib 4 }
 ArtixEventLogMibObjects OBJECT IDENTIFIER ::= { Artix 0 }
 ArtixEventLogMibTraps OBJECT IDENTIFIER ::= { Artix 1 }
 ArtixBaseTrapDef OBJECT IDENTIFIER ::= { ArtixEventLogMibTraps 1 }

-- MIB variables used as varbinds
 eventSource OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component or subsystem which generated the event."
 ::= { ArtixEventLogMibObjects 1 }

Example 5: Artix MIB
 48

Configuring SNMP Logging
 eventId OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The event id for the subsystem which generated the event."

 ::= { ArtixEventLogMibObjects 2 }

 eventPriority OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The severity level of this event. This maps to IT_Logging::EventPriority types. All
 priority types map to four general types: INFO (I), WARN (W), ERROR (E), FATAL_ERROR (F)"

 ::= { ArtixEventLogMibObjects 3 }

 timeStamp OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The time when this event occurred."

 ::= { ArtixEventLogMibObjects 4 }

 eventDescription OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component/application description data included with event."

 ::= { ArtixEventLogMibObjects 5 }

-- SNMPv1 TRAP definitions
-- ArtixEventLogBaseTraps TRAP-TYPE
-- OBJECTS {
-- eventSource,
-- eventId,
-- eventPriority,

Example 5: Artix MIB
49

CHAPTER 3 | Artix Logging
IONA SNMP integration Events received from various Artix components are converted into SNMP
management information. This information is sent to designated hosts as
SNMP traps, which can be received by any SNMP managers listening on the
hosts. In this way, Artix enables SNMP managers to monitor Artix-based
systems.

Artix supports SNMP version 1 and 2 traps only.

Artix provides a log stream plug-in called snmp_log_stream. The shared
library name of the SNMP plug-in found in the artix.cfg file is:

-- timestamp,
-- eventDescription
-- }

-- STATUS current
-- ENTERPRISE iona
-- VARIABLES { ArtixEventLogMibObjects }
-- DESCRIPTION "The generic trap generated from an Artix Event Log."
-- ::= { ArtixBaseTrapDef 1 }

-- SNMPv2 Notification type

 ArtixEventLogNotif NOTIFICATION-TYPE
 OBJECTS {
 eventSource,
 eventId,
 eventPriority,
 timestamp,
 eventDescription
 }

 STATUS current
 ENTERPRISE iona
 DESCRIPTION "The generic trap generated from an Artix Event Log."
 ::= { ArtixBaseTrapDef 1 }

END

Example 5: Artix MIB

plugins:snmp_log_stream:shlib_name = "it_snmp"
 50

Configuring SNMP Logging
Configuring the SNMP plug-in The SNMP plug-in has five configuration variables, whose defaults can be
overridden by the user. The availability of these variables is subject to
change. The variables and defaults are:

Configuring the Enterprise Object
Identifier

The last plug-in described, oid, is the Enterprise Object Identifier. This is
assigned to specific enterprises by the Internet Assigned Numbers Authority
(IANA). The first six numbers correspond to the prefix:
iso.org.dod.internet.private.enterprise (1.3.6.1.4.1). Each
enterprise is assigned a unique number, and can provide additional
numbers to further specify the enterprise and product.

For example, the oid for IONA is 3027. IONA has added 1.4.1.0 for Artix.
Therefore the complete OID for IONA’s Artix is 1.3.6.1.4.1.3027.1.4.1.0.
To find the number for your enterprise, visit the IANA website at
http://www.iana.org.

The SNMP plug-in implements the IT_Logging::LogStream interface and
therefore acts like the local_log_stream plug-in.

plugins:snmp_log_stream:community = "public";
plugins:snmp_log_stream:server = "localhost";
plugins:snmp_log_stream:port = "162";
plugins:snmp_log_stream:trap_type = "6";
plugins:snmp_log_stream:oid = "your IANA number in dotted decimal notation"
51

http://www.iana.org

CHAPTER 3 | Artix Logging
 52

CHAPTER 4

Enterprise
Performance
Logging
IONA’s performance logging plug-ins enable Artix to integrate
effectively with third-party Enterprise Management Systems
(EMS).

In this chapter This chapter contains the following sections:

Enterprise Management Integration page 54

Configuring Performance Logging page 56

Performance Logging Message Formats page 61
53

CHAPTER 4 | Enterprise Performance Logging
Enterprise Management Integration

Overview IONA’s performance logging plug-ins enable both Artix and Orbix to integrate
effectively with Enterprise Management Systems (EMS), such as IBM
Tivoli™, HP OpenView™, or BMC Patrol™. The performance logging
plug-ins can also be used in isolation or as part of a bespoke solution.

Enterprise Management Systems enable system administrators and
production operators to monitor enterprise-critical applications from a single
management console. This enables them to quickly recognize the root cause
of problems that may occur, and take remedial action (for example, if a
machine is running out of disk space).

Performance logging When performance logging is configured, you can see how each Artix server
is responding to load. The performance logging plug-ins log this data to file
or syslog. Your EMS (for example, IBM Tivoli) can read the performance
data from these logs, and use it to initiate appropriate actions, (for example,
issue a restart to a server that has become unresponsive, or start a new
replica for an overloaded cluster).

Example EMS integration Figure 1 shows an overview of the IONA and IBM Tivoli integration at work.
In this example, a restart command is issued to an unresponsive server.

In Figure 1, the performance log files indicate a problem. The IONA Tivoli
Provider uses the log file interpreter to read the logs. The provider sees when
a threshold is exceeded and fires an event. The event causes a task to be
activated in the Tivoli Task Library. This task restarts the appropriate server.

This chapter explains how to manually configure the performance logging
plug-ins. It also explains the format of the performance logging messages.

For details on how to integrate your EMS environment with Artix, see the
IONA guide for your EMS. For example, see the IBM Tivoli Integration Guide
or BMC Patrol Integration Guide.
 54

../tivoli/index.htm
../bmc/index.htm

Enterprise Management Integration
Figure 1: Overview of an Artix and IBM Tivoli Integration
55

CHAPTER 4 | Enterprise Performance Logging
Configuring Performance Logging

Overview This section explains how to manually configure performance logging. This
section includes the following:

• “Performance logging plug-ins”.

• “Monitoring Artix requests”.

• “Logging to a file or syslog”.

• “Logging to a syslog daemon”.

• “Monitoring clusters”.

• “Configuring a server ID”.

• “Configuring a client ID”.

• “Configuring with the GUI”.

Performance logging plug-ins The performance logging component includes the following plug-ins:

Note: You can also use the Artix Designer GUI tool to configure
performance logging automatically. However, manual configuration gives
you more fine-grained control.

Table 5: Performance Logging Plug-ins

Plug-in Description

Response monitor Monitors response times of requests as they
pass through the Artix binding chains.
Performs the same function for Artix as the
response time logger does for Orbix.

Collector Periodically collects data from the response
monitor plug-in and logs the results.
 56

Configuring Performance Logging
Monitoring Artix requests You can use performance logging to monitor Artix server and client requests.

To monitor both client and server requests, add the bus_response_monitor
plug-in to the orb_plugins list in the global configuration scope. For
example:

To configure performance logging on the client side only, specify this setting
in a client scope only.

Logging to a file or syslog You can configure the collector plug-in to log data either to a file or to
syslog. The configuration settings depends on whether your application is
written in C++ or Java.

C++ configuration

The following example configuration for a C++ application results in
performance data being logged to
/var/log/my_app/perf_logs/treasury_app.log every 90 seconds:

If you do not specify the response time period, it defaults to 60 seconds.

Java configuration

Configuring the Java collector plug-in is slightly different from the C++
collector) because the Java collector plug-in makes use of Apache Log4J.
Instead of setting plugins:it_response_time_collector:filename, you set
the plugins:it_response_time_collector:log_properties to use Log4J,
for example:

orb_plugins = ["xmlfile_log_stream", "soap", "at_http",
"bus_response_monitor"];

plugins:it_response_time_collector:period = "90";
plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";

plugins:it_response_time_collector:log_properties = ["log4j.rootCategory=INFO, A1",
"log4j.appender.A1=com.iona.management.logging.log4jappender.TimeBasedRollingFileAppender",
"log4j.appender.A1.File="/var/log/my_app/perf_logs/treasury_app.log",
"log4j.appender.A1.MaxFileSize=512KB",
"log4j.appender.A1.layout=org.apache.log4j.PatternLayout",
"log4j.appender.A1.layout.ConversionPattern=%d{ISO8601} %-80m %n"
];
57

CHAPTER 4 | Enterprise Performance Logging
Logging to a syslog daemon You can configure the collector to log to a syslog daemon or Windows event
log, as follows:

The syslog_appid enables you to specify your application name that is
prepended to all syslog messages. If you do not specify this, it defaults to
iona.

Monitoring clusters You can configure your EMS to monitor a cluster of servers. You can do this
by configuring multiple servers to log to the same file. If the servers are
running on different hosts, the log file location must be on an NFS mounted
or shared directory.

Alternatively, you can use syslogd as a mechanism for monitoring a cluster.
You can do this by choosing one syslogd to act as the central logging server
for the cluster. For example, say you decide to use a host named teddy as
your central log server. You must edit the /etc/syslog.conf file on each
host that is running a server replica, and add a line such as the following:

Some syslog daemons will not accept log messages from other hosts by
default. In this case, it may be necessary to restart the syslogd on teddy
with a special flag to allow remote log messages.

You should consult the man pages on your system to determine if this is
necessary and what flags to use.

plugins:it_response_time_collector:system_logging_enabled = "true";
plugins:it_response_time_collector:syslog_appID = "treasury";

Substitute the name of your log server
 user.info @teddy
 58

Configuring Performance Logging
Configuring a server ID You can configure a server ID that will be reported in your log messages.
This server ID is particularly useful in the case where the server is a replica
that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log
messages from different replica instances. You can configure a server ID as
follows:

This setting is optional; and if omitted, the server ID defaults to the ORB
name of the server. In a cluster, each replica must have this value set to a
unique value to enable sensible analysis of the generated performance logs.

Configuring a client ID You can also configure a client ID that will be reported in your log messages.
Specify this using the client-id configuration variable, for example:

This setting enables management tools to recognize log messages from
client applications. This setting is optional; and if omitted, it is assumed that
that a server is being monitored.

Configuration example The following simple example configuration file is from the management
demo supplied in your Artix installation:

plugins:it_response_time_collector:server-id = "Locator-1";

plugins:it_response_time_collector:client-id = "my_client_app";

include "../../../../../etc/domains/artix.cfg";

demos {

 management

 {

 orb_plugins = ["xmlfile_log_stream", "soap", "at_http",
 "bus_response_monitor"];
59

CHAPTER 4 | Enterprise Performance Logging
In this example, the bus_response_monitor plug-in and
plugins:it_response_time_collector:period are set in the global scope.
This specifies these settings for both the client and server applications.

Configuring with the GUI The Artix Designer GUI tool automatically generates performance logging
configuration for the Artix services. The generated server-id defaults to the
following format:

DomainName_ServiceName_Hostname (for example, artix_locator_myhost)

For details on how to automatically generate performance logging, see the
IBM Tivoli Integration Guide or BMC Patrol Integration Guide.

 plugins:it_response_time_collector:period = "5";

 client {

 plugins:it_response_time_collector:client-id=
 "management-demo-client";

 plugins:it_response_time_collector:filename=
 "management_demo_client.log";
 };

 server {

 plugins:it_response_time_collector:server-id=
 "management-demo-server";

 plugins:it_response_time_collector:filename=
 "management_demo_server.log";
 };
 };
};
 60

../tivoli/index.htm
../bmc/index.htm

Performance Logging Message Formats
Performance Logging Message Formats

Overview This section describes the performance logging message formats used by
IONA products. It includes the following:

• “Artix log message format”.

• “Orbix log message format”.

• “Simple life cycle message formats”.

Artix log message format Performance data is logged in a well-defined format. For Artix applications,
this format is as follows:

YYYY-MM-DD HH:MM:SS server=ServerID [namespace=nnn service=sss
port=ppp operation=name] count=n avg=n max=n min=n int=n oph=n

Table 6: Artix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

namespace The Artix namespace.

service The Artix service.

port The Artix port.

operation The name of the operation for CORBA
invocations or the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for
this operation or URI during the last interval.
61

CHAPTER 4 | Enterprise Performance Logging
The combination of namespace, service and port above denote a unique
Artix endpoint.

Orbix log message format The format for Orbix log messages is as follows:

max The longest response time (milliseconds) for
this operation or URI during the last interval.

min The shortest response time (milliseconds) for
this operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 6: Artix log message arguments

Argument Description

YYYY-MM-DD HH:MM:SS server=ServerID [operation=Name] count=n
avg=n max=n min=n int=n oph=n

Table 7: Orbix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

operation The name of the operation for CORBA invocations or
the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for this
operation or URI during the last interval.

max The longest response time (milliseconds) for this
operation or URI during the last interval.
 62

Performance Logging Message Formats
Simple life cycle message formats The server will also log simple life cycle messages. All servers share the
following common format.

min The shortest response time (milliseconds) for this
operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 7: Orbix log message arguments

Argument Description

YYYY-MM-DD HH:MM:SS server=ServerID status=CurrentStatus

Table 8: Simple life cycle message formats arguments

Argument Description

server The server ID of the process that is logging the
message.

status A text string describing the last known status of
the server (for example, starting_up, running,
shutting_down).
63

CHAPTER 4 | Enterprise Performance Logging
 64

CHAPTER 5

Using Artix with
International
Codesets
The Artix SOAP and CORBA bindings enable you to transmit
and receive messages in a range of codesets.

In this chapter This chapter includes the following:

Introduction to International Codesets page 66

Working with Codesets using SOAP page 69

Working with Codesets using CORBA page 70

Working with Codesets using Fixed Length Records page 73

Working with Codesets using Message Interceptors page 76

Routing with International Codesets page 85
65

CHAPTER 5 | Using Artix with International Codesets
Introduction to International Codesets

Overview A coded character set, or codeset for short, is a mapping between integer
values and characters that they represent. The best known codeset is ASCII
(American Standard Code for Information Interchange). ASCII defines 94
graphic characters and 34 control characters using the 7-bit integer range.

European languages The 94 characters defined by the ASCII codeset are sufficient for English,
but they are not sufficient for European languages, such as French, Spanish,
and German.

To remedy the situation, an 8-bit codeset, ISO 8859-1, also known as
Latin-1, was invented. The lower 7-bit portion is identical to ASCII. The
extra characters in the upper 8-bit range cover those languages used widely
in Western Europe.

Many other codesets are defined under ISO 8859 framework. These cover
languages in other regions of Europe, as well as Russian, Arabic and
Hebrew. The most recent addition is ISO 8859-15, which is a revision of
ISO 8859-1. This adds the Euro currency symbol and other letters while
removing less used characters.

For further information about ISO-8859-x encoding, see the following web
site: “The ISO 8859 Alphabet Soup”
(http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets/).

Ideograms Asian countries that use ideograms in their writing systems need more
characters than fit in an 8-bit integer. Therefore, they invented double-byte
codesets, where a character is represented by a bit pattern of 2 bytes.

These languages also needed to mix the double-byte codeset with ASCII in a
single text file. So, character encoding schemas, or simply encodings, were
invented as a way to mix characters of multiple codesets.

Some of the popular encodings used in Japan include:

• Shift JIS

• Japanese EUC

• Japanese ISO 2022
 66

http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets
http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets

Introduction to International Codesets
Unicode Unicode is a new codeset that is gaining popularity. It aims to assign a
unique number, or code point, to every character that exists (and even once
existed) in all languages. To accomplish this, Unicode, which began as a
double-byte codeset, has been expanded into a quadruple-byte codeset.

Unicode, in pure form, can be difficult to use within existing computer
architectures, because many APIs are byte-oriented and assume that the
byte value 0 means the end of the string.

For this reason, Unicode Transformation Format for 8-bit channel, or
UTF-8, is frequently used. When browsers list “Unicode” in its encoding
selection menu, they usually mean UTF-8, rather than the pure form of
Unicode.

For more information about Unicode and its variants, visit Unicode
(http://www.unicode.org/).

Charset names To address the need for computer networks to connect different types of
computers that use different encodings, the Internet Assigned Number
Authority, or IANA, has a registry of encodings at
http://www.iana.org/assignments/character-sets.

IANA names are used by many Internet standards including MIME, HTML,
and XML.

Table 9 lists IANA names for some popular charsets.

Table 9: IANA Charset Names

IANA Name Description

US-ASCII 7-bit ASCII for US English

ISO-8859-1 Western European languages

UTF-8 Byte oriented transformation of Unicode

UTF-16 Double-byte oriented transformation of Unicode

Shift_JIS Japanese DOS & Windows

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX
67

http://www.unicode.org
http://www.unicode.org
http://www.iana.org/assignments/character-sets

CHAPTER 5 | Using Artix with International Codesets
CORBA names

In CORBA, codesets are identified by numerical values registered with the
Open Group’s registry, OSF Codeset Registry:
ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt.

Java names

Java has its own names for charsets. For example, ISO-8859-1 is named
ISO8859_1, Shift_JIS is named SJIS, and UTF-8 is named UTF8.

Java is transitioning to IANA charset names, to be aligned with MIME. JDK
1.3 and above recognizes both names.

ISO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme

Note: IANA names are case insensitive. For example, US-ASCII can be
spelled as us-ascii or US-ascii.

Table 9: IANA Charset Names

IANA Name Description

Note: Artix uses IANA charset names even for CORBA codesets.
 68

ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt

Working with Codesets using SOAP
Working with Codesets using SOAP

Overview Because SOAP messages are XML based, they are composed primarily of
character data that can be encoded using any of the existing codesets. If the
applications in a system are using different codesets, they can not interpret
the messages passing between them. The Artix SOAP plug-in uses the XML
prologue of SOAP messages to ensure that it stays in sync with the
applications that it interacts with.

Making requests When making requests or broadcasting a message, the SOAP plug-in
determines the codeset to use from its Artix configuration scope. You can set
the SOAP plug-in’s character encoding using the plugins:soap:encoding
configuration variable. This takes the IANA name of the desired codeset.
The default value is UTF-8.

For more information on this configuration variable, see the Artix
Configuration Reference. For general information on configuring Artix
applications, see “Getting Started” on page 3.

Responding to SOAP requests When an Artix server receives a SOAP message, it checks the XML prologue
to see what encoding codeset the message uses. If the XML prologue
specifies the message’s codeset, Artix uses the specified codeset to read the
message and to write out its response to the request. For example, an Artix
server that receives a request with the XML prologue shown in Example 6
decodes the message using UTF-16 and encodes its response using UTF-16.

If an Artix server receives a SOAP message where the XML prologue does
not include the encoding attribute, the server will use whatever default
codeset is specified in its configuration to decode the message and encode
the response.

Example 6: XML Prologue

<?xml version="1.0" encoding="UTF-16"?>
69

../config_ref/index.htm
../config_ref/index.htm

CHAPTER 5 | Using Artix with International Codesets
Working with Codesets using CORBA

Overview The Artix CORBA plug-in supports both wide characters and narrow
characters to accommodate an array of codesets. It also supports codeset
negotiation. Codeset negotiation is the process by which two CORBA
processes which use different native codesets determine which codeset to
use as a transmission codeset. Occasionally, the process requires the
selection of a conversion codeset to transmit data between the two
processes. The algorithm is defined in section 13.10.2.6 of the CORBA
specification (http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf).

Native codeset A native codeset (NCS) is a codeset that a CORBA program speaks natively.

For Java, this is UTF-8 (0x05010001) for char and String, and UTF-16
(0x00010109) for wchar and wstring.

For C and C++, this is the encoding that is set by setlocale(), which in
turn depends on the LANG and LC_xxxx environment variables.

You can configure the Artix CORBA plug-in’s native codesets using the
configuration variables listed in Table 10.

Note: For CORBA programing in Java, you can specify a codeset other
than the true native codeset.

Table 10: Configuration Variables for CORBA Native Codeset

Configuration Variable Description

plugins:codeset:char:ncs Specifies the native codeset for narrow
character and string data.

plugins:codeset:wchar:ncs Specifies the native codeset for wide
character and string data.
 70

http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf

Working with Codesets using CORBA
Conversion codeset A conversion codeset (CCS) is an alternative codeset that the application
registers with the ORB. More than one CCS can be registered for each of the
narrow and wide interfaces. CCS should be chosen so that the expected
input data can be converted to and from the native codeset without data
loss. For example, Windows code page 1252 (0x100204e4) can be a
conversion codeset for ISO-8859-1 (0x00010001), assuming only the
common characters between the two codesets are used in the data.

You can configure the Artix CORBA plug-in’s list of conversion codesets
using the configuration variables listed in Table 11.

Transmission codeset A transmission codeset (TCS) is the codeset agreed upon after the codeset
negotiation. The data on the wire uses this codeset. It is either the native
codeset, one of the conversion codesets, or UTF-8 for the narrow interface
and UTF-16 for the wide interface.

Negotiation algorithm Codeset negotiation uses the following algorithm to determine which
codeset to use in transferring data between client and server:

1. If the client and server are using the same native codeset, no
translation is required.

2. If the client has a converter to the server’s codeset, the server’s native
codeset is used as the transmission codeset.

3. If the client does not have an appropriate converter and the server does
have a converter to the client’s codeset, the client’s native codeset is
used as the transmission codeset.

Table 11: Configuration Variables for CORBA Conversion Codesets

Configuration Variable Description

plugins:codeset:char:ccs Specifies the list of conversion codesets
for narrow character and string data.

plugins:codeset:wchar:ccs Specifies the list of conversion codesets
for wide character and string data.
71

CHAPTER 5 | Using Artix with International Codesets
4. If neither the client nor the server has an appropriate converter, the
server ORB tries to find a conversion codeset that both server and
client can convert to and from without loss of data. The selected
conversion codeset is used as the transmission codeset.

5. If no conversion codeset can be found, the server ORB determines if
using UTF-8 (narrow characters) or UTF-16 (wide characters) will
allow communication between the client and server without loss of
data. If UTF-8 or UTF-16 is acceptable, it is used as the transmission
codeset. If not, a CODESET_INCOMPATIBLE exception is raised.

Codeset compatibility The final steps involve a compatibility test, but the CORBA specification
does not define when a codeset is compatible with another. The
compatibility test algorithm employed in Orbix is outlined below:

1. ISO 8859 Latin-n codesets are compatible.

2. UCS-2 (double-byte Unicode), UCS-4 (four-byte Unicode), and UTF-x
are compatible.

3. All other codesets are not compatible with any other codesets.

This compatibility algorithm is subject to change without notice in future
releases. Therefore, it is best to configure the codeset variables as explicitly
as possible to reduce dependency on the compatibility algorithm.
 72

Working with Codesets using Fixed Length Records
Working with Codesets using Fixed Length
Records

Overview Artix fixed record length support enables Artix to interact with mainframe
systems using COBOL. For example, many COBOL applications send fixed
length record data over WebSphere MQ.

Artix provides a fixed binding that maps logical messages to concrete fixed
record length messages. This binding enables you to specify attributes such
as encoding style, justification, and padding character.

Encoding attribute The Artix fixed binding provides an optional encoding attribute for both its
fixed:binding and fixed:body elements. The encoding attribute specifies
the codeset used to encode the text data. Valid values are any IANA codeset
name. See http://www.iana.org/assignments/character-sets for details.

The encoding attribute for the fixed:binding element is a global setting;
while the fixed:body attribute is per operation. Both settings are optional. If
you do not set either, the default value is UTF-8.

For more details, see fixed-binding.xsd, available in
InstallDir\iona\artix\Version\schemas.

Fixed binding example The following WSDL example shows a fixed binding with encoding
attributes for fixed:body elements. This binding includes two operations,
echoVoid and echoString.

Example 7: Fixed Length Record Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel"
xmlns:mq="http://schemas.iona.com/transports/mq"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
73

http://www.iana.org/assignments/character-sets

CHAPTER 5 | Using Artix with International Codesets
 xmlns:tns="http://www.iona.com/artix/test/I18nBase/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://www.iona.com/artix/test/I18nBase" name="I18nBaseService"

 targetNamespace="http://www.iona.com/artix/test/I18nBase/"

 <message name="echoString">
 <part name="stringParam0" type="xsd:string"/>
 </message>

 <message name="echoStringResponse">
 <part name="return" type="xsd:string"/>
 </message>

 <message name="echoVoid"/>
 <message name="echoVoidResponse"/>

 <portType name="I18nBasePortType">
 <operation name="echoString">
 <input message="tns:echoString" name="echoString"/>
 <output message="tns:echoStringResponse" name="echoStringResponse"/>
 </operation>
 <operation name="echoVoid">
 <input message="tns:echoVoid" name="echoVoid"/>
 <output message="tns:echoVoidResponse" name="echoVoidResponse"/>
 </operation>
 </portType>

 <binding name="I18nFIXEDBinding" type="tns:I18nBasePortType">
 <fixed:binding/>
 <operation name="echoString">
 <fixed:operation discriminator="discriminator"/>
 <input name="echoString">
 <fixed:body encoding="ISO-8859-1">
 <fixed:field bindingOnly="true" fixedValue="01" name="discriminator"/>
 <fixed:field name="stringParam0" size="50"/>
 </fixed:body>
 </input>
 <output name="echoStringResponse">
 <fixed:body encoding="ISO-8859-1">
 <fixed:field name="return" size="50"/>
 </fixed:body>
 </output>
 </operation>

Example 7: Fixed Length Record Binding
 74

Working with Codesets using Fixed Length Records
Further information For more details on the Artix fixed length binding, see Understanding Artix
Contracts.

 <operation name="echoVoid">
 <fixed:operation discriminator="discriminator"/>
 <input name="echoVoid">
 <fixed:body>
 <fixed:field name="discriminator" fixedValue="02" bindingOnly="true"/>
 </fixed:body>
 </input>
 <output name="echoVoidResponse">
 <fixed:body/>
 </output>
 </operation>
 </binding>
</definitions>

Example 7: Fixed Length Record Binding
75

../contract/index.htm
../contract/index.htm

CHAPTER 5 | Using Artix with International Codesets
Working with Codesets using Message
Interceptors

Overview Artix provides support for codeset conversion for transports that do not have
their own concept of headers. For example, IBM Websphere MQ, BEA
Tuxedo, and Tibco Rendezvous. This generic support is implemented using
an Artix message interceptor and WSDL port extensors.

For example, an Artix C++ client could use Artix Mainframe to access a
mainframe system, using a binding for fixed length record over MQ. In this
scenario, an Artix message interceptor can be configured to enable codeset
conversion between ASCII and EBCDIC (Extended Binary Coded Decimal
Interchange Code).

You can enable this codeset conversion simply by editing your WSDL file, or
by using accessor methods in your application code. This section explains
how to use both of these approaches.

Codeset conversion attributes This generic support for codeset conversion is implemented using a message
interceptor. This message interceptor manipulates the following codeset
conversion attributes:

You can specify these attributes to convert client-side requests and
server-side responses. All three attributes are optional.

Note: Codeset conversion set in application code takes precedence over
the same settings in a WSDL file.

LocalCodeSet Specifies the codeset used locally by a client or
server application.

OutboundCodeSet Specifies the codeset used by the application for
outgoing messages.

InboundCodeSet Specifies the codeset used by the application for
incoming messages.
 76

Working with Codesets using Message Interceptors
Configuring codeset conversion in
a WSDL file

You can configure codeset conversion by setting the codeset conversion
attributes in a WSDL file. Example 8 shows the contents of the Artix
internationalization schema (i18n-context.xsd).

Example 8: Artix i18n Schema

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://schemas.iona.com/bus/i18n/context"
 xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:import namespace = "http://schemas.xmlsoap.org/wsdl/"
schemaLocation="wsdl.xsd"/>

 <xs:element name="client" type="i18n-context:ClientConfiguration" />

 <xs:complexType name="ClientConfiguration">

 <xs:annotation>
 <xs:documentation> I18n Client Context Information
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElement" >
 <xs:attribute name="LocalCodeSet" type="xs:string" use="optional" />
 <xs:attribute name="OutboundCodeSet" type="xs:string" use="optional" />
 <xs:attribute name="InboundCodeSet" type="xs:string" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
77

CHAPTER 5 | Using Artix with International Codesets
The Artix internationalization message interceptor uses this schema as a
port extensor. This enables you to configure codeset conversion attributes in
a WSDL file.

Client/server WSDL example The following example shows codeset conversion settings for a client and a
server application specified in a sample WSDL file:

 <xs:element name="server" type="i18n-context:ServerConfiguration"/>

 <xs:complexType name="ServerConfiguration" >
 <xs:annotation>
 <xs:documentation> I18n Server Context Information
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElement" >
 <xs:attribute name="LocalCodeSet" type="xs:string" use="optional" />
 <xs:attribute name="OutboundCodeSet" type="xs:string" use="optional" />
 <xs:attribute name="InboundCodeSet" type="xs:string" use="optional" />
 </xs:extension>
 </xs:complexContent>

 </xs:complexType>

</xs:schema>

Example 8: Artix i18n Schema

Example 9: i18n Specified in a WDSL File

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="I18nBaseService"

targetNamespace="http://www.iona.com/artix/test/I18nBase/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/artix/test/I18nBase/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:mq="http://schemas.iona.com/transports/mq"
 xmlns:http="http://schemas.iona.com/transports/http"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
 xmlns:xsd1="http://www.iona.com/artix/test/I18nBase">
 78

Working with Codesets using Message Interceptors
This sample WSDL file shows a single service named I18nService, with two
bindings and two ports named I18nFIXED_HTTPPort and I18nFIXED_MQPort.
The binding in both cases is fixed length record, each with a single
operation.

 <import namespace="http://www.iona.com/artix/test/I18nBase"
location="./I18nServiceBindings.wsdl"/>

 <service name="I18nService">

 <port binding="tns:I18nFIXEDBinding" name="I18nFIXED_HTTPPort">
 <http:address location="http://localhost:0"/>
 <i18n-context:client LocalCodeSet="ISO-8859-1" InboundCodeSet="UTF-8"/>
 <i18n-context:server LocalCodeSet="UTF-8" OutboundCodeSet="ISO-8859-1"/>
 </port>

 <port binding="tns:I18nFIXEDBinding" name="I18nFIXED_MQPort">

 <mq:client QueueManager="MY_DEF_QM" QueueName="MY_FIRST_Q" AccessMode="send"
 ReplyQueueManager="MY_DEF_QM" ReplyQueueName="REPLY_Q"
 CorrelationStyle="messageId copy" />

 <mq:server QueueManager="MY_DEF_QM" QueueName="MY_FIRST_Q"
 ReplyQueueManager="MY_DEF_QM" ReplyQueueName="REPLY_Q" AccessMode="receive"
 CorrelationStyle="messageId copy" />
 <i18n-context:client LocalCodeSet="UTF-8" InboundCodeSet=""/>
 <i18n-context:server LocalCodeSet="ISO-8859-1"/>
 </port>

 </service>

</definitions>

Example 9: i18n Specified in a WDSL File
79

CHAPTER 5 | Using Artix with International Codesets
Enabling codeset conversion in
application code

You can also enable codeset conversion attributes by calling the following
accessor methods in your C++ application code:

An Artix ContextContainer in the message interceptor, and the WSDL
configuration are checked for each attribute. This is performed during the
client’s intercept_invoke() method and the server’s
intercept_dispatch() method. The client request buffer or server response
buffer can be converted to another encoding as needed. This conversion can
occur on the outbound or inbound intercept points.

The interceptor refers to the current context on a per-thread basis. For
detailed information on Artix contexts, see Developing Artix Applications
with C++.

Linking with the context library The message interceptor uses a common type library of Artix context
attributes. The application must be linked with this common library, and
with any transports that use this context to set or get attributes. The
generated header files for this common library are available in the following
directory:

InstallDir\artix\Version\include\it_bus_pdk\context_attrs

You must ensure that your application links with the context library that
contains the generated stub code for i18n-context.xsd.

void setLocalCodeSet(const IT_Bus::String * val);
void setLocalCodeSet(const IT_Bus::String & val);

void setOutboundCodeSet(const IT_Bus::String * val);
void setOutboundCodeSet(const IT_Bus::String & val);

void setInboundCodeSet(const IT_Bus::String * val);
void setInboundCodeSet(const IT_Bus::String & val);
 80

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

Working with Codesets using Message Interceptors
Client code example Example 10 shows an example of the code that you need to add to your
C++ client application:

Example 10:Accessing i18n in C++ Client Code

void
I18nTest::echoString(
 I18nBaseClient* client, const String& instr)
{
 String outstr;
 try
 {

 // Set the i18n request context to match the fixed binding encoding setting

 IT_Bus::Bus_var bus = client->get_bus();
 ContextRegistry * reg = bus->get_context_registry();

 ContextCurrent & cur = reg->get_current();
 ContextContainer * registered_ctx = cur.request_contexts();

 AnyType & i18n_ctx_info =
 registered_ctx->get_context(IT_ContextAttributes::I18N_INTERCEPTOR_CLIENT_QNAME, true);
 ClientConfiguration & i18n_ctx_cfg = dynamic_cast<ClientConfiguration&> (i18n_ctx_info);

 // Set the Inbound codeset to match the binding encoding

 static const String LOCAL_CODE_SET = "ISO-8859-1";
 i18n_ctx_cfg.setLocalCodeSet(LOCAL_CODE_SET);

 const String & local_codeset = (*i18n_ctx_cfg.getLocalCodeSet());

 client->echoString(instr, outstr);

 // Read the i18n reply context

 registered_ctx = cur.reply_contexts();

 AnyType & i18n_ctx_reply_info =
 registered_ctx->get_context(IT_ContextAttributes::I18N_INTERCEPTOR_CLIENT_QNAME, true);

 const ClientConfiguration & i18n_ctx_reply_cfg =
 dynamic_cast<const ClientConfiguration&> (i18n_ctx_reply_info);
81

CHAPTER 5 | Using Artix with International Codesets
Server code example Example 10 shows example of the code that you need to add to your C++
servant application.

 const String * local_codeset_reply = i18n_ctx_reply_cfg.getLocalCodeSet();
 const String * outbound_codeset_reply = i18n_ctx_reply_cfg.getOutboundCodeSet();
 const String * inbound_codeset_reply = i18n_ctx_reply_cfg.getInboundCodeSet();

 if(local_codeset_reply)
 cout << "client LocalCodeSet reply context:" << local_codeset_reply->c_str() << endl;
 if(outbound_codeset_reply)
 cout << "client OutboundCodeSet reply context:"<< outbound_codeset_reply->c_str << endl;
 if(inbound_codeset_reply)
 cout << "client InboundCodeSet reply context" << inbound_codeset_reply->c_str() << endl;
 }

 catch (IT_Bus::ContextException& ce)
 {
 ...
 }
 catch (IT_Bus::Exception& ex)
 {
 ...
 }
 catch (...)
 {
 ...
 }
}

Example 10:Accessing i18n in C++ Client Code

Example 11:Accessing i18n in C++ Server Code

void
I18nServiceImpl::echoString(
 const String& stringParam0,
 String & var_return) IT_THROW_DECL((IT_Bus::Exception))
{

 var_return = stringParam0;
 82

Working with Codesets using Message Interceptors
 try
 {
 // Read the i18n reply context

 ContextRegistry * reg = m_bus->get_context_registry();

 ContextCurrent & cur = reg->get_current();
 ContextContainer * registered_ctx = cur.request_contexts();

 AnyType & i18n_ctx_info =
 registered_ctx->get_context(IT_ContextAttributes::I18N_INTERCEPTOR_SERVER_QNAME, false);
 const ServerConfiguration & i18n_ctx_cfg =
 dynamic_cast<const ServerConfiguration&> (i18n_ctx_info);

 const String * local_codeset = i18n_ctx_cfg.getLocalCodeSet();
 const String * outbound_codeset = i18n_ctx_cfg.getOutboundCodeSet();
 const String * inbound_codeset = i18n_ctx_cfg.getInboundCodeSet();

 if(local_codeset)
 cout << "server LocalCodeSet request context:" << local_codeset->c_str() << endl;
 if(outbound_codeset)
 cout << "server OutboundCodeSet request context:" << outbound_codeset->c_str() << endl;
 if(inbound_codeset)
 cout << "server InboundCodeSet request context:" << inbound_codeset->c_str() << endl;

 // Add code to change the reply context

 registered_ctx = cur.reply_contexts();

 AnyType & i18n_reply_ctx =
registered_ctx->get_context(IT_ContextAttributes::I18N_INTERCEPTOR_SERVER_QNAME, true);

 ServerConfiguration & i18n_reply_ctx_cfg =
 dynamic_cast<ServerConfiguration&> (i18n_reply_ctx);

 // Set the local codeset to match the binding encoding

 static const String LOCAL_CODE_SET = "ISO-8859-1";
 i18n_reply_ctx_cfg.setLocalCodeSet(LOCAL_CODE_SET);

 String & set_local_context = (*i18n_reply_ctx_cfg.getLocalCodeSet());

 assert(set_local_context == LOCAL_CODE_SET);
 }

Example 11:Accessing i18n in C++ Server Code
83

CHAPTER 5 | Using Artix with International Codesets
Artix configuration settings Finally, you must also enable the i18n message interceptor in your Artix
configuration file (artix.cfg). Example 12 shows the required settings:

Further information For more information details on writing Artix C++ applications and on Artix
contexts, see Developing Artix Applications with C++.

 catch (IT_Bus::ContextException& ex)
 {
 cout << "Error with server context" << ex.message() << endl;
 }
 catch (IT_Bus::Exception& ex)
 {
 cout << "Error with server context" << ex.message() << endl;
 }
 catch (...)
 {
 cout << "Unknown Error with server context" << endl;
 }
}

Example 11:Accessing i18n in C++ Server Code

Example 12:Artix Configuration File Settings

// Add to a demo/application scope.
interceptor{
 binding:artix:client_message_interceptor_list = "i18n-context:I18nInterceptorFactory";

 binding:artix:server_message_interceptor_list = "i18n-context:I18nInterceptorFactory";

 orb_plugins = ["xmlfile_log_stream", "i18n_interceptor"];

 event_log:filters = ["*=WARN+ERROR+FATAL"];
};
 84

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

Routing with International Codesets
Routing with International Codesets

Overview When routing between applications, Artix attempts to correctly map
between different codesets. If both endpoints use bindings that support
internationalization (i18n), Artix uses codeset conversion. If only one of the
endpoints supports internationalization, the Artix endpoint supporting
internationalization attempts to use codeset conversion on the messages.

The following bindings do not support internationalization:

• Tagged

• G2++

• XML

Routing between
internationalized endpoints

When Artix is routing between internationalized endpoints, the receiving
endpoint and the sending endpoint both behave independently of each
other.

For example, if one endpoint of a router receives a request in Shift_JIS and
the router is configured to use ISO-8859-1, the Shift_JIS request is properly
decoded by the router.

However, when the request is passed on by the router, it is passed on in
ISO-8859-1. If the two codesets are not compatible, there is a good chance
that data will be lost in the conversion and the request will not be properly
handled.

Note: If the codesets are not compatible, and data is lost in the router,
Artix does not generate a warning.
85

CHAPTER 5 | Using Artix with International Codesets
Routing from
non-internationalized to
internationalized bindings

When Artix is routing from a non-internationalized endpoint to an
internationalized endpoint, it uses the default codeset specified in the
router’s configuration for writing messages to internationalized endpoints. If
the Artix router is configured to encode messages using a codeset that is
different from the one used by the endpoint, you will lose data.

For example, if a Tibco application makes a request on a Web service
through a router, the router receives non-internationalized data from the
Tibco application. And the router then writes the SOAP message using the
codeset specified in its configuration. If the Web service and the router are
both configured to write in us-dk, the operation proceeds without a problem.
The router receives the encoded response from the server and passes it back
to the Tibco binding.

However, if the Web service is configured to accept data using us-dk, and
the router is configured to encode data using Chinese, data may be lost
between the router and the Web service due to codeset incompatibility.

Routing from internationalized to
non-internationalized bindings

When Artix is routing SOAP messages to a non-SOAP endpoint, such as a
Tuxedo server on a mainframe using the fixed plug-in, Artix handles the
message transformations so that the SOAP application receives responses in
the correct codeset.

For example, a Web service client in a Chinese locale encodes its requests in
eucTW and invokes on a service that is hosted on a mainframe that is
behind an Artix router, as shown in Figure 2.

Figure 2: Routing Internationalized Requests
 86

Routing with International Codesets
The Artix router would process the request as follows:

1. On receiving the SOAP request, the router inspects the XML prologue
and decodes the message using the specified codeset (in this case,
eucTW).

2. The fixed binding plug-in then writes out the message to the
mainframe service.

3. When the mainframe sends its response back to the router, the fixed
binding decodes the message and passes it back to the SOAP plug-in.

4. The SOAP plug-in inspects the message and determines the request to
that corresponds it.

5. The SOAP plug-in then encodes the message using the codeset
specified in the request (in this case, eucTW), and passes the response
to the client.
87

CHAPTER 5 | Using Artix with International Codesets
 88

Part II
Deploying Artix Services

In this part This part contains the following chapters:

Deploying Services in an Artix Container page 91

Deploying an Artix Router page 119

Deploying an Artix Transformer page 135

Deploying a Service Chain page 147

Deploying High Availability page 155

Deploying Reliable Messaging page 175

CHAPTER 6

Deploying Services
in an Artix
Container
The Artix container enables you to deploy and manage your
services dynamically. For example, you can deploy a new
service into a running container, or perform runtime tasks such
as start, stop, and list existing services in a container. Artix
containers can be used to host C++ or Java services.

In this chapter This chapter discusses the following topics:

Introduction to the Artix Container page 92

Generating a Plug-in and Deployment Descriptor page 96

Running an Artix Container Server page 101

Running an Artix Container Administration Client page 104

Deploying Services on Restart page 109

Running an Artix Container as a Windows Service page 113
91

CHAPTER 6 | Deploying Services in an Artix Container
Introduction to the Artix Container

Overview The Artix container provides a consistent mechanism for deploying and
managing Artix services. This section provides an overview the Artix
container architecture and its main components.

Artix plug-ins You can write Artix Web service implementations as C++ and Java
plug-ins. An Artix plug-in is a code library that can be loaded into an Artix
application at runtime.

Artix provides a platform-independent framework for loading plug-ins
dynamically, based on the dynamic linking capabilities of modern operating
systems (using shared libraries, DLLs, and Java classes).

Benefits Writing your application as an Artix plug-in means that you need to write
less code, and that you can deploy your services into an Artix container.
When you deploy your service into a container, this eliminates the need to
write your own C++ or Java server mainline. Instead, you can deploy your
service by simply passing the location of a generated deployment descriptor
to an Artix container’s administration client. This provides a powerful
programming model where the code is location independent.

In addition, the Artix container retains information about the services that it
deploys. This enables the container to reload services dynamically when it
restarts.

Main components The Artix container architecture includes the following main components:

• Artix container server

• Artix container service

• Artix service plug-in

• Artix deployment descriptor

• Artix container administration client

• WSDL contract
 92

Introduction to the Artix Container
How it works Figure 3 shows an simple overview of how the main Artix container
components interact. Some user-defined service plug-ins are deployed into
an Artix container server, along with an Artix container service.

When the Artix container service is running, you can then use a container
administration client to communicate with it at runtime. This client enables
you to deploy and manage your services dynamically.

An Artix container service can run inside any Artix bus. Because it is
implemented as an Artix plug-in, it can be loaded into any application. The
recommended approach is to deploy it into an Artix container server, as
shown in Figure 3.

Artix container server An Artix container server is a simple Artix application that hosts the
container service. It consists of a server mainline that initializes a bus and
loads the Artix container service, which enables you to remotely deploy and
manage your services.

You can run an Artix container server using the it_container command. If
your application requires some configuration, you can start an Artix
container server with a configuration scope. For more details, see “Running
an Artix Container Server” on page 101.

Figure 3: Artix Container Architecture
93

CHAPTER 6 | Deploying Services in an Artix Container
Artix deployment descriptor When deploying a user-defined service into an Artix container, you must
pass in a generated Artix deployment descriptor. This is a simple XML file
that specifies the details such as:

• Service name.

• Plug-in that implements the service.

• Whether the plug-in is C++ or Java.

You can generate a C++ or Java deployment descriptor by using Artix code
generation commands. For more details, see “Generating a Plug-in and
Deployment Descriptor” on page 96.

Artix container service The Artix container service is a remote interface that supports the following
operations:

• List all services in the application.

• Stop a running service.

• Start a dormant service.

• Remove a service.

• Deploy a new service.

• Get an endpoint reference for a service.

• Get the WSDL for a service.

• Get the URL to a service’s WSDL.

• Shut down the container service.

When an Artix container service deploys a new service, it loads the
appropriate plug-ins, sets up and activates your service.

The Artix container service assumes that the plug-ins are available in your
application environment, so you must ensure that they are in the expected
library path. The Artix container service supports C++ and Java
applications, provided that they are compiled into plug-ins.

The Artix container service has a WSDL-based interface and so can be used
with any binding or transport.
 94

Introduction to the Artix Container
Artix container administration
client

Because the Artix container service has a WSDL-based interface with a
SOAP/HTTP binding, you can communicate with it using any client. Artix
provides a command-line tool that uses the Artix container stub code, and
which enables you to manage the container service easily. The Artix
container administration client currently supports SOAP/HTTP only.

You can run an Artix container administration client using the
it_container_admin command. This client makes all the container service
operations available through simple command-line options. For more
details, see “Running an Artix Container Administration Client” on
page 104.

Artix container demos The following demos in your Artix installation show basic use of the Artix
container:

• ...\demos\advanced\container\deploy_plugin

This shows how starting with a .wsdl file, you can use the wsdltocpp
or wsdltojava command-line tool to generate a C++ or Java plug-in
and deployment descriptor. It then shows how to deploy the plug-in
into the Artix container.

• ...\demos\advanced\container\deploy_routes

This shows how routes are simply advanced services that happen to be
implemented by the router plug-in, and whose implementation is just a
proxy to a different service. It shows how you can dynamically deploy
and manage routes in the Artix container.

Several other advanced Artix demos also use the Artix container, for
example:

• ...\demos\advanced\container\secure_container

• ...\demos\advanced\locator

• ...\demos\advanced\session_management

• ...\demos\routing
95

CHAPTER 6 | Deploying Services in an Artix Container
Generating a Plug-in and Deployment
Descriptor

Overview Artix services are implemented by C++ or Java plug-ins. When you want to
deploy a service into an Artix container, the first step is to generate a plug-in
from a WSDL contract.

For a C++ service, this generates a dynamic library (Windows), or shared
library (UNIX), and a dependencies file. For a Java service, this generates
the Java classes required to implement the plug-in. An XML deployment
descriptor is also generated for both C++ and Java service. You can
generate a plug-in and deployment descriptor using any of the following
commands:

• wsdltocpp

• wsdltojava

• wsdd

Using wsdltocpp For example, to generate a C++ plug-in library and a deployment descriptor
for a specified .wsdl file, use the following command:

The -plugin and -deployable options are the most important. -plugin
generates a new plug-in, and -deployable generates a corresponding
deployment descriptor.

The generated plug-in can have an optional name (in this case,
it_simple_service_cpp_bus_plugin). If a name is specified, the generated
plug-in library uses this name. The name is ignored if the .wsdl file contains
more than one service definition. If no plug-in name is set or ignored, the
plug-in name takes the following format: ServiceNamePortTypeName.

wsdltocpp -n deploy_plugin -impl -server -m NMAKE:library
-plugin:it_simple_service_cpp_bus_plugin -deployable simple_service.wsdl
 96

Generating a Plug-in and Deployment Descriptor
In this example, -impl generates the skeleton code for implementing the
server defined by the WSDL. -server generates code for a server sample
implementation, and -m generates a makefile.

For full details on using the wsdltocpp command, see the Artix Command
Line Reference, or Developing Artix Applications in C++.

C++ deployment descriptor

The deployment descriptor generated for the example C++ service is as
follows:

The type element tells the Artix container that this is a C++ service.

Using wsdltojava For example, to generate a Java plug-in library and a deployment descriptor
for a specified .wsdl file, use the following command:

The -plugin and deployable options are the most important. -plugin
generates a new plug-in, and -deployable generates a corresponding
deployment descriptor.

The generated plug-in can have an optional name (in this case,
it_simple_service_java_bus_plugin). In contrast to C++, the name
assigned using the -plugin entry only becomes the name of the plug-in (as
identified in the deployment descriptor). The name of the Java class that
implements the plug-in factory is derived from the port type name in the
WSDL file.

Note: You specify all as the make target; the default target does not
generate the dependencies file (.dps).

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_cpp_bus_plugin</name>
 <type>Cxx</type>
 </plugin>
</m1:deploymentDescriptor>

wsdltojava -impl -server -ant -plugin:it_simple_service_java_bus_plugin
-deployable simple_service.wsdl
97

../command_ref/index.htm
../command_ref/index.htm
../prog_guide/index.htm

CHAPTER 6 | Deploying Services in an Artix Container
In this example, -impl generates the skeleton class for implementing the
server defined by the WSDL. -server generates code for a server sample
implementation, and -ant generates an Ant build.xml file.

For more details on using the wsdltojava command, see the Artix
Command Line Reference, or Developing Artix Applications in Java.

Java deployment descriptor

The deployment descriptor generated for the example Java service is as
follows:

The type element tells the Artix container that this is a Java service.

Using wsdd For more complex deployment descriptors, you can use the Web services
deployment descriptor (wsdd) command as an alternative to wsdltocpp and
wsdltojava.

The descriptors generated by wsdltocpp and wsdltojava do not include all
the possible information that descriptors can have—for example,
provider_namespace (see the advanced/container/deploy_routes demo).

The following example uses the wsdd command:

The full syntax of the wsdd command is as follows:

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_java_bus_plugin</name>
 <type>Java</type>
 <implementation>com.iona.bus.tests.SimpleServiceServicePluginFactory</implementation>
 </plugin>
</m1:deploymentDescriptor>

wsdd -service {http://www.iona.com/test}CustomService
-pluginName testplugin -pluginType Cxx

wsdd -service QName -pluginName PluginName -pluginType Cxx|Java
[-pluginImpl Library/ClassName] [-pluginDir Dir] [-wsdlurl
WsdlLocation] [-provider ProviderNamespace] [-file
OutputFile] [-d OutputDir] [-h] [-v] [-verbose] [-quiet]
 98

../command_ref/index.htm
../command_ref/index.htm
../java_guide/index.htm

Generating a Plug-in and Deployment Descriptor
The following arguments are required:

The following arguments are optional:

Table 12: Required Arguments to wsdd

-service QName Specifies the name of a service to be
deployed.

-pluginName PluginName Specifies the name that a plug-in is
registered as.

-pluginType Cxx|Java Specifies the name of a plug-in type.

Table 13: Optional Arguments to wsdd

-pluginImpl

Library/ClassName

Specifies either a library name (.dll/.so)
for a C++ plug-in, or a class name of the
plug-in factory for Java plug-ins

-pluginDir Dir Specifies the location where plug-in
library/classes are located. This option, if
specified, has no effect on deployment.

-wsdlurl WsdlLocation Specifies a URL to a service WSDL.

-provider
ProviderNamespace

Specifies the provider namespace. Used in
the container/deploy_routes demo. For
example, this can be used by plug-ins to
provide servant implementations for more
than one service.

-file OutputFile Specifies the name of the generated
descriptor file. The default is
deployserviceLocalName. For example, if
-service

{http://www.iona.com/test}CustomServic

e is used, it is deployCustomService.xml

-d OutputDir The location where a descriptor should be
generated.

-h[elp] Displays detailed help information for each
option.
99

CHAPTER 6 | Deploying Services in an Artix Container
Adding business logic For both C++ and Java applications, you must still add your business logic
code to the servant implementation class.

The supplied Artix demos include a fully implemented servant file instead of
the generated file.

Artix deployment descriptors As well as hosting user-defined services, an Artix container can be used to
host IONA services such as the locator. The following is an example
generated deployment descriptor for the locator service:

For details on deploying a locator in the container, see the Artix Locator
Guide.

-v[ersion] Displays the version of the tool.

-verbose Displays output in verbose mode.

-quiet Displays output in quiet mode.

Table 13: Optional Arguments to wsdd

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_java_bus_plugin</name>
 <type>Java</type>
 <implementation>com.iona.bus.tests.SimpleServiceServicePluginFactory</implementation>
 </plugin>
</m1:deploymentDescriptor>
 100

../locator_guide/index.htm
../locator_guide/index.htm

Running an Artix Container Server
Running an Artix Container Server

Overview An Artix container server is an Artix server mainline that initializes an Artix
bus, and loads an Artix container service.

As well as hosting your own service plug-ins, the Artix container server can
also be used to host Artix services, such as the locator, session manager,
router, and so on. You can run as many instances of the Artix container
server as your applications require.

Using the it_container command To run an Artix container server, use the it_container command. This has
the following syntax:

it_container [-s[ervice] Options] [-d[aemon]] [-p[ort]
PortNumber] [-publish [-file Filename]] [-deploy
DeploymentDescriptor] [-deployfolder] [-v[ersion]] [-h[elp]]

-s[ervice] On Windows, runs the container server as a
Windows service. Without this parameter, it
runs in foreground. See “Running an Artix
Container as a Windows Service” on
page 113.

-d[aemon] On UNIX, runs the container server as a
daemon in the background. Without this
parameter, it runs in the foreground.

-p[ort] PortNumber Specifies the port number for the container
service.

-publish [-file Filename] Specifies the location to export the container
service URL. By default, this is
/ContainerService.url. You can override
the default using -file.

-deploy Descriptor Deploys a service using a specified
deployment descriptor (for example, at
startup). This is instead of deploying with the
container service (see “Using the
it_container_admin command” on
page 104).
101

CHAPTER 6 | Deploying Services in an Artix Container
Running the container server in
the background

On UNIX, to run a container server in the background, use the it_container
-daemon command.

If the -daemon option is not specified, the container server runs in the
foreground of the active command window. This option does not apply on
Windows.

Publishing the container service
URL in a file

To publish a container service URL, use the -publish option, for example:

The -publish option tells the container server to publish the container
service URL in a local file. This URL can then be later retrieved by the
it_container_admin command, which uses it to contact the container
service, and initialize a container service client proxy.

By default, a ContainerService.url file is created in the local directory.
Use the -file option to override this behavior.

Running the container server on a
specified port

To run a container server on a specific port, specify the -port option, for
example:

This port is used for the container service. This is also the port for the
wsdl_publish plug-in. The container administrative client uses
wsdl_publish to get contracts for the container service and for all other
services hosted by the container.

-deployfolder Path Specifies the location of a local folder to store
deployment descriptors. This enables
redeployment of existing services on restart
(see “Deploying Services on Restart” on
page 109).

-v[ersion] Prints version information and exits.

-h[elp] Prints usage summary and exits.

it_container -publish -file
my_directory/my_container_service.url

it_container -port 1111
it_container -port 2222
 102

Running an Artix Container Server
This port number can then be used by a container service administration
client when contacting the container server, for example:

Specifying configuration to the
container server

You can run it_container without any configuration. This is sufficient for
many simple applications. However, if your application requires additional
settings, you can start it_container with command-line configuration.

For simple applications, the container server loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it_container with command-line configuration.

The following example is from the ..demos\advanced\locator demo and
shows running the locator service in the container server:

In this example, the locator service picks up specific configuration from its
demo.locator.service scope. For more details, see the demos for the
locator, session manager, and router.

it_container_admin -port 1111

it_container -ORBname demo.locator.service -ORBdomain_name
locator -ORBconfig_domains_dir ../../etc -publish -file
../../etc/ContainerService.url
103

CHAPTER 6 | Deploying Services in an Artix Container
Running an Artix Container Administration
Client

Overview This section explains how to use the Artix container administration client to
perform tasks such as deploying a generated plug-in into the Artix container
server, and retrieving a service URL. It explains the full syntax of the
it_container_admin command, which is used to control the Artix container
administration client.

Using the it_container_admin
command

The full syntax for the it_container_admin command is as follows:

-deploy -file dd.xml Deploys a new service into the container
server. This involves loading a plug-in
that contains the service
implementation. You must specify an
Artix deployment descriptor using the
-file option.

-listservices Displays all services in the application.
Shows the state of each service (for
example, active, de-activated, or
shutting down).

-startservice -service
{Namespace}LocalPart

Restarts the specified service that is
visible but dormant, or that has been
previously stopped.

-stopservice -service
{Namespace}LocalPart

Stops the specified running service.

-removeservice -service
{Namespace}LocalPart

Removes and undeploys all trace of the
specified service from the application.

-publishreference -service
{Namespace}LocalPart
[-file Filename]

Gets an endpoint reference for the
specified service. The -file option
publishes the reference to a local file.
This can then be used to initialize a
client application.
 104

Running an Artix Container Administration Client
-publishwsdl -service
{Namespace}LocalPart
[-file Filename]

Gets the WSDL for the specified service.
The -file option publishes the WSDL to
a local file. This can then be used to
initialize a client application.

-publishurl -service
{Namespace}LocalPart
[-file Filename]

Gets an HTTP URL for the specified
service from which you can then
download the WSDL. The -file option
publishes the URL to a local file. This
can then be used to initialize a client
application.

-shutdown [-soft] Shuts down the entire application. The
-soft option shuts down gracefully.

-port ContainerPort Contacts the container server on the
specified port. See “Running the
container server on a specified port” on
page 102. This can be used with other
options instead of -container.

-host ContainerHostname Contacts the container server on the
specified host. Defaults to localhost if
unspecified. The -host option is for use
with -port only.

-container File.url Runs the specified container service.
This can be used with other options
instead of -port and -host.

-getlogginglevel [-subsystem
SubSystem] [-service
{Namespace}LocalPart]

Gets the dynamic logging level for the
specified subsystem or service. See
“Dynamic Logging” on page 39.

-setlogginglevel -subsystem
SubSystem -level Level
[-propagate] [-service
{Namespace}Localpart]

Sets the logging level for a specified
subsystem of a specified service. See
“Dynamic Logging” on page 39.

Note: By default, it_container_admin looks in the local directory for the
ContainerService.url file. If this file is not local, use the -container
option, or the -port and -host options, to contact the container.
105

CHAPTER 6 | Deploying Services in an Artix Container
Deploying the generated plug-in To deploy a generated plug-in into the container server, use the -deploy
option, for example:

The -file option specifies a generated deployment descriptor. This lists the
service that this plug-in can provide, the plug-in name, and plug-in type. In
this example, the portable C++ plug-in library name is expected to be the
same as the plug-in name. The library is expected to be located in the
../plugin directory.

When a container service loads the plug-in, it registers a servant for the
service that is described in the deployment descriptor.

Getting service WSDL To get the WSDL for a deployed service from the container, use the
-publishwsdl option, for example:

The -publishurl option gets the service’s WSDL contract. The -file option
publishes the URL to a local file. When the client runs, it reads the
published WSDL from the local file, and uses it to initialize a client stub,
and communicate with a deployed service.

Using the -publishreference, -publishwsdl, and -publishurl options
means that you can write WSDL contracts without hard-coded ports, and
that your clients will still be able to call against them.

it_container_admin -deploy -file
../plugin/deploySimpleServiceService.xml

it_container_admin -publishwsdl -service
{http://www.iona.com/bus/demos}WellWisherService -file
my_service
 106

Running an Artix Container Administration Client
Getting a service URL To get a URL for a deployed service from the container service, use the
-publishurl option, for example:

The -publishurl option gets a URL to the service’s WSDL contract. The
-file option publishes the URL to a local file. When the client runs, it reads
the published WSDL URL from the local file, and uses it to initialize a client
stub, and then communicate with a deployed service.

Listing deployed services To display a list of the services in your application, use the -listservices
option, for example:

This example shows the output listed under the it_container_admin
-listservices command. The ACTIVATED state indicates that both services
are running. In this example, the -port option is used to contact a container
server that was already started on port 2222.

Stopping deployed services To stop a currently deployed service, use the -stopservice option, for
example:

This following example shows the output from -listservices after the
service has been stopped.

The WellWisherService is now listed as DEACTIVATED.

it_container_admin -publishurl -service
{http://www.iona.com/bus/tests}SimpleServiceService -file
my_service

it_container_admin -port 2222 -listservices
{http://www.iona.com/demos/wellwisher}WellWisherService ACTIVATED
{http://www.iona.com/demos/greeter}GreeterService ACTIVATED

it_container_admin -port 2222 -stopservice -service
{http://www.iona.com/demos/wellwisher}WellWisherService

it_container_admin -port 2222 -listservices
{http://www.iona.com/demos/wellwisher}WellWisherService DEACTIVATED
{http://www.iona.com/demos/greeter}GreeterService ACTIVATED
107

CHAPTER 6 | Deploying Services in an Artix Container
Specifying configuration to the
administration client

You can run it_container_admin without any configuration. This is
sufficient for most simple applications. However, if your application requires
additional settings, you can start it_container_admin with command-line
configuration.

For simple applications, the container service loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it_container_admin with command-line
configuration.

The following example shows shutting down the locator service using the
it_container_admin -shutdown option:

For more details, see the demos for the locator, session manager, and
router.

it_container_admin -ORBdomain_name locator -ORBconfig_domains_dir
../../etc -container ../../etc/ContainerService.url -shutdown
 108

Deploying Services on Restart
Deploying Services on Restart

Overview The Artix container can be configured to retain information about the
services that it has deployed. This enables it to reload services automatically
on restart. This ability to remember deployed services is known as
persistent deployment.

To enable persistent deployment, you must configure the container to use a
local folder to store deployment descriptors. These descriptors specify what
the container should deploy at startup. The container ensures that this folder
accurately reflects what is deployed in case of a restart.

How it works To reload services that have been deployed by the container service before
shutdown, the container persists all deployment descriptors when
processing new deployment requests. The container needs to know the
location of a local folder where deployment descriptor files are saved to, and
where to read them from on restart.

The container finds the location of this folder from either:

• A command-line argument passed to the container.

• A configuration variable in an Artix configuration file.

At startup, the container looks in the configured deployment folder and
deploys the contents of the folder. It deploys all services that it finds in the
folder where possible. If any deployment fails, the container fails to start.

Note: The command-line arguments take precedence over the
configuration variables.
109

CHAPTER 6 | Deploying Services in an Artix Container
Persistent deployment modes You can configure the deployment descriptor folder for either read/write or
read-only deployment.

Dynamic read/write deployment

In this case, the container adds and removes files from the deployment
folder dynamically as services are deployed or removed from the container.
When a call to deploy a service is made, a descriptor file is added to the
folder. When a call to remove a service is made, a descriptor file is removed,
and the service is not redeployed upon restart.

Read-only deployment

The deployment descriptor folder can also be used as a read-only
initialization folder that predeploys the same required set of services after
every restart.

When a deployment folder is read-only, the container predeploys the same
set of services on restart. No deployment descriptors are removed from, or
saved into, a read only deployment folder by the container.

By making a deployment folder read-only, you can share deployment
descriptors between multiple container instances. In this scenario, you can
enable a single container instance to modify the contents of this folder, and
all container instances are affected after restart.

Enabling dynamic read/write
deployment

You can enable a read/write deployment folder using the following
command-line arguments:

Alternatively, you can set the following variable in a configuration file:

This means that the ../etc folder is used for predeploying services and
persisting new descriptors.

it_container -deployfolder ../etc

plugins:container:deployfolder="../etc";
 110

Deploying Services on Restart
Enabling read-only deployment You can enable a read-only deployment folder using the following
command-line arguments:

Alternatively, you can set the following variables in a configuration file:

This means that the ../etc folder is used for predeploying services only.

Predeploying a service on startup The it_container command also provides a -deploy argument, which can
be used to predeploy a single service on startup, for example:

The -deploy and -deployfolder arguments can be used together, for
example:

This means that MyService identified by deployMyService.xml, and all
services identified by descriptors in the ../etc folder, are deployed. The
deployMyService.xml that is specified using the -deploy argument is not
copied into a deployment folder. If you wish to copy a descriptor to the
deployment folder, use the following command:

Naming conventions The Artix container uses the following format when persisting deployment
descriptors into files:

You should follow the same pattern when generating custom descriptors
where possible. The container expects that all files in the deployment folder
that have the .xml extension are valid deployment descriptors.

it_container -deployfolder -readonly ../etc

plugins:container:deployfolder="../etc";
plugins:container:deployfolder:readonly="true";

it_container -deploy deployCORBAService.xml

it_container -deploy deployMyService.xml -deployfolder ../etc

it_container_admin -deploy -file deployMyService.xml
-deployfolder -deployfolder ../etc

deployLocalServiceName.xml
111

CHAPTER 6 | Deploying Services in an Artix Container
By default, deployment descriptors generated by Artix tools use the name of
the service’s local part. If you have two services with the same local part but
different namespaces, you should use the wsdd -file option to avoid the
name clashing. For more details, see “Using wsdd” on page 98.

Removing a service When using a read/write deployment folder, you can remove a service by
calling it_container_admin -removeservice on a running container. For
example:

Alternatively, you can remove the deployment descriptor file from the folder.
Both of these approaches ensure that the container does not reload the
service at startup.

When using a read-only folder, removing a service using -removeservice
does not prevent it from being redeployed after a restart. Only removing a
descriptor file from the folder prevents it from being redeployed.

Warnings and exceptions It is possible that using different descriptors might lead to the container
attempting to deploy the same service twice.

In this case, the container logs a warning message and proceeds with
deploying other services. An exception is thrown if an attempt to deploy the
same service is made from an administration console.

Further information For a working example of persistent deployment, see the following Artix
demo:

.../demos/advanced/container/deploy_plugin

it_container_admin -removeservice -service
{http://www.iona.com/bus/tests}SimpleServiceService

Note: Copying or removing files from the deployment folder has no
impact if the container is already running. The container cannot react to
these events. The contents of the folder is read once at startup. This only
applies to services that are started using deployment descriptors.
 112

Running an Artix Container as a Windows Service
Running an Artix Container as a Windows
Service

Overview On Windows, you can install instances of an Artix container server as a
Windows service. By default, this means that the installed container will
start up when your system restarts.

This feature also enables you to manage the container using the Windows
service controls. For example, you can start or stop a container using the
Windows Control Panel, or Windows net commands, such as net stop
ServiceName.

Format of service names When a container is installed as a Windows service, the container name
takes the following format in the Windows registry:

For example, if you call your service test_service, the name generated by
the install command that appears in the registry is:

This name is stored under the following entry in the registry:

Setting your environment
variables

Before installing the Artix container as a Windows service, you must ensure
that your system environment variables have been set correctly, and that
your machine has rebooted. These steps can be performed either when
installing Artix, or at any time prior to installing the container as a Windows
service.

Your environment variables enable the container to find all the information it
needs on restart. They must be set as follows:

ITArtixContainer ServiceName

ITArtixContainer test_service

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
113

CHAPTER 6 | Deploying Services in an Artix Container
Environment
Variable

Setting

IT_PRODUCT_DIR Your Artix installation directory (for example,
c:\iona).

Note: This is needed only if your PATH specifies
%IT_PRODUCT_DIR%, instead of the full path to any
Artix directories.

PATH Should include the following:

• Any C++ plug-ins that will be deployed by
the container.

• InstallDir\bin and
InstallDir\artix\Version\bin.

• The JRE libraries, JDKInstallDir\jre\bin
and JDKInstallDir\jre\bin\server.

CLASSPATH Should include the following:

• Any Java plug-ins that will be deployed by
the container. If the plug-in is packaged in a
JAR, you must list the .jar file. If .class
files are used, only the directory needs to be
listed.

• The Artix runtime JAR,
InstallDir\artix\Version\lib\artix-rt.

jar

• InstallDir\etc and
InstallDir\artix\Version\etc.

• Your JDK/JRE runtime JAR (for example,
JDKInstallDir\jre\lib\rt.jar).

Note: If you used Microsoft Visual C++ 7.1 to create your service
plug-in, include the following in your PATH, in this order:

InstallDir\bin\vc71;InstallDir\bin;InstallDir\artix\Version\bin\
vc71;InstallDir\artix\Version\bin
 114

Running an Artix Container as a Windows Service
Installing a container To install a container as a Windows service, use the it_container
-service install command:

These parameters are described as follows:

In addition to the -service install parameters, the following
it_container parameters also apply:

it_container -service install [-ORBParamName [ParamValue]]
-displayname Name -svcName ServiceName

-ORBParamName Represents zero or more -ORBParamName command-line
options (for example, -ORBlicense_file). These
specify the location of the Artix license file, domain
name, configuration directory, or ORB name.

These values must be specified either as command-line
parameters or environment variables. However,
specifying on the command line allows easier
deployment of multiple it_container instances as
multiple Windows services.

-displayname Specifies the name that is displayed in the Windows
Services dialog (select Start|Settings|Control
Panel|Application Tools|Services). The -displayname
parameter is required.

-svcName Specifies the service name that is listed in the Windows
registry (select Start|Run, and type regedit). The
-svcName parameter is required.

-port Specifies the port that the container will run on (see
“Running the container server on a specified port” on
page 102). This parameter is required.

-deployfolder Specifies a local folder to store deployment descriptors.
This enables redeployment on startup (see “Deploying
Services on Restart” on page 109). This parameter is
optional.
115

CHAPTER 6 | Deploying Services in an Artix Container
Example command

The following example shows all the parameters needed to install a
container instance as a Windows service:

If you do not set your license file, domain name, and configuration directory,
as environment variables, you must set them as -ORBParamName entries (the
recommended approach). The -ORBname parameter is optional.

Example service

The installed Windows service is listed in the Services dialog, as shown in
Figure 4.

it_container -service install -ORBlicense_file c:\InstallDir\etc\licenses.txt
-ORBconfig_dir c:\InstallDir\artix\Version\etc -ORBdomain_name artix
-displayName "My Test Service" -svcName my_test_service -port 2222
-deployfolder C:\deployed_files

Figure 4: Installed Windows Service
 116

Running an Artix Container as a Windows Service
Clicking on My Test Service displays the properties shown in Figure 5.

After running the it_container -service install command, you must
start the services manually. However, when your computer is restarted, the
installed services are configured to restart automatically.

Uninstalling a container To uninstall a container as a Windows service, use the it_container
uninstall command.

For example:

Figure 5: Service Properties

it_container -service uninstall -svcName ServiceName

it_container -service uninstall -svcName my_artix_test
117

CHAPTER 6 | Deploying Services in an Artix Container
 118

CHAPTER 7

Deploying an Artix
Router
An Artix router redirects messages based on rules defined in
an Artix contract. An Artix router can be used to bridge
operation invocations between different transport protocols,
and between different middleware.

In this chapter This chapter discusses the following topics:

The Artix Router page 120

Configuring an Artix Router page 125

Defining Routes in an Artix Deployment Descriptor page 129

Optimizing Router Performance page 133
119

CHAPTER 7 | Deploying an Artix Router
The Artix Router

Overview An Artix router redirects messages based on rules defined in an Artix
contract. The routing functionality is provided by an Artix plug-in and
configuration. This means that neither the client nor the server endpoints
need to be modified, nor are they are aware that routing is occurring. An
Artix router is sometimes referred to as an Artix switch.

An Artix router can be used as a minimally invasive means of connecting
applications that use different communication transports and message
formats. Alternatively, the applications may also use the same bindings and
transports.

An Artix router does not require that any Artix-specific code be compiled or
linked into existing applications. An Artix router is created by loading the
Artix routing plug-in into an Artix process. The recommended way to deploy
a router is to use the Artix container (see “Selecting a host process” on
page 124).

How it works An Artix router is a routing daemon that listens for traffic on endpoints
specified in an Artix contract. It re-directs messages based on the routing
rules that you define in the contract, and performs any transport routing and
message formatting needed for the receiving application. Neither application
is aware that its messages are being intercepted by Artix, and no application
development is required.

The router’s behavior is controlled by a combination of an Artix contract and
the Artix configuration file.

For detailed information on Artix contracts, see Understanding Artix
Contracts. For detailed information on Artix configuration files, see
Chapter 2.

Note: Services being integrated must use equivalent data types and
message layouts (for example, a service expecting a long cannot be sent a
float). The router does not perform any data transformation.
 120

../contract/index.htm
../contract/index.htm

The Artix Router
Deployment patterns Artix router can be deployed in a number of ways. Two common deployment
patterns are:

• Deploying multiple routers—each bridging between two applications.

• Deploying one router to bridge between all applications in a domain.

Deploying multiple routers—each bridging between two applications

This approach simplifies designing integration solutions, and provides faster
processing of each message (shown in Figure 6). Using this approach, the
Artix contract describing the interaction of the applications is simpler. It
contains only the logical interfaces shared by the two applications, the
bindings for each payload format, and the routing rules.

Because most applications use only one network transport, the number of
ports is minimal and the routing rules are simple. Keeping the contract
simple also enhances the performance of each router because it has less
processing to do. In this approach, each router’s resource usage can be
limited by tailoring its configuration to optimize the router for the integration
task that it is responsible for.

Figure 6: Using Multiple Artix Routers for Single Routes
121

CHAPTER 7 | Deploying an Artix Router
Deploying one router to bridge between all applications in a domain

This approach limits the number of external services required in your
deployment environment (shown in Figure 7). This can simplify monitoring
and installation of deployments. It also reduces the number of moving parts
in an integration solution.

Using this approach, you can use a single WSDL contract that includes all
the information for all routes. In this case, the contract information that
describes the interaction of the applications is more complex. It contains the
logical interfaces shared by multiple applications, the bindings for each
payload format, and the routing rules.

Alternatively, you can also specify that a single router uses multiple WSDL
files, each of which describes a single route, or a number of routes. These
could be the same WSDL contracts used in multiple router deployment,
however, they are all deployed in the same router process. The configuration
that identifies the WSDL file containing the routing details is specified using
a list, which can include a collection of multiple WSDL files. For more
information, see “Defining multiple routes in configuration” on page 127.

Figure 7: Using a Single Artix Router for Multiple Routes
 122

The Artix Router
Enabling Artix Routing There are two approaches to enabling an Artix router:

• Using configuration variables.

• Using an Artix deployment descriptor.

Using configuration

You can configure an Artix router by adding the routing plug-in to the
orb_plugins list, and specifying the location of the WSDL contract using the
plugins:routing:wsdl_url entry. See “Configuring an Artix Router” on
page 125 for full details.

This configuration-based approach can be used with an Artix container.
Alternatively, you can also deploy a router into any Artix process. For
example, this might be useful if you want to write CORBA clients and use
Artix APIs.

You can also specify additional configuration variables to optimize
performance. See “Optimizing Router Performance” on page 133.

Using a deployment descriptor

You can only use a deployment descriptor to define routes if you are using
the container to host the process. The advantage of this approach is that
you do not need a dedicated configuration scope.

Another advantage to this approach is that you can deploy additional routes
into the process without stopping and restarting the host process, which
would be necessary in the configuration approach.

When using the deployment descriptor approach, you must deploy each
WSDL file separately; whereas with the configuration approach, all WSDL
files are loaded automatically on startup. See “Defining Routes in an Artix
Deployment Descriptor” on page 129 for full details.
123

CHAPTER 7 | Deploying an Artix Router
Selecting a host process Although any Artix process can be used for Artix routing, the preferred
approach is to use the Artix container as the host process.

When using the Artix container server process (it_container), you have the
option of using either the configuration approach, or the deployment
descriptor approach.

In addition, you can also use the container’s client application
(it_container_admin) to manage the deployed route.

Disabling a router To undeploy a router, you must stop and restart the process hosting the
router. This applies to both the configuration and deployment descriptor
approach.

Using the configuration approach, you must edit the
plugins:routing:wsdl_url entry, removing the WSDL describing the
routing you wanted to undeploy.

Using the deployment descriptor approach, you would then either not
redeploy that particular WSDL, or you would remove its corresponding
deployment descriptor from the persistent deployment directory. See
“Deploying Services on Restart” on page 109 for full details.

Note: If you use an Artix client or server process to host the routing
plug-in, you can only use configuration to specify routing details. You can
not use a deployment descriptor.
 124

Configuring an Artix Router
Configuring an Artix Router

Overview Because Artix’s routing functionality is implemented as an Artix plug-in, you
can make any Artix application a router by adding routing rules to its
contract, and by specifying configuration settings in an Artix configuration
file.

This section explains how to configure the routing plug-in, and specify the
location of the router’s WSDL contract.

Setting the orb_plugins list Artix router applications must include the routing plug-in name in its
orb_plugins list, for example:

Plug-ins related to bindings, and transports are not required. These are
loaded automatically when the routing plug-in parses the WSDL file.

orb_plugins = ["xmlfile_log_stream", "soap", "at_http", ... ,
"routing"];

Note: You do not need to add the routing plug-in if you have defined
routes in a deployment descriptor (see “Defining multiple routes” on
page 129).

Note: The routing plug-in must always be the last plug-in listed in the
orb_plugins list.
125

CHAPTER 7 | Deploying an Artix Router
Setting the WSDL contract You must configure the location of the WSDL contract, or contracts, that the
router gets its routing information from. You can do this using the
plugins:routing:wsdl_url variable. This variable specifies the contracts
that the router parses for routing rules. The following is a simple example:

The location of the contract is relative to the location from which the Artix
router is started.

The following example contains multiple routing contracts:

In this example, the router expects that route1.wsdl is located in the
directory that it was started in, and that route2.wsdl is located one
directory level higher.

Defining a single route in
configuration

This is the simple approach used by the routing demos (for example,
routing\operation_based).

Run the host process (either an Artix process or the Artix container) under a
dedicated configuration scope. In this scope, include the routing plug-in
name in the orb_plugins configuration variable, and use the
plugins:routing:wsdl_url variable to specify the location the WSDL file
that contains the routing directives.

The required configuration is illustrated in the following fragment, where
demos.operation_based.router is the scope under which the host process
runs.

plugins:routing:wsdl_url="../../etc/router.wsdl";

plugins:routing:wsdl_url=["route1.wsdl", "../route2.wsdl",
 "/artix/routes/route3"];

demos {
 operation_based {
 orb_plugins = ["xmlfile_log_stream", "soap", "at_http"];

 router {
 #the routing plug-in implements the routing functionality
 orb_plugins = ["routing"];
 126

Configuring an Artix Router
This router can then be deployed in the container server using the following
example command:

Defining multiple routes in
configuration

There are two approaches to using configuration to deploy multiple routes
into the same host process. You can either specify routes in a WSDL file, or
in an Artix configuration file.

Defining multiple routes in a WSDL file

The first approach is to simply include multiple routing directives in a single
WSDL file. This is illustrated in the following fragment, where the ns1 prefix
represents the namespace assigned to the WSDL extensors that describe the
Artix routing functionality.

 #the path to the WSDL file that includes the routing element
 plugins:routing:wsdl_url="../../etc/route.wsdl";
 };
 };
};

it_container -ORBname demos.operation_based.router
-ORBdomain_name operation_based -ORBconfig_domains_dir
../../etc -publish

<service name="SourceService1">
 <port name="SourcePort" binding=…>
 <soap:address location="http://HostnameA:9100"/>
 </port>
</service>
<service name="SourceService2">
 <port name="SourcePort" binding=…">
 <soap:address location="http://HostnameA:9200"/>
 </port>
</service>
<service name="TargetService1">
 <port name="TargetPort1" binding=…>
 <soap:address location="http://HostnameB:9300"/>
 </port>
</service>
127

CHAPTER 7 | Deploying an Artix Router
The multiple source services (in this example, SourceService1 and
SourceService2) are deployed on the same host. This is the computer
running the application that hosts the routing plug-in. The multiple
destination services may be running on different host computers.

Defining multiple routes in an Artix configuration file

The second approach is to list multiple entries for the
plugins:routing:wsdl_url variable, as shown in the following example:

In this case, each WSDL file may include one, or more, routing directives.
When listing multiple WSDL files, use the list format for specifying
configuration variables

Further information For details of optional router configuration settings, see “Optimizing Router
Performance” on page 133.

For details of all the configuration options available for the routing plug-in,
see the Artix Configuration Reference.

<service name="TargetService2">
 <port name="TargetPort2" binding=…>
 <soap:address location="http:/HostnameC:9400"/>
 </port>
</service>

<ns1:route name="route_0">
 <ns1:source port="SourcePort" service="tns:SourceService1"/>
 <ns1:destination port="TargetPort1"

service="tns:TargetService1"/>
</ns1:route>

<ns1:route name="route_1">
 <ns1:source port="SourcePort" service="tns:SourceService2"/>
 <ns1:destination port="TargetPort2"

service="tns:TargetService2"/>
</ns1:route>

plugins:routing:wsdl_url= ["../../etc/route1.wsdl",
"../../etc/route2.wsdl"];
 128

../config_ref/index.htm

Defining Routes in an Artix Deployment Descriptor
Defining Routes in an Artix Deployment
Descriptor

Overview This section explains how to define multiple routes using an Artix
deployment descriptor. This approach is illustrated in the
advanced\container\deploy_routes demo.

Defining multiple routes In the deploy_routes demo, the Artix container process starts under the
global configuration scope defined in the artix.cfg configuration file.

The following extract is from one of the WSDL files used in the
advanced\container\deploy_routes demo.

Note: In this case, the routing plug-in is not loaded during startup
because it is not listed in the orb_plugins configuration entry.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"
 targetNamespace="http://www.iona.com/bus/demos/router"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.iona.com/bus/demos/router"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:routing="http://schemas.iona.com/routing">

 <portType name="GoodbyeServicePortType">
 <operation name="say_goodbye">
 <input message=… name=…/>
 <output message=… name=…/>
 </operation>
 </portType>
129

CHAPTER 7 | Deploying an Artix Router
 <binding name="SOAPGoodbyeServiceBinding" type="tns:GoodbyeServicePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="say_goodbye">
 <soap:operation …/>
 …
 </operation>
 </binding>

 <binding name="CORBAGoodbyeServiceBinding" type="tns:GoodbyeServicePortType">
 <corba:binding repositoryID="IDL:GoodbyeServicePortType:1.0"/>
 <operation name="say_goodbye">
 …
 </operation>
 </binding>

 <service name="SOAPHTTPService">
 <port binding="tns:SOAPGoodbyeServiceBinding" name="SOAPHTTPPort">
 <soap:address location=…/>
 </port>
 </service>

 <service name="CORBASoapService">
 <port binding="tns:CORBAGoodbyeServiceBinding" name="CORBASoapPort">
 <corba:policy poaname=…/>
 <corba:address location=…/>
 </port>
 </service>

 <routing:route name="CorbaToSoap">
 <routing:source port="CORBASoapPort" service="tns:CORBASoapService"/>
 <routing:destination port="SOAPHTTPPort" service="tns:SOAPHTTPService"/>
 </routing:route>
</definitions>
 130

Defining Routes in an Artix Deployment Descriptor
The corresponding Artix deployment descriptor includes the following
information:

In the example deployment descriptor, the opening service element
specifies the targetNamespace as an attribute and the source service name
as the element value. This information links the deployment descriptor to a
specific service. The wsdl_location element provides the path to the WSDL
file that includes the related routing directive. The plugin element includes
the information needed to load the routing plug-in.

In the advanced\container\deploy_plugin demo, each WSDL file includes
only one routing directive. However, a WSDL file could include multiple
routing directives and be referenced in the wsdl_location element in
multiple deployment descriptors. In this scenario, each deployment
descriptor uniquely identifies a source service using the content in the
opening service element.

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">

 <service xmlns:servicens="http://www.iona.com/bus/demos/router">
servicens:CORBASoapService

 </service>

 <wsdl_location>
 ../../routes/soap_route.wsdl
 </wsdl_location>

 <plugin>
 <name>routing</name>
 <type>Cxx</type>
 <implementation>it_routing</implementation>
 <provider_namespace>
 http://schemas.iona.com/routing
 </provider_namespace>
 </plugin>
</m1:deploymentDescriptor>
131

CHAPTER 7 | Deploying an Artix Router
Deploying multiple routes In the deploy_routes demo, the container client application
(it_container_admin) is used to deploy two routes, each of which is
specified in a dedicated deployment descriptor file. For example:

Each deployment descriptor describes a single route, which is identified by
the targetNamespace assigned to the WSDL file that contains the routing
directive and the name of the source service.

Specifying persistent deployment With the deployment descriptor approach, you can specify a persistent
deployment directory. When you initially deploy each WSDL file, a copy of
the deployment descriptor is placed into this directory.

When you restart the container, it automatically redeploys all the WSDL files
identified in these deployment descriptors. In this case, the effect is the
same as the configuration approach (that is, all routes are deployed during
the startup).

Further information For more details on the Artix container, deployment descriptors, and
persistent deployment, see Chapter 6.

For working examples of the routing plug-in deployed in an Artix container,
see any of the demos in the following directory:

InstallDir\\artix\Version\demos\routing

Alternatively, for a more advanced example, see:

InstallDir\artix\Version\demos\advanced\container\deploy_routes

it_container_admin -deploy -file
../../routes/deployCORBASoapService.xml

it_container_admin -deploy -file
../../routes/deployCORBAHTTPService.xml
 132

Optimizing Router Performance
Optimizing Router Performance

Overview This section describes how to configure the following router optimizations in
an Artix configuration file:

• “Setting router proxification”

• “Setting router pass-through”

• “Setting CORBA bypass”

Setting router proxification You can specify the maximum number of proxified server references in the
router using the plugins:routing:proxy_cache_size variable. This is the
number of references that have been converted into a proxy and are ready
for invocation. The default is 50.

plugins:routing:reference_cache_size specifies the maximum number of
unproxified server references in the router. The default is unbounded. This
refers to the number of references that must be proxified before they can be
invoked on.

Having a smaller proxy_cache_size enables the router to conserve memory,
while still being ready for invocations. Proxified references use more
resources than unproxified references (for example, for client connections
and bindings).

For example, take a SOAP-HTTP client and CORBA server banking system
with 1,500 accounts. By default, the 50 most recently used accounts are
present in the router as proxified references. The next 1450 most recently
used are unproxified references.

Note: Router proxification is available for the following bindings and
transports: CORBA, SOAP, HTTP, and IIOP Tunnel.
133

CHAPTER 7 | Deploying an Artix Router
Setting router pass-through You can specify whether the router receives a message and sends it directly
to the destination without parsing. This only applies when the source and
destination use the same binding. By default,
plugins:routing:use_pass_through is set to true. The router copies the
message buffer directly from the source endpoint to the destination endpoint
(if both use the same binding). This disables reference proxification for
same-protocol routes (for example, HTTP-to-HTTP).

However, if you want all connections to go through the router, set this
variable to false. This means that all references are used across the router.

Setting CORBA bypass For CORBA integrations, you can use location forwarding to connect CORBA
clients directly to CORBA servers, and thus bypass the Artix routing plug-in
entirely.

Set the plugins:routing:use_bypass configuration variable to true to
specify that the router sends CORBA LocateReply messages back to the
client. The default is false.

Further information For more information on Artix router optimizations, see the Artix
Configuration Reference.

WARNING: Do not enable pass-through in a secure router. When
pass-through is enabled, the authentication and authorization steps are
skipped. Therefore, you must always set
plugins:routing:use_pass_through to false in a secure router. See
IONA Security Advisory, ISA130905.
 134

../config_ref/index.htm
../config_ref/index.htm
http://www.iona.com/support/docs/artix/security_advisories/ISA130905.txt

CHAPTER 8

Deploying an Artix
Transformer
Artix provides an XSLT transformer service that can be
configured to run as a servant process that replaces an Artix
server.

In this chapter This chapter discusses the following topics:

The Artix Transformer page 136

Standalone Deployment page 139

Deployment as Part of a Chain page 142
135

CHAPTER 8 | Deploying an Artix Transformer
The Artix Transformer

Overview The Artix transformer provides a means of processing messages without
writing application code. The transformer processes messages based on
XSLT scripts and returns the result to the requesting application. XSLT
stands for Extensible Stylesheet Language Transformations.

These XLST scripts can perform message transformations, such as
concatenating two string fields, reordering the fields of a complex type, and
truncating values to a given number of decimal places. XSLT scripts can also
be used to validate data before passing it onto a Web service for processing,
and a number of other applications.

Deployment Patterns The Artix transformer is implemented as an Artix plug-in. Therefore, it can
be loaded into any Artix process. This makes it extremely flexible in how it
can be deployed in your environment. If the speed of calls or security is an
issue, the transformer can be loaded directly into an application. If you need
to spread resources across a number of machines, the transformer plug-in
can be loaded in a separate process.

There are two main patterns for deploying the Artix transformer:

• Standalone deployment

• Deployment as part of a chain

Standalone deployment The first pattern is to deploy the transformer by itself. This is useful if your
application is doing basic data manipulation that can be described in an
XSLT script. The transformer replaces the server process and saves you the
cost of developing server application code. This style of deployment can also
be useful for performing data validation before passing requests to a server
for processing.
 136

The Artix Transformer
The most straightforward way to deploy the transformer is to deploy it as a
separate servant process hosted by the Artix container server. When
deployed in this way the transformer receives requests from a client,
processes the message based on supplied XSLT scripts, and replies with the
results of the script. In this configuration, shown Figure 8, the transformer
becomes the server process in the Artix solution.

You can modify the deployment pattern shown in Figure 8 by eliminating
the Artix container server and having your client directly load the
transformer’s plug-in as shown in Figure 9. This saves the overhead of
making calls outside of the client process to reach the transformer However,
it can reduce the overall efficiency of your system if the transformer requires
a large amount of resources to perform its work.

Figure 8: Artix Transformer Deployed as a Servant

Figure 9: Artix Transformer Loaded by a Client
137

CHAPTER 8 | Deploying an Artix Transformer
Deployment as part of a chain The second pattern is to deploy the Artix transformer as part of a Web
service chain controlled by the Web service chain builder. This deployment
is useful if you need to connect legacy clients to updated servers whose
interfaces may have changed or are connecting applications that have
different interfaces. It can also be useful for a range of applications where
data transformation is needed as part of a larger set of business logic.

Figure 10 shows an example of this type of deployment where the
transformer and the chain builder are both hosted by the Artix container
server. The chain builder directs the requests to the transformer which
transforms messages. When the transformer returns the processed data, the
chain builder then passes it onto the server. In this example, the server
returns the results to the client without further processing, but the results
can also be passed back through the transformer. Neither the client nor the
server need to be aware of the processing.

You could modify this deployment pattern in a number of ways, depending
on how you allocate resources. For example, you can configure the client
process to load the chain builder and the transformer. You can also load the
chain builder and the transformer into separate processes.

Figure 10: Artix Transformer Deployed with the Chain Builder
 138

Standalone Deployment
Standalone Deployment

Overview To deploy an instance of the Artix transformer you must first decide what
process is hosting the transformer’s plug-in. You must then add the
following to the process configuration scope:

• The transformer plug-in, xslt.

• An Artix endpoint configuration to represent the transformer.

• The transformer’s configuration information.

Updating the orb_plugins list Configuring the application to load the transformer requires adding it to the
application’s orb_plugins list. The plug-in name for the transformer is xslt.
Example 13 shows an orb_plugins list for a process hosting the
transformer.

Adding an Artix endpoint
definition

The transformer is defined as a generic Artix endpoint. To instantiate it as a
servant, Artix must know the following details:

• The location of the Artix contract that defines the transformer’s
endpoint.

• The interface that the endpoint implements.

• The physical details of its instantiation.

This information is configured using the configuration variables in the
artix:endpoint namespace. These variables are described in Table 14.

Example 13:Plug-in List for Using XSLT

orb_plugins={"xslt", "xml_log_stream"};

Table 14: Artix Endpoint Configuration

Variable Function

artix:endpoint:endpoint_list Specifies a list of the endpoints and their names for
the current configuration scope.

artix:endpoint:endpoint_name:wsdl_location Specifies the location of the contract describing this
endpoint.
139

CHAPTER 8 | Deploying an Artix Transformer
Configuring the transformer Configuring the transformer involves two steps that enable it to instantiate
itself as a servant process and perform its work.

• Configuring the list of servants.

• Configuring the list of scripts.

Configuring the list of servants

The name of the endpoints that will be brought up as transformer servants is
specified in plugins:xslt:servant_list. The endpoint identifier is one of
the endpoints defined in artix:endpoint:endpoint_list entry. The
transformer uses the endpoint’s configuration information to instantiate the
appropriate servants

Configuring the list of scripts

The list of the XSLT scripts that each servant uses to process requests is
specified in plugins:xslt:endpoint_name:operation_map. Each endpoint
specified in the servant list has a corresponding operation map entry. The
operation map is specified as a list using the syntax shown in Example 14.

artix:endpoint:endpoint_name:wsdl_port Specifies the port that this endpoint can be
contacted on. Use the following syntax:

[{service_qname}]service_name[/port_name]

For example:

{http://www.mycorp.com}my_service/my_port

Table 14: Artix Endpoint Configuration

Variable Function

Note: artix:endpoint:endpoint_list must be specified in the same
configuration scope.

Example 14:Operation Map Syntax

plugins:xslt:endpoint_name:operantion_map = ["wsdlOp1@filename1"
, "wsdlOp2@filename2", ..., "wsdlOpN@filenameN"];
 140

Standalone Deployment
Each entry in the map specifies a logical operation that is defined in the
service’s contract by an operation element, and the XSLT script to run
when a request is made on the operation. You must specify an XSLT script
for every operation defined for the endpoint. If you do not, the transformer
raises an exception when the unmapped operation is invoked.

Configuration example Example 15 shows the configuration scope of an Artix application,
transformer, that loads the Artix Transformer to process messages. The
transformer is configured as an Artix endpoint named hannibal and the
transformer uses the endpoint information to instantiate a servant to handle
requests.

Example 15:Configuration for Using the Artix Transformer

transformer
{
orb_plugins = ["local_log_stream","xslt"];

artix:endpoint:endpoint_list = ["hannibal"];

artix:endpoint:hannibal:wsdl_location = "transformer.wsdl";
artix:endpoint:hannibal:wsdl_port = "{http://transformer.com/xslt}WhiteHat/WhitePort";

plugins:xslt:servant_list=["hannibal"]
plugins:xslt:hannibal:operation_map = ["op1@../script/op1.xsl", "op2@../script/op2.xsl",

"op3@../script/op3.xsl"]
}

141

CHAPTER 8 | Deploying an Artix Transformer
Deployment as Part of a Chain

Overview Deploying the Artix Transformer as part of Web service chain allows you to
use it as part of an integration solution without needing to necessarily
modify your applications. The Artix Web service chain builder facilitates the
placement of the transformer into a series of Web service calls managed by
Artix.

The plug-in architecture of the transformer and the chain builder allow for
you to deploy this type of solution in a variety of ways depending on what is
the best fit for your particular solution. The most straightforward way to
deploy this type of solution is to deploy both the transformer and the chain
builder into the same process. This is the deployment that will be used to
outline the steps for configuring the transformer to be deployed as part of a
Web service chain. In general, you will need to complete all of the same
steps regardless of how you choose to deploy your solution.

Procedure To deploy the transformer as part of a Web service chain you need to
complete the following steps:

1. Modify your process’s configuration scope to load the transformer and
the chain builder.

2. Configure Artix endpoints for each of the applications that will be part
of the chain.

3. Configure an Artix endpoint to represent the transformer.

4. Configure the transformer.

5. Configure the service chain to include the transformer at the
appropriate place in the chain.
 142

Deployment as Part of a Chain
Updating the orb_plugins list Configuring the application to load the transformer plug-in and the chain
builder plug-in requires adding them to the process’s orb_plugins list. The
plug-in name for the transformer is xslt and the plug-in name for the chain
builder is ws_chain. Example 16 shows an orb_plugins list for a process
hosting the transformer and the chain builder.

Configuring the endpoints in the
chain

The Artix Web service chain builder uses generic Artix endpoints to
represent all of the applications in a chain, including the transformer.
Table 14 on page 139 shows the configuration variables used to configure a
generic Artix endpoint.

Configuring the transformer The transformer requires the same configuration information regardless of
how it is deployed. You must provide it with the name of the endpoints it
will instantiate from the list of endpoints and provide each instantiation with
an operation map. For more information about providing this information
see “Configuring the transformer” on page 140.

Placing the transformer in the
chain

The chain builder instantiates a servant for each endpoint specified in its
servant list. Each servant can have a multiple operations. For each operation
that will be involved in a Web service chain, you need to specify a list of
endpoints and their operations that make up the chain. This list is specified
using plugins:chain:endpoint_name:operation_name:service_chain.

To include the transformer in one of the chains, you add the appropriate
operation and endpoint names for the transformer at the appropriate place
in the service chain.

For more information on configuring the chain builder see “Deploying a
Service Chain” on page 147.

Example 16: Loading the Artix Transformer as Part of a Chain

orb_plugins={"xslt", "ws_chain", "xml_log_stream"};
143

CHAPTER 8 | Deploying an Artix Transformer
Specifying an XSLT trace filter You can use the plugins:xslt:endpoint_name:trace_filter variable to
trace and debug the output of the XSLT engine. This configuration variable
is optional. For example:

These settings are described as follows:

Configuration example Example 17 shows a configuration scope that contains configuration
information for deploying the transformer as part of a Web service chain.

plugins:xslt:endpoint_name:trace_filter =
"INPUT+TEMPLATE+ELEMENT+GENERATE+SELECT";

INPUT Traces the XML input passed to the XSLT engine.

TEMPLATE Traces template matches in the XSLT script.

ELEMENT Traces element generation.

GENERATE Traces generation of text and attributes.

SELECT Traces node selections in the XSLT script.

Example 17:Configuring the Artix Transformer in a Web Service Chain

transformer
{
 orb_plugins = ["ws_chain", "xslt"];

 event_log:filters = ["*=FATAL+ERROR+WARNING", "IT_XSLT=*"];

 bus:qname_alias:oldClient = "{http://bank.com}ATM";
 bus:initial_contract:url:oldClient = "bank.wsdl";

 bus:qname_alias:newServer = "{http://bank.com}newATM";
 bus:initial_contract:url:newServer = "bank.wsdl";

 artix:endpoint:endpoint_list = ["transformer"];

 artix:endpoint:transformer:wsdl_location = "bank.wsdl";
 artix:endpoint:transformer:wsdl_port =

"{http://bank.com}transformer/transformer_port";

 plugins:xslt:servant_list = ["transformer"];
 plugins:xslt:transformer:operation_map =

["transform@transformer.xsl"];
 144

Deployment as Part of a Chain
 plugins:chain:servant_list = ["oldClient"];
 plugins:chain:oldClient:client_operation:service_chain =

["transform@transformer", "withdraw@newServer"];
};

Example 17:Configuring the Artix Transformer in a Web Service Chain

Note: Even though a list of servants can be specified, only one servant is
currently supported in a process.
145

CHAPTER 8 | Deploying an Artix Transformer
 146

CHAPTER 9

Deploying a
Service Chain
Artix provides a chain builder that enables you to create a
series of services to invoke as part of a larger process.

In this chapter This chapter includes the following sections:

The Artix Chain Builder page 148

Configuring the Artix Chain Builder page 150
147

CHAPTER 9 | Deploying a Service Chain
The Artix Chain Builder

Overview The Artix chain builder enables you to link together a series of services into a
multi-part process. This is useful if you have processes that require a set
order of steps to complete, or if you wish to link together a number of
smaller service modules into a complex service.

Chaining services together For example, you may have four services that you wish to combine to
service requests from a single client. You can deploy a service chain like the
one shown in Figure 11.

Figure 11: Chaining Four Servers to Form a Single Service
 148

The Artix Chain Builder
In this scenario, the client makes a single request and the chain builder
dispatches the request along the chain starting at Server1. The chain
builder takes the response from Server1 and passes that to the next
endpoint in the chain, Server2. This continues until the end of the chain is
reached at Server4. The chain builder then returns the finished response to
the client.

The chain builder is implemented as an Artix plug-in so it can be deployed
into any Artix process. The decision about which process that you deploy it
in depends on the complexity of your system, and also how you choose to
allocate resources for your system.

Assumptions To make the discussion of deploying the chain builder as straightforward as
possible, this chapter assumes that you are deploying it into an instance of
the Artix container server. However, the configuration steps for configuring
and deploying a chain builder are the same no matter which process you
choose to deploy it in.
149

CHAPTER 9 | Deploying a Service Chain
Configuring the Artix Chain Builder

Overview To configure the Artix chain builder, complete the following steps:

1. Add the chain builder’s plug-in to the orb_plugins list.

2. Configure all the services that are a part of the chain.

3. Configure the chain so that it knows what servants to instantiate and
the service chain for each operation implemented by the servant.

Adding the chain builder in the
orb_plugins list

Configuring the application to load the chain builder’s plug-in requires
adding it to the application’s orb_plugins list. The plug-in name for the
chain builder is ws_chain. Example 18 shows an orb_plugins list for a
process hosting the chain builder.

Configuring the services in the
chain

Each service that is a part of the chain, and the client that makes requests
through the chain service, must be configured in the chain builder’s
configuration scope. For example, you must supply the service name and
the location of its contract.

This provides the chain builder with the necessary information to instantiate
a servant that the client can make requests against. It also supplies the
information needed to make calls to the services that make up the chain.

Example 18:Plug-in List for Using a Web Service Chain

orb_plugins={"ws_chain", "xml_log_stream"};
 150

Configuring the Artix Chain Builder
To configure the services in the chain, use the configuration variables in
Table 15.

Configuring the service chains The chain builder requires you to provide the following details

• A list of services that are clients to the chain builder.

• A list of operations that each client can invoke.

• Service chains for each operation that the clients can invoke.

Specifying the servant list

The first configuration setting tells the chain builder how many servants to
instantiate, the interfaces that the servants must support, and the physical
details of how the servants are contacted. You specify this using the
plugins:chain:servant_list variable. This takes a list of service names
from the list of Artix services that you defined earlier in the configuration
scope.

Specifying the operation list

The second part of the chain builder’s configuration is a list of the operations
that each client to the chain builder can invoke. You specify this using
plugins:chain:endpoint:operation_list where endpoint refers to one of
the endpoints in the chain’s service list.

Table 15: Artix Service Configuration

Variable Function

bus:qname_alias:service Specifies a service name using the
following syntax:

{service_qname}service_name

For example:

{http://www.mycorp.com}my_service

bus:initial_contract:url:service Specifies the location of the contract
describing this service. The default is the
current working directory.
151

CHAPTER 9 | Deploying a Service Chain
plugins:chain:endpoint:operation_list takes a list of the operations that
are defined in <operation> tags in the endpoint’s contract. You must list all
of the operations for the endpoint or an exception will be thrown at runtime.
You must also be sure to enter a list of operations for each endpoint
specified in the chain’s service list.

Specifying the service chain

The third piece of the chain builder’s configuration is to specify a service
chain for every operation defined in the endpoints listed in
plugins:chain:servant_list. This is specified using the
plugins:chain:endpoint:operation:service_chain configuration variable.
The syntax for entering the service chains is shown in Example 19.

For each entry, the syntax is as follows:

Example 19:Entering a Service Chain

plugins:chain:endpoint:operation:service_chain=["op1@endpt1", "op2@endpt2", ..., "opN@endptN"];

endpoint Specifies the name of an endpoint from the chain builder’s
servant list

operation Specifies one of the operations defined by an operation entry
in the endpoints contract. The entries in the list refer to
operations implemented by other endpoints defined in the
configuration.

opN Specifies one of the operations defined by an operation entry
in the contract defining the service specified by endptN. The
operations in the service chain are invoked in the order
specified. The final result is returned back to the chain
builder which then responds to the client.
 152

Configuring the Artix Chain Builder
Instantiating proxy services The chain invokes on other services, and for this reason, it instantiates proxy
services. It can instantiate proxies when the chain servant starts (the
default), or later, when a call is made. The following configuration variable
specifies to instantiate proxy services when a call is made:

This defaults to false, which means that proxies are instantiated when the
chain servant starts. However, you might not be able to instantiate proxies
when the chain servant is started because the servant to call has not
started. For example, this applies when using the Artix locator or UDDI.

Configuration example Example 16 shows the contents of a configuration scope for a process that
hosts the chain builder.

plugins:chain:init_on_first_call ="true";

Table 16: Configuration for Hosting the Artix Chain Builder

colaboration {
 orb_plugins = ["ws_chain"];

 bus:qname_alias:customer= "{http://needs.com}POC";
 bus:initial_contract:url:customer = "order.wsdl";

 bus:qname_alias:pm = "{http://ORBSrUs.com}prioritize";
 bus:initial_contract:url:pm = "manager.wsdl";

 bus:qname_alias:designer = "{http://ORBSrUs.com}design";
 bus:initial_contract:url:designer = "designer.wsdl";

 bus:qname_alias:builder = "{http://ORBSrUs.com}produce";
 bus:initial_contract:url:builder = "engineer.wsdl";

 plugins:chain:servant_list = ["customer"];

 plugins:chain:customer:requestSolution:service_chain =
 ["estimatePriority@pm", "makeSpecification@designer",
 "buildORB@builder"];
};
153

CHAPTER 9 | Deploying a Service Chain
Configuration guidelines When Web services are chained, the following rules must be obeyed:

• The input type of the chain service (in this example, customer) must
match the input of the first service in the chain (pm).

• The output type of a previous service in the chain must match the
input type of the next service in the chain.

• The output type of the last service in the chain must match the output
of the chain service.

• One configuration entry must exist for each operation in the portType
of the chain service (for example, customer). This simple example
shows only one entry, and the portType for the customer endpoint has
only one operation (requestSolution).

• The chain service can invoke only on services that have one port.

• Finally, not all operations must be configured in the chain, only those
that are invoked upon. This means that no check is made when all
operations are mapped to a chain. If a client invokes on an unmapped
operation, the chain service throws a FaultException.
 154

CHAPTER 10

Deploying High
Availability
Artix uses Berkeley DB high availability to provide support for
replicated services. This chapter explains how to configure and
deploy high availability in Artix.

In this chapter This chapter discusses the following topics:

Introduction page 156

Setting up a Persistent Database page 159

Configuring Persistent Services for High Availability page 160

Configuring Locator High Availability page 164

Configuring Client-Side High Availability page 167
155

CHAPTER 10 | Deploying High Availability
Introduction

Overview Scalable and reliable Artix applications require high availability to avoid any
single point of failure in a distributed system. You can protect your system
from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the
same service; and together, these act as a single logical service. Clients
invoke requests on the replicated service, and Artix routes the requests to
one of the member replicas. The routing to a replica is transparent to the
client.

How it works Artix high availability support is built on Berkeley DB, and uses its
replication features. Berkeley DB has a master-slave replica model where a
single replica is designated the master, and can process both read and write
operations from clients. All other replicas are slaves and can only process
read operations. Slaves automatically forward write requests to masters, and
masters push all updates out to slaves, as shown in Figure 12.

Figure 12: Artix Master Slave Replication
 156

Introduction
Electing a master Using Artix high availability, when members of a replicated cluster start up,
they all start up as slaves. When the cluster members start talking to each
other, they hold an election to select a master.

Election protocol

The protocol for selecting a master is as follows:

1. For an election to succeed, a majority of votes must be cast. This
means that for a group of three replicas, two replicas must cast votes.
For a group of four, three replicas must cast votes; for a group of five,
three must cast votes, and so on.

2. If a slave exists with a more up-to-date database than the other slaves,
it wins the election.

3. If all the slaves have equivalent databases, the election result is based
on the configured priority for each slave. The slave with the highest
priority wins.

After the election

When a master is selected, elections stop. However, if the slaves lose
contact with the master, the remaining slaves hold a new election for
master. If a slave can not get a majority of votes, nobody is promoted.

At this point, the database remains as a slave, and keeps holding elections
until a master can be found. If this is the first time for the database to start
up, it blocks until the first election succeeds, and it can create a database
environment on disk.

If this is not the first time that the database has started up, it starts as a
slave (using the database files already on disk from its previous run), and
continues holding elections in the background anyway.

Auto-demotion

In the event of a network partition, by default, the master replica is
configured to automatically demote itself to a slave when it loses contact
with the replica cluster. This prevents the creation of duplicate masters.

Note: Because voting is done by majority, it is recommended that high
availability clusters have an odd number of members. The recommended
minimum number of replicas is three.
157

CHAPTER 10 | Deploying High Availability
Request forwarding Slave replicas automatically forward write requests to the master replica in a
cluster. Because slaves have read-only access to the underlying Berkeley DB
infrastructure, only the master can make updates to the database. This
feature works as follows:

1. When a replicated server starts up, it loads the request_forwarder
plug-in.

2. When the client invokes on the server, the request_forwarder plug-in
checks if it should forward the operation, and where to forward it to.
The server programmer indicates which operations are write operations
using an API.

3. If the server is running as a slave, it tries to forward any write
operations to the master. If no master is available, an exception is
thrown to the client, indicating that the operation cannot be processed.

Because the forwarding works as an interceptor within a plug-in, there is
minimal code impact to the user. No servant code is impacted. For details
on how to configure request forwarding, see “Specifying your orb_plugins
list” on page 161.

Setting up high availability You can configure all the necessary settings in an Artix configuration file (see
“Configuring Persistent Services for High Availability” on page 160).

Replication is supported for C++ and Java service development, and by the
Artix locator (see “Configuring Locator High Availability” on page 164).
 158

Setting up a Persistent Database
Setting up a Persistent Database

Overview To enable a service able to take advantage of high availability, it needs to
work with a persistent database. This is created using a C++ or Java API.
There are no configuration steps required. The Artix configuration variables
for persistent databases are set with default values that should not need to
be changed.

Using the Persistence API Artix provides set of C++ and Java APIs for manipulating persistent data.
For example, the C++ API uses the PersistentMap template class. This
class stores data as name value pairs. This API is defined in
it_bus_pdk\persistent_map.h.

This API enables you to perform tasks such as the following:

• Create a PersistentMap database.

• Insert data into a PersistentMap.

• Get data from a PersistentMap.

• Remove data from a PersistentMap.

For more details, see the Developing Artix Applications in C++. For details
of the Java implementation, see Developing Artix Applications in Java.

Further information For detailed information on the Berkeley DB database environment, see
http://www.sleepycat.com/

Artix ships Berkeley DB 4.2.52. Alternatively, you can download and build
Berkeley DB to obtain additional administration tools (for example, db_dump,
db_verify, db_recover, db_stat).
159

http://www.sleepycat.com/
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 10 | Deploying High Availability
Configuring Persistent Services for High
Availability

Overview For a service to participate in a high availability cluster, it must first be
designed to use persistent maps (“Setting up a Persistent Database” on
page 159). However, services that use persistent maps are not replicated
automatically; you must configure your service to be replicated.

Configuring a service for
replication

To replicate a service, you must add a replication list to your configuration,
and then add configuration scopes for each replicated instance of your
service. Typically, you would create a scope for your replica cluster, and
then create sub-scopes for each replica. This avoids duplicating
configuration settings that are common to all replicas, and separates the
cluster from any other services configured in your domain.

Specifying a replication list To specify a cluster of replicas, use the following configuration variable:

This takes a list of replicas specified using the following syntax:

For example, the following entry configures a cluster of three replicas spread
across machines named jimi, noel, and mitch.

plugins:artix:db:replicas

ReplicaName=HostName:PortNum

plugins:artix:db:replicas=[“rep1=jimi:2000”, “rep2=mitch:3000”,
“rep3=noel:4000”];

Note: It is recommended that you set ReplicaName to the same value as
the replica’s sub-scope (see “Configuration example” on page 162).
 160

Configuring Persistent Services for High Availability
Specifying your orb_plugins list Because IIOP is used for communication between replicas, you must include
the following plug-ins in your replica’s orb_plugins list:

• iiop_profile

• giop

• iiop

In addition, to enable automatic forwarding of write requests from slave to
master replicas, include the request_forwarder plug-in. You must also
specify this plug-in as a server request interceptor. The following example
shows the required configuration:

This configuration is loaded when the replica service starts up. It applies to
both C++ and Java applications.

Specifying replica priorities In each of the sub-scopes for the replicas, you must give each replica a
priority, and configure the IIOP connection used by the replicas to conduct
elections. This involves the following configuration variables:

orb_plugins = ["xmlfile_log_stream", "local_log_stream",
"request_forwarder", "iiop_profile", "giop", "iiop"];

binding:artix:server_request_interceptor_list=
"request_forwarder";

Note: To enable forwarding of write requests, programmers must have
already specified in the server code which operations can write to the
database. For details, see “Forwarding write requests” on page 172.
161

CHAPTER 10 | Deploying High Availability
Configuration example

The following example shows a simple example in an Artix configuration file:

plugins:artix:db:priority Specifies the replica priority. The
higher the priority the more likely the
replica is to be elected as master. You
should set this variable if you are using
replication.

There is no guarantee that the replica
with the highest priority is elected
master. The first consideration for
electing a master is who has the most
current database.

Note: Setting a replica priority to 0
means that the replica is never elected
master.

plugins:artix:db:iiop:port Specifies the IIOP port the replica
starts on. This entry must match the
corresponding entry in the replica list.

ha_cluster{

 plugins:artix:db:replicas = [“rep1=jimi:2000”,
“rep2=mitch:3000”, “rep3=noel:4000”];

 rep1{
 plugins:artix:db:priority = 80;
 plugins:artix:db:iiop:port = 2000;
 };
 rep2{
 plugins:artix:db:priority = 20;
 plugins:artix:db:iiop:port = 3000;
 };
 rep3{
 plugins:artix:db:priority = 0;
 plugins:artix:db:iiop:port = 4000;
 };
};
 162

Configuring Persistent Services for High Availability
Configuration guidelines

You should keep the following in mind:

• By default, the DB home directory defaults to ReplicaConfigScope_db
(for example, rep1_db), where ReplicaConfigScope is the inner-most
replica configuration scope. If this directory does not already exist, it
will be created in the current working directory.

• All replicas must be represented by separate WSDL ports in the same
WSDL service contract. By default, you should specify the inner-most
replica scope as the WSDL port name (for example, rep1).

Configuring a minority master It is recommended that high availability clusters have an odd number of
members, and the recommended minimum number is three. However, it is
possible to use a cluster with two members if you specify the following
configuration:

This allows a lone slave to promote itself if it sees that the master is
unavailable. This is only allowed when the replica cluster has two members.
This variable defaults to false (which means it is not allowed by default). If
it is set to true, a slave that cannot reach its partner replica will promote
itself to master, even though it only has fifty per cent of the votes (one out of
two).

Configuring request forward
logging

You can also specify to output logging from the request_forwarder plug-in.

To do this, specify the following logging subsystem in your event log filter:

plugins:artix:db:allow_minority_master=true;

WARNING: This variable must be used with caution. If it is set to true,
and the two replicas in the cluster become separated due to a network
partition, they both end up as master. This can be very problematic
because both replicas could make database updates, and resolving those
updates later could be very difficult, if not impossible.

event_log:filters =
["IT_BUS.SERVICE.REQUEST_FORWARDER=INFO_LOW+WARN+ERROR+FATAL"];
163

CHAPTER 10 | Deploying High Availability
Configuring Locator High Availability

Overview Replicating the locator involves specifying the same configuration that you
would use for other Artix services, as described in “Configuring Persistent
Services for High Availability” on page 160. However, there are some
additional configuration variables that also apply to the locator.

Setting locator persistence To enable persistence in the locator, set the following variable:

This specifies whether the locator uses a persistent database to store
references. This defaults to false, which means that the locator uses an
in-memory map to store references.

When replicating the locator, you must set persist_data to true. If you do
not, replication is not enabled.

Setting load balancing When persist_data is set to true, the load balancing behavior of the
locator changes. By default, the locator uses a round robin method to hand
out references to services that are registered with multiple endpoints.
Setting persist_data to true causes the locator to switch from round robin
to random load balancing.

You can change the default behavior of the locator to always use random
load balancing by setting the following configuration variable:

plugins:locator:persist_data="true";

plugins:locator:selection_method = “random”;
 164

Configuring Locator High Availability
Configuration example The following example shows the configuration required for a cluster of three
locator replicas.

Using multiple locator replica
groups

A highly available locator consists of a group of locators, one of which is
active. The rest are replicas, which are used only when the active locator
becomes unavailable. The locator group is represented by a locator WSDL
file that contains multiple endpoints—one for each locator. When the
ha_conf plug-in is loaded by Artix clients, it uses this WSDL file to resolve
and connect to a locator. It tries the first endpoint, and if this does not yield
a valid connection, it tries the second endpoint, and so on.

Example 20:Settings for Locator High Availability

service {
...
bus:initial_contract:url:locator = "../../../etc/locator.wsdl";

orb_plugins = ["local_log_stream", "wsdl_publish", "request_forwarder",
"service_locator", "iiop_profile", "giop", "iiop"];

binding:artix:server_request_interceptor_list= "request_forwarder";

plugins:locator:persist_data = "true";

plugins:artix:db:replicas = ["Locator1=localhost:7876",
"Locator2=localhost:7877", "Locator3=localhost:7878"];

Locator1{
 plugins:artix:db:priority = "100";
 plugins:artix:db:iiop:port = "7876";
};
Locator2{
 plugins:artix:db:priority = "75";
 plugins:artix:db:iiop:port = "7877";
};
Locator3{
 plugins:artix:db:priority = "0";
 plugins:artix:db:iiop:port = "7878";
};
165

CHAPTER 10 | Deploying High Availability
Using the ha_conf plug-in, Artix client applications can failover between
locators in the same replica group. However, if you are using two separate
replica locator groups, you want your clients to try one group first, and then
the other. In this case, you can use one of the following approaches to
failover between two separate replica locator groups:

Combine the two groups

You can combine two groups by taking the locator endpoints from the
second replica group's WSDL file, and adding them to the list of endpoints in
the first replica group's WSDL file. You now have a single WSDL file that
contains all the locator endpoints. The ha_conf plug-in will try to contact
locators in the order specified in this WSDL file.

Change the configured contract

First, set your Artix configuration so that group1.wsdl is the first replica
group's WSDL file, for example:

Then if a connection cannot be made to any endpoint from this file, change
the configured WSDL file to group2.wsdl, re-initialize the bus, and try again.

In this way, by using an extra try/catch statement in the client, you can
achieve failover between two replica locator groups.

Further information For a working example of Artix locator high availability, see the
...advanced/high_availability_locator demo.

bus:initial_contract:url:locator = "group1.wsdl";
 166

Configuring Client-Side High Availability
Configuring Client-Side High Availability

Overview When you have implemented a highly available service using a group of
replica servers, a suitably configured client can talk to the master replica. In
the event that the master replica fails, one of the other replicas takes over as
master, and the client fails over to one of the other replicas.

As far as the client application logic is concerned, there is no discernible
interruption to the service. This section shows how to configure the client to
use high availability features. It also explains the impact on the server.

Configuration steps In most cases, configuring high availability on the client side consists of two
steps:

• Create a service contract that specifies the replica group.

• Configure the client to use the high availability service.

Specifying the replica group in
your contract

Before your client can contact the replicas in a replica group, you must tell
the client how to contact each replica in the group. You can do this by
writing the WSDL contract for your service in a particular way.

Example 21 shows the hello_world.wsdl contract from the
...\advanced\high_availability_persistent_servers demo.

Example 21:Specifying a Replica Group in a Contract

?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld" targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/hello_world_soap_http"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
167

CHAPTER 10 | Deploying High Availability
In Example 21, the SOAPService service contains three ports, all of the
same port type. The contract specifies fixed port numbers for the endpoints.
By convention, you should ensure that the first port specified by the service
corresponds to the master server.

 <wsdl:types>
 <schema targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="responseType" type="xsd:boolean"/>
 <element name="requestType" type="xsd:string"/>
 <element name="overwrite_if_needed" type="xsd:boolean"/>
 </schema>
 </wsdl:types>
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server1">
 <soap:address location="http://localhost:9551/SOAPService/Server1"/>
 </wsdl:port>
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server2">
 <soap:address location="http://localhost:9552/SOAPService/Server2"/>
 </wsdl:port>
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server3">
 <soap:address location="http://localhost:9553/SOAPService/Server3"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

Example 21:Specifying a Replica Group in a Contract
 168

Configuring Client-Side High Availability
Configuring the client to use high
availability

To configure your client for high availability, perform the following steps:

1. In your client scope, add the high availability plug-in (ha_conf) to the
orb_plugins list. For example:

2. Configure the client so that the Artix bus can resolve the service
contract. You can do this by specifying the following configuration in
the client scope:

Alternatively, you can also do this using the -BUSservice_contract
command line parameter as follows:

For more details on configuring initial contracts, see Chapter 14.

Impact on the server In Example 21, the contract specifies three separate ports in the same
service named SOAPService. The implication is that each port is
implemented by a different process, and if one of these processes fails, the
client switches to one of the others.

client {
 orb_plugins = [...,"ha_conf"];
};

client {
 bus:qname_alias:soap_service = "{http://www.iona.com/hello_world_soap_http}SOAPService";
 bus:initial_contract:url:soap_service = "../../etc/hello_world.wsdl";
};

myclient -BUSservice_contract ../../etc/hello_world.wsdl
169

CHAPTER 10 | Deploying High Availability
Because the servers use the same contract, the server-side code must be
written so that the server can be instructed to instantiate a particular port.
Example 22 shows some relevant code. Depending on which argument the
server is started with (1, 2, or 3), it instantiates either Server1, Server2 or
Server3.

Example 22:Server Code Chooses which Port to Instantiate

//C++
String cfg_scope = "demos.high_availability_persistent_servers.server.";
String wsdl_url = "../../etc/hello_world.wsdl";
String server_number = argv[1];
String service_name = "SOAPService";
String port_name = "Server";

if (server_number == "1")
{
 cfg_scope += "one";
 port_name += "1";
}
else if (server_number == "2")
{
 cfg_scope += "two";
 port_name += "2";
}
else if (server_number == "3")
{
 cfg_scope += "three";
 port_name += "3";
}

else
{
 cerr << "Error: you must pass 1, 2 or 3 as a command line argument" <<

endl;
 return -1;
}

 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv, cfg_scope.c_str());

 IT_Bus::QName service_qname(
 "",
 service_name,
 "http://www.iona.com/hello_world_soap_http"
);
 170

Configuring Client-Side High Availability
Server-side state

Client-side failover can be used with both stateful and stateless servers. If
your servers are stateful, server-side high availability must be enabled for
the servers. This has no impact on the client configuration.

If your servers are stateless, no server-side configuration is necessary.
However, your servers can share state using some other mechanism (for
example, a shared database). In this case, client-side failover can still be
used.

GreeterImpl servant(bus, service_qname, port_name, wsdl_url);

 bus->register_servant(
 servant,
 wsdl_url,
 service_qname,
 port_name
);

 cout << "Server Ready" << endl;
 IT_Bus::run();
}
catch (const IT_Bus::Exception& e)
{
 cerr << "Error occurred: " << e.message() << endl;
 return -1;
}
catch (...)
{
cerr << "Unknown exception!" << endl;
return -1;
}
return 0;

Example 22:Server Code Chooses which Port to Instantiate
171

CHAPTER 10 | Deploying High Availability
Forwarding write requests When a client sends a write request to a slave replica, the slave must
forward the write request to the master replica. The server programmer
must use the mark_as_write_operations() method specify which WSDL
operations can write to the database.

C++

The C++ function is as follows:

Java

The method is as follows:

For a detailed example, see Developing Artix Applications in C++ and
Developing Artix Applications in Java.

Random endpoint selection for
clients

The client-side ha_conf plug-in supports random endpoint selection. This
can be very useful if you want your client applications to pick a random
server each time they connect.

The random behavior can be applied all the time, so that the client always
picks a random server. This approach should be used if you want your
clients to be uniformly load-balanced across different servers. To use this
approach, set the following configuration:

// C++
void
mark_as_write_operations(
 const IT_Vector<IT_Bus::String> operations,
 const IT_Bus::QName& service,
 const IT_Bus::String& port,
 const IT_Bus::String& wsdl_url
) IT_THROW_DECL((DBException));

// Java
void
markAsWriteOperations(
 String[] operations,
 QName service,
 String portName,
 String wsdlUrl);

plugins:ha_conf:strategy="random";
plugins:ha_conf:random:selection="always";
 172

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Configuring Client-Side High Availability
Alternatively, the random behavior can be applied only after the client loses
connectivity with the first server in the list. This approach should be used to
make your clients favour a particular server for their initial connectivity. To
use this approach, set the following configuration:

Further information For working examples of high availability in Artix, see the following demos:

• ...advanced/high_availability_persistent_servers

• ...advanced/high_availability_locator

For full details of all database environment and high availability
configuration settings, see the Artix Configuration Reference.

plugins:ha_conf:strategy="random";
plugins:ha_conf:random:selection="subsequent";
173

../config_ref/index.htm

CHAPTER 10 | Deploying High Availability
 174

CHAPTER 11

Deploying Reliable
Messaging
Artix supports Web Services Reliable Messaging (WS-RM) for
Java and C++ applications. This chapter explains how to
configure and deploy WS-RM in an Artix runtime environment.

In this chapter This chapter discusses the following topics:

Introduction page 176

Configuring a WS-Addressing MEP page 178

Enabling WS-ReliableMessaging page 180

Configuring WS-RM Attributes page 181
175

CHAPTER 11 | Deploying Reliable Messaging
Introduction

Overview Web Services Reliable Messaging is a standard protocol that ensures the
reliable delivery of messages in a distributed environment. For example, this
protocol can be used to ensure that the correct messages have been
delivered exactly once, and in the correct order.

Web Services Reliable Messaging is also known as WS-ReliableMessaging
or WS-RM.

How it works WS-RM ensures the reliable delivery of messages between a source and
destination endpoint. The source is the initial sender of the message and the
destination is the ultimate receiver, as shown in Figure 13.

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM
destination. This contains a reference for the endpoint that receives
acknowledgements (wsrm:AcksTo).

2. The RM destination sends a CreateSequenceResponse protocol
message back to the RM source. This contains the sequence ID for the
RM sequence session.

Figure 13: Web Services Reliable Messaging
 176

Introduction
3. The RM source adds an RM Sequence header to each message sent by
the application source. This contains the sequence ID, and a unique
message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the
RM source by sending messages that contain the RM
SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination
in an exactly-once-in-order fashion.

7. The RM source retransmits a message for which it has not yet received
an acknowledgement.

The first retransmission attempt is made after a base retransmission
interval. Successive retransmission attempts are made after a linear
interval, or an exponential backoff interval (the default behavior). For
more details, see “Configuring WS-RM Attributes” on page 181.

WS-RM delivery assurances WS-RM guarantees reliable message delivery, regardless of the transport
protocol used. The source or destination endpoint will raise an error if
reliable delivery can not be assured.

The default Artix WS-RM delivery assurance policy is ExactlyOnceInOrder.
This means that every message that is sent is delivered without duplication.
If not, an error is raised on at least one endpoint. In addition, messages are
delivered in the same order that they are sent.

Artix also supports the ExactlyOnceConcurrent and
ExactlyOnceReceivedOrder delivery assurance policies. For more details,
see “Configuring attributes in WS-RM contexts” on page 185.

Further information For detailed information on WS-RM, see the specification at:
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
177

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

CHAPTER 11 | Deploying Reliable Messaging
Configuring a WS-Addressing MEP

Overview To use Artix WS-ReliableMessaging, you must first configure a
WS-Addressing Message Exchange Pattern (MEP). You can also configure a
WS-Addressing MEP without using WS-RM. The configuration settings
apply to Web services implemented in both C++ and Java.

WS-Addressing Message
Exchange Pattern

Artix uses WS-Addressing MEPs as SOAP message headers. These include
wsa:To, wsa:ReplyTo, wsa:MessageId, and wsa:RelatesTo.

This enables Artix to send a request to an endpoint specified by a wsa:To
header, and to receive a reply at an endpoint specified by a wsa:ReplyTo
header. If a wsa:ReplyTo header is not specified, by default, Artix uses the
anonymous URI to synchronously receive the reply:

When a non-anonymous wsa:ReplyTo is used, the reply is received
asynchronously at the reply-to endpoint. The reply is matched with the
request using wsa:MessageId and wsa:RelatesTo message headers. From
the user's perspective, this is still a two-way synchronous call, but the
asynchronicity is handled by Artix.

For oneway calls, the reply-to endpoint is not needed.

Enabling a WS-Addressing MEP You can enable WS-Addressing (WS-A) in an Artix configuration file either at
the Artix bus-level or a specific WSDL port level. Port-specific configuration
overrides bus-specific configuration.

Bus-specific configuration

To enable WS-A at bus level, use the following setting:

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

plugins:messaging_port:supports_wsa_mep = "true";
 178

Configuring a WS-Addressing MEP
WSDL port-specifc configuration

To enable WS-A at a specific WSDL port level, you must specify the WSDL
service QName and the WSDL port name, for example:

Configuring a non-anonymous
reply-to endpoint

The WS-A reply-to endpoint specifies a URI for receiving acknowledgement
messages from the destination. The scope of a reply-to endpoint is at the
proxy level. In Artix, two proxies can not share the same endpoint. This
means that each proxy has its own reply-to endpoint.

There are two ways of configuring a reply-to endpoint:

• “Setting a reply-to endpoint in configuration”

• “Setting a reply-to endpoint in a context”

Setting a reply-to endpoint in
configuration

The WS-A reply-to endpoint can be set in an Artix configuration file, at the
Artix bus-level or at a WSDL port-level.

Because reply-to endpoints must have a unique URI per-proxy, a base URI
is specified in configuration. For example, if the base URI is specified as:

And if two proxies are instantiated, the first proxy will have a reply-to
endpoint whose URI is as follows:

Similarly, the second proxy will have a reply-to endpoint whose URI is as
follows:

Setting a reply-to endpoint in a
context

For C++ applications, you can also set a WS-A reply-to endpoint
programmatically using a configuration context. Using this approach, the
context is specific to the current proxy only, and can not be used by a proxy
created subsequently. You must also ensure that it is deleted after use. For
full details and examples, see Developing Artix Applications with C++.

plugins:messaging_port:supports_wsa_mep:http://www.iona.com/bus/
tests:SOAPHTTPService:SOAPHTTPPort="true";

plugins:messaging_port:base_replyto_url=
"http://localhost:0/WSATestClient/BaseReplyTo/";

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0001";

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0002";
179

../prog_guide/index.htm

CHAPTER 11 | Deploying Reliable Messaging
Enabling WS-ReliableMessaging

Overview This section describes the steps required to enable WS-ReliableMessaging
in the Artix runtime. All the necessary settings are specified in an Artix
configuration file. These settings apply to Web services implemented in both
C++ and Java.

Prerequisites To use Artix WS-RM, you must first enable the WS-Addressing MEP using
the settings described in “Configuring a WS-Addressing MEP” on page 178.

In addition, if you wish to make a two-way invocation, you must configure a
WS-RM-enabled WSDL port with a non-anonymous reply-to endpoint. See
“Configuring a non-anonymous reply-to endpoint” on page 179.

Setting your orb_plugins list To use Artix WS-RM, you must specify the wsrm plug-in in the orb_plugins
lists for your client and server. For example:

Configuring WS-RM WS-RM is enabled in an Artix configuration file either at the bus-level or a
specific WSDL port level. Port-specific configuration overrides bus-specific
configuration.

Bus-specific configuration

To enable WS-RM for a specific bus, use the following setting:

WSDL port-specific configuration

To enable WS-RM at a specific WSDL port level, specify the WSDL service
QName and also the WSDL port name, for example:

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "wsrm"];

plugins:messaging_port:wsrm_enabled = "true";

plugins:messaging_port:wsrm_enabled:http://www.iona.com/bus/test
s:SOAPHTTPService:SOAPHTTPPort="true";
 180

Configuring WS-RM Attributes
Configuring WS-RM Attributes

Overview You can specify Artix WS-RM attributes in a configuration file at the
bus-level or WSDL port level. Port-specific configuration overrides
bus-specific configuration. These settings apply to Web services
implemented in both C++ and Java.

The configurable WS-RM attributes are as follows:

• “WS-RM acknowledgement endpoint URI”

• “Base retransmission interval”

• “Exponential backoff for retransmission”

• “Maximum unacknowledged messages threshold”

• “Acknowledgement interval”

• “Number of messages in an RM sequence”

You can also set these attributes in your client code (see “Configuring
attributes in WS-RM contexts”).

WS-RM acknowledgement
endpoint URI

This attribute specifies the endpoint at which the WS-RM source receives
acknowledgements. This is also known as wsrm:AcksTo.

The default value is the WS-A anonymous URI:

Bus-specific configuration

The following example shows how to configure the acknowledgement
endpoint URI for a specific bus:

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

plugins:wsrm:acknowledgement_uri =
"http://localhost:0/WSASource/DemoAcksTo/";
181

CHAPTER 11 | Deploying Reliable Messaging
WSDL port-specific configuration

The following example shows how to configure the acknowledgement
endpoint URI for a specific WSDL port:

Base retransmission interval This attribute specifies the interval at which a WS-RM source retransmits a
message that has not yet been acknowledged. The default value is 2000
milliseconds.

Bus-specific configuration

The following example shows how to set the base retransmission interval for
a specific bus:

WSDL port-specific configuration

The following example shows how to set the base retransmission interval for
a specific WSDL port:

Exponential backoff for
retransmission

This attribute determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals or not. The
default value is false, which means that they are attempted at exponential
intervals.

If the value is true (exponential backoff disabled), the retransmission of
unacknowledged messages is performed at the base retransmission interval.

Bus-specific configuration

The following example shows how to set the exponential backoff for
retransmission for a specific bus:

plugins:wsrm:acknowledgement_uri:http://www.iona.com/bus/tests:
SOAPHTTPService:SOAPHTTPPort =

"http://localhost:0/WSASource/DemoAcksTo/";

plugins:wsrm:base_retransmission_interval = "3000";

plugins:wsrm:base_retransmission_interval:http://www.iona.com/bu
s/tests:SOAPHTTPService:SOAPHTTPPort = "3000";

plugins:wsrm:disable_exponential_backoff_retransmission_interval
= "true";
 182

Configuring WS-RM Attributes
WSDL port-specific configuration

The following example shows how to set the exponential backoff for
retransmission for a specific WSDL port:

Maximum unacknowledged
messages threshold

This attribute specifies the maximum permissible number of
unacknowledged messages at the WS-RM source. When the WS-RM source
reaches this limit, it sends the last message with a wsrm:AckRequested
header indicating that a WS-RM acknowledgement should be sent by the
WS-RM destination as soon as possible.

In addition, when the WS-RM source has reached this limit, it does not
accept further messages from the application source. This means that the
caller thread (making the invocation on the proxy) is blocked until the
number of unacknowledged messages drops below the threshold.

The default value is -1 (no limit on number of unacknowledged messages).

Bus-specific configuration

The following example shows how to set the max unacknowledged
messages threshold for a specific bus:

WSDL port-specific configuration

The following example shows how to set the max unacknowledged
messages threshold for a specific WSDL port:

plugins:wsrm:disable_exponential_backoff_retransmission_interval
:http://www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort =
"true";

plugins:wsrm:max_unacknowledged_messages_threshold = "50";

plugins:wsrm:max_unacknowledged_messages_threshold:http://www.io
na.com/bus/tests:SOAPHTTPService:SOAPHTTPPort = "50";
183

CHAPTER 11 | Deploying Reliable Messaging
Acknowledgement interval This attribute specifies the interval at which the WS-RM destination sends
asynchronous acknowledgements. These are in addition to the synchronous
acknowledgements that it sends upon receipt of an incoming message. The
default asynchronous acknowledgement interval is 3000 milliseconds.

Asynchronous acknowledgements are sent by the RM destination only if
both of the following conditions are met:

1. The RM destination is using non-anonymous wsrm:acksTo endpoint.

2. The RM destination is waiting for some messages to be received from
the RM source.

For example, the RM destination receives five messages with message IDs
of 1, 2, 3, 4, and 5. This means that it has received all messages up to the
highest received message (5). There are no missing messages in this case,
so the RM destination will not send an asynchronous acknowledgement.

However, take the case where the RM destination receives 5 messages with
message IDs of 1, 2, 4, 5, and 7. This means that messages 3 and 6 are
missing, and the RM destination is still waiting to receive them. This is the
case where the RM destination sends asynchronous acknowledgements.

Bus-specific configuration

The following example shows how to set the acknowledgement interval for a
specific bus

WSDL port-specific configuration

The following example shows how to set the acknowledgement interval for a
specific WSDL port:

Note: The RM destination still sends synchronous acknowledgements
upon receipt of a message from the RM source.

plugins:wsrm:acknowledgement_interval = "2500";

plugins:wsrm:acknowledgement_interva:http://www.iona.com/bus/tes
ts:SOAPHTTPService:SOAPHTTPPort = "2500";
 184

Configuring WS-RM Attributes
Number of messages in an RM
sequence

This attribute specifies the maximum number of user messages that are
permitted in a WS-RM sequence. The default is unlimited; this is sufficient
is for most situations.

When this attribute is set, the RM endpoint creates a new RM sequence
when the limit is reached and after receiving all the acknowledgements for
the messages previously sent. The new message is then sent using the new
sequence.

Bus-specific configuration

The following example shows how to set the maximum number of messages
for a specific bus

WSDL port-specific configuration

The following example shows how to set the maximum number of messages
for a specific WSDL port:

Configuring attributes in WS-RM
contexts

For C++ applications, you can also specify Artix WS-RM attributes
programmatically using a configuration context. Using this approach, the
context is specific to the current proxy only, and can not be used by another
proxy created subsequently. You must also ensure that it is deleted after
use.

For full details and examples, see Developing Artix Applications with C++.

The order of precedence for setting WS-RM attributes is as follows:

1. Configuration context (programmatic).

2. WSDL port (configuration file).

3. Artix bus (configuration file).

Further details For working examples of reliable messaging in Artix, see the
.../advanced/wsrm demo.

plugins:wsrm:max_messages_per_sequence = "1";

plugins:wsrm:max_messages_per_sequence:http://www.iona.com/bus/t
ests:SOAPHTTPService:SOAPHTTPPort = "1";
185

../prog_guide/index.htm

CHAPTER 11 | Deploying Reliable Messaging
 186

Part III
Managing the Artix Runtime

In this part This part contains the following chapter:

For details of using the Artix Management Console, see Using Artix Designer
and the Artix online help.

Monitoring and Managing an Artix Runtime with JMX page 189

../designer/index.htm
../designer/index.htm
../designer/index.htm

CHAPTER 12

Monitoring and
Managing an Artix
Runtime with JMX
This chapter explains how to monitor and manage an Artix
runtime using Java Management Extensions (JMX).

In this chapter This chapter discusses the following topics:

Introduction page 190

Managed Bus Components page 195

Managed Service Components page 201

Managed Port Components page 209

Configuring JMX in an Artix Runtime page 213

Using Management Consoles and Adaptors page 215
189

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
Introduction

Overview You can use Java Management Extensions (JMX) to monitor and manage
key Artix runtime components both locally and remotely. For example, using
any JMX-compliant client, you can perform the following tasks:

• View bus status.

• Stop or start a service.

• Change bus logging levels dynamically.

• Monitor service performance details.

• View the interceptors for a selected port.

How it works Artix has been instrumented to allow runtime components to be exposed as
JMX Managed Beans (MBeans). This enables an Artix runtime to be
monitored and managed either in process or remotely with the help of the
JMX Remote API.

Artix runtime components can be exposed as JMX MBeans, out-of-the-box,
for both Java and C++ Artix servers. All leading vendor application servers
and containers can be managed using JMX. However, what is unique about
the Artix instrumentation is that its core runtime can also be managed. This
contrasts with the JVM 1.5 management capabilities where you can observe
garbage collection and thread activities using JMX.

In addition, support for registering custom MBeans is also available in Artix
since version 3.0. Java developers can create their own MBeans and
register them either with their MBeanServer of choice, or with a default
MBeanServer created by Artix (see “Relationship between runtime and
custom MBeans” on page 192).
 190

Introduction
Figure 14 shows an overview of how the various components interact. The
Java custom MBeans are optional components.

Figure 14: Artix JMX Architecture
191

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
What can be managed Both Java and C++ Artix servers can have their runtime components
exposed as JMX MBeans. The following components can be managed:

• Bus

• Service

• Port

All runtime components are registered with an MBeanServer as Open
Dynamic MBeans. This ensures that they can be viewed by third-party
management consoles without any additional client-side support libraries.

All MBeans for Artix runtime components conform with Sun’s JMX Best
Practices document on how to name MBeans (see
http://java.sun.com/products/JavaManagement/best-practices.html). Artix
runtime MBeans use com.iona.instrumentation as their domain name
when creating ObjectNames.

See also “Further information” on page 214 for details of how to access
MBean Server hosting runtime MBeans either locally and remotely.

Relationship between runtime
and custom MBeans

The Artix runtime instrumentation provides an out-of-the-box JMX view of
C++ and Java services. Java developers can also create custom JMX
MBeans to manage Artix Java components such as services.

You may choose to write custom Java MBeans to manage a service because
the Artix runtime is not aware of the current service's application semantics.
For example, the Artix runtime can check service status and update
performance counters, while a custom MBean can provide details on the
status of a business loan request processing.

It is recommended that custom MBeans are created to manage
application-specific aspects of a given service. Ideally, such MBeans should
not duplicate what the runtime is doing already (for example, calculating
service performance counters).

Note: An MBeanServerConnection, which is an interface implemented by
the MBeanServer is used in the examples in this chapter. This ensures that
the examples are correct for both local and remote access.
 192

http://java.sun.com/products/JavaManagement/best-practices.html

Introduction
It is also recommended that custom MBeans use the same naming
convention as Artix runtime MBeans. Specifically, runtime MBeans are
named so that containment relationships can be easily established. For
example:

Using these names, you can infer the relationships between ports, services
and buses, and display or process a complete tree in the correct order. For
example, assuming that you write a custom MBean for a loan approval Java
service, you could name this MBean as follows:

For details on how to write custom MBeans, see Developing Artix
Applications in Java.

Accessing the MBeanServer
programmatically

Artix runtime support for JMX is enabled using configuration settings only.
You do not need to write any additional Artix code. When configured, you
can use any third party console that supports JMX Remote to monitor and
manage Artix servers.

If you wish to write your own JMX client application, this is also supported.
To access Artix runtime MBeans in a JMX client, you must first get a handle
to the MBeanServer. The following code extract shows how to access the
MBeanServer locally:

// Bus :
com.iona.instrumentation:type=Bus,name=demos.jmx_runtime

Service :
com.iona.instrumentation:type=Bus.Service,name="{http://ws.iona.

com}SOAPService",Bus=demos.jmx_runtime

// Port :
com.iona.instrumentation:type=Bus.Service.Port,name=SoapPort,Bus

.Service="{http://ws.iona.com}SOAPService",Bus=demos.jmx_runt
ime

com.iona.instrumentation:type=Bus.Service.LoanApprovalManager,na
me=LoanApprovalManager,Bus.Service="{http://ws.iona.com}SOAPS
ervice",Bus=demos.jmx_runtime

Bus bus = Bus.init(args);
MBeanServer mbeanServer =

(MBeanServer)bus.getRegistry().getEntry(ManagementConstants.M
BEAN_SERVER_INTERFACE_NAME);
193

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
The following shows how to access the MBeanServer remotely:

Please see the advanced/management/jmx_runtime demo for a complete
example on how to access, monitor and manage Artix runtime MBeans
remotely.

Further information For further information, see the following URLs:

JMX

http://java.sun.com/products/JavaManagement/index.jsp

JMX Remote

http://www.jcp.org/aboutJava/communityprocess/final/jsr160/

Open Dynamic MBeans

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/pac
kage-summary.html

ObjectName

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.ht
ml

MBeanServerConnection

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerCo
nnection.html

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
ml

// The address of the connector server
String url = "service:jmx:rmi://host:1099/jndi/artix";
JMXServiceURL address = new JMXServiceURL(url);

// Create the JMXConnectorServer
JMXConnector cntor = JMXConnectorFactory.connect(address, null);

// Obtain a "stub" for the remote MBeanServer
MBeanServerConnection mbsc = cntor.getMBeanServerConnection();
 194

http://java.sun.com/products/JavaManagement/index.jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

Managed Bus Components
Managed Bus Components

Overview This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix bus components. For example, you
can use any JMX client to perform the following tasks:

• View bus attributes.

• Enable monitoring of bus services.

• Dynamically change logging levels for known subsystems.

If you wish to write your own JMX client, this section describes methods
that you can use to access Artix logging levels and subsystems, and provides
a JMX code example.

Bus MBean registration When an Artix bus is initialized, a corresponding JMX MBean is created and
registered for that bus with an MBeanServer.

Java

For example, in an Artix Java application, this occurs after the following call:

C++

For example, in an Artix C++ application, this occurs after the following
call:

When a bus is shutdown, a corresponding MBean is unregistered from the
MBeanServer.

Bus naming convention An Artix bus ObjectName uses the following convention:

String[] args = ...;
Bus serverBus = Bus.init(args);

Bus_var server_bus = Bus.init(argc, argv);

com.iona.instrumentation:type=Bus,name=busIdentifier
195

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
Bus attributes The following bus component attributes can be managed by any JMX client:

servicesMonitoring is a global attribute which applies to all services and
can be used to change a performance monitoring status.

services is a list of object names that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered service
MBeans that belong to this bus.

For examples of bus attributes displayed in a JMX console, see “Using
Management Consoles and Adaptors” on page 215.

Table 17: Managed Bus Attributes

Name Description Type Read/Write

scope Bus scope used to initialize a
bus.

String No

identifier Bus identifier, typically the
same as its scope.

String No

arguments Bus arguments, including the
executable name.

String[] No

servicesMonitoring Used to enable/disable
services performance
monitoring.

Boolean Yes

services A list of object names
representing services on this
bus.

ObjectName[] No

Note: By default, service performance monitoring is enabled when a JMX
management is enabled in standalone servers, and disabled in an
it_container process.
 196

Managed Bus Components
Bus methods If you wish to write your own JMX client, you can use the following bus
methods to access logging levels and subsystems:

All the attributes and methods described in this section can be determined
by introspecting MBeanInfo for the Bus component (see
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
).

Example JMX client The following code extract from an example JMX client application shows
how to access bus attributes and logging levels:

Table 18: Managed Bus Methods

Name Description Parameters Return Type

getLoggingLevel Returns a logging level for
a subsystem.

subsystem (String) String

setLoggingLevel Sets a logging level for a
subsystem.

subsystem (String),
level (String)

 Boolean

setLoggingLevelPropagate Sets a logging level for a
subsystem with
propagation.

subsystem (String),
level (String),
propagate (Boolean)

 Boolean

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName busName = new ObjectName("com.iona.instrumentation:type=Bus,name=" + busScope);

if (mbsc.isRegistered(busName)) {
 throw new MBeanException("Bus mbean is not registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(busName);

// bus scope
String scope = (String)mbsc.getAttribute(busName, "scope");
// bus identifier
String identifier = (String)mbsc.getAttribute(busName, "identifier");
// bus arguments
String[] busArgs = (String[])mbsc.getAttribute(busName, "arguments");
197

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
// check servicesMonitoring attribute, then disable and reenable it
Boolean status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
 throw new MBeanException("Service monitoring should be enabled by default");
}

mbsc.setAttribute(busName, new Attribute("servicesMonitoring", Boolean.FALSE));
status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.FALSE)) {
 throw new MBeanException("Service monitoring should be disabled now");
}

mbsc.setAttribute(busName, new Attribute("servicesMonitoring", Boolean.TRUE));
status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
 throw new MBeanException("Service monitoring should be reenabled now");
}

// list of service MBeans
ObjectName[] serviceNames = (ObjectName[])mbsc.getAttribute(busName, "services");

// logging
String level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_ERROR")) {
 throw new MBeanException("Wrong IT_BUS logging level");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_ERROR")) {
 throw new MBeanException("Wrong IT_BUS.INITIAL_REFERENCE logging level");
}
level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_INFO_LOW")) {
 throw new MBeanException("Wrong IT_BUS.CORE logging level");
}
 198

Managed Bus Components
Boolean result = (Boolean)mbsc.invoke(
 busName,
 "setLoggingLevel",
 new Object[] {"IT_BUS", "LOG_WARN"},
 new String[] {"subsystem", "level"});

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_WARN")) {
 throw new MBeanException("IT_BUS logging level has not been set properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_WARN")) {
 throw new MBeanException("IT_BUS.INITIAL_REFERENCE logging level has not been set

properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_INFO_LOW")) {
 throw new MBeanException("IT_BUS.CORE logging level should not be changed");
}

// propagate
result = (Boolean)mbsc.invoke(
 busName,
 "setLoggingLevelPropagate",
 new Object[] {"IT_BUS", "LOG_SILENT", Boolean.TRUE},
 new String[] {"subsystem", "level", "propagate"});

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
199

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
Further information For information on Artix logging levels and subsystems, see Chapter 3.

if (!level.equals("LOG_SILENT")) {
 throw new MBeanException("IT_BUS logging level has not been set properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new Exception("IT_BUS.INITIAL_REFERENCE logging level has not been set

properly");
}
level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new MBeanException("IT_BUS.CORE logging level shouldve been set to LOG_SILENT");
}
 200

Managed Service Components
Managed Service Components

Overview This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix service components. For example,
you can use any JMX client to perform the following tasks:

• View managed services.

• Dynamically change a service status.

• Monitor service performance data.

• Manage service ports.

The Artix locator and session manager services have also been
instrumented. These provide an additional set of attributes on top of those
common to all services.

If you wish to write your own JMX client, this section describes methods
that you can use and provides a JMX code example.

Service MBean registration When an Artix servant is registered for a service, a JMX Service MBean is
created and registered with an MBeanServer.

Java

For example, in an Artix Java application, this occurs after the following call:

Bus bus = Bus.init(args);

QName bankServiceName = new
QName("http://www.iona.com/bus/tests", "BankService");

Servant servant = new SingleInstanceServant(new BankImpl(),
serviceWsdlURL, bus);

bus.registerServant(servant, bankServiceName, "BankPort");
201

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
C++

For example, in an Artix C++ application, this happens after the following
call:

When a service is removed, a corresponding MBean is unregistered from the
MBeanServer.

Service naming convention An Artix service ObjectName uses the following convention:

In this format, a name has an expanded service QName as its value. This
value includes double quotes to permit for characters that otherwise would
not be allowed.

Service attributes The following service component attributes can be managed by any JMX
client:

Bus_var server_bus = Bus.init(argc, argv);

BankServiceImpl servant;
bus->register_servant(
 servant,
 wsdl_location,
 QName("http://www.iona.com/bus/tests", "BankService")
);

com.iona.instrumentation:type=Bus.Service,name="{namespace}local
name",Bus=busIdentifier

Table 19: Managed Service Attributes

Name Description Type Read/Write

name Service QName in expanded
form.

String No

state Service state. String No

serviceCounters Service performance data. CompositeData No

ports A list of ObjectNames
representing ports for this
service.

ObjectName[] No
 202

Managed Service Components
name is an expanded QName, such as
{http://www.iona.com/bus/tests}BankService.

state represents a current service state that can be manipulated by stop
and start methods.

ports is a list of ObjectNames that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered Port
MBeans which happen to belong to this Service.

serviceCounters attributes

The following service performance attributes can be retrieved from the
serviceCounters attribute:

For examples of service attributes displayed in a JMX console, see “Using
Management Consoles and Adaptors” on page 215

Table 20: serviceCounters Attributes

Name Description Type

averageResponseTime Average response time in
milliseconds.

Float

requestsOneway Total number of oneway requests
to this service.

Long

requestsSinceLastCheck Number of requests happened
since last check.

Long

requestsTotal Total number of requests
(including oneway) to this service.

Long

timeSinceLastCheck Number of seconds elapsed since
last check.

Long

totalErrors Total number of
request-processing errors.

Long
203

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
Service methods If you wish to write your own JMX client, you can use the following service
methods to manage a specific service:

All the attributes and methods described in this section can be accessed by
introspecting MBeanInfo for the Service component.

Example JMX client The following code extract from an example JMX client application shows
how to access service attributes and methods:

Table 21: Managed Service Attributes

Name Description Parameters Return Type

name Start (activate) a service. None Void

state Stop (deactivate) a service. None Void

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +
 ",name=\"{http://www.iona.com/hello_world_soap_http}SOAPService\""

+",Bus=" + busScope);

if (!mbsc.isRegistered(serviceName)) {
 throw new MBeanException("Service MBean should be registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(serviceName);

// service name
String name = (String)mbsc.getAttribute(serviceName, "name");

// check service state attribute then reset it by invoking stop and start methods

String state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("ACTIVATED")) {
 throw new MBeanException("Service should be activated");
}

mbsc.invoke(serviceName, "stop", null, null);
 204

Managed Service Components
Further information MBeanInfo

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CompositeData

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/Co
mpositeData.html

state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("DEACTIVATED")) {
 throw new MBeanException("Service should be deactivated now");
}

mbsc.invoke(serviceName, "start", null, null);

state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("ACTIVATED")) {
 throw new MBeanException("Service should be activated again");
}

// check service counters

CompositeData counters = (CompositeData)mbsc.getAttribute(serviceName, "serviceCounters");
Long requestsTotal = (Long)counters.get("requestsTotal");
Long requestsOneway = (Long)counters.get("requestsOneway");
Long totalErrors = (Long)counters.get("totalErrors");
Float averageResponseTime = (Float)counters.get("averageResponseTime");
Long requestsSinceLastCheck = (Long)counters.get("requestsSinceLastCheck");
Long timeSinceLastCheck = (Long)counters.get("timeSinceLastCheck");

// ports
ObjectName[] portNames = (ObjectName[])mbsc.getAttribute(serviceName, "ports");
205

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
Artix Locator Service

Overview The Artix locator can also be exposed as a JMX MBean. A locator managed
component is a service managed component that can be managed like any
other bus service with the same set of attributes and methods. The Artix
locator also exposes it own specifc set of attributes.

Locator attributes An Artix locator MBean exposes the following locator-specific attributes:

Table 22: Locator MBean Attributes

Name Description Type

registeredEndpoints Number of registered endpoints. Integer

registeredServices Number of registered services,
less or equal to number of
endpoints.

Integer

serviceLookups Number of service lookup
requests.

Integer

serviceLookupErrors Number of service lookup
failures.

Integer

registeredNodeErrors Number of node (peer ping)
failures.

Integer
 206

Managed Service Components
Example JMX client The following code extract from an example JMX client application shows
how to access locator attributes and methods:

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +
 ",name=\"{http://ws.iona.com/2005/11/locator}LocatorService\""

+",Bus=" + busScope);

// use common attributes and methods, see an example above

// Locator specific attributes
Integer regServices = (Integer)mbsc.getAttribute(serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute(serviceName, "registeredEndpoints");
Integer nodeErrors = (Integer)mbsc.getAttribute(servicetName, "registeredNodeErrors");
Integer lookupErrors = (Integer)mbsc.getAttribute(serviceName, "serviceLookupErrors");
Integer lookups = (Integer)mbsc.getAttribute(serviceName, "serviceLookups");
207

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
Artix Session Manager Service

Overview The Artix session manager can also be exposed as a JMX MBean. A session
manager component is a service managed component that can be managed
like any other bus service with the same set of attributes and methods. The
Artix session manager also exposes it own specifc set of attributes.

Session manager attributes An Artix session manager MBean exposes the following session
manager-specific attributes:

Example JMX client The following code extract from an example JMX client application shows
how to access session manager attributes and methods:

Table 23: Session Manager MBean Attributes

Name Description Type

registeredEndpoints Number of registered endpoints. Integer

registeredServices Number of registered services,
less or equal to number of
endpoints.

Integer

serviceGroups Number of service groups. Integer

serviceSessions Number of service sessions Integer

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +

",name=\"{http://ws.iona.com/sessionmanager}SessionManagerService\"" +",Bus=" +
busScope);

// use common attributes and methods, see an example above

// SessionManager specific attributes
Integer regServices = (Integer)mbsc.getAttribute(serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute(serviceName, "registeredEndpoints");
Integer serviceGroups = (Integer)mbsc.getAttribute(serviceName, "serviceGroups");
Integer serviceSessions = (Integer)mbsc.getAttribute(serviceName, "serviceSessions");
 208

Managed Port Components
Managed Port Components

Overview This section describes the attributes that you can use to manage JMX
MBeans representing Artix port components. For example, you can use any
JMX client to perform the following tasks:

• Monitor managed ports.

• View message and request interceptors.

If you wish to write your own JMX client, this section also shows an example
of accessing these attributes in JMX code.

Port MBean registration Port managed components are typically created as part of a service servant
registration. When service is activated, all supported ports will also be
registered as MBeans.

When a service is removed, a corresponding Service MBean, as well as all
its child Port MBeans are unregistered from the MBeanServer.

Naming convention An Artix port ObjectName uses the following convention:

Port attributes The following bus component attributes can be managed by any JMX client:

com.iona.instrumentation:type=Bus.Service.Port,name=portName,Bus
.Service="{namespace}localname",Bus=busIdentifier

Table 24: Supported Service Attributes

Name Description Type Read/Write

name Port name. String No

address Transport specific address
representing an endpoint.

String No

interceptors List of interceptors for this
port.

String[] No
209

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
interceptors

The interceptors attribute is a list of interceptors for a given port.
Internally, interceptors is an instance of TabularData that can be
considered an array/table of CompositeData. However, due to a current
limitation of CompositeData, (no insertion order is maintained, which makes
it impossible to show interceptors in the correct order), the interceptors are
currently returned as a list of strings, where each String has the following
format:

In this format, type can be CPP or Java; level can be Message or Request.

It is most likely that this limitation will be fixed in a future JDK release,
probably JDK 1.7 because the enhancement request has been accepted by
Sun. In the meantime, interceptors details can be retrieved by parsing a
returned String array.

For examples of port attributes displayed in a JMX console, see “Using
Management Consoles and Adaptors” on page 215

transport An optional attribute
representing a transport for
this port.

ObjectName[] No

Table 24: Supported Service Attributes

Name Description Type Read/Write

[name]: name [type]: type [level]: level [description]: optional
description
 210

Managed Port Components
Example JMX client The following code extract from an example JMX client application shows
how to access port attributes and methods:

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName portName = new ObjectName("com.iona.instrumentation:type=Bus.Service.Port" +
 ",name=SoapPort" +

",Bus.Service=\"{http://www.iona.com/hello_world_soap_http}SOAPService\"" +",Bus=" +
busScope);

if (!mbsc.isRegistered(portName)) {
 throw new MBeanException("Port MBean should be registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(portName);

// port name
String name = (String)mbsc.getAttribute(portName, "name");

// port address
String address = (String)mbsc.getAttribute(portName, "address");

// check interceptors

String[] interceptors = (String[])mbsc.getAttribute(portName, "interceptors");
if (interceptors.length != 6) {
 throw new MBeanException("Number of port interceptors is wrong");
}

handleInterceptor(interceptors[0],
 "MessageSnoop",
 "Message",
 "CPP");
handleInterceptor(interceptors[1],
 "MessagingPort",
 "Request",
 "CPP");
handleInterceptor(interceptors[2],
 "http://schemas.xmlsoap.org/wsdl/soap/binding",
 "Request",
 "CPP");
211

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
For example, the handleInterceptor() function may be defined as follows:

handleInterceptor(interceptors[3],
 "TestInterceptor",
 "Request",
 "Java");
handleInterceptor(interceptors[4],
 "bus_response_monitor_interceptor",
 "Request",
 "CPP");
handleInterceptor(interceptors[5],
 "ServantInterceptor",
 "Request",
 "CPP");

private void handleInterceptor(String interceptor,
 String name,
 String level,
 String type) throws Exception {
 if (interceptor.indexOf("[name]: " + name) == -1 ||
 interceptor.indexOf("[type]: " + type) == -1 ||
 interceptor.indexOf("[level]: " + level) == -1) {

 throw new MBeanException("Wrong interceptor details");
 }
 // analyze this interceptor further
}

 212

Configuring JMX in an Artix Runtime
Configuring JMX in an Artix Runtime

Overview This section explains the settings that must configure to enable JMX
monitoring of the Artix runtime, and access for remote JMX clients.

Enabling the management plugin To expose the Artix runtime using JMX MBeans, you must enable a
bus_management plug-in as follows:

This setting enables a local access to JMX runtime MBeans. The
bus_management plug-in wraps runtime components into Open Dynamic
MBeans and registers them with a local MBeanServer.

Configuring remote JMX clients To enable remote JMX clients to access runtime MBeans, use the following
configuration settings:

These settings allow for both local and remote access.

Specifying a remote access URL

Remote access is performed through JMX Remote, using an RMI Connector
on a default port of 1099. Using this configuration, you can use the following
JNDI-based JMXServiceURL to connect remotely:

jmx_local
{
 plugins:bus_management:enabled="true";
};

jmx_remote
{
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";
};

service:jmx:rmi://host:1099/jndi/artix
213

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
Configuring a remote access port

To specify a different port for remote access, use the following configuration
variable:

You can then use the following JMXServiceURL:

Configuring a stub-based
JMXServiceURL

You can also configure the connector to use a stub-based JMXServiceURL
as follows:

See the javax.management.remote.rmi package for more details on remote
JMX.

Publishing the JMXServiceURL to
a local file

You can also request that the connector publishes its JMXServiceURL to a
local file:

The following entry can be used to override the default file name:

Further information For further information, see the following URLs:

RMI Connector

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMI
Connector.html

JMXServiceURL

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServ
iceURL.html

plugins:bus_management:connector:port="2000";

service:jmx:rmi://host:2000/jndi/artix

jmx_remote_stub
{
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";
 plugins:bus_management:connector:registry:required="false";
};

plugins:bus_management:connector:url:publish="true";

plugins:bus_management:connector:url:file="../../service.url";
 214

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMIConnector.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

Using Management Consoles and Adaptors
Using Management Consoles and Adaptors

Overview Artix runtime MBeans can be accessed remotely using JMX Remote. You
can use any third party consoles that support JMX Remote to monitor and
manage Artix servers.

For example, you can view the status and configuration of any bus instance,
stop or start a service, and change bus logging levels dynamically. You can
also inspect interceptors within the interceptor chain of a selected bus.

This section shows examples of using the JDK 1.5 JConsole and the JMX
HTTP adaptor.

JConsole The recommended JMX console for use with Artix is JConsole, which is
provided with JDK 1.5. This displays Artix runtime managed components in
a hierarchical tree, as shown in Figure 15.

Using JConsole

To use JConsole, perform the following steps:

1. Launch a JDK_HOME/bin/jconsole.

2. Select the Advanced tab.

3. Enter or paste a JMXServiceURL (either the default URL, or one copied
from a published connector.url file).

Figure 15 shows the attributes displayed for a managed service component
(for example, the serviceCounters performance metrics displayed in the right
pane). For detailed information on these attributes, see “Service attributes”
on page 202.
215

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

Figure 15: Managed Service in JConsole
 216

Using Management Consoles and Adaptors
Figure 16 shows the attributes displayed for a managed port component (for
example, the interceptors list displayed in the right pane). For detailed
information on these attributes, see “Port attributes” on page 209.

JMX HTTP adaptor You can also use the default HTTP adaptor console that ships with the JMX
reference implementation, as shown in Figure 17.

Using the HTTP adaptor

To use the JMX HTTP adaptor, perform the following steps:

1. Specify following configuration settings:

2. Specify the http://localhost:7659 URL for the main management
view.

Figure 16: Managed Port in JConsole

plugins:bus_management:http_adaptor:enabled="true";
plugins:bus_management:http_adaptor:port="7659";
217

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
Figure 17 shows the main management view.

Figure 17: HTTP Adaptor Main View
 218

Using Management Consoles and Adaptors
Figure 18 shows the attributes displayed for a managed bus component (for
example, the services that it includes). For detailed information on these
attributes, see “Bus attributes” on page 196.

Further information For further information on using these JMX consoles, see the following:

JConsole

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

JMX HTTP adaptor

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

Figure 18: HTTP Adaptor Bus View
219

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX
 220

Part IV
Accessing Artix Services

In this part This part contains the following chapters:

Publishing WSDL Contracts page 223

Accessing Contracts and References page 235

Accessing Services with UDDI page 257

Embedding Artix in a BEA Tuxedo Container page 263

CHAPTER 13

Publishing WSDL
Contracts
This chapter describes how to publish WSDL files that
correspond to specific Web services. This enables clients to
access the WSDL file and invoke on the service.

In this chapter This chapter discusses the following topics:

Artix WSDL Publishing Service page 224

Configuring the WSDL Publishing Service page 226

Querying the WSDL Publishing Service page 230
223

CHAPTER 13 | Publishing WSDL Contracts
Artix WSDL Publishing Service

Overview The Artix WSDL publishing service enables Artix processes to publish WSDL
files that corresponds to specific Web services. Published WSDL files can be
downloaded by other Artix processes (for example, clients), or viewed in a
web browser. Published WSDL files can also be downloaded by Web service
processes created by other vendor tools (for example, Systinet).

The WSDL publishing service is implemented by the wsdl_publish plug-in.
This plug-in can be loaded by any Artix process that hosts a Web service
endpoint. This includes server applications, Artix routing applications, and
applications that expose a callback object.

Use with endpoint references It is recommended that you use the WSDL publishing service for any
applications that generate and export references. To use references, the
client must have access to the WSDL contract referred to by the reference.
The simplest way to accomplish this is to use the WSDL publishing service.

Figure 19 shows an example of creating references with the WSDL
publishing service. The wsdl_publish plug-in automatically opens a port,
from which clients can download a copy of the server’s dynamically updated
WSDL file. Generated references have their WSDL location set to the
following URL:

Hostname is the server host, WSDLPublishPort is a TCP/IP port used to serve
up WSDL contracts, and QueryString is a string that requests a particular
WSDL contract (see “Querying the WSDL Publishing Service” on page 230).
If a client accesses the WSDL location URL, the server converts the WSDL
model to XML on the fly and returns the WSDL contract in a HTTP message.

For more details on references, see Developing Artix Applications in C++,
or Developing Artix Applications in Java.

http://Hostname:WSDLPublishPort/QueryString
 224

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Artix WSDL Publishing Service

Multiple transports The WSDL publishing service makes the WSDL file available through an
HTTP URL. However, the Web service described in the WSDL file can use a
transport other than HTTP.

For example, when the wsdl_publish plug-in is loaded into an Artix server
process that hosts a Web service using IIOP, it publishes the service’s
WSDL file at an HTTP URL.

Figure 19: Creating References with the WSDL Publishing Service

WSDL

WSDL Model

Reference

WSDL

WSDL File

Artix Bus

Artix Server

Read and parse

wsdl_publish plug-in

WSDL publish port

Artix Client

Reference
225

CHAPTER 13 | Publishing WSDL Contracts
Configuring the WSDL Publishing Service

Overview This section describes how to load the wsdl_publish plug-in, and configure
it to suit your needs.

Loading the wsdl_publish plug-in To load the wsdl_publish plug-in, add the wsdl_publish string to your
orb_plugins setting, in the process configuration scope. For example, if
your configuration scope is demos.server, you might use the following
orb_plugins list:

When the process starts, the WSDL file is available at an HTTP URL that
uses a TCP/IP port assigned by the operating system. This URL is
embedded in the WSDL location value in an endpoint reference. Processes
receiving the reference can download the WSDL file from this URL.
However, there is no easy way to determine the port assigned by the
operating system. This makes it difficult to view the WSDL file in a web
browser, or to open this port through a firewall. You can solve this problem
by configuring a port for publishing WSDL.

Note: In a production environment, it is strongly recommended that you
set a wsdl_publish port and hostname format.

Artix Configuration File
demos{
 server
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish"];
 ...
 };
};
 226

Configuring the WSDL Publishing Service
Specifying a port for publishing
WSDL

To enable viewing of WSDL files in a web browser, configure the
wsdl_publish plug-in to use a specified port instead of a one assigned by
the operating system. The plugins:wsdl_publish:publish_port
configuration variable specifies the TCP/IP port that WSDL files are
published on. For example,

When specifying a publish_port, you must confirm that the specified port
is not already in use. If the port is in use, the server process will still start,
but the following error message will be displayed

The default value is 0, which means that the port is assigned by the
operating system at runtime.

Viewing the WSDL file in a web
browser

If you know either the wsdl_publish plug-in or the TCP/IP port used by the
service, you can view or download the WSDL file in a web browser.

In the browser address box, enter one of the following URLs, where
WSDLPublishPort is the TCP/IP port used by the wsdl_publish plug-in:

The Artix process returns a web page that lists all of its services. Click on an
entry to retrieve the corresponding WSDL file.

Alternatively, you can enter one of the following URLs, where ServicePort
is the TCP/IP port used by the Web service:

The Artix process returns the WSDL file for the service. The
http://HostNameOrIP:ServicePort/service?wsdl format is used in the
JAX-WS specification.

plugins:wsdl_publish:publish_port="2222";

ConnectionFailed on HTTP Port 2222 return 3: Unknown socket error: 0

http://HostNameOrIP:WSDLPublishPort/get_wsdl?
http://HostNameOrIP:WSDLPublishPort

http://HostNameOrIP:ServicePort/service?wsdl
http://HostNameOrIP:ServicePort/service
227

CHAPTER 13 | Publishing WSDL Contracts
Specifying a hostname format The plugins:wsdl_publish:hostname variable specifies how the hostname
is constructed in the wsdl_publish URL. This is the URL that the
wsdl_publish plug-in uses to retrieve WSDL contracts.

This variable has three possible values:

By default, the unqualified local hostname is published.

plugins:wsdl_publish:hostname specifies how to construct the URL used
by the wsdl_publish plug-in.

Whereas,
policies:soap:server_address_mode_policy:publish_hostname and
policies:at_http:server_address_mode_policy:publish_hostname
specify how to construct the URL in the published WSDL contract.

You must be aware of both sets of configuration entries when using the
wsdl_publish plug-in (for example, to avoid publishing a WSDL file that
does not contain a complete URL).

canonical The fully qualified hostname (for example,
http://myhost.mydomain.com)

unqualified The unqualified local hostname (for example,
http://myhost).

ipaddress The IP address (for example, http://10.1.2.3).

Note: These values can also be used by the following variables:

• policies:soap:server_address_mode_policy:publish_hostname

• policies:at_http:server_address_mode_policy:publish_hostname
 228

Configuring the WSDL Publishing Service
Specifying WSDL preprocessing You can use the plugins:wsdl_publish:processor variable to specify the
kind of preprocessing done before publishing a WSDL contract.

Because published contracts are intended for client consumption, by
default, all server-side WSDL artifacts are removed from the published
contract. You can also specify to remove all IONA-specific extensors.
Preprocessing can also be disabled; the only modification is updating the
location and schemaLocation attributes to HTTP based URLs.

This variable has the following possible values:

For example:

artix Remove server-side artifacts. This is the default setting.

standard Remove server-side artifacts and IONA proprietary extensors.

none Disable preprocessing.

plugins:wsdl_publish:processor="standard";
229

CHAPTER 13 | Publishing WSDL Contracts
Querying the WSDL Publishing Service

Overview If you know the TCP/IP port used by either the wsdl_publish plug-in or the
Web service, you can view or download the WSDL file in a web browser.

This section shows examples of querying the WSDL Publishing service. It
also describes its HTML menu and WSIL support.

Example query syntax Assume you configured wsdl_publish using the following values on a
system with an IP address of 10.1.2.3:

The wsdl_publish base URL is http://10.1.2.3:1234. And requests on the
following types of URLs are serviced:

• http://10.1.2.3:1234/get_wsdl, http://10.1.2.3:1234/get_wsdl/,
http://10.1.2.3:1234/get_wsdl?, or
http://10.1.2.3:1234/get_wsdl/? returns the HTML Menu (see
“Using the HTML menu” on page 231).

• http://10.1.2.3:1234/get_wsdl?service=name&scope=EncodedUrl
returns the contract for the service specified in the query string.

• http://10.1.2.3:1234/get_wsdl?stub=EncodedUrl returns the
contract for IONA specific services.

• http://10.1.2.3:1234/inspection.wsil returns a WSIL document
containing information about active Web services (see “WSIL support”
on page 232).

• http://10.1.2.3:1234/get_wsdl/context/filename.wsdl returns the
specified WSDL contract. The value of context is generated at
runtime.

test.scope
{
 plugins:wsdl_publish:publish_port = 1234;
 plugins:wsdl_publish:hostname = "ipaddress";
};
 230

Querying the WSDL Publishing Service
• http://10.1.2.3:2000/service or
http://10.1.2.3:2000/service?wsdl returns the contract for the
specified service. The value of the URL is the same as the one
specified in the WSDL as the soap:address of the service.

If an invalid URL is provided, wsdl_publish returns an HTTP 404 (File Not
Found) Error.

For more details, see “Viewing the WSDL file in a web browser” on
page 227.

Using the HTML menu The WSDL publishing service provides an HTML menu page that contains
links to the contracts of activated services. This page shows all services
activated on the current bus associated with a specified wsdl_publish
instance.

For example, an it_container instance is started on port 2000, and the
wsdl_publish port is configured as 1234. The HTML menu available at
http://10.1.2.3:1234/get_wsdl is as follows:

Note: A process might have more than one active bus, and so more Web
services might be activated in that process. Contracts for other Web
services can be obtained from the wsdl_publish instance associated with
their buses.

WSDL Services available

ContainerService(http://ws.iona.com/container)

ContainerService(http://ws.iona.com/container)
231

CHAPTER 13 | Publishing WSDL Contracts
The HTML source is as follows:

The first entry downloads the WSDL from the wsdl_publish port, while the
second downloads the WSDL from the service's port.

The hostname format assigned to plugins:wsdl_publish:hostname affects
the syntax of the first entry's URL, while the server_address_mode_policy
variables affect the syntax of the second entry's URL. For more details, see
“Specifying a hostname format” on page 228.

WSIL support The Web Services Inspection Language (WSIL) specification, available at
http://wow-128.ibm.com/developerworks/library/specification/ws-wsilspec,
provides a standard way of inspecting a Web service, and getting the
contracts of active Web services.

<html>
 <body>
 <h1>WSDL Services available</h1>
 <a href=

"http://10.1.2.3:2000/get_wsdl/WPabcd/container.wsdl">Contain
erService(http://ws.iona.com/container)

 <a href=

"http://10.1.2.3:2000/services/container/ContainerService?wsd
l">ContainerService(http://ws.iona.com/container)

 </body>
</html>
 232

http://www-128.ibm.com/developerworks/library/specification/ws-wsilspec/

Querying the WSDL Publishing Service
For example, the WSIL document available from
http://10.1.2.3:1234/inspection.wsil has the following content:

HTTP transport For an Artix process that exposes a Web service over HTTP, the WSDL
Publishing service provides an alternative way to view or download the
WSDL file.

Artix distinguishes between HTTP POST and HTTP GET calls. HTTP POST
calls are used to invoke on the target Web service. HTTP GET calls return
the WSDL file.

<?xml version="1.0"?>
<inspection targetNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
 xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
 xmlns:wsilwsdl="http://schemas.xmlsoap.org/ws/2001/10/inspection/wsdl/">
 <service>
 <description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
 location="http://10.1.2.3:1234/get_wsdl/WPabcd/container.wsdl">
 <wsilwsdl:reference>
 <wsilwsdl:referencedService xmlns:ns1="http://ws.iona.com/container">
 ns1:ContainerService
 </wsilwsdl:referencedService>
 </wsilwsdl:reference>
 </description>
 </service>
 <service>
 <description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
 location="http://10.1.2.3:2000/services/container/ContainerService?wsdl">
 <wsilwsdl:reference>
 <wsilwsdl:referencedService xmlns:ns1="http://ws.iona.com/container">
 ns1:ContainerService
 </wsilwsdl:referencedService>
 </wsilwsdl:reference>
 </description>
 </service>
</inspection>
233

CHAPTER 13 | Publishing WSDL Contracts
In the following WSDL file, the port element specifies the HTTP transport
and makes the Web service available at a specified HTTP URL.

If the Artix server hosting this service loads the wsdl_publish plug-in, the
WSDL file may be viewed or downloaded using a web browser.

In the browser’s address box, enter:

For this approach to work, the service’s HTTP URL must include a unique
context (in this example case, /test).

Servant registration When the WSDL Publishing service publishes a WSDL file for a service
using a statically registered servant, the published file contains valid
connection details. This is true even if the WSDL file originally specified
dynamic port assignment (for example, an HTTP transport with a location
URL of the form http://HostName:0, or an IIOP transport with a location
entry of the form ior:).

The HTTP URL is revised to http://HostName:ServicePort, where
ServicePort is a TCP/IP port assigned by the operating system. The IIOP
location entry is revised to IOR:..., where ... is the string representation of
the CORBA object reference.

However, when the wsdl_publish plug-in publishes a WSDL file for a
service using a transiently registered servant, the published file does not
contain valid connection details. Valid connection details can only be
obtained from the endpoint reference corresponding to the service.

For more details on servant registration, see Developing Artix Applications in
C++, or Developing Artix Applications in Java.

<definitions name="HelloWorld"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
...>
. . .
<service name="SOAPService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<soap:address location="http://hostname:9000/test"/>
</port>
</service>
</definitions>

http://hostname:9000/test
 234

../prog_guide/index.htm

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 14

Accessing
Contracts and
References
Artix enables you to decouple the location of WSDL contracts
and endpoint references from your server and client. This
avoids hard-coding the location of WSDL files in your
applications. This chapter explains the benefits, and shows
how to use the different ways of accessing WSDL contracts
and endpoint references.

In this chapter This chapter discusses the following topics:

Introduction page 236

Enabling Server and Client Applications page 239

Accessing WSDL Contracts page 243

Accessing Endpoint References page 249

Accessing Artix Services page 255
235

CHAPTER 14 | Accessing Contracts and References
Introduction

Overview Artix enables client and server applications to access WSDL service
contracts and endpoint references in a variety of ways (for example, by
specifying their location on the command line, or in a configuration file).
This section explains the benefits of using these features.

Hard coding WSDL in servers Hard coding WSDL in servers limits the portability of your application, and
can make it more difficult to develop and deploy.

For example, you have developed a Web service application that includes a
client and a service implemented in a server process. When you first write
the application, you have a local copy of the WSDL, and you have hard
coded the WSDL location into your application.

Example C++ server

Example Java server

// C++
QName service_qname("", "SOAPService",

http://www.iona.com/hello_world_soap_http);

HelloWorldImpl servant(bus);
 bus->register_servant(
 "../../etc/hello.wsdl",
 service_qname
);

// Java
QName serviceQName = new

QName("http://www.iona.com/hello_world_soap_http",
"SOAPService");

Servant servant = new SingleInstanceServant(new SoapImpl(),
"../../etc/hello.wsdl", bus);

 bus.registerServant(servant,serviceQName,"SoapPort");
 236

Introduction
Hard coding WSDL in clients Similarly, you have also hard-coded your client with the location of your
local WSDL:

Example C++ client

Example Java client

// C++
HelloWorldClient proxy("../../etc/hello.wsdl");
proxy.sayHello();

// Java
QName serviceQName = new

QName("http://www.iona.com/hello_world_soap_http", "SOAPService");

URL wsdlLocation = null;
 try {
 wsdlLocation = new URL("../../etc/hello.wsdl");
 } catch (java.net.MalformedURLException ex) {
 wsdlLocation = new File(wsdlPath).toURL();
 }

Soap impl =
(Soap)bus.createClient(wsdlLocation,serviceQName,portName,Soap.class);

String returnVal = impl.sayHi();

Note: For simplicity, this example uses the Artix bus helper to create
proxies. You can also use JAX-RPC.
237

CHAPTER 14 | Accessing Contracts and References
Deploying your application However, when your application is no longer a demo, and you want to
deploy it in multiple locations, your hard-coded application may make this
difficult. For example, if your client is no longer run from the same directory
or machine as the server.

To solve this problem, Artix enables you to write code that is location
independent, and therefore easy to distribute and deploy.

Note: These features are designed for WSDL-based services. They do not
provide mechanisms for resolving local objects. For details of how to do
this, see Developing Artix Applications with C++ and Developing Artix
Applications in Java.
 238

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
../prog_guide/index.htm

Enabling Server and Client Applications
Enabling Server and Client Applications

Overview Artix addresses two typical use case scenarios:

• Enabling server applications to access WSDL contracts.

• Enabling client applications to access endpoint references.

Artix supports both of these use cases for C++ and Java applications.

Enabling servers to access WSDL When you want to activate your service in a mainline or a plug-in, you
should not hard code the WSDL location. Instead, you can use Artix APIs to
decouple the WSDL location from your application logic.

C++ example

The C++ get_service_contract() function takes the QName of the
desired service as a parameter, and returns a pointer to the specified
service. When you change your old hard-coded application to use this
method, your C++ server becomes:

For simplicity, this example does not show any error handling. For details,
see Developing Artix Applications with C++.

// C++
IT_Bus::QName service_qname(
 "", "SOAPService", "http://www.iona.com/hello_world_soap_http"
);
// Find the WSDL contract.
IT_WSDL::WSDLService* wsdl_service = bus->get_service_contract(
 service_qname
);

// Register the servant
bus->register_servant(
 servant,
 *wsdl_service
);
239

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

CHAPTER 14 | Accessing Contracts and References
Java example

The Java getServiceWSDL() method takes the QName of the desired service
as a parameter, and returns the URL for the specified service WSDL. Your
Java server becomes:

Associating your server with a specific WSDL contract is not addressed in
your application code. This is specified at runtime instead. The available
options are explained in “Accessing WSDL Contracts” on page 243.

Enabling clients to access
endpoint references

When you want to initialize your client proxies in your applications, you
should no longer depend on local WSDL files or static stub code information
to properly instantiate a proxy. Instead, you can use Artix APIs to decouple
the location of client references from your application logic.

C++ example

The C++resolve_initial_reference() function takes the QName of the
desired service as a parameter, and returns the endpoint reference for the
specified service.

// Java
QName serviceQName = new

QName("http://www.iona.com/hello_world_soap_http", "SOAPService");

String hwWsdl = bus.getServiceWSDL(serviceQName);

Servant servant = new SingleInstanceServant(new SoapImpl(), hwWsdl, bus);
bus.registerServant(servant,serviceQName,"SoapPort");

Note: The Artix 3.0 APIs for resolving initial references have been
deprecated in Artix 4.0. These APIs are supported for backwards
compatibility, however, it is recommended that you update your
applications to use the new WS-Addressing APIs in Artix 4.0.
 240

Enabling Server and Client Applications
You can change your old hard-coded client application as follows:

Java example

The Java resolveInitialEndpointReference() method takes the QName
of the desired service as a parameter, and returns the endpoint reference for
the specified service. You can change your old hard-coded Java client as
follows:

The association of your client with a specific endpoint reference is not
addressed in your application code. This is specified at runtime instead. The
available options are explained in “Accessing Endpoint References” on
page 249.

// C++
IT_Bus::QName service_qname(
 "", "SOAPService", "http://www.iona.com/hello_world_soap_http"
);

WS_Addressing::EndpointReferenceType ref;

// Find the initial reference.
bus->resolve_initial_reference(
 service_qname,
 ref
);
// Create a proxy and use it
GreeterClient proxy(ref);
proxy.sayHi();

// Java
QName name = new QName("http://www.iona.com/hello_world_soap_http",

"SOAPService");

EndpointReferenceType ref;

// Find the initial reference.
ref = bus.resolveInitialReference(name);

// Create a proxy and use it.
GreeterClient proxy = (GreeterClient)bus.CreateClient(ref,

GreeterClient.class);
proxy.sayHi();
241

CHAPTER 14 | Accessing Contracts and References
Accessing WSDL and references
for clients or servers

These APIs can be used by both clients and servers. For example, typically,
Java clients use the resolveInitialEndpointReference() method and
servers use the getServiceWSDL() method. However, both application types
can use either of these methods. The same applies to their C++
equivalents.

For example, a Java client could also use the getServiceWSDL() method to
locate a WDSL file.
 242

Accessing WSDL Contracts
Accessing WSDL Contracts

Overview When your application calls the Artix bus to access a WSDL contract for a
service, the Artix bus uses several available options to access the requested
WSDL. Artix tries each resolver mechanism in turn until it finds an
appropriate contract, and returns the first result. If one of these is configured
with a bad contract URL, no others are called.

Accessing WSDL is a two-step process:

1. You must first use the C++ or Java API to resolve the WSDL (see
“Enabling servers to access WSDL” on page 239).

2. You must then use one of the resolvers to configure the WSDL at
runtime. These are explained in this section.

Accessing WSDL at runtime The possible ways of accessing WSDL at runtime are as follows:

1. Command line.

2. Artix configuration file.

3. Well-known directory.

4. Stub WSDL shared library.

These resolver mechanisms are listed in order of priority, which means that
if you configure more than one, those higher up in the list override those
lower down. See “Order of precedence for accessing WSDL” on page 247.

Configuring WSDL on the
command line

You can configure WSDL by passing URLs as parameters to your application
at startup. WSDL URLs passed at application startup take precedence over
settings in a configuration file. The syntax for passing in WSDL to any Artix
application is:

For example, assuming your application is using the
get_service_contract() method, you can avoid configuration files by
starting your application as follows:

-BUSservice_contract url

./server -BUSservice_contract ../../etc/hello.wsdl
243

CHAPTER 14 | Accessing Contracts and References
This means that the Artix bus parses the URLs that you pass into it on
startup. It finds any services that are in this WSDL, and caches them for any
users that want WSDL for any of those services.

Parsing WSDL on demand

If you do not want the Artix bus to parse the document until it is needed,
you can specify what services are contained in the WSDL, which results in
the URL being parsed only on demand. The syntax for this is:

For example, the application would be started as follows:

Specifying the WSDL URL on startup enables the Artix bus to avoid parsing
the WSDL until it is requested.

Configuring WSDL in a
configuration file

You can also configure the location of your WSDL in an Artix configuration
file, using the following syntax.

These configuration variables are described as follows:

• bus:qname_alias:service-name enables you to assign an alias or
shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is "{namespace}localpart".

• bus:initial_contract:url:service-name uses the alias defined
using bus:qname_alias to configure the location of the WSDL contract.
The WSDL location syntax is "url". This can be any valid URL, it does
not need to be a local file.

The following example configures a service named SimpleService, defined
in the http://www.iona.com/bus/tests namespace:

-BUSservice_contract {namespace}localpart@url

./server -BUSservice_contract
{http://www.iona.com/demos}HelloWorldService@../../etc/hello.wsdl

bus:qname_alias:service-name = "{namespace}localpart";
bus:initial_contract:url:service-name = "url";

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_contract:url:simple_service = "../../etc/simple_service.wsdl";
 244

Accessing WSDL Contracts
Configuring WSDL in a
well-known directory

You can also configure an Artix application to search in a well-known
directory when it needs to access WSDL. This enables you to configure
multiple documents without explicitly configuring every document on the
command line, or in configuration. If you specify a well-known directory, you
only need to copy the WSDL documents into this directory before the
application uses them.

You can configure the directory location in a configuration file or by passing
a command-line parameters to your C++ or Java application.

Configuring a WSDL directory in a configuration file

To set the directory in configuration, use the following variable:

The value "." means use the directory from where the application was
started. The specified value is a list of directories, which enables you to
specify multiple directories.

Configuring a WSDL directory using command-line parameters

If you do not wish to use a configuration file, you can configure the WSDL
directory using command line parameters. The command line overrides any
settings in a file. The syntax is as follows:

For example, to configure Artix to look in the current directory, and in the
"../../etc" directory, use the following command:

Configuring multiple WSDL directories

You can configure multiple well-known directories for your application to
search. However, it is not recommended that you put too many files in the
directory.

The more files you put in the directory, the longer it may take to find the
contract that you are looking for. The directory search is optimized to first do
a quick file scan to see if any of the files potentially contain the target
service requested. The documents are not properly parsed unless a match
has been found.

bus:initial_contract_dir=["."];

-BUSservice_contract_dir directory

server -BUSservice_contract_dir . -BUSservice_contract_dir ../../etc/
245

CHAPTER 14 | Accessing Contracts and References
If you use multiple directories, the ordering makes a difference if both
directories contain the same service definitions. The WSDL resolvers search
the directories in the order that they are configured in.

You can add WSDL documents to the well-known directories after the
application has started. The file must only be present in the directory before
the application requests it.

Configuring a stub WSDL shared
library

It is also possible to encode a WSDL document inside a C++ shared library.
Just like in Java, where resources are added to a .jar file, Artix can embed
a WSDL document inside a shared library. This enables you to resolve
WSDL contracts for Artix services without using a file system or any remote
calls.

When a WSDL document is encoded inside a shared library, this is called a
stub WSDL shared library. Artix provides stub WSDL shared libraries for the
following Artix services:

• locator

• session manager

• peer manager

• container

This means that you can deploy these services into environments without
using any other resources like WSDL documents. Artix does not provide
APIs to enable you to encode your own documents into stub libraries.

Stub WSDL shared libraries are the last resolver mechanisms to be called. If
you configure any others, the stub WSDL shared library is not used.

All the Artix stub WSDL libraries contain WSDL endpoints with SOAP HTTP
port addresses of 0. This means that if these versions are used to activate a
service, the endpoint is instantiated on a dynamic port. This is the
recommended approach for internal services like the container and peer
manager.
 246

Accessing WSDL Contracts
Order of precedence for accessing
WSDL

Because there are several available options for accessing WSDL, Artix
searches each resolver in turn for a suitable document. It returns the first
successful result to the user.

The order of precedence for accessing WSDL is as follows:

1. Contract passed on the command line.

2. Contract specified in a configuration file.

3. Well-known directory passed on the command line.

4. Well-known directory specified in a configuration file.

5. Stub WSDL shared library.

Example

You have four WSDL contracts that contain a definition for a service named
SimpleService:

1. Configure the following in your configuration file:

2. Start your server as follows:

The contract in one/simple.wsdl is returned to the application because
WSDL configured using -BUSservice_contract takes precedence over all
other sources.

one/simple.wsdl
two/simple.wsdl
three/simple.wsdl
four/simple.wsdl

bus:qname_alias:simple_service =
"{http://www.iona.com/bus/tests}SimpleService";

bus:initial_contract:url:simple_service = "two/simple.wsdl";
bus:initial_contract_dir=["four"];

server -BUSservice_contract_dir three -BUSservice_contract one/simple.wsdl
247

CHAPTER 14 | Accessing Contracts and References
If you start your server as follows:

The contract in two/simple.wsdl is returned to the application because the
order that the resolvers are called means that the contract specified in a
configuration file is the first successful one.

Accessing standard Artix services For details of accessing WSDL for standard Artix services such as the locator
or session manager, see “Accessing Artix Services” on page 255.

server
 248

Accessing Endpoint References
Accessing Endpoint References

Overview An endpoint reference is an object that encapsulates the endpoint and
contract information for a particular WSDL service. A serialized reference is
an XML document that refers to a running service instance, and contains a
URL pointer to where the service WSDL can be retrieved. You can serialize a
reference to any service by deploying it into the Artix container and calling
it_container_admin -publishreference. Alternatively, you can use APIs
to publish an endpoint reference directly.

For example, when your client application uses the Artix bus to look up a
endpoint reference using the service QName, it calls the
resolveInitialEndpointReference() method. Accessing endpoint
references works the same way as accessing WSDL, and you have several
options for configuring the reference that the client uses. Like with WSDL
contracts, Artix tries each resolver in turn until it gets a successful result or
an error. If any of these return null, the core tries the next one. If you have a
badly configured reference, the resolver returns an error or exception.

Accessing endpoint references is a two-step process:

1. You must first use the C++ or Java API to resolve the reference (see
“Enabling clients to access endpoint references” on page 240).

2. You must then use one of the resolvers to configure the reference at
runtime. This is explained in this section.

For details of how to use the Artix container to publish endpoint references
for a client, see Chapter 6.

Endpoint reference resolver
mechanisms

The possible ways of configuring endpoint references at runtime are as
follows:

1. Colocated service.

2. C++ programmatic configuration.

3. Command line

4. Configuration file.

5. WDSL contract.
249

CHAPTER 14 | Accessing Contracts and References
These are listed in order of precedence, so if you configure more than one,
those higher up in the list override those lower down. Artix searches each in
turn for a suitable match and returns the first successful result.

Using a colocated service The most convenient place to find a endpoint reference to a service that a
client has requested is in the local Artix bus. When the activated service is
colocated (available locally in the same process), the client can easily find a
local reference to invoke. In this case, the client’s
resolve_initial_reference() method returns a reference to the colocated
service.

This is the first resolver that the runtime checks. You can expect resolution
to always succeed for services that are activated locally.

Specifying endpoint references in
C++ code

In C++, you can register an initial reference programmatically using the
Artix bus. You can register an reference in one C++ plug-in that would
enable another plug-in (Java or C++) to resolve that reference using the
bus API.

Artix checks the bus for local services, so it would be unusual for an
application to require the programmatic configuration unless it uses multiple
buses. You can not programmatically configure a reference in one bus and
have it resolved in another.

In addition, you can not activate a service in one bus, and have it resolved in
another. If you wish a client in one bus to use a reference from an active
service in another bus you should programmatically register the reference
from one bus to the next.
 250

Accessing Endpoint References
For example:

Specifying endpoint references on
the command line

You can also pass in reference URLs as parameters to the application on
startup. Endpoint reference URLs passed to the application on startup take
precedence over settings in an Artix configuration file. The syntax for passing
in a reference to any Artix application is:

For example, assuming your application is using
resolve_initial_reference(), you could avoid configuration files by
starting your application as follows:

This means that the Artix bus parses the URLs passed into it on startup. It
caches them for any users that request references of this type at runtime.

\\ C++
QName service_qname("", "SOAPService",

http://www.iona.com/hello_world_soap_http);

// Activate the service on bus one
HelloWorldImpl servant(bus_one);

WSDLService* contract = bus_one->get_service_contract(service_qname);

bus_one->register_servant(
 *contract,
 servant
);

Service_var service = bus_one->get_service(service_qname);

// Register the service reference on bus two
bus_two->register_initial_reference(service->get_endpoint_reference());

-BUSinitial_reference url

./client -BUSinitial_reference ../../etc/hello.xml
251

CHAPTER 14 | Accessing Contracts and References
Parsing endpoint references on demand

If you do not want to parse the reference XML until it is needed, you can
specify the service name that the reference maps to. This means that the
XML is not parsed until it is first requested. The syntax for this is

For example, the application is started as follows:

Specifying endpoint references in
a configuration file

You can also specify an endpoint reference in a configuration file. The
reference must be serialized in an XML format (for example, output to a file
using itcontainer -publishreference).

You can use configuration variable syntax to configure a URL or the contents
of a serialized reference.

Specifying serialized reference URLs

You can configure the location of your WSDL in an Artix configuration file,
using the following configuration variable syntax.

These variables are described as follows:

• bus:qname_alias:service-name enables you to assign an alias or
shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is "{namespace}localpart".

• bus:initial_contract:url:service-name uses the alias defined
using bus:qname_alias to configure the location of the endpoint
reference. The XML location syntax is "url". The URL value can be any
valid URL, it does not have to be a local file, but under most
circumstances the endpoint reference is local.

-BUSinitial_reference {namespace}localpart@url

./client -BUSinitial_reference
{http://www.iona.com/demos}HelloWorldService@../../etc/hello.xml

bus:qname_alias:service-name = "{namespace}localpart";
bus:initial_references:url:service-name = "url";
 252

Accessing Endpoint References
The following example configures a service named SimpleService, defined
in the http://www.iona.com/bus/tests namespace:

Specifying inline references

Instead of configuring a URL, you can also inline the endpoint reference
XML in a configuration file. This is similar to configuring CORBA initial
references in Orbix, and it effectively hard codes the addressing. This should
only be used for static services where you do not expect anything to change
(for example, details such as the endpoint address and transport
information).

The following is an example inline endpoint reference:

The endpoint reference appears on one line in an XML document.

Specifying endpoint references
using WSDL

How Artix finds endpoint references is built on how it finds WSDL. When
configuring a reference, you can use all the options available for configuring
WSDL. When you locate a WSDL document that contains the wsdl:service
you are looking for, you can convert it to a reference and return it to the
client.

If Artix fails to find a suitable reference using the reference resolver
mechanisms, it falls back to those used for WSDL. This is useful in certain
scenarios. For example, when you only want to configure well-known Artix
services (such as the locator). If you configure the WSDL, both the service
and the client can benefit from a single configuration source.

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_contract:url:simple_service = "../../etc/simple_service.xml";

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_references:inline:simple_service = "<?xml version='1.0' encoding='utf-8'?>";
253

CHAPTER 14 | Accessing Contracts and References
Implications of resolving references using WSDL

When no references are found, Artix calls the WSDL resolver mechanisms.
This means that you can rely on WSDL to configure client references.

However, the default WSDL contracts for well-known Artix services have
SOAP/HTTP endpoints with a port of zero. For example:

If you resolve a reference with a port of zero, you get an error when you try
to invoke the proxy created from the reference. The exception says that the
address is invalid.

These contracts with ports of zero are intended for use by servers rather
than clients, and enable servers to run on a dynamic port. Therefore, in
general, your client should not rely these contracts. If the server is using this
type of contract, you should publish the activated form of the contract,
which contains the port assigned dynamically at startup. Your client can
then access this activated version of the contract instead.

Further information For more detailed information on endpoint references, see Developing Artix
Applications in C++, or Developing Artix Applications in Java.

<service name="LocatorService">
 <port binding="ls:LocatorServiceBinding" name="LocatorServicePort">
 <soap:address location="http://localhost:0/services/locator/LocatorService"/>
 </port>
</service>
 254

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Accessing Artix Services
Accessing Artix Services

Overview Artix includes WSDL contracts for all of the services that it ships (for
example, the locator and session manager). This section shows the default
configuration provided for these services.

Pre-configured WSDL Artix provides pre-configured aliases and WSDL locations for all of its
services. By default, the Artix configuration file (artix.cfg) includes the
following entries:

In your application, if you resolve the WSDL or an endpoint reference for any
of these services, by default, the WSDL from these values is used. Most of
these services are configured to use a port of zero. If you do not want to use
the default WSDL for any of these services, you must override the default.

Well known Services QName aliases
bus:qname_alias:container = "{http://ws.iona.com/container}ContainerService";
bus:qname_alias:locator = "{http://ws.iona.com/locator}LocatorService";
bus:qname_alias:peermanager = "{http://ws.iona.com/peer_manager}PeerManagerService";
bus:qname_alias:sessionmanager = "{http://ws.iona.com/sessionmanager}SessionManagerService";
bus:qname_alias:sessionendpointmanager =

"{http://ws.iona.com/sessionmanager}SessionEndpointManagerService";
bus:qname_alias:uddi_inquire = "{http://www.iona.com/uddi_over_artix}UDDI_InquireService";
bus:qname_alias:uddi_publish = "{http://www.iona.com/uddi_over_artix}UDDI_PublishService";
bus:qname_alias:login_service = "{http://ws.iona.com/login_service}LoginService";

bus:initial_contract:url:container = "install_root/artix/Version/wsdl/container.wsdl";
bus:initial_contract:url:locator = "install_root/artix/Version/wsdl/locator.wsdl";
bus:initial_contract:url:peermanager = "install_root/artix/Version/wsdl/peer-manager.wsdl";
bus:initial_contract:url:sessionmanager =

"install_root/artix/Version/wsdl/session-manager.wsdl";
bus:initial_contract:url:sessionendpointmanager =

"install_root/artix/Version/wsdl/session-manager.wsdl";
bus:initial_contract:url:uddi_inquire = "install_root/artix/Version/wsdl/uddi/uddi_v2.wsdl";
bus:initial_contract:url:uddi_publish = "install_root/artix/Version/wsdl/uddi/uddi_v2.wsdl";
bus:initial_contract:url:login_service =

"install_root/artix/Version/wsdl/login_service.wsdl";
255

CHAPTER 14 | Accessing Contracts and References
Further information For more details on the configuration variables for accessing WSDL
contracts and endpoint references, see the Artix Configuration Reference.

For more examples of accessing WSDL and references in Artix applications,
see the following demos:

• ..demos\basic\bootstrap

• ..demos\advanced\container\deploy_plugin

• ..demos\advanced\container\deploy_routes

• ..demos\advanced\locator

• ..demos\advanced\locator_list_endpoints
 256

../config_ref/index.htm

CHAPTER 15

Accessing Services
with UDDI
Artix provides support for Universal Description, Discovery and
Integration (UDDI). This chapter explains the basics, and
shows how to configure UDDI proxy support in Artix
applications. It also shows how to configure jUDDI repository
settings.

In this chapter This chapter includes the following sections:

Introduction to UDDI page 258

Configuring UDDI Proxy page 261

Configuring a jUDDI Repository page 262
257

CHAPTER 15 | Accessing Services with UDDI
Introduction to UDDI

Overview A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that enables you to store and retrieve Web services endpoints. It
is particularly useful as a means of making Web services available on the
Internet.

Instead of making your WSDL contract available to clients in the form of a
file, you can publish the WSDL contract to a UDDI registry. Clients can then
query the UDDI registry and retrieve the WSDL contract at runtime.

Publishing WSDL to UDDI You can publish your WSDL contract either to a local UDDI registry or to a
public UDDI registry, such as http://uddi.ibm.com or
http://uddi.microsoft.com.

To publish your WSDL contract, navigate to one of the public UDDI Web
sites and follow the instructions there.

A list of public UDDI registries is available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html)

Artix UDDI URL format Artix uses UDDI query strings that take the form of a URL. The syntax for a

UDDI URL is as follows:

uddi:UDDIRegistryEndpointURL?QueryString

The UDDI URL is built from the following components:

• UDDIRegistryEndpointURL—the endpoint address of a UDDI registry.
This could either be a local UDDI registry (for example,
http://localhost:9000/services/uddi/inquiry) or a public UDDI
registry on the Internet (for example,
http://uddi.ibm.com/ubr/inquiryapi for IBM’s UDDI registry).
 258

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://uddi.microsoft.com
http://uddi.ibm.com

Introduction to UDDI
• QueryString—a combination of attributes used to query the UDDI
database for the Web service endpoint data. Currently, Artix only
supports the tmodelname attribute. An example of a query string is:

Within a query component, the characters ;, /, ?, :, @, &, =, +, ,, and $
are reserved.

Examples of valid UDDI URLs

Initializing a client proxy with
UDDI

To initialize a client proxy with UDDI, simply pass a valid UDDI URL string
to the proxy constructor.

For example, if you have a local UDDI registry,
http://localhost:9000/services/uddi/inquiry, where you have
registered the WSDL contract from the HelloWorld demonstration, you can
initialize the GreeterClient proxy as follows:

C++

tmodelname=helloworld

uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld
uddi:http://uddi.ibm.com/ubr/inquiryapi?tmodelname=helloworld

// C++
...
IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

// Instantiate an instance of the proxy
GreeterClient hw("uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld");

String string_out;

// Invoke sayHi operation
hw.sayHi(string_out);
259

CHAPTER 15 | Accessing Services with UDDI
Java

//Java
String wsdlPath = "uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld";
...........
Bus bus = Bus.init((String[])orbArgs.toArray(new String[orbArgs.size()]));
QName name = new QName("http://www.iona.com/hello_world_soap_http","SOAPService");
QName portName = new QName("","SoapPort");
URL wsdlLocation = null;
try {
 wsdlLocation = new URL(wsdlPath);
} catch (java.net.MalformedURLException ex) {
 wsdlLocation = new File(wsdlPath).toURL();
}

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(wsdlLocation,name);
Soap impl = (Soap)service.getPort(portName,Soap.class);
 260

Configuring UDDI Proxy
Configuring UDDI Proxy

Overview Artix UDDI proxy service can be used by applications to query endpoint
information from a UDDI repository. This section explains how to configure
UDDI proxy support for both C++ and Java client applications.

C++ configuration To configure an Artix C++ application for UDDI proxy support, add
uddi_proxy to the application’s orb_plugins list. For example:

Java configuration To configure an Artix Java application for UDDI proxy support, perform the
following steps:

1. Add java to the application’s orb_plugins list.

2. Add java_uddi_proxy to the application’s java_plugins list. For
example:

Artix configuration file

my_application_scope {
 orb_plugins = [..., "uddi_proxy"];
 ...
};

Artix Configuration File

my_application_scope {
 orb_plugins = [..., "java", ...];

 java_plugins=["java_uddi_proxy"];
 ...
};
261

CHAPTER 15 | Accessing Services with UDDI
Configuring a jUDDI Repository

Overview The Artix demos use an open source UDDI repository implementation
named jUDDI. These demos use the HSQLDB database to store UDDI
information. For convenience, this is configured to run in file (embedded)
mode by default.

Setting jUDDI properties You can configure jUDDI properties, such as your database settings, in your
juddi.properties file. This file is located in the following directory:

For example, the HSQLDB database settings in the default
juddi.properties file are as follows:

If you want change your database to MySQL, uncomment all the mysql
settings, and use the following instead:

Further information For more details, see: http://ws.apache.org/juddi/.

InstallDir\artix\Version\demos\integration\juddi\artix_server\etc

hsqldb
juddi.useConnectionPool=true
juddi.jdbcDriver=org.hsqldb.jdbcDriver
juddi.jdbcURL=jdbc:hsqldb:etc/juddi_db
juddi.jdbcUser=sa
juddi.jdbcPassword=
juddi.jdbcMaxActive=10
juddi.jdbcMaxIdle=10

mysql
juddi.useConnectionPool=true
juddi.jdbcDriver=com.mysql.jdbc.Driver
juddi.jdbcURL=jdbc:mysql://10.129.9.101:3306/juddi
juddi.jdbcUser=root
juddi.jdbcPassword=
juddi.jdbcMaxActive=10
juddi.jdbcMaxIdle=10
 262

http://ws.apache.org/juddi/

CHAPTER 16

Embedding Artix
in a BEA Tuxedo
Container
Artix can be run and managed by BEA Tuxedo like a native
Tuxedo application.

In this chapter This chapter includes the following sections:

Embedding an Artix Process in a Tuxedo Container page 264
263

CHAPTER 16 | Embedding Artix in a BEA Tuxedo Container
Embedding an Artix Process in a Tuxedo
Container

Overview To enable Artix to interact with native BEA Tuxedo applications, you must
embed Artix in the Tuxedo container.

At a minimum, this involves adding information about Artix in your Tuxedo
configuration file, and registering your Artix processes with the Tuxedo
bulletin board.

In addition, you can also enable to Tuxedo bring up your Artix process as a
Tuxedo server when running tmboot.

This section explains these steps in detail.

Procedure To embed an Artix process in a Tuxedo container, complete the following
steps:

1. Ensure that your environment is correctly configured for Tuxedo.

2. You can add the Tuxedo plug-in, tuxedo, to your Artix process’s
orb_plugins list.

However, the tuxedo plug-in is loaded transparently when the process
parses the WSDL file.

3. Set plugins:tuxedo:server to true in your Artix configuration scope.

4. Ensure that the executable for your Artix process is placed in the
directory specified in the APPDIR entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration’s SERVERS section to include an entry for
your Artix process.

Note: A Tuxedo administrator is required to complete a Tuxedo
distributed architecture. When deploying Artix in a distributed architecture
with other middleware, please also see the documentation for those
middleware products.

orb_plugins=[... "tuxedo"];
 264

Embedding an Artix Process in a Tuxedo Container
For example, if the executable of your Artix process is ringo, add the
following entry in the SERVERS section:

This associates ringo with the Tuxedo group called BEATLES in your
configuration and assigns ringo a server ID of 1. You can modify the
server’s properties as needed.

6. Edit your Tuxedo configuration’s SERVICES section to include an entry
for your Artix process.

While standard Tuxedo servers only require a SERVICES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry, even if no optional runtime properties are
being set. The name entered for the Artix process is the name specified
in the serviceName attribute of the Tuxedo port defined in the Artix
contract for the process.

For example, given the port definition shown in Example 23, the
SERVICES entry would be personalInfoService.

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBCONFIG, reload the TUXCONFIG with tmload.

When you have configured Tuxedo, it manages your Artix process as if it
were a regular Tuxedo server.

ringo SVRGRP=BEATLES SVRID=1

Example 23:Sample Service Entry

<service name="personalInfoService">
 <port name="tuxInfoPort" binding="tns:personalInfoBinding">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService"/>
 </tuxedo:server>
 </port>
</service>
265

CHAPTER 16 | Embedding Artix in a BEA Tuxedo Container
 266

Index

A
acknowledgement endpoint URI 181
acknowledgement interval 184
Adaptive Runtime architecture 14
address 209
anonymous URI 178, 181
ANSI C strftime() function 30
Apache Log4J, configuration 57
application source 177
arbitrary symbols 21
arguments 196
ART 14
Artix 224
artix.cfg 84
artix:endpoint 139
artix:endpoint:endpoint_list 139
artix:endpoint:endpoint_name:wsdl_location 139
artix:endpoint:endpoint_name:wsdl_port 140
artix:interceptors:message_snoop:enabled 32
artix:interceptors:message_snoop:log_level 32
Artix bus pre-filter 36
Artix chain builder 148
Artix container 91
artix_env script 4
Artix high availability 156
Artix router 119
Artix switch 120
Artix transformer 136
Artix WSDL publishing service 224
ASCII 66
asynchronous acknowledgements 184
auto-demotion of masters 157
averageResponseTime 203
avg 61

B
base retransmission interval 182
Berkeley DB 155
binding

artix:client_message_interceptor_list 84
binding:artix:server_message_interceptor_list 84
binding:artix:server_request_interceptor_list 161
browser 227, 230
bus
attributes 196
ObjectName 195

bus:initial_contract:url:service 151
bus:initial_contract:url:service-name 244
bus:initial_contract_dir 245
bus:initial_references:url:service-name 252
bus:qname_alias:service 151
bus:qname_alias:service-name 244, 252
-BUSinitial_reference 24, 251
BusLogger 38
bus_management 213
bus_response_monitor 57
-BUSservice_contract 24, 243
-BUSservice_contract_dir 24, 245

C
C++ configuration 57
canonical 228
chain builder 138, 142, 147
character encoding schema 66
CLASSPATH 114
client-id 59
cluster 157
codeset 66
CODESET_INCOMPATIBLE 72
codeset negotiation 70, 71
Collector 56
colocated service 250
command line configuration 23
-compiler vc71 4
CompositeData 210
configuration

command line 23
data type 18
domain 14
namespace 17
scope 14
symbols 21
variables 17

configuration context 179, 185
connector.url 215
constructed types 18
267

INDEX
-container 105
container 91, 246

administration client 95
persistent deployment 109
server 93
service 94
Windows service 113

ContainerService.url 101, 102
context 179, 185
ContextContainer 80
contracts 235
Conversion codeset 71
CORBA bypass 134
CORBA LocateReply 134
count 61
CreateSequence 176
CreateSequenceResponse 176
custom JMX MBeans 192

D
-d 99
-daemon 101
date format, rolling log file 30
db_dump 159
db_recover 159
db_stat 159
db_verify 159
delivery assurances 177
dependencies file 96, 97
-deploy 101, 104, 106
-deployable 97
-deployfolder 110, 115
deployment descriptor 94, 96
destination 176
-displayname 115
double-byte Unicode 72
dynamic logging 39, 105
dynamic read/write deployment 110

E
EBCDIC 76
echoString 73
echoVoid 73
election protocol 157
EMS, definition 54
encodings 66
endpoint references 224, 235, 239, 249
Enterprise Management Systems 54
 268
Enterprise Object Identifier 51
environment variables 113
ERROR 28
EUC-JP 67
event_log:filters 26, 84, 163
event_log:filters:artix:pre_filter 36
event_log:log_service_names:active 37
event_log:log_service_names:services 37
ExactlyOnceConcurrent 177
ExactlyOnceInOrder 177
ExactlyOnceReceivedOrder 177
exponential backoff for retransmission 182
exponential backoff interval 177
Extended Binary Coded Decimal Interchange

Code 76
Extensible Stylesheet Language

Transformations 136

F
FATAL_ERROR 28
-file 99, 104
filters 34
fixed:binding 73
fixed:body 73
four-byte Unicode 72

G
get_logging_config() 38
getLoggingLevel 197
-getlogginglevel 39, 105
get_service_contract() 239, 243
getServiceWSDL() 240

H
ha_conf 165, 169
hard coded WSDL 236
-help 99, 102
high availability 156

clients 167
locator 164

-host 105
hostname format 228
HSQLDB database 262
HTML menu 231
HTTP adaptor 217
HTTP GET 233
HTTP POST 233
HTTP transport 233

INDEX
I
i18n-context.xsd 77, 80
i18n_interceptor 84
IANA 51, 67
IBM Tivoli integration 54
IBM WebSphere MQ, internationalization 76
identifier 196
ideograms 66
InboundCodeSet 76
include statement 19
INFO_ALL 28
INFO_HIGH 28
INFO_LOW 28
INFO_MEDIUM 28
initial sender 176
inline references 253
int 62
intercept_dispatch() 80
intercept_invoke() 80
interceptors 209, 217
internationalization

CORBA 70
MQ 76
SOAP 69

Internet Assigned Number Authority 67
Internet Assigned Numbers Authority 51
IONA Tivoli Provider 54
ipaddress 228
ISO-2022-JP 68
ISO 8859 66
ISO-8859-1 67
it 104
ITArtixContainer 113
IT_ARTIXENV 10
IT_BUS 34
IT_BUS.BINDING 34
IT_BUS.BINDING.COLOC 34
IT_BUS.BINDING.CORBA 34
IT_BUS.BINDING.CORBA.CONTEXT 34
IT_BUS.BINDING.FIXED 34
IT_BUS.BINDING.SOAP 34
IT_BUS.BINDING.TAGGED 34
IT_BUS.CORE 34
IT_BUS.SERVICE 34
IT_BUS.SERVICE.LOCATOR 34
IT_BUS.SERVICE.PEER_MGR 34
IT_BUS.SERVICE.SESSION_MGR 35
IT_BUS.TRANSPORT.HTTP 35
IT_BUS.TRANSPORT.MQ 35
IT_BUS.TRANSPORT.TIBRV 35
IT_BUS.TRANSPORT.TUNNELL 35
IT_BUS.TRANSPORT.TUXEDO 35
IT_Bus::init() 16, 23, 29
IT_CONFIG_DIR 7
IT_CONFIG_DOMAINS_DIR 7
it_container 93, 101, 124
it_container_admin 39, 95, 104, 124, 249
IT_DOMAIN_NAME 8
IT_IDL_CONFIG_FILE 8
IT_INIT_BUS_LOGGER_MEM 38
IT_LICENSE_FILE 7
IT_Logging::LogStream 51
IT_PRODUCT_DIR 7, 114

J
Japanese EUC 66
Japanese ISO 2022 66
Java configuration 57
JAVA_HOME 6
Java logging 43
Java Management Extensions 189
java_plugins 261
java_uddi_proxy 261
JConsole 215
JDK 114
JMX 189
JMX HTTP adaptor 217
JMX Remote 193
JMXServiceURL 213
JRE 114
jUDDI 262
juddi.properties 262

L
Latin-1 66
life cycle message formats 63
-listservices 104, 107
LocalCodeSet 76
local_log_stream 26
LocateReply 134
locator 246

managed attributes 206
locator, load balancing 164
Log4J, configuration 57
log4J logging 43
log4j_log_stream 43
LogConfig.properties 43
269

INDEX
log date format 30
log file, rolling 30
log file interpreter 54
logging 163

API 38
inheritance 42
levels 197
message severity levels 27
per bus 38
service-based 37
set filters for subsystems 34
silent 42
subsystems 197

LoggingConfig 38
logging levels

getting 38, 39, 105
setting 26, 38, 40, 105

logging message formats 61
LOG_INHERIT 42
log_properties 57
LOG_SILENT 42

M
Managed Beans 190
management consoles 215
mark_as_write_operations() 172
master-slave replication 156
max 62
maximum messages in RM sequence 185
maximum unacknowledged messages

threshold 183
MBeans 190
MBeanServer 190
MBeanServerConnection 192
MEP 178
Message Exchange Pattern 178
MESSAGE_SNOOP 35
message snoop 32
MIB, definition 45
Microsoft Visual C++ 4
min 62
minority master 163
MQ, internationalization 76
MySQL 262

N
namespace 61
naming conventions 111
 270
native codeset 70
NCS 70

O
operation 61
oph 62
-ORBconfig_dir 7, 116
-ORBconfig_domains_dir 7
-ORBdomain_name 8, 116
-ORBlicense_file 116
-ORBname 116
-ORBname parameter 16
orb_plugins 57, 139, 143, 150
-ORBproduct_dir 7
OSF CodeSet Registry 68
OutboundCodeSet 76

P
pass-through 134
PATH 114
peer manager 246
performance logging 54
persistent database 159
persistent deployment 109
PersistentMap 159
-pluginDir 99
-pluginImpl 99
-pluginName 99
plugins:artix:db:allow_minority_master 163
plugins:artix:db:iiop:port 162
plugins:artix:db:priority 162
plugins:artix:db:replicas 160
plugins:bus_management:connector:enabled 213
plugins:bus_management:connector:registry:require

d 214
plugins:bus_management:connector:url:file 214
plugins:bus_management:connector:url:publish 21

4
plugins:bus_management:enabled 213
plugins:bus_management:http_adaptor:enabled 21

7
plugins:bus_management:http_adaptor:port 217
plugins:chain:endpoint:operation:service_chain 152
plugins:chain:endpoint:operation_list 151
plugins:chain:endpoint_name:operation_name:servic

e_chain 143
plugins:chain:init_on_first_call 153
plugins:chain:servant_list 151

INDEX
plugins:codeset:char:ccs 71
plugins:codeset:char:ncs 70
plugins:codeset:wchar:ccs 71
plugins:codeset:wchar:ncs 70
plugins:container:deployfolder 110
plugins:container:deployfolder:readonly 111
plugins:ha_conf:random:selection 172
plugins:ha_conf:strategy 172
plugins:it_response_time_collector:client-id 59
plugins:it_response_time_collector:filename 57
plugins:it_response_time_collector:log_properties 5

7
plugins:it_response_time_collector:period 57
plugins:it_response_time_collector:server-id 59
plugins:it_response_time_collector:syslog_appID 58
plugins:it_response_time_collector:system_logging_e

nabled 58
plugins:local_log_stream:buffer_file 31
plugins:local_log_stream:filename_date_format 30
plugins:local_log_stream:rolling_file 31
plugins:locator:persist_data 164
plugins:locator:selection_method 164
plugins:messaging_port:base_replyto_url 179
plugins:messaging_port:supports_wsa_mep 178
plugins:messaging_port:wsrm_enabled 180
plugins:routing:proxy_cache_size 133
plugins:routing:reference_cache_size 133
plugins:routing:use_bypass 134
plugins:routing:use_pass_through 134
plugins:routing:wsdl_url 124, 126
plugins:snmp_log_stream:community 51
plugins:snmp_log_stream:oid 51
plugins:snmp_log_stream:port 51
plugins:snmp_log_stream:server 51
plugins:snmp_log_stream:trap_type 51
plugins:soap:encoding 69
plugins:wsdl_publish:hostname 228
plugins:wsdl_publish:processor 229
plugins:wsdl_publish:publish_port 227
plugins:wsrm:acknowledgement_interval 184
plugins:wsrm:acknowledgement_uri 181
plugins:wsrm:base_retransmission_interval 182
plugins:wsrm:disable_exponential_backoff_retransmi

ssion_interval 182
plugins:wsrm:max_messages_per_sequence 185
plugins:wsrm:max_unacknowledged_messages_thre

shold 183
plugins:xmlfile_log_stream:buffer_file 31
plugins:xmlfile_log_stream:filename 29
plugins:xmlfile_log_stream:filename_date_format 3
0

plugins:xmlfile_log_stream:rolling_file 31
plugins:xmlfile_log_stream:use_pid 29
plugins:xslt:endpoint_name:operation_map 140
plugins:xslt:endpoint_name:trace_filter 144
plugins:xslt:servant_list 140
-pluginType 99
policies:at_http:server_address_mode_policy:publish

_hostname 228
policies:soap:server_address_mode_policy:publish_h

ostname 228
-port 101, 105, 115
port 61

name 209
ObjectName 209

ports 202
precedence, finding references 250
precedence, finding WSDL 247
pre-filter 36
preprocessing 229
-preserve 5
primitive types 18
programmatic configuration 250
-propagate 40
-provider 99
proxification 133
proxy 179
-publish 101
-publishreference 104, 106, 252
-publishurl 105, 106, 107
-publishwsdl 105, 106

Q
QName 239
QueryString 259
-quiet 100

R
random endpoint selection 172
read-only deployment 110
references 224, 235
registeredEndpoints 206, 208
registeredNodeErrors 206
registeredServices 206, 208
remote access port 214
remote JMX clients 213
-removeservice 104, 112
271

INDEX
replica group 167
replica priorities 161
replicas, minimum number 157, 163
replicated services 156
reply-to endpoint 179
request_forwarder 158
requestsOneway 203
requestsSinceLastCheck 203
requestsTotal 203
resolveInitialEndpointReference() 241, 249
resolve_initial_reference() 240, 250
Response monitor 56
retransmission 182
RMI Connector 213
rolling log file 30
router 119
router pass-through 134
router proxification 133
routing 120, 125
running 63
runtime MBeans 192

S
scope 196
security advisory 134
SequenceAcknowledgement 177
serialized reference 252
servant registration 230
server ID 61, 63
server ID, configuring 59
-service 99, 104
service 61

attributes 202
managed components 201
methods 204
name 202
ObjectName 202

serviceCounters 202
serviceGroups 208
-service install 115
serviceLookupErrors 206
serviceLookups 206
services 196
Services dialog 116
serviceSessions 208
servicesMonitoring 196
-service uninstall 117
session manager 246

managed attributes 208
 272
setInboundCodeSet 80
setLocalCodeSet 80
setlocale() 70
setLoggingLevel 197
-setlogginglevel 39, 105
setLoggingLevelPropagate 197
setOutboundCodeSet 80
Shift JIS 66
Shift_JIS 67
-shutdown 105, 108
shutting_down 63
SNMP

definition 45
Management Information Base 45

snmp_log_stream 50
source 176
starting_up 63
-startservice 104
state 202
stateless servers 171
status 63
-stopservice 104, 107
strftime() 30
stub WSDL shared library 246
-svcName 115
switch 120
symbols 21

T
TabularData 210
TCS 71
timeSinceLastCheck 203
Tivoli integration 54
Tivoli Task Library 54
tmodelname 259
totalErrors 203
transformer 136
transmission codeset 70, 71
transport 210

U
UCS-2 72
UCS-4 72
UDDI 257
uddi_proxy 261
UDDIRegistryEndpointURL 258
ultimate receiver 176
unacknowledged messages 183

INDEX
Unicode 67
unqualified 228
US-ASCII 67
UTF-16 67, 69
UTF-8 67

V
-verbose 5, 100
-version 100, 102
Visual Studio .NET 2003 4

W
WARNING 28
web browser 227, 230
Web service chain builder 138, 142, 148
Web Services Inspection Language 232
Web Services Reliable Messaging 175
WebSphere MQ, internationalization 76
Windows service 113
wsa:MessageId 178
wsa:RelatesTo 178
wsa:ReplyTo 178
wsa:To 178
WS-Addressing 178
WS-Addressing Message Exchange Pattern 178
ws_chain 150
wsdd 98
WSDL contracts 235, 239
WSDL preprocessing 229
wsdl_publish 224
WSDL publishing service 224
wsdltocpp 96
wsdltojava 97
-wsdlurl 99
WSIL 232
WS-ReliableMessaging 176
WS-RM 175
wsrm 180
wsrm:AckRequested 183
wsrm:AcksTo 176, 181
wsrm:acksTo 184
WS-RM acknowledgement endpoint URI 181

X
xmlfile_log_stream 26
XSLT service 135
273

INDEX
 274

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Part I
	Getting Started
	Setting your Artix Environment
	Artix Environment Variables
	Customizing your Environment Script

	Artix Configuration
	Artix Configuration Concepts
	Configuration Data Types
	Artix Configuration Files
	Command-Line Configuration

	Artix Logging
	Configuring Artix Logging
	Logging for Subsystems and Services
	Dynamic Logging
	Configuring Log4J Logging
	Configuring SNMP Logging

	Enterprise Performance Logging
	Enterprise Management Integration
	Configuring Performance Logging
	Performance Logging Message Formats

	Using Artix with International Codesets
	Introduction to International Codesets
	Working with Codesets using SOAP
	Working with Codesets using CORBA
	Working with Codesets using Fixed Length Records
	Working with Codesets using Message Interceptors
	Routing with International Codesets

	Part II
	Deploying Services in an Artix Container
	Introduction to the Artix Container
	Generating a Plug-in and Deployment Descriptor
	Running an Artix Container Server
	Running an Artix Container Administration Client
	Deploying Services on Restart
	Running an Artix Container as a Windows Service

	Deploying an Artix Router
	The Artix Router
	Configuring an Artix Router
	Defining Routes in an Artix Deployment Descriptor
	Optimizing Router Performance

	Deploying an Artix Transformer
	The Artix Transformer
	Standalone Deployment
	Deployment as Part of a Chain

	Deploying a Service Chain
	The Artix Chain Builder
	Configuring the Artix Chain Builder

	Deploying High Availability
	Introduction
	Setting up a Persistent Database
	Configuring Persistent Services for High Availability
	Configuring Locator High Availability
	Configuring Client-Side High Availability

	Deploying Reliable Messaging
	Introduction
	Configuring a WS-Addressing MEP
	Enabling WS-ReliableMessaging
	Configuring WS-RM Attributes

	Part III
	Monitoring and Managing an Artix Runtime with JMX
	Introduction
	Managed Bus Components
	Managed Service Components
	Artix Locator Service
	Artix Session Manager Service

	Managed Port Components
	Configuring JMX in an Artix Runtime
	Using Management Consoles and Adaptors

	Part IV
	Publishing WSDL Contracts
	Artix WSDL Publishing Service
	Configuring the WSDL Publishing Service
	Querying the WSDL Publishing Service

	Accessing Contracts and References
	Introduction
	Enabling Server and Client Applications
	Accessing WSDL Contracts
	Accessing Endpoint References
	Accessing Artix Services

	Accessing Services with UDDI
	Introduction to UDDI
	Configuring UDDI Proxy
	Configuring a jUDDI Repository

	Embedding Artix in a BEA Tuxedo Container
	Embedding an Artix Process in a Tuxedo Container

	Index

