IONA

Artix:

Configuring and Deploying
Artix Solutions
Version 4.0, March 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 10-Apr-2006

Contents

List of Tables
List of Figures

Preface
What is Covered in this Book
Who Should Read this Book
How to Use this Book
The Artix Library
Getting the Latest Version
Searching the Artix Library
Artix Online Help
Artix Glossary
Additional Resources
Document Conventions

Part | Configuring Artix

Chapter 1 Getting Started
Setting your Artix Environment
Artix Environment Variables
Customizing your Environment Script

Chapter 2 Artix Configuration
Artix Configuration Concepts
Configuration Data Types
Artix Configuration Files
Command-Line Configuration

Chapter 3 Artix Logging
Configuring Artix Logging

vii

Xi
Xi
Xi
Xii
Xiii
Xvi
Xvi
xvi
Xvii
xvii
Xvii

CONTENTS

Logging for Subsystems and Services
Dynamic Logging

Configuring Log4J Logging
Configuring SNMP Logging

Chapter 4 Enterprise Performance Logging
Enterprise Management Integration
Configuring Performance Logging
Performance Logging Message Formats

Chapter 5 Using Artix with International Codesets
Introduction to International Codesets
Working with Codesets using SOAP
Working with Codesets using CORBA
Working with Codesets using Fixed Length Records
Working with Codesets using Message Interceptors
Routing with International Codesets

Part II Deploying Artix Services

Chapter 6 Deploying Services in an Artix Container
Introduction to the Artix Container
Generating a Plug-in and Deployment Descriptor
Running an Artix Container Server
Running an Artix Container Administration Client
Deploying Services on Restart
Running an Artix Container as a Windows Service

Chapter 7 Deploying an Artix Router
The Artix Router
Configuring an Artix Router
Defining Routes in an Artix Deployment Descriptor
Optimizing Router Performance

Chapter 8 Deploying an Artix Transformer
The Artix Transformer

34
39
43
45

53
54
56
61

65
66
69
70
73
76
85

91
92
96

101
104
109
113

119
120
125
129
133

135
136

Standalone Deployment
Deployment as Part of a Chain

Chapter 9 Deploying a Service Chain
The Artix Chain Builder
Configuring the Artix Chain Builder

Chapter 10 Deploying High Availability
Introduction
Setting up a Persistent Database
Configuring Persistent Services for High Availability
Configuring Locator High Availability
Configuring Client-Side High Availability

Chapter 11 Deploying Reliable Messaging
Introduction
Configuring a WS-Addressing MEP
Enabling WS-ReliableMessaging
Configuring WS-RM Attributes

Part Ill Managing the Artix Runtime

Chapter 12 Monitoring and Managing an Artix Runtime with JMX
Introduction
Managed Bus Components
Managed Service Components
Artix Locator Service
Artix Session Manager Service
Managed Port Components
Configuring JMX in an Artix Runtime
Using Management Consoles and Adaptors

CONTENTS

139
142

147
148
150

155
156
159
160
164
167

175
176
178
180
181

189
190
195
201
206
208
209
213
215

CONTENTS

Part IV Accessing Artix Services

Chapter 13 Publishing WSDL Contracts
Artix WSDL Publishing Service
Configuring the WSDL Publishing Service
Querying the WSDL Publishing Service

Chapter 14 Accessing Contracts and References
Introduction
Enabling Server and Client Applications
Accessing WSDL Contracts
Accessing Endpoint References
Accessing Artix Services

Chapter 15 Accessing Services with UDDI
Introduction to UDDI
Configuring UDDI Proxy
Configuring a jUDDI Repository

Chapter 16 Embedding Artix in a BEA Tuxedo Container
Embedding an Artix Process in a Tuxedo Container

Index

Vi

223
224
226
230

235
236
239
243
249
255

257
258
261
262

263
264

267

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24

Options to artix_env Script

Artix Environment Variables

Artix Logging Severity Levels

Artix Logging Subsystems

Performance Logging Plug-ins

Artix log message arguments

Orbix log message arguments

Simple life cycle message formats arguments
IANA Charset Names

Configuration Variables for CORBA Native Codeset
Configuration Variables for CORBA Conversion Codesets
Required Arguments to wsdd

Optional Arguments to wsdd

Artix Endpoint Configuration

Artix Service Configuration

Configuration for Hosting the Artix Chain Builder
Managed Bus Attributes

Managed Bus Methods

Managed Service Attributes

serviceCounters Attributes

Managed Service Attributes

Locator MBean Attributes

Session Manager MBean Attributes

Supported Service Attributes

28
34
56
61
62
63
67
70
71
99
99
139
151
153
196
197
202
203
204
206
208
209

vii

LIST OF TABLES

viii

List of Figures

Figure 1: Overview of an Artix and IBM Tivoli Integration
Figure 2: Routing Internationalized Requests

Figure 3: Artix Container Architecture

Figure 4: Installed Windows Service

Figure 5: Service Properties

Figure 6: Using Multiple Artix Routers for Single Routes
Figure 7: Using a Single Artix Router for Multiple Routes
Figure 8: Artix Transformer Deployed as a Servant

Figure 9: Artix Transformer Loaded by a Client

Figure 10: Artix Transformer Deployed with the Chain Builder
Figure 11: Chaining Four Servers to Form a Single Service
Figure 12: Artix Master Slave Replication

Figure 13: Web Services Reliable Messaging

Figure 14: Artix JMX Architecture

Figure 15: Managed Service in JConsole

Figure 16: Managed Port in JConsole

Figure 17: HTTP Adaptor Main View

Figure 18: HTTP Adaptor Bus View

Figure 19: Creating References with the WSDL Publishing Service

55

86

93
116
117
121
122
137
137
138
148
156
176
191
216
217
218
219
225

LIST OF FIGURES

Preface

What is Covered in this Book

Configuring and Deploying Artix Solutions explains how to configure and
deploy and Artix services in a runtime environment. It provides detailed
descriptions of the specific tasks involved in configuring and launching Artix
applications and services.

This book does not discuss the specifics of the different middleware and
messaging products that Artix interacts with. Any discussion about the
features of specific middleware products or transports relates to how Artix
interacts with these features. It is assumed that you have a working
knowledge of the specific middleware products and transports you are
using.

Who Should Read this Book

The main audience of Configuring and Deploying Artix Solutions is Artix
system administrators. However, anyone involved in designing a large scale
Artix solution will find this book useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions.

Note: When deploying Artix in a distributed architecture with other
middleware, please see the documentation for that middleware product.
You may require access to an administrator. For example, a Tuxedo
administrator is required to complete a Tuxedo distributed architecture.

Xi

PREFACE

How to Use this Book
Part |, Configuring Artix

This part includes the following:

Chapter 1 describes how to set an Artix system environment using the
artix_env script.

Chapter 2 describes Artix configuration concepts such as configuration
scopes, hamespaces, and variables. It also explains how to use
configuration files and commands to deploy your applications.
Chapter 3 explains how to configure Artix logging. It also explains Artix
support for Java log4j and SNMP (Simple Network Management
Protocol).

Chapter 4 explains how to configure integration with third-party
Enterprise Management Systems (EMS), such as IBM Tivoli and BMC
Patrol.

Chapter 5 explains how to configure Artix support for
internationalization.

Part 11, Deploying Artix Services

If you are deploying Artix services, you may want to read one or more of the
following:

Chapter 6 explains how to use the Artix container to deploy and
manage Artix Web services.

Chapter 7 explains how to use an Artix router to bridge between Web
service applications.

Chapter 8 explains how to deploy the Artix transformer service.
Chapter 9 explains how to deploy an Artix service chain.

Chapter 10 explains how to deploy Artix high availability (for example,
server-side replication and client-side failover).

Chapter 11 explains how to deploy reliable messaging in Artix.

Part Ill, Managing the Artix Runtime

Chapter 11 explains how to monitor and manage and Artix runtime using
Java Management Extensions (JMX).

Xii

PREFACE

Part IV, Accessing Artix Services

This part describes several different ways to access Artix services:

® Chapter 13 explains how to use the Artix WSDL Publishing service to
to publish WSDL contracts.

® Chapter 14 explains how to use Artix configuration to access Artix
WSDL contracts and endpoint references.

® Chapter 15 explains how to use Universal Description, Discovery and
Integration (UDDI).

® Chapter 16 describes how to deploy Artix into a BEA Tuxedo
environment.

Note: Tuxedo integration is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports Tuxedo integration.

The Artix Library

The Artix documentation library is organized in the following sections:
® QGetting Started

® Designing Artix Solutions

® Configuring and Deploying Artix Solutions

® Using Artix Services

® Integrating Artix Solutions

® |Integrating with Enterprise Management Systems

® Reference Documentation

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

® Release Notes contains release-specific information about Artix.

® |Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

® QGetting Started with Artix describes basic Artix and WSDL concepts.

xiii

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm

PREFACE

Xiv

® Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

® Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve

real-world problems. They describe how to build service-oriented

architectures with Artix and how Artix uses WSDL to define services:

® Building Service-Oriented Architectures with Artix provides an overview
of service-oriented architectures and describes how they can be
implemented using Artix.

® Understanding Artix Contracts describes the components of an Artix
contract. Special attention is paid to the WSDL extensions used to
define Artix-specific payload formats and transports.

Developing Artix Solutions

The books in this section how to use the Artix APIs to build new services:

® Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

® Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

® Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Deploying Artix Solutions
This section includes:

® Configuring and Deploying Artix Solutions discusses how to set up your
Artix environment and how configure and deploy Artix services.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

® Artix Locator Guide discusses how to use the Artix locator.

® Artix Session Manager Guide discusses how to use the Artix session
manager.

../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm

PREFACE

® Artix Transactions Guide, C++ explains how to enable Artix C+ +
applications to participate in transacted operations.

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

® Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other
middleware technologies.

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise management systems. They include:

® |BM Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

® BMC Patrol Integration Guide explains how to integrate Artix with BMC
Patrol.

® CA-WSDM Integration Guide explains how to integrate Artix with
CA-WSDM.

Reference Documentation

These books provide detailed reference information about specific Artix
APls, WSDL extensions, configuration variables, command-line tools, and
terminology. The reference documentation includes:

® Artix Command Line Reference

® Artix Configuration Reference

® Artix WSDL Extension Reference

® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

XV

../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm

PREFACE

Xvi

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:
http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer and the Artix Management Console include comprehensive

online help, providing:

® Step-by-step instructions on how to perform important tasks

® Afull search feature

® Context-sensitive help for each screen

There are two ways that you can access the online help:

® Select Help|Help Contents from the menu bar. Sections on Artix
Designer and the Artix Management Console appear in the contents
panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select
Help | Cheat Sheets.

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE

Artix Glossary
The Artix Glossary provides a comprehensive reference of Artix terminology.
It provides quick definitions of the main Artix components and concepts. All
terms are defined in the context of the development and deployment of Web
services using Artix.

Additional Resources

The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

Fi xed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the | T_Bus: : AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd / user s/ Your User Narre

Italic Italic words in normal text represent emphasis and
introduce new terms.

Xvii

../glossary/index.htm
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE

xviii

Bold

Keying Conventions

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

This book uses the following keying conventions:

No prompt

%

(1

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File| Open).

Part |
Configuring Artix

In this part This part contains the following chapters:
Getting Started page 3
Artix Configuration page 13
Artix Logging page 25
Enterprise Performance Logging page b3
Using Artix with International Codesets page 65

In this chapter

CHAPTER 1

Getting Started

This chapter explains how to set your Artix system
environment.

This chapter discusses the following topics:

Setting your Artix Environment page 4

Artix Environment Variables page 6

Customizing your Environment Script page 10

CHAPTER 1 | Getting Started

Setting your Artix Environment

Overview

Running the artix_env script

To use the Artix design tools and runtime environment, the host computer
must have several IONA-specific environment variables set. These variables
can be configured during installation, or later using the arti x_env script, or
configured manually.

The Artix installation process creates a script named arti x_env, which
captures the information required to set your host's environment variables.
Running this script configures your system to use Artix. The script is located
in the Artix bi n directory:

I T_PRODUCT_DI R artix\ Version\bin\artix_env

Command-line arguments
The arti x_env script takes the following optional command-line arguments:

Table 1: Options to artix_env Script

Option Description

-conpi | er vec71 On Windows, enables support for Microsoft
Visual C++ version 7.1 (Visual Studio .NET
2003). By default, Artix is enabled with
support for Microsoft Visual C++ version
6.0.

Setting your Artix Environment

Table 1: Options to artix_env Script

Option Description

- preserve Preserves the settings of any environment
variables that have already been set. When
this argument is specified, arti x_env does
not overwrite the values of variables that are
already set. This option applies to the
following environment variables:

I T_PRCDUCT_DI R

| T_LI CENSE_FI LE
IT_COWIGDR

| T_CONFI G DOVAI NS_DI R
| T_DOVAI N_NAME

| T_ART_ADM N_PATH

I T_I DL_OO\FI G FI LE
CLASSPATH

PATH

LI BPATH (Al X)

LD LI BRARY_PATH (Sol ari s, Linux)
LD PRELQAD (Li nux)
SHLI B_PATH (HP- UX)

For more detailed information, see “Artix
Environment Variables” on page 6.

Note: Before using the - preser ve option,
always ensure that the existing environment
variable values are set correctly.

-ver bose arti x_env outputs an audit trail of all its
actions to st dout .

CHAPTER 1 | Getting Started

Artix Environment Variables

Overview This section describes the following environment variables in more detail:

JAVA HOME

| T_PRCDUCT DI R

I T_LI CENSE_FI LE

IT CONFIG DR

| T_CONFI G DOVAI NS DI R
| T_DOVAI N_NAVE

® |T.IDL CONFIGFILE

® | T_ART_ADM N_PATH

* PATH

Note: You do not have to manually set your environment variables. You
can configure them during installation, or set them later by running the
provided arti x_env script.

The environment variables are explained in Table 2:

Table 2: Artix Environment Variables

Variable Description

JAVA HOME The directory path to your system’s JDK is
specified with the system environment
variable JAVA_ HOME. This must be set to use
the Artix Designer GUI.

This defaults to the JVM installed with Artix

(I T_PRODUCT_DI R j re) . The Artix installer also
enables you to specify a previously installed
JVM.

Artix Environment Variables

Table 2: Artix Environment Variables

Variable

Description

| T_PRODUCT DR

| T_PRCDUCT_DI R points to the top level of your
IONA product installation. For example, on
Windows, if you install Artix into the

C \ Program Fi | es\ | Q\A directory,

| T_PRCDUCT_DI Rshould be set to that
directory.

Note: If you have other IONA products
installed and you choose not to install them
into the same directory tree, you must reset
| T_PRODUCT_DI Reach time you switch IONA
products.

You can override this variable using the
- ORBpr oduct _di r command-line parameter
when running your Artix applications.

| T_LI CENSE_FI LE

I T_LI CENSE_FI LE specifies the location of your
Artix license file. The default value is
I T_PRODUCT_DI R etc\licenses. txt.

| T_CONFIG DIR

| T_OONFI G DI Rspecifies the root configuration
directory. The default root configuration
directory on UNIX is / et ¢/ opt/i ona, and

| T_PRODUCT_DI R arti x\ Ver si on\et ¢ on
Windows. You can override this variable using
the - CRBconfi g_di r command-line parameter.

| T_CONFI G DOVAI NS_DI R

| T_CONFI G DOVAI NS_DI Rspecifies the directory
where Artix searches for its configuration files.
The configuration domain’s directory defaults
to I T_OO\FI G D R domai ns. You can override
it using the - CRBconf i g_domai ns_di r
command-line parameter.

CHAPTER 1 | Getting Started

Table 2: Artix Environment Variables

Variable

Description

| T_DOVAI N_NAMVE

| T_DOVAl N_NAME specifies the name of the
configuration domain used by Artix to locate
its configuration. This variable also specifies
the name of the file in which the configuration
is stored.

For example, the arti x domain is stored in

| T_OONFI G DI R domai ns\ arti x. cfg. You can
override this variable with the

- CRBdonai n_nane command-line parameter.

| T_I DL_CONFI G FI LE

| T_I DL_CONFI G FI LE specifies the
configuration used by the Artix IDL compiler. If
this variable is not set, you will be unable to
run the IDL to WSDL tools provided with Artix.
This variable is required for an Artix
Devopment installation.The default location is:

I T_PRCDUCT_DiRartix\Version\etc\idl.cfg

Note: Do not modify the default IDL
configuration file.

| T_ART_ADM N_PATH

| T_ART_ADM N_PATH specifies the location of
an internal configuration script used by
administration tools. Defaults to

| T_CONFI G DI R adni n.

Table 2:

Artix Environment Variables

Artix Environment Variables

Variable

Description

PATH

The Artix bi n directories are prepended on the
PATH to ensure that the proper libraries,
configuration files, and utility programs (for
example, the IDL compiler) are used. These
settings avoid problems that might otherwise
occur if Orbix and/or Tuxedo (both include IDL
compilers and CORBA class libraries) are
installed on the same host computer.

The default Artix bi n directory is:
UNIX

$I T_PRCDUCT_DI R arti x/ Ver si on/ bin
Windows

% T_PRODUCT_DI R arti x\ Ver si on\ bi n
% T_PRODUCT_Di RA bi n

CHAPTER 1 | Getting Started

Customizing your Environment Script

Overview The arti x_env script sets the Artix environment variables using values
obtained from the Artix installer and from the script's command-line options.
The script checks each one of these settings in sequence, and updates
them, where appropriate.

The arti x_env script is designed to suit most needs. However, if you want
to customize it for your own purposes, please note the following points in
this section.

Before you begin You can only run the arti x_env script once in any console session. If you
run this script a second time, it exits without completing. This prevents your
environment from becoming bloated with duplicate information (for
example, on your PATHand CLASSPATH).

In addition, if you introduce any errors when customizing the arti x_env
script, it also exits without completing. This feature is controlled by the

| T_ARTI XENV variable, which is local to the ar ti x_env script. | T_ARTI XENV is
set to true the first time you run the script in a console; this causes the
script to exit when run again.

Environment variables The following applies to the environment variables set by the arti x_env
script:
® The JAVA HOME environment variable defaults to the value obtained
from the Artix installer. If you do not manually set this variable before
running arti x_env, it takes its value from the installer. The default
location for the JRE supplied with Artix is | T_PRODUCT_D R j re.
® The following environment variables are all set with default values
relative to | T_PRCDUCT_DI R:
JAVA HOME
| T_CCONFI G_FI LE
I T_I DL_CONFI G FI LE
IT_OONFIG DR
| T_CONFI G DOVAINS DI R
I T_LI CENSE_FI LE
| T_ART_ADM N_PATH

* & & & o o o

10

Customizing your Environment Script

If you do not set these variables manually, arti x_env sets them with
default values based on | T_PRCDUCT_Di R For example, the default for
| T_OONFI G DI Ron Windows is | T_PRCDUCT_DIRetc.

The I T_I DL_OONFI G_FI LE environment variable is a required only for an
Artix Development installation. All other environment variables are
required for both Development and Runtime installations.

Before arti x_env sets each environment variable, it checks if the

- preser ve command-line option was supplied when the script was
run. This ensures that your preset values are not overwritten. Before
using the - preser ve option, always check the existing values for these
variables are set correctly.

11

CHAPTER 1 | Getting Started

12

CHAPTER 2

Artix Configuration

This chapter introduces the main concepts and components
in the Artix runtime configuration (for example, configuration
domains, scopes, variables, and data types). It also explains
how to use Artix configuration files and the command line to
manage your applications.

In this chapter This chapter includes the following sections:
Artix Configuration Concepts page 14
Configuration Data Types page 18
Artix Configuration Files page 19
Command-Line Configuration page 23

13

CHAPTER 2 | Artix Configuration

Artix Configuration Concepts

Overview

Configuration domains

Configuration scopes

14

Artix is built upon IONA's Adaptive Runtime architecture (ART). Runtime
behaviors are established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code can be run, and can exhibit different
capabilities, in different configuration environments. This section includes
the following:

® Configuration domains.

® Configuration scopes.

® Specifying configuration scopes.

® Configuration namespaces.

® Configuration variables.

An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default Artix configuration domain file has the
following location:

Windows % T_PRCDUCT_DI R arti x\ Ver si on\ et ¢\ donai ns\arti x. cfg
UNIX $I T_PRCDUCT_Di R arti x/ Ver si on/ et ¢/ donai ns/ arti x. cfg

The contents of this file can be modified to affect aspects of Artix behavior
(for example, logging or routing).

An Artix configuration domain is subdivided into configuration scopes.
These are typically organized into a hierarchy of scopes, whose
fully-qualified names map directly to ORB names. By organizing
configuration variables into various scopes, you can provide different
settings for individual services, or common settings for groups of services.

Artix Configuration Concepts

Local configuration scopes

Configuration scopes apply to a subset of services or to a specific service in
an environment. For example, the Artix deno configuration scope includes
example local configuration scopes for demo applications.

Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon, for example,
scopeNaneTag {.};

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

In the arti x. cf g file, there are several predefined configuration scopes. For
example, the deno configuration scope includes nested configuration scopes
for some of the demo programs included with the product.

Example 1: Demo Configuration Scope

deno
fm _plugin
{
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop", "iiop", "soap", "http", "@&", "tunnel",
"mg", "ws_orb", "fm"];
ik
tel co
{
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop”, "iiop”, "@", "tunnel"];
pl ugi ns: tunnel :iiop: port = "55002";
poa: M/Tunnel : di rect _persistent = "true";

poa: M/Tunnel : wel | _known_address = "pl ugi ns: tunnel ";

server
{
orb plugins = ["local _| og_streant, "iiop_profile",
“giop", "iiop”, "ots", "soap", "http", "Q&:,
"tunnel "];
pl ugi ns: t unnel : poa_name = "M/Tunnel ";
IE

15

CHAPTER 2 | Artix Configuration

Specifying configuration scopes

16

Example 1: Demo Configuration Scope

tibrv
{

orb plugins = ["local _| og_stream', "iiop_profile",
"giop", "iiop", "soap", "http", "tibrv']:

event _log:filters = ["*=FATAL+ERRCR'] ;

}
IE

Note: The orb_pl ugi ns list is redefined within each configuration scope.

To make an Artix process run under a particular configuration scope, you
specify that scope using the - CRBname parameter. Configuration scope
names are specified using the following format

scope. subscope

For example, the scope for the t el co server demo shown in Example 1 is
specified as deno. t el co. server. During process initialization, Artix
searches for a configuration scope with the same name as the - CGRBnane
parameter.

There are two ways of supplying the - GRBnane parameter to an Artix
process:

® Pass the argument on the command line.
® Specify the - CGRBnane as the third parameterto I T_Bus::init().

For example, to start an Artix process using the configuration specified in the
deno. ti brv scope, you can start the process using the following syntax:

<processNane> [appl i cati on parameters] -CRBname deno.tibrv
Alternately, you can use the following code to initialize the Artix bus:

IT Bus::init (argc, argv, “deno.tibrv”);

Configuration namespaces

Configuration variables

Further information

Artix Configuration Concepts

If a corresponding scope is not located, the process starts under the highest
level scope that matches the specified scope name. If there are no scopes
that correspond to the CRBnanme parameter, the Artix process runs under the
default global scope. For example, if the nested ti brv scope does not exist,
the Artix process uses the configuration specified in the deno scope; if the
deno scope does not exist, the process runs under the default global scope.

Most configuration variables are organized within namespaces, which group
related variables. Namespaces can be nested, and are delimited by colons
(:). For example, configuration variables that control the behavior of a
plug-in begin with pl ugi ns: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts, set the following variable:

pl ugi ns: arti x_service:iiop: port

To set the location of the routing plug-in’s contract, set the following
variable:

pl ugi ns: rout i ng: wsdl _url

Configuration data is stored in variables that are defined within each
namespace. In some instances, variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
conpany. oper ati ons. or b_pl ugi ns variable would override a

conpany. or b_pl ugi ns variable. Plug-ins specified at the conpany scope
would apply to all processes in that scope, except those processes that
belong specifically to the conpany. oper at i ons scope and its child scopes.

For detailed information on Artix configuration namespaces and variables,
see the Artix Configuration Reference.

17

../config_ref/index.htm

CHAPTER 2 | Artix Configuration

Configuration Data Types

Overview

Primitive types

Constructed types

18

Each Artix configuration variable has an associated data type that
determines the variable’s value.

Data types can be categorized as follows:
® Primitive types
® Constructed types

Artix supports the following three primitive types:
® Dbool ean
® double

® long

Artix supports two constructed types: string and Confi gLi st (a sequence
of strings).

® |n an Artix configuration file, the stri ng character set is ASCII.

® The ConfigLi st type is simply a sequence of stri ng types. For

example:
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop","iiop"];

Artix Configuration Files

Artix Configuration Files

Overview

Default configuration file

Importing configuration settings

This section explains how to use Artix configuration files to manage
applications in your environment. It includes the following:

® “Default configuration file".

®* “Importing configuration settings”.

® “Working with multiple installations”.

® “Using symbols as configuration file parameters”.

The Artix configuration domain file contains all the configuration settings for
the domain. The default configuration domain file is found in the following
location:

Windows % T_PRCDUCT_D R arti x\ Ver si on\ et ¢\ domai ns\ arti x. cfg
UNIX $I T_PRCDUCT DI R arti x/ Versi on/ et ¢/ domai ns/ arti x. cfg

You can edit the settings in an Artix configuration file to modify different
aspects of Artix behavior (for example, routing, or levels of logging).

You can manually create new Artix configuration domain files to
compartmentalize your applications. These new configuration domain files
can import information from other configuration domains using an i ncl ude
statement in your configuration file.

This provides a convenient way of compartmentalizing your
application-specific configuration from the global ART configuration
information that is contained in the default configuration domain file. It also
means that you can easily revert to the default settings in the default Artix
configuration file. Using separate application-specific configuration files is
the recommended way of working with Artix configuration.

19

CHAPTER 2 | Artix Configuration

Working with multiple
installations

20

Example 2 shows an i ncl ude statement that imports the default
configuration file. The include statement is typically the first line the
configuration file.

Example 2: Configuration file include statement
include "../../../../../etc/domains/artix.cfg";
_app_config {

For complete working examples of Artix applications that use this import
mechanism, see the configuration files provided with Artix demos. These
demo applications are available from the following directory:

Install D r\artix\ Version\ denos

If you are using multiple installations or versions of Artix, you can use your

configuration files to help manage your applications as follows:

1. Install each version of Artix into a different directory.

2. Install your applications into their own directory.

3. Copy the arti x. cf g file from whichever Artix release you want to use
into another directory (for example, an application directory).

4. In your application’s local configuration file, include the arti x. cf g file
from your copy location.

This enables you to switch between Artix versions by copying the

corresponding ar ti x. cf g file into a common location. This avoids having to

update the directory information in your configuration file whenever you
want to switch between Artix versions.

Using symbols as configuration
file parameters

Artix Configuration Files

You can define arbitrary symbols for use in Artix configuration files, for
example:

SERVER LGG = "ny_server_| og";

These symbols can then be reused as parameters in configuration settings,
for example:

pl ugi ns: | ocal _| og_streamfil enane = SERVER LGCG

You can use configuration symbols to customize your file depending on the
environment. This enables you to use the same basic configuration file in
different environments (for example, development, test, and production).

Using configuration symbols in a string

You can use symbols within a string using a syntax of % SYMBCL_NAME} . For
example, if you define the following symbol:

LOG LEVEL = " FATAL+ERRCRAWRN NGH NFO MEDH NFO H "

This can be used within a string as follows:

event _log:filters = ["*=9%LOG LEVEL}"];

You can also combine multiple symbols within a string as follows:

pl ugi ns: l ocal _| og_streamfil enane = "% APP_NAME} - % CLI ENT_LC3Z";

Configuration example

The configuration file in Example 3 contains some user-defined symbols:
Example 3: Defining Configuration Symbols

#nydonai n. cf g

INSTALL CFG = "../../artix.cfg";

CLIENT_LGG = "ny_client.| og";

SERVER LGG = "ny_server. | og";

APP_NAME = "nyapp";

LOG LEVEL = "FATAL+ERRCRHWARN NG+ NFO MED+ NFO H *;

include "tenpl ate.cfg";

21

CHAPTER 2 | Artix Configuration

The configuration file in Example 4 uses the predefined symbols in
configuration variable settings:

Example 4: Using Configuration Symbols
#tenpl ate. cfg
i ncl ude | NSTALL_CFG

nyapps {
orb _plugins = ["local |og streant, "soap", "http"];

server {
#Si npl e user-defined synbol .
pl ugi ns: l ocal _| og_streamfil enane = SERVER LOG

#Using a synbol within a string.
event _log:filters = ["*=0§LOG LEVEL}"];
}

client {
#Conbi ni ng synbol s within a string.
pl ugi ns: local _| og_streamfilenane = "% APP_NAME} - %§ CLI ENT_LOG ";

This example shows a user-defined symbol in an i ncl ude statement. It
shows a simple example of using a symbol in an configuration setting, and
more complex examples of using symbols in strings.

For details of using configuration symbols on the command line, see
“Command-Line Configuration” on page 23.

22

Command-Line Configuration

Command-Line Configuration

Overview

Setting configuration variables

Setting configuration scopes

This section explains how to configure the following on the command line:
® Configuration variables

® Configuration scopes

® User-defined configuration symbols

® Environment variables

® Location of WSDL and references

Artix enables you to override configuration variables at runtime by using
arguments on the command line. These arguments are then passed to the
Artix | T_Bus: :init() call. Setting configuration variables on the command
line takes precedence over variables in a configuration file.

Command-line arguments for configuration variables take the following
format:

- CRBVar i abl eNarre Val ue

For example:

client -CRBplugins:local _|og streamfilename client.|og
-CRBorb_pl ugins ["l ocal _| og_streant, "soap", "http"]
-CRBevent _log:filters ["*=*"]

For detailed information on Artix configuration variable settings, see the Artix
Configuration Reference.

You can specify configuration scopes when starting an application on the
command line using the - CRBnane argument.

For example, to start a process using the configuration specified in the
deno. nyapp scope, you would start the process with the following syntax:

ProcessNane [application parareters] -CRBname deno. nyapp

For more details, see “Specifying configuration scopes” on page 16.

23

../config_ref/index.htm
../config_ref/index.htm

CHAPTER 2 | Artix Configuration

Setting configuration symbols

Setting environment variables

Setting locations of WSDL and
references

24

You can also override user-defined configuration symbols on the command
line. Setting configuration symbols on the command line takes precedence
over symbols in a configuration file.

For example, you can override the log file name in Example 3 using
command-line arguments as follows:

client -CORBCLIENT_LGG test2.1og

This successfully creates a log file named t est 2. | ogdat e. For more details,
see “Using symbols as configuration file parameters” on page 21.

You can use command-line arguments to pass the value of environment
variables to configuration files.

For example, you can specify the directory where Artix searches for its
configuration files using the - CRBconf i g_donai ns_di r argument. For more
details on Artix environment variables, see Chapter 1.

You can specify the location of WSDL contracts and Artix references using
the following command-line arguments:

-BUSservice_contract URL

- BUSservi ce_contract _dir Directory
-BUSinitial _reference url

For example:

./server -BUSservice_contract ../../etc/hello.wsdl

For more details, see Chapter 14.

In this chapter

CHAPTER 3

Artix Logging

This chapter describes how to configure Artix logging. It shows
how to configure logging for specific Artix subsystems and
services, and how to control dynamic logging on the command
line. It also explains Artix support for Java log4j and SNMP
(Simple Network Management Protocol).

This chapter includes the following sections:

Configuring Artix Logging page 26
Logging for Subsystems and Services page 34
Dynamic Logging page 39
Configuring Log4J Logging page 43
Configuring SNMP Logging page 45

25

CHAPTER 3 | Artix Logging

Configuring Artix Logging

Overview

Configuring logging levels

26

Logging in Artix is controlled by the event _| og: fil ters configuration
variable, and by the log stream plug-ins (for example, | ocal _| og_stream
and xm fil e_l og_strean). This section explains the following:

® “Configuring logging levels”.

® “Logging severity levels”.

® “Configuring logging output”.

® “Using a rolling log file".

® “Buffering the output stream”.

® “Configuring message snoop”

You can set the event _| og: fi | ters configuration variable to provide a wide
range of logging levels. The event _| og: fil ters variable can be set in your
Artix configuration file:

Instal I Dir\artix\Version\etc\donai ns\artix. cfg.

Displaying errors
The default event _I og: il ters setting displays errors only:

event _log:filters = ["*=FATAL+ERRCR'] ;

Displaying warnings
The following setting displays errors and warnings only:

event _log:filters = ["*=FATAL+ERRCR*WARN NG'] ;

Displaying request/reply messages
Adding | NFO MED causes all request/reply messages to be logged (for all
transport buffers):

event _log:filters = ["*=FATAL+ERROR*WARN NG+ NFO MED'] ;

Logging severity levels

Configuring Artix Logging

Displaying trace output
The following setting displays typical trace statement output (without the
raw transport buffers):

event _log:filters = ["*=FATAL+ERRCR+WARNI NGH NFO H "] ;

Displaying all logging
The following setting displays all logging:

event _log:filters = ["*=*"];

The default configuration settings enable logging of only serious errors and
warnings. For more exhaustive information, select a different filter list at the
default scope, or include a more expansive event _| og: fil ters setting in
your configuration scope.

Artix supports the following levels of log message severity:
® |nformation

® Warning

® Error

® Fatal error

Information

Information messages report significant non-error events. These include
server startup or shutdown, object creation or deletion, and details of
administrative actions.

Information messages provide a history of events that can be valuable in
diagnosing problems. Information messages can be set to low, medium, or
high verbosity.

Warning

Warning messages are generated when Artix encounters an anomalous
condition, but can ignore it and continue functioning. For example,
encountering an invalid parameter, and ignoring it in favor of a default value.

27

CHAPTER 3 | Artix Logging

28

Error

Error messages are generated when Artix encounters an error. Artix might be
able to recover from the error, but might be forced to abandon the current
task. For example, an error message might be generated if there is
insufficient memory to carry out a request.

Fatal error

Fatal error messages are generated when Artix encounters an error from
which it cannot recover. For example, a fatal error message is generated if
Artix cannot find its configuration file.

Table 3 shows the syntax used by the event | og: filters variable to
specify Artix logging severity levels.

Table 3: Artix Logging Severity Levels

Severity Level Description
INFO LW Low verbosity informational messages.
I NFO MED) | UM Medium verbosity informational messages.
INFOH[&H High verbosity informational messages.
I NFO ALL All informational messages.
WARN | NG Warning messages.
ERR (R Error messages.
FATAL[_ERRCR] Fatal error messages.
* All messages.

Configuring logging output

Configuring Artix Logging

In addition to setting the event log filter, you must ensure that a log stream
plug-in is set in your arti x. cf g file. These include the | ocal _I og_stream
which sends logging to a text file, and the xm fil e_| og_stream which
directs logging to an XML file. The xm fil e_l og_st reamis set by default.

Using text log files

To configure the | ocal _| og_st ream set the following variables in your
configuration file:

[/ Ensure these plug-ins exist in your orb_plugins |ist
orb_plugins = ["local _|og_streant, ...];

//Qptional text filenane
pl ugi ns: | ocal _| og_streamfil enane = "/var/nyl ocal .| og";

If you do not specify a text log file name, logging is sent to st dout .

Using XML log files
To configure the xni fi | e_| og_st ream set the following variables in your
configuration file:

//Ensure this plug-inis in your orb_plugins |ist
orb_plugins = ["xmfile_ |og_streant, ...];

// Optional filenane; can be qualified.
plugins: xmfile_|log streamfilename = "artix_|logfile.xm";

I/ Optional process ID added to filenane (default is fal se).
pl ugins: xmfile_|l og_streamuse_pid = "fal se";

You must ensure that your application can detect the configuration settings
for the log stream plug-ins. You can either set them at the global scope, or
configure a unique scope for use by your application, for example:

IT Bus::init(argc, argv, "deno.nyscope");

This enables you to place the necessary configuration in the deno. nyscope
scope.

Note: The xnmifile_| og_streamplug-in is included in the default

orb_pl ugi ns list, but not in the orb_pl ugi ns lists in some demo
configuration scopes. To enable logging to an XML file for the applications
that you develop, include this plug-in your or b_pl ugi ns list.

29

CHAPTER 3 | Artix Logging

Using a rolling log file

30

By default, a logging plug-in creates a new log file each day to prevent the
log file from growing indefinitely. In this model, the log stream adds the
current date to the configured filename. This produces a complete filename,
for example:

/var/adm ny_artix_| og. 01312006

A new log file begins with the first event of the day, and ends each day at
23:59: 59.

Specifying the date format

You can configure the format of the date in the rolling log file, using the
following configuration variables:

b pl ugi ns: 1 ocal _| og_streamfil enane_dat e_f or nat

® plugins:xnfile_log_streamfil enane_dat e_f or mat

The specified date must conform to the format rules of the ANSI C

strftime() function. For example, for a text log file, use the following
settings:

pl ugi ns: |l ocal _|l og_streamrolling_file="true";
pl ugi ns: local _| og_streamfil enane="ny_| og";
pl ugi ns: | ocal _| og_stream fil ename_dat e_f or mat ="_% %m %" ;

On the 31st January 2006, this results in a log file named
ny_| og_2006_01_31.

The equivalent settings for an XML log file are:
plugins: xmfile_log_streamrol ling_file="true";

plugins: xmfile_|l og_streamfil ename="ny_| og";
plugins:xmfile_| og_streamfil ename_date format="_%" %n %l";

Buffering the output stream

Configuring Artix Logging

Disabling rolling log files

To disable rolling file behavior for a text log file, set the following variable to
fal se:

pl ugi ns: 1 ocal _|l og_streamrolling_file = "fal se";

To disable rolling file behavior for an XML log file, set the following variable
to fal se:

plugins:xmfile_log_streamrolling_file = "fal se";

You can also set the output stream to a buffer before it writes to a local log
file. To specify this behavior, use either of the following variables:

pl ugi ns:local _| og_streambuffer_file

pl ugi ns: xmfile_log_streambuffer_file

When set to t rue, by default, the buffer is output to a file every 1000
milliseconds when there are more than 100 messages logged. This log
interval and number of log elements can also be configured.

Note: To ensure that the log buffer is sent to the log file, you must always
shutdown your applications correctly.

For example, the following configuration writes the log output to a log file
every 400 milliseconds if there are more than 20 log messages in the buffer.

Using text log files

pl ugi ns: |l ocal _| og_streamfil enane = "/var/adm artix. | og";
pl ugi ns: | ocal _| og_streambuffer_file = "true";

pl ugi ns: local _|l og_streamnilliseconds_to_| og = "400";

pl ugi ns: | ocal _| og_stream | og_el enents = "20";

Using XML log files
pl ugi ns: xm _| og_stream filenane = "/var/adm artix.xm";
pl ugi ns: xm _| og_stream buffer_file = "true";

pl ugi ns: xm _| og_streamnilliseconds_to |og = "400";
pl ugi ns: xm _| og_stream | og_el ements = "20";

31

CHAPTER 3 | Artix Logging

Configuring message snoop

32

Artix message snoop is a message interceptor that sends input/output
messages to the Artix log to enable viewing of the message content. This is a
useful debugging tool when developing and testing an Artix system.

Message snoop is enabled by default. It is automatically added as the last
interceptor before the binding to detect any changes that other interceptors
might make to the message. By default, message_snoop logs at | NFO H GHin
the MESSAGE_SNOCP subsystem. You can change these settings in
configuration.

Disabling message snoop

Message snoop is invoked on every message call, twice in the client and
twice in the server (assuming Artix is on both sides). This means that it can
impact on performance. More importantly, message snoop involves risks to
confidentiality. You can disable message snoop using the following setting:

artix:interceptors: message_snoop: enabl ed = "fal se";

WARNING: For security reasons, it is strongly recommended that
message snoop is disabled in production deployments.

Setting a message snoop log level
You can set a message snoop log level globally or for a service port. The
following example sets the level globally:

artix:interceptors: nessage_snoop: | og | evel = "WARN NG';
event_log:filters = ["*=WARNING', "I T_BUS=I NFO H +WARN+ERRCR',
" MESSACGE_SNOOP=WARN NG'] ;

The following example sets the level for a service port:

arti x: i nterceptors: message_snoop: http: //wwmv acrre. cond t est s: nySer
vice:nyPort:log | evel = "I NO MED';

event_|og:filters = ["*=I NFO MED', "IT_BUS=",
" MESSACGE_SNOCP=I NFO MED'] ;

Configuring Artix Logging

Setting a message snoop subsystem

You can set message snoop to a specific subsystem globally or for a service
port. The following example sets the subsystem globally:

artix:interceptors: message_snoop: | og_subsystem = " MY_SUBSYSTEM ;
event _log:filters = ["*=I NFO MED', "I|T_BUS=",
" MY_SUBSYSTEM-=| NFO MED'] ;

The following example sets the subsystem for a service port:

artix:interceptors: nessage_snoop: htt p: //ww:. acne. con t est s: nySer
vi ce: nyPort : | og_subsyst em = " MESSAGE_SNOCOFP';

event _log:filters = ["*=INFO MED', "I T_BUS=",
" MESSAGE_SNOCP=I NFO MED'] ;

If message snoop is disabled globally, but configured for a service/port, it is
enabled for that service/port with the specified configuration only. For
example:

artix:interceptors: message_snoop: enabl ed = "fal se";

artix:interceptors: message_snoop: htt p: //wwmv acne. coni t est s: nySer
vice:nyPort:log_|l evel = "WARN NG';

artix:interceptors: nessage_snoop: htt p: //ww. acre. coni t est s: nySer
vi ce: nyPort: | og_subsystem = "M _SUBSYSTEM ;

event _log:filters = ["*=WARNING', "I T _BUS=I NFO H *WARN+ERRCR',
" MY_SUBSYSTEMEWARN NG'] ;

Setting message snoop in conjunction with log filters is useful when you
wish to trace only messages that are relevant to a particular service, and you
do not wish to see logging for others (for example, the container, locator,
and so on).

33

CHAPTER 3 | Artix Logging

Logging for Subsystems and Services

Overview You can use the event _| og: fil ters configuration variable to set
fine-grained logging for specified Artix logging subsystems. For example, you
can set logging for the Artix core, specific transports, bindings, or services.

Artix logging subsystems Artix logging subsystems are organized into a hierarchical tree, with the

34

I T_BUS subsystem at the root. Example logging subsystems include:

| T_BUS. CCRE
| T_BUS. TRANSPCRT. HTTP
| T_BUS. Bl NDI NG SOAP

Table 4 shows a list of the available logging subsystems.

Table 4: Artix Logging Subsystems

Subsystem

Description

I T_BUS

Artix bus.

| T_BUS. BI NDI NG

All bindings.

| T_BUS. Bl NDI NG COLCC

Collocated binding.

| T_BUS. Bl NDI NG CCRBA

CORBA binding.

| T_BUS. Bl NDI NG CCRBA. CONTEXT

CORBA context.

| T_BUS. Bl NDI NG FI XED

Fixed binding.

| T_BUS. BI NDI NG SCAP

SOAP binding.

| T_BUS. Bl NDI NG TAGGED

Tagged binding.

| T_BUS. OCRE

Artix core.

| T_BUS. SERVI CE

All Artix services.

| T_BUS. SERVI CE. LOCATCR

Artix locator service.

| T_BUS. SERVI CE. PEER MR

Artix peer manager service.

Subsystem filter syntax

Logging for Subsystems and Services

Table 4: Artix Logging Subsystems

Subsystem Description
| T_BUS. SERVI CE. SESSI CN_M=R Artix session manager service.
| T_BUS. TRANSPCRT. HTTP HTTP transport.
| T_BUS. TRANSPCRT. MQ MQ transport.
| T_BUS. TRANSPCRT. Tl BRV Tibrv transport.
| T_BUS. TRANSPCRT. TUNNELL Tunnel transport.
| T_BUS. TRANSPCRT. TUXEDO Tuxedo transport.
MESSAGE_SNOCP Message snoop.

Note: This is the recommended list of Artix logging subsystems. This list
may be subject to change in future releases.

The event _| og: filters variable takes a list of filters, where each filter sets
logging for a specified subsystem using the following format:

Subsyst en=Severi tylLevel [+SeveritylLevel]...

Subsyst emis the name of the Artix subsystem that reports the messages;

while SeverityLevel represents the severity levels that are logged by that
subsystem. For example, the following filter specifies that only errors and

fatal errors for the HTTP transport should be reported:

| T_BUS. TRANSPCRT. HTTP=ERR+FATAL
In a configuration file, event _l og: fil ters is set as follows:
event _log:filters=["LogFilter"[,"LogFilter"]...]

The following entry in a configuration file explicitly sets severity levels for a
list of subsystem filters:

event _| og: filters=["|T_BUS=FATAL+ERRCR',
"| T_BUS. Bl NDI NG CORBA=WARN+FATAL+ERRCR'] ;

35

CHAPTER 3 | Artix Logging

Setting the Artix bus pre-filter

Setting logging for specific
subsystems

Setting multiple subsystems with
a single filter

36

The Artix bus pre-filter provides filtering of log messages that are sent to the
Event Log before they are output to the LogSt ream This enables you to
minimize the time spent generating log messages that will be ignored. For
example:

event _log:filters:bus:pre filter = "WARN+ERRCR+FATAL";
event _log:filters = ["| T_BUS=FATAL+ERRCR', "|T_BUS. Bl NDI NG=*"];

In this example, only WARNI NG ERRCR and FATAL priority log messages are
sent to the Event Log. This means that no processing time is wasted
generating strings for | NFOlog messages. The Event Log then only sends
FATAL and ERRCR log messages to the LogSt r eamfor the | T_BUS subsystem.

Note: event_log:filters:bus:pre_filter defaults to* (all messages).
Setting this variable to WARN+ERRCR+FATAL improves performance
significantly.

You can set logging filters for specific Artix subsystems. A subsystem with
no configured filter value implicitly inherits the value of its parent. The
default value at the root of the tree ensures that each node has an implicit
filter value. For example:

event _log:filters = ["|T_BUS=FATAL+ERRCR',
"1 T_BUS. Bl NDI NG CORBA-WARN+FATAL+ERRCR'] ;

This means that all subsystems under | T_BUS have a filter of FATAL+ERRCR,
except for I T_BUS. Bl NDI NG CCRBA which has WARN+FATAL+ERRCR.

Using the | T_BUS subsystem means you can adjust the logging for Artix
subsytems with a single filter. For example, you can turn off logging for the
tunnel transport (I T_BUS. TRANSPCRT. TUNNEL=FATAL) and/or turn up logging
for the HTTP transport (I T_BUS. TRANSPCRT. HTTP=I NFO LOM-. . .), as show in
the following example:

event _| og:filters= ["|T_BUS=FATAL+ERRCR',
"1 T_BUS. TRANSPCORT. TUNNEL=FATAL",
"1 T_BUS. TRANSPCRT. HTTP=I NFO_LOMI NFO H +WARN'] ;

Configuring service-based logging

Logging for Subsystems and Services

You can use Artix service subsystems to log for Artix services, such as the
locator, and also for services that you have developed. This can be useful
when you are running many services, and need to filter services that are
particular noisy. Using service-based logging involves some performance
overheads and extra configuration. This feature is disabled by default.

To enable logging for specific services, perform the following steps:
1. Set the following configuration variables:

event _| og: | og_servi ce_nanes: active = "true";

event | og: | og_servi ce_nanes: servi ces = ["Servi ceNarrel",
" Servi ceNane2"] ;

2. Set the event log filters as appropriate, for example:

event _log:filters = ["| T_BUS=FATAL+ERRCR',
" Ser vi ceNane1=-WARN+ERRCR+FATAL", " Ser vi ceNane2=ERRCR+FATAL",
"Servi ceNane2. | T_BUS. Bl NDI NG CORBA=I NFOFWARN+ERRCR+FATAL"
Ik

In these examples, the service name must be specified in the following
format:

"{ NanespaceUR } Local Part"
For example:

"{http://ww: ny-conpany. coni bus/t est s} SOAPHTTPSer vi ce"

Setting parameterized configuration

The following example shows setting service-based logging in your
application using the -CRBevent _| og: fi | t ers parameter:

const char* bus_argv[] = {"-CRBnane", "ny_spp_| oggi ng",

"-CRBevent _log:filters", "{IT_BUSSERR},

{{http://ww ny-conpany/ ny_app} SOAPHTTPSer vi ce. | T_BUS. Bl NDI NG SOAP=I NFG "

37

CHAPTER 3 | Artix Logging

Logging per bus

Programmatic logging
configuration

38

For C++ applications, you can configure logging per bus by specifying your
logging configuration in an application-specific scope. However, you must
also specify logging per bus in your server code, for example:
® Include the
Instal I Dir/artix/Version/include/it_bus/bus_| ogger.h file.
® Pass avalid bus to the BusLogger (for example, using BusLogger
macros, such as I T_IN T_BUS LOGGER MEM.
For full details on how to specify that logging statements are sent to a
particular Artix bus, see Developing Advanced Artix Plug-ins in C++.

C++ and Java applications can use a logging API to query, add, or cancel
logging filters for subsystems, as well as adding and removing services from
per-service logging. For example, you can access a C++

I T_Bus: : Loggi ng: : Loggi ngConfi g class by calling

bus- >get _pdk_bus() - >get _| oggi ng_confi g() .

For full details, see Developing Artix Applications in C++ or Developing
Artix Applications in Java

http://www.iona.com/support/docs/artix/4.0/plugin_guide/wwhelp/wwhimpl/js/html/wwhelp.htm
../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

Dynamic Logging

Dynamic Logging

Overview

Getting logging levels

At runtime, you can use i t _cont ai ner _adm n commands to dynamically get
and set logging levels for specific subsystems and services. This section
explains how to use the i t_cont ai ner _adm n - get | oggi ngl evel and

-set | oggi ngl evel options.

The - get | oggi ngl evel option gets the logging level for specified a
subsystem or service. This command has the following syntax:

-get| oggi ngl evel [-subsystem SubSystenj [-service
{Narrespace} Local Part]

Get logging for a specific subsystem
The following example gets the logging level for the CORBA binding only:

it_container_adnin -getl oggi ngl evel -subsystem
| T_BUS. Bl NDI NG CCRBA

Get logging for multiple subsystems

The following example uses a wildcard to get the logging levels for all
subsystems:

it_container_adnin -getloggi ngl evel -subsystem *

This outputs a list of subsystems that have been explicitly set in a
configuration file or by - set| oggi ngl evel .

For example, if I T_BUS. Bl NDI NG=LOG_| NFOis output, this means that

| T_BUS. BI NDI NGis set to LOG | NFQ, and that no child subsystems of

I T_BUS. BI NDI NG are explicitly set. In this case, all child subsystems inherit
LOG | NFOfrom their parent.

39

CHAPTER 3 | Artix Logging

Setting logging levels

40

Get logging for a specific service

The following example gets the logging level for a locator service that is
running in a container:

it_container_adm n -getl oggi ngl evel -subsystem
| T_BUS. Bl NDI NG SOAP - service
{http://ws.iona.conil ocat or}Locat or Servi ce

The - set | oggi ngl evel option sets the logging level for a specified
subsystem. This command has the following syntax:

-set| oggi ngl evel -subsystem SubSystem -1evel Level [-propagate]
[-service {Namespace} Local part]

The possible logging levels are:

LOG FATAL

LOG ERRCR

LOG WARN

LOG | NFO H aH
LOG | NFO MED
LOG | NFO LON
LOG S| LENT
LOG INHER T

Set logging for a specific subsystem
The following example sets the logging level for the HTTP transport only:

it_container_adm n -getl oggi ngl evel -subsystem
| T_BUS. TRANSPCRT. HTTP -1 evel LOG WARN

Set logging for multiple subsystems

You can set logging for multiple subsystems by using the - pr opagat e
option. The following example sets the logging level for all transports (/IOP,
HTTP, and so on):

it_container_adnin -setl oggi ngl evel -subsystem | T_BUS. TRANSPCRT
-l evel LOG WARN - propagate true

Dynamic Logging

Override child subsystem levels

You can use the - pr opagat e option to override child subsystem levels that
have been set previously. For example, take the simple case where | T_BUS
is set to LOG | NFQ, and no other subsystems are set. If the | T_BUS level is
changed, it is automatically propagated to all I T_BUS children.

However, take the case where | T_BUS. OCRE is set to LOG WARN, and

| T_BUS. TRANSPCRT is set to LOG | NFO LOW Setting | T_BUS to LOG ERRCR
affects | T_BUS and all its children, except for I T_BUS. OCRE and

| T_BUS. TRANSPCRT. In this case, you can use - propagat e true to override
the child subsystem levels set previously. For example:

it_container_adnin -setl oggi ngl evel -subsystem|T_BUS -1 evel
LOG ERRCR - propagate true

Set logging for services

The following example sets the logging level for the SOAP binding when
used with the locator service:

it_container_adnin -setl oggi ngl evel -subsystem
| T_BUS. Bl NDI NG SOAP -l evel LGG | NFO H CH -service
{http://ws.iona.com | ocat or}Locat or Servi ce

The - pr opagat e option can also be used when setting logging for service.
For example, if you have service-specific logging enabled for

| T_BUS. BINDI NGand | T_BUS. Bl NDI NG SQAP, setting a service-specific log
level for | T_BUS. Bl NDI NGwith - propagat e true also sets the service level
for | T_BUS. Bl NDI NG SQAP.

it_container_adnin -setloggi ngl evel -subsystem | T_BUS. Bl ND NG
-level LOG | NFO LOW-propagate true -service
{http://ws.iona.com | ocat or}Locat or Servi ce

41

CHAPTER 3 | Artix Logging

Inheriting a logging level

Silent logging

Further information

42

You can use the LOG | NHER T level to cancel the current logging level and
inherit from the parent subsystem instead.

For example, if the | T_BUS. OCRE subsystem is set to LOG | NFO LOW and its
parent (I T_BUS) is set to LOG ERRCR, setting | T_BUS. CCREt0 LOG INFHER' T
results in 1 T_BUS. OCRE logging at LOG ERRCR. This is shown in the following
example:

it_container_admn -setl oggi ngl evel -subsystem | T_BUS. CCRE
-level LOGINER T

By default, all subsystems are effectively in LOG | NHERI T mode because they
inherit a level from their parent subsystem.

You can use the LOG _SI LENT level to specify that a given subsystem does not
perform any logging, for example:

it_container_adm n -setl oggi ngl evel -subsystem
I T_BUS. TRANSPCRT. TUNNEL - | evel LGG S| LENT

For more details on using the i t _cont ai ner _adm n command, see
“Deploying Services in an Artix Container” on page 91.

For more details on subsystems, see “Logging for Subsystems and Services”
on page 34.

Configuring Log4J Logging

Configuring Log4J Logging

Overview

Specifying the logdj plug-in

Setting the logdj properties file

For Artix Java applications, you also have the option of using log4J, which is
a standard Java logging tool. This enables you to control Artix logging with
the same logging tool used by Java applications. This section includes the
following:

® “Specifying the log4j plug-in”.
® “Setting the log4] properties file”.

Note: log4] logging overrides Artix logging. Settings in the
LogConfi g. properti es file completely override settings in the arti x. cfg
file.

You must first add the | og4j _| og_st reamplug-in to your Artix orb_pl ugi ns
list. For example:

orb_plugins = ["log4j |og_streant, "iiop_profile", "giop",
"iiop']:

The | og4j _I og_st reamplug-in reroutes all Artix logging to log4j.

When using log4j with Artix, the LogConfi g. properti es file controls your
Artix logging settings. This file is located in the following directory:
InstallDir/artix/Version/etc

To enable log4j logging, delete the comment symbol (#) in the following
line:

#l og4j . | ogger . com i ona=DEBUG

In this file, all Artix logging is set to a root logger named comi ona. You can
not specify to log only DEBUG level messages like you can Artix logging.
Instead, specifying a logging level means to log all messages with that level
or higher. For example, setting the log level to DEBUG means to log all DEBUG,
WARN NG ERRCR, and FATAL messages.

43

CHAPTER 3 | Artix Logging

Using log4j with your Java

applications

Further information

44

If you wish to combine the log4J logging in your Java application with log4j
logging in Artix, you must initialize log4j with the LogConfi g. properti es file
in your Java application code.

However, you can still use your own properties file to initialize log4j, and
you do no have to use LogConfi g. properti es.

For more information about using log4j, see the Apache documentation at:
http://1 oggi ng. apache. or g/ | og4j / docs/ docunent at i on. ht ni

http://logging.apache.org/log4j/docs/documentation.htm

Configuring SNMP Logging

Configuring SNMP Logging

SNMP

Artix Management Information
Base (MIB)

| ONA- ARTI X-M B DEFI N TI NS

| MPCRTS
MODULE- | DENTI TY, OBJECT- TYPE,

I nt eger 32, Count er 32,
Unsi gned32,

NOTI FI CATI ON- TYPE

D splayStri ng

-- v2 s/current/current

Simple Network Management Protocol (SNMP) is the Internet standard
protocol for managing nodes on an IP network. SNMP can be used to
manage and monitor all sorts of equipment (for example, network servers,
routers, bridges, and hubs).

The Artix SNMP LogSt reamplug-in uses the open source library net - snnp
(v.5.0.7) to emit SNMP v1/v2 traps. For more information on this
implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a
freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

A MIB file is a database of objects that can be managed using SNMP. It has
a hierarchical structure, similar to a DOS or UNIX directory tree. It contains
both pre-defined values and values that can be customized. The Artix MIB is
shown below:

Example 5: Artix MIB

;.= BEAN

FROM SNWPv2- SM
FROM RFC1213-M B

iona CBJECT IDENTIFIER ::={ iso(1) org(3) dod(6) internet(1l) private(4) enterprises(l) 3027 }

i onaM b MODULE- | DENTI TY

LAST- UPDATED " 200303210000Z"

CRGAN ZATI ON "1 ONA Technol ogi es PLC'

45

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

CHAPTER 3 | Artix Logging

Example 5: Artix MIB

QONTACT- | NFO
Cor por at e Headquarters
Dublin CGfice
The | ONA Bui | di ng
Shel bour ne Road
Bal | sbri dge
Dublin 4 Irel and
Phone: 353- 1- 662- 5255
Fax: 353-1-662-5244

US Headquarters

Wl tham O fi ce

200 Wst Street 4th Fl oor
Wal t ham MA 02451

Phone: 781-902- 8000

Fax: 781-902- 8001

Asi a- Paci fi ¢ Headquarters

| ONA Technol ogi es Japan, Ltd
Akasaka Sanchore Bl dg.

7F 3-21-16 Akasaka, M nato-ku,
Tokyo, Japan 107- 0052

Tel : +81 3 3560 5611

Fax: +81 3 3560 5612

E-nmai | : support @ona. com

DESCR PTI ON
"This MB nodul e defines the objects used and format of SNWP traps that are generated
fromthe Event Log for Artix based systens from | ONA Technol ogi es"

:={ iona 1}

46

QONTACT- | NFO

DESCR PTI ON

Example 5: Artix MIB

Cor por at e Headquarters
Dublin CGfice

The | ONA Bui | di ng

Shel bour ne Road

Bal | sbri dge

Dublin 4 Irel and
Phone: 353- 1- 662- 5255
Fax: 353-1-662-5244

US Headquarters

Wl t ham O fi ce

200 West Street 4th F oor
Wal t ham MA 02451

Phone: 781-902- 8000

Fax: 781-902- 8001

Asi a- Paci fic Headquarters

| CNA Technol ogi es Japan, Ltd
Akasaka Sanchore Bl dg.

7F 3-21-16 Akasaka, M nato-ku,
Tokyo, Japan 107- 0052

Tel : +81 3 3560 5611

Fax: +81 3 3560 5612

E-nai |l : support @ona. com

Configuring SNMP Logging

"This M B nodul e defines the objects used and format of SNWP traps that are generated

fromthe Event Log for Artix based systens from | QNA Technol ogi es"

c:={ iona 1}

47

CHAPTER 3 | Artix Logging

Example 5: Artix MIB

-- i ona(3027)

- |
-- i onaM b(1)

P I I I
-- or bi x3(2) | ONAAm n ((3) Artix (4)

I
== Arti xEvent LogM bChj ects(0) Arti xEvent LogM bTraps (1)

| - event Source (1) |- ArtixbaseTrapDef (1)
|- eventld (2)
-- |- eventPriority (3)
|- tinmeStanp (4)
| - eventDescription (5)

Artix CBJECT | DENTI FI ER ={ ionaMb 4 }

Arti xEvent LogM bQhj ect s CBJECT IDENTIFIER ::={ Artix 0}

Arti xEvent LogM bTr aps CBJECT IDENTIFIER ::={ Artix 1}

Arti xBaseTr apDef CBJECT IDENTIFIER ::= { ArtixEventLogM bTraps 1 }

-- MB variabl es used as varbi nds
event Sour ce CBJECT- TYPE
SYNTAX D spl ayString (Sl ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCR PTI ON
"The conponent or subsystem whi ch generated the event."
::={ ArtixEventLogM bChj ects 1 }

48

Configuring SNMP Logging

Example 5: Artix MIB

event | d CBIECT- TYPE

SYNTAX | NTEGER
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON
"The event id for the subsystem which generated the event."

::={ ArtixEventLogM bChj ects 2 }

eventPriority GBJECT- TYPE
SYNTAX | NTEGER
MAX- ACCESS not - accessi bl e
STATUS current
DESCR PTI ON

"The severity level of this event. This maps to | T_Logging::EventPriority types. Al
priority types map to four general types: INFO (1), WARN (W, ERROR (E), FATAL_ERRCR (F)"

::={ ArtixEventLogM bChj ects 3 }

ti meSt anp GBJECT- TYPE

SYNTAX D splayString (S ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCR PTI ON
"The tine when this event occurred."

::={ ArtixEventLogM b(oj ects 4 }

event Descri ption CBJECT- TYPE
SYNTAX D spl ayString (Sl ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON

"The conponent/application description data included with event."
::={ ArtixEventLogM b(oj ects 5 }

SNWPv1 TRAP defi nitions

-- ArtixEvent LogBaseTraps TRAP- TYPE

CBJECTS {
event Sour ce,
event | d,
eventPriority,

49

CHAPTER 3 | Artix Logging

Example 5: Artix MIB

-- ti mest anp,
- = event Descri ption

)

- = STATUS current

-- ENTERPR SE i ona

-- VAR ABLES { Arti xEvent LogM bChj ects }

-- DESCR PTION "The generic trap generated froman Artix Event Log."
-- ::={ ArtixBaseTrapDef 1 }

-- SNWv2 Notification type

Arti xEvent LogNot i f NOTI FI CATI O\ TYPE
CBJECTS {
event Sour ce,
event | d,
eventPriority,
ti mest anp,
event Descri pti on

}

STATUS curr ent

ENTERPR! SE i ona

DESCR PTION "The generic trap generated froman Artix Event Log."
::={ ArtixBaseTrapDef 1 }

END

IONA SNMP integration Events received from various Artix components are converted into SNMP
management information. This information is sent to designated hosts as
SNMP traps, which can be received by any SNMP managers listening on the
hosts. In this way, Artix enables SNMP managers to monitor Artix-based
systems.
Artix supports SNMP version 1 and 2 traps only.
Artix provides a log stream plug-in called snnp_| og_st ream The shared
library name of the SNMP plug-in found in the arti x. cf g file is:

pl ugi ns: snnp_| og_stream shlib_name = "it_snnp"

50

Configuring the SNMP plug-in

pl ugi ns: snnp_| og_stream conmunity =
pl ugi ns: snnp_| og_st ream ser ver =
pl ugi ns: snnp_| og_st ream por t =
pl ugi ns: snnp_| og_streamtrap_type =
pl ugi ns: snnp_| og_stream oi d =

Configuring the Enterprise Object
Identifier

Configuring SNMP Logging

The SNMP plug-in has five configuration variables, whose defaults can be
overridden by the user. The availability of these variables is subject to
change. The variables and defaults are:

"public";

"I ocal host ";

"162";

"G

"your | ANA nunber in dotted deci mal notation"

The last plug-in described, oi d, is the Enterprise Object Identifier. This is
assigned to specific enterprises by the Internet Assigned Numbers Authority
(IANA). The first six numbers correspond to the prefix:

i so.org.dod.internet.private.enterprise (1. 3.6.1.4.1). Each
enterprise is assigned a unique number, and can provide additional
numbers to further specify the enterprise and product.

For example, the oi d for IONA is 3027. IONA has added 1. 4. 1. 0 for Artix.
Therefore the complete OID for IONA's Artix is 1. 3. 6. 1. 4. 1. 3027. 1. 4. 1. 0.
To find the number for your enterprise, visit the IANA website at
http://www.iana.org.

The SNMP plug-in implements the | T_Loggi ng: : LogSt r eaminterface and
therefore acts like the 1 ocal _| og_st r eamplug-in.

51

http://www.iana.org

CHAPTER 3 | Artix Logging

52

CHAPTER 4

Enterprise
Performance
Logging

IONA’s performance logging plug-ins enable Artix to integrate
effectively with third-party Enterprise Management Systems

(EMS).
In this chapter This chapter contains the following sections:
Enterprise Management Integration page 54
Configuring Performance Logging page 56
Performance Logging Message Formats page 61

53

CHAPTER 4 | Enterprise Performance Logging

Enterprise Management Integration

Overview

Performance logging

Example EMS integration

54

IONA’s performance logging plug-ins enable both Artix and Orbix to integrate
effectively with Enterprise Management Systems (EMS), such as IBM
Tivoli™, HP OpenView™, or BMC Patrol™. The performance logging
plug-ins can also be used in isolation or as part of a bespoke solution.

Enterprise Management Systems enable system administrators and
production operators to monitor enterprise-critical applications from a single
management console. This enables them to quickly recognize the root cause
of problems that may occur, and take remedial action (for example, if a
machine is running out of disk space).

When performance logging is configured, you can see how each Artix server
is responding to load. The performance logging plug-ins log this data to file
or sysl og. Your EMS (for example, IBM Tivoli) can read the performance
data from these logs, and use it to initiate appropriate actions, (for example,
issue a restart to a server that has become unresponsive, or start a new
replica for an overloaded cluster).

Figure 1 shows an overview of the IONA and IBM Tivoli integration at work.
In this example, a restart command is issued to an unresponsive server.

In Figure 1, the performance log files indicate a problem. The IONA Tivoli
Provider uses the log file interpreter to read the logs. The provider sees when
a threshold is exceeded and fires an event. The event causes a task to be
activated in the Tivoli Task Library. This task restarts the appropriate server.

This chapter explains how to manually configure the performance logging
plug-ins. It also explains the format of the performance logging messages.
For details on how to integrate your EMS environment with Artix, see the

IONA guide for your EMS. For example, see the IBM Tivoli Integration Guide
or BMC Patrol Integration Guide.

../tivoli/index.htm
../bmc/index.htm

U EMS

Enterprise Management Integration

E RRLLTY Tivoli
Provider

T

restart IONA RITTIE
Server | rask Library

l

Log File Interpreter

start
= script

Log File Log File

/]

Log File

"
52

| Plug-ins | Plug-ins

Plug-ins

@

K

User Artix
Application Server

Locator
Service

Figure 1: Overview of an Artix and IBM Tivoli Integration

55

CHAPTER 4 | Enterprise Performance Logging

Configuring Performance Logging

Overview This section explains how to manually configure performance logging. This
section includes the following:

® “Performance logging plug-ins”.
® “Monitoring Artix requests”.

® “lLogging to a file or syslog”.

® ‘“Logging to a syslog daemon”.
® “Monitoring clusters”.

® “Configuring a server ID".

® “Configuring a client ID".

® “Configuring with the GUI".

Note: You can also use the Artix Designer GUI tool to configure
performance logging automatically. However, manual configuration gives
you more fine-grained control.

Performance logging plug-ins The performance logging component includes the following plug-ins:

Table 5: Performance Logging Plug-ins

Plug-in Description

Response monitor Monitors response times of requests as they
pass through the Artix binding chains.
Performs the same function for Artix as the
response time logger does for Orbix.

Collector Periodically collects data from the response
monitor plug-in and logs the results.

56

Configuring Performance Logging

Monitoring Artix requests You can use performance logging to monitor Artix server and client requests.

To monitor both client and server requests, add the bus_r esponse_noni t or
plug-in to the or b_pl ugi ns list in the global configuration scope. For
example:

orb_plugins = ["xnmfile_|l og_streant, "soap", "at_http",
"bus_response_nonitor"];

To configure performance logging on the client side only, specify this setting
in a client scope only.

Logging to a file or syslog You can configure the collector plug-in to log data either to a file or to

sysl og. The configuration settings depends on whether your application is
written in C++ or Java.

C+ + configuration

The following example configuration for a C++ application results in
performance data being logged to

/var/ 1 og/ ny_app/ perf_l ogs/treasury_app. | og every 90 seconds:

plugi ns:it_response_tine_col | ector:period = "90";
pl ugi ns:it_response_time_collector:fil ename =
“/var/|og/ ny_app/ perf_l ogs/treasury_app.|og";

If you do not specify the response time period, it defaults to 60 seconds.

Java configuration

Configuring the Java collector plug-in is slightly different from the C++
collector) because the Java collector plug-in makes use of Apache Log4J.
Instead of setting pl ugi ns:it_response_tine_col | ector:filenane, you set
the pl ugi ns:it_response_time_col | ector:|og_properties to use Log4J,
for example:

plugins:it_response_time_collector:log properties = ["| 0g4j.root Cat egory=I NFQ Al",

"l og4j .
"1 og4j .
"l og4j .
"l og4j .

0g4j .

"

I;

appender .
appender .
appender .
appender .
appender .

Al=com i ona. managenent . | oggi ng. | og4j appender . Ti neBasedRol | i ngFi | eAppender ",
Al. File="/var/| og/ ny_app/ perf_| ogs/treasury_app.|og",

Al. MaxFi | eS ze=512KB",

Al. | ayout =or g. apache. | og4j . Pat t er nLayout ",

Al. | ayout . Conver si onPat t er n=%{ | SC8601} % 80m %"

57

CHAPTER 4 | Enterprise Performance Logging

Logging to a syslog daemon

Monitoring clusters

58

You can configure the collector to log to a syslog daemon or Windows event
log, as follows:

plugins:it_response_time_col | ector: systeml| oggi ng_enabl ed = "true";
pl ugins:it_response_tine_col |l ector:sysl og appl D = "treasury";

The sysl og_appi d enables you to specify your application name that is
prepended to all syslog messages. If you do not specify this, it defaults to
i ona.

You can configure your EMS to monitor a cluster of servers. You can do this
by configuring multiple servers to log to the same file. If the servers are
running on different hosts, the log file location must be on an NFS mounted
or shared directory.

Alternatively, you can use sysl ogd as a mechanism for monitoring a cluster.
You can do this by choosing one sysl ogd to act as the central logging server
for the cluster. For example, say you decide to use a host named t eddy as
your central log server. You must edit the / et ¢/ sysl og. conf file on each
host that is running a server replica, and add a line such as the following:

Substitute the nane of your |og server
user.info @eddy

Some syslog daemons will not accept log messages from other hosts by
default. In this case, it may be necessary to restart the sysl ogd on t eddy
with a special flag to allow remote log messages.

You should consult the man pages on your system to determine if this is
necessary and what flags to use.

Configuring a server ID

Configuring a client ID

Configuration example

Configuring Performance Logging

You can configure a server ID that will be reported in your log messages.
This server ID is particularly useful in the case where the server is a replica
that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log
messages from different replica instances. You can configure a server ID as
follows:

plugi ns:it_response_tinme_col |l ector:server-id = "Locator-1";

This setting is optional; and if omitted, the server ID defaults to the ORB
name of the server. In a cluster, each replica must have this value set to a
unique value to enable sensible analysis of the generated performance logs.

You can also configure a client ID that will be reported in your log messages.
Specify this using the cl i ent -i d configuration variable, for example:

plugins:it_response_tinme_collector:client-id = "ny_client_app";

This setting enables management tools to recognize log messages from
client applications. This setting is optional; and if omitted, it is assumed that
that a server is being monitored.

The following simple example configuration file is from the management
demo supplied in your Artix installation:

include "../../../../../etc/donains/artix.cfg";
denos {

managenent

{

orb plugins = ["xmfile_|og streant, "soap", "at_http",
"bus_response_noni tor"];

59

CHAPTER 4 | Enterprise Performance Logging

Configuring with the GUI

60

pl ugi ns:it_response_tine_collector:period = "5";
client {

pl ugi ns:it_response_tine_collector:client-id=
" managenent - deno-cl i ent";

pl ugi ns:it_response_tine_collector:filename=
"managenent _deno_client.| og";

b
server {

pl ugi ns:it_response_time_col |l ector: server-id=
" managenent - deno- server";

pl ugi ns:it_response_time_col |l ector:fil ename=
"managenent _deno_server. | 0og";

}
IE

In this example, the bus_r esponse_noni t or plug-in and
pl ugins:it_response_tine_col | ector: period are set in the global scope.
This specifies these settings for both the client and server applications.

The Artix Designer GUI tool automatically generates performance logging
configuration for the Artix services. The generated ser ver -i d defaults to the
following format:

Domai nName_Ser vi ceNane_Host nane (for example, arti x_| ocat or _nyhost)

For details on how to automatically generate performance logging, see the
IBM Tivoli Integration Guide or BMC Patrol Integration Guide.

../tivoli/index.htm
../bmc/index.htm

Performance Logging Message Formats

Performance Logging Message Formats

Overview This section describes the performance logging message formats used by
IONA products. It includes the following:

® “Artix log message format”.

® “Orbix log message format”.

® “Simple life cycle message formats”.

Artix log message format Performance data is logged in a well-defined format. For Artix applications,

this format is as follows:

YYYY- MV DD H+ MM SS server =Server | D [nanespace=nnn ser Vi ce=sss
port=ppp operati on=nane] count=n avg=n nmax=n m n=nint=n oph=n

Table 6: Artix log message arguments

Argument

Description

server

The server ID of the process that is logging the
message.

nanespace

The Artix namespace.

servi ce

The Artix service.

port

The Artix port.

operation

The name of the operation for CORBA
invocations or the URI for requests on servlets.

count

The number of operations of invoked (IIOP).
or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg

The average response time (milliseconds) for
this operation or URI during the last interval.

61

CHAPTER 4 | Enterprise Performance Logging

Orbix log message format

62

Table 6: Artix log message arguments

Argument Description

max The longest response time (milliseconds) for
this operation or URI during the last interval.

mn The shortest response time (milliseconds) for
this operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

The combination of namespace, service and port above denote a unique

Artix endpoint.

The format for Orbix log messages is as follows:

YYYY- M DD HH MM SS server =Server | D [oper ati on=Nane] count =n
avg=n max=n m n=nint=n oph=n

Table 7: Orbix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

oper ation The name of the operation for CORBA invocations or
the URI for requests on servlets.

count The number of operations of invoked (/IOP).
or
The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for this
operation or URI during the last interval.

max The longest response time (milliseconds) for this

operation or URI during the last interval.

Performance Logging Message Formats

Table 7: Orbix log message arguments

Argument Description

mn The shortest response time (milliseconds) for this
operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Simple life cycle message formats The server will also log simple life cycle messages. All servers share the
following common format.

YYYY-MM DD HH MM SS server =Server | D st at us=Qurrent St at us

Table 8: Simple life cycle message formats arguments

Argument Description
server The server ID of the process that is logging the
message.
status A text string describing the last known status of
the server (for example, starting_up, runni ng,
shut ti ng_down).

63

CHAPTER 4 | Enterprise Performance Logging

64

In this chapter

CHAPTER 5

Using Artix with
International
Codesets

The Artix SOAP and CORBA bindings enable you to transmit
and receive messages in a range of codesets.

This chapter includes the following:

Introduction to International Codesets page 66
Working with Codesets using SOAP page 69
Working with Codesets using CORBA page 70
Working with Codesets using Fixed Length Records page 73
Working with Codesets using Message Interceptors page 76
Routing with International Codesets page 85

65

CHAPTER 5 | Using Artix with International Codesets

Introduction to International Codesets

Overview

European languages

Ideograms

66

A coded character set, or codeset for short, is a mapping between integer
values and characters that they represent. The best known codeset is ASCII
(American Standard Code for Information Interchange). ASCII defines 94
graphic characters and 34 control characters using the 7-bit integer range.

The 94 characters defined by the ASCII codeset are sufficient for English,
but they are not sufficient for European languages, such as French, Spanish,
and German.

To remedy the situation, an 8-bit codeset, ISO 8859-1, also known as
Latin-1, was invented. The lower 7-bit portion is identical to ASCII. The
extra characters in the upper 8-bit range cover those languages used widely
in Western Europe.

Many other codesets are defined under ISO 8859 framework. These cover
languages in other regions of Europe, as well as Russian, Arabic and
Hebrew. The most recent addition is ISO 8859-15, which is a revision of
ISO 8859-1. This adds the Euro currency symbol and other letters while
removing less used characters.

For further information about ISO-8859-x encoding, see the following web
site: “The ISO 8859 Alphabet Soup”
(http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets/).

Asian countries that use ideograms in their writing systems need more
characters than fit in an 8-bit integer. Therefore, they invented double-byte
codesets, where a character is represented by a bit pattern of 2 bytes.
These languages also needed to mix the double-byte codeset with ASCII in a
single text file. So, character encoding schemas, or simply encodings, were
invented as a way to mix characters of multiple codesets.

Some of the popular encodings used in Japan include:

* ShiftJIS

® Japanese EUC

® Japanese ISO 2022

http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets
http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets

Unicode

Charset names

Introduction to International Codesets

Unicode is a new codeset that is gaining popularity. It aims to assign a
unique number, or code point, to every character that exists (and even once
existed) in all languages. To accomplish this, Unicode, which began as a
double-byte codeset, has been expanded into a quadruple-byte codeset.

Unicode, in pure form, can be difficult to use within existing computer
architectures, because many APIs are byte-oriented and assume that the
byte value 0 means the end of the string.

For this reason, Unicode Transformation Format for 8-bit channel, or
UTF-8, is frequently used. When browsers list “Unicode” in its encoding
selection menu, they usually mean UTF-8, rather than the pure form of
Unicode.

For more information about Unicode and its variants, visit Unicode
(http://www.unicode.org/).

To address the need for computer networks to connect different types of
computers that use different encodings, the Internet Assigned Number
Authority, or IANA, has a registry of encodings at
http://www.iana.org/assignments/character-sets.

IANA names are used by many Internet standards including MIME, HTML,
and XML.

Table 9 lists IANA names for some popular charsets.

Table 9: /ANA Charset Names

IANA Name Description

US-ASCII 7-bit ASCII for US English

ISO-8859-1 Western European languages

UTF-8 Byte oriented transformation of Unicode

UTF-16 Double-byte oriented transformation of Unicode

Shift_JIS Japanese DOS & Windows

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX

67

http://www.unicode.org
http://www.unicode.org
http://www.iana.org/assignments/character-sets

CHAPTER 5 | Using Artix with International Codesets

Table 9: /ANA Charset Names

IANA Name Description

ISO-2022-JP | Japanese adaptation of generic ISO 2022 encoding
scheme

Note: IANA names are case insensitive. For example, US-ASCII can be
spelled as us-ascii or US-ascii.

CORBA names

In CORBA, codesets are identified by numerical values registered with the
Open Group’s registry, OSF Codeset Registry:
ftp://ftp.opengroup.org/pub/code_set_registry/code_set registryl.2g.txt.
Java names

Java has its own names for charsets. For example, ISO-8859-1 is named
I S8859_1, Shift_JIS is named SJI' S, and UTF-8 is named UTF8.

Java is transitioning to IANA charset names, to be aligned with MIME. JDK
1.3 and above recognizes both names.

Note: Artix uses IANA charset names even for CORBA codesets.

68

ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt

Working with Codesets using SOAP

Working with Codesets using SOAP

Overview

Making requests

Responding to SOAP requests

Because SOAP messages are XML based, they are composed primarily of
character data that can be encoded using any of the existing codesets. If the
applications in a system are using different codesets, they can not interpret
the messages passing between them. The Artix SOAP plug-in uses the XML
prologue of SOAP messages to ensure that it stays in sync with the
applications that it interacts with.

When making requests or broadcasting a message, the SOAP plug-in
determines the codeset to use from its Artix configuration scope. You can set
the SOAP plug-in's character encoding using the pl ugi ns: soap: encodi ng
configuration variable. This takes the IANA name of the desired codeset.
The default value is UTF- 8.

For more information on this configuration variable, see the Artix
Configuration Reference. For general information on configuring Artix
applications, see “Getting Started” on page 3.

When an Artix server receives a SOAP message, it checks the XML prologue
to see what encoding codeset the message uses. If the XML prologue
specifies the message’s codeset, Artix uses the specified codeset to read the
message and to write out its response to the request. For example, an Artix
server that receives a request with the XML prologue shown in Example 6
decodes the message using UTF- 16 and encodes its response using UTF- 16.

Example 6: XML Prologue
<?xm version="1.0" encodi ng="UTF- 16" ?>

If an Artix server receives a SOAP message where the XML prologue does
not include the encodi ng attribute, the server will use whatever default
codeset is specified in its configuration to decode the message and encode
the response.

69

../config_ref/index.htm
../config_ref/index.htm

CHAPTER 5 | Using Artix with International Codesets

Working with Codesets using CORBA

Overview The Artix CORBA plug-in supports both wide characters and narrow
characters to accommodate an array of codesets. It also supports codeset
negotiation. Codeset negotiation is the process by which two CORBA
processes which use different native codesets determine which codeset to
use as a transmission codeset. Occasionally, the process requires the
selection of a conversion codeset to transmit data between the two
processes. The algorithm is defined in section 13.10.2.6 of the CORBA
specification (http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf).

Note: For CORBA programing in Java, you can specify a codeset other
than the true native codeset.

Native codeset A native codeset (NCS) is a codeset that a CORBA program speaks natively.

For Java, this is UTF-8 (0x05010001) for char and String, and UTF-16
(0x00010109) for wchar and wst ri ng.

For C and C++, this is the encoding that is set by set | ocal (), which in
turn depends on the LANGand LC xxxx environment variables.

You can configure the Artix CORBA plug-in’s native codesets using the
configuration variables listed in Table 10.

Table 10: Configuration Variables for CORBA Native Codeset

Configuration Variable Description

pl ugi ns: codeset : char: ncs Specifies the native codeset for narrow
character and string data.

pl ugi ns: codeset : wchar : ncs Specifies the native codeset for wide
character and string data.

70

http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf

Conversion codeset

Transmission codeset

Negotiation algorithm

Working with Codesets using CORBA

A conversion codeset (CCS) is an alternative codeset that the application
registers with the ORB. More than one CCS can be registered for each of the
narrow and wide interfaces. CCS should be chosen so that the expected
input data can be converted to and from the native codeset without data
loss. For example, Windows code page 1252 (0x100204e4) can be a
conversion codeset for ISO-8859-1 (0x00010001), assuming only the
common characters between the two codesets are used in the data.

You can configure the Artix CORBA plug-in’s list of conversion codesets
using the configuration variables listed in Table 11.

Table 11: Configuration Variables for CORBA Conversion Codesets

Configuration Variable Description

pl ugi ns: codeset : char: ccs Specifies the list of conversion codesets
for narrow character and string data.

pl ugi ns: codeset : wchar : ccs Specifies the list of conversion codesets
for wide character and string data.

A transmission codeset (TCS) is the codeset agreed upon after the codeset
negotiation. The data on the wire uses this codeset. It is either the native
codeset, one of the conversion codesets, or UTF-8 for the narrow interface
and UTF-16 for the wide interface.

Codeset negotiation uses the following algorithm to determine which

codeset to use in transferring data between client and server:

1. If the client and server are using the same native codeset, no
translation is required.

2. If the client has a converter to the server's codeset, the server's native
codeset is used as the transmission codeset.

3. If the client does not have an appropriate converter and the server does
have a converter to the client’s codeset, the client’s native codeset is
used as the transmission codeset.

71

CHAPTER 5 | Using Artix with International Codesets

Codeset compatibility

72

If neither the client nor the server has an appropriate converter, the
server ORB tries to find a conversion codeset that both server and
client can convert to and from without loss of data. The selected
conversion codeset is used as the transmission codeset.

If no conversion codeset can be found, the server ORB determines if
using UTF-8 (narrow characters) or UTF-16 (wide characters) will
allow communication between the client and server without loss of
data. If UTF-8 or UTF-16 is acceptable, it is used as the transmission
codeset. If not, a CCDESET_I NOOWPATI BLE exception is raised.

The final steps involve a compatibility test, but the CORBA specification
does not define when a codeset is compatible with another. The
compatibility test algorithm employed in Orbix is outlined below:

1.
2.

3.

ISO 8859 Latin-n codesets are compatible.

UCS-2 (double-byte Unicode), UCS-4 (four-byte Unicode), and UTF-x
are compatible.
All other codesets are not compatible with any other codesets.

This compatibility algorithm is subject to change without notice in future
releases. Therefore, it is best to configure the codeset variables as explicitly
as possible to reduce dependency on the compatibility algorithm.

Working with Codesets using Fixed Length Records

Working with Codesets using Fixed Length

Records

Overview

Encoding attribute

Fixed binding example

Artix fixed record length support enables Artix to interact with mainframe
systems using COBOL. For example, many COBOL applications send fixed
length record data over WebSphere MQ.

Artix provides a fixed binding that maps logical messages to concrete fixed
record length messages. This binding enables you to specify attributes such
as encoding style, justification, and padding character.

The Artix fixed binding provides an optional encodi ng attribute for both its
fi xed: bi ndi ng and fi xed: body elements. The encodi ng attribute specifies
the codeset used to encode the text data. Valid values are any IANA codeset
name. See http://www.iana.org/assignments/character-sets for details.

The encodi ng attribute for the fi xed: bi ndi ng element is a global setting;
while the fi xed: body attribute is per operation. Both settings are optional. If
you do not set either, the default value is UTF- 8.

For more details, see fi xed- bi ndi ng. xsd, available in
Install Dir\iona\artix\Version\schenas.

The following WSDL example shows a fixed binding with encodi ng
attributes for fi xed: body elements. This binding includes two operations,
echoVoi d and echoStri ng.

Example 7: Fixed Length Record Binding

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions xm ns="http://schemas. xn soap. org/ wsdl /"
xm ns: fi xed="http://schemas. i ona. coni bi ndi ngs/ fi xed"
xm ns: http="http://schemas. i ona. com transports/http"
xm ns: htt p-conf="http://schenmas. i ona. coni transport s/ http/ configuration"
xm ns:iiop="http://schenas.iona.conltransports/iiop_tunnel"
xm ns: mg="ht t p: // schenas. i ona. coni t r ansport s/ ny"
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "

73

http://www.iana.org/assignments/character-sets

CHAPTER 5 | Using Artix with International Codesets

Example 7: Fixed Length Record Binding

xm ns: tns="http://ww iona.confartix/test/|18nBase/"

xm ns: xsd="ht t p: // waw. W8. or g/ 2001/ XM-Schena"

xm ns: xsd1="htt p: //wmv i ona. confarti x/test/|18nBase" nane="| 18nBaseServi ce"
t ar get Namespace="ht t p: // wwv i ona. conf arti x/ test/ | 18nBase/ "

<nessage name="echoString">
<part name="stri ngParam®" type="xsd:string"/>
</ message>

<nessage nanme="echoStri ngResponse" >
<part name="return" type="xsd:string"/>
</ message>

<nessage name="echoVoi d"/ >
<nessage name="echoVoi dResponse"/ >

<port Type nane="| 18nBasePort Type" >
<oper ati on nane="echoStri ng">
<i nput nessage="tns: echoString" nane="echoString"/>
<out put message="t ns: echoSt ri ngResponse" nane="echoStri ngResponse"/ >
</ oper ati on>
<oper ati on nane="echoVoi d" >
<i nput message="t ns: echoVoi d* nane="echoVoi d"/>
<out put message="t ns: echoVoi dResponse" name="echoVoi dResponse"/ >
</ oper at i on>
</ port Type>

<bi ndi ng nanme="118nFl XEDBi ndi ng" type="t ns: | 18nBasePort Type" >
<fi xed: bi ndi ng/ >
<oper ati on nane="echoString">
<fi xed: operation di scri m nator="di scri mnator"/>
<i nput name="echoString">
<fi xed: body encodi ng="1 SO 8859- 1" >
<fixed:field bindi ngOnl y="true" fixedVal ue="01" nane="di scri m nator"/>
<fixed: field nane="stringParan0" size="50"/>
</ fi xed: body>
</i nput >
<out put nane="echoSt ri ngResponse" >
<fi xed: body encodi ng="1 SO 8859- 1" >
<fixed:field name="return" size="50"/>
</ fi xed: body>
</ out put >
</ oper at i on>

74

Working with Codesets using Fixed Length Records

Example 7: Fixed Length Record Binding

<oper ati on nane="echoVoi d" >
<fi xed: operation discri m nator="discrimnator"/>
<i nput nane="echoVoi d">
<fi xed: body>
<fixed: field nane="di scrimnator" fixedVal ue="02" bi ndi ngnl y="true"/>
</ fi xed: body>
</i nput >
<out put nare="echoVoi dResponse" >
<fi xed: body/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
</ defi ni ti ons>

Further information For more details on the Artix fixed length binding, see Understanding Artix
Contracts.

75

../contract/index.htm
../contract/index.htm

CHAPTER 5 | Using Artix with International Codesets

Working with Codesets using Message

Interceptors

Overview

Codeset conversion attributes

76

Artix provides support for codeset conversion for transports that do not have
their own concept of headers. For example, IBM Websphere MQ, BEA
Tuxedo, and Tibco Rendezvous. This generic support is implemented using
an Artix message interceptor and WSDL port extensors.

For example, an Artix C+ + client could use Artix Mainframe to access a
mainframe system, using a binding for fixed length record over MQ. In this
scenario, an Artix message interceptor can be configured to enable codeset
conversion between ASCII and EBCDIC (Extended Binary Coded Decimal
Interchange Code).

You can enable this codeset conversion simply by editing your WSDL file, or
by using accessor methods in your application code. This section explains
how to use both of these approaches.

Note: Codeset conversion set in application code takes precedence over
the same settings in a WSDL file.

This generic support for codeset conversion is implemented using a message
interceptor. This message interceptor manipulates the following codeset
conversion attributes:

Local CodeSet Specifies the codeset used locally by a client or
server application.

Qut boundCodeSet Specifies the codeset used by the application for
outgoing messages.

| nboundCodeSet Specifies the codeset used by the application for
incoming messages.

You can specify these attributes to convert client-side requests and
server-side responses. All three attributes are optional.

Working with Codesets using Message Interceptors

Configuring codeset conversionin You can configure codeset conversion by setting the codeset conversion
a WSDL file attributes in a WSDL file. Example 8 shows the contents of the Artix
internationalization schema (i 18n- cont ext . xsd).

Example 8: Artix i18n Schema

<?xm version="1.0" encodi ng="UTF-8" ?>

<xs: schema xn ns: xs="htt p: //ww: w3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: / / schenmas. xm soap. or g/ wsdl / *
t ar get Namespace="ht t p: / / schenas. i ona. cond bus/ i 18n/ cont ext "
xm ns: i 18n- cont ext ="htt p: // schemas. i ona. com bus/ i 18n/ cont ext "
el emrent For nDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

<xs:inport namespace = "“http://schemas. xni soap. or g/ wsdl / "
schermalocat i on="wsdl . xsd"/ >

<xs: el enent name="client" type="i18n-context:dientConfiguration" />
<xs: conpl exType nane="d i ent Confi gurati on">

<xs: annot at i on>
<xs: docunentation> [18n Aient Context I|nformation
</ xs: docurent at i on>

</ xs: annot at i on>

<xs: conpl exCont ent >
<xs: ext ensi on base="wsdl : t Extensi bi | ityH enent" >
<xs:attribute name="Local CodeSet" type="xs:string" use="optional" />
<xs:attribute name="CQut boundCodeSet" type="xs:string" use="optional" />
<xs:attribute name="|nboundCodeSet" type="xs:string" use="optional" />
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

77

CHAPTER 5 | Using Artix with International Codesets

Example 8: Artix i18n Schema
<xs: el enent name="server" type="i 18n-cont ext: Server Confi gurati on"/>

<xs: conpl exType nane="Server Confi guration" >
<xs: annot at i on>
<xs: docurrent ati on> | 18n Server Context |nformation
</ xs: docurent at i on>
</ xs: annot at i on>

<xs: conpl exCont ent >
<xs: ext ensi on base="wsdl : t Extensi bi | i tyEl enent" >
<xs:attribute name="Local CodeSet" type="xs:string" use="optional" />
<xs:attribute nanme="Qut boundCodeSet" type="xs:string" use="optional" />
<xs:attribute name="|nboundCodeSet" type="xs:string" use="optional" />
</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType>

</ xs: scherma>

The Artix internationalization message interceptor uses this schema as a

port extensor. This enables you to configure codeset conversion attributes in

a WSDL file.

Client/server WSDL example The following example shows codeset conversion settings for a client and a

server application specified in a sample WSDL file:
Example 9: /18n Specified in a WDSL File

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<definitions nanme="I|18nBaseServi ce"
t ar get Nanespace="htt p: //ww\. i ona. coniarti x/test/| 18nBase/ "
xm ns="ht t p: // schenas. xm soap. or g/ wsdl / "
xm ns: soap="htt p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww i ona. comlartix/test/| 18nBase/"
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM_Schena"
xm ns: ng="ht t p: / / schenas. i ona. coni t ransport s/ ng"
xm ns: htt p="http://schenas. i ona. coni t ransports/http"
xm ns: htt p- conf ="htt p: // schenas. i ona. coni t ransport s/ htt p/ confi gurati on"
xm ns: fi xed="http://schenas. i ona. coni bi ndi ngs/ fi xed"
xm ns: i 18n- cont ext ="htt p: // schenas. i ona. con bus/ i 18n/ cont ext "
xm ns: xsd1="http: // wawv i ona. confarti x/test/| 18nBase" >

78

Working with Codesets using Message Interceptors

Example 9: /18n Specified in a WDSL File

<i nport namespace="http://wwmv iona.comartix/test/|18nBase"
| ocation="./118nServi ceBi ndi ngs. wsdl "/ >

<servi ce name="| 18nServi ce">

<port bi ndi ng="t ns: | 18nFl XEDBi ndi ng" nanme="118nFlI XED HTTPPort" >
<http: address | ocation="http://I ocal host:0"/>
<i 18n-context: cli ent Local CodeSet ="1SO 8859- 1" | nboundCodeSet =" UTF- 8"/ >
<i 18n- cont ext : server Local CodeSet =" UTF-8" Qut boundCodeSet ="1 SO 8859- 1"/ >
</ port>

<port bi ndi ng="t ns: | 18nFl XEDBi ndi ng" nanme="| 18nFl XED M¥Port" >

<ny: cl i ent QueueManager ="M _DEF QM QueueNane="M_FI RST_Q' AccessMde="send"
Repl yQueueManager =" MY_DEF_ QM Repl yQueueNane="REPLY_Q'
Correl ati onStyl e="nessagel d copy" />

<ny: server QueueManager =" MY_DEF Q' QueueNane="M_FI RST_Q'
Repl yQueueManager =" M¥_DEF_QM' Repl yQueueNane="REPLY_Q' AccessMbde="r ecei ve"
Correl ati onStyl e="nessagel d copy" />
<i 18n-context: client Local CodeSet ="UTF-8" | nboundCodeSet =""/>
<i 18n- cont ext : server Local CodeSet ="| SO 8859-1"/>
</ port >

</ servi ce>

</ definitions>

This sample WSDL file shows a single service named | 18nSer vi ce, with two
bindings and two ports named 1 18nFl XED HTTPPort and | 18nFI XED MFPort .
The binding in both cases is fixed length record, each with a single
operation.

79

CHAPTER 5 | Using Artix with International Codesets

Enabling codeset conversion in
application code

Linking with the context library

80

You can also enable codeset conversion attributes by calling the following
accessor methods in your C++ application code:

voi d set Local CodeSet (const | T Bus::String * val);
voi d set Local CodeSet (const | T_Bus::String & val);

voi d set Qut boundCodeSet (const | T _Bus::String * val);
voi d set Qut boundCodeSet (const | T_Bus:: String & val);

voi d set | nboundCodeSet (const | T_Bus::String * val);
voi d set | nboundCodeSet (const | T_Bus::String & val);

An Artix Cont ext Cont ai ner in the message interceptor, and the WSDL
configuration are checked for each attribute. This is performed during the
client’s i nt er cept _i nvoke() method and the server's

i nt er cept _di spat ch() method. The client request buffer or server response
buffer can be converted to another encoding as needed. This conversion can
occur on the outbound or inbound intercept points.

The interceptor refers to the current context on a per-thread basis. For
detailed information on Artix contexts, see Developing Artix Applications
with C+ +.

The message interceptor uses a common type library of Artix context
attributes. The application must be linked with this common library, and
with any transports that use this context to set or get attributes. The
generated header files for this common library are available in the following
directory:

Install Dir\artix\Version\include\it_bus_pdk\context_attrs

You must ensure that your application links with the context library that
contains the generated stub code for i 18n- cont ext . xsd.

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

Client cod

voi d
1 18n

{

Working with Codesets using Message Interceptors

e example Example 10 shows an example of the code that you need to add to your
C++ client application:
Example 10: Accessing i18n in C++ Client Code

Test : : echoStri ng(

1 18nBased ient* client, const String& instr)
String outstr;

try
{

// Set the i18n request context to match the fixed bi ndi ng encodi ng setting

I T _Bus::Bus_var bus = client->get_bus();
Cont ext Regi stry * reg = bus->get_context_registry();

Context Qurrent & cur = reg->get_current();
Cont ext Cont ai ner * regi stered_ctx = cur.request_contexts();

AnyType & i 18n_ctx_info =

regi stered_ct x->get_context (1 T_ContextAttributes:: 118N | NTERCEPTCR CLI ENT_CNAVE, true);
dientConfiguration & i18n_ctx_cfg = dynam c_cast<d i ent Confi gurati on& (i 18n_ctx_i nfo);
[/ Set the Inbound codeset to nmatch the bindi ng encodi ng

static const String LOCAL_OCDE SET = "I SO 8859-1";
i 18n_ct x_cf g. set Local CodeSet (LOCAL_CCDE _SET) ;

const String & | ocal _codeset = (*i18n_ctx_cfg. getLocal CodeSet ());
client->echoString(instr, outstr);

// Read the i18n reply context

regi stered_ctx = cur.reply_contexts();

AnyType & i18n_ctx_reply_info =
regi stered_ct x->get _context (1 T_Context Attributes:: 118N | NTERCEPTOR CLI ENT_QNAMVE, true);

const dientConfiguration & i18n_ctx_reply cfg =
dynani c_cast <const Qi ent Configurati on& (i18n_ctx_reply_info);

81

CHAPTER 5 | Using Artix with International Codesets

Example 10: Accessing i18n in C++ Client Code

const String * | ocal _codeset reply = i18n_ctx_reply_cfg.getLocal CodeSet ();
const String * outbound_codeset _reply = i18n_ctx_reply_cfg. get Qut boundCodeSet () ;
const String * inbound _codeset _reply = i18n_ctx_reply_cfg. getl nboundCodeSet () ;

i f(local _codeset_reply)

cout << "client Local CodeSet reply context:" << |ocal _codeset_reply->c_str() << endl;
i f (out bound_codeset _reply)

cout << "client QutboundCodeSet reply context:"<< outbound_codeset _reply->c_str << endl;
i f (i nbound_codeset _repl y)

cout << "client |nboundCodeSet reply context" << inbound_codeset reply->c_str() << endl;

}
catch (I T_Bus:: Cont ext Excepti on& ce)
{
}
catch (I T_Bus:: Exception& ex)
{
}
catch (...)
{
}
}
Server code example Example 10 shows example of the code that you need to add to your C++
servant application.
Example 11: Accessing i18n in C++ Server Code
voi d

| 18nSer vi cel npl : : echoSt ri ng(
const String& stringParan®,
String & var_return) | T_THRONDEQ.((IT_Bus: : Excepti on))

var_return = stringParan®;

82

Working with Codesets using Message Interceptors

Example 11: Accessing i18n in C++ Server Code

try
{
// Read the i18n reply context

Cont ext Regi stry * reg = mbus->get_context_registry();

ContextQurrent & cur = reg->get_current();
Cont ext Cont ai ner * regi stered_ctx = cur.request_contexts();

AnyType & i18n_ctx_info =

regi stered_ct x->get _context (I T_Context Attributes::|18N | NTERCEPTCR SERVER QNAME, fal se);
const ServerConfiguration & i18n_ctx_cfg =

dynam c_cast <const Server Configurati on& (i 18n_ctx_i nfo);

const String * |ocal _codeset = i18n_ctx_cfg. get Local CodeSet () ;
const String * outbound_codeset = i18n_ctx_cfg. get Qut boundCodeSet () ;
const String * inbound codeset = i18n_ctx_cfg. get| nboundCodeSet () ;
i f (I ocal _codeset)
cout << "server Local CodeSet request context:" << |ocal _codeset->c_str() << endl;
i f (out bound_codeset)
cout << "server QutboundCodeSet request context:" << outbound_codeset->c_str() << endl;
i f (i nbound_codeset)
cout << "server |nboundCodeSet request context:" << inbound_codeset->c_str() << endl;
/1 Add code to change the reply context

registered ctx = cur.reply_contexts();

AnyType & i18n_reply_ctx =
regi stered_ct x->get _context (1 T_ContextAttributes:: 118N | NTERCEPTCR SERVER CNAMVE, true);

ServerConfiguration & i18n_reply_ctx_cfg =
dynani c_cast <Ser ver Confi gurati on& (i 18n_reply_ctx);

/1l Set the | ocal codeset to match the bi ndi ng encodi ng

static const String LOCAL_OCDE SET = "I SO 8859-1";
i 18n_repl y_ct x_cf g. set Local CodeSet (LOCAL_CCDE_SET) ;

String & set_l|ocal _context = (*i18n_reply_ctx_cfg. get Local CodeSet ());

assert (set_| ocal _context == LOCAL_COCDE_SET);
}

83

CHAPTER 5 | Using Artix with International Codesets

Example 11: Accessing i18n in C++ Server Code

catch (I T_Bus:: Cont ext Excepti on& ex)

{
cout << "Error with server context" << ex.message() << endl;
}
catch (I T_Bus:: Exception& ex)
{
cout << "Error with server context" << ex.nessage() << endl;
}
catch (...)
{
cout << "Unknown Error with server context" << endl;
}
}
Artix configuration settings Finally, you must also enable the i18n message interceptor in your Artix

configuration file (arti x. cf g). Example 12 shows the required settings:
Example 12: Artix Configuration File Settings

// Add to a deno/application scope.
i nterceptor{

bi ndi ng: arti x: client_message_interceptor_list = "i18n-context: | 18nl nt er cept or Fact ory";
bi ndi ng: arti x: server_message_i nterceptor_|ist = "i18n-context:|18nl nter cept or Fact ory";
orb plugins = ["xmfile |og_streant, "i18n_interceptor"];

event _log:filters = ["*=WARN+ERRCOR+FATAL"] ;
s

For more information details on writing Artix C++ applications and on Artix
contexts, see Developing Artix Applications with C+ +.

Further information

84

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

Routing with International Codesets

Routing with International Codesets

Overview

Routing between
internationalized endpoints

When routing between applications, Artix attempts to correctly map
between different codesets. If both endpoints use bindings that support
internationalization (i18n), Artix uses codeset conversion. If only one of the
endpoints supports internationalization, the Artix endpoint supporting
internationalization attempts to use codeset conversion on the messages.

The following bindings do not support internationalization:

® Tagged
* G2++
® XML

When Artix is routing between internationalized endpoints, the receiving
endpoint and the sending endpoint both behave independently of each
other.

For example, if one endpoint of a router receives a request in Shift_JIS and
the router is configured to use ISO-8859-1, the Shift_JIS request is properly
decoded by the router.

However, when the request is passed on by the router, it is passed on in
ISO-8859-1. If the two codesets are not compatible, there is a good chance
that data will be lost in the conversion and the request will not be properly
handled.

Note: If the codesets are not compatible, and data is lost in the router,
Artix does not generate a warning.

85

CHAPTER 5 | Using Artix with International Codesets

Routing from
non-internationalized to
internationalized bindings

Routing from internationalized to
non-internationalized bindings

86

When Artix is routing from a non-internationalized endpoint to an
internationalized endpoint, it uses the default codeset specified in the
router’s configuration for writing messages to internationalized endpoints. If
the Artix router is configured to encode messages using a codeset that is
different from the one used by the endpoint, you will lose data.

For example, if a Tibco application makes a request on a Web service
through a router, the router receives non-internationalized data from the
Tibco application. And the router then writes the SOAP message using the
codeset specified in its configuration. If the Web service and the router are
both configured to write in us-dk, the operation proceeds without a problem.
The router receives the encoded response from the server and passes it back
to the Tibco binding.

However, if the Web service is configured to accept data using us-dk, and
the router is configured to encode data using Chinese, data may be lost
between the router and the Web service due to codeset incompatibility.

When Artix is routing SOAP messages to a non-SOAP endpoint, such as a
Tuxedo server on a mainframe using the fixed plug-in, Artix handles the
message transformations so that the SOAP application receives responses in
the correct codeset.

For example, a Web service client in a Chinese locale encodes its requests in
eucTW and invokes on a service that is hosted on a mainframe that is
behind an Artix router, as shown in Figure 2.

o s
%% Artix Router Mainframe
eucTW \
SOAP Fixed
SOAP lZIIIerli:\1 Plug-in Plug-in TUX Service

OAP i g
Shiabk s)

Figure 2: Routing Internationalized Requests

Routing with International Codesets

The Artix router would process the request as follows:

1.

On receiving the SOAP request, the router inspects the XML prologue
and decodes the message using the specified codeset (in this case,
eucTW).

The fixed binding plug-in then writes out the message to the
mainframe service.

When the mainframe sends its response back to the router, the fixed
binding decodes the message and passes it back to the SOAP plug-in.
The SOAP plug-in inspects the message and determines the request to
that corresponds it.

The SOAP plug-in then encodes the message using the codeset
specified in the request (in this case, eucTW), and passes the response
to the client.

87

CHAPTER 5 | Using Artix with International Codesets

88

Part ||

Deploying Artix Services

In this part This part contains the following chapters:
Deploying Services in an Artix Container page 91
Deploying an Artix Router page 119
Deploying an Artix Transformer page 135
Deploying a Service Chain page 147
Deploying High Availability page 155
Deploying Reliable Messaging page 175

In this chapter

Deploying Services

In an Artix
Container

The Artix container enables you to deploy and manage your

CHAPTER 6

services dynamically. For example, you can deploy a new
service into a running container, or perform runtime tasks such

as start, stop, and list existing services in a container. Artix

containers can be used to host C++ or Java services.

This chapter discusses the following topics:

Introduction to the Artix Container page 92
Generating a Plug-in and Deployment Descriptor page 96
Running an Artix Container Server page 101
Running an Artix Container Administration Client page 104
Deploying Services on Restart page 109
Running an Artix Container as a Windows Service page 113

91

CHAPTER 6 | Deploying Services in an Artix Container

Introduction to the Artix Container

Overview

Artix plug-ins

Benefits

Main components

92

The Artix container provides a consistent mechanism for deploying and
managing Artix services. This section provides an overview the Artix
container architecture and its main components.

You can write Artix Web service implementations as C++ and Java
plug-ins. An Artix plug-in is a code library that can be loaded into an Artix
application at runtime.

Artix provides a platform-independent framework for loading plug-ins
dynamically, based on the dynamic linking capabilities of modern operating
systems (using shared libraries, DLLs, and Java classes).

Writing your application as an Artix plug-in means that you need to write
less code, and that you can deploy your services into an Artix container.
When you deploy your service into a container, this eliminates the need to
write your own C++ or Java server mainline. Instead, you can deploy your
service by simply passing the location of a generated deployment descriptor
to an Artix container's administration client. This provides a powerful
programming model where the code is location independent.

In addition, the Artix container retains information about the services that it
deploys. This enables the container to reload services dynamically when it
restarts.

The Artix container architecture includes the following main components:
® Artix container server

® Artix container service

® Artix service plug-in

® Artix deployment descriptor

® Artix container administration client

® WSDL contract

How it works

Artix container server

Introduction to the Artix Container

Figure 3 shows an simple overview of how the main Artix container
components interact. Some user-defined service plug-ins are deployed into
an Artix container server, along with an Artix container service.

When the Artix container service is running, you can then use a container
administration client to communicate with it at runtime. This client enables
you to deploy and manage your services dynamically.

An Artix container service can run inside any Artix bus. Because it is
implemented as an Artix plug-in, it can be loaded into any application. The
recommended approach is to deploy it into an Artix container server, as
shown in Figure 3.

Admin Client Container Server
™
I:l - B I ContainerService

© © ©

Service Service Service
One Two Three

D Java service plug-in

I:‘ C++ service plug-in

Figure 3: Artix Container Architecture

An Artix container server is a simple Artix application that hosts the
container service. It consists of a server mainline that initializes a bus and
loads the Artix container service, which enables you to remotely deploy and
manage your services.

You can run an Artix container server using the i t_cont ai ner command. If
your application requires some configuration, you can start an Artix
container server with a configuration scope. For more details, see “Running
an Artix Container Server” on page 101.

93

CHAPTER 6 | Deploying Services in an Artix Container

Artix deployment descriptor

Artix container service

94

When deploying a user-defined service into an Artix container, you must
pass in a generated Artix deployment descriptor. This is a simple XML file
that specifies the details such as:

® Service name.

® Plug-in that implements the service.

® Whether the plug-in is C++ or Java.

You can generate a C+ + or Java deployment descriptor by using Artix code

generation commands. For more details, see “Generating a Plug-in and
Deployment Descriptor” on page 96.

The Artix container service is a remote interface that supports the following
operations:

® List all services in the application.

® Stop a running service.

® Start a dormant service.

® Remove a service.

® Deploy a new service.

® Get an endpoint reference for a service.

® Get the WSDL for a service.

® Get the URL to a service’s WSDL.

® Shut down the container service.

When an Artix container service deploys a new service, it loads the
appropriate plug-ins, sets up and activates your service.

The Artix container service assumes that the plug-ins are available in your
application environment, so you must ensure that they are in the expected
library path. The Artix container service supports C++ and Java
applications, provided that they are compiled into plug-ins.

The Artix container service has a WSDL-based interface and so can be used
with any binding or transport.

Artix container administration
client

Artix container demos

Introduction to the Artix Container

Because the Artix container service has a WSDL-based interface with a
SOAP/HTTP binding, you can communicate with it using any client. Artix
provides a command-line tool that uses the Artix container stub code, and
which enables you to manage the container service easily. The Artix
container administration client currently supports SOAP/HTTP only.

You can run an Artix container administration client using the

i t_contai ner_adn n command. This client makes all the container service
operations available through simple command-line options. For more
details, see “Running an Artix Container Administration Client” on

page 104.

The following demos in your Artix installation show basic use of the Artix
container:

d ...\ denos\ advanced\ cont ai ner\ depl oy_pl ugi n

This shows how starting with a . wsdl file, you can use the wsdl t ocpp
or wsdl t oj ava command-line tool to generate a C++ or Java plug-in
and deployment descriptor. It then shows how to deploy the plug-in
into the Artix container.

...\ denos\ advanced\ cont ai ner\ depl oy_r out es

This shows how routes are simply advanced services that happen to be
implemented by the router plug-in, and whose implementation is just a
proxy to a different service. It shows how you can dynamically deploy
and manage routes in the Artix container.

Several other advanced Artix demos also use the Artix container, for
example:

o ..\ denos\ advanced\ cont ai ner\ secur e_cont ai ner

® ...\denwos\advanced\| ocat or
b ..\ denos\ advanced\ sessi on_managenent

® . ..\denos\routing

95

CHAPTER 6 | Deploying Services in an Artix Container

Generating a Plug-in and Deployment

Descriptor

Overview

Using wsdltocpp

Artix services are implemented by C+ + or Java plug-ins. When you want to
deploy a service into an Artix container, the first step is to generate a plug-in
from a WSDL contract.

For a C++ service, this generates a dynamic library (Windows), or shared
library (UNIX), and a dependencies file. For a Java service, this generates
the Java classes required to implement the plug-in. An XML deployment
descriptor is also generated for both C++ and Java service. You can
generate a plug-in and deployment descriptor using any of the following
commands:

® wsdltocpp
® wsdltojava
® wsdd

For example, to generate a C++ plug-in library and a deployment descriptor
for a specified . wsdl file, use the following command:

wsdl tocpp -n deploy_plugin -inpl -server -mNVAKE |ibrary

96

-plugin:it_sinple_service_cpp_bus_pl ugi n -depl oyabl e si npl e_servi ce. wsdl

The - pl ugi n and - depl oyabl e options are the most important. - pl ugi n
generates a new plug-in, and -depl oyabl e generates a corresponding
deployment descriptor.

The generated plug-in can have an optional name (in this case,

i t_sinpl e_servi ce_cpp_bus_pl ugi n). If a name is specified, the generated
plug-in library uses this name. The name is ignored if the . wsdl file contains
more than one service definition. If no plug-in name is set or ignored, the
plug-in name takes the following format: Ser vi ceNamePor t TypeNarre.

Generating a Plug-in and Deployment Descriptor

In this example, -inpl generates the skeleton code for implementing the
server defined by the WSDL. - server generates code for a server sample
implementation, and - mgenerates a makefile.

Note: You specify al | as the make target; the default target does not
generate the dependencies file (. dps).

For full details on using the wsdl t ocpp command, see the Artix Command
Line Reference, or Developing Artix Applications in C++.

C+ + deployment descriptor

The deployment descriptor generated for the example C+ + service is as
follows:

<?xm version="1.0" encodi ng="utf-8"?>
<ni: depl oynent Descri pt or xni ns: ml="htt p: // schenas. i ona. coni depl oy" >
<servi ce xn ns: servi cens
="http://ww: i ona. com bus/tests">servicens: Si npl eServi ceSer vi ce</ servi ce>
<pl ugi n>
<name>i t _si npl e_servi ce_cpp_bus_pl ugi n</ nanme>
<t ype>Cxx</ t ype>
</ pl ugi n>
</ m: depl oynent Descri pt or >

The type element tells the Artix container that this is a C++ service.

Using wsdltojava For example, to generate a Java plug-in library and a deployment descriptor
for a specified . wsdl file, use the following command:

wsdl tojava -inpl -server -ant -plugin:it_sinple_service_java bus_plugin
- depl oyabl e si npl e_servi ce. wsdl

The - pl ugi n and deployable options are the most important. - pl ugi n
generates a new plug-in, and -depl oyabl e generates a corresponding
deployment descriptor.

The generated plug-in can have an optional name (in this case,

it_sinpl e_service_java_bus_pl ugi n). In contrast to C++, the name
assigned using the - pl ugi n entry only becomes the name of the plug-in (as
identified in the deployment descriptor). The name of the Java class that
implements the plug-in factory is derived from the port type name in the
WSDL file.

97

../command_ref/index.htm
../command_ref/index.htm
../prog_guide/index.htm

CHAPTER 6 | Deploying Services in an Artix Container

In this example, -i npl generates the skeleton class for implementing the
server defined by the WSDL. - server generates code for a server sample
implementation, and - ant generates an Ant bui | d. xni file.

For more details on using the wsdl t oj ava command, see the Artix
Command Line Reference, or Developing Artix Applications in Java.

Java deployment descriptor
The deployment descriptor generated for the example Java service is as
follows:

<?xm versi on="1.0" encodi ng="utf-8"?>
<ni: depl oynent Descri pt or xni ns: ml="htt p: // schenas. i ona. coni depl oy" >
<servi ce xnins: servi cens
="http://ww. i ona. cond bus/ t est s">servi cens: S npl eSer vi ceSer vi ce</ servi ce>
<pl ugi n>
<name>i t _si npl e_servi ce_j ava_bus_pl ugi n</ nane>
<t ype>Java</t ype>
<i npl enent ati on>com i ona. bus. t est s. Si npl eSer vi ceSer vi cePl ugi nFact ory</ i npl enent at i on>
</ pl ugi n>
</ ml: depl oynent Descri pt or >

The t ype element tells the Artix container that this is a Java service.

Using wsdd For more complex deployment descriptors, you can use the Web services
deployment descriptor (wsdd) command as an alternative to wsdl t ocpp and
wsdl t o] ava.

The descriptors generated by wsdl t ocpp and wsdl t oj ava do not include all
the possible information that descriptors can have—for example,
provi der _nanespace (see the advanced/ cont ai ner/ depl oy_rout es demo).

The following example uses the wsdd command:

wsdd -service {http://wwmn iona. conitest}QustonBervice
- pl ugi nNane testpl ugi n -pl ugi nType Cxx

The full syntax of the wsdd command is as follows:
wsdd -service Q\ane - pl ugi nNarme Pl ugi nNarre - pl ugi nType Cxx| Java
[-pluginlnpl Library/dassNane] [-pluginDr Dr] [-wsdlurl

V¢dl Location] [-provider ProviderNanmespace] [-file
QutputFile] [-d QutputDir] [-h] [-v] [-verbose] [-quiet]

98

../command_ref/index.htm
../command_ref/index.htm
../java_guide/index.htm

Generating a Plug-in and Deployment Descriptor

The following arguments are required:

Table 12: Required Arguments to wsdd

-service Quane Specifies the name of a service to be
deployed.

- pl ugi nNane Pl ugi nNane | Specifies the name that a plug-in is
registered as.

- pl ugi nType Cxx| Java Specifies the name of a plug-in type.

The following arguments are optional:

Table 13: Optional Arguments to wsdd

-pl ugi nl npl Specifies either a library name (. di 1 /. so)
Li brary/ d assNare for a C++ plug-in, or a class name of the
plug-in factory for Java plug-ins

-pluginDir Dr Specifies the location where plug-in
library/classes are located. This option, if
specified, has no effect on deployment.

-wsdl url Védl Locati on Specifies a URL to a service WSDL.

- provi der Specifies the provider namespace. Used in
Pr ovi der Nanespace the cont ai ner/ depl oy_rout es demo. For
example, this can be used by plug-ins to
provide servant implementations for more
than one service.

-file QutputFile Specifies the name of the generated
descriptor file. The default is

depl oyser vi ceLocal Nane. For example, if
-service
{http://wmviona.conitest}CQustonBervic
e is used, it is depl oyCust onser vi ce. xn

-d QutputDir The location where a descriptor should be
generated.

-h[el p] Displays detailed help information for each
option.

929

CHAPTER 6 | Deploying Services in an Artix Container

Table 13: Optional Arguments to wsdd

-v[ersion] Displays the version of the tool.
-ver bose Displays output in verbose mode.
-qui et Displays output in quiet mode.
Adding business logic For both C++ and Java applications, you must still add your business logic

code to the servant implementation class.

The supplied Artix demos include a fully implemented servant file instead of
the generated file.

Artix deployment descriptors As well as hosting user-defined services, an Artix container can be used to
host IONA services such as the locator. The following is an example
generated deployment descriptor for the locator service:

<?xm versi on="1.0" encodi ng="utf-8"?>
<ni: depl oynent Descri ptor xm ns: ni="htt p: // schenas. i ona. coni depl oy" >
<servi ce xnins: servi cens
="http://ww. i ona. cond bus/t est s">servi cens: S npl eSer vi ceSer vi ce</ servi ce>
<pl ugi n>
<name>i t _si npl e_servi ce_j ava_bus_pl ugi n</ nane>
<t ype>Java</t ype>
<i npl enent ati on>com i ona. bus. t est s. Si npl eSer vi ceSer vi cePl ugi nFact or y</ i npl enent at i on>
</ pl ugi n>
</ mi: depl oynent Descri pt or >

For details on deploying a locator in the container, see the Artix Locator
Guide.

100

../locator_guide/index.htm
../locator_guide/index.htm

Running an Artix Container Server

Running an Artix Container Server

Overview

Using the it_container command

An Artix container server is an Artix server mainline that initializes an Artix
bus, and loads an Artix container service.

As well as hosting your own service plug-ins, the Artix container server can
also be used to host Artix services, such as the locator, session manager,
router, and so on. You can run as many instances of the Artix container
server as your applications require.

To run an Artix container server, use the i t_cont ai ner command. This has
the following syntax:

it_container [-s[ervice] Options] [-d[aenmon]] [-p[ort]
Port Nunber] [-publish [-file Filenane]] [-depl oy
Depl oynent Descriptor] [-deployfolder] [-v[ersion]] [-h[elp]]

-s[ervice] On Windows, runs the container server as a
Windows service. Without this parameter, it
runs in foreground. See “Running an Artix
Container as a Windows Service” on
page 113.

- d[aenon] On UNIX, runs the container server as a
daemon in the background. Without this
parameter, it runs in the foreground.

-plort] PortNunber Specifies the port number for the container
service.

-publish [-file Filename] Specifies the location to export the container
service URL. By default, this is
/ Cont ai ner Servi ce. url . You can override
the default using -fil e.

-depl oy Descriptor Deploys a service using a specified
deployment descriptor (for example, at
startup). This is instead of deploying with the
container service (see “Using the
it_container_admin command” on
page 104).

101

CHAPTER 6 | Deploying Services in an Artix Container

Running the container server in
the background

Publishing the container service
URL in a file

Running the container server on a
specified port

102

- depl oyfol der Path Specifies the location of a local folder to store
deployment descriptors. This enables
redeployment of existing services on restart
(see “Deploying Services on Restart” on

page 109).
-v[ersion] Prints version information and exits.
-h[el p] Prints usage summary and exits.

On UNIX, to run a container server in the background, use the i t _cont ai ner
- daenon command.

If the - daenon option is not specified, the container server runs in the
foreground of the active command window. This option does not apply on
Windows.

To publish a container service URL, use the - publ i sh option, for example:

it_container -publish -file
ny_di rectory/ ny_cont ai ner_service. url

The - publ i sh option tells the container server to publish the container
service URL in a local file. This URL can then be later retrieved by the
i t_contai ner_adm n command, which uses it to contact the container
service, and initialize a container service client proxy.

By default, a Cont ai ner Servi ce. url file is created in the local directory.
Use the -fi | e option to override this behavior.

To run a container server on a specific port, specify the - port option, for
example:

it_container -port 1111
it_container -port 2222

This port is used for the container service. This is also the port for the
wsdl _publ i sh plug-in. The container administrative client uses

wsdl _publ i sh to get contracts for the container service and for all other
services hosted by the container.

Specifying configuration to the
container server

Running an Artix Container Server

This port number can then be used by a container service administration
client when contacting the container server, for example:

it_container_adnmin -port 1111

You can run it_cont ai ner without any configuration. This is sufficient for
many simple applications. However, if your application requires additional
settings, you can start i t _cont ai ner with command-line configuration.

For simple applications, the container server loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it _cont ai ner with command-line configuration.

The following example is from the . . denos\ advanced\ | ocat or demo and
shows running the locator service in the container server:

it_contai ner -CRBname deno. | ocat or. servi ce - CRBdomai n_nane
| ocator -CRBconfig domains_dir ../../etc -publish -file
../../letc/ ContainerService. url

In this example, the locator service picks up specific configuration from its
deno. | ocat or . servi ce scope. For more details, see the demos for the
locator, session manager, and router.

103

CHAPTER 6 | Deploying Services in an Artix Container

Running an Artix Container Administration

Client

Overview

Using the it_container_admin
command

104

This section explains how to use the Artix container administration client to
perform tasks such as deploying a generated plug-in into the Artix container
server, and retrieving a service URL. It explains the full syntax of the

it_contai ner_adm n command, which is used to control the Artix container

administration client.

The full syntax for the i t _cont ai ner_adnm n command is as follows:

-deploy -file dd.xn

-listservices

-startservice -service
{Narrespace} Local Part

- stopservice -service
{Narrespace} Local Part

-renoveservi ce -service
{Narrespace} Local Part

- publ i shref erence -service
{ Narrespace} Local Part
[-file Filenane]

Deploys a new service into the container
server. This involves loading a plug-in
that contains the service
implementation. You must specify an
Artix deployment descriptor using the
-fil e option.

Displays all services in the application.
Shows the state of each service (for
example, active, de-activated, or
shutting down).

Restarts the specified service that is
visible but dormant, or that has been
previously stopped.

Stops the specified running service.

Removes and undeploys all trace of the
specified service from the application.

Gets an endpoint reference for the
specified service. The -fi | e option
publishes the reference to a local file.
This can then be used to initialize a
client application.

Running an Artix Container Administration Client

- publ i shwsdl -service
{ Nanespace} Local Part
[-file Filenare]

-publishurl -service
{ Nanespace} Local Part
[-file Filenare]

-shut down [-soft]

-port Contai ner Port

-host Cont ai ner Host nane

-container File.url

-getl oggi ngl evel [-subsystem
SubSystenj [-service
{Nanespace} Local Part]

-setl oggi ngl evel -subsystem
SubSystem -1 evel Level
[-propagate] [-service

{ Nanespace} Local part]

Gets the WSDL for the specified service.
The -fil e option publishes the WSDL to
a local file. This can then be used to
initialize a client application.

Gets an HTTP URL for the specified
service from which you can then
download the WSDL. The -fil e option
publishes the URL to a local file. This
can then be used to initialize a client
application.

Shuts down the entire application. The
-sof t option shuts down gracefully.

Contacts the container server on the
specified port. See “Running the
container server on a specified port” on
page 102. This can be used with other
options instead of - cont ai ner .

Contacts the container server on the
specified host. Defaults to localhost if
unspecified. The - host option is for use
with -port only.

Runs the specified container service.
This can be used with other options
instead of - port and - host .

Gets the dynamic logging level for the
specified subsystem or service. See
“Dynamic Logging” on page 39.

Sets the logging level for a specified
subsystem of a specified service. See
“Dynamic Logging” on page 39.

Note: By default, i t _cont ai ner _adni n looks in the local directory for the
Cont ai ner Servi ce. url file. If this file is not local, use the - cont ai ner
option, or the - port and - host options, to contact the container.

105

CHAPTER 6 | Deploying Services in an Artix Container

Deploying the generated plug-in

Getting service WSDL

106

To deploy a generated plug-in into the container server, use the - depl oy
option, for example:

it_container_adnin -deploy -file
../ pl ugi n/ depl oySi npl eSer vi ceServi ce. xm

The -fil e option specifies a generated deployment descriptor. This lists the
service that this plug-in can provide, the plug-in name, and plug-in type. In
this example, the portable C++ plug-in library name is expected to be the
same as the plug-in name. The library is expected to be located in the

.. 1 pl ugi n directory.

When a container service loads the plug-in, it registers a servant for the
service that is described in the deployment descriptor.

To get the WSDL for a deployed service from the container, use the
- publ i shwsdl option, for example:

it_contai ner_admn -publishwsdl -service
{http://www i ona. coni bus/ denos} VI | Wsher Servi ce -file
ny_servi ce

The - publ i shurl option gets the service’'s WSDL contract. The -fi | e option
publishes the URL to a local file. When the client runs, it reads the
published WSDL from the local file, and uses it to initialize a client stub,
and communicate with a deployed service.

Using the - publ i shref erence, - publ i shwsdl , and - publ i shurl options
means that you can write WSDL contracts without hard-coded ports, and
that your clients will still be able to call against them.

Getting a service URL

Listing deployed services

Stopping deployed services

Running an Artix Container Administration Client

To get a URL for a deployed service from the container service, use the
- publ i shurl option, for example:

it_container_admn -publishurl -service
{http://wmviona. con bus/tests}S npl eServi ceService -file
ny_service

The - publ i shurl option gets a URL to the service’s WSDL contract. The
-fil e option publishes the URL to a local file. When the client runs, it reads
the published WSDL URL from the local file, and uses it to initialize a client
stub, and then communicate with a deployed service.

To display a list of the services in your application, use the -1i st servi ces
option, for example:

it_container_admn -port 2222 -|istservices
{http://wmviona. com denos/ wel | wi sher} Vel | Wsher Servi ce ACTI VATED
{http://wmiona. conl denos/ greeter}Q eet er Servi ce ACTI VATED

This example shows the output listed under the i t _cont ai ner _adm n

-1i st servi ces command. The ACTI VATED state indicates that both services
are running. In this example, the - port option is used to contact a container
server that was already started on port 2222.

To stop a currently deployed service, use the - st opser vi ce option, for
example:

it_container_admn -port 2222 -stopservice -service
{http://wmv iona. coni denos/ wel | wi sher} Vel | Wsher Servi ce

This following example shows the output from -1i st servi ces after the
service has been stopped.

it_container_admn -port 2222 -|istservices
{http://wwiona. coni denos/ wel | wi sher} Wl | Wsher Servi ce DEACTI VATED
{http://ww i ona. coni dermos/ gr eet er } @ eet er Servi ce ACTI VATED

The vl | Wsher Ser vi ce is now listed as DEACTI VATED.

107

CHAPTER 6 | Deploying Services in an Artix Container

Specifying configuration to the
administration client

108

You can runit_cont ai ner _adni n without any configuration. This is
sufficient for most simple applications. However, if your application requires
additional settings, you can start i t _cont ai ner _adm n with command-line
configuration.

For simple applications, the container service loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching i t _cont ai ner _adm n with command-line
configuration.

The following example shows shutting down the locator service using the
i t_cont ai ner _adni n - shut down option:

i t_contai ner_adm n - ORBdomai n_nane | ocator - CRBconfi g _donai ns_dir

..l..letc -container ../../etc/ContainerService.url -shutdown

For more details, see the demos for the locator, session manager, and
router.

Deploying Services on Restart

Deploying Services on Restart

Overview

How it works

The Artix container can be configured to retain information about the
services that it has deployed. This enables it to reload services automatically
on restart. This ability to remember deployed services is known as
persistent deployment.

To enable persistent deployment, you must configure the container to use a
local folder to store deployment descriptors. These descriptors specify what
the container should deploy at startup. The container ensures that this folder
accurately reflects what is deployed in case of a restart.

To reload services that have been deployed by the container service before
shutdown, the container persists all deployment descriptors when
processing new deployment requests. The container needs to know the
location of a local folder where deployment descriptor files are saved to, and
where to read them from on restart.

The container finds the location of this folder from either:

® A command-line argument passed to the container.

® A configuration variable in an Artix configuration file.

Note: The command-line arguments take precedence over the
configuration variables.

At startup, the container looks in the configured deployment folder and

deploys the contents of the folder. It deploys all services that it finds in the
folder where possible. If any deployment fails, the container fails to start.

109

CHAPTER 6 | Deploying Services in an Artix Container

Persistent deployment modes

Enabling dynamic read/write
deployment

110

You can configure the deployment descriptor folder for either read/write or
read-only deployment.

Dynamic read/write deployment

In this case, the container adds and removes files from the deployment
folder dynamically as services are deployed or removed from the container.
When a call to deploy a service is made, a descriptor file is added to the
folder. When a call to remove a service is made, a descriptor file is removed,
and the service is not redeployed upon restart.

Read-only deployment

The deployment descriptor folder can also be used as a read-only
initialization folder that predeploys the same required set of services after
every restart.

When a deployment folder is read-only, the container predeploys the same
set of services on restart. No deployment descriptors are removed from, or
saved into, a read only deployment folder by the container.

By making a deployment folder read-only, you can share deployment
descriptors between multiple container instances. In this scenario, you can
enable a single container instance to modify the contents of this folder, and
all container instances are affected after restart.

You can enable a read/write deployment folder using the following
command-line arguments:

it_container -deployfolder ../etc
Alternatively, you can set the following variable in a configuration file:
pl ugi ns: cont ai ner : depl oyf ol der="../etc";

This means that the . . / et ¢ folder is used for predeploying services and
persisting new descriptors.

Enabling read-only deployment

Predeploying a service on startup

Naming conventions

Deploying Services on Restart

You can enable a read-only deployment folder using the following
command-line arguments:

it_container -deployfolder -readonly ../etc
Alternatively, you can set the following variables in a configuration file:

pl ugi ns: cont ai ner: depl oyf ol der="../etc";
pl ugi ns: cont ai ner : depl oyf ol der: r eadonl y="t r ue";

This means that the . . / et ¢ folder is used for predeploying services only.

The i t_cont ai ner command also provides a - depl oy argument, which can
be used to predeploy a single service on startup, for example:

it_container -deploy depl oyCORBAServi ce. xm

The - depl oy and - depl oyf ol der arguments can be used together, for
example:

it_container -deploy depl oyM/Service.xm -deployfolder ../etc

This means that MySer vi ce identified by depl oyM/Servi ce. xn , and all
services identified by descriptors in the . ./ et ¢ folder, are deployed. The
depl oyM/Ser vi ce. xm that is specified using the - depl oy argument is not
copied into a deployment folder. If you wish to copy a descriptor to the
deployment folder, use the following command:

it_container_adnmin -deploy -file depl oyMService. xm
- depl oyf ol der -depl oyfol der ../etc

The Artix container uses the following format when persisting deployment
descriptors into files:

depl oyLocal Servi ceNarre. xni

You should follow the same pattern when generating custom descriptors
where possible. The container expects that all files in the deployment folder
that have the . xn extension are valid deployment descriptors.

111

CHAPTER 6 | Deploying Services in an Artix Container

Removing a service

Warnings and exceptions

Further information

112

By default, deployment descriptors generated by Artix tools use the name of
the service's local part. If you have two services with the same local part but
different namespaces, you should use the wsdd -fi | e option to avoid the
name clashing. For more details, see “Using wsdd” on page 98.

When using a read/write deployment folder, you can remove a service by
calling i t _cont ai ner _adnin -renoveservi ce on a running container. For
example:

it_contai ner_adm n -renoveservice -service
{http://wwiona.conibus/tests}S npl eServi ceService

Alternatively, you can remove the deployment descriptor file from the folder.
Both of these approaches ensure that the container does not reload the
service at startup.

When using a read-only folder, removing a service using - r emoveser vi ce
does not prevent it from being redeployed after a restart. Only removing a
descriptor file from the folder prevents it from being redeployed.

Note: Copying or removing files from the deployment folder has no
impact if the container is already running. The container cannot react to
these events. The contents of the folder is read once at startup. This only
applies to services that are started using deployment descriptors.

It is possible that using different descriptors might lead to the container
attempting to deploy the same service twice.

In this case, the container logs a warning message and proceeds with
deploying other services. An exception is thrown if an attempt to deploy the
same service is made from an administration console.

For a working example of persistent deployment, see the following Artix
demo:

.../ denos/ advanced/ cont ai ner/ depl oy_pl ugi n

Running an Artix Container as a Windows Service

Running an Artix Container as a Windows

Service

Overview

Format of service names

Setting your environment
variables

On Windows, you can install instances of an Artix container server as a
Windows service. By default, this means that the installed container will
start up when your system restarts.

This feature also enables you to manage the container using the Windows
service controls. For example, you can start or stop a container using the
Windows Control Panel, or Windows net commands, such as net st op
Servi ceNane.

When a container is installed as a Windows service, the container name
takes the following format in the Windows registry:

I TArti xCont ai ner Servi ceName

For example, if you call your service t est _ser vi ce, the name generated by
the install command that appears in the registry is:

| TArti xCont ai ner test_service
This name is stored under the following entry in the registry:

HKEY_LOCAL_NMACH NE\ SYSTEM Qur rent Cont r ol Set\ Servi ces

Before installing the Artix container as a Windows service, you must ensure
that your system environment variables have been set correctly, and that
your machine has rebooted. These steps can be performed either when
installing Artix, or at any time prior to installing the container as a Windows
service.

Your environment variables enable the container to find all the information it
needs on restart. They must be set as follows:

113

CHAPTER 6 | Deploying Services in an Artix Container

114

Environment
Variable

Setting

| T_PRCDUCT DI R

Your Artix installation directory (for example,
c:\iona).

Note: This is needed only if your PATH specifies
% T_PRCDUCT_Di R% instead of the full path to any
Artix directories.

PATH Should include the following:
® Any C++ plug-ins that will be deployed by
the container.
® InstallDr\binand
Install Dir\artix\ Version\bin.
® The JRE libraries, JDKI nstal I Dir\jre\bin
and JDKI nstal I Dir\jre\bin\server.
CLASSPATH Should include the following:

® Any Java plug-ins that will be deployed by
the container. If the plug-in is packaged in a
JAR, you must list the . j ar file. If .cl ass
files are used, only the directory needs to be
listed.

® The Artix runtime JAR,
InstalIDir\artix\Version\lib\artix-rt.
jar

® InstallDr\etcand
Instal I Dir\artix\Version\etc.

® Your JDK/JRE runtime JAR (for example,
JIKinstalIDir\jre\lib\rt.jar).

Note: If you used Microsoft Visual C++ 7.1 to create your service
plug-in, include the following in your PATH, in this order:

Install Dir\bin\vc7l;InstallDir\bin;lnstallDr\artix\Version\bin\
vc71; Instal Il Dir\artix\Version\bin

Running an Artix Container as a Windows Service

Installing a container To install a container as a Windows service, use the i t _cont ai ner
-service instal | command:

it_container -service install [-CRBParaniNane [ParanVal ue]]
- di spl aynane Nane - svcNane Servi ceNane

These parameters are described as follows:

- CRBPar aniNane

- di spl aynane

- svcNane

Represents zero or more - CRBPar aniName command-line
options (for example, - CRBl i cense_fil e). These
specify the location of the Artix license file, domain
name, configuration directory, or ORB name.

These values must be specified either as command-line
parameters or environment variables. However,
specifying on the command line allows easier
deployment of multiple i t _cont ai ner instances as
multiple Windows services.

Specifies the name that is displayed in the Windows
Services dialog (select Start|Settings | Control

Panel| Application Tools|Services). The - di spl aynane
parameter is required.

Specifies the service name that is listed in the Windows
registry (select Start|Run, and type regedit). The
- svcName parameter is required.

In addition to the -service instal | parameters, the following
i t_container parameters also apply:

-port

- depl oyf ol der

Specifies the port that the container will run on (see
“Running the container server on a specified port” on
page 102). This parameter is required.

Specifies a local folder to store deployment descriptors.
This enables redeployment on startup (see “Deploying
Services on Restart” on page 109). This parameter is
optional.

115

CHAPTER 6 | Deploying Services in an Artix Container

Example command

The following example shows all the parameters needed to install a
container instance as a Windows service:

it_container -service install -CRBlicense_file c:\InstallD r\etc\licenses.txt
-CRBconfig dir c:\InstallDr\artix\Version\etc - ORBdonmai n_nane artix
- di spl ayNane "M/ Test Service" -svcNane ny_test_service -port 2222
- depl oyf ol der C \depl oyed files

If you do not set your license file, domain name, and configuration directory,
as environment variables, you must set them as - GRBPar am\ane entries (the
recommended approach). The - CRBname parameter is optional.

Example service

The installed Windows service is listed in the Services dialog, as shown in
Figure 4.

|

chtion Eiew|J1--D| ||§|J>III |2

116

Tree I Mame # | Diescription | Statuz | Startup Type | Log On &g | ;I
W % Meszenger Sends andr.. Started Automatic LocalSystem
% MGABGEXE Started Automatic LocalSystem
) ice Automatic LocalSystem
% Met Logon Supportz pa.. Started Automatic LocalSystem
% Mettesting Remate .. Allows auth... M anual LocalSystem
Metwork Aszzociates .. Started Automatic LocalSystem
% Metwork Associates ... Started Automatic LocalSpstem
% Metwork Connections Manages 0. Started M anual LocalSystem
% Metwork DDE Provides ne... Manual LocalSpstem
% Metwork DDE DSDM Manages =... M anual LocalSystem
% MT LM Security Sup... Provides ze... Started Automatic LocalSystem
% Performance Logz a... Configures ... M anual LocalSystem
% Flug and Flay Manages d... Started Automatic LocalSystem
% Partable Media Seria.. Retrieves th.. Manual LocalSpstem
% Frint Spooler Loads files t... Started Automatic LocalSystem
% Protected Storage Providesz pr... Started Automatic LocalSystem
% (o5 RSVP Provides ne.. Marual LocalSpstem
% Rational Cred Mana.. Rational Cr... Started Automatic LocalSpstem
% Rational Lock Mana... Rational Lo.. Started Automatic LocalSpstem
% Remaote Access Aut.. Createsac. Manual LocalSpstem

%% Remate Access Con.. Createsan.. Stared M anual Local3ystern LI

Figure 4: Installed Windows Service

Uninstalling a container

Running an Artix Container as a Windows Service

Clicking on My Test Servi ce displays the properties shown in Figure 5.

My Test Service Properties [Local Computer] K E3

General | Log DnI Hecoveryl Dependenciesl

Service name: ITArtixContainer my_test_service

Dizplay name:

Description:

Fath to executable:
FADMANartx 3. D5binkit_container. exe’ -0RBproduct_dir "F:\iona" -ORBli

Startup type: Automatic j

Service statug: Stopped

Start | Stop | Bause Eesume |

“r'ou can specify the start parameters that apply when pou start the service
fram here.

Start parameters: I

QK I Cancel Lol

Figure 5: Service Properties

After running the i t _cont ai ner -service install command, you must
start the services manually. However, when your computer is restarted, the

installed services are configured to restart automatically.

To uninstall a container as a Windows service, use the it _cont ai ner

uni nstal I command.

it_container -service uninstall -svcName ServiceNane

For example:

it_container -service uninstall -svcNanme ny_artix_test

117

CHAPTER 6 | Deploying Services in an Artix Container

118

In this chapter

CHAPTER 7

Deploying an Artix

Router

An Artix router redirects messages based on rules defined in
an Artix contract. An Artix router can be used to bridge
operation invocations between different transport protocols,

and between different middleware.

This chapter discusses the following topics:

The Artix Router page 120
Configuring an Artix Router page 125
Defining Routes in an Artix Deployment Descriptor page 129
Optimizing Router Performance page 133

119

CHAPTER 7 | Deploying an Artix Router

The Artix Router

Overview

How it works

120

An Artix router redirects messages based on rules defined in an Artix
contract. The routing functionality is provided by an Artix plug-in and
configuration. This means that neither the client nor the server endpoints
need to be modified, nor are they are aware that routing is occurring. An
Artix router is sometimes referred to as an Artix switch.

An Artix router can be used as a minimally invasive means of connecting
applications that use different communication transports and message
formats. Alternatively, the applications may also use the same bindings and
transports.

An Artix router does not require that any Artix-specific code be compiled or
linked into existing applications. An Artix router is created by loading the
Artix routi ng plug-in into an Artix process. The recommended way to deploy
a router is to use the Artix container (see “Selecting a host process” on
page 124).

An Artix router is a routing daemon that listens for traffic on endpoints
specified in an Artix contract. It re-directs messages based on the routing
rules that you define in the contract, and performs any transport routing and
message formatting needed for the receiving application. Neither application
is aware that its messages are being intercepted by Artix, and no application
development is required.

Note: Services being integrated must use equivalent data types and
message layouts (for example, a service expecting a | ong cannot be sent a
f1oat). The router does not perform any data transformation.

The router's behavior is controlled by a combination of an Artix contract and
the Artix configuration file.

For detailed information on Artix contracts, see Understanding Artix
Contracts. For detailed information on Artix configuration files, see
Chapter 2.

../contract/index.htm
../contract/index.htm

Deployment patterns

The Artix Router

Artix router can be deployed in a number of ways. Two common deployment
patterns are:

® Deploying multiple routers—each bridging between two applications.
®* Deploying one router to bridge between all applications in a domain.

Deploying multiple routers—each bridging between two applications

This approach simplifies designing integration solutions, and provides faster
processing of each message (shown in Figure 6). Using this approach, the
Artix contract describing the interaction of the applications is simpler. It
contains only the logical interfaces shared by the two applications, the
bindings for each payload format, and the routing rules.

Figure 6: Using Multiple Artix Routers for Single Routes

Artix Artix Artix
S 3
4 4 (9
."’ \ h ! \'\

¥ *

r/ \ v X
g Ty g By o N

AppA AppB AppC AppD AppE AppF

Because most applications use only one network transport, the number of
ports is minimal and the routing rules are simple. Keeping the contract
simple also enhances the performance of each router because it has less
processing to do. In this approach, each router's resource usage can be
limited by tailoring its configuration to optimize the router for the integration
task that it is responsible for.

121

CHAPTER 7 | Deploying an Artix Router

122

Deploying one router to bridge between all applications in a domain

This approach limits the number of external services required in your
deployment environment (shown in Figure 7). This can simplify monitoring
and installation of deployments. It also reduces the number of moving parts
in an integration solution.

Figure 7: Using a Single Artix Router for Multiple Routes

Artix

= &|.
NN
P o Ry g

AppA AppB AppC AppD AppE AppF

Using this approach, you can use a single WSDL contract that includes all
the information for all routes. In this case, the contract information that
describes the interaction of the applications is more complex. It contains the
logical interfaces shared by multiple applications, the bindings for each
payload format, and the routing rules.

Alternatively, you can also specify that a single router uses multiple WSDL
files, each of which describes a single route, or a number of routes. These
could be the same WSDL contracts used in multiple router deployment,
however, they are all deployed in the same router process. The configuration
that identifies the WSDL file containing the routing details is specified using
a list, which can include a collection of multiple WSDL files. For more
information, see “Defining multiple routes in configuration” on page 127.

Enabling Artix Routing

The Artix Router

There are two approaches to enabling an Artix router:
® Using configuration variables.
® Using an Artix deployment descriptor.

Using configuration

You can configure an Artix router by adding the routi ng plug-in to the
orb_pl ugi ns list, and specifying the location of the WSDL contract using the
pl ugi ns: routing: wsdl _url entry. See “Configuring an Artix Router” on
page 125 for full details.

This configuration-based approach can be used with an Artix container.
Alternatively, you can also deploy a router into any Artix process. For
example, this might be useful if you want to write CORBA clients and use
Artix APIs.

You can also specify additional configuration variables to optimize
performance. See “Optimizing Router Performance” on page 133.

Using a deployment descriptor

You can only use a deployment descriptor to define routes if you are using
the container to host the process. The advantage of this approach is that
you do not need a dedicated configuration scope.

Another advantage to this approach is that you can deploy additional routes
into the process without stopping and restarting the host process, which
would be necessary in the configuration approach.

When using the deployment descriptor approach, you must deploy each
WSDL file separately; whereas with the configuration approach, all WSDL
files are loaded automatically on startup. See “Defining Routes in an Artix
Deployment Descriptor” on page 129 for full details.

123

CHAPTER 7 | Deploying an Artix Router

Selecting a host process

Disabling a router

124

Although any Artix process can be used for Artix routing, the preferred
approach is to use the Artix container as the host process.

When using the Artix container server process (i t _cont ai ner), you have the
option of using either the configuration approach, or the deployment
descriptor approach.

In addition, you can also use the container’s client application
(i t _cont ai ner _adm n) to manage the deployed route.

Note: If you use an Artix client or server process to host the routi ng
plug-in, you can only use configuration to specify routing details. You can
not use a deployment descriptor.

To undeploy a router, you must stop and restart the process hosting the
router. This applies to both the configuration and deployment descriptor
approach.

Using the configuration approach, you must edit the
pl ugi ns: routing: wsdl _url entry, removing the WSDL describing the
routing you wanted to undeploy.

Using the deployment descriptor approach, you would then either not
redeploy that particular WSDL, or you would remove its corresponding
deployment descriptor from the persistent deployment directory. See
“Deploying Services on Restart” on page 109 for full details.

Configuring an Artix Router

Configuring an Artix Router

Overview Because Artix’s routing functionality is implemented as an Artix plug-in, you
can make any Artix application a router by adding routing rules to its
contract, and by specifying configuration settings in an Artix configuration
file.

This section explains how to configure the routi ng plug-in, and specify the
location of the router's WSDL contract.

Setting the orb_plugins list Artix router applications must include the routi ng plug-in name in its
orb_pl ugi ns list, for example:

orb_plugins = ["xmfile_|l og_strean, "soap", "at_http", ... ,
"routing"];

Note: You do not need to add the routi ng plug-in if you have defined
routes in a deployment descriptor (see “Defining multiple routes” on
page 129).

Plug-ins related to bindings, and transports are not required. These are
loaded automatically when the routi ng plug-in parses the WSDL file.

Note: The routing plug-in must always be the last plug-in listed in the
orb_pl ugi ns list.

125

CHAPTER 7 | Deploying an Artix Router

Setting the WSDL contract

Defining a single route in
configuration

126

You must configure the location of the WSDL contract, or contracts, that the
router gets its routing information from. You can do this using the

pl ugi ns: routing: wsdl _url variable. This variable specifies the contracts
that the router parses for routing rules. The following is a simple example:

pl ugins: routing:wsdl _url="../../etc/router.wsdl ";

The location of the contract is relative to the location from which the Artix
router is started.

The following example contains multiple routing contracts:

pl ugi ns: routing:wsdl _url=["routel.wsdl ", "../route2. wsdl",
"/artix/routes/route3"];

In this example, the router expects that rout e1. wsdl is located in the
directory that it was started in, and that rout e2. wsdl is located one
directory level higher.

This is the simple approach used by the routi ng demos (for example,
rout i ng\ oper at i on_based).

Run the host process (either an Artix process or the Artix container) under a
dedicated configuration scope. In this scope, include the routi ng plug-in
name in the orb_pl ugi ns configuration variable, and use the

pl ugi ns: routing: wsdl _url variable to specify the location the WSDL file
that contains the routing directives.

The required configuration is illustrated in the following fragment, where
denos. oper at i on_based. rout er is the scope under which the host process
runs.

denos {
oper at i on_based {
orb plugins = ["xmfile_|og_streant, "soap", "at_http"];

router {
#the routing plug-in inplements the routing functionality
orb_plugins = ["routing"];

Defining multiple routes in
configuration

Configuring an Artix Router

#the path to the WBCOL file that includes the routing el enent
pl ugi ns: routing:wsdl _url="../../etc/route.wsdl";
s
ik
b

This router can then be deployed in the container server using the following
example command:

it_contai ner - CRBname denos. oper ati on_based. rout er
- CRBdonai n_nane oper ati on_based -CORBconfig_donai ns_dir
../..letc -publish

There are two approaches to using configuration to deploy multiple routes
into the same host process. You can either specify routes in a WSDL file, or
in an Artix configuration file.

Defining multiple routes in a WSDL file

The first approach is to simply include multiple routing directives in a single
WSDL file. This is illustrated in the following fragment, where the ns1 prefix
represents the namespace assigned to the WSDL extensors that describe the
Artix routing functionality.

<servi ce name="Sour ceServi cel">
<port name="SourcePort" bindi ng=.>
<soap: address | ocati on="htt p: // Host naneA 9100"/ >
</ port>
</ servi ce>
<servi ce name="Sour ceServi ce2">
<port name="SourcePort" bindi ng=..">
<soap: address | ocati on="htt p:// Host naneA: 9200"/ >
</ port>
</ servi ce>
<servi ce name="Tar get Servi cel">
<port name="Target Port1" bi ndi ng=..>
<soap: address | ocation="htt p:// Host naneB: 9300"/ >
</ port >
</ servi ce>

127

CHAPTER 7 | Deploying an Artix Router

<servi ce name="Tar get Servi ce2">
<port name="Target Port2" bi ndi ng=.>
<soap: addr ess | ocati on="htt p: / Host naneC 9400"/ >
</ port >
</ servi ce>

<nsl:route nane="route_0">
<nsl: source port="SourcePort" service="tns: Sour ceServicel"/>
<nsl: destinati on port="Target Port1"
servi ce="tns: Tar get Servi cel"/>
</ nsl:rout e>

<nsl:route nane="route_ 1">
<nsl: source port="SourcePort" service="tns: Sour ceService2"/>
<nsl: destinati on port="Target Port2"
servi ce="tns: Tar get Servi ce2"/>
</nsl:route>

The multiple source services (in this example, Sour ceSer vi cel and
Sour ceSer vi ce2) are deployed on the same host. This is the computer
running the application that hosts the rout i ng plug-in. The multiple
destination services may be running on different host computers.

Defining multiple routes in an Artix configuration file

The second approach is to list multiple entries for the
pl ugi ns: routing: wsdl _url variable, as shown in the following example:

plugi ns:routing:wsdl _url=["../../etc/routel.wsdl",
"../l..letc/route2. wsdl "];

In this case, each WSDL file may include one, or more, routing directives.
When listing multiple WSDL files, use the list format for specifying
configuration variables

Further information For details of optional router configuration settings, see “Optimizing Router
Performance” on page 133.

For details of all the configuration options available for the rout i ng plug-in,
see the Artix Configuration Reference.

128

../config_ref/index.htm

Defining Routes in an Artix Deployment Descriptor

Defining Routes in an Artix Deployment

Descriptor

Overview

Defining multiple routes

This section explains how to define multiple routes using an Artix
deployment descriptor. This approach is illustrated in the
advanced\ cont ai ner\ depl oy_r out es demo.

In the depl oy_r out es demo, the Artix container process starts under the
global configuration scope defined in the arti x. cf g configuration file.

Note: In this case, the routing plug-in is not loaded during startup
because it is not listed in the or b_pl ugi ns configuration entry.

The following extract is from one of the WSDL files used in the
advanced\ cont ai ner\ depl oy_r out es demo.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions nane="BaseService"
t ar get Namespace="ht t p: / / www. i ona. cond bus/ denos/ r out er "

xm ns=
xm ns:
xm ns:
xm ns:
xm ns:
xm ns:

"http://schemas. xm soap. or g/ wsdl /"

xs="htt p: // wav w3. or g/ 2001/ XM_Schena"
tns="http://ww i ona. coni bus/ denos/ r out er "
soap="htt p: // schemas. xm soap. or g/ wsdl / soap/ "
corba="http://schenas. i ona. coni bi ndi ngs/ cor ba"
routing="http://schenas.iona. conirouting">

<port Type nane="GoodbyeServi cePort Type" >
<oper at i on nanme="say_goodbye" >

<i nput nessage=...nane=../>
<out put message=...nane=../>

</ oper at i on>
</ por t Type>

129

CHAPTER 7 | Deploying an Artix Router

<bi ndi ng name="SQAPCGoodbyeSer vi ceBi ndi ng" type="t ns: CoodbyeSer vi cePort Type" >
<soap: bi ndi ng styl e="rpc" transport="http://schenas. xn soap. or g/ soap/ http"/>
<oper ati on name="say_goodbye" >
<soap: operation ..[>

</ oper at i on>
</ bi ndi ng>

<bi ndi ng name=" CCORBAGoodbyeSer vi ceBi ndi ng" type="t ns: GoodbyeSer vi cePort Type" >
<cor ba: bi ndi ng reposi toryl D="1DL: GoodbyeSer vi cePort Type: 1. 0"/ >
<oper ati on name="say_goodbye" >

</ oper at i on>
</ bi ndi ng>

<servi ce name="SQAPHTTPServi ce">
<port bi ndi ng="t ns: SOAPGoodbyeSer vi ceBi ndi ng" nane=" SOAPHTTPPort " >
<soap: address | ocati on=../>
</ port >
</ servi ce>

<servi ce name="COORBASoapSer vi ce">
<port bi ndi ng="t ns: CORBAGoodbyeSer vi ceBi ndi ng" nanme="CORBASoapPort ">
<cor ba: pol i cy poanane=../>
<cor ba: address | ocation=./>
</ port>
</ servi ce>

<routi ng: route name="Cor baToSoap">
<routi ng: source port="CCRBASoapPort" servi ce="tns: CCRBASoapSer vi ce"/ >
<routing: destination port="SOAPHTTPPort" service="tns: SOAPHTTPSer vi ce"/ >
</routing: rout e>
</ defi ni ti ons>

130

Defining Routes in an Artix Deployment Descriptor

The corresponding Artix deployment descriptor includes the following
information:

<?xm version="1.0" encodi ng="utf-8"?>
<ml: depl oynent Descri ptor xm ns: ml="htt p://schenas. i ona. coni depl oy" >

<servi ce xm ns: servi cens="http://ww:. i ona. cond bus/ denos/ r out er " >
servi cens: CORBASoapSer vi ce
</ servi ce>

<wsdl _| ocati on>
../../routes/soap_route.wsdl
</wsdl _| ocati on>

<pl ugi n>
<nane>r out i ng</ nanme>
<t ype>Cxx</t ype>
<i npl ement ati on>it_routing</i npl ement ati on>
<pr ovi der _nanespace>

http: //schenas. i ona. conl rout i ng

</ pr ovi der _namespace>

</ pl ugi n>

</ mL: depl oynent Descri pt or >

In the example deployment descriptor, the opening servi ce element
specifies the t ar get Nanespace as an attribute and the source service name
as the element value. This information links the deployment descriptor to a
specific service. The wsdl _| ocat i on element provides the path to the WSDL
file that includes the related routing directive. The pl ugi n element includes
the information needed to load the routi ng plug-in.

In the advanced\ cont ai ner\ depl oy_pl ugi n demo, each WSDL file includes
only one routing directive. However, a WSDL file could include multiple
routing directives and be referenced in the wsdl _I ocat i on element in
multiple deployment descriptors. In this scenario, each deployment
descriptor uniquely identifies a source service using the content in the
opening servi ce element.

131

CHAPTER 7 | Deploying an Artix Router

Deploying multiple routes

Specifying persistent deployment

Further information

132

In the depl oy_rout es demo, the container client application
(i t _cont ai ner _admi n) is used to deploy two routes, each of which is
specified in a dedicated deployment descriptor file. For example:

it_container_adnin -deploy -file

../ ..Ilroutes/depl oyCCRBASoapSer vi ce. xm
it_container_admn -deploy -file

../ ..Ilroutes/depl oyCCRBAHTTPSer vi ce. xm

Each deployment descriptor describes a single route, which is identified by
the t ar get Nanespace assigned to the WSDL file that contains the routing
directive and the name of the source service.

With the deployment descriptor approach, you can specify a persistent
deployment directory. When you initially deploy each WSDL file, a copy of
the deployment descriptor is placed into this directory.

When you restart the container, it automatically redeploys all the WSDL files
identified in these deployment descriptors. In this case, the effect is the
same as the configuration approach (that is, all routes are deployed during
the startup).

For more details on the Artix container, deployment descriptors, and
persistent deployment, see Chapter 6.

For working examples of the rout i ng plug-in deployed in an Artix container,
see any of the demos in the following directory:

Instal | Dir\\artix\Version\denmos\routing
Alternatively, for a more advanced example, see:

Install Dir\artix\ Version\ denos\ advanced\ cont ai ner\ depl oy_r out es

Optimizing Router Performance

Optimizing Router Performance

Overview

Setting router proxification

This section describes how to configure the following router optimizations in
an Artix configuration file:

® “Setting router proxification”

® “Setting router pass-through”

® “Setting CORBA bypass”

You can specify the maximum number of proxified server references in the
router using the pl ugi ns: rout i ng: proxy_cache_si ze variable. This is the
number of references that have been converted into a proxy and are ready
for invocation. The default is 50.

pl ugi ns: rout i ng: r ef er ence_cache_si ze specifies the maximum number of
unproxified server references in the router. The default is unbounded. This
refers to the number of references that must be proxified before they can be
invoked on.

Having a smaller proxy_cache_si ze enables the router to conserve memory,
while still being ready for invocations. Proxified references use more
resources than unproxified references (for example, for client connections
and bindings).

For example, take a SOAP-HTTP client and CORBA server banking system
with 1,500 accounts. By default, the 50 most recently used accounts are
present in the router as proxified references. The next 1450 most recently
used are unproxified references.

Note: Router proxification is available for the following bindings and
transports: CORBA, SOAP, HTTP, and IIOP Tunnel.

133

CHAPTER 7 | Deploying an Artix Router

Setting router pass-through

Setting CORBA bypass

Further information

134

You can specify whether the router receives a message and sends it directly
to the destination without parsing. This only applies when the source and
destination use the same binding. By default,

pl ugi ns: rout i ng: use_pass_t hrough is set to true. The router copies the
message buffer directly from the source endpoint to the destination endpoint
(if both use the same binding). This disables reference proxification for
same-protocol routes (for example, HTTP-to-HTTP).

However, if you want all connections to go through the router, set this
variable to f al se. This means that all references are used across the router.

WARNING: Do not enable pass-through in a secure router. When
pass-through is enabled, the authentication and authorization steps are
skipped. Therefore, you must always set

pl ugi ns: rout i ng: use_pass_t hrough to f al se in a secure router. See
IONA Security Advisory, ISA130905.

For CORBA integrations, you can use location forwarding to connect CORBA
clients directly to CORBA servers, and thus bypass the Artix r out i ng plug-in
entirely.

Set the pl ugi ns: rout i ng: use_bypass configuration variable to t rue to
specify that the router sends CORBA Locat eRepl y messages back to the
client. The default is f al se.

For more information on Artix router optimizations, see the Artix
Configuration Reference.

../config_ref/index.htm
../config_ref/index.htm
http://www.iona.com/support/docs/artix/security_advisories/ISA130905.txt

In this chapter

CHAPTER 8

Deploying an Artix
Transformer

Artix provides an XSLT transformer service that can be
configured to run as a servant process that replaces an Artix
server.

This chapter discusses the following topics:

The Artix Transformer page 136
Standalone Deployment page 139
Deployment as Part of a Chain page 142

135

CHAPTER 8 | Deploying an Artix Transformer

The Artix Transformer

Overview

Deployment Patterns

Standalone deployment

136

The Artix transformer provides a means of processing messages without
writing application code. The transformer processes messages based on
XSLT scripts and returns the result to the requesting application. XSLT
stands for Extensible Stylesheet Language Transformations.

These XLST scripts can perform message transformations, such as
concatenating two string fields, reordering the fields of a complex type, and
truncating values to a given number of decimal places. XSLT scripts can also
be used to validate data before passing it onto a Web service for processing,
and a number of other applications.

The Artix transformer is implemented as an Artix plug-in. Therefore, it can
be loaded into any Artix process. This makes it extremely flexible in how it
can be deployed in your environment. If the speed of calls or security is an
issue, the transformer can be loaded directly into an application. If you need
to spread resources across a number of machines, the transformer plug-in
can be loaded in a separate process.

There are two main patterns for deploying the Artix transformer:
® Standalone deployment
® Deployment as part of a chain

The first pattern is to deploy the transformer by itself. This is useful if your
application is doing basic data manipulation that can be described in an
XSLT script. The transformer replaces the server process and saves you the
cost of developing server application code. This style of deployment can also
be useful for performing data validation before passing requests to a server
for processing.

The Artix Transformer

The most straightforward way to deploy the transformer is to deploy it as a
separate servant process hosted by the Artix container server. When
deployed in this way the transformer receives requests from a client,
processes the message based on supplied XSLT scripts, and replies with the
results of the script. In this configuration, shown Figure 8, the transformer
becomes the server process in the Artix solution.

Figure 8: Artix Transformer Deployed as a Servant

Client

Artix Artix Service
Transformer

You can modify the deployment pattern shown in Figure 8 by eliminating
the Artix container server and having your client directly load the
transformer’s plug-in as shown in Figure 9. This saves the overhead of
making calls outside of the client process to reach the transformer However,
it can reduce the overall efficiency of your system if the transformer requires
a large amount of resources to perform its work.

Figure 9: Artix Transformer Loaded by a Client

i Client E
=)]
| . S| |
: :
: Artix
: Transformer '

137

CHAPTER 8 | Deploying an Artix Transformer

Deployment as part of a chain

138

The second pattern is to deploy the Artix transformer as part of a Web
service chain controlled by the Web service chain builder. This deployment
is useful if you need to connect legacy clients to updated servers whose
interfaces may have changed or are connecting applications that have
different interfaces. It can also be useful for a range of applications where
data transformation is needed as part of a larger set of business logic.

Figure 10 shows an example of this type of deployment where the
transformer and the chain builder are both hosted by the Artix container
server. The chain builder directs the requests to the transformer which
transforms messages. When the transformer returns the processed data, the
chain builder then passes it onto the server. In this example, the server
returns the results to the client without further processing, but the results
can also be passed back through the transformer. Neither the client nor the
server need to be aware of the processing.

Figure 10: Artix Transformer Deployed with the Chain Builder

@ Artix Service

Client Chain Builder Server

Y
I||él|

Artix
Transformer

You could modify this deployment pattern in a number of ways, depending
on how you allocate resources. For example, you can configure the client
process to load the chain builder and the transformer. You can also load the
chain builder and the transformer into separate processes.

Standalone Deployment

Standalone Deployment

Overview

Updating the orb_plugins list

Adding an Artix endpoint
definition

To deploy an instance of the Artix transformer you must first decide what
process is hosting the transformer’s plug-in. You must then add the
following to the process configuration scope:

® The transformer plug-in, xsl t.

® An Artix endpoint configuration to represent the transformer.

® The transformer’s configuration information.

Configuring the application to load the transformer requires adding it to the
application’s or b_pl ugi ns list. The plug-in name for the transformer is xsl t .
Example 13 shows an or b_pl ugi ns list for a process hosting the
transformer.

Example 13: Plug-in List for Using XSLT

orb_plugi ns={"xslt", "xm _|log_strean'};

The transformer is defined as a generic Artix endpoint. To instantiate it as a
servant, Artix must know the following details:

® The location of the Artix contract that defines the transformer’s
endpoint.

® The interface that the endpoint implements.

® The physical details of its instantiation.

This information is configured using the configuration variables in the
arti x: endpoi nt namespace. These variables are described in Table 14.

Table 14: Artix Endpoint Configuration

Variable

Function

artix: endpoi nt: endpoi nt _| i st

Specifies a list of the endpoints and their names for
the current configuration scope.

artix: endpoi nt : endpoi nt _nane: wsdl _| ocat i on Specifies the location of the contract describing this

endpoint.

139

CHAPTER 8 | Deploying an Artix Transformer

Table 14: Artix Endpoint Configuration

Variable Function

arti x: endpoi nt : endpoi nt _nane: wsdl _port Specifies the port that this endpoint can be
contacted on. Use the following syntax:

[{servi ce_gnane}] servi ce_name[/ port_nare]
For example:
{http://wwv nycorp. con}ny_service/ ny_port

Configuring the transformer Configuring the transformer involves two steps that enable it to instantiate
itself as a servant process and perform its work.
® Configuring the list of servants.
® Configuring the list of scripts.

Configuring the list of servants

The name of the endpoints that will be brought up as transformer servants is
specified in pl ugi ns: xsl t: servant _| i st. The endpoint identifier is one of
the endpoints defined in arti x: endpoi nt : endpoi nt _| i st entry. The
transformer uses the endpoint’s configuration information to instantiate the
appropriate servants

Note: artix: endpoi nt: endpoi nt_|i st must be specified in the same
configuration scope.

Configuring the list of scripts

The list of the XSLT scripts that each servant uses to process requests is
specified in pl ugi ns: xsl t : endpoi nt _nane: oper ati on_map. Each endpoint
specified in the servant list has a corresponding operation map entry. The
operation map is specified as a list using the syntax shown in Example 14.

Example 14: Operation Map Syntax

pl ugi ns: xsl t: endpoi nt _nane: oper anti on_nap = ["wsdl Ql1@i | enanel"
, "wsdl 2@i | ename2", ..., "wsdl QpN@i | enameN'];

140

Configuration example

t ransf or ner

{

Standalone Deployment

Each entry in the map specifies a logical operation that is defined in the
service's contract by an oper ati on element, and the XSLT script to run
when a request is made on the operation. You must specify an XSLT script
for every operation defined for the endpoint. If you do not, the transformer
raises an exception when the unmapped operation is invoked.

Example 15 shows the configuration scope of an Artix application,

transf or ner, that loads the Artix Transformer to process messages. The
transformer is configured as an Artix endpoint named hanni bal and the
transformer uses the endpoint information to instantiate a servant to handle
requests.

Example 15: Configuration for Using the Artix Transformer

orb_plugins = ["local _| og_strean', “xslt"];

artix: endpoi nt: endpoi nt _|ist = ["hannibal "];

arti x: endpoi nt : hanni bal : wsdl _| ocati on = "transformer.wsdl ";
artix: endpoi nt: hanni bal : wsdl _port = "{http://transformer.conixslt}WiteHat/WitePort";

pl ugi ns: xsl t: servant _| i st =["hanni bal "]
pl ugi ns: xsl t: hanni bal : operati on_map = ["opl@./script/opl.xsl", "op2@./script/op2.xsl",

"op3@. /script/op3. xsl "]

}

141

CHAPTER 8 | Deploying an Artix Transformer

Deployment as Part of a Chain

Overview

Procedure

142

Deploying the Artix Transformer as part of Web service chain allows you to
use it as part of an integration solution without needing to necessarily
modify your applications. The Artix Web service chain builder facilitates the
placement of the transformer into a series of Web service calls managed by
Artix.

The plug-in architecture of the transformer and the chain builder allow for
you to deploy this type of solution in a variety of ways depending on what is
the best fit for your particular solution. The most straightforward way to
deploy this type of solution is to deploy both the transformer and the chain
builder into the same process. This is the deployment that will be used to
outline the steps for configuring the transformer to be deployed as part of a
Web service chain. In general, you will need to complete all of the same
steps regardless of how you choose to deploy your solution.

To deploy the transformer as part of a Web service chain you need to
complete the following steps:

1. Modify your process's configuration scope to load the transformer and
the chain builder.

2. Configure Artix endpoints for each of the applications that will be part
of the chain.

3. Configure an Artix endpoint to represent the transformer.
Configure the transformer.

5. Configure the service chain to include the transformer at the
appropriate place in the chain.

Updating the orb_plugins list

Configuring the endpoints in the
chain

Configuring the transformer

Placing the transformer in the
chain

Deployment as Part of a Chain

Configuring the application to load the transformer plug-in and the chain
builder plug-in requires adding them to the process’s or b_pl ugi ns list. The
plug-in name for the transformer is xsl t and the plug-in name for the chain
builder is ws_chai n. Example 16 shows an orb_pl ugi ns list for a process
hosting the transformer and the chain builder.

Example 16: Loading the Artix Transformer as Part of a Chain

orb_pl ugi ns={"xslt", "ws_chain", "xm _log_strean'};

The Artix Web service chain builder uses generic Artix endpoints to
represent all of the applications in a chain, including the transformer.
Table 14 on page 139 shows the configuration variables used to configure a
generic Artix endpoint.

The transformer requires the same configuration information regardless of
how it is deployed. You must provide it with the name of the endpoints it
will instantiate from the list of endpoints and provide each instantiation with
an operation map. For more information about providing this information
see “Configuring the transformer” on page 140.

The chain builder instantiates a servant for each endpoint specified in its
servant list. Each servant can have a multiple operations. For each operation
that will be involved in a Web service chain, you need to specify a list of
endpoints and their operations that make up the chain. This list is specified
using pl ugi ns: chai n: endpoi nt _name: oper at i on_nane: ser vi ce_chai n.

To include the transformer in one of the chains, you add the appropriate
operation and endpoint names for the transformer at the appropriate place
in the service chain.

For more information on configuring the chain builder see “Deploying a
Service Chain” on page 147.

143

CHAPTER 8 | Deploying an Artix Transformer

Specifying an XSLT trace filter

Configuration example

144

You can use the pl ugi ns: xsl t : endpoi nt _nane: trace_filter variable to
trace and debug the output of the XSLT engine. This configuration variable
is optional. For example:

pl ugi ns: xsl t: endpoi nt _nane:trace_filter =
" | NPUT+TEMPLATE+EL EMENT+CGENERATE+SELECT™ ;

These settings are described as follows:

| NPUT Traces the XML input passed to the XSLT engine.
TEMPLATE Traces template matches in the XSLT script.
ELEMENT Traces element generation.

GENERATE Traces generation of text and attributes.

SELECT Traces node selections in the XSLT script.

Example 17 shows a configuration scope that contains configuration
information for deploying the transformer as part of a Web service chain.

Example 17: Configuring the Artix Transformer in a Web Service Chain

t r ansf or ner

{

orb_plugins = ["ws_chain", "xslt"];
event _log:filters = ["*=FATAL+ERRCRtWARNI NG', "I T_XSLT=*"];

bus: gnarme_al i as: ol ddient = "{http://bank.con}ATM;
bus:initial _contract:url:olddient = "bank.wsdl";

bus: gnarme_al i as: newServer = "{http://bank.con}newATM ;
bus:initial _contract:url:newServer = "bank.wsdl";

artix: endpoi nt:endpoint_list = ["transformer"];

artix: endpoi nt: transforner:wsdl _| ocati on = "bank. wsdl ";
artix: endpoi nt: transforner:wsdl port =
"{http://bank. con}transformner/transformer_port";

pl ugi ns: xslt:servant _list = ["transforner"];
pl ugi ns: xsl t: transf ormer: operati on_map =
["transfor m@r ansf or ner. xsl "] ;

Deployment as Part of a Chain

Example 17: Configuring the Artix Transformer in a Web Service Chain

pl ugi ns: chai n: servant _|ist = ["oldQient"];
pl ugi ns: chai n: ol dd i ent: client_operation: service_chain =
["transform@ransforner”, "w thdraw@ewServer"];
b

Note: Even though a list of servants can be specified, only one servant is
currently supported in a process.

145

CHAPTER 8 | Deploying an Artix Transformer

146

CHAPTER 9

Deploying a
Service Chain

Artix provides a chain builder that enables you to create a
series of services to invoke as part of a larger process.

In this chapter This chapter includes the following sections:
The Artix Chain Builder page 148
Configuring the Artix Chain Builder page 150

147

CHAPTER 9 | Deploying a Service Chain

The Artix Chain Builder

Overview

The Artix chain builder enables you to link together a series of services into a
multi-part process. This is useful if you have processes that require a set
order of steps to complete, or if you wish to link together a number of
smaller service modules into a complex service.

Chaining services together

148

For example, you may have four services that you wish to combine to
service requests from a single client. You can deploy a service chain like the
one shown in Figure 11.

Figure 11: Chaining Four Servers to Form a Single Service

Artix Service

v

J
il

Client Chain Builder ‘//' @
—

™

IEI
]

SERVER 4 SERVER 3

Assumptions

The Artix Chain Builder

In this scenario, the client makes a single request and the chain builder
dispatches the request along the chain starting at Server 1. The chain
builder takes the response from Server 1 and passes that to the next
endpoint in the chain, Server 2. This continues until the end of the chain is
reached at Server 4. The chain builder then returns the finished response to
the client.

The chain builder is implemented as an Artix plug-in so it can be deployed
into any Artix process. The decision about which process that you deploy it
in depends on the complexity of your system, and also how you choose to

allocate resources for your system.

To make the discussion of deploying the chain builder as straightforward as
possible, this chapter assumes that you are deploying it into an instance of
the Artix container server. However, the configuration steps for configuring
and deploying a chain builder are the same no matter which process you
choose to deploy it in.

149

CHAPTER 9 | Deploying a Service Chain

Configuring the Artix Chain Builder

Overview

Adding the chain builder in the
orb_plugins list

Configuring the services in the
chain

150

To configure the Artix chain builder, complete the following steps:
1. Add the chain builder's plug-in to the or b_pl ugi ns list.
2. Configure all the services that are a part of the chain.

3. Configure the chain so that it knows what servants to instantiate and
the service chain for each operation implemented by the servant.

Configuring the application to load the chain builder’s plug-in requires
adding it to the application’s orb_pl ugi ns list. The plug-in name for the
chain builder is ws_chai n. Example 18 shows an orb_pl ugi ns list for a
process hosting the chain builder.

Example 18: Plug-in List for Using a Web Service Chain

orb_pl ugi ns={"ws_chai n", "xm _| og_stream'};

Each service that is a part of the chain, and the client that makes requests
through the chain service, must be configured in the chain builder's
configuration scope. For example, you must supply the service name and
the location of its contract.

This provides the chain builder with the necessary information to instantiate
a servant that the client can make requests against. It also supplies the
information needed to make calls to the services that make up the chain.

Configuring the Artix Chain Builder

To configure the services in the chain, use the configuration variables in
Table 15.

Table 15: Artix Service Configuration

Variable Function

bus: gnane_al i as: servi ce Specifies a service name using the

following syntax:

{servi ce_gnane}servi ce_name

For example:

{http://ww nycor p. con} ny_servi ce

bus:initial _contract:url:service Specifies the location of the contract

describing this service. The default is the
current working directory.

Configuring the service chains

The chain builder requires you to provide the following details

® Alist of services that are clients to the chain builder.

® Alist of operations that each client can invoke.

® Service chains for each operation that the clients can invoke.

Specifying the servant list

The first configuration setting tells the chain builder how many servants to
instantiate, the interfaces that the servants must support, and the physical
details of how the servants are contacted. You specify this using the

pl ugi ns: chai n: servant _| i st variable. This takes a list of service names
from the list of Artix services that you defined earlier in the configuration
scope.

Specifying the operation list

The second part of the chain builder’'s configuration is a list of the operations
that each client to the chain builder can invoke. You specify this using

pl ugi ns: chai n: endpoi nt : operati on_| i st where endpoi nt refers to one of
the endpoints in the chain’s service list.

151

CHAPTER 9 | Deploying a Service Chain

pl ugi ns: chai n: endpoi nt : oper at i

152

pl ugi ns: chai n: endpoi nt : operat i on_| i st takes a list of the operations that
are defined in <oper at i on> tags in the endpoint’s contract. You must list all
of the operations for the endpoint or an exception will be thrown at runtime.
You must also be sure to enter a list of operations for each endpoint
specified in the chain’s service list.

Specifying the service chain

The third piece of the chain builder's configuration is to specify a service
chain for every operation defined in the endpoints listed in

pl ugi ns: chai n: servant _l i st. This is specified using the

pl ugi ns: chai n: endpoi nt : oper at i on: ser vi ce_chai n configuration variable.
The syntax for entering the service chains is shown in Example 19.

Example 19: Entering a Service Chain
on: servi ce_chai n=["opl@ndpt 1", "op2@ndpt2", ..., "opN@ndptN'];

For each entry, the syntax is as follows:

endpoi nt Specifies the name of an endpoint from the chain builder’s
servant list

operation Specifies one of the operations defined by an oper at i on entry
in the endpoints contract. The entries in the list refer to
operations implemented by other endpoints defined in the
configuration.

opN Specifies one of the operations defined by an oper at i on entry
in the contract defining the service specified by endpt N The
operations in the service chain are invoked in the order
specified. The final result is returned back to the chain
builder which then responds to the client.

Instantiating proxy services

Configuration example

Configuring the Artix Chain Builder

The chain invokes on other services, and for this reason, it instantiates proxy
services. It can instantiate proxies when the chain servant starts (the
default), or later, when a call is made. The following configuration variable
specifies to instantiate proxy services when a call is made:

plugins:chain:init_on_first_call ="true";

This defaults to f al se, which means that proxies are instantiated when the
chain servant starts. However, you might not be able to instantiate proxies
when the chain servant is started because the servant to call has not
started. For example, this applies when using the Artix locator or UDDI.

Example 16 shows the contents of a configuration scope for a process that
hosts the chain builder.

Table 16: Configuration for Hosting the Artix Chain Builder

col aboration {
orb_plugins = ["ws_chain"];

bus: gname_al i as: cust orrer = "{http://needs. con} PCC';
bus:initial _contract:url:custoner = "order.wsdl";

bus: gname_al i as: pm = "{http://CORBSr Us. conjprioritize";
bus:initial _contract:url:pm= "nanager.wsdl ";

bus: gname_al i as: desi gner = "{http://CORBSrUs. con}desi gn";
bus:initial _contract:url:designer = "designer.wsdl ";

bus: gname_al i as: bui | der = "{http://CRBSrUs. con} pr oduce";
bus:initial _contract:url:builder = "engi neer.wsdl";

pl ugi ns: chai n: servant _|ist = ["customer"];

pl ugi ns: chai n: cust oner : r equest Sol uti on: servi ce_chain =

["estimatePriority@n, "nmakeSpecification@esigner"”,
"bui | dCRB@vi | der "] ;

153

CHAPTER 9 | Deploying a Service Chain

Configuration guidelines When Web services are chained, the following rules must be obeyed:

® The input type of the chain service (in this example, cust oner) must
match the input of the first service in the chain (pm.

® The output type of a previous service in the chain must match the
input type of the next service in the chain.

® The output type of the last service in the chain must match the output
of the chain service.

® One configuration entry must exist for each operation in the port Type
of the chain service (for example, cust omer). This simple example
shows only one entry, and the port Type for the customer endpoint has
only one operation (request Sol uti on).

® The chain service can invoke only on services that have one port.

® Finally, not all operations must be configured in the chain, only those
that are invoked upon. This means that no check is made when all
operations are mapped to a chain. If a client invokes on an unmapped
operation, the chain service throws a Faul t Except i on.

154

In this chapter

CHAPTER 10

Deploying High

Availability

Artix uses Berkeley DB high availability to provide support for
replicated services. This chapter explains how to configure and

deploy high availability in Artix.

This chapter discusses the following topics:

Introduction page 156
Setting up a Persistent Database page 159
Configuring Persistent Services for High Availability page 160
Configuring Locator High Availability page 164
Configuring Client-Side High Availability page 167

155

CHAPTER 10 | Deploying High Availability

Introduction

Overview

How it works

156

Scalable and reliable Artix applications require high availability to avoid any
single point of failure in a distributed system. You can protect your system
from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the
same service; and together, these act as a single logical service. Clients
invoke requests on the replicated service, and Artix routes the requests to
one of the member replicas. The routing to a replica is transparent to the
client.

Artix high availability support is built on Berkeley DB, and uses its
replication features. Berkeley DB has a master-slave replica model where a
single replica is designated the master, and can process both read and write
operations from clients. All other replicas are slaves and can only process
read operations. Slaves automatically forward write requests to masters, and
masters push all updates out to slaves, as shown in Figure 12.

Figure 12: Artix Master Slave Replication

Artix Artix

Service (A) Service (B)
.]

Master_ Slave

UPDATE ’

|

v

Updates

pushed

from master
Berkeley Berkeley
Database Database

Electing a master

Introduction

Using Artix high availability, when members of a replicated cluster start up,
they all start up as slaves. When the cluster members start talking to each
other, they hold an election to select a master.

Election protocol
The protocol for selecting a master is as follows:

1. For an election to succeed, a majority of votes must be cast. This
means that for a group of three replicas, two replicas must cast votes.
For a group of four, three replicas must cast votes; for a group of five,
three must cast votes, and so on.

2. If a slave exists with a more up-to-date database than the other slaves,
it wins the election.

3. If all the slaves have equivalent databases, the election result is based
on the configured priority for each slave. The slave with the highest
priority wins.

Note: Because voting is done by majority, it is recommended that high
availability clusters have an odd number of members. The recommended
minimum number of replicas is three.

After the election

When a master is selected, elections stop. However, if the slaves lose
contact with the master, the remaining slaves hold a new election for
master. If a slave can not get a majority of votes, nobody is promoted.

At this point, the database remains as a slave, and keeps holding elections
until a master can be found. If this is the first time for the database to start
up, it blocks until the first election succeeds, and it can create a database
environment on disk.

If this is not the first time that the database has started up, it starts as a
slave (using the database files already on disk from its previous run), and
continues holding elections in the background anyway.

Auto-demotion

In the event of a network partition, by default, the master replica is
configured to automatically demote itself to a slave when it loses contact
with the replica cluster. This prevents the creation of duplicate masters.

157

CHAPTER 10 | Deploying High Availability

Request forwarding

Setting up high availability

158

Slave replicas automatically forward write requests to the master replica in a

cluster. Because slaves have read-only access to the underlying Berkeley DB

infrastructure, only the master can make updates to the database. This

feature works as follows:

1. When a replicated server starts up, it loads the request _f or war der
plug-in.

2. When the client invokes on the server, the request _f orwarder plug-in
checks if it should forward the operation, and where to forward it to.
The server programmer indicates which operations are write operations
using an API.

3. If the server is running as a slave, it tries to forward any write
operations to the master. If no master is available, an exception is
thrown to the client, indicating that the operation cannot be processed.

Because the forwarding works as an interceptor within a plug-in, there is
minimal code impact to the user. No servant code is impacted. For details
on how to configure request forwarding, see “Specifying your orb_plugins
list” on page 161.

You can configure all the necessary settings in an Artix configuration file (see
“Configuring Persistent Services for High Availability” on page 160).

Replication is supported for C++ and Java service development, and by the
Artix locator (see “Configuring Locator High Availability” on page 164).

Setting up a Persistent Database

Setting up a Persistent Database

Overview

Using the Persistence API

Further information

To enable a service able to take advantage of high availability, it needs to
work with a persistent database. This is created using a C++ or Java API.
There are no configuration steps required. The Artix configuration variables
for persistent databases are set with default values that should not need to
be changed.

Artix provides set of C++ and Java APIs for manipulating persistent data.
For example, the C++ API uses the Persi st ent Map template class. This
class stores data as name value pairs. This API is defined in

i t_bus_pdk\ persi st ent _map. h.

This APl enables you to perform tasks such as the following:

® (Create a Persi st ent Map database.

® Insert data into a Per si st ent Map.

® Get data from a Persi st ent Map.

® Remove data from a Per si st ent Map.

For more details, see the Developing Artix Applications in C++. For details
of the Java implementation, see Developing Artix Applications in Java.

For detailed information on the Berkeley DB database environment, see
http://www.sleepycat.com/

Artix ships Berkeley DB 4.2.52. Alternatively, you can download and build
Berkeley DB to obtain additional administration tools (for example, db_dunp,
db_verify, db_recover, do_stat).

159

http://www.sleepycat.com/
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 10 | Deploying High Availability

Configuring Persistent Services for High

Availability
Overview
Configuring a service for

replication

Specifying a replication list

160

For a service to participate in a high availability cluster, it must first be
designed to use persistent maps (“Setting up a Persistent Database” on
page 159). However, services that use persistent maps are not replicated
automatically; you must configure your service to be replicated.

To replicate a service, you must add a replication list to your configuration,
and then add configuration scopes for each replicated instance of your
service. Typically, you would create a scope for your replica cluster, and
then create sub-scopes for each replica. This avoids duplicating
configuration settings that are common to all replicas, and separates the
cluster from any other services configured in your domain.

To specify a cluster of replicas, use the following configuration variable:
plugi ns: arti x: db: repli cas
This takes a list of replicas specified using the following syntax:

Repl i caName=Host Narre: Por t Num

For example, the following entry configures a cluster of three replicas spread
across machines named j i ni, noel , and nitch.

plugi ns: arti x: db: repl i cas=[“repl=j i m:2000", “rep2=m tch: 3000",
“rep3=noel : 4000"];

Note: It is recommended that you set Repl i caNane to the same value as
the replica’s sub-scope (see “Configuration example” on page 162).

Specifying your orb_plugins list

Specifying replica priorities

Configuring Persistent Services for High Availability

Because IIOP is used for communication between replicas, you must include
the following plug-ins in your replica’s or b_pl ugi ns list:

® iiop_profile
® giop
® iiop

In addition, to enable automatic forwarding of write requests from slave to
master replicas, include the request _f orwar der plug-in. You must also
specify this plug-in as a server request interceptor. The following example
shows the required configuration:

orb plugins = ["xmfile_|og_streant, "local | og_streant,
"request _forwarder", "iiop_profile", "giop", "iiop"];

bi ndi ng: arti x: server _request _interceptor_|ist=
"request _forwarder";

This configuration is loaded when the replica service starts up. It applies to
both C++ and Java applications.

Note: To enable forwarding of write requests, programmers must have
already specified in the server code which operations can write to the
database. For details, see “Forwarding write requests” on page 172.

In each of the sub-scopes for the replicas, you must give each replica a
priority, and configure the IIOP connection used by the replicas to conduct
elections. This involves the following configuration variables:

161

CHAPTER 10 | Deploying High Availability

plugins:artix:db:priority Specifies the replica priority. The
higher the priority the more likely the
replica is to be elected as master. You
should set this variable if you are using
replication.

There is no guarantee that the replica
with the highest priority is elected
master. The first consideration for
electing a master is who has the most
current database.

Note: Setting a replica priority to 0
means that the replica is never elected
master.

pl ugi ns: artix: db:iiop: port Specifies the IIOP port the replica
starts on. This entry must match the
corresponding entry in the replica list.

Configuration example
The following example shows a simple example in an Artix configuration file:

ha_cl ust er {

pl ugi ns: arti x:db:replicas = [“repl=jini:2000",
“rep2=m t ch: 3000", “rep3=noel : 4000"];

repl{

plugins:artix:db:priority = 80;

pl ugi ns: arti x: db:iiop:port = 2000;
b
rep2{

pl ugi ns: artix:db:priority = 20;

pl ugi ns: arti x: db:iiop:port = 3000;
b
rep3{

plugins:artix:db:priority = 0O;

pl ugi ns: artix: db:iiop:port = 4000;
b

162

Configuring a minority master

Configuring request forward
logging

Configuring Persistent Services for High Availability

Configuration guidelines

You should keep the following in mind:

® By default, the DB home directory defaults to Repl i caConf i gScope_db
(for example, rep1_db), where Repl i caConf i gScope is the inner-most
replica configuration scope. If this directory does not already exist, it
will be created in the current working directory.

® All replicas must be represented by separate WSDL ports in the same
WSDL service contract. By default, you should specify the inner-most
replica scope as the WSDL port name (for example, rep1).

It is recommended that high availability clusters have an odd number of
members, and the recommended minimum number is three. However, it is
possible to use a cluster with two members if you specify the following
configuration:

pl ugi ns: arti x: db: al | ow _minority_master=true;

This allows a lone slave to promote itself if it sees that the master is
unavailable. This is only allowed when the replica cluster has two members.
This variable defaults to f al se (which means it is not allowed by default). If
it is set to true, a slave that cannot reach its partner replica will promote
itself to master, even though it only has fifty per cent of the votes (one out of
two).

WARNING: This variable must be used with caution. If it is set to t rue,
and the two replicas in the cluster become separated due to a network
partition, they both end up as master. This can be very problematic
because both replicas could make database updates, and resolving those
updates later could be very difficult, if not impossible.

You can also specify to output logging from the r equest _f orwar der plug-in.
To do this, specify the following logging subsystem in your event log filter:

event _log:filters =
["1T_BUS. SERVI CE. REQUEST_FCRWARDER=I NFO_LOMWARNFERRCR+FATAL" | ;

163

CHAPTER 10 | Deploying High Availability

Configuring Locator High Availability

Overview

Setting locator persistence

Setting load balancing

164

Replicating the locator involves specifying the same configuration that you
would use for other Artix services, as described in “Configuring Persistent
Services for High Availability” on page 160. However, there are some
additional configuration variables that also apply to the locator.

To enable persistence in the locator, set the following variable:
pl ugi ns: | ocat or: persi st _data="true";

This specifies whether the locator uses a persistent database to store
references. This defaults to fal se, which means that the locator uses an
in-memory map to store references.

When replicating the locator, you must set persi st_data to true. If you do
not, replication is not enabled.

When persi st _dat a is set to true, the load balancing behavior of the
locator changes. By default, the locator uses a round robin method to hand
out references to services that are registered with multiple endpoints.
Setting persi st _dat a to true causes the locator to switch from round robin
to random load balancing.

You can change the default behavior of the locator to always use r andom
load balancing by setting the following configuration variable:

pl ugi ns: | ocat or: sel ecti on_net hod = “randonf;

Configuration example

Using multiple locator replica
groups

Configuring Locator High Availability

The following example shows the configuration required for a cluster of three
locator replicas.

Example 20: Settings for Locator High Availability

service {

bus:initial _contract:url:locator ="../../../etc/locator.wsdl ";

orb_plugins = ["l ocal _| og_streant,
"service_| ocator",

"wsdl _publish", "request_forwarder",
“iiop_profile", "giop", "iiop"];

bi ndi ng: arti x: server_request _i nterceptor_list= "request_forwarder";
pl ugi ns: | ocat or: persi st_data = "true";

pl ugi ns: arti x: db: replicas = ["Locat or 1=| ocal host : 7876",
"Locat or 2=l ocal host : 7877", "Locat or 3=l ocal host : 7878"] ;

Locat or 1{
plugins:artix:db:priority = "100";
pl ugi ns: artix: db:iiop:port = "7876";
}
Locat or 2{
plugins:artix:db:priority = "75";
plugins:artix:db:iiop:port = "7877";
b
Locat or 3{
plugins:artix:db:priority = "0";
pl ugi ns: artix: db:iiop:port = "7878";
}

A highly available locator consists of a group of locators, one of which is
active. The rest are replicas, which are used only when the active locator
becomes unavailable. The locator group is represented by a locator WSDL
file that contains multiple endpoints—one for each locator. When the
ha_conf plug-in is loaded by Artix clients, it uses this WSDL file to resolve
and connect to a locator. It tries the first endpoint, and if this does not yield
a valid connection, it tries the second endpoint, and so on.

165

CHAPTER 10 | Deploying High Availability

Further information

166

Using the ha_conf plug-in, Artix client applications can failover between
locators in the same replica group. However, if you are using two separate
replica locator groups, you want your clients to try one group first, and then
the other. In this case, you can use one of the following approaches to
failover between two separate replica locator groups:

Combine the two groups

You can combine two groups by taking the locator endpoints from the
second replica group's WSDL file, and adding them to the list of endpoints in
the first replica group's WSDL file. You now have a single WSDL file that
contains all the locator endpoints. The ha_conf plug-in will try to contact
locators in the order specified in this WSDL file.

Change the configured contract

First, set your Artix configuration so that gr oupl. wsdl is the first replica
group's WSDL file, for example:

bus:initial _contract:url:locator = "groupl.wsdl";

Then if a connection cannot be made to any endpoint from this file, change
the configured WSDL file to gr oup2. wsdl , re-initialize the bus, and try again.

In this way, by using an extra try/catch statement in the client, you can
achieve failover between two replica locator groups.

For a working example of Artix locator high availability, see the
... advanced/ hi gh_avai | abi lity_| ocator demo.

Configuring Client-Side High Availability

Configuring Client-Side High Availability

Overview

Configuration steps

Specifying the replica group in
your contract

When you have implemented a highly available service using a group of
replica servers, a suitably configured client can talk to the master replica. In
the event that the master replica fails, one of the other replicas takes over as
master, and the client fails over to one of the other replicas.

As far as the client application logic is concerned, there is no discernible
interruption to the service. This section shows how to configure the client to
use high availability features. It also explains the impact on the server.

In most cases, configuring high availability on the client side consists of two
steps:

® Create a service contract that specifies the replica group.
® Configure the client to use the high availability service.

Before your client can contact the replicas in a replica group, you must tell
the client how to contact each replica in the group. You can do this by
writing the WSDL contract for your service in a particular way.

Example 21 shows the hel | o_wor | d. wsdl contract from the
... \advanced\ hi gh_avai | abi | i ty_per si st ent _ser vers demo.

Example 21: Specifying a Replica Group in a Contract

?xm version="1.0" encodi ng="UTF- 8" ?>
<wsdl : defi ni ti ons name="Hel | oWor | d" t ar get Namespace="htt p://ww i ona. coni hel | o_wor| d_soap_ht t p"
xm ns="ht t p: // schenmas. xm soap. or g/ wsdl / "
xm ns: htt p-conf="http://schemas. i ona. com t ransport s/ http/ confi guration"
xm ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="http://ww:.iona.conl hell o_world soap_http"
xm ns: wsdl ="ht t p: // schermas. xm soap. or g/ wsdl /"
xm ns: xsd="ht t p: / / waw. W8. or g/ 2001/ XM_Schena" >

167

CHAPTER 10 | Deploying High Availability

Example 21: Specifying a Replica Group in a Contract

<wsdl : t ypes>
<schena t ar get Namespace="htt p: // ww. i ona. cor hel | o_wor| d_soap_htt p"
xm ns="ht t p: / / waw. W3. or g/ 2001/ XM_Schenma" >
<el enent name="r esponseType" type="xsd: bool ean"/>
<el ement nanme="request Type" type="xsd:string"/>
<el enent name="overwite_i f_needed" type="xsd: bool ean"/>
</ schema>
</wsdl : t ypes>

<wsdl : servi ce nane="SQOAPServi ce">
<wsdl : port bi ndi ng="t ns: @ eet er _SOAPBI ndi ng" narme="Server1">
<soap: address | ocati on="http://| ocal host: 9551/ SOAPSer vi ce/ Server1"/>
</wsdl : port >
<wsdl : port bi ndi ng="t ns: & eet er _SOAPBI ndi ng" name="Server 2" >
<soap: address | ocati on="http://| ocal host: 9552/ SOAPSer vi ce/ Server 2"/ >
</wsdl : port >
<wsdl : port bi ndi ng="t ns: @ eet er _SOAPBI ndi ng" narme="Ser ver 3">
<soap: address | ocati on="http://| ocal host: 9553/ SOAPSer vi ce/ Server 3"/ >
</wsdl : port >
</wsdl : servi ce>

</ wsdl : defi niti ons>

In Example 21, the SOAPSer vi ce service contains three ports, all of the
same port type. The contract specifies fixed port numbers for the endpoints.
By convention, you should ensure that the first port specified by the service
corresponds to the master server.

168

Configuring Client-Side High Availability

Configuring the client to use high To configure your client for high availability, perform the following steps:
availability 1. Inyour client scope, add the high availability plug-in (ha_conf) to the
orb_pl ugi ns list. For example:

client {
orb_plugins = [...,"ha _conf"];

¥

2. Configure the client so that the Artix bus can resolve the service
contract. You can do this by specifying the following configuration in
the client scope:

client {
bus: gname_al i as: soap_servi ce = "{http://wwmv i ona. coni hel | o_wor| d_soap_ht t p} SOAPSer vi ce";
bus:initial _contract:url:soap_service ="../../etc/hello_world. wsdl";

ba

Alternatively, you can also do this using the - BUSser vi ce_cont r act
command line parameter as follows:

nyclient -BUSservice contract ../../etc/hello_world. wsdl

For more details on configuring initial contracts, see Chapter 14.

Impact on the server In Example 21, the contract specifies three separate ports in the same
service hamed SOAPSer vi ce. The implication is that each port is
implemented by a different process, and if one of these processes fails, the
client switches to one of the others.

169

CHAPTER 10 | Deploying High Availability

170

Because the servers use the same contract, the server-side code must be
written so that the server can be instructed to instantiate a particular port.
Example 22 shows some relevant code. Depending on which argument the
server is started with (1, 2, or 3), it instantiates either Server 1, Server2 or
Server 3.

Example 22: Server Code Chooses which Port to Instantiate

/] CH+
String cfg_scope = "denos. hi gh_avai | abi | i ty_persi stent_servers. server.";
String wsdl _url ="../../etc/hello_world. wsdl";

String server_nunber = argv[1];
String service_nane = "SQOAPService";
String port_nanme = "Server";

if (server_nunber == "1")

cfg_scope += "one";

port_nanme += "1";

else if (server_nunber == "2")

cfg_scope += "two";

port _nanme += "2";

else if (server_nunber == "3")

cf g_scope += "three";

port _nanme += "3";

cerr << "Error: you nust pass 1, 2 or 3 as a command |ine argunent” <<

endl ;

return -1;

I T _Bus::Bus_var bus = I T Bus::init(argc, argv, cfg_scope.c_str());
I T_Bus: : Q\ane servi ce_gnaneg(

servi ce_nane,
“http://wmviona.con hel | o_world_soap_http"

)

Configuring Client-Side High Availability

Example 22: Server Code Chooses which Port to Instantiate
Geeterlnpl servant (bus, service_gnanme, port_nane, wsdl _url);

bus- >regi st er _servant (
servant,

wsdl _url,

servi ce_gnane,

port _narme

cout << "Server Ready" << endl;
I T _Bus::run();
f:at ch (const | T _Bus::Exception& e)
{ cerr << "Error occurred: " << e.nessage() << endl;
return -1;
}
catch (...)
{
cerr << "Unknown exception!" << endl;
return -1;
}

return O;

Server-side state

Client-side failover can be used with both stateful and stateless servers. If
your servers are stateful, server-side high availability must be enabled for

the servers. This has no impact on the client configuration.

If your servers are stateless, no server-side configuration is necessary.

However, your servers can share state using some other mechanism (for
example, a shared database). In this case, client-side failover can still be

used.

171

CHAPTER 10 | Deploying High Availability

Forwarding write requests

Random endpoint selection for
clients

172

When a client sends a write request to a slave replica, the slave must
forward the write request to the master replica. The server programmer
must use the mark_as_write_operations() method specify which WSDL
operations can write to the database.

C++
The C++ function is as follows:

/] Ct+
voi d
mark_as_write_operations(
const | T Vector<|T_Bus::String> operations,
const | T _Bus:: Q\ane& servi ce,
const | T Bus::String& port,
const |T_Bus::String& wsdl _url
) | T_THROWN DECL((DBException));

Java
The method is as follows:

/1 Java

voi d

mar kAsWi t eQper at i ons(
String[] operations,
Q\ane servi ce,
String port Nane,
String wsdl Url);

For a detailed example, see Developing Artix Applications in C++ and
Developing Artix Applications in Java.

The client-side ha_conf plug-in supports random endpoint selection. This
can be very useful if you want your client applications to pick a random
server each time they connect.

The random behavior can be applied all the time, so that the client always
picks a random server. This approach should be used if you want your
clients to be uniformly load-balanced across different servers. To use this
approach, set the following configuration:

pl ugi ns: ha_conf : strat egy="r andon';
pl ugi ns: ha_conf : random sel ecti on="al ways";

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Further information

Configuring Client-Side High Availability

Alternatively, the random behavior can be applied only after the client loses
connectivity with the first server in the list. This approach should be used to
make your clients favour a particular server for their initial connectivity. To
use this approach, set the following configuration:

pl ugi ns: ha_conf : strat egy="r andont';
pl ugi ns: ha_conf : random sel ect i on="subsequent ";

For working examples of high availability in Artix, see the following demos:

d ...advanced/ high_avail abi l ity _persistent_servers
® ... advanced/ hi gh_avai | abi | i ty_| ocat or

For full details of all database environment and high availability
configuration settings, see the Artix Configuration Reference.

173

../config_ref/index.htm

CHAPTER 10 | Deploying High Availability

174

In this chapter

CHAPTER 11

Deploying Reliable
Messaging

Artix supports Web Services Reliable Messaging (WS-RM) for
Java and C++ applications. This chapter explains how to
configure and deploy WS-RM in an Artix runtime environment.

This chapter discusses the following topics:

Introduction page 176
Configuring a WS-Addressing MEP page 178
Enabling WS-ReliableMessaging page 180
Configuring WS-RM Attributes page 181

175

CHAPTER 11 | Deploying Reliable Messaging

Introduction

Overview

How it works

176

Web Services Reliable Messaging is a standard protocol that ensures the
reliable delivery of messages in a distributed environment. For example, this
protocol can be used to ensure that the correct messages have been
delivered exactly once, and in the correct order.

Web Services Reliable Messaging is also known as WS-ReliableMessaging
or WS-RM.

WS-RM ensures the reliable delivery of messages between a source and
destination endpoint. The source is the initial sender of the message and the
destination is the ultimate receiver, as shown in Figure 13.

Initial Sender Ultimate Receiver
Application | Application
Source |9 g Destination
_____________ Sandilon] L sy
Deliver
r
RM RM
Source @ E Destination
Transmit
Transmit |+— Receive
Acknowledge

Figure 13: Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a O eat eSequence protocol message to the RM
destination. This contains a reference for the endpoint that receives
acknowledgements (wsr m AcksTo).

2. The RM destination sends a O eat eSequenceResponse protocol

message back to the RM source. This contains the sequence ID for the
RM sequence session.

WS-RM delivery assurances

Further information

Introduction

3. The RM source adds an RM Sequence header to each message sent by
the application source. This contains the sequence ID, and a unique
message ID.

The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the
RM source by sending messages that contain the RM
SequenceAcknow edgenent header.

6. The RM destination delivers the message to the application destination
in an exactly-once-in-order fashion.

7. The RM source retransmits a message for which it has not yet received
an acknowledgement.

The first retransmission attempt is made after a base retransmission

interval. Successive retransmission attempts are made after a linear

interval, or an exponential backoff interval (the default behavior). For
more details, see “Configuring WS-RM Attributes” on page 181.

WS-RM guarantees reliable message delivery, regardless of the transport
protocol used. The source or destination endpoint will raise an error if
reliable delivery can not be assured.

The default Artix WS-RM delivery assurance policy is Exact | yOncel nQr der .
This means that every message that is sent is delivered without duplication.
If not, an error is raised on at least one endpoint. In addition, messages are
delivered in the same order that they are sent.

Artix also supports the Exact | yOnceConcurrent and
Exact | yOnceRecei vedQr der delivery assurance policies. For more details,
see “Configuring attributes in WS-RM contexts” on page 185.

For detailed information on WS-RM, see the specification at:
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

177

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

CHAPTER 11 | Deploying Reliable Messaging

Configuring a WS-Addressing MEP

Overview

WS-Addressing Message
Exchange Pattern

Enabling a WS-Addressing MEP

178

To use Artix WS-ReliableMessaging, you must first configure a
WS-Addressing Message Exchange Pattern (MEP). You can also configure a
WS-Addressing MEP without using WS-RM. The configuration settings
apply to Web services implemented in both C++ and Java.

Artix uses WS-Addressing MEPs as SOAP message headers. These include
wsa: To, wsa: Repl yTo, wsa: Messagel d, and wsa: Rel at esTo.

This enables Artix to send a request to an endpoint specified by a wsa: To
header, and to receive a reply at an endpoint specified by a wsa: Repl yTo
header. If a wsa: Repl yTo header is not specified, by default, Artix uses the
anonymous URI to synchronously receive the reply:

htt p: // schemas. xni soap. or g/ ws/ 2004/ 08/ addr essi ng/ r ol e/ anonynous

When a non-anonymous wsa: Repl yTo is used, the reply is received
asynchronously at the reply-to endpoint. The reply is matched with the
request using wsa: Messagel d and wsa: Rel at esTo message headers. From
the user's perspective, this is still a two-way synchronous call, but the
asynchronicity is handled by Artix.

For oneway calls, the reply-to endpoint is not needed.

You can enable WS-Addressing (WS-A) in an Artix configuration file either at
the Artix bus-level or a specific WSDL port level. Port-specific configuration
overrides bus-specific configuration.

Bus-specific configuration
To enable WS-A at bus level, use the following setting:

pl ugi ns: messagi ng_port: supports_wsa _nmep = "true";

Configuring a non-anonymous
reply-to endpoint

Setting a reply-to endpoint in
configuration

Setting a reply-to endpoint in a
context

Configuring a WS-Addressing MEP

WSDL port-specifc configuration

To enable WS-A at a specific WSDL port level, you must specify the WSDL
service QName and the WSDL port name, for example:

pl ugi ns: messagi ng_port : supports_wsa_mnep: http: //ww: i ona. com bus/
t ests: SOAPHTTPSer vi ce: SOAPHTTPPort ="t r ue";

The WS-A reply-to endpoint specifies a URI for receiving acknowledgement
messages from the destination. The scope of a reply-to endpoint is at the
proxy level. In Artix, two proxies can not share the same endpoint. This
means that each proxy has its own reply-to endpoint.

There are two ways of configuring a reply-to endpoint:

® “Setting a reply-to endpoint in configuration”

® “Setting a reply-to endpoint in a context”

The WS-A reply-to endpoint can be set in an Artix configuration file, at the
Artix bus-level or at a WSDL port-level.

Because reply-to endpoints must have a unique URI per-proxy, a base URI
is specified in configuration. For example, if the base URI is specified as:

pl ugi ns: messagi ng_port: base_repl yto_url =
"http://1ocal host: 0/ WeATest A i ent / BaseRepl yTo/ ";

And if two proxies are instantiated, the first proxy will have a reply-to
endpoint whose URI is as follows:

"http://1ocal host: 2356/ WeATest A i ent / BaseRepl yTo/ Repl yTo0001";

Similarly, the second proxy will have a reply-to endpoint whose URI is as
follows:

"http://1ocal host: 2356/ WeATest A i ent / BaseRepl yTo/ Repl yTo0002";

For C++ applications, you can also set a WS-A reply-to endpoint
programmatically using a configuration context. Using this approach, the
context is specific to the current proxy only, and can not be used by a proxy
created subsequently. You must also ensure that it is deleted after use. For
full details and examples, see Developing Artix Applications with C++.

179

../prog_guide/index.htm

CHAPTER 11 | Deploying Reliable Messaging

Enabling WS-ReliableMessaging

Overview

Prerequisites

Setting your orb_plugins list

Configuring WS-RM

180

This section describes the steps required to enable WS-ReliableMessaging
in the Artix runtime. All the necessary settings are specified in an Artix
configuration file. These settings apply to Web services implemented in both
C++ and Java.

To use Artix WS-RM, you must first enable the WS-Addressing MEP using

the settings described in “Configuring a WS-Addressing MEP” on page 178.
In addition, if you wish to make a two-way invocation, you must configure a
WS-RM-enabled WSDL port with a non-anonymous reply-to endpoint. See

“Configuring a non-anonymous reply-to endpoint” on page 179.

To use Artix WS-RM, you must specify the wsr mplug-in in the or b_pl ugi ns
lists for your client and server. For example:

orb_plugins = ["xmfile_|og_streant, "iiop_profile", "giop",
"iiop", "wsrni];

WS-RM is enabled in an Artix configuration file either at the bus-level or a
specific WSDL port level. Port-specific configuration overrides bus-specific
configuration.

Bus-specific configuration

To enable WS-RM for a specific bus, use the following setting:

pl ugi ns: nessagi ng_port:wsrmenabl ed = "true";

WSDL port-specific configuration

To enable WS-RM at a specific WSDL port level, specify the WSDL service
QName and also the WSDL port name, for example:

pl ugi ns: messagi ng_port : wsr m enabl ed: ht t p: // waw. i ona. cond bus/ t est
s: SOAPHTTPSer vi ce: SOAPHTTPPort ="t r ue";

Configuring WS-RM Attributes

Configuring WS-RM Attributes

Overview You can specify Artix WS-RM attributes in a configuration file at the
bus-level or WSDL port level. Port-specific configuration overrides
bus-specific configuration. These settings apply to Web services
implemented in both C++ and Java.

The configurable WS-RM attributes are as follows:

® “WS-RM acknowledgement endpoint URI”

® “Base retransmission interval”

® “Exponential backoff for retransmission”

® “Maximum unacknowledged messages threshold”
® “Acknowledgement interval”

® “Number of messages in an RM sequence”

You can also set these attributes in your client code (see “Configuring
attributes in WS-RM contexts”).

WS-RM acknowledgement This attribute specifies the endpoint at which the WS-RM source receives
endpoint URI acknowledgements. This is also known as wsr m AcksTo.

The default value is the WS-A anonymous URI:
htt p: // schemas. xm soap. or g/ ws/ 2004/ 08/ addr essi ng/ r ol e/ anonynous

Bus-specific configuration

The following example shows how to configure the acknowledgement
endpoint URI for a specific bus:

pl ugi ns: wsr m acknowl edgenent _uri =
"http://1ocal host : 0/ WsASour ce/ DenoAcksTo/ " ;

181

CHAPTER 11 | Deploying Reliable Messaging

Base retransmission interval

Exponential backoff for
retransmission

182

WSDL port-specific configuration

The following example shows how to configure the acknowledgement
endpoint URI for a specific WSDL port:

pl ugi ns: wsr m acknow edgerent _uri : http://wamv i ona. coni bus/ t est s:
SQAPHTTPSer vi ce: SOAPHTTPPort =
"http://1ocal host: 0/ WeASour ce/ DenoAcksTo/ ";

This attribute specifies the interval at which a WS-RM source retransmits a
message that has not yet been acknowledged. The default value is 2000
milliseconds.

Bus-specific configuration

The following example shows how to set the base retransmission interval for
a specific bus:

pl ugi ns: wsr m base_r et ransm ssi on_i nterval = "3000";

WSDL port-specific configuration

The following example shows how to set the base retransmission interval for
a specific WSDL port:

pl ugi ns: wsr m base_r et ransm ssi on_i nterval : htt p: //ww i ona. coni bu
s/t ests: SOAPHTTPSer vi ce: SOAPHTTPPort = " 3000";

This attribute determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals or not. The
default value is f al se, which means that they are attempted at exponential
intervals.

If the value is true (exponential backoff disabled), the retransmission of
unacknowledged messages is performed at the base retransmission interval.

Bus-specific configuration

The following example shows how to set the exponential backoff for
retransmission for a specific bus:

pl ugi ns: wsr m di sabl e_exponenti al _backof f _r et ransm ssi on_i nt er val
= "true";

Maximum unacknowledged
messages threshold

Configuring WS-RM Attributes

WSDL port-specific configuration

The following example shows how to set the exponential backoff for
retransmission for a specific WSDL port:

pl ugi ns: wsr m di sabl e_exponent i al _backof f _r et ransni ssi on_i nt er val
chttp://vwww i ona. com bus/ t ests: SOAPHTTPSer vi ce: SOAPHTTPPort =
"true";

This attribute specifies the maximum permissible number of
unacknowledged messages at the WS-RM source. When the WS-RM source
reaches this limit, it sends the last message with a wsr m AckRequest ed
header indicating that a WS-RM acknowledgement should be sent by the
WS-RM destination as soon as possible.

In addition, when the WS-RM source has reached this limit, it does not
accept further messages from the application source. This means that the
caller thread (making the invocation on the proxy) is blocked until the
number of unacknowledged messages drops below the threshold.

The default value is - 1 (no limit on number of unacknowledged messages).
Bus-specific configuration

The following example shows how to set the max unacknowledged
messages threshold for a specific bus:

pl ugi ns: wsr m max_unacknow edged_nessages_t hreshol d = "50";

WSDL port-specific configuration

The following example shows how to set the max unacknowledged
messages threshold for a specific WSDL port:

pl ugi ns: wsr m max_unacknow edged_nessages_t hreshol d: htt p: // www. i 0
na. con bus/ t est s: SOAPHTTPSer vi ce: SOAPHTTPPort = "50";

183

CHAPTER 11 | Deploying Reliable Messaging

Acknowledgement interval

184

This attribute specifies the interval at which the WS-RM destination sends
asynchronous acknowledgements. These are in addition to the synchronous
acknowledgements that it sends upon receipt of an incoming message. The
default asynchronous acknowledgement interval is 3000 milliseconds.

Asynchronous acknowledgements are sent by the RM destination only if

both of the following conditions are met:

1. The RM destination is using non-anonymous wsr m acksTo endpoint.

2. The RM destination is waiting for some messages to be received from
the RM source.

For example, the RM destination receives five messages with message |Ds

of 1, 2, 3, 4, and 5. This means that it has received all messages up to the

highest received message (5). There are no missing messages in this case,
so the RM destination will not send an asynchronous acknowledgement.

However, take the case where the RM destination receives 5 messages with
message IDs of 1, 2, 4, 5, and 7. This means that messages 3 and 6 are
missing, and the RM destination is still waiting to receive them. This is the
case where the RM destination sends asynchronous acknowledgements.

Note: The RM destination still sends synchronous acknowledgements
upon receipt of a message from the RM source.

Bus-specific configuration

The following example shows how to set the acknowledgement interval for a
specific bus

pl ugi ns: wsr m acknow edgerrent _i nterval = "2500";

WSDL port-specific configuration

The following example shows how to set the acknowledgement interval for a
specific WSDL port:

pl ugi ns: wsr m acknowl edgenent _i nt erva: htt p: // wwv. i ona. cond bus/ t es
t s: SOAPHTTPSer vi ce: SOAPHTTPPort = "2500";

Number of messages in an RM
sequence

Configuring attributes in WS-RM
contexts

Further details

Configuring WS-RM Attributes

This attribute specifies the maximum number of user messages that are
permitted in a WS-RM sequence. The default is unlimited; this is sufficient
is for most situations.

When this attribute is set, the RM endpoint creates a new RM sequence
when the limit is reached and after receiving all the acknowledgements for
the messages previously sent. The new message is then sent using the new
sequence.

Bus-specific configuration

The following example shows how to set the maximum number of messages
for a specific bus

pl ugi ns: wsr m max_nessages_per _sequence = "1";

WSDL port-specific configuration

The following example shows how to set the maximum number of messages
for a specific WSDL port:

pl ugi ns: wsr m max_nessages_per _sequence: htt p: // waw. i ona. cond bus/ t
est s: SOAPHTTPSer vi ce: SOAPHTTPPort = "1";

For C++ applications, you can also specify Artix WS-RM attributes
programmatically using a configuration context. Using this approach, the
context is specific to the current proxy only, and can not be used by another
proxy created subsequently. You must also ensure that it is deleted after
use.

For full details and examples, see Developing Artix Applications with C++.
The order of precedence for setting WS-RM attributes is as follows:

1. Configuration context (programmatic).

2. WSDL port (configuration file).

3. Artix bus (configuration file).

For working examples of reliable messaging in Artix, see the
...l advanced/ wsr mdemo.

185

../prog_guide/index.htm

CHAPTER 11 | Deploying Reliable Messaging

186

In this part

Part 11l

Managing the Artix Runtime

This part contains the following chapter:

Monitoring and Managing an Artix Runtime with JMX page 189

For details of using the Artix Management Console, see Using Artix Designer
and the Artix online help.

../designer/index.htm
../designer/index.htm
../designer/index.htm

CHAPTER 12

Monitoring and
Managing an Artix
Runtime with JMX

This chapter explains how to monitor and manage an Artix
runtime using Java Management Extensions (JMX).

In this chapter This chapter discusses the following topics:
Introduction page 190
Managed Bus Components page 195
Managed Service Components page 201
Managed Port Components page 209
Configuring JMX in an Artix Runtime page 213
Using Management Consoles and Adaptors page 215

189

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

Introduction

Overview

How it works

190

You can use Java Management Extensions (JMX) to monitor and manage
key Artix runtime components both locally and remotely. For example, using
any JMX-compliant client, you can perform the following tasks:

® View bus status.

® Stop or start a service.

® Change bus logging levels dynamically.
® Monitor service performance details.

® View the interceptors for a selected port.

Artix has been instrumented to allow runtime components to be exposed as
JMX Managed Beans (MBeans). This enables an Artix runtime to be
monitored and managed either in process or remotely with the help of the
JMX Remote API.

Artix runtime components can be exposed as JMX MBeans, out-of-the-box,
for both Java and C++ Artix servers. All leading vendor application servers
and containers can be managed using JMX. However, what is unique about
the Artix instrumentation is that its core runtime can also be managed. This
contrasts with the JVM 1.5 management capabilities where you can observe
garbage collection and thread activities using JMX.

In addition, support for registering custom MBeans is also available in Artix
since version 3.0. Java developers can create their own MBeans and
register them either with their MBeanServer of choice, or with a default
MBeanServer created by Artix (see “Relationship between runtime and
custom MBeans” on page 192).

Introduction

Figure 14 shows an overview of how the various components interact. The
Java custom MBeans are optional components.

JMX Console HTML Browser

; F

RMI HTML
Connector Adaptor

MBean

Server °

/o
X
Runtime Custom
MBean° % MBean
/ N\
v

C++ Java .
Server Server

Figure 14: Artix JMX Architecture

191

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

What can be managed

Relationship between runtime
and custom MBeans

192

Both Java and C+ + Artix servers can have their runtime components
exposed as JMX MBeans. The following components can be managed:

®* Bus
® Service
® Port

All runtime components are registered with an MBeanServer as Open
Dynamic MBeans. This ensures that they can be viewed by third-party
management consoles without any additional client-side support libraries.

All MBeans for Artix runtime components conform with Sun’s JMX Best
Practices document on how to name MBeans (see
http://java.sun.com/products/JavaManagement/best-practices.html). Artix
runtime MBeans use com i ona. i nstrument ati on as their domain name
when creating ObjectNames.

Note: An MBeanServerConnection, which is an interface implemented by
the MBeanServer is used in the examples in this chapter. This ensures that
the examples are correct for both local and remote access.

See also “Further information” on page 214 for details of how to access
MBean Server hosting runtime MBeans either locally and remotely.

The Artix runtime instrumentation provides an out-of-the-box JMX view of
C++ and Java services. Java developers can also create custom JMX
MBeans to manage Artix Java components such as services.

You may choose to write custom Java MBeans to manage a service because
the Artix runtime is not aware of the current service's application semantics.
For example, the Artix runtime can check service status and update
performance counters, while a custom MBean can provide details on the
status of a business loan request processing.

It is recommended that custom MBeans are created to manage
application-specific aspects of a given service. Ideally, such MBeans should
not duplicate what the runtime is doing already (for example, calculating
service performance counters).

http://java.sun.com/products/JavaManagement/best-practices.html

Accessing the MBeanServer
programmatically

Introduction

It is also recommended that custom MBeans use the same naming
convention as Artix runtime MBeans. Specifically, runtime MBeans are
named so that containment relationships can be easily established. For
example:

/1 Bus :
com i ona. i nstrunent ati on: t ype=Bus, name=denos. j nx_runt i me

Servi ce :
com i ona.instrunentation:type=Bus. Servi ce, name="{http://ws. i ona.
con} SOAPSer vi ce", Bus=denos. j nx_r unt i me

/1 Port :

com i ona. i nstrunent ati on: t ype=Bus. Servi ce. Port, nane=SoapPort , Bus
. Service="{http://ws.iona. con} SOAPSer vi ce", Bus=denos. j mx_r unt
i me

Using these names, you can infer the relationships between ports, services

and buses, and display or process a complete tree in the correct order. For

example, assuming that you write a custom MBean for a loan approval Java
service, you could name this MBean as follows:

com i ona. i nstrunent ati on: t ype=Bus. Servi ce. LoanAppr oval Manager, na
ne=LoanAppr oval Manager , Bus. Servi ce="{htt p: //ws. i ona. con} SOAPS
ervi ce", Bus=denos. j nx_runti nme

For details on how to write custom MBeans, see Developing Artix
Applications in Java.

Artix runtime support for JMX is enabled using configuration settings only.
You do not need to write any additional Artix code. When configured, you
can use any third party console that supports JMX Remote to monitor and
manage Artix servers.

If you wish to write your own JMX client application, this is also supported.
To access Artix runtime MBeans in a JMX client, you must first get a handle
to the MBeanServer. The following code extract shows how to access the
MBeanServer locally:

Bus bus = Bus.init(args);

MBeanSer ver nbeanServer =
(MBeanSer ver) bus. get Regi stry() . get Ent r y(Managenent Const ant s. M
BEAN_SERVER | NTERFACE_NAME) ;

193

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

Further information

194

The following shows how to access the MBeanServer remotely:

/] The address of the connector server
String url = "service:jnx:rm://host:1099/jndi/artix";
JMKServi ceURL address = new JMXServi ceURL(url);

/1 Oeate the JMKConnect or Server
JMKXConnect or cntor = JMXConnect or Fact ory. connect (address, null);

[/l Qotain a "stub" for the renote MBeanServer
MBeanSer ver Connect i on nbsc = cnt or. get MBeanSer ver Connecti on() ;

Please see the advanced/ managenent / j nx_runti me demo for a complete
example on how to access, monitor and manage Artix runtime MBeans
remotely.

For further information, see the following URLs:

JMX
http://java.sun.com/products/JavaManagement/index.jsp

JMX Remote
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/

Open Dynamic MBeans

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/pac
kage-summary.html

ObjectName
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.ht
ml

MBeanServerConnection
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerCo
nnection.html

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
mi

http://java.sun.com/products/JavaManagement/index.jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

Managed Bus Components

Managed Bus Components

Overview

Bus MBean registration

Bus naming convention

This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix bus components. For example, you
can use any JMX client to perform the following tasks:

® View bus attributes.

® Enable monitoring of bus services.

® Dynamically change logging levels for known subsystems.

If you wish to write your own JMX client, this section describes methods

that you can use to access Artix logging levels and subsystems, and provides
a JMX code example.

When an Artix bus is initialized, a corresponding JMX MBean is created and
registered for that bus with an MBeanServer.

Java

For example, in an Artix Java application, this occurs after the following call:

String[] args
Bus server Bus

Bus.init(args);

C++

For example, in an Artix C++ application, this occurs after the following
call:

Bus_var server_bus = Bus.init(argc, argv);

When a bus is shutdown, a corresponding MBean is unregistered from the
MBeanServer.

An Artix bus (oj ect Narre uses the following convention:

com i ona. i nstrument ati on: t ype=Bus, name=busl denti fi er

195

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

Bus attributes

196

The following bus component attributes can be managed by any JMX client:

Table 17: Managed Bus Attributes

Name Description Type Read/Write
scope Bus scope used to initialize a String No
bus.
identifier Bus identifier, typically the String No
same as its scope.
ar gunent s Bus arguments, including the | String[] No

executable name.

servi cesMni toring

Used to enable/disable Bool ean Yes
services performance
monitoring.

servi ces

A list of object names (oj ect Nane[] No
representing services on this
bus.

servi cesMoni toring is a global attribute which applies to all services and
can be used to change a performance monitoring status.

Note: By default, service performance monitoring is enabled when a JMX
management is enabled in standalone servers, and disabled in an
i t_contai ner process.

servi ces is a list of object names that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered service
MBeans that belong to this bus.

For examples of bus attributes displayed in a JMX console, see “Using
Management Consoles and Adaptors” on page 215.

Managed Bus Components

Bus methods If you wish to write your own JMX client, you can use the following bus
methods to access logging levels and subsystems:

Table 18: Managed Bus Methods

Name Description Parameters Return Type

get Loggi ngLevel Returns a logging level for subsystem (Stri ng) String
a subsystem.

set Loggi ngLevel Sets a logging level for a subsyst em(Stri ng), Bool ean
subsystem. I evel (String)

set Loggi ngLevel Propagate | Sets a logging level for a subsyst em (Stri ng), Bool ean
subsystem with level (String),
propagation. propagat e (Bool ean)

All the attributes and methods described in this section can be determined
by introspecting MBeanl nf o for the Bus component (see
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
).

Example JMX client The following code extract from an example JMX client application shows
how to access bus attributes and logging levels:

MBeanSer ver Connecti on nbsc = ...;
String busScope = ...;
(bj ect Narre busNane = new (bj ect Nanme(" com i ona. i nstrument ati on: t ype=Bus, name=" + busScope) ;

if (nbsc.isRegistered(busName)) {
t hrow new MBeanExcepti on("Bus nbean is not registered");

}

/1 MBeanlnfo can be used to check for all known attributes and met hods
MBeanl nfo info = nbsc. get MBean| nf o(busNarre) ;

/1 bus scope

String scope = (String)nbsc. getAttribute(busNane, "scope");

/] bus identifier

String identifier = (String)nbsc. getAttribute(busNane, "identifier");
/] bus argunents

String[] busArgs = (String[])nbsc.getAttribute(busNanme, "arguments");

197

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

/1 check servicesMnitoring attribute, then disable and reenable it
Bool ean status = (Bool ean) nbsc. get Attri but e(busNare, "servi ceshonitoring");
if (!status. equal s(Bool ean. TRUE)) {
t hr ow new MBeanExcepti on(" Servi ce noni toring shoul d be enabl ed by default");

}

nbsc. set Attri but e(busNane, new Attri but e("servi ceshonitoring", Bool ean. FALSE));
status = (Bool ean)nbsc. get Attri but e(busNarre, "servi ceshnitoring");
if (!status.equal s(Bool ean. FALSE)) {

t hr ow new MBeanExcept i on(" Servi ce nmonitoring shoul d be di sabl ed now");

}

nbsc. set At tri but e(busNane, new Attribute("servi cesMnitoring", Boolean. TRUE));
status = (Bool ean) nbsc. get Attri but e(busNarme, "servi cesMonitoring");
if (!status. equal s(Bool ean. TRUE)) {

t hr ow new MBeanExcept i on(" Servi ce nonitoring shoul d be reenabl ed now');

}

/1 list of service MBeans
Cbj ect Nane[] servi ceNanes = ((bj ect Nane[]) nbsc. get Attri but e(busNare, "services");

/1 10gging
String | evel = (String)nbsc.invoke(
busNane,
"get Loggi ngLevel ",
new oject[] {"IT_BUS'},
new String[] {"subsysteni});
if (!level.equal s("LOG ERRCR')) {
t hrow new MBeanException("Wong | T_BUS | oggi ng | evel ");
}

l evel = (String)nbsc.invoke(
busNane,
"get Loggi ngLevel ",
new Cbj ect[] {"IT_BUS.IN Tl AL_REFERENCE'},
new String[] {"subsystem'});
if (!level.equal s("LOG ERRCR')) {
t hrow new MBeanException("Wong | T_BUS. | N TI AL_REFERENCE | oggi ng | evel ");
}
I evel = (String)nbsc.invoke(
busNane,
"get Loggi ngLevel ",
new Chj ect[] {"IT_BUS. CORE'},
new String[] {"subsysteni});
if (!level.equal s("LOGINOLON)) {
t hrow new MBeanException("Wong | T_BUS. CCRE | oggi ng | evel ");
}

198

Managed Bus Components

Bool ean result = (Bool ean)nbsc. i nvoke(
busNarre,
"set Loggi ngLevel ",
new Chject[] {"IT_BUS', "LOG WARN'},
new String[] {"subsystenf, "level"});

I evel = (String)nbsc.invoke(
busNarre,
"get Loggi nglLevel ",
new (oject[] {"IT_BUS'},
new String[] {"subsysteni});
if (!level.equal s("LOG WARN')) {
t hrow new MBeanException("IT_BUS | oggi ng | evel has not been set properly");
}

I evel = (String)nbsc.invoke(
busNane,
"get Loggi ngLevel ",
new Goj ect[] {"IT_BUS. I N TI AL_REFERENCE'},
new String[] {"subsysteni});

if (!level.equal s("LOGWARN')) {

t hrow new MBeanException("|T_BUS. | N TI AL_REFERENCE | oggi ng | evel has not been set
properly");
}

I evel = (String)nbsc.invoke(
busNane,
"get Loggi ngLevel ",
new (bj ect[] {"IT_BUS. CCRE'},
new String[] {"subsystem'});
if (!level.equal s("LOGINOLON)) {
t hrow new MBeanExcepti on("| T_BUS. OCRE | oggi ng | evel shoul d not be changed");

}

/'l propagate

result = (Bool ean)nbsc. i nvoke(
busNarre,

"set Loggi ngLevel Pr opagat e",
new Chj ect[] {"IT_BUS', "LOG SILENT", Bool ean. TRUE},
new String[] {"subsystent, "level", "propagate"});

I evel = (String)nbsc.invoke(
busNane,
"get Loggi ngLevel ",
new (oject[] {"IT_BUS'},
new String[] {"subsysteni});

199

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

if (!level.equal s("LOG SILENT")) {
t hrow new MBeanException("|T_BUS | oggi ng | evel has not been set properly");
}

I evel = (String)nbsc.invoke(
busNane,
"get Loggi ngLevel ",
new Cbj ect[] {"IT_BUS.IN Tl AL_REFERENCE'},
new String[] {"subsysteni});
if (!level.equal s("LOG SILENT")) {
t hrow new Exception("1T_BUS. I N TI AL_REFERENCE | oggi ng | evel has not been set
properly");
}
I evel = (String)nbsc.invoke(
busNane,
"get Loggi ngLevel ",
new Cbj ect[] {"IT_BUS. CORE'},
new String[] {"subsystenm'});
if (!level.equal s("LOG SILENT")) {
t hrow new MBeanException("|T_BUS. CCRE | oggi ng | evel shoul dve been set to LOG SI LENT");
}

Further information For information on Artix logging levels and subsystems, see Chapter 3.

200

Managed Service Components

Managed Service Components

Overview

Service MBean registration

This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix service components. For example,
you can use any JMX client to perform the following tasks:

® View managed services.

® Dynamically change a service status.

® Monitor service performance data.

® Manage service ports.

The Artix locator and session manager services have also been

instrumented. These provide an additional set of attributes on top of those
common to all services.

If you wish to write your own JMX client, this section describes methods
that you can use and provides a JMX code example.

When an Artix servant is registered for a service, a JMX Service MBean is
created and registered with an MBeanServer.

Java
For example, in an Artix Java application, this occurs after the following call:
Bus bus = Bus.init(args);
\ane bankServi ceNane = new
Q\ane("htt p: //wwwv i ona. cond bus/ tests", "BankService");
Servant servant = new Si ngl el nst anceSer vant (new Bankl npl (),

servi ceVgdl URL, bus);

bus. r egi st er Servant (servant, bankServi ceNane, "BankPort");

201

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

C++
For example, in an Artix C++ application, this happens after the following
call:

Bus_var server_bus = Bus.init(argc, argv);

BankSer vi cel npl servant;
bus- >r egi st er _servant (
servant,
wsdl _| ocati on,
Q\ae("http://ww: i ona. com bus/tests", "BankService")

)

When a service is removed, a corresponding MBean is unregistered from the
MBeanServer.

Service naming convention An Artix service (oj ect Nae uses the following convention:

com i ona.instrunentation:type=Bus. Servi ce, name="{ nanespace} | ocal
nane", Bus=busl denti fier

In this format, a nane has an expanded service QName as its value. This
value includes double quotes to permit for characters that otherwise would
not be allowed.

Service attributes The following service component attributes can be managed by any JMX
client:

Table 19: Managed Service Attributes

Name Description Type Read/Write

nare Service QName in expanded String No
form.

state Service state. String No

servi ceCount er s Service performance data. Conposi t eDat a No

ports A list of ObjectNames (bj ect Nare[] No
representing ports for this
service.

202

Managed Service Components

nane is an expanded QName, such as
{http://ww i ona. coni bus/ t est s} BankSer vi ce.

st at e represents a current service state that can be manipulated by stop

and start methods.

ports is a list of ObjectNames that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered Port
MBeans which happen to belong to this Service.

serviceCounters attributes

The following service performance attributes can be retrieved from the

servi ceCount er s attribute:

Table 20: serviceCounters Attributes

request-processing errors.

Name Description Type

aver ageResponseTi e Average response time in Fl oat
milliseconds.

r equest sChevay Total number of oneway requests Long
to this service.

request sSi nceLast Check | Number of requests happened Long
since last check.

r equest sTot al Total number of requests Long
(including oneway) to this service.

ti meSi nceLast Check Number of seconds elapsed since Long
last check.

total Errors Total number of Long

For examples of service attributes displayed in a JMX console, see “Using
Management Consoles and Adaptors” on page 215

203

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

Service methods If you wish to write your own JMX client, you can use the following service

methods to manage a specific service:

Table 21: Managed Service Attributes

Name Description Parameters | Return Type
name Start (activate) a service. None Voi d
state Stop (deactivate) a service. None Voi d

All the attributes and methods described in this section can be accessed by
introspecting MBeanl nf o for the Service component.

Example JMX client The following code extract from an example JMX client application shows

204

how to access service attributes and methods:

MBeanSer ver Connection nbsc = ... ;

String busScope = ...;
(bj ect Narre servi ceNanme = new (bj ect Nanme("com i ona. i nstrumnent ati on: t ype=Bus. Servi ce" +
" nane=\"{http://ww: iona.conihell o world_soap_htt p} SOAPServi ce\""
+', Bus=" + busScope);

if (!nbsc.isRegistered(serviceNane)) {
t hr ow new MBeanExcepti on(" Servi ce MBean shoul d be regi stered");

}

/] MBeanlnfo can be used to check for all known attributes and met hods
MBeanl nfo i nfo = nbsc. get MBeanl nf o(ser vi ceNane) ;

/] service name
String nane = (String)nbsc. get Attribute(serviceNane, "nane");

Il check service state attribute then reset it by invoking stop and start nethods
String state = (String)nbsc. get Attribute(serviceNane, "state");

if (!state.equal s("ACTI VATED')) ({
t hrow new MBeanExcepti on(" Servi ce shoul d be activated");

}

nbsc. i nvoke(servi ceNarme, “stop", null, null);

Managed Service Components

state = (String)nbsc. get Attribute(serviceNane, "state");
if (!state.equal s("DEACTI VATED')) {
t hr ow new MBeanExcepti on(" Servi ce shoul d be deactivated now');

}
nbsc. i nvoke(servi ceNane, “start", null, null);

state = (String)nbsc. get Attribute(serviceNane, "state");
if (!state.equal s("ACTI VATED')) ({
t hr ow new MBeanExcepti on(" Servi ce shoul d be activated agai n");

}

/1 check service counters

Conposi teData counters = (Conposi t eDat a) nbsc. get At tri but e(servi ceNane, "servi ceCounters");
Long requestsTotal = (Long)counters.get("requestsTotal");

Long request sOneway = (Long)count ers. get ("request sCheway") ;

Long total Errors = (Long)counters.get(“total Errors");

Fl oat aver ageResponseTi me = (Fl oat) count ers. get (" aver ageResponseTi ne") ;

Long request sSi nceLast Check = (Long)count ers. get ("request sS nceLast Check");

Long ti meSi ncelLast Check = (Long)counters. get ("ti meS ncelLast Check");

/1 ports
Chj ect Nane[] port Names = (Cbj ect Nane[]) nbsc. get Attri but e(servi ceNane, "ports");

Further information MBeanlInfo
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CompositeData

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/Co
mpositeData.html

205

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

Artix Locator Service

Overview The Artix locator can also be exposed as a JMX MBean. A locator managed
component is a service managed component that can be managed like any
other bus service with the same set of attributes and methods. The Artix
locator also exposes it own specifc set of attributes.

Locator attributes An Artix locator MBean exposes the following locator-specific attributes:

Table 22: Locator MBean Attributes

Name Description Type
regi st er edEndpoi nt s Number of registered endpoints. | I nteger
regi st eredServi ces Number of registered services, I nt eger
less or equal to number of
endpoints.

servi ceLookups Number of service lookup I nt eger
requests.

servi ceLookupErrors Number of service lookup I nt eger
failures.

regi steredNodeError s Number of node (peer ping) I nt eger
failures.

206

Managed Service Components

Example JMX client The following code extract from an example JMX client application shows
how to access locator attributes and methods:

MBeanSer ver Connection nbsc = ...;
String busScope = ...;
(bj ect Narre servi ceNane = new (bj ect Nane("com i ona. i nstrunent ati on: t ype=Bus. Servi ce" +
", nane=\"{http://ws.iona. con 2005/ 11/ | ocat or } Locat or Servi ce\""
+", Bus=" + busScope);

[/ use common attributes and net hods, see an exanpl e above

Il Locator specific attributes

I nteger regServices = (Integer)nbsc.getAttribute(serviceNane, "registeredServices");

I nteger endpoints = (I nteger)nbsc.getAttribute(serviceNane, "regi steredEndpoi nts");
Integer nodeErrors = (Integer)nbsc.get Attribute(servicet Nane, "registeredNodeErrors");
Integer | ookupErrors = (Integer)nbsc. getAttribute(serviceName, "servicelLookupErrors");
I nteger | ookups = (Integer)nbsc. get Attribute(serviceNane, "servicelLookups");

207

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

Artix Session Manager Service

Overview The Artix session manager can also be exposed as a JMX MBean. A session
manager component is a service managed component that can be managed
like any other bus service with the same set of attributes and methods. The
Artix session manager also exposes it own specifc set of attributes.

Session manager attributes An Artix session manager MBean exposes the following session
manager-specific attributes:

Table 23: Session Manager MBean Attributes
Name Description Type
regi st eredEndpoi nts | Number of registered endpoints. I nt eger
regi st eredServi ces Number of registered services, I nt eger
less or equal to number of
endpoints.
servi ceQ oups Number of service groups. I nt eger
servi ceSessi ons Number of service sessions I nt eger
Example JMX client The following code extract from an example JMX client application shows

208

how to access session manager attributes and methods:

MBeanSer ver Connection nbsc = ... ;
String busScope = ...;
(bj ect Narre servi ceNanme = new (bj ect Nane(" com i ona. i nstrunent ati on: t ype=Bus. Servi ce" +

", nanme=\"{http://ws.iona. conl sessi onmanager } Sessi onManager Servi ce\"" +", Bus=" +
busScope) ;
/1 use common attributes and nethods, see an exanpl e above

/'l Sessi onManager specific attributes

Integer regServices = (Integer)nbsc.getAttribute(serviceNane, "registeredServices");
I nteger endpoi nts = (I nteger)nbsc. getAttribute(serviceNane, "regi steredEndpoi nts");

I nteger serviceQ@ oups = (Integer)nbsc.get Attribute(serviceNane, "serviceG oups");

I nt eger serviceSessions = (Integer)nbsc. getAttribute(serviceName, "serviceSessions");

Managed Port Components

Managed Port Components

Overview

Port MBean registration

Naming convention

Port attributes

This section describes the attributes that you can use to manage JMX
MBeans representing Artix port components. For example, you can use any
JMX client to perform the following tasks:

® Monitor managed ports.

® View message and request interceptors.

If you wish to write your own JMX client, this section also shows an example
of accessing these attributes in JMX code.

Port managed components are typically created as part of a service servant
registration. When service is activated, all supported ports will also be
registered as MBeans.

When a service is removed, a corresponding Service MBean, as well as all
its child Port MBeans are unregistered from the MBeanServer.

An Artix port (bj ect Narre uses the following convention:

com i ona. i nstrunent ati on: t ype=Bus. Servi ce. Port, nane=por t Nane, Bus
. Servi ce="{namespace}| ocal nane", Bus=busl denti fi er

The following bus component attributes can be managed by any JMX client:

Table 24: Supported Service Attributes

Name Description Type Read/Write
name Port name. String No
addr ess Transport specific address String No
representing an endpoint.
interceptors List of interceptors for this String[] No
port.

209

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

210

Table 24: Supported Service Attributes

Name Description Type Read/Write
transport An optional attribute Qj ect Nane[] No
representing a transport for
this port.
interceptors

The i ntercept ors attribute is a list of interceptors for a given port.
Internally, i nt er cept ors is an instance of Tabul ar Dat a that can be
considered an array/table of Conposi t eDat a. However, due to a current
limitation of Conposi t eDat a, (no insertion order is maintained, which makes
it impossible to show interceptors in the correct order), the interceptors are
currently returned as a list of strings, where each Stri ng has the following
format:

[narme]: nane [type]: type [level]: level [description]: optional
descri ption

In this format, t ype can be CPP or Java; | evel can be Message or Request .

It is most likely that this limitation will be fixed in a future JDK release,
probably JDK 1.7 because the enhancement request has been accepted by
Sun. In the meantime, interceptors details can be retrieved by parsing a
returned String array.

For examples of port attributes displayed in a JMX console, see “Using
Management Consoles and Adaptors” on page 215

Managed Port Components

Example JMX client The following code extract from an example JMX client application shows
how to access port attributes and methods:

MBeanSer ver Connection nbsc = ... ;

String busScope = ...;
Cbj ect Narre port Name = new Cbj ect Nane("com i ona. i nstrunentati on: t ype=Bus. Servi ce. Port" +
", nane=SoapPort" +

", Bus. Service=\"{http://wm iona. conihel | o_worl|d_soap_http}SOAPServi ce\"" +", Bus=" +
busScope) ;

if (!nbsc.isRegistered(portNane)) {
t hr ow new MBeanExcepti on("Port MBean shoul d be registered");
}

/1 MBeanlnfo can be used to check for all known attributes and nethods
MBeanl nfo i nfo = nbsc. get MBeanl nf o(por t Nane) ;

// port name
String name = (String)nbsc.getAttribute(portNane, "name");

// port address
String address = (String)nbsc. get Attribute(portNamre, "address");

/1 check interceptors
String[] interceptors = (String[])nbsc.getAttribute(portName, "interceptors");

if (interceptors.length = 6) {
t hr ow new MBeanExcepti on("Nurber of port interceptors is wong");

}

handl el nt er cept or (i nt ercept ors[0],
" MessageSnoop",
"Message",
"CPP')

handl el nt er cept or (i nterceptors[1],
" Messagi ngPort ",
"Request ",
"OPP') ;
handl el nt er cept or (i ntercept ors[2],
"http://schemas. xm soap. or g/ wsdl / soap/ bi ndi ng",
"Request ",
"OPP");

211

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

handl el nt er cept or (i nt ercept ors[3],
"TestInterceptor”,
"Request ",
"Java");

handl el nt er cept or (i nt er cept ors[4],
"bus_response_noni tor_interceptor",
"Request ",
"CPP);

handl el nt er cept or (i nt ercept ors[5],
"Servant|nterceptor"”,
"Request ",
"CPP);

For example, the handl el nt er cept or () function may be defined as follows:

private voi d handl el nterceptor(String interceptor,
String nane,
String | evel,
String type) throws Exception {

if (interceptor.indexCt("[nane]: " + nane) == -1 ||
interceptor.indexCf("[type]: " + type) == -1 ||
interceptor.indexCf("[level]: " + level) == -1) {

t hr ow new MBeanException("Wong interceptor details");

}

/1 anal yze this interceptor further

212

Configuring JMX in an Artix Runtime

Configuring JMX in an Artix Runtime

Overview

Enabling the management plugin

Configuring remote JMX clients

This section explains the settings that must configure to enable JMX
monitoring of the Artix runtime, and access for remote JMX clients.

To expose the Artix runtime using JMX MBeans, you must enable a
bus_nanagenment plug-in as follows:

j mx_| ocal

{
¥

pl ugi ns: bus_nanagenent : enabl ed="true";

This setting enables a local access to JMX runtime MBeans. The
bus_managenent plug-in wraps runtime components into Open Dynamic
MBeans and registers them with a local MBeanServer.

To enable remote JMX clients to access runtime MBeans, use the following
configuration settings:

jmx_renote
{

pl ugi ns: bus_nanagenent : enabl ed="t rue";

pl ugi ns: bus_nanagenent : connect or : enabl ed="t r ue";
Ik

These settings allow for both local and remote access.

Specifying a remote access URL

Remote access is performed through JMX Remote, using an RMI Connector
on a default port of 1099. Using this configuration, you can use the following
JNDI-based JMXServiceURL to connect remotely:

service:jnx:rm://host:1099/jndi/artix

213

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

Configuring a stub-based
JMXServiceURL

Publishing the JMXServiceURL to
a local file

Further information

214

Configuring a remote access port

To specify a different port for remote access, use the following configuration
variable:

pl ugi ns: bus_nanagenent : connect or : port ="2000";
You can then use the following JMXServiceURL:

service:jnx:rm://host:2000/jndi/artix

You can also configure the connector to use a stub-based JMXServiceURL
as follows:

j mx_renote_stub

{

pl ugi ns: bus_nanagenent : enabl ed="true";

pl ugi ns: bus_nanagenent : connect or : enabl ed="true";

pl ugi ns: bus_nanagenent : connect or: regi stry: requi red="f al se";
ik

See the javax.management.remote.rmi package for more details on remote
JMX.

You can also request that the connector publishes its JMXServiceURL to a
local file:

pl ugi ns: bus_nanagenent : connect or: url : publ i sh="true";
The following entry can be used to override the default file name:

pl ugi ns: bus_nanagenent : connector:url:file="../../service.url";

For further information, see the following URLs:

RMI Connector
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMI
Connector.html

JMXServiceURL

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServ
iceURL.html

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMIConnector.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

Using Management Consoles and Adaptors

Using Management Consoles and Adaptors

Overview

JConsole

Artix runtime MBeans can be accessed remotely using JMX Remote. You
can use any third party consoles that support JMX Remote to monitor and
manage Artix servers.

For example, you can view the status and configuration of any bus instance,
stop or start a service, and change bus logging levels dynamically. You can
also inspect interceptors within the interceptor chain of a selected bus.

This section shows examples of using the JDK 1.5 JConsole and the JMX
HTTP adaptor.

The recommended JMX console for use with Artix is JConsole, which is

provided with JDK 1.5. This displays Artix runtime managed components in

a hierarchical tree, as shown in Figure 15.

Using JConsole

To use JConsole, perform the following steps:

1. Launch a JDK_HOWE bi n/ j consol e.

2. Select the Advanced tab.

3. Enter or paste a JMXServiceURL (either the default URL, or one copied
from a published connector. url file).

Figure 15 shows the attributes displayed for a managed service component
(for example, the serviceCounters performance metrics displayed in the right
pane). For detailed information on these attributes, see “Service attributes”
on page 202.

215

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

J25E 5.0 Monitoring & Management Console: service: jmx:rmi:/ffjndifrmi://sberyoz: 5008/artix
Connection

rSummary rMemory rThreads rCIasses rMBeans vM |
MBeans

ﬁ Tree

o= 9 Cannectar

[Attributes | Operations | Notifications | Info |

) Mame Walue
o [Mimplernentation nama i httpcihwesrw. ion a.cormijrr_runtime)5 0AR Service
¢ [com.iona.instrumentation Hports javax it.ObjectN: [1]

¢ CJEBus
@ demos jmx_runtime.server
¢ 3 Bus.Service
¢ 3 demos jrme_runtime.server
&3 "{hitp e iona.comijm_runtime}S0AP Service"

Tahular Havigation

¢ [J Bus.Serice.Port Mame Yalue
& [dernos jr_runtime.server sericeCounters averag?Rgsponseﬂme 3-023500001
" . :] " o requestsOneway
hitp:fiwnees iona.comijrme_runtime }30AP Service
L= fe goapPon I ! requestzSincelastCheck 1]
. reguestsTotal g
¢ 3 Bus.Service. Part Transpart fimeSinceLastoheck 510
¢ 3 demos jrme_runtime.server totalErrars il
- 3 ihttp: e iona.comijrme_runtime lS0APService”
¢ 3 SoapPart
@ HTTP state ACTIVATED

Figure 15: Managed Service in JConsole

216

Using Management Consoles and Adaptors

Figure 16 shows the attributes displayed for a managed port component (for
example, the i ntercept ors list displayed in the right pane). For detailed
information on these attributes, see “Port attributes” on page 209.

= J25E 5.0 Monitoring & Management Console: service: jmx:rmi:fffjndifrmi:/fsberyoz:5008/artix

Connection
Summary | Memory | Threads | Classes |'MBeans | VM |
MBeans
Ermee | Attributes | Operations | Notifications | Info_|
o [Cannector : RETS Value
&= [Jniimplementation |address hitp:/i10.5.2.47:8000/
[com iona instrumentation : [name}; M = Jlevell: M typel: CPP
: [t . : ye , :
¢ JEBus _ _ [name]: ingPort, [level]: R . [typel: CPP
k] demqs.]mx_runtlme.server [name]: hitp:iischema Isoap.org " hinding , [level];
¥ [Bus.Senice]: bus_r 5 itor_interceptor , [level]: Request ,

¢ [demos.jmx_runtime.server :
@ ity lon 3 comir_runtime }S0AF Serdce” intercentors

¢ [Bus Senice Port :
- demos. jmx_runtime.server :
9 O3 “ihttpcisee iona.cormfrm_runtimelS0APSerice”

[name]: Servantinterceptor , [level]: Request, [type]: CPP

3 SoapPort :
¢ [CJ Bus.Semice.Port Transport : E: [ot Il | [»
. N hame aapFo
¥ ?ST{DH?{:JthimZi2lrfvn?jrmx_runt\me}SOAPSeNice" transpart cofm inna instrumentation type=Bus Service Port Transport Bus=
¢] SoapPart :
@ HTTP
Figure 16: Managed Port in JConsole
JMX HTTP adaptor You can also use the default HTTP adaptor console that ships with the JMX

reference implementation, as shown in Figure 17.

Using the HTTP adaptor
To use the JMX HTTP adaptor, perform the following steps:
1. Specify following configuration settings:

pl ugi ns: bus_nanagenent : htt p_adapt or: enabl ed="t r ue";
pl ugi ns: bus_nanagenent : htt p_adapt or: port ="7659";

2. Specify the http://1 ocal host : 7659 URL for the main management
view.

217

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

218

Figure 17 shows the main management view.

] [JDMK5. 1_r01] Agent View - Microsoft Internet Explorer

¥

Fle Edt Wew Favorkes Tools Help

LE-BAS

2B |unks 2

addiress [{€] httpijjlocahost:7e53)
Google - | v| [C] search ~ Ehi72blocked | A% Check - 75 Autolink = | Aurcrl B options o
Agent View [JTDMES 1_101]

Fiferby objectnams[" |

This agent 15 registered on the domain DefauliDomain
This page contains 6 MBean(s)

List of registered MBeans by domain:

o Adaptoer
+ name=html port=7659

o JMhnplementation

» type=MBeanServerDelegate

o comionainstrumentation

+ type=Bus name=demos jm= runtime server

o type=Bus.Service Bus=demos jmx runtime. servername=""{http:ferwrw.iona. cotnfjme runtime} SOAPService”

+ type=Bus Serwice Port Bus=demos jmx runtime server Bus. Service="{http ffwww iona comfjmz runtime} SOAPSerwice” name=ScapPort
o type=Bus. Service Port Transport, Bus=demos. imz runtime. server Bus. Service="{http/fararw. iona. comsims runtime

SOAPSernice"” Bus Sernce Port=SoapPort name=HTTP

%4 Local intranet

Figure 17: HTTP Adaptor Main View

Further information

Using Management Consoles and Adaptors

Figure 18 shows the attributes displayed for a managed bus component (for
example, the servi ces that it includes). For detailed information on these
attributes, see “Bus attributes” on page 196.

2 MBean View of com.iona.instrumentation:type=Bus,name=demos. jmx_runtime.server - Microsoft Internet Explorer
File Edt Wew Favortes Tooks Help

Qe -) @ @ Jj pSearch ‘\;'\\'(Favnrites [] B- 4} . @ & 3

Adivess [{€] httpifjlacalhost: 7653 iewobjectResfjcoms2Eiona%2Einstrumentatian%:3Atype% 3DBUS ¥ 2Cname ™ 30demos o ZE M SFruntime % 2Eserver B ks ?
Google - | v | [C] search ~ Epi7zbiocked | A% check - %% Autolink - - aurorll [options 4

~

Reload Peried m seconds: =

MBean description:

Bus

List of MBean attributes:

Name

Type | Access | Value

arguments javalang String[] | RO |wew the walues of arsuments o
identifier javalang String | RO art

scope javalang String | RO demos jmx_runtime. server

services javax management. Objecttame[] | RO | view the values of services
|sel’vic95I\.-Innitnrinﬂ javalang Boolean | RW | @ True OFalse

Apply

hd
&) Dane

% Local intranet

Figure 18: HTTP Adaptor Bus View

For further information on using these JMX consoles, see the following:
JConsole
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
JMX HTTP adaptor
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

219

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

CHAPTER 12 | Monitoring and Managing an Artix Runtime with JMX

220

Part IV

Accessing Artix Services

In this part This part contains the following chapters:
Publishing WSDL Contracts page 223
Accessing Contracts and References page 235
Accessing Services with UDDI page 257
Embedding Artix in a BEA Tuxedo Container page 263

In this chapter

CHAPTER 13

Publishing WSDL
Contracts

This chapter describes how to publish WSDL files that
correspond to specific Web services. This enables clients to
access the WSDL file and invoke on the service.

This chapter discusses the following topics:

Artix WSDL Publishing Service page 224
Configuring the WSDL Publishing Service page 226
Querying the WSDL Publishing Service page 230

223

CHAPTER 13 | Publishing WSDL Contracts

Artix WSDL Publishing Service

Overview

Use with endpoint references

224

The Artix WSDL publishing service enables Artix processes to publish WSDL
files that corresponds to specific Web services. Published WSDL files can be
downloaded by other Artix processes (for example, clients), or viewed in a
web browser. Published WSDL files can also be downloaded by Web service
processes created by other vendor tools (for example, Systinet).

The WSDL publishing service is implemented by the wsdl _publ i sh plug-in.
This plug-in can be loaded by any Artix process that hosts a Web service
endpoint. This includes server applications, Artix routing applications, and
applications that expose a callback object.

It is recommended that you use the WSDL publishing service for any
applications that generate and export references. To use references, the
client must have access to the WSDL contract referred to by the reference.
The simplest way to accomplish this is to use the WSDL publishing service.

Figure 19 shows an example of creating references with the WSDL
publishing service. The wsdl _publ i sh plug-in automatically opens a port,
from which clients can download a copy of the server's dynamically updated
WSDL file. Generated references have their WSDL location set to the
following URL:

htt p: // Host name: WBDLPubl i shPort/ QueryStri ng

Host nane is the server host, WeDLPubl i shPort is a TCP/IP port used to serve
up WSDL contracts, and QueryStri ng is a string that requests a particular
WSDL contract (see “Querying the WSDL Publishing Service” on page 230).
If a client accesses the WSDL location URL, the server converts the WSDL
model to XML on the fly and returns the WSDL contract in a HTTP message.

For more details on references, see Developing Artix Applications in C++,
or Developing Artix Applications in Java.

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Artix WSDL Publishing Service

Figure 19: Creating References with the WSDL Publishing Service

Artix Client Artix Server
Artix Bus
Reference Reference
WSDL publish port v|_WsbL WSDL
»O——F+—F----—-- -i —— K Readand parse | ———
[S f—
P —
L WSDL Model | WSDL File

Multiple transports

Wsdl_publish plug'i”

The WSDL publishing service makes the WSDL file available through an
HTTP URL. However, the Web service described in the WSDL file can use a
transport other than HTTP.

For example, when the wsdl _publ i sh plug-in is loaded into an Artix server
process that hosts a Web service using I10P, it publishes the service’s
WSDL file at an HTTP URL.

225

CHAPTER 13 | Publishing WSDL Contracts

Configuring the WSDL Publishing Service

Overview

Loading the wsdl_publish plug-in

226

This section describes how to load the wsdl _publ i sh plug-in, and configure
it to suit your needs.

Note: In a production environment, it is strongly recommended that you
set a wsdl _publ i sh port and hostname format.

To load the wsdl _publ i sh plug-in, add the wsdl _publ i sh string to your
orb_pl ugi ns setting, in the process configuration scope. For example, if
your configuration scope is denos. server, you might use the following
orb_pl ugi ns list:

Artix Configuration File

denos{
server
{
orb_plugins = ["xmfile_|l og_streant, "wsdl _publish"];
h
ha

When the process starts, the WSDL file is available at an HTTP URL that
uses a TCP/IP port assigned by the operating system. This URL is
embedded in the WSDL | ocat i on value in an endpoint reference. Processes
receiving the reference can download the WSDL file from this URL.
However, there is no easy way to determine the port assigned by the
operating system. This makes it difficult to view the WSDL file in a web
browser, or to open this port through a firewall. You can solve this problem
by configuring a port for publishing WSDL.

Specifying a port for publishing
WSDL

Viewing the WSDL file in a web
browser

Configuring the WSDL Publishing Service

To enable viewing of WSDL files in a web browser, configure the

wsdl _publ i sh plug-in to use a specified port instead of a one assigned by
the operating system. The pl ugi ns: wsdl _publ i sh: publ i sh_port
configuration variable specifies the TCP/IP port that WSDL files are
published on. For example,

pl ugi ns: wsdl _publ i sh: publ i sh_port ="2222";

When specifying a publ i sh_port, you must confirm that the specified port
is not already in use. If the port is in use, the server process will still start,
but the following error message will be displayed

Connecti onFai | ed on HTTP Port 2222 return 3: Unknown socket error: 0

The default value is 0, which means that the port is assigned by the
operating system at runtime.

If you know either the wsdl _publ i sh plug-in or the TCP/IP port used by the
service, you can view or download the WSDL file in a web browser.

In the browser address box, enter one of the following URLs, where
VBDLPubl i shPort is the TCP/IP port used by the wsdl _publ i sh plug-in:

htt p: // Host NameQr | P: WBDLPubl i shPort/ get _wsdl ?
htt p: // Host NareQr | P: WBDLPubl i shPor t

The Artix process returns a web page that lists all of its services. Click on an
entry to retrieve the corresponding WSDL file.

Alternatively, you can enter one of the following URLs, where Servi cePort
is the TCP/IP port used by the Web service:

http: // Host NameQr | P: Ser vi cePort/ servi ce?wsdl
htt p: // Host NameQr | P: Ser vi cePort/ servi ce

The Artix process returns the WSDL file for the service. The
htt p: // Host NameQr | P: Ser vi cePort / servi ce?wsdl format is used in the
JAX-WS specification.

227

CHAPTER 13 | Publishing WSDL Contracts

Specifying a hostname format

228

The pl ugi ns: wsdl _publ i sh: host nane variable specifies how the hostname
is constructed in the wsdl _publ i sh URL. This is the URL that the
wsdl _publ i sh plug-in uses to retrieve WSDL contracts.

This variable has three possible values:

canoni cal The fully qualified hostname (for example,
htt p: // nyhost . nydomai n. com

unqual i fied The unqualified local hostname (for example,
http: // nyhost).

i paddr ess The IP address (for example, http://10. 1. 2. 3).

By default, the unqualified local hostname is published.

Note: These values can also be used by the following variables:

O pol i ci es: soap: server _addr ess_node_pol i cy: publ i sh_host name

O pol i ci es: at _http: server_address_node_pol i cy: publ i sh_host nane
pl ugi ns: wsdl _publ i sh: host name specifies how to construct the URL used
by the wsdl _publ i sh plug-in.

Whereas,

pol i ci es: soap: server_addr ess_node_pol i cy: publ i sh_host nanme and
policies:at_http: server_address_node_pol i cy: publ i sh_host nane
specify how to construct the URL in the published WSDL contract.

You must be aware of both sets of configuration entries when using the
wsdl _publ i sh plug-in (for example, to avoid publishing a WSDL file that
does not contain a complete URL).

Specifying WSDL preprocessing

Configuring the WSDL Publishing Service

You can use the pl ugi ns: wsdl _publ i sh: processor variable to specify the
kind of preprocessing done before publishing a WSDL contract.

Because published contracts are intended for client consumption, by
default, all server-side WSDL artifacts are removed from the published
contract. You can also specify to remove all IONA-specific extensors.
Preprocessing can also be disabled; the only modification is updating the
I ocati on and schemaLocat i on attributes to HTTP based URLs.

This variable has the following possible values:

artix Remove server-side artifacts. This is the default setting.
standard Remove server-side artifacts and IONA proprietary extensors.
none Disable preprocessing.

For example:

pl ugi ns: wsdl _publ i sh: processor =" st andar d";

229

CHAPTER 13 | Publishing WSDL Contracts

Querying the WSDL Publishing Service

Overview

Example query syntax

230

If you know the TCP/IP port used by either the wsdl _publ i sh plug-in or the
Web service, you can view or download the WSDL file in a web browser.

This section shows examples of querying the WSDL Publishing service. It
also describes its HTML menu and WSIL support.

Assume you configured wsdl _publ i sh using the following values on a
system with an IP address of 10. 1. 2. 3:

test. scope
{

pl ugi ns: wsdl _publ i sh: publ i sh_port = 1234;

pl ugi ns: wsdl _publ i sh: host nane = "i paddr ess";
Ik

The wsdl _publ i sh base URL is htt p: //10. 1. 2. 3: 1234. And requests on the

following types of URLs are serviced:

® http://10.1.2.3:1234/get_wsdl, http://10. 1. 2. 3: 1234/ get _wsdl /,
http://10. 1. 2. 3: 1234/ get _wsdl ?, or
http://10. 1. 2. 3: 1234/ get _wsdl / ? returns the HTML Menu (see
“Using the HTML menu” on page 231).

b http://10. 1. 2. 3: 1234/ get _wsdl ?ser vi ce=name&scope=Encodedlr |
returns the contract for the service specified in the query string.

® http://10.1.2.3:1234/ get _wsdl ?st ub=EncodedUr| returns the
contract for IONA specific services.

® http://10.1.2.3:1234/inspection.wsil returns a WSIL document
containing information about active Web services (see “WSIL support”
on page 232).

® http://10.1.2.3:1234/ get_wsdl / context/fil enane. wsdl returns the
specified WSDL contract. The value of cont ext is generated at
runtime.

Using the HTML menu

Querying the WSDL Publishing Service

® http://10.1.2.3:2000/ service or
http://10. 1. 2. 3: 2000/ ser vi ce?wsdl returns the contract for the
specified service. The value of the URL is the same as the one
specified in the WSDL as the soap: addr ess of the service.

If an invalid URL is provided, wsdl _publ i sh returns an HTTP 404 (File Not

Found) Error.

For more details, see “Viewing the WSDL file in a web browser” on
page 227.

The WSDL publishing service provides an HTML menu page that contains
links to the contracts of activated services. This page shows all services
activated on the current bus associated with a specified wsdl _publ i sh
instance.

Note: A process might have more than one active bus, and so more Web
services might be activated in that process. Contracts for other Web
services can be obtained from the wsdl _publ i sh instance associated with
their buses.

For example, an it _cont ai ner instance is started on port 2000, and the
wsdl _publ i sh port is configured as 1234. The HTML menu available at
http://10. 1. 2. 3: 1234/ get _wsdl is as follows:

WSDL Services available
Gont ai ner Servi ce(http://ws. i ona. coni cont ai ner)

Cont ai ner Servi ce(http://ws.iona. coni contai ner)

231

CHAPTER 13 | Publishing WSDL Contracts

WSIL support

232

The HTML source is as follows:

<ht m >
<body>
<h1>WBDL Servi ces avai | abl e</ h1>
<a href=
"http://10. 1. 2. 3: 2000/ get _wsdl / WPabcd/ cont ai ner . wsdl " >Cont ai n
erService(http://ws.iona. conicontai ner) </ a>

<a href=
"http://10. 1. 2. 3: 2000/ ser vi ces/ cont ai ner/ Cont ai ner Servi ce?wsd
| ">Cont ai ner Servi ce(http://ws. i ona. con cont ai ner) </ a>

</ body>
</htm >

The first entry downloads the WSDL from the wsdl _publ i sh port, while the
second downloads the WSDL from the service's port.

The hostname format assigned to pl ugi ns: wsdl _publ i sh: host nane affects
the syntax of the first entry's URL, while the server _address_node_pol i cy
variables affect the syntax of the second entry's URL. For more details, see
“Specifying a hostname format” on page 228.

The Web Services Inspection Language (WSIL) specification, available at
http://wow-128.ibm.com/developerworks/library/specification/ws-wsilspec,
provides a standard way of inspecting a Web service, and getting the
contracts of active Web services.

http://www-128.ibm.com/developerworks/library/specification/ws-wsilspec/

Querying the WSDL Publishing Service

For example, the WSIL document available from
http://10.1. 2. 3: 1234/ i nspecti on. wsi | has the following content:

<?xm version="1.0"?>
<i nspecti on target N\amespace="htt p: // schenas. xm soap. or g/ ws/ 2001/ 10/ i nspecti on/"
xm ns="ht t p: / / schemas. xm soap. or g/ ws/ 2001/ 10/ i nspecti on/ "
xm ns: wsi | wsdl =" ht t p: // schenas. xm soap. or g/ ws/ 2001/ 10/ i nspect i on/ wsdl / ">
<servi ce>
<descri ption referencedNamespace="http://schenas. xm soap. or g/ wsdl /"
|l ocation="http://10. 1. 2. 3: 1234/ get _wsdl / WPabcd/ cont ai ner . wsdl " >
<wsi | wsdl : ref erence>
<wsi | wadl : ref erencedSer vi ce xni ns: ns1="http://ws. i ona. coni cont ai ner" >
ns1: Cont ai ner Servi ce
</wsi | wsdl : r ef er encedSer vi ce>
</ wsi | wsdl : r ef er ence>
</ descri pti on>
</ servi ce>
<servi ce>
<descri pti on ref erencedNamespace="htt p: // schenas. xni soap. or g/ wsdl / *
I ocation="http://10. 1. 2. 3: 2000/ ser vi ces/ cont ai ner/ Cont ai ner Ser vi ce?wsd| ">
<wsi | wadl : r ef er ence>
<wsi | wsdl : ref erencedSer vi ce xm ns: ns1="http://ws. i ona. coni cont ai ner" >
ns1: Cont ai ner Servi ce
</ wsi | wsdl : r ef er encedSer vi ce>
</ wsi | wsdl : r ef er ence>
</ descri pti on>
</ servi ce>
</i nspect i on>

HTTP transport For an Artix process that exposes a Web service over HTTP, the WSDL
Publishing service provides an alternative way to view or download the
WSDL file.
Artix distinguishes between HTTP POST and HTTP GET calls. HTTP POST
calls are used to invoke on the target Web service. HTTP GET calls return
the WSDL file.

233

CHAPTER 13 | Publishing WSDL Contracts

Servant registration

234

In the following WSDL file, the port element specifies the HTTP transport
and makes the Web service available at a specified HTTP URL.

<defi ni ti ons nane="Hel | oVr| d"
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
R

<servi ce name="SOAPServi ce">

<port bindi ng="t ns: G eet er _SOAPBI ndi ng" name="SoapPort">
<soap: address | ocation="htt p://host nane: 9000/t est "/ >

</ port>

</ servi ce>

</ definiti ons>

If the Artix server hosting this service loads the wsdl _publ i sh plug-in, the
WSDL file may be viewed or downloaded using a web browser.

In the browser’s address box, enter:
htt p: // host name: 9000/ t est

For this approach to work, the service’s HTTP URL must include a unique
context (in this example case, /test).

When the WSDL Publishing service publishes a WSDL file for a service
using a statically registered servant, the published file contains valid
connection details. This is true even if the WSDL file originally specified
dynamic port assignment (for example, an HTTP transport with a location
URL of the form htt p: // Host Narre: 0, or an IIOP transport with a location
entry of the formior:).

The HTTP URL is revised to htt p: // Host Nane: Servi cePort , where

Servi cePort is a TCP/IP port assigned by the operating system. The I1IOP
location entry is revised to ICR . .., where . . . is the string representation of
the CORBA object reference.

However, when the wsdl _publ i sh plug-in publishes a WSDL file for a
service using a transiently registered servant, the published file does not
contain valid connection details. Valid connection details can only be
obtained from the endpoint reference corresponding to the service.

For more details on servant registration, see Developing Artix Applications in
C++, or Developing Artix Applications in Java.

../prog_guide/index.htm

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

In this chapter

CHAPTER 14

Accessing
Contracts and
References

Artix enables you to decouple the location of WSDL contracts
and endpoint references from your server and client. This
avoids hard-coding the location of WSDL files in your
applications. This chapter explains the benefits, and shows
how to use the different ways of accessing WSDL contracts
and endpoint references.

This chapter discusses the following topics:

Introduction page 236
Enabling Server and Client Applications page 239
Accessing WSDL Contracts page 243
Accessing Endpoint References page 249
Accessing Artix Services page 255

235

CHAPTER 14 | Accessing Contracts and References

Introduction

Overview

Hard coding WSDL in servers

236

Artix enables client and server applications to access WSDL service
contracts and endpoint references in a variety of ways (for example, by
specifying their location on the command line, or in a configuration file).
This section explains the benefits of using these features.

Hard coding WSDL in servers limits the portability of your application, and
can make it more difficult to develop and deploy.

For example, you have developed a Web service application that includes a
client and a service implemented in a server process. When you first write
the application, you have a local copy of the WSDL, and you have hard
coded the WSDL location into your application.

Example C+ + server

/] C++
Q\are servi ce_gnane("", "SOAPService",
http://wmv i ona. cond hel | o_worl| d_soap_http);

Hel | oWor | dI npl servant (bus) ;
bus- >r egi st er _servant (
“..l..letcl/hello.wsdl ",
servi ce_gname

)i
Example Java server

/1 Java
Q\ane servi ceQ\ane = new

Q\ane("http://ww i ona. cond hel | o_wor | d_soap_htt p",
" SQAPSer vi ce") ;

Servant servant = new Singl el nst anceSer vant (new Soapl npl (),
"..l..letc/hello.wsdl ", bus);
bus. regi st er Servant (ser vant, servi ceQ\ane, " SoapPort ") ;

Introduction

Hard coding WSDL in clients Similarly, you have also hard-coded your client with the location of your
local WSDL:

Example C+ + client

[l C++
Hel | oWorl dd ient proxy("../../etc/hello.wsdl ");
proxy. sayHel | o();

Example Java client

/] Java
Q\ane servi ceQ\Nane = new
Q\arre(" htt p: //waww i ona. comd hel | o_wor | d_soap_htt p*, "SOAPService");

URL wsdl Location = nul | ;

try {
wsdl Location = new URL("../../etc/hello.wsdl");

} catch (java. net. Mal f or mredURLExcepti on ex) {
wsdl Location = new Fi | e(wsdl Pat h).toURL();

}

Soap inpl =
(Soap) bus. creat ed i ent (wsdl Locat i on, servi ceQ\ane, por t Nane, Soap. cl ass) ;

String returnVal = inpl.sayH ();

Note: For simplicity, this example uses the Artix bus helper to create
proxies. You can also use JAX-RPC.

237

CHAPTER 14 | Accessing Contracts and References

Deploying your application

238

However, when your application is no longer a demo, and you want to
deploy it in multiple locations, your hard-coded application may make this
difficult. For example, if your client is no longer run from the same directory
or machine as the server.

To solve this problem, Artix enables you to write code that is location
independent, and therefore easy to distribute and deploy.

Note: These features are designed for WSDL-based services. They do not
provide mechanisms for resolving local objects. For details of how to do
this, see Developing Artix Applications with C++ and Developing Artix
Applications in Java.

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
../prog_guide/index.htm

Enabling Server and Client Applications

Enabling Server and Client Applications

Overview

Enabling servers to access WSDL

Artix addresses two typical use case scenarios:

® Enabling server applications to access WSDL contracts.

® Enabling client applications to access endpoint references.

Artix supports both of these use cases for C++ and Java applications.

When you want to activate your service in a mainline or a plug-in, you
should not hard code the WSDL location. Instead, you can use Artix APIs to
decouple the WSDL location from your application logic.

C++ example

The C++ get_service_contract () function takes the QName of the
desired service as a parameter, and returns a pointer to the specified

service. When you change your old hard-coded application to use this
method, your C++ server becomes:

/] G+
| T_Bus: : Q\ane servi ce_gname(
", "SOAPService", "http://wmiona.con hello_world_soap_http"
)i
// Find the WBDL contract.
I T_WBDL: : WBDL Ser vi ce* wsdl _servi ce = bus->get _servi ce_contract (
servi ce_gname
)i

/'l Register the servant
bus- >r egi st er _ser vant (
servant,
*wsdl _servi ce

DK

For simplicity, this example does not show any error handling. For details,
see Developing Artix Applications with C+ +.

239

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

CHAPTER 14 | Accessing Contracts and References

Enabling clients to access
endpoint references

240

Java example

The Java get Servi cevsDL() method takes the QName of the desired service
as a parameter, and returns the URL for the specified service WSDL. Your
Java server becomes:

/1 Java
Q\ane servi ceQ\ane = new
Q\are("http://ww i ona. cond hel | o_worl d_soap_http", "SOAPService");

String hwédl = bus. get Servi ceWsDL(servi ceQ\ane) ;

Servant servant = new S ngl el nst anceSer vant (new Soapl npl (), hweédl, bus);
bus. r egi st er Ser vant (ser vant, ser vi ceQ\arre, " SoapPort ") ;

Associating your server with a specific WSDL contract is not addressed in
your application code. This is specified at runtime instead. The available
options are explained in “Accessing WSDL Contracts” on page 243.

When you want to initialize your client proxies in your applications, you
should no longer depend on local WSDL files or static stub code information
to properly instantiate a proxy. Instead, you can use Artix APIs to decouple
the location of client references from your application logic.

Note: The Artix 3.0 APIs for resolving initial references have been
deprecated in Artix 4.0. These APIs are supported for backwards
compatibility, however, it is recommended that you update your
applications to use the new WS-Addressing APlIs in Artix 4.0.

C++ example

The C++resol ve_initial _reference() function takes the QName of the
desired service as a parameter, and returns the endpoint reference for the
specified service.

Enabling Server and Client Applications

You can change your old hard-coded client application as follows:

/] C++
I T_Bus: : Q\ane servi ce_gnane(

", "SOAPService", "http://ww iona.com hell o_world_soap_http"
IE

W&_Addr essi ng: : Endpoi nt Ref er enceType ref;

/1l Find the initial reference.
bus->resol ve_ini tial _reference(
servi ce_gnare,
r ef
DE
I/l Create a proxy and use it
QeeterAient proxy(ref);
proxy. sayH () ;

Java example

The Java resol vel ni ti al Endpoi nt Ref er ence() method takes the QName
of the desired service as a parameter, and returns the endpoint reference for
the specified service. You can change your old hard-coded Java client as
follows:

/1 Java
Q\ane nane = new Q\Nane("http://wamv i ona. coni hel | o_wor| d_soap_http",
" SOAPSer vi ce") ;

Endpoi nt Ref er enceType ref;

/1 Find the initial reference.
ref = bus.resol vel niti al Ref er ence(nane);

/I Create a proxy and use it.

Qeeterdient proxy = (Geeterdient)bus. Oeatedient(ref,
QGeeterdient.class);

proxy. sayH () ;

The association of your client with a specific endpoint reference is not
addressed in your application code. This is specified at runtime instead. The
available options are explained in “Accessing Endpoint References” on
page 249.

241

CHAPTER 14 | Accessing Contracts and References

Accessing WSDL and references
for clients or servers

242

These APIs can be used by both clients and servers. For example, typically,
Java clients use the resol vel ni ti al Endpoi nt Ref erence() method and
servers use the get Servi ceWsDL() method. However, both application types
can use either of these methods. The same applies to their C++
equivalents.

For example, a Java client could also use the get Ser vi cewsDL() method to
locate a WDSL file.

Accessing WSDL Contracts

Accessing WSDL Contracts

Overview

Accessing WSDL at runtime

Configuring WSDL on the
command line

When your application calls the Artix bus to access a WSDL contract for a
service, the Artix bus uses several available options to access the requested
WSDL. Artix tries each resolver mechanism in turn until it finds an
appropriate contract, and returns the first result. If one of these is configured
with a bad contract URL, no others are called.

Accessing WSDL is a two-step process:

1. You must first use the C++ or Java API to resolve the WSDL (see
“Enabling servers to access WSDL"” on page 239).

2. You must then use one of the resolvers to configure the WSDL at
runtime. These are explained in this section.

The possible ways of accessing WSDL at runtime are as follows:
1. Command line.

2. Artix configuration file.

3. Well-known directory.

4. Stub WSDL shared library.

These resolver mechanisms are listed in order of priority, which means that
if you configure more than one, those higher up in the list override those
lower down. See “Order of precedence for accessing WSDL” on page 247.

You can configure WSDL by passing URLs as parameters to your application
at startup. WSDL URLs passed at application startup take precedence over
settings in a configuration file. The syntax for passing in WSDL to any Artix
application is:

- BUSservi ce_contract url

For example, assuming your application is using the
get _servi ce_contract () method, you can avoid configuration files by
starting your application as follows:

./ server -BUSservice_contract ../../etc/hello.wsdl

243

CHAPTER 14 | Accessing Contracts and References

Configuring WSDL in a
configuration file

This means that the Artix bus parses the URLs that you pass into it on
startup. It finds any services that are in this WSDL, and caches them for any
users that want WSDL for any of those services.

Parsing WSDL on demand

If you do not want the Artix bus to parse the document until it is needed,
you can specify what services are contained in the WSDL, which results in
the URL being parsed only on demand. The syntax for this is:

- BUSservi ce_contract {namespace}l ocal part @r |

For example, the application would be started as follows:

./ server -BUSservice_contract

{http://wmviona. com denos} Hel | oVor | dService@./../etc/ hello.wsdl

Specifying the WSDL URL on startup enables the Artix bus to avoid parsing
the WSDL until it is requested.

You can also configure the location of your WSDL in an Artix configuration
file, using the following syntax.

bus: gname_al i as: servi ce- nane = "{namespace}l ocal part";
bus:initial _contract:url:service-name = "url";

These configuration variables are described as follows:

® bus: gnane_al i as: servi ce- nane enables you to assign an alias or

shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is " { nanespace} | ocal part".

bus:initial _contract: url:service-name uses the alias defined
using bus: gnane_al i as to configure the location of the WSDL contract.
The WSDL location syntax is "ur | ". This can be any valid URL, it does
not need to be a local file.

The following example configures a service named Si npl eSer vi ce, defined
in the http: //waw i ona. cond bus/ t est s hamespace:

bus: gnane_al i as: si npl e_service = "{http://ww i ona. con bus/t est s} Si npl eServi ce";
bus:initial _contract:url:sinple_service ="../../etc/sinple_service. wsdl";

244

Configuring WSDL in a
well-known directory

Accessing WSDL Contracts

You can also configure an Artix application to search in a well-known
directory when it needs to access WSDL. This enables you to configure
multiple documents without explicitly configuring every document on the
command line, or in configuration. If you specify a well-known directory, you
only need to copy the WSDL documents into this directory before the
application uses them.

You can configure the directory location in a configuration file or by passing
a command-line parameters to your C++ or Java application.

Configuring a WSDL directory in a configuration file

To set the directory in configuration, use the following variable:

bus:initial_contract_dir=["."];

The value "." means use the directory from where the application was
started. The specified value is a list of directories, which enables you to
specify multiple directories.

Configuring a WSDL directory using command-line parameters

If you do not wish to use a configuration file, you can configure the WSDL
directory using command line parameters. The command line overrides any
settings in a file. The syntax is as follows:

-BUSservice_contract _dir directory

For example, to configure Artix to look in the current directory, and in the
"../..letc" directory, use the following command:

server -BUSservice contract_dir . -BUSservice_contract_dir ../../etc/

Configuring multiple WSDL directories

You can configure multiple well-known directories for your application to
search. Howeuver, it is not recommended that you put too many files in the
directory.

The more files you put in the directory, the longer it may take to find the
contract that you are looking for. The directory search is optimized to first do
a quick file scan to see if any of the files potentially contain the target
service requested. The documents are not properly parsed unless a match
has been found.

245

CHAPTER 14 | Accessing Contracts and References

Configuring a stub WSDL shared
library

246

If you use multiple directories, the ordering makes a difference if both
directories contain the same service definitions. The WSDL resolvers search
the directories in the order that they are configured in.

You can add WSDL documents to the well-known directories after the

application has started. The file must only be present in the directory before
the application requests it.

It is also possible to encode a WSDL document inside a C++ shared library.
Just like in Java, where resources are added to a . j ar file, Artix can embed
a WSDL document inside a shared library. This enables you to resolve
WSDL contracts for Artix services without using a file system or any remote
calls.

When a WSDL document is encoded inside a shared library, this is called a
stub WSDL shared library. Artix provides stub WSDL shared libraries for the
following Artix services:

® locator

® session manager

® peer manager

® container

This means that you can deploy these services into environments without
using any other resources like WSDL documents. Artix does not provide
APIs to enable you to encode your own documents into stub libraries.

Stub WSDL shared libraries are the last resolver mechanisms to be called. If
you configure any others, the stub WSDL shared library is not used.

All the Artix stub WSDL libraries contain WSDL endpoints with SOAP HTTP
port addresses of 0. This means that if these versions are used to activate a
service, the endpoint is instantiated on a dynamic port. This is the
recommended approach for internal services like the container and peer
manager.

Order of precedence for accessing
WSDL

Accessing WSDL Contracts

Because there are several available options for accessing WSDL, Artix
searches each resolver in turn for a suitable document. It returns the first
successful result to the user.

The order of precedence for accessing WSDL is as follows:

Contract passed on the command line.

2. Contract specified in a configuration file.

3. Well-known directory passed on the command line.
4. Well-known directory specified in a configuration file.
5. Stub WSDL shared library.

Example

You have four WSDL contracts that contain a definition for a service named
Si npl eServi ce:

one/ si npl e. wsdl
two/ si npl e. wsdl

t hr ee/ si npl e. wsdl
four/sinpl e. wsdl

1. Configure the following in your configuration file:
bus: gnane_al i as: si npl e_service =
"{http://wmw iona.coni bus/tests}S npl eService";

bus:initial_contract:url:sinple_service = "two/sinple.wsdl";
bus:initial _contract _dir=["four"];

2. Start your server as follows:

server -BUSservice_contract_dir three -BUSservice_contract one/sinple.wsdl

The contract in one/ si npl e. wsdl is returned to the application because
WSDL configured using -BUSser vi ce_cont ract takes precedence over all
other sources.

247

CHAPTER 14 | Accessing Contracts and References

Accessing standard Artix services

248

If you start your server as follows:
server

The contract in t wo/ si npl e. wsdl is returned to the application because the
order that the resolvers are called means that the contract specified in a
configuration file is the first successful one.

For details of accessing WSDL for standard Artix services such as the locator
or session manager, see “Accessing Artix Services” on page 255.

Accessing Endpoint References

Accessing Endpoint References

Overview

Endpoint reference resolver
mechanisms

An endpoint reference is an object that encapsulates the endpoint and
contract information for a particular WSDL service. A serialized reference is
an XML document that refers to a running service instance, and contains a
URL pointer to where the service WSDL can be retrieved. You can serialize a
reference to any service by deploying it into the Artix container and calling

i t_container_admn -publishreference. Alternatively, you can use APIs
to publish an endpoint reference directly.

For example, when your client application uses the Artix bus to look up a
endpoint reference using the service QName, it calls the

resol vel ni ti al Endpoi nt Ref erence() method. Accessing endpoint
references works the same way as accessing WSDL, and you have several
options for configuring the reference that the client uses. Like with WSDL
contracts, Artix tries each resolver in turn until it gets a successful result or
an error. If any of these return null, the core tries the next one. If you have a
badly configured reference, the resolver returns an error or exception.

Accessing endpoint references is a two-step process:

1. You must first use the C++ or Java API to resolve the reference (see
“Enabling clients to access endpoint references” on page 240).

2. You must then use one of the resolvers to configure the reference at
runtime. This is explained in this section.

For details of how to use the Artix container to publish endpoint references
for a client, see Chapter 6.

The possible ways of configuring endpoint references at runtime are as
follows:

1. Colocated service.

C++ programmatic configuration.
Command line

Configuration file.

WDSL contract.

ok wN

249

CHAPTER 14 | Accessing Contracts and References

Using a colocated service

Specifying endpoint references in
C++ code

250

These are listed in order of precedence, so if you configure more than one,
those higher up in the list override those lower down. Artix searches each in
turn for a suitable match and returns the first successful result.

The most convenient place to find a endpoint reference to a service that a
client has requested is in the local Artix bus. When the activated service is
colocated (available locally in the same process), the client can easily find a
local reference to invoke. In this case, the client’s

resol ve_initial _reference() method returns a reference to the colocated
service.

This is the first resolver that the runtime checks. You can expect resolution
to always succeed for services that are activated locally.

In C++, you can register an initial reference programmatically using the
Artix bus. You can register an reference in one C++ plug-in that would
enable another plug-in (Java or C++) to resolve that reference using the
bus API.

Artix checks the bus for local services, so it would be unusual for an
application to require the programmatic configuration unless it uses multiple
buses. You can not programmatically configure a reference in one bus and
have it resolved in another.

In addition, you can not activate a service in one bus, and have it resolved in
another. If you wish a client in one bus to use a reference from an active
service in another bus you should programmatically register the reference
from one bus to the next.

Accessing Endpoint References

For example:

\\ G+
Q\ane servi ce_gnane("", "SOAPService",
http://waww i ona. com hel | o_wor| d_soap_http);

/] Activate the service on bus one
Hel | oWor | dl npl servant (bus_one) ;

WBDLSer vi ce* contract = bus_one->get_servi ce_contract (servi ce_gnane);
bus_one- >r egi st er _ser vant (

*contract,
servant

Servi ce_var servi ce = bus_one->get _servi ce(servi ce_gnane);

/1l Register the service reference on bus two
bus_two->register_initial_reference(service->get_endpoi nt_reference());

Specifying endpoint referenceson You can also pass in reference URLs as parameters to the application on

the command line

startup. Endpoint reference URLs passed to the application on startup take
precedence over settings in an Artix configuration file. The syntax for passing
in a reference to any Artix application is:

-BUSinitial _reference url

For example, assuming your application is using
resol ve_initial _reference(), you could avoid configuration files by
starting your application as follows:

./client -BUSinitial _reference ../../etc/hello.xm

This means that the Artix bus parses the URLs passed into it on startup. It
caches them for any users that request references of this type at runtime.

251

CHAPTER 14 | Accessing Contracts and References

Specifying endpoint references in
a configuration file

252

Parsing endpoint references on demand

If you do not want to parse the reference XML until it is needed, you can
specify the service name that the reference maps to. This means that the
XML is not parsed until it is first requested. The syntax for this is

-BUSinitial _reference {namespace}l ocal part @r |

For example, the application is started as follows:

./client -BUSinitial_reference

{http://wmviona. con denos} Hel | oVor | dService@./../etc/ hello. xm

You can also specify an endpoint reference in a configuration file. The
reference must be serialized in an XML format (for example, output to a file
using i tcontai ner -publ i shreference).

You can use configuration variable syntax to configure a URL or the contents
of a serialized reference.

Specifying serialized reference URLs

You can configure the location of your WSDL in an Artix configuration file,
using the following configuration variable syntax.

bus: gname_al i as: servi ce- nane = "{namespace}l ocal part";
bus:initial references:url:service-nane = "url";

These variables are described as follows:

® Dbus: gname_al i as: servi ce- nane enables you to assign an alias or
shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is " { nanespace} | ocal part".

® pus:initial_contract:url:service-nane uses the alias defined
using bus: gnane_al i as to configure the location of the endpoint
reference. The XML location syntax is "url ". The URL value can be any
valid URL, it does not have to be a local file, but under most
circumstances the endpoint reference is local.

Accessing Endpoint References

The following example configures a service named Si npl eSer vi ce, defined
in the http: //wa i ona. cond bus/ t est s namespace:

bus: gnane_al i as: si npl e_service = "{http://ww i ona. com bus/tests}S npl eServi ce";
bus:initial _contract:url:sinple_service ="../../etc/sinple_service.xm";

Specifying inline references

Instead of configuring a URL, you can also inline the endpoint reference
XML in a configuration file. This is similar to configuring CORBA initial
references in Orbix, and it effectively hard codes the addressing. This should
only be used for static services where you do not expect anything to change
(for example, details such as the endpoint address and transport
information).

The following is an example inline endpoint reference:

bus: gname_al i as: si npl e_service = "{http://ww i ona. com bus/tests}Si npl eServi ce";
bus:initial _references:inline:sinple service = "<?xm version='1.0" encoding="utf-8 2>";

Specifying endpoint references
using WSDL

The endpoint reference appears on one line in an XML document.

How Artix finds endpoint references is built on how it finds WSDL. When
configuring a reference, you can use all the options available for configuring
WSDL. When you locate a WSDL document that contains the wsdl : servi ce
you are looking for, you can convert it to a reference and return it to the
client.

If Artix fails to find a suitable reference using the reference resolver
mechanisms, it falls back to those used for WSDL. This is useful in certain
scenarios. For example, when you only want to configure well-known Artix
services (such as the locator). If you configure the WSDL, both the service
and the client can benefit from a single configuration source.

253

CHAPTER 14 | Accessing Contracts and References

Implications of resolving references using WSDL

When no references are found, Artix calls the WSDL resolver mechanisms.
This means that you can rely on WSDL to configure client references.

However, the default WSDL contracts for well-known Artix services have
SOAP/HTTP endpoints with a port of zero. For example:

<servi ce name="Locat or Servi ce">
<port bi ndi ng="Is: Locat or Servi ceBi ndi ng" nane="Locat or Servi cePort">
<soap: address | ocation="http://| ocal host: O/ servi ces/| ocat or/ Locat or Ser vi ce"/ >
</ port >
</ servi ce>

If you resolve a reference with a port of zero, you get an error when you try
to invoke the proxy created from the reference. The exception says that the
address is invalid.

These contracts with ports of zero are intended for use by servers rather
than clients, and enable servers to run on a dynamic port. Therefore, in
general, your client should not rely these contracts. If the server is using this
type of contract, you should publish the activated form of the contract,
which contains the port assigned dynamically at startup. Your client can
then access this activated version of the contract instead.

Further information For more detailed information on endpoint references, see Developing Artix
Applications in C++, or Developing Artix Applications in Java.

254

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Accessing Artix Services

Accessing Artix Services

Overview Artix includes WSDL contracts for all of the services that it ships (for
example, the locator and session manager). This section shows the default
configuration provided for these services.

Pre-configured WSDL Artix provides pre-configured aliases and WSDL locations for all of its
services. By default, the Artix configuration file (arti x. cf g) includes the
following entries:

Wl | known Services Q\ane al i ases
bus: gname_al i as: contai ner = "{http://ws.iona. coni cont ai ner} Cont ai ner Servi ce";
bus: gnane_al i as: |l ocator = "{http://ws.iona.conilocat or}Locat or Servi ce";
bus: gnane_al i as: peermanager = "{http://ws.i ona. conm peer _nanager } Peer Manager Ser vi ce";
bus: gname_al i as: sessi onmanager = "{http://ws.iona. con sessi onnanager } Sessi onManager Ser vi ce";
bus: gname_al i as: sessi onendpoi nt nanager =

"{http://ws.iona.com sessi onmanager } Sessi onEndpoi nt Manager Ser vi ce";
bus: gname_al i as: uddi _i nquire = "{http://wmv iona. com uddi _over_arti x}UDD _I| nqui reServi ce";
bus: gname_al i as: uddi _publ i sh = "{http://wmv i ona. com uddi _over_arti x}UDD _Publ i shServi ce";
bus: gnanme_al i as: | ogi n_service = "{http://ws.iona. coni| ogi n_servi ce} Logi nServi ce";

bus:initial contract:url:container = "install _root/artix/Version/wsdl/container.wsdl";
bus:initial _contract:url:locator = "install_root/artix/Version/wsdl /| ocator.wsdl ";
bus:initial _contract:url:peermanager = "install _root/artix/ Version/wsdl / peer- manager . wsdl ";

bus:initial_contract:url:sessi onmanager =

"install_root/artix/Version/wsdl /sessi on- manager . wsdl ";
bus:initial _contract: url:sessi onendpoi nt ranager =

"install _root/artix/ Version/wsdl / sessi on- manager . wsdl “;
bus:initial _contract:url:uddi _inquire = "install_root/artix/Version/wsdl/uddi/uddi _v2.wsdl";
bus:initial _contract:url:uddi_publish = "install_root/artix/Version/wsdl/uddi/uddi _v2.wsdl ";
bus:initial _contract:url:|ogin_service =

"install _root/artix/Version/wsdl /| ogi n_service.wsdl";

In your application, if you resolve the WSDL or an endpoint reference for any
of these services, by default, the WSDL from these values is used. Most of
these services are configured to use a port of zero. If you do not want to use
the default WSDL for any of these services, you must override the default.

255

CHAPTER 14 | Accessing Contracts and References

Further information For more details on the configuration variables for accessing WSDL
contracts and endpoint references, see the Artix Configuration Reference.

For more examples of accessing WSDL and references in Artix applications,
see the following demos:

. denos\ basi c\ boot st rap

. denos\ advanced\ cont ai ner\ depl oy_pl ugi n
. denos\ advanced\ cont ai ner\ depl oy_r out es
. denos\ advanced\ | ocat or

. denos\ advanced\ | ocat or _| i st _endpoi nts

256

../config_ref/index.htm

In this chapter

CHAPTER 15

Accessing Services
with UDDI

Artix provides support for Universal Description, Discovery and
Integration (UDDI). This chapter explains the basics, and
shows how to configure UDDI proxy support in Artix
applications. It also shows how to configure jUDDI repository
settings.

This chapter includes the following sections:

Introduction to UDDI page 258
Configuring UDDI Proxy page 261
Configuring a jUDDI Repository page 262

257

CHAPTER 15 | Accessing Services with UDDI

Introduction to UDDI

Overview

Publishing WSDL to UDDI

Artix UDDI URL format

258

A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that enables you to store and retrieve Web services endpoints. It
is particularly useful as a means of making Web services available on the
Internet.

Instead of making your WSDL contract available to clients in the form of a
file, you can publish the WSDL contract to a UDDI registry. Clients can then
query the UDDI registry and retrieve the WSDL contract at runtime.

You can publish your WSDL contract either to a local UDDI registry or to a
public UDDI registry, such as http://uddi.ibm.com or
http://uddi.microsoft.com.

To publish your WSDL contract, navigate to one of the public UDDI Web
sites and follow the instructions there.

A list of public UDDI registries is available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html)

Artix uses UDDI query strings that take the form of a URL. The syntax for a
UDDI URL is as follows:
uddi : UDDI Regi st r yEndpoi nt URL?QueryStri ng
The UDDI URL is built from the following components:
® DD Regi st ryEndpoi nt URL—the endpoint address of a UDDI registry.
This could either be a local UDDI registry (for example,
http://1 ocal host: 9000/ ser vi ces/ uddi /i nqui ry) or a public UDDI
registry on the Internet (for example,
http://uddi . i bm cond ubr/i nqui ryapi for IBM’'s UDDI registry).

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://uddi.microsoft.com
http://uddi.ibm.com

Introduction to UDDI

® QueryStri ng—a combination of attributes used to query the UDDI
database for the Web service endpoint data. Currently, Artix only
supports the t nodel nane attribute. An example of a query string is:

t nodel nane=hel | owor | d

Within a query component, the characters;,/,?,:, @& =, +,,,and $
are reserved.

Examples of valid UDDI URLs

uddi : http://1 ocal host : 9000/ ser vi ces/ uddi /i nqui r y?t nodel name=hel | owor | d
uddi : http://uddi . i bm cond ubr/i nqui ryapi ?t model nane=hel | owor | d

Initializing a client proxy with To initialize a client proxy with UDDI, simply pass a valid UDDI URL string
uDDI to the proxy constructor.

For example, if you have a local UDDI registry,

http://1 ocal host: 9000/ ser vi ces/ uddi /i nqui ry, where you have
registered the WSDL contract from the Hel | oWor | d demonstration, you can
initialize the G eeter i ent proxy as follows:

C++
Il Cr+
I T_Bus::Bus_var bus = I T Bus::init(argc, argv);

I/ Instantiate an instance of the proxy
QGeeterdient hw("uddi: http://1ocal host: 9000/ servi ces/ uddi /i nqui r y?t nodel nane=hel | owor | d");

String string_out;

/1 I nvoke sayH operation
hw sayH (string_out);

259

CHAPTER 15 | Accessing Services with UDDI

Java

/1 Java
String wsdl Path = "uddi: http://| ocal host: 9000/ servi ces/ uddi / i nqui ry?t model nane=hel | owor| d";
Bus bus = Bus.init((String[])orbArgs.toArray(new String[orbArgs.size()]));
Q\Bne name = new Q\Nane("http://wwn i ona. cond hel | o_worl d_soap_htt p", " SOAPSer vi ce") ;
Q\ane port Nane = new Q\arre("", " SoapPort");
URL wsdl Location = nul | ;
try {
wsdl Location = new URL(wsdl Pat h) ;
} catch (java. net. Mal f or medURLException ex) {
wsdl Locati on = new Fi |l e(wsdl Pat h). t oURL() ;
}

Servi ceFactory factory = Servi ceFact ory. newl nst ance() ;
Servi ce service = factory. creat eServi ce(wsdl Locat i on, nane) ;
Soap i npl = (Soap) servi ce. get Port (por t Nane, Soap. cl ass) ;

260

Configuring UDDI Proxy

Configuring UDDI Proxy

Overview

C+ + configuration

Java configuration

Artix UDDI proxy service can be used by applications to query endpoint
information from a UDDI repository. This section explains how to configure
UDDI proxy support for both C++ and Java client applications.

To configure an Artix C++ application for UDDI proxy support, add
uddi _pr oxy to the application’s orb_pl ugi ns list. For example:

Artix configuration file

ny_appl i cati on_scope {
orb_plugins = [..., "uddi_proxy"];

To configure an Artix Java application for UDDI proxy support, perform the
following steps:

1. Add | ava to the application’s or b_pl ugi ns list.

2. Addjava_uddi _proxy to the application’s j ava_pl ugi ns list. For
example:

Artix Configuration File

ny_appl i cati on_scope {
orb_plugins = [..., "java", ...];

java_pl ugi ns=["j ava_uddi _proxy"];

261

CHAPTER 15 | Accessing Services with UDDI

Configuring a jUDDI Repository

Overview The Artix demos use an open source UDDI repository implementation
named jUDDI. These demos use the HSQLDB database to store UDDI
information. For convenience, this is configured to run in file (embedded)
mode by default.

Setting jUDDI properties You can configure jUDDI properties, such as your database settings, in your
juddi . properties file. This file is located in the following directory:

Instal I Dir\artix\Version\denos\integration\juddi\artix_server\etc

For example, the HSQLDB database settings in the default
juddi . properti es file are as follows:

hsql db

j uddi . useConnect i onPool =t r ue

juddi . j dbcDri ver =or g. hsql db. j dbcDri ver
j uddi . j dbcURL=j dbc: hsql db: et ¢/ j uddi _db
j uddi . j dbcUser =sa

j uddi . j dbcPasswor d=

j uddi . j dbcMaxAct i ve=10

j uddi . j dbcMaxI dl e=10

If you want change your database to MySQL, uncomment all the nysql
settings, and use the following instead:

nysql

j uddi . useConnect i onPool =t r ue

j uddi . j dbcDri ver =com nysq|l . j dbc. Dri ver

j uddi . j dbcURL=j dbc: nysql : //10. 129. 9. 101: 3306/ j uddi
j uddi . j dbcUser =r oot

j uddi . j dbcPasswor d=

j uddi . j dbcMaxAct i ve=10

j uddi . j dbcMaxI dl e=10

Further information For more details, see: http://ws.apache.org/juddi/.

262

http://ws.apache.org/juddi/

CHAPTER 16

Embedding Artix
In a BEA Tuxedo

Container

Artix can be run and managed by BEA Tuxedo like a native
Tuxedo application.

In this chapter This chapter includes the following sections:

Embedding an Artix Process in a Tuxedo Container page 264

263

CHAPTER 16 | Embedding Artix in a BEA Tuxedo Container

Embedding an Artix Process in a Tuxedo

Container

Overview

Procedure

264

To enable Artix to interact with native BEA Tuxedo applications, you must
embed Artix in the Tuxedo container.

At a minimum, this involves adding information about Artix in your Tuxedo
configuration file, and registering your Artix processes with the Tuxedo
bulletin board.

In addition, you can also enable to Tuxedo bring up your Artix process as a
Tuxedo server when running t nboot .

This section explains these steps in detail.

Note: A Tuxedo administrator is required to complete a Tuxedo
distributed architecture. When deploying Artix in a distributed architecture
with other middleware, please also see the documentation for those
middleware products.

To embed an Artix process in a Tuxedo container, complete the following
steps:

1. Ensure that your environment is correctly configured for Tuxedo.

2. You can add the Tuxedo plug-in, t uxedo, to your Artix process’s
orb_pl ugi ns list.

orb_plugins=[... "tuxedo"];

However, the tuxedo plug-in is loaded transparently when the process
parses the WSDL file.

3. Set pl ugi ns: t uxedo: server to true in your Artix configuration scope.

4. Ensure that the executable for your Artix process is placed in the
directory specified in the APPDI R entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration’s SERVERS section to include an entry for
your Artix process.

Embedding an Artix Process in a Tuxedo Container

For example, if the executable of your Artix process is ri ngo, add the
following entry in the SERVERS section:

ringo SVRGRP=BEATLES SVR D=1

This associates ri ngo with the Tuxedo group called BEATLES in your
configuration and assigns ri ngo a server ID of 1. You can modify the
server's properties as needed.

6. Edit your Tuxedo configuration’s SERVI CES section to include an entry
for your Artix process.

While standard Tuxedo servers only require a SERVI CES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry, even if no optional runtime properties are
being set. The name entered for the Artix process is the name specified
in the servi ceNane attribute of the Tuxedo port defined in the Artix
contract for the process.

For example, given the port definition shown in Example 23, the
SERMI CES entry would be per sonal | nf oSer vi ce.

Example 23: Sample Service Entry

<servi ce name="personal | nf oServi ce">
<port name="t ux| nfoPort" bi ndi ng="tns: personal | nf oBi ndi ng">
<t uxedo: server >
<t uxedo: servi ce nane="per sonal | nf oServi ce"/>
</ t uxedo: ser ver >
</ port >
</ servi ce>

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBOONFI G reload the TUXCONFI G with t ni oad.

When you have configured Tuxedo, it manages your Artix process as if it
were a regular Tuxedo server.

265

CHAPTER 16 | Embedding Artix in a BEA Tuxedo Container

266

Index

A

acknowledgement endpoint URI 181
acknowledgement interval 184

Adaptive Runtime architecture 14

address 209

anonymous URI 178, 181

ANSI C strftime() function 30

Apache Log4J, configuration 57

application source 177

arbitrary symbols 21

arguments 196

ART 14

Artix 224

artix.cfg 84

artix:endpoint 139
artix:endpoint:endpoint_list 139
artix:endpoint:endpoint_name:wsdl_location 139
artix:endpoint:endpoint_name:wsdl_port 140
artix:interceptors:message_snoop:enabled 32
artix:interceptors:message_snoop:log_level 32
Artix bus pre-filter 36

Artix chain builder 148

Artix container 91

artix_env script 4

Artix high availability 156

Artix router 119

Artix switch 120

Artix transformer 136

Artix WSDL publishing service 224

ASCIl 66

asynchronous acknowledgements 184
auto-demotion of masters 157
averageResponseTime 203

avg 61

B
base retransmission interval 182
Berkeley DB 155
binding

artix:client_message_interceptor_list 84
binding:artix:server_message_interceptor_list 84
binding:artix:server_request_interceptor list 161
browser 227, 230

bus

attributes 196

ObjectName 195
bus:initial_contract:url:service 151
bus:initial_contract:url:service-name 244
bus:initial_contract_dir 245
bus:initial_references:url:service-name 252
bus:gname_alias:service 151
bus:gname_alias:service-name 244, 252
-BUSinitial_reference 24, 251
BusLogger 38
bus_management 213
bus_response_monitor 57
-BUSservice_contract 24, 243
-BUSservice contract_dir 24, 245

C

C++ configuration 57
canonical 228
chain builder 138, 142, 147
character encoding schema 66
CLASSPATH 114
client-id 59
cluster 157
codeset 66
CODESET _INCOMPATIBLE 72
codeset negotiation 70, 71
Collector 56
colocated service 250
command line configuration 23
-compiler vc71 4
CompositeData 210
configuration

command line 23

data type 18

domain 14

namespace 17

scope 14

symbols 21

variables 17
configuration context 179, 185
connector.url 215
constructed types 18

267

INDEX

-container 105
container 91, 246
administration client 95
persistent deployment 109
server 93
service 94
Windows service 113
ContainerService.url 101, 102
context 179, 185
ContextContainer 80
contracts 235
Conversion codeset 71
CORBA bypass 134
CORBA LocateReply 134
count 61
CreateSequence 176
CreateSequenceResponse 176
custom JMX MBeans 192

D

-d 99

-daemon 101

date format, rolling log file 30
db_dump 159

db_recover 159

db_stat 159

db_verify 159

delivery assurances 177
dependencies file 96, 97
-deploy 101, 104, 106
-deployable 97

-deployfolder 110, 115
deployment descriptor 94, 96
destination 176
-displayname 115
double-byte Unicode 72
dynamic logging 39, 105

dynamic read/write deployment 110

E

EBCDIC 76
echoString 73
echoVoid 73
election protocol 157
EMS, definition 54
encodings 66

endpoint references 224, 235, 239, 249
Enterprise Management Systems 54

268

Enterprise Object Identifier 51

environment variables 113

ERROR 28

EUC-JP 67

event_log:filters 26, 84, 163

event_log:filters:artix:pre_filter 36

event_log:log_service_names:active 37

event_log:log_service_names:services 37

ExactlyOnceConcurrent 177

ExactlyOncelnOrder 177

ExactlyOnceReceivedOrder 177

exponential backoff for retransmission 182

exponential backoff interval 177

Extended Binary Coded Decimal Interchange
Code 76

Extensible Stylesheet Language
Transformations 136

F
FATAL ERROR 28
-file 99, 104

filters 34
fixed:binding 73
fixed:body 73
four-byte Unicode 72

G

get_logging_config() 38
getlogginglevel 197
-getlogginglevel 39, 105
get_service_contract() 239, 243
getServiceWSDL() 240

H
ha_conf 165, 169
hard coded WSDL 236
-help 99, 102
high availability 156
clients 167
locator 164
-host 105
hostname format 228
HSQLDB database 262
HTML menu 231
HTTP adaptor 217
HTTP GET 233
HTTP POST 233
HTTP transport 233

INDEX

I IT_BUS.TRANSPORT.TIBRV 35
i18n-context.xsd 77, 80 IT_BUS.TRANSPORT.TUNNELL 35
i18n_interceptor 84 H_EUS-TRQ)N?ZOS;-TZUE)XEDO 35
IANA 51, 67 _Bus::ini , 23,
IBM Tivoli integration 54 IT_CONFIG_DIR 7
IBM WebSphere MQ, internationalization 76 !I‘COPFlG‘%ngéTsigf 7
identifier 196 It_container 93, ,
ideograms 66 it_container_admin 39, 95, 104, 124, 249
InboundCodeSet 76 IT_DOMAIN_NAME 8
include statement 19 IT_IDL_CONFIG_FILE 8
INFO ALL 28 IT_INIT_BUS_LOGGER_MEM 38
INFO HIGH 28 IT_LICENSE_FILE 7
INFO LOW 28 IT_Logging::LogStream 51
INFO MEDIUM 28 IT_PRODUCT DIR 7,114
initial sender 176
inline references 253 J
int 62 Japanese EUC 66
intercept_dispatch() 80 Jaganese 1SO 2022 66
intercept_invoke() 80 Java configuration 57
interceptors 209, 217 JAVA HOME 6
internationalization Java logging 43
CORBA 70 Java Management Extensions 189
MQ 76 java_plugins 261
SOAP 69 java_uddi_proxy 261
Internet Assigned Number Authority 67 JConsole 215
Internet Assigned Numbers Authority 51 JDK 114
IONA Tivoli Provider 54 JMX 189
ipaddress 228 JMX HTTP adaptor 217
1SO-2022-JP 68 JMX Remote 193
ISO 8859 66 JMXServiceURL 213
!tSCi-gf59-1 67 JRE 114
I jUDDI 262
ITArtixContainer 113 }uddi.properties 262
IT_ARTIXENV 10
IT BUS 34 L
IT_BUS.BINDING 34 .
IT_BUS.BINDING.COLOC 34 Latin-1 66
IT_BUS.BINDING.CORBA 34 life cycle message formats 63
IT_BUS.BINDING.CORBA.CONTEXT 34 “listservices 104, 107
IT_BUS.BINDING.FIXED 34 LocalCodeSet 76
IT_BUS.BINDING.SOAP 34 local_log_stream 26
IT_BUS.BINDING.TAGGED 34 LocateReply 134
IT_BUS.CORE 34 locator 246
IT_BUS.SERVICE 34 managed attributes 206
IT_BUS.SERVICE.LOCATOR 34 locator, load balancing 164
IT_BUS.SERVICE.PEER_MGR 34 LogdJ, configuration 57
IT_BUS.SERVICE.SESSION_MGR 35 log4J logging 43
IT_BUS.TRANSPORT.HTTP 35 log4j_log_stream 43
IT_BUS.TRANSPORT.MQ 35 LogConfig.properties 43

269

INDEX

log date format 30
log file, rolling 30
log file interpreter 54
logging 163
APl 38
inheritance 42
levels 197
message severity levels 27
per bus 38
service-based 37
set filters for subsystems 34
silent 42
subsystems 197
LoggingConfig 38
logging levels
getting 38, 39, 105
setting 26, 38, 40, 105
logging message formats 61
LOG_INHERIT 42
log_properties 57
LOG_SILENT 42

M

Managed Beans 190

management consoles 215

mark_as_write_operations() 172

master-slave replication 156

max 62

maximum messages in RM sequence 185

maximum unacknowledged messages
threshold 183

MBeans 190

MBeanServer 190

MBeanServerConnection 192

MEP 178

Message Exchange Pattern 178

MESSAGE_SNOOP 35

message snoop 32

MIB, definition 45

Microsoft Visual C++ 4

min 62

minority master 163

MQ, internationalization 76

MySQL 262

N

namespace 61
naming conventions 111

270

native codeset 70
NCS 70

o)

operation 61

oph 62

-ORBconfig_dir 7, 116
-ORBconfig_domains_dir 7
-ORBdomain_name 8, 116
-ORBlicense file 116
-ORBname 116
-ORBname parameter 16
orb_plugins 57, 139, 143, 150
-ORBproduct_dir 7

OSF CodeSet Registry 68
OutboundCodeSet 76

P

pass-through 134

PATH 114

peer manager 246

performance logging 54

persistent database 159

persistent deployment 109

PersistentMap 159

-pluginDir 99

-pluginlmpl 99

-pluginName 99

plugins:artix:db:allow_minority_master 163

plugins:artix:db:iiop:port 162

plugins:artix:db:priority 162

plugins:artix:db:replicas 160

plugins:bus_management:connector:enabled 213

plugins:bus_management:connector:registry:require
d 214

plugins:bus_management:connector:url:file 214

plugins:bus_management:connector:url:publish 21

plugins:bus_management:enabled 213
plugins:bus_management:http_adaptor:enabled 21

plugins:bus_management:http_adaptor:port 217

plugins:chain:endpoint:operation:service_chain 152

plugins:chain:endpoint:operation_list 151

plugins:chain:endpoint_name:operation_name:servic
e chain 143

plugins:chain:init_on_first_call 153

plugins:chain:servant_list 151

plugins:codeset:char:ccs 71
plugins:codeset:char:ncs 70
plugins:codeset:wchar:ccs 71
plugins:codeset:wchar:ncs 70
plugins:container:deployfolder 110
plugins:container:deployfolder:readonly 111
plugins:ha_conf:random:selection 172
plugins:ha_conf:strategy 172
plugins:it_response_time_collector:client-id 59
plugins:it_response_time_collector:filename 57
plugins:it_response_time_collector:log_properties 5

plugins:it_response_time_collector:period 57
plugins:it_response_time collector:server-id 59
plugins:it_response_time_collector:syslog_appID 58
plugins:it_response_time_collector:system_logging e
nabled 58
plugins:local_log_stream:buffer file 31
plugins:local_log_stream:filename_date_format 30
plugins:local_log_stream:rolling_file 31
plugins:locator:persist_data 164
plugins:locator:selection_method 164
plugins:messaging_port:base_replyto_url 179
plugins:messaging_port:supports_wsa_mep 178
plugins:messaging_port:wsrm_enabled 180
plugins:routing:proxy _cache_size 133
plugins:routing:reference_cache_size 133
plugins:routing:use_bypass 134
plugins:routing:use_pass_through 134
plugins:routing:wsdl_url 124, 126
plugins:snmp_log_stream:community 51
plugins:snmp_log_stream:oid 51
plugins:snmp_log_stream:port 51
plugins:snmp_log_stream:server 51
plugins:snmp_log_stream:trap_type 51
plugins:soap:encoding 69
plugins:wsdl_publish:hostname 228
plugins:wsdl_publish:processor 229
plugins:wsdl_publish:publish_port 227
plugins:wsrm:acknowledgement_interval 184
plugins:wsrm:acknowledgement_uri 181
plugins:wsrm:base_retransmission_interval 182
plugins:wsrm:disable_exponential_backoff_retransmi
ssion_interval 182
plugins:wsrm:max_messages_per_sequence 185
plugins:wsrm:max_unacknowledged_messages_thre
shold 183
plugins:xmlfile_log_stream:buffer_file 31
plugins:xmlfile_log_stream:filename 29

INDEX

plugins:xmlfile_log_stream:filename_date_format 3

plugins:xmlfile_log_stream:rolling_file 31
plugins:xmlfile_log_stream:use_pid 29
plugins:xslt:endpoint_name:operation_map 140
plugins:xslt:endpoint_name:trace_filter 144
plugins:xslt:servant_list 140
-pluginType 99
policies:at_http:server_address_mode_policy:publish
_hostname 228
policies:soap:server_address_mode_policy:publish_h
ostname 228
-port 101, 105, 115
port 61
name 209
ObjectName 209
ports 202
precedence, finding references 250
precedence, finding WSDL 247
pre-filter 36
preprocessing 229
-preserve 5
primitive types 18
programmatic configuration 250
-propagate 40
-provider 99
proxification 133
proxy 179
-publish 101
-publishreference 104, 106, 252
-publishurl 105, 106, 107
-publishwsdl 105, 106

Q

QName 239
QueryString 259
-quiet 100

R

random endpoint selection 172
read-only deployment 110
references 224, 235
registeredEndpoints 206, 208
registeredNodeErrors 206
registeredServices 206, 208
remote access port 214
remote JMX clients 213
-removeservice 104, 112

271

INDEX

replica group 167 setlnboundCodeSet 80
replica priorities 161 setLocalCodeSet 80
replicas, minimum number 157, 163 setlocale() 70
replicated services 156 setLogginglevel 197
reply-to endpoint 179 -setlogginglevel 39, 105
request_forwarder 158 setLogginglLevelPropagate 197
requestsOneway 203 setOutboundCodeSet 80
requestsSinceLastCheck 203 Shift JIS 66
requestsTotal 203 Shift JIS 67
resolvelnitialEndpointReference() 241, 249 -shutdown 105, 108
resolve_initial_reference() 240, 250 shutting_down 63
Response monitor 56 SNMP
retransmission 182 definition 45
RMI Connector 213 Management Information Base 45
rolling log file 30 snmp_log_stream 50
router 119 source 176
router pass-through 134 starting_up 63
router proxification 133 -startservice 104
routing 120, 125 state 202
running 63 stateless servers 171
runtime MBeans 192 status 63
-stopservice 104, 107
S strftime() 30
scope 196 stub WSDL shared library 246
security advisory 134 —svaame 115
SequenceAcknowledgement 177 switch 120
serialized reference 252 symbols 21
servant registration 230
server ID 61, 63 T
server ID, configuring 59 TabularData 210
-service 99, 104 TCS 71
service 61 timeSinceLastCheck 203
attributes 202 Tivoli integration 54
managed components 201 Tivoli Task Library 54
methods 204 tmodelname 259
name 202 totalErrors 203
ObjectName 202 transformer 136
serviceCounters 202 transmission codeset 70, 71
serviceGroups 208 transport 210
-service install 115
serviceLookupErrors 206 U
serviceLookups 206 UCS-2 72
services 196 UCS-4 72
Services dialog 116 UDDI 257
serviceSessions 208 uddi_proxy 261
servicesMonitoring 196 UDDIRegistryEndpointURL 258

-service uninstall 117
session manager 246
managed attributes 208

ultimate receiver 176
unacknowledged messages 183

272

INDEX

Unicode 67
unqualified 228
US-ASCII 67
UTF-16 67, 69
UTF-8 67

Vv

-verbose 5, 100

-version 100, 102

Visual Studio .NET 2003 4

w

WARNING 28

web browser 227, 230

Web service chain builder 138, 142, 148
Web Services Inspection Language 232
Web Services Reliable Messaging 175
WebSphere MQ, internationalization 76
Windows service 113

wsa:Messageld 178

wsa:RelatesTo 178

wsa:ReplyTo 178

wsa:To 178

WS-Addressing 178

WS-Addressing Message Exchange Pattern 178
ws_chain 150

wsdd 98

WSDL contracts 235, 239

WSDL preprocessing 229

wsdl_publish 224

WSDL publishing service 224
wsdltocpp 96

wsdltojava 97

-wsdlurl 99

WSIL 232

WS-ReliableMessaging 176

WS-RM 175

wsrm 180

wsrm:AckRequested 183
wsrm:AcksTo 176, 181

wsrm:acksTo 184

WS-RM acknowledgement endpoint URI 181

X

xmlfile_log_stream 26
XSLT service 135

273

INDEX

274

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Part I
	Getting Started
	Setting your Artix Environment
	Artix Environment Variables
	Customizing your Environment Script

	Artix Configuration
	Artix Configuration Concepts
	Configuration Data Types
	Artix Configuration Files
	Command-Line Configuration

	Artix Logging
	Configuring Artix Logging
	Logging for Subsystems and Services
	Dynamic Logging
	Configuring Log4J Logging
	Configuring SNMP Logging

	Enterprise Performance Logging
	Enterprise Management Integration
	Configuring Performance Logging
	Performance Logging Message Formats

	Using Artix with International Codesets
	Introduction to International Codesets
	Working with Codesets using SOAP
	Working with Codesets using CORBA
	Working with Codesets using Fixed Length Records
	Working with Codesets using Message Interceptors
	Routing with International Codesets

	Part II
	Deploying Services in an Artix Container
	Introduction to the Artix Container
	Generating a Plug-in and Deployment Descriptor
	Running an Artix Container Server
	Running an Artix Container Administration Client
	Deploying Services on Restart
	Running an Artix Container as a Windows Service

	Deploying an Artix Router
	The Artix Router
	Configuring an Artix Router
	Defining Routes in an Artix Deployment Descriptor
	Optimizing Router Performance

	Deploying an Artix Transformer
	The Artix Transformer
	Standalone Deployment
	Deployment as Part of a Chain

	Deploying a Service Chain
	The Artix Chain Builder
	Configuring the Artix Chain Builder

	Deploying High Availability
	Introduction
	Setting up a Persistent Database
	Configuring Persistent Services for High Availability
	Configuring Locator High Availability
	Configuring Client-Side High Availability

	Deploying Reliable Messaging
	Introduction
	Configuring a WS-Addressing MEP
	Enabling WS-ReliableMessaging
	Configuring WS-RM Attributes

	Part III
	Monitoring and Managing an Artix Runtime with JMX
	Introduction
	Managed Bus Components
	Managed Service Components
	Artix Locator Service
	Artix Session Manager Service

	Managed Port Components
	Configuring JMX in an Artix Runtime
	Using Management Consoles and Adaptors

	Part IV
	Publishing WSDL Contracts
	Artix WSDL Publishing Service
	Configuring the WSDL Publishing Service
	Querying the WSDL Publishing Service

	Accessing Contracts and References
	Introduction
	Enabling Server and Client Applications
	Accessing WSDL Contracts
	Accessing Endpoint References
	Accessing Artix Services

	Accessing Services with UDDI
	Introduction to UDDI
	Configuring UDDI Proxy
	Configuring a jUDDI Repository

	Embedding Artix in a BEA Tuxedo Container
	Embedding an Artix Process in a Tuxedo Container

	Index

